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Abstract 

Prostate cancer (PCa) is one of the most prevalent cancers among men. Early diagnosis 

can improve survival and reduce treatment costs. Current inter-radiologist variability for 

detection of PCa is high. The use of multi-parametric magnetic resonance imaging 

(mpMRI) with machine learning algorithms has been investigated both for improving 

PCa detection and for PCa diagnosis.  Widespread clinical implementation of computer-

assisted PCa lesion characterization remains elusive; critically needed is a model that is 

validated against a histologic reference standard that is densely sampled in an unbiased 

fashion. We address this using our technique for highly accurate fusion of mpMRI with 

whole-mount digitized histology of the surgical specimen. In this thesis, we present 

models for classification of malignant, benign and confounding tissue and aggressiveness 

of PCa. Further validation on a larger dataset could enable improved classification 

performance, improving survival rates and enabling a more personalized treatment plan. 

Keywords 

Magnetic resonance imaging, prostate cancer, machine learning, computer-assisted, 
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1 Chapter 1. 

1.1 Introduction 

Prostate cancer (PCa) is one of the most prevalent cancers among men [1]. PCa 

makes up one in five new cancer diagnoses and is the second leading cause of cancer 

related death among men [1]. Initial PCa diagnosis is important to create an optimal 

treatment plan for each patient. Initial diagnosis consists of a digital rectal examination, 

prostate specific antigen (PSA) test, and an analysis of primary and secondary Gleason 

grade, if available. Patients with a Gleason score ≤ 6, PSA < 10 and stage T1c to T2a [2] 

are usually placed on an active surveillance disease management strategy, where patients 

are monitored to see if the cancer becomes aggressive [2].  The T stage measures the 

location and extent of PCa. T stages ≤ 2 reflect PCa that is confined within the organ. 

Living with untreated cancer presents a psychological burden for some patients, resulting 

in many patients choosing to undergo a procedure that may not have been needed. 

Prostatectomy is a procedure consisting of the removal of the entire prostate through 

surgery. Overtreatment with radical prostatectomy (RP) is estimated to occur in 20 to 

60% of cases [3], resulting in significant deterioration of urinary and sexual function [3].  

  For a subset of patients who have localized PCa, therapies targeting PCa while 

sparing healthy tissue may be an intermediate option with fewer side effects, suitable for 

many patients. These therapies rely on pre-treatment target volume contours containing 

aggressive PCa. Many approaches have been investigated to create these pre-treatment 

target volume contours. Radiologist-identified regions from multi-parametric magnetic 

resonance imaging (mpMRI) have shown promise for detection of PCa [4], but 

substantial inter-observer variability in lesion contouring has been observed [5]. Many 
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computer-assisted diagnosis (CAD) models have been developed to improve lesion 

classification [6] [7] [4] [8] [9] . These systems can be used as second observers to 

improve physician performance, especially among novice radiologists [10]. Models that 

classify healthy tissue vs. malignant tissue have reached an area under the receiver 

operating characteristic curve (AUC) of 0.97 in the peripheral zone (PZ) [7] [11]. 

However, models that classify cancer from confounding regions have had lower 

accuracies, with Litjens et al. [12] achieving AUCs of 073, 0.75, 0.63, and 0.69 for 

classification of tumours vs. prostatic intraepithelial neoplasia (PIN), atrophy, 

inflammation and benign prostatic hyperplasia (BPH), respectively. These studies have 

limitations which have made widespread clinical implementation of computer-assisted 

PCa lesion characterization elusive, including small sample sizes and registration errors 

in reference standards due to spatial biases. Spatial biases may be the result of false-

positive low-intensity benign regions, as low-intensity regions are indicative of prostate 

cancer on T2-weighted (T2W) MRI and apparent diffusion coefficient (ADC) maps 

derived from diffusion-weighted MRI, by the PIRADS guidelines [13]. 

  Registration for CAD models is often done by radiological consensus, where 

radiologists confer with each other and/or a pathologist to determine tumour location and 

boundaries. This consensus mapping approach is most straightforward when identifying 

true-positive mpMRI lesions corresponding to histologic foci, but identifying mpMRI 

false-positive and false-negative lesions is more challenging and the attendant uncertainty 

in the error in spatial mapping remains. 
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Figure 1-1: Prostate zones within the prostate in the sagittal plane. PZ = peripheral zone, 

CZ = central zone, TZ = transition zone, US = urethral sphincter, AS = anterior 

fibromuscular stroma. (Adapted from the American college of radiology web site.) 

  Widespread clinical implementation of computer-assisted PCa lesion 

characterization remains elusive. Critically needed is a model that is validated against a 

histologic reference standard that is densely sampled in an unbiased fashion. Using our 

technique for highly accurate fusion of mpMRI with whole-mount digitized histology of 

the surgical specimen, we can address these biases [5]. 

1.2 Background 

1.2.1 Prostate anatomy 

The prostate is divided into 4 anatomical zones. The PZ covers 70% of the gland 

and extends from the base to the apex of the prostate. The central 25% of the gland that 

wraps around the urethra is the central zone (CZ). The transition zone (TZ) is made up of 
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the remaining 5% of the gland. The final zone is the non-glandular anterior fibromuscular 

stroma.  

1.2.2 Prostate cancer epidemiology 

Prostate cancer is the most common cancer identified in North American men [1]. 

In 2016, prostate cancer (PCa) is estimated to account for 21% of new cases of cancer 

and is the second leading cause of death of cancer in men in the United States, with one 

in eight men being diagnosed with PCa during his lifetime [1]. PCa progression is highly 

variable [14]. The variable nature of disease progression limits treatment options to either 

a radical therapy or a watch and wait strategy. 70% of cancer appears in the PZ, 25% in 

the TZ and 5% in the CZ [15]. Up to 90% of patients with recently diagnosed PCa are 

treated even when the disease is unlikely to have caused any major negative effects on 

their quality of life [16]. Additionally, many patients who elect for a watch and wait 

strategy have to endure the psychological burden of living with an untreated cancer. 

Thus, a key challenge in PCa treatment selection is predicting which patients do and do 

not need treatment. Computer models may have a role in addressing this challenge as 

models have been shown to improve the diagnostic accuracy of PIRADS scoring when 

combining the system score with a radiologist score [10], as well as classifying Gleason 

grade 6 vs. Gleason grade >= 7 cancer [9, 10, 17]. Models may also be able to address 

secondary objectives including accurate stratification of patients through optimized 

targeted biopsy procedures, monitoring low-risk patients through longitudinal 

measurements of tumour burden, and targeting curative-intent therapies for both 

aggressive and less aggressive treatments. 
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1.2.3 Prostate cancer diagnosis 

Diagnosis of PCa follows various pathways depending on the patient’s history and 

symptoms.  

1.2.3.1 Lower urinary tract symptoms 

If a patient presents lower urinary tract symptoms (LUTS) a primary care provider 

will assess and treat the patient. PCa treatment may exacerbate LUTS, and therefore the 

severity and impact on quality of life should be carefully considered before diagnosis or 

treatment [18]. 

1.2.3.2 Unexplained symptoms 

If a patient is 40 years old or older and has unexplained lower back pain with 

reproducible percussion tenderness, severe bone pain, or weight loss, especially in the 

elderly, they will receive a digital rectal exam (DRE) and prostate specific antigen (PSA) 

test [19]. 

1.2.3.3 Digital rectal exam 

In the context of PCa screening, sensitivity and specificity are used to measure the 

fractions of positives and negatives that are correctly identified. A DRE is a procedure in 

which a physician manually palpates the patient’s prostate with a gloved finger in order 

to identify abnormally dense or asymmetric regions [20]. DRE has a sensitivity of 52.3% 

and specificity of 83.6% [21] [22]. 

1.2.3.4 PSA testing 

PSA is a protein primarily produced by prostate cells. PSA testing measures the 

level of PSA in a blood sample. A PSA level above 10 ng/mL is considered suspicious 
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for cancer. However, other conditions such as prostatitis and benign prostatic hyperplasia 

(BPH) can also increase PSA levels [23]. Prostatitis comes in the form of an infection or 

inflammation. Prostatitis is classified into four categories: acute bacterial, chronic 

bacterial, chronic nonbacterial and chronic pelvic pain syndrome [24]. BPH is a condition 

that enlarges the prostate. The enlarged prostate can squeeze the urethra, causing urinary 

incontinence [25]. BPH occurs in almost all men as they age and is not considered to be a 

major health concern. PSA testing has a sensitivity of 72.1% and specificity of 93.2% 

[22]. 

1.2.3.5 Biopsy 

If a patient presents with symptoms of intermediate or aggressive PCa, they will receive a 

prostate biopsy. These symptoms include a PSA level > 10 and/or suspicious nodes found 

during the DRE. Gleason scores are used to determine the aggressiveness of the disease. 

A Gleason score is determined by inspection of architectural patterns, size and spacing of 

the tumour glands [26]. During a biopsy procedure, tissue samples are taken from the 

prostate through the rectal wall or less commonly through the perineum using a biopsy 

needle. Biopsy can be performed using transrectal ultrasound and/or MRI for guidance 

and targeting. 6–12 biopsy samples are obtained primarily in the PZ, as that is where 

most cancers are found [27]. Tissue obtained from the biopsy is then examined to 

determine the number of cores containing cancer and the extent of cancer in each core. A 

Gleason grading system is used to identify the aggressiveness of the cancer obtained from 

the biopsy [26]. The Gleason grading system is used to assign a Gleason grade to tissue 

using the microscopic architecture and differentiation of prostate glands on a five point 

scale [28, 29]. Grading biopsy tissue is a challenge. There is a 40% rate of discrepancy 
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between biopsy and prostatectomy Gleason grade [30, 31]. By adding the primary and 

secondary Gleason grades of tissue, a Gleason score can be obtained. Many studies have 

used the Gleason score for classification of tissue.  

1.2.4 Prostate cancer treatment 

Once a patient has been diagnosed with prostate cancer, an appropriate treatment 

plan will be selected with assistance from their physician. Treatment options will vary 

depending on the risk level associated with a particular patient.  

1.2.4.1 Watchful waiting and active surveillance 

Watchful waiting (also referred to as conservative management, expectant 

management and deferred treatment) is a palliative disease management strategy for 

monitoring patients while not treating them [2]. Active surveillance is intended as a 

curative disease management strategy that initiates curative treatment if and when 

necessary [32]. In active surveillance, patients are closely monitored for signs of 

progression that include frequent biopsies and PSA tests [33]. If progression is suspected, 

these patients can proceed to radical treatments [33]. Active surveillance is recommended 

for patients who have low-risk cancer. Low risk cancers have a Gleason score ≤6, 

PSA<10ng/ml and clinical stage T1c–T2a [33]. 

1.2.4.2 Prostate-focused therapies 

Radical prostatectomy and radical radiotherapy are the main treatment choices for 

localized prostate cancer. These treatment methods treat the entire prostate to the same 

degree. Radical prostatectomy is a procedure where the entire prostate is removed 

through surgery. Radical prostatectomy is used to treat patients with cancer that does not 

extend beyond the prostate capsule. The primary side effects of a radical prostatectomy 
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include high rates of erectile dysfunction (34–90% [34, 35]), urinary incontinence (8–

13% [34, 36]) and other complications (10–30% perioperatively and 4–10% within a 

year [34, 37]). Radiation therapy can refer to multiple procedures that irradiate the 

prostate in order to damage DNA. The first type of radiation is external beam radiation 

therapy (EBRT). This is a procedure in which high energy x-rays generated outside the 

body are focused on the prostate from multiple angles. A second type of radiation therapy 

is low-dose-rate brachytherapy (BT). This is a procedure where radioactive seeds are 

permanently inserted into the prostate. High-dose-rate BT is another type of radiation 

therapy where a highly radioactive emitter is moved within the prostate during the 

procedure and then removed. Radiation therapy patients have high rates of erectile 

dysfunction. A meta-analysis of patients with localized PCa who underwent radiotherapy 

found the probability of maintaining erectile dysfunction after treatment was 80%, 69%, 

68%, 22%, 16% and 13% for BT alone, BT + EBRT, EBRT alone, nerve sparing RP, 

standard RP, and cryotherapy, respectively [35]. Brachytherapy resulted in urinary 

incontinence in 6.6% of men after the procedure. For external beam radiation, minor to 

moderate urinary symptoms were present in 30% of men.   

1.2.4.3 Lesion-focused therapies 

In order to reduce the side effects of radical therapy, emerging treatments that 

preferentially target the prostate cancer lesions are being investigated. These treatments 

may allow for strategically escalating treatment to tumours in patients to achieve better 

outcomes. 
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1.2.4.3.1 Whole-gland radiation with focal boost 

A local recurrence may occur in the prostate after a radical radiotherapy, typically 

at the site of the dominant lesion [38]. Technological advances for planning and 

delivering radiation enable radiation oncologists to deliver different doses to specific 

regions within the prostate [39, 40]. 

1.2.4.3.2 Prostate-sparing and lesion-only therapies  

Although prostate cancer is multifocal in 67–82% of patients [41-43], there is a 

subset of patients who have a dominant lesion surrounded by non-cancerous tissue. There 

is also evidence that the size of the largest cancer focus is the primary predictor of risk of 

recurrence and biochemical failure, even in multifocal prostate cancers [43]. These 

findings have led to the development of treatment methods that target the cancer while 

sparing outside healthy tissue. Some of these treatment modalities include high-intensity 

focused ultrasound [44], cryotherapy [45], photodynamic therapy [46], laser ablation [47] 

and radiation therapy [48]. Early evidence from studies of several focal therapies 

suggests that they successfully reduce the side effects prevalent in radical therapies [49-

51]. Cryotherapy studies have reported incontinence rates lower than 5% and erectile 

dysfunction rates of 10–35% [45]. High-intensity focused ultrasound studies have 

reported incontinence rates less than 10% and erectile dysfunction rates of 5–11% [52]. A 

recent consensus panel suggested that delineation of cancerous regions should be 

performed using mpMRI [53]. These suggestions imply prostate cancer imaging and 

lesion delineation could play an important role in focal therapy planning. 
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1.2.5 Prostate cancer imaging 

There are many methods of imaging used to aid in PCa diagnosis and treatment 

planning. The focus of this thesis is on mpMRI for lesion classification.  

1.2.5.1 Magnetic resonance imaging 

MRI is used to provide rich anatomical and functional information. It allows for 

control of contrast using different acquisition sequences. MRI is being used in many 

areas of PCa diagnosis. Detection [13], staging [54, 55], localization [56-58], therapy 

planning [40, 53, 59], and therapy monitoring [60] are all areas where localized prostate 

cancer treatment and planning have been improved.  

Inter-observer variability in localization of prostate cancer on MRI is very large 

[53]. The following sections describe sequences and imaging protocols that have been 

investigated for imaging localized prostate cancer.  

1.2.5.2 T2W MRI 

T2-weighted MRI is used to visualize the structural components of the prostate. 

T2-weighted MRI measures the transverse relaxation due to the dephasing of atomic 

nuclei. In the PZ, tumours appear hypo-intense relative to benign peripheral zone tissue 

[61]. Tumours in the central gland are generally homogenous with low-intensity, ill-

defined irregular boundaries, and a lenticular shape [62]. Figure 1.2(a) shows a T2W 

MRI of a prostate, with a hypo-intense region in the PZ (indicated by an arrow) showing 

a cancerous lesion. 
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Figure 1.2: (a) T2W MRI of a prostate, showing a cancerous lesion as a 

hypointensity (arow) in the PZ. (b) ADC map of the same slice, showing the lesion 

as hypointensity (arrow). 

 

1.2.5.3 Diffusion-weighted MRI  

Diffusion-weighted (DW) MRI is used to measure the rate of diffusivity of water 

molecules in tissue. In tumours, diffusivity drops due to the increased cellular density 

associated with cancer [63]. DW MRI post-processing is used to create apparent diffusion 

coefficient (ADC) maps computed from multiple DW MR images taken with different b-

values [13]. A b-value measures the strength and timing of the gradients used to generate 

the images. Higher b-values represent a stronger diffusion effect. S0 is the MR signal at 

baseline, D is the diffusion coefficient and the signal, (S) after diffusion gradients have 

been applied is given by: 

S = S0e−bD (1) 

Prostate cancer appears hypo-intense on ADC maps. DW MRI has been shown to have 

higher sensitivity for central gland tumours compared to other MRI sequences [63, 64]. 

ADC values have also been shown to be correlated with Gleason score [65-67]. The main 

a) T2W MRI b) ADC MRI 
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limitation of DW MRI is low resolution, [13, 63] but ADC also suffers from distortion 

artifacts [68, 69]. Figure 1.2(b) shows an ADC map of the same slice of the prostate as 

shown in Figure 1.2(a), with a hypo-intense region in the PZ (indicated by an arrow) 

showing a cancerous lesion. 

1.2.5.4 Dynamic contrast-enhanced (DCE) MRI 

DCE MRI is used to detect changes in vascular characteristics associated with 

angiogenesis due to cancer [70, 71]. A DCE MRI pulse sequence rapidly images the 

patient using a sequence of T1-weighted MR images prior to and for 5-10 minutes after 

introducing a gadolinium-chelate contrast agent. DCE MRI creates contrast based on how 

quickly the contrast agent washes in and out of tissue. In cancerous tissue, the contrast 

agent washes in and out faster than in non-cancerous tissue. Pharmacokinetic parameters 

can be modelled by combining faster sequences with estimates of the arterial input 

function [70, 71]. Pharmacokinetic parameters such as the contrast transfer coefficient 

ktrans and the rate constant kep can be used to detect the presence of cancer [72]. Patient 

motion is the main challenge for DCE MRI. Secondary challenges include the presence 

of confounding non-cancerous abnormalities that mimic cancer, such as prostatitis in the 

peripheral zone, and highly vascularized BPH in the central gland [71].  

1.2.5.5 MR spectroscopy 

MR spectroscopy (MRS) is an imaging method that measures concentrations of 

metabolites that can be distinguished by the resonance frequencies of their protons. These 

protons include choline, creatine, and citrate [73]. Elevated choline and decreased citrate 

are typically found in cancerous tissue. Choline and creatine are difficult to separate from 

each other [70], so a (choline+creatine)/citrate ratio is used for diagnosis. This ratio has 
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been shown to be correlated with Gleason score [74]. MRS interpretation is challenging 

because of contamination of the signal from nearby lipids, high sensitivity to shimming, 

operator variability, and common abnormalities that mimic cancer such as inflammation 

and BPH [70, 72, 73, 75]. 

1.2.5.6 Transrectal ultrasound 

Transrectal ultrasound (TRUS) imaging is used mainly to estimate prostate 

volume and for image guidance during biopsy and needle-based therapy procedures. 

TRUS imaging allows for rapid visualization of the prostate gland and the boundary 

between prostate zones. However, the sensitivity for detecting prostate cancer on TRUS 

is low at 31% [76-79].  

1.2.5.7 Histology in prostate cancer 

A histological examination is used at several points in the clinical workflow. Histological 

examination of biopsy tissue is used to follow up on initial detection in screening 

populations, for ongoing monitoring in active surveillance and to confirm recurrence in 

post-treatment populations. Histological examination is also used to assess prognosis for 

patients post-prostatectomy [80], and to inform decisions about adjuvant therapy [81]. 

The Gleason grading system categorizes tissue based on its microscopic morphological 

appearance including glandular differentiation and growth patterns within the stroma. 

The system can be used to measure the aggressiveness of a particular tissue which has 

been shown to correlate with patterns on mpMRI. 
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Figure 1.3: (a) Whole-mount digitized histology, (b) Pathologist 

contours, (c) masks derived from whole-mount digitized histology.  

1.2.6 Computer-aided diagnosis systems for cancer 

Computer-aided diagnosis (CAD) techniques have been investigated for many 

types of cancer diagnosis. These types include breast [82, 83], lung [84-86], and 

colorectal [87]. CAD techniques for PCa have not been investigated until recently [88]. 

1.2.7 Prostate CAD systems 

The first model was proposed by Chan et al. in 2003 [89]. Since then, there have 

been over 50 studies proposed for various tasks related to PCa diagnosis.  Table 1.1 

shows the main studies and their principal characteristics.  The first row of the table 

describes the work presented in this thesis.  Note that it is distinguished from all of the 

other studies in the table because it classifies malignant, benign, and confounding tissue 

and high and low Gleason grade on T2W and ADC MRI which has not been done before. 

 

a) b) 

c) 
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Table 1.1: Summary of CAD systems with some of their defining characteristics: 

probabilistic neural network (PNN), linear discriminant analysis (LDA), support vector 

machine (SVM), Markov random field (MRF), random forest (RF), naive Bayes (NB), 

decision stump (DS), logistic regression (LR), artificial neural network (ANN), quadratic 

discriminant analysis (QDA), cross validation (X-val), leave-one-out (LOO), Wilson 

rank-sum (WRS),  MRI modalities (Mods) regions of interest (ROIs) malignant (M), 

benign (B), confounding tissue (C), radiologist false positives (RFP), biopsy (B), whole-

mount digitized histology (WM), whole-mount digitized histology registration with 

quantified registration error (WMQ) and guided biopsy (GB).  The first row of the table 

describes the work presented in this thesis. 

Author Year Classifiers X-val Accuracy Mods n 
MRI 
Field  Zone ROIs 

Ref. 
Std. 

Soetemans 2016 
SVM, 
KNN k-fold AUC 0.96 

T2W 
ADC 25 3 

PZ, 
CG 

M, B, 
C, GG WMQ 

Ampeliotis 
[8] 2008 PNN LOO AUC: 0.9 

T2W 
DCE 25 1.5 PZ M, B B 

Ampeliotis 
[90] 2007 PNN LOO 

AUC: 0.87, 
0.84 

T2W 
DCE 25 1.5 PZ 

M, B, 
GG B 

Antic [91] 2013 LDA LOO AUC: 0.94 
T2W 
ADC 53 1.5 

PZ, 
CG M, B WM 

Artan [92] 2010 
SVM, 
MRF LOO 

Sen: 0.66, 
Spe: 0.74 

T2W 
DCE 
ADC 21 1.5 PZ M, B WM 

Artan [93] 2009 
SVM, 
MRF LOO 

Sen: 0.74, 
Spe: 0.82 

T2W 
DCE 
ADC 10 1.5 PZ M, B B 

Chan [89] 2003 LDA, SVM LOO AUC: 0.84 
T2W 
ADC 15 1.5 PZ M, B B 

Giannini 
[94] 2015 SVM LOO 

Sen: 0.79, 
Spe: 0.84 

T2W 
DCE 
ADC 56 1.5 PZ M, B WM 

Giannini 
[95] 2013 NB LOO AUC: 0.87 

T2W 
DCE 
ADC 10 1.5 PZ M, B WM 

Kelm [96] 2007 

LDA, RF, 
Kernel, 
SVM LOO N/A MRSI 24 1.5 

PZ, 
CG M, B B 

Kwak [97] 2014 SVM WRS AUC: 0.89 
T2W 
ADC 244 3 WP 

M, B, 
C B 

Langer [98] 2009 LR WRS AUC: 0.71 

T2W 
DCE 
ADC 25 1.5 PZ M, B WM 

Litjens [4] 2014 LDA, RF LOO AUC: 0.81 

T2W 
DCE 
ADC 347 3 WP M, B GB 

Litjens [99] 2012 
KNN, 
SVM LOO 

Sen: 0.75, 
Spe: 0.83 

T2W 
DCE 
ADC 288 3 

PZ, 
CG M, B GB 
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Litjens 
[100] 2011 RBSVM k-fold 

Sen: 0.75, 
Spe: 0.83 

T2W 
DCE 
ADC 188 3 WP M, B B 

Litjens [10] 2015 RF  AUC: 0.81 

T2W 
DCE 
ADC 130 3 

PZ, 
CG 

M, B, 
GG GB 

Liu [101] 2013 SVM  AUC: 0.83 

T2W 
DCE 
ADC 54 3 

PZ, 
CG M, B B 

Liu [102] 2009 
SVM, 
MRF  

Sen: 0.9, 
Spe: 0.88 

T2W 
DCE 
ADC 11 1.5 PZ M, B B 

Lopes [6] 2011 
AdaBoost 
SVM k-fold 

Sen: 0.85, 
Spe: 0.93 T2W 27 1.5 

PZ, 
CG M, B B 

Lv [7] 2009 DS  AUC: 0.97 T2W 55 1.5 PZ M, B B 

Matulewicz 
[103] 2012 ANN k-fold 

Sen: 0.6, 
Spec: 0.66 MRSI 18 3 

PZ, 
CG M, B WM 

Mazzetti 
[104] 2011 NB LOO 

Sen: 0.82, 
Spec: 0.82 DCE 10 1.5 PZ M, B B 

Moradi 
[105] 2012 SVM LOO AUC: 0.96 DCE 29 3 PZ 

M, B, 
GG WM 

Niaf [106] 2014 

SVM, 
LDA, KNN, 
NB LOO AUC: 0.89 

T2W 
DCE 
ADC 49 1.5 PZ M, B WM 

Niaf [107] 2012 

SVM, 
LDA, KNN, 
NB LOO AUC: 0.86 

T2W 
DCE 
ADC 30 1.5 PZ M, B WM 

Niaf [108] 2010 

SVM, 
LDA, KNN, 
NB LOO AUC: 0.89 

T2W 
DCE 
ADC 23 1.5 PZ M, B WM 

Ozer [109] 2010 
SVM, 
MRF LOO 

Sen: 0.78, 
Spec: 0.74 

T2W 
DCE 
ADC 20 1.5 PZ M, B WM 

Ozer [110] 2009 SVM LOO 
Sen: 0.76, 
Spec: 0.75 

T2W 
DCE 
ADC 20 1.5 PZ M, B WM 

Parfait 
[111] 2012 

SVM, 
ANN k-fold 

Sen: 0.84, 
Spe: 0.97 MRSI 22 3 PZ M, B B 

Peng [112] 2013 SVM LOO 
Sen: 0.82, 
Spec: 0.95 

T2W 
DCE 
ADC 48 3 

PZ, 
CG 

M, B, 
GG WM 

Puech 
[113] 2009 LDA, RS LOO 

Sen: 1, 
Spec: 0.43 DCE 100 1.5 

PZ, 
CG M, B WM 

Rampun 
[114] 2016 

BN, RF, 
KNN k-fold AUC: 0.93 T2W 45 1.5 PZ M, B B 

Shah [115] 2012 SVM LOO 
f-meas: 
0.85 

T2W 
DCE 
ADC 31 3 PZ M, B WM 

Sung [116] 2011 SVM LOO 
Sen: 0.90, 
Spe: 0.77 DCE 42 3 

PZ, 
CG M, B WM 
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Tiwari [9] 2013 RF LOO AUC: 0.89 
T2W 
MRSI 29 1.5 WP 

M, B, 
GG WM 

Tiwari 
[117] 2012 

RF, BT, 
SVM k-fold AUC: 0.85 

T2W 
MRSI 36 1.5 WP M, B WM 

Tiwari 
[118] 2010 BT k-fold 

AUC: 0.91, 
0.88 

T2W 
MRSI 19 1.5 WP 

M, B, 
GG B 

Tiwari 
[119] 2009 LLE k-fold 

Sen: 0.88, 
Spec: 0.85 

T2W 
MRSI 15 1.5 WP M, B B 

Tiwari 
[120] 2009 

k-means, 
BT k-fold 

Sen: 0.84, 
Spe: 0.81 MRSI 18 1.5 WP M, B B 

Tiwari 
[121] 2008 k-means k-fold 

Sen: 0.87, 
Spec: 0.85 MRSI 18 1.5 WP 

M, B, 
C B 

Tiwari 
[122] 2007 k-means k-fold 

Sen: 0.78, 
FPR: 0.29 
FNR: 0.21 MRSI 14 1.5 WP 

M, B, 
C B 

Viswanath 
[123] 2012 QDA k-fold AUC: 0.86 T2W 22 3 

PZ, 
CZ M, B WM 

Viswanath 
[124] 2011 BT, PNN LOO AUC: 0.77 

T2W 
DCE 
ADC 12 3 

PZ, 
CG M, B WM 

Viswanath 
[125] 2009 RF k-fold AUC: 0.82 

T2W 
DCE 6 3 

PZ, 
CG M, B WM 

Viswanath 
[126] 2008 k-means k-fold 

Sen: 0.61 
Spe: 0.83 

T2W 
DCE 6 3 

PZ, 
CG M, B WM 

Viswanath 
[127] 2008 k-means k-fold 

Sen: 0.88, 
Spec: 0.85 

T2W 
MRSI 16 1.5 

PZ, 
CG M, B WM 

Vos [128] 2012 LDA, SVM k-fold 
Sen 0.41 
@ 1 FP 

T2W 
DCE 
ADC NA 3 PZ M, B WM 

Vos [100] 2011 SVM LOO AUC: 0.97 
T2W 
DCE 29 1.5 PZ 

M, B, 
RFP WM 

Vos [129] 2008 SVM LOO AUC: 0.91 
T2W 
DCE 29 1.5 PZ M, B WM 

Vos [130] 2008 SVM LOO AUC: 0.9 DCE 29 1.5 PZ M, B WM 

Zhao [131] 2015 NN LOO AUC: 0.89 T2W 71 1.5 
PZ, 
CZ M, B WM 

 

 

1.2.8 Reference standards 

There are five general categories for reference standards. (1) Standard clinical 

practice for biopsy uses TRUS targeting and TRUS guidance to deliver needles in a 

sextant arrangement through the prostate [132]. This is the least accurate reference 

standard because ultrasound is inferior to MRI for targeting and guidance [133]. (2) The 

second category of reference standards uses MR targeting and TRUS guidance to aim 
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needles at suspicious areas [134-136]. This technique can be improved using fusion 

guided biopsy, a technique in which pre-biopsy MRI are fused with real-time TRUS 

images [137]. This method improves accuracy but does not allow for confirmation of 

needle placement because the biopsy is taken prior to the scan to confirm placement 

[137]. (3) MR guidance can be used with MR targeting to improve biopsy needle 

placement further as MR guidance allows for confirmation of needle position. (4) Trans-

perineal mapping (TPM) is the most accurate biopsy-based reference standard. TPM 

takes many samples from the prostate that are projected into a single 2-dimensional plane 

to get an accurate representation of the prostate [138]. Ideally, each sample is processed 

and stored separately to allow for accurate location information of any tumour(s). 

Biopsies are small cylindrical samples of tissue (~18 mm in length and 1 mm in 

diameter) [139]. These tissue samples are used to determine if cancer is present. (5) 

Whole-mount histological sections is the final and most accurate reference standard. A 

histological examination is a readily accepted reference standard used to verify the 

presence, location and grade of prostate tumours. This examination refers to a 

pathologist’s inspection of tissue on a microscopic level to identify tissue properties from 

a ~4-µm-thick section. Whole-mount sections are typically registered to mpMRI by 

radiologist/pathologist consensus mapping. 

1.2.9 Image preprocessing 

CAD systems generally include a preprocessing step to normalize the MR data or 

to transform the data into a specific domain. Inter-image variability is large, even when 

the same protocol and same scanner is used.  Noise filtering, bias correction and signal 

intensity standardization are the three main groups of pre-processing methods for prostate 
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CAD [88]. Noise filtering is used to correct for noise is caused by inhomogeneity in the 

main magnetic field during an MRI acquisition [88]. The simplest type of noise filtering 

is median filtering [109]. However; since the noise follows a Rician distribution, median 

filters are not well formalized to address the noise distribution in MR images [88]. 

Wavelet-based filtering is a common approach used to address this limitation [6] [109]. 

Bias correction techniques are used to correct the inhomogeneity of the bias field. 

Parametric and non-parametric methods are used to correct for the smooth variation of 

the signal intensity throughout the image [7] [124]. When using an endorectal coil, a 

hyper-intense signal around the coil appears. This can make segmentation and 

registration more challenging [140] [141].   

1.3 Feature extraction 

Discriminative features can be used to identify PCa. Choosing the right features for a 

classifier is more important than choosing the classifier itself [142]. First order features 

include basic statistics measures such as mean, median and percentiles. These features, 

illustrated in Figure 1.4, are good for identifying basic differences such as hypo-intense 
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regions; however these features do not take into consideration spatial distributions. 

 

Figure 1-4: Histogram showing some common first order texture features. 

 Second order texture features look at a neighbourhood of pixels in order to 

measure differences in spatial distributions of pixels. These features can identify 

differences first order features miss, as illustrated in Figure 1.5.  
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1.3.1.1  Statistics-based features 

The most common approach can be classified as statistical methods, or first order 

texture features [88]. A feature map is first computed for the whole image. Statistics are 

extracted from regions of interest (ROIs).  

1.3.2 Intensity-based features 

PCa can be detected using MRI signal intensity data. They are one of the most 

common features used in CAD systems. In order to mitigate inter-scan variability in MR 

images, signal intensity standardization is often done. Litjens et al. [4] used the MR 

signal equation, the proton density image and a reference tissue to estimate a T2-estimate 

map.  

1.3.3 Edge-based features 

Edge based features can be created by convolving the original image with an edge 

operator. There are three main types of edge operators: Prewitt, Sobel, and Kirsch [4]. 

Prewitt and Sobel operators are linear edge detectors that compute a discrete 

differentiation operator to find an approximation of the gradient of the image intensity 

function. Kirsch operators are a non-linear edge detector that finds the maximum edge 

strength in a few predetermined directions. A Gabor filter is another linear filter that uses 

frequency and orientation representations that are similar to those of the human visual 

system.  

1.3.4 Texture-based features 

Radiomics is emerging as an area of study that looks to extract additional information 

from medical images [143, 144]. Radiomics aims to enable more personalized treatment 
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for patients by tailoring their treatment based on predicted response on pre-treatment 

imaging features [145]. Radiomics depends on quantitative image feature analysis, which 

involves the extraction of measurable texture information from an image. Second-order 

and third-order features can be extracted in many ways, including statistical methods, 

structural methods, model-based methods and transform-based methods [146]. Statistical 

texture analysis uses high-order statistics of an image intensity histogram. A grey-level 

co-occurrence matrix (GLCM) can be used to calculate GLCM texture features by 

analyzing neighbouring pixel pairs. The GLCM C, defined over an n × m image I, 

parameterized by an offset (Δx, Δy) can be defined as 

C∆x,∆y(i, j) =  ∑ ∑ {
1, if I(p, q) = i and I(p +  ∆x, q +  ∆y) = j

0, otherwise
m
q=1

n
p=1 . (1) 

1.3.5 Haralick features 

The GLCM is typically large and sparse, and therefore various metrics of the 

matrix can be taken to generate a more useful set of features [147]. These features include 

contrast, correlation, sum of squares, inverse difference moment, sum average, sum 

variance, sum entropy, entropy, difference variance, difference entropy, measure of 

correlation 1 and 2 and maximum correlation coefficient. Contrast is a commonly used 

texture feature that is measured by 

∑ n2 {∑ ∑ C(i, j)
Ng

j=1

Ng

i=1
} , |i − j| = n

Ng−1

n=0 , (2) 

where Ng is the number of gray levels in the image. Correlation and homogeneity are also 

commonly used in CAD systems.  Correlation can be calculated as 
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∑ ∑ (ij)C(i,j)−μxμyji

σxσx
, (3) 

where μx, μy, σx, and σx are the means and standard deviations of px and py, the partial 

probability density functions. 

1.3.5.1 Fractal analysis 

Cancerous tissue shows a higher fractal dimension than healthy tissue. A fractal 

dimension is a ratio providing a statistical index of complexity comparing how detail in a 

pattern changes with the scale to which it is measured. To estimate the fractal dimension, 

a wavelet-based method in a multi-resolution framework can be used as reported by 

Lopes et al [6].  Lv et al. [7] calculate texture fractal dimension (TFD) as a geometric 

description of image textures. TFD is computed using  

TFD =  lim
s→0

logNs

log (
1

s
)
, (4) 

where s is the box size and Ns is the number of the boxes with size scale s. 

1.3.5.2 Wavelet-based features 

Wavelet filter decomposition approaches are used to extract fine structural image 

detail at different orientations and scales [123]. This may prove useful in quantitatively 

characterizing micro and macroscopic visual cues radiologist use when identifying PCa 

[123]. The integral wavelet transform is defined as 

[Wψf](a, b) =  
1

√|a|
∫ ψ

(x−b)

a

∞

−∞
f(x)dx. (5) 

From this, the wavelet coefficients cjk are given by 
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cjk = [Wψf](2−j, k2−j), (6) 

where a = 2-j is called the dyadic or binary dilation and b = k2-j is the dyadic or binary 

position. 

1.3.5.3 Anatomical-based 

In order to account for anatomical features, some studies use the relative distance to the 

prostate boundary as a feature. The relative position features in x, y, and z directions are 

also used as features.  The relative position features are calculated as 

     B(x) = min
y∈Pb

d(x, y), (7) 

where x is the position of a voxel, d is the Euclidean distance operator, P is the set of 

prostate voxels and Pb is the set of prostate boundary voxels. Litjens et al. [4] also used 

PZ probability features including intensity, texture and anatomical features to generate a 

likelihood map for each voxel belonging to the PZ [4]. The relative distance is computed 

as 

RD(x) =
B(x)

max
y∈Pb

B(x)
 . (8) 

They also measure the relative position using 

RP(xi) =
xi−min

y∈P
xi

max
y∈P

xi−min
y∈P

xi
. (9) 
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1.3.5.4 Percentiles 

Percentiles are the most widely used statistic [88]. Percentiles can be manually or 

automatically set by observing the distribution to find the best discriminant value for 

differentiating malignant vs. healthy tissue [88]. 

1.3.5.5 Statistical moments 

Statistical-moments are basic statistics such as mean, standard deviation, kurtosis 

and skewness. These features are included in many studies.  

1.3.5.6 Histogram-based 

Liu et al. introduced four types of histogram-based features [148]. The first 

corresponds to the histogram of the signal intensity. The second is the Histogram of 

Oriented Gradient (HOG) [148]. The HOG uses the distribution of gradient directions to 

describe local shape. The third type is shape context which is a way to describe the shape 

of an object [149]. The last type use the Fourier transform of the histogram created via 

Local Binary Pattern (LBP) [150].  Kwak et al. [97] use LBP by generating a binary 

pattern code 

LBPP,R = ∑ s(Gp − Gc)2pp−1
p=0 , (10) 

where c is a given center pixel, s(x) is 1 if x ≥ 0 and 0 if x < 0, gc and gp represent the 

gray level of the centre pixel and its neighbourhood pixels p(p=0,…,P-1), and R is the 

radius of the neighbourhood.  
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1.3.6 Feature selection 

Feature selection is used in CAD models because exhaustive search of high-

dimensional feature spaces is infeasible due to computational limitations. There have 

been several feature selection methods used in CAD systems. Feature selection 

techniques can be categorized into feature selection and feature extraction. There are 

three main types of feature selection categories: filters, wrappers and embedded methods 

[151].  

1.3.6.1 Filters 

Filters type methods select variables using criteria that are independent of the model. 

They use general features such as correlation and mutual information. Filters are fast but 

they ignore feature dependencies. Niaf et al. [107] use a filter method that uses a two-

sample t test to reduce the feature space. Mutual information was introduced by [107] to 

select a subset of features. Maximum relevance and minimum redundancy were 

introduced by Peng et al. [112], as another approach to find independent features.  

1.3.6.2 Principal component analysis 

Principal component analysis (PCA) is a statistical technique used to reduce 

dimensionality [152]. PCA computes the covariance matrix for the full data set to reduce 

the data while preserving relevant information. The input image, X, can be transformed 

using a set of p-dimensional vectors of weights 

w(k)  =  (w1, … , wp)(k), (11)where p is the number of columns. The first component can 

be computed by 
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w(1) = arg max {
wTXTXw

wTw
}. (12) 

Further components can be found by subtracting the first k-1 principal components from 

X and then finding the loading vector which extracts the maximum variance from the 

new data matrix 

w(k) = arg max {
wTX̂k

TX̂kw

wTw
}. (13) 

Multiple linear regression methods such as ridge regression, canonical correlation 

analysis and principal component regression are also used in CAD systems. 

1.3.6.3 Laplacian Eigenmaps 

Laplacian Eigenmaps is a non-linear method that builds a graph from 

neighbourhood information. These Eigenmaps try to find a low-dimensional space in 

which the proximity of the data should be preserved from the high-dimensional space. 

1.3.6.4 Local linear embedding 

Local linear embedding (LLE) is a widely used technique that attempts to 

discover nonlinear structure in high dimensional data. LLE maps its inputs into a lower 

dimensional single global coordinate system. Tiwari et al. [9] used a bagging approach 

with multiple neighbourhood sizes for detection of PCa.  
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1.3.7 Classifier Performance  

There are several machine learning algorithms used in CAD systems. See Table 

1.1 for an overview of CAD system performance and methodologies.  

1.3.7.1 Rule-based methods 

The first group of CAD systems use rule-based methods with labels of cancerous 

or benign to classify malignant vs. healthy tissue [7]. With unsupervised classification, 

clustering methods have been used to classify tissue without using labels [107].  

1.3.7.2 Linear methods 

Linear model classifiers such as linear discriminant analysis (LDA) optimize 

linear separation between two classes [153]. A popular choice among studies is the use a 

SVM. A SVM is desirable because it maximizes the margin between classes, improving 

classification performance (Figure 1.6 left). A separating boundary takes the form 

{x ∈ χ|wTx + b = 0} (14) 

where given a training dataset of n samples {(x, y1, … , (xn, yn))} ⊂ X x Y, where X is the 

feature space and y is the two-class labelling, Y = {-1, +1}. To achieve a separation 

boundary an optimization problem is created by combining a minimum norm objective 

function and classification constraints. The optimization problem is used to classify a test 

K = 7 

Figure 1-6: SVM (left), and KNN (right) decision boundaries.  
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vector by computing sign(f(x)) where f(x) represents the signed distance to the margin 

and can be expressed as 

f(x) =  ∑ αiyixi
Tx + bi=1…n . (15) 

1.3.7.3 Non-linear methods 

Non-linear models are commonly used to improve accuracy at the cost of 

additional time and complexity. K-nearest neighbours (KNN) is a non-parametric method 

that uses the votes of its neighbours for classification, where the classification is done by 

choosing the result as the majority of the neighbours (Figure 1.6 right). Quadratic 

discriminant analysis is non-linear and can be used instead of LDA [154]. SVMs can be 

nonlinear by using a nonlinear mapping function to map the data to a higher dimensional 

space, where the data is linearly separable. Probabilistic classifiers have also been 

investigated as a nonlinear method of classification. Probabilistic classifiers include the 

naïve Bayes model, which is commonly used [106] [155].  

1.3.7.4 Artificial neural networks 

An artificial neural network (ANN) is a network inspired by biological neural 

networks. ANNs are an interconnected group of nodes with an input, hidden and output 

layer [131]. Probabilistic neural networks are another type of network that can be 

modelled by changing the activation function of the hidden layer. Probabilistic feed-

forward neural-networks have also been investigated [111]. 

1.3.7.5 Ensemble classifiers 

Ensembles combine many weak classifiers that perform slightly better than 

random to produce one strong classifier. Ensemble learning classifiers include AdaBoost, 

random forest and probabilistic boosting tree [6], [156], [117]. Graphical model 
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classifiers such as Markov random fields have been used for classification and to segment 

lesions in mpMRI [102], [157].  

1.4 Thesis hypothesis and objectives 

To take a meaningful step toward addressing the unmet clinical need to provide 

accurate and personalized assessment, the main objective of this thesis is to create a 

computer-aided system for classification of malignancy and Gleason score using a highly 

accurate imaging-histology registration method to generate a reference standard. The 

central hypothesis of the thesis is that a CAD system that uses a highly accurate reference 

standard for training can provide accurate and reliable classification and diagnosis of 

localized prostate cancer. This system will use SVM and KNN machine learning 

algorithms to classify regions using texture features derived from mpMRI. These 

algorithms were chosen based on their compatibility with smaller sample sizes, ease of 

interpretation and performance among relevant literature for PCa classification. The two 

primary objectives of this thesis are to: 

 1) Develop and validate a method for classification of malignant, benign and 

confounding tissue on mpMRI using first and second order texture features with a SVM 

and KNN machine learning algorithm. 

 2) Develop and validate a method for classification of high and low Gleason grade 

tumours on mpMRI using first and second order texture features with a SVM and KNN 

machine learning algorithm. 
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2 Chapter 2. 

Computer-Assisted Characterization of Malignancy and 

Gleason Grade of Prostate Cancer on Multi-Parametric MRI 

The contents of this chapter are in preparation for submission to the Medical Physics 

journal: D. Soetemans, G. S. Bauman, E. Gibson, M. Gaed, J. A. Gomez, M. Moussa, J. 

L. Chin, S. Pautler, A. D. Ward. Characterization of Malignancy and Gleason Grade of 

Prostate Cancer on Multi-Parametric MRI. 

2.1 Introduction 

Prostate cancer (PCa) is one of the most prevalent cancers among men [1]. 

Treatment selection depends on risk stratification, which in turn requires an estimate of 

tumour stage and grade. In the hands of highly-skilled readers, multi-parametric magnetic 

resonance imaging (mpMRI) has shown promise for detection of PCa, [2-6] but 

substantial inter-observer variability in lesion contouring has been observed [7]. 

Improving lesion classification performance may lead to a reduction in overtreatment of 

PCa [8]  [9, 10] by improving differentiation between indolent and aggressive tumours 

[11]. 

Computer-assisted diagnosis (CAD) models have been investigated to improve 

classification of malignancy and Gleason grade. These models use a radiomics-based 

approach, which refers to using a comprehensive set of quantitative image features to 

determine clinical parameters of interest based on imaging features [12]. This approach 

may enable more personalized treatment for patients, as radiomics have been investigated 

as a method to determine a relationship between imaging appearance and tumour 
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phenotypes [13]. Clinical evaluation of a CAD model has shown that differentiation 

between benign and aggressive PCa improves when combining the CAD prediction with 

a radiologist’s Prostate Imaging – Reporting and Data System (PIRADS) score, 

especially among novice radiologists [14]. 

Many models have been validated using histology obtained from biopsies that are 

preferentially guided toward suspicious regions identified on mpMRI, [15], [16], [17], 

[18], [19]. Such validation may be impacted by sparse and spatially-biased sampling and 

biopsy localization uncertainty in image registration techniques. Spatial biases may be the 

result of false-positive low-intensity benign regions, as low-intensity regions are 

indicative of prostate cancer (although not uniquely so) on T2-weighted (T2W) MRI and 

apparent diffusion coefficient (ADC) maps derived from diffusion-weighted MRI, by the 

PIRADS guidelines [2]. Cancers are also often under-graded based on transrectal 

ultrasound (TRUS)-guided biopsies, [20] with the rate of discrepancy between the 

Gleason grade at biopsy and the true grade at prostatectomy estimated to be 40% [21].  

Many recent models use post-radical prostatectomy (RP) histologically verified 

lesions mapped to mpMRI by radiologist-pathologist consensus [22], [6].  This consensus 

mapping approach is most straightforward when identifying true-positive mpMRI lesions 

corresponding to histologic foci, but identifying mpMRI false-positive and false-negative 

lesions is more challenging and the attendant uncertainty in the error in spatial mapping 

remains. There have been several reports of previous work suggesting that CAD models 

may be promising for PCa classification on mpMRI. CAD models have achieved an area 

under the receiver operator curve (AUC) of 0.97 for the differentiation of PCa from 

benign tissue [23] [24]. Many recent studies have focused on a more difficult 
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classification task involving differentiation of prostate cancer from confounding 

abnormalities such as radiological false positives, prostatic inter-epithelial neoplasia 

(PIN), atrophy, inflammation, and benign prostatic hyperplasia [25],  [22],  [26].  

However, these studies have limitations which have made widespread clinical 

implementation of computer-assisted PCa lesion classification elusive, including small 

sample sizes and registration errors in reference standards due to the aforementioned 

spatial biases and localization errors.   

Critically needed is a model that is validated against a histologic reference 

standard that is densely sampled in an unbiased fashion.  We address this using our 

technique for highly accurate fusion of multi-parametric MRI (mpMRI) with whole-

mount digitized histology of the surgical specimen [27]. This study investigates the use of 

supervised machine learning for 1) classification of malignant and benign tissue, 2) 

classification of malignant and confounding tissue (i.e. false positive regions identified 

by radiologists), and 3) classification of high (Gleason grade > 3) and low (Gleason grade 

3) tumours, using first and second order texture features extracted from mpMRI. 

2.2 Materials and methods 

Patient selection and image acquisition 

As part of a clinical trial we obtained prostate specimens from 22 subjects who 

underwent radical prostatectomy with the following inclusion criteria: (1) male, (2) age 

18 years or older and (3) clinical prostate cancer stage T1 or T2 with histological 

confirmation from biopsy. The exclusion criteria were (1) prior therapy for prostate 

cancer, (2) use of 5-alpha reductase inhibitors within 6 months of the study start, (3) 
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inability to comply with pre-operative imaging, (4) allergy to contrast agents, (5) sickle 

cell or other anemias, (6) hip prosthesis, (7) sources of artifact within the pelvis and (8) 

contraindications to MR imaging. The research was approved by our institutional human  

subjects research ethics board and informed consent was obtained from each subject.  

Imaging 

 Prostate mpMRI were obtained 19 ± 8 weeks (mean ± SD) after biopsy and 2 ± 1 weeks 

(mean ± SD) before surgery using a Discovery MR750 (GE Healthcare, Waukesha, WI, 

USA) at 3 Tesla with an endorectal coil (Prostate eCoil; Medrad, Warrendale, PA). 

Clinical T2W protocol used repetition time (TR) 4000-13000 ms, echo time (TE) 156-

164 ms, bandwidth 31.25 kHz, 2 averages, field of view (FOV) 14 cm x 14 cm x 6.2 cm, 

slick thickness 3.3-3.6 mm, slice spacing 3.3-3.6 mm, 128 x 256 matrix size, 20-43 slices, 

flip angle 90°. Clinical DWI protocol used repetition time (TR) 4000 ms, echo time (TE) 

70-77 ms, bandwidth 125 kHz, 3 averages, field of view (FOV) 14 cm x 14 cm x 6.2 cm, 

slick thickness 2.2 mm, slice spacing 2.2 mm, 320 x 192 matrix size, 40 slices, flip angle 

90°. After prostatectomy, two sets of strand-shaped fiducials were added, running from 

base to apex [7].  Internal fiducials were made from cotton thread infused with a 1:40 

solution of gadopentetate dimeglumine and blue Tissue Marking Dye (Triangle 

Biomedical Sciences, Durham, NC). Surface-mounted fiducials were made using animal 

tissue infused with a 1:40 solution of gadopentetate dimeglumine and 10% buffered 

formalin. This process resulted in seven surface-mounted fiducials and three internal 

fiducials [7].  The specimen was then immersed in Christo-Lube (Lubrication 

Technology Inc., Franklin Furnace, OH, USA) to provide a black background and 

minimize boundary artifacts on imaging. Ex vivo imaging used a T1-weighted protocol 
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[3D spoiled gradient recalled sequence, TR 6.5 ms, TE 2.5 ms, bandwidth ± 31.25 kHz, 

eight averages, FOV 14 cm × 14 cm × 6.2 cm, slice thickness 0.4 mm, 256 × 192 matrix, 

312 slices, flip angle 15°, duration 25 min] and a T2-weighted protocol (3D fast spin 

echo sequence, TR 2000 ms, TE 151.5 ms, bandwidth ± 125 kHz, three averages, FOV 

14 cm × 14 cm × 6.2 cm, slice thickness 0.4 mm, 320 × 192 matrix, 312 slices, duration 

25 min).  Histology images and contours were registered to mpMRI by registering the 

histology to ex-vivo 3D MRI using 10 fiducial markers [28, 29] followed by semi-

automatic registration of the ex-vivo MRI scan and the MRI scans to a high resolution in 

vivo 3D T2W MRI.  The histology to ex-vivo registration was performed using an affine 

transformation utilizing the spatial information provided by the 10 fiducial markers [7].  

The ex vivo-to-in vivo MRI registration was performed using a thin-plate-spline warp 

technique aligning anatomic landmarks [7]. Landmarks were identified along the prostate 

border, peripheral zone, urethra and verumontanum, as well as corresponding benign 

prostatic hyperplasia nodules and cystic spaces to warp each digital histopathologic 

image to its corresponding in vivo MR imaging plane. Average 3D registration error, 

measured using intrinsic landmarks, was ≤ 2 mm [7]. 

Image pre-processing 

Spatial T2W signal variation due to endorectal coil sensitivity was mitigated using the 

N4ITK image bias correction algorithm [30] implemented in Slicer 4.2 (Surgical 

Planning Lab, Harvard Medical School, Boston, USA). Inter-patient differences in T2W 

MR image intensity were accounted for by scaling the intensities such that the mean 

signal in manually segmented periprostatic fat regions, as indicated by a graduate student, 

matched an arbitrary reference value across patients.  
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Pathologist Contouring  

After standard whole-mount paraffin embedding, a 4-μm-thick section was cut from each 

midgland tissue block and stained with hematoxylin and eosin. The resulting slides were 

digitized on a ScanScope GL (Aperio Technologies, Vista, CA, USA) bright field slide 

scanning system with a 0.5 μm pixel size. A pathologist contoured and graded all 

cancerous regions, as well as a prostatic intraepithelial neoplasia (PIN). The images and 

contours were then downsampled to 30 μm/pixel. The Gleason grade is used to measure 

the aggressiveness of cancer [31].  

Radiologist Contouring 

Four observers read the mpMRI scans independently and blinded to histopathology. 

These observers included one radiology resident and three radiologists, with 5, 6, 2.5 and 

2.5 years of prostate MRI assessment experience, respectively. Their performance is 

illustrated in Table 2.2. Observers used the PIRADS guidelines to identify equivocally, 

likely or highly likely cancerous lesions (i.e. PIRADS scores 3-5) on mpMRI and then 

delineated them on the unregistered T2W and ADC images separately.  
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Table 2.2: Radiologist true positives and false positives at 

different PIRADS thresholds. R1-R4 indicates the four 

radiologists. 

Radiologist ADC TPs ADC FPs T2W TPs T2W FPs 

R1 PIRADS 5 11 4 9 10 

R1 PIRADS ≥ 4 22 24 15 16 

R1 PIRADS ≥ 3 25 35 19 32 

R2 PIRADS 5 22 22 22 26 

R2 PIRADS ≥ 4 31 31 33 38 

R2 PIRADS ≥ 3 36 65 36 52 

R3 PIRADS 5 11 11 14 20 

R3 PIRADS ≥ 4 17 27 21 33 

R3 PIRADS ≥ 3 25 39 28 50 

R4 PIRADS 5 2 2 13 22 

R4 PIRADS ≥ 4 22 32 14 36 

R4 PIRADS ≥ 3 22 34 15 38 

Zonal Segmentation  

The peripheral zone (PZ) and central gland (CG) were delineated manually by a graduate 

student using the T2W MR images. Separating the prostate into the PZ and CG has been 

previously shown to increase classification accuracy [3] [32]. 

Tumour Size Filtering 

Some of the tumour regions on histology were separated by a small amount, creating 

small islands of cancer foci. To connect these islands, the histology contours were first 

rasterized to binary images with pixel size matching that of the mpMRI (0.2743 

mm/pixel).  Next, a disk-shaped structuring element with a radius of 2 pixels (0.55 mm) 

was used to expand all the tumour regions by morphological dilation on the mpMRI 

images. The islands were then eroded using the same structuring element. Analysis was 

performed on all remaining tumours having a longest diameter of ≥ 1.5 mm.  
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Feature extraction 

We calculated 22 first order statistical features to analyze image intensity. See 

Table 2.3 for the full list of texture features, where g(i, j) refers to the GLCM, HX and HY 

are entropies of gx and gy, HXY =  − ∑ gijlog2giji,j , HXY =  − ∑ gijlog2{gx(i)gyi,j (j)}, 

HXY =  − ∑ ∑ gx(i)gyj (j)log2{gx(i)gyi (j)},  μ refers to the mean, x̃ refers to the 

median, σ refers to the standard deviation, and N refers to the number of pixels. The 

GLCM neighbourhood voxel distance was 0.2743 μm (1 voxel), and texture features 

were averaged over all four directions. 

  

  

Figure 2.6: Illustration of extracted ADC texture features 

showing: a) energy, b) entropy, correlation and contrast 

calculated using a square window with a length and width 

of 2mm centered on each voxel. 

 

a) b) 

c) d) 
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Table 2.3: First and second order texture features used in this study. 

First-Order Features Second-Order Features 

Mean 
1

N
∑ xi

i
 

Variance 

1

N − 1
∑ (xi − μ)2

i
 

GLCM Contrast 

∑ |i − j|2

i,j
g(i, j) 

GLCM Variance 

∑ (i − μ)2g(i, j)
i,j

 

Standard  

Deviation 

√
∑ (xi − μ)2

i

N − 1
 

Entropy 

− ∑ IP
i

log2 IP 

GLCM Dissimilarity 

∑ |i − j|g(i, j)
i,j

 

GLCM Max Probability 

max (g(i, j)) 

Energy 

∑ xi
2

i
 

Uniformity 

∑ IP2

i
 

GLCM Energy 

∑ g(i, j)2

i,j
 

GLCM Inverse Variance 

∑
g(i, j)

|i − j|2
i,j

 

Median 1 Percentile 

GLCM Entropy 

− ∑ g(i, j)
i,j

log2 g(i, j) 

GLCM Sum Average 

∑ igx+y(i)
2N

i=2
 

Maximum 10 Percentile 

GLCM Autocorrelation 

∑ ijg(i, j)
i,j

 

GLCM Sum Entropy 

− ∑ log2[gx+y(i)]gx+y(i)
2N

i=2
 

Minimum 90 Percentile 

GLCM Homogeneity 1 

∑
g(i, j)

1 + |i − j|i,j
 

GLCM Sum Variance 

∑ i2gx+y(i)
2N

i=2
 

Range 

Maximum
− Minimum 

99 Percentile 

GLCM Homogeneity 2 

∑
g(i, j)

1 + |i − j|2
i,j

 

GLCM Difference Entropy 

− ∑ log2[gx+y(i)]gx+y(i)
N−1

i=0
 

Mean Absolute 

Deviation 

1

N
∑ |xi − μ|

i
 

Mean Gradient Value 

GLCM Correlation 

∑
(i − μi)(j − μj)g(i, j)

σiσji,j
 

GLCM Information Measure 

Correlation 1 

Hxy − Hxy1

max [HX, HY]
 

Root Mean 

Square 

√
1

N
∑ xi

2

i
 

Variance of Gradient 

GLCM Cluster Prominence 

∑ ((i − μi) + (j −i,j

μj))
4

g(i, j)  

GLCM Information Measure 

Correlation 2 

√1 − exp [−2(HXY2 − HXY)] 

Kurtosis 
Bimodality Coefficient 

GLCM Cluster Shade GLCM Diagonal Moment 
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1

N

∑ (xi − μ)2
i

σ4
 

Skewness2 + 1

Kurtosis +
3(N − 1)2

(N − 2)(N − 3)

 
∑ ((i − μi) + (j −i,j

μj))
3

g(i, j)  
∑ √

1

2
|i − j|g(i, j)

i,j
 

Skewness 

1

N

∑ (xi − μ)3
i

σ3
 

Median Absolute  

Deviation 

1

N
∑ |xi − x̃|

i
 

GLCM Cluster Tendency 

∑ ((i − μi) + (j −i,j

μj))
2

g(i, j)  

GLCM Inverse Difference 

Moment 

∑
g(i, j)

1 + (i − j)2
i,j

 

GLCM features can characterize anatomical structures, homogeneity, and grey-level 

transitions. During feature selection, training set positive or negative samples were 

duplicated to ensure the ratio of positive to negative samples was 1:1. This is done to 

discourage the classifier from choosing a decision boundary with an unbalanced FPR and 

FNR. Features were rescaled to range from 0-1. 

Feature selection 

Each region of interest in our dataset is characterized by an 88-dimensional point in 

texture feature space. Therefore, exhaustive search of the feature space to find the 

optimal feature subset is not feasible due to computational limitations. A forward feature 

selection method was used with 10 repetitions of randomized cross validation to 

sequentially add the feature that increased classification accuracy the most, using the 

same classifier as used in subsequent the machine learning step.  

Machine Learning 

A support vector machine (SVM) classifier was used for each experiment. A 

SVM maps vectors from the input space into a high dimensional feature space. A kernel 

function is used to determine the mapping. It finds a linear decision rule in the form of an 
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optimal separating boundary that has the widest margin between the decision boundary 

and the input vector. A decision boundary takes the form 

{x ∈ χ|wTx + b = 0}, (16) 

where given a training dataset of n samples {(x, y1, … , (xn, yn))} ⊂ χ x Y, and where χ is 

the feature space and Y is the class labelling, Y = {-1, +1}. An objective function takes the 

form 

min
w∈Rd,b,βi∈R

1

2
‖w‖2 + C ∑ βi

n
i=1 , (17) 

which is constrained by 

yi(wTxi + b) ≥ 1 -  βi, i = 1,…,n (18) 

0 ≤ βi, i = 1,…,n  

where C is the cost coefficient that weights the classification error and βi correspond to 

the distance to the margin for possibly misclassified samples xi. This optimization 

problem can be expressed as 

max
αi∈R

−
1

2
∑  n

i=1 ∑ αiαjyiyjxi
Txj

n
j=1 + ∑ αi

n
i=1 , (19) 

where αi are the Lagrange multiplier coefficients and which is constrained by 

∑ αiyi = 0n
i=1 . (20) 

0 ≤ αi, ≤ C i = 1,…,n 

A test vector is then classified by computing sign(f(x)), where f(x) represents the signed 

distance to the margin and is expressed as 

f(x) =  ∑ αiyixi
Tx + bi=1…n , (21) 

where the sign of f(x) is used to determine the classification and the distance to the 

margin is used as the classifier’s confidence. All results with the SVM were obtained 
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using the PRTools library [33]. A support vector machine maximizes a margin for 

classification.  

KNN is a non-parametric method that uses the votes of its neighbours for 

classification, where the classification is done by choosing the result as the majority of 

the neighbours.  Default parameters were used for each classifier. For the SVM the 

default kernel was linear. K is the number of neighbours voting and is optimized with 

respect to the leave-one-out error on the training dataset, which is performed during each 

fold of cross validation. 

2.3 Results 

This section presents the performance of the system for the SVM and KNN algorithms. 

For each experiment, 4-fold cross validation was used to measure the AUC, FPR and 

FNR. 

Classification of Tumours and Benign Tissue 

Our first experiment uses a design similar to several studies that classify malignant and 

benign tissue [34, 35]. Table 2.4 shows the results of the experiment. In total, 69 tumours 

and 44 benign tissue regions in the PZ, and 23 tumours and 22 benign tissue regions in 

the CG were used. Benign tissue regions were created by selecting a region from the 

contralateral side of the prostate when possible for each prostate slice. The imbalance of 

tumours to benign tissue is due to prostate slices where there was little or no benign tissue 

region available for a benign sample. Note that we were able to achieve an AUC of 0.96 

in the PZ using a SVM, which is competitive with the highest reported among the 
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literature. Also note that performance in the CG was lower than the PZ, which agrees 

with evidence presented in relevant literature [3] [32]. 

Table 2.4: Classification of malignant and 

benign tissue. 

Classifier Zone AUC FPR FNR 

SVM PZ 0.96 0.05 0.19  

CG 0.75 0.24 0.43 

KNN PZ 0.94 0.13 0.14  

CG 0.75 0.23 0.37 

 

Classification of Tumours and Radiologist False Positives 

The second experiment focused on classification of malignant and confounding 

tissue, in the form of radiologist false positives. The results are illustrated in Table 2.5. 

Post-RP histologically verified tumours were used as positive samples and radiologist 

false positives were used as negative samples. Sixty-nine tumours and 102 radiologist 

false positive regions in the PZ and 23 tumours and 52 radiologist false positive regions 

in the CG were used in this experiment. We were able to achieve an AUC of 0.89 and 

0.88 in the PZ using the SVM and KNN algorithms, respectively. These accuracies are 

comparable to other studies that use a similar setup to classify malignant tissue and 

confounding pathologies such as prostatic intraepithelial neoplasia, atrophy, benign 

prostatic hyperplasia and inflammation. 
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Table 2.5: Classification of malignant and 

confounding tissue in the form of 

radiologist false positives. 

Classifier Zone AUC FPR FNR 

SVM PZ 0.89 0.10 0.29 
 

CG 0.84 0.21 0.23 

KNN PZ 0.88 0.05 0.23 
 

CG 0.71 0.22 0.45 

Classification of High and Low Gleason Grade 

Our third experiment involved characterizing tumours with a Gleason grade of 3 

and tumours with a Gleason grade >= 3+4. Table 2.6 illustrates the results for this 

experiment. 29 malignant regions had a Gleason grade >= 3+4 and 49 malignant regions 

had a Gleason grade of 3. We were unable to achieve high accuracies for this experiment, 

highlighted by an AUC of just 0.48 for the KNN in the PZ. Other studies have reported 

success using the ADC maps to classify high and low Gleason scores [36] [35] . 

Table 2.6: Classification of high and low 

Gleason grade. 

Classifier Zone AUC FPR FNR 

SVM PZ 0.60 0.44 0.49 

KNN PZ 0.48 0.35 0.77 
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2.4 Discussion 

Our results demonstrate that the CAD system can classify malignancy of PCa with an 

AUC accuracy of 0.96. Comparing our system to previous systems suggests that a highly-

accurate fusion of histology with mpMRI is important for classification accuracy, as this 

system enables clean samples for both malignant and benign regions of interest for model 

training. Using our system for highly-accurate registration we were able to achieve an 

AUC of 0.96 using a SVM algorithm for classification of tumours and benign tissue in 

the PZ. This performance is competitive with the top performing models that have an 

AUC of 0.97. Our results for classification in the PZ and CG agree with current published 

literature which indicates that classification in the CG is more difficult than the PZ.  [32] 

  Many recent studies have focused on classification of tumours and confounding 

structures.  Our results agree with the current literature which has found that this is a 

much more difficult task compared to classification of malignant and benign tissue. 

Litjens et al. [22] achieved AUCs of 073, 0.75, 0.63, and 0.69 for differentiation of 

tumours vs. PIN, atrophy, inflammation and BPH, respectively. Some studies also look at 

classifying tumours vs. radiologist false positives [24] [36]. Vos et al. were able to 

achieve an AUC of 0.82. Using our approach for classification of malignant and 

confounding tissue in the form of radiologist false positives, we were able to achieve an 

AUC of 0.89 in the PZ using the KNN algorithm. To our knowledge, this is the highest 

reported accuracy in the literature for this type of classification. Table 2.2 illustrates the 

false negatives and false positives of the radiologists for contouring PCa at different 

PIRADS thresholds. Radiologist performance was moderate, suggesting the model may 

improve classification accuracy when used as a secondary observer. Accuracy results for 
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classification of high and low Gleason grade were lower than seen in the literature. We 

suspect this is due to two main reasons. The first is that our sample size of high Gleason 

score tumours was small as there were very few prostates in our dataset with a Gleason 

score > 3+4. The other reason we suspect our accuracy was lower is due to spatial biases. 

Unlike many studies, our dataset was not retrospectively annotated after analyzing 

histology results. Looking at our radiologist annotations on the ADC maps shows spatial 

bias in the form of incorrectly extending tumour boundaries to include hypo-intense 

benign tissue in some cases. This may explain why our accuracy for high and low grade 

was lower than other studies in the literature.  

  Our study has some limitations. First, our study consisted of patients who were 

treated with radical prostatectomy, inducing a selection bias. Although prostatectomy is 

reserved for patients with aggressive PCa, our data included a large number of Gleason 

score 6 regions and few with a Gleason score >= 4. This may explain why our 

performance for detecting aggressive prostate cancer was low. Second, a small sample 

size of 22 patients was used. Further validation in a larger dataset with more high grade 

cancer is required for advances in accuracy.   

2.5 Conclusion 

 We have developed a CAD system for classification of suspicious prostate tissue. 

The systems performance for classification of malignant and benign tissue in the PZ is 

competitive with the highest reported among the literature. Our system also achieved a 

high accuracy rate when characterizing malignant and confounding tissue in the form of 

radiologist false positives. This research supports the development of a clinical CAD 
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system in the form of a radiological tool for improved diagnosis and patient treatment 

planning. 

There are several potential usage scenarios for our system. The first would be to 

use the system as a second observer for radiologists during screening. This could reduce 

the workload of radiologists as multiple opinions are often given during screening. This 

system could also help with patient risk stratification by suggesting whether a suspicious 

area is high or low grade cancer. This allows for more informed physician decisions and 

may allow for reduced overtreatment. 
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3 Chapter 3. 

Discussion and conclusions 

The final chapter of this thesis reexamines the research objectives and provides 

the key findings and conclusions. This chapter also addresses limitations of the current 

study and the field, and the potential solutions for both. Finally, future directions for PCa 

detection and diagnosis are presented. 

3.1 Contributions of the thesis 

 This thesis contributes advances in methods, concepts and knowledge in several 

key areas.  

Methods: CAD systems can be difficult to compare due to differences in datasets and 

design. Many of the top performing models focus on classification of tumours vs. healthy 

tissue ([1] [2]), however, a more clinically relevant CAD system would classify tumours 

vs. confounding regions. Some recent studies have investigated classification of these 

confounding pathologies, including radiologist false positives, prostatic inter-epithelial 

neoplasia (PIN), atrophy, inflammation, and benign prostatic hyperplasia [3], [4], [5]. 

Our study measured the performance for both classification of benign tissue and 

confounding tissue in order to enable a more complete breakdown when comparing 

models. The approach presented in this thesis is the first ever to classify malignant and 

confounding tissue using first and second order texture features derives from mpMRI, 

validated using a highly accurate registration algorithm for fusion of histology to 

mpMRI. 
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3.2 Validation 

Previous CAD systems used radiological consensus for registration of histology to 

mpMRI for validation. The consensus technique can lead to spatial biases in the form of 

false-positive low-intensity benign regions, as low-intensity regions are indicative of 

prostate cancer on T2W and ADC MRI. Our system is the first to use a densely-sampled 

unbiased reference standard derived from a registration of histology images to MR 

images with < 2 mm target registration error [6]. Rather than relying on biases in 

radiologist consensus mapping, this reference standard enables us to generate high-

quality unbiased contours for our samples when training our model. 

Knowledge: Using a SVM for classification of malignant and benign tissue in the PZ we 

were able to achieve an AUC of 0.96. This is competitive with the highest reported AUC 

among the literature. Using a SVM for classification of malignant tissue and confounding 

tissue in the form of radiologist false positives we were able to achieve an AUC of 0.89. 

To our knowledge, this is the highest reported accuracy among the literature. Our system 

had poor performance for classification of high and low Gleason grade. Although other 

models have been shown to have moderate success for this type of classification, our 

results suggest there is a significant amount of room for improvement for this type of 

classification. 

3.3 Limitations 

Our study has several limitations. First, our study consisted of patients who were 

treated with radical prostatectomy, inducing a selection bias. In a clinical setting, patients 

would have a range of outcomes from completely healthy to having an advanced form of 

prostate cancer. Our study focused only on patients who were scheduled for radical 
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prostatectomy, ensuring at least one tumour was present per patient. However, even with 

this selection bias, many of our patients had a low Gleason grade cancer. This distribution 

of aggressiveness plays into our favour, as many of the patients we analyzed could have 

been candidates for a focal therapy. A second limitation of our study is a small sample 

size of 22 patients that was used. Further validation in a larger dataset is required because 

prostate cancer will have a different appearance based on a number of factors such as 

zone of origin, geographical location, age, and genomic makeup. In order to properly 

classify each type of tumour, two approaches may be appropriate. The first approach to 

this problem would be to build a global dataset with a large number of samples that is 

available to validate models with. However, this approach may be incredibly expensive 

and time consuming due to all of the preparation work and collaboration that would be 

required. A second approach to fix a small sample size would be to investigate ways of 

extracting and registering information from previously processed prostates. There are 

large repositories of prostates and prostate cancer that could be tapped into in order to 

expand the size of the dataset. A major limitation inherent to all CAD systems is the lack 

of an understanding of what causes the expression of texture features. Lalonde et al. have 

looked at analyzing a genomic classifier in order to understand which genes can be used 

to predict biochemical recurrence and metastasis [7]. An understanding of these 

mechanisms is critical in order for CAD system to proceed to clinic, as it would eliminate 

the black box approach currently taken. This in turn may increase the confidence and 

optimism of physicians and radiologist to use such a system. 
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3.4 Future Directions 

 The methods developed in this thesis support many research initiatives in several 

directions. This section addresses remaining gaps in knowledge that exist and potential 

applications of this system on future directions. 

3.4.1 External validation 

 CAD systems have been shown to improve radiologist performance with 

detection and diagnosis. However, prior to clinical validation, multiple large independent 

datasets must be used to validate such tools. External validation is important because it 

ensures models are not overfitted to their data. In most previous publications, CAD 

systems were validated using cross validation. Although this is seen an appropriate 

approach, a more rigorous approach would be to have a training set, a testing set and 

validation set. A validation set is not common with CAD models because it requires 

further division of the samples which are usually very limited. Such validation may 

provide additional information to improve assessment and provide personalized treatment 

plans for patients. 

3.4.2 Incorporation of additional knowledge 

 This thesis has suggested that an accurate histology to MR registration system for 

detection and diagnosis of PCa may improve accuracy. There remains room for 

improvement for both PCa detection and diagnosis. Our models have focused exclusively 

on using imaging features to classify tumours and suspicious regions. Incorporating 

patient characteristics such as age, family history, PSA level, etc. may improve 
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performance and better inform physicians for treatment planning, although this presents 

various challenges. These challenges include maintaining patient confidentiality, 

obtaining the data, and quantifying the data. Radiomic features are quantitative and 

continuous, but clinical data can be qualitative or discontinuous. Data can take the form 

of binary decisions (i.e., does the patient have a history of PCa) or a scale (i.e., a rating of 

1-5 stars). Data in this form may influence classifiers to behave in an unpredictable 

fashion, particularly when the sample size is low, as each additional training sample 

could maximally move the decision boundary in one direction. Characteristics such as 

patient genomics and family history also may be inaccessible or challenging to obtain. 

3.4.3 Decision Support 

 The impact of using a CAD system to aid a physician with detection and 

diagnosis may be in the ability to provide more personalized treatment plans for patients. 

Litjens et al. have shown that when a CAD system is used as a secondary observer, 

radiologist classification performance improves, especially among novice radiologists 

[8]. Completely automatic CAD systems have also been investigated [9] [10]. Various 

approaches can be taken to generate contours around suspicious regions. Giannini et al. 

created a fully automatic CAD system for peripheral zone lesions that used a voxel-wise 

malignancy probability map to create regions by keeping pixels with a probability higher 

than 60% to be malignant. Litjens et al. have used a Hessian blob detector approach to 

generate initial regions of interest [9]. Additional research on automatically generating 

regions of interest that are suspicious for PCa may further improve the performance of 

these systems.  
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3.2  Conclusions 

Although CAD models have made significant improvements, tough challenges 

still remain.  

 Working in a high dimensional feature space requires the use of feature selection 

techniques in order to determine the optimal feature set. There are several feature 

selection methods used in the literature, such as forward feature selection, reverse feature 

selection and branch and bound feature selection. There are several reasons different 

techniques are employed including time taken and complexity of the method. Further 

research is required in order to compare and contrast the different techniques to 

determine their optimal use.  

 Several machine learning classifiers have been used to characterize and classify 

tumours. Each of these classifiers have advantages and disadvantages associated with 

them. For example, a support vector machine can be advantageous for classification as it 

maximizes the margin between two classes of points. This improves accuracy but is much 

slower, and thus is only beneficial with a small number of samples.  

  Confounding regions have overlapping appearance to prostate cancer and can 

mask the appearance of cancer. Texture feature extraction may allow for better 

assessment of cancer from confounding regions to assess the subtle differences. Studies 

have looked at characterizing tumours vs. radiological false positives, prostatic inter-

epithelial neoplasia (PIN), atrophy, inflammation, and benign prostatic hyperplasia [3], 

[4], [5]. Further investigation of classification of confounding regions may improve 

overall performance. 

  In conclusion, we created a CAD system for classification of malignant, benign 
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and confounding tissue as well as low and high Gleason grade, validated using our 

method for highly accurate fusion of mpMRI with whole-mount digitized histology of the 

surgical specimen. Our system is competitive with the highest reported accuracy among 

the literature for classification of malignant and benign tissue. Our system exceeded 

reported accuracies for classification of malignant and confounding tissue in the form of 

radiologist false positives. In order to further improve CAD systems, classification of 

confounding regions should be a primary area of focus. 
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