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Abstract 
 

Purpose: The purpose of this study was to compare and contrast the effects of a long 

duration exercise cycle (~3 h) by trained cyclists (RIDE) to a 3 h inactive period (SED) in 

recreationally active individuals (CONT) on VO2, VCO2, peak aerobic power, fat oxidation, 

anaerobic capacity (Wʹ), arterialised-capillary lactate concentration and maximal sustainable 

power (CP). Methods: Male cyclists (n=12) and male recreationally active individuals (n=7) 

performed both an incremental test to volitional fatigue (RAMP) and 3 min all-out tests on a 

cycle ergometer, pre- and post-RIDE/SED respectively. Results: Increased fat oxidation rates, 

and reductions in VO2peak, peak aerobic power anaerobic capacity (Wʹ) and no changes in CP 

pre- to post-RIDE. No changes in CONT pre- to post-SED were observed.  Summary: The 

decreased Wʹ, and arterialised-capillary lactate concentrations post-RIDE, after both RAMP 

and 3 min all-out tests suggests diminished substrate level phosphorylation associated with the 

depleted glycogen stores. Critical power was unaffected by this RIDE. 

 

 

  

 

Key words: long duration exercise, substrate utilization, critical power, peak aerobic power, 

anaerobic capacity, Tour de France 

 



ii 
 

Co-Authorship Statement 
 

This Study was designed by G. R. Belfry, M. Bitel, and M. Barnes with input from the advisory 

committee (J. M. Kowalchuk and C. W. J. Melling). The majority of the data was collected and 

analyzed by M. Bitel with the assistance of G. R. Belfry, M. Barnes and M. McCrudden. M. 

Bitel wrote the original manuscript for the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Acknowledgements 
 

I would like to start off by thanking my advisor, Glen R. Belfry for giving me the 

opportunity to learn and experience integrative exercise physiology at the research level. 

You’ve guided me through a project that was both enjoyable and challenging. I would also like 

to thank you for being understanding and a positive influence when things were getting really 

difficult in my life. Thank you once again for your patience and this opportunity. 

I would also like to thank my lab colleagues, Mike McCrudden, Sylvie Richer, Taylor 

Robertson, Bashar Balakirishan, Lorenzo Love, Jae Joon Kim, Kaitlin McLay, Mike Hodgson 

and Dan Keir for always being open to lend a helping hand and provide useful advice. It was 

always reassuring to have help on using the lab equipment. But more importantly, you guys 

made the experience of graduate school more fun and enjoyable all the way through. I would 

also like to thank Lorenzo Love, Taylor Robertson, Mike Hodgson and Dan Keir for providing 

me opportunities to get good exercise, while participating in their studies. It was fun. 

Lastly, I would like to thank my family for being supportive, encouraging and teaching 

me the value of hard work. I also appreciated all the times everyone understood when it was 

necessary for me to take a break and relax, as I can’t help but struggle to know when I needed 

one. I would like to thank my parents specifically for their own hard work and sacrifice in order 

for myself to have an opportunity for an education as many are not so fortunate to have. This is 

greatly appreciated and never have I been more proud. 

 

 

 

 



iv 
 

Table of Contents 

 
Abstract .......................................................................................................................................... i 

Co-Authorship Statement ............................................................................................................. ii 

Acknowledgements ..................................................................................................................... iii 

Table of Contents ......................................................................................................................... iv 

List of Tables ................................................................................................................................ vi 

List of Figures ............................................................................................................................ vii 

List of Appendices ..................................................................................................................... viii 

List of Terms and Abbreviations .................................................................................................. ix 

Chapter 1 ....................................................................................................................................... 1 

1.0 Review of Literature ....................................................................................................... 1 

1.1 Introduction ..................................................................................................................... 1 

1.2 Incremental Ramp Test ................................................................................................... 2 

1.3 Critical Power (CP) ......................................................................................................... 3 

1.4 Energy Systems Associated with VO2max and Critical Power Testing ......................... 4 

1.5 Blood Lactate .................................................................................................................. 6 

1.6 Substrates for Aerobic and Anaerobic Work .................................................................. 7 

1.7 Fat Oxidation .................................................................................................................. 9 

1.8 Fat and Carbohydrate Oxidation Rates derived from VCO2 and VO2 ......................... 10 

1.9 Muscle Fibre Types ...................................................................................................... 11 

1.10 Fatigue .......................................................................................................................... 13 

1.11 Rationale ....................................................................................................................... 15 

1.12 References ..................................................................................................................... 16 

Chapter 2 ..................................................................................................................................... 32 

2.0 The Responses of VO2, VCO2, Substrate Utilization and Maximal Performance to 

Long Duration Exercise ........................................................................................................... 32 

2.1 Introduction ................................................................................................................... 32 

2.2 Methods ........................................................................................................................ 35 

2.3 Results ........................................................................................................................... 42 



v 
 

2.4 Discussion ..................................................................................................................... 50 

2.5 References ..................................................................................................................... 57 

Chapter 3 ..................................................................................................................................... 66 

3.0 Limitations and Future Directions ................................................................................ 66 

3.1 References ..................................................................................................................... 68 

Appendices .................................................................................................................................. 71 

Curriculum Vitae ......................................................................................................................... 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

List of Tables 
 

Table 1.  Control and Experimental group, RAMP (incremental test) and 3 min all-out tests 

results, before and after (PRE to POST) sedentary period (SED) and long duration exercise 

cycle (RIDE). All values are presented as the group means with standard deviation (±). .......... 45 

 

Table 2. Control and Ride group dietary mean and standard deviation, breakfast and long 

duration exercise cycle (RIDE)/sedentary (SED) period. ........................................................... 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

List of Figures 
 

Figure 1. Long duration exercise cycle route .............................................................................. 42 

 

Figure 2. Mean fat oxidation (g*min-1) during incremental testing.. .......................................... 46 

 

Figure 3. Mean carbohydrate (CHO) oxidation (g*min-1) during incremental testing.. ............. 46 

 

Figure 4. Mean ± SD arterialised-capillary lactate concentrations (mM).. ................................. 47 

 

Figure 5. Mean power output during 3 min all-out testing.. ....................................................... 47 

 

Figure 6. Mean Oxygen consumption (VO2) L*min-1 during 3 min all-out testing .................... 48 

 

Figure 7. Mean carbon dioxide production (VCO2) L*min-1 during 3 min all-out testing.. ....... 48 

 

 

 

 

 

 

 

 

 

 
 

 



viii 
 

List of Appendices 
 

Appendix A: Ethics Approval Notice ......................................................................................... 71 

 

Appendix B: Letter of Information and Consent Forms ............................................................. 72 

 

Appendix C: Borg’s Rate of Perceived Exertion (RPE) Scale .................................................... 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Terms and Abbreviations 
 

ATP - Adenosine Triphosphate 

bpm - beats per minute 

Ca2+ - Calcium ion 

CHO - Carbohydrate 

CoA - Coenzyme A 

CO2 - Carbon Dioxide 

CONT - Control Group 

CP - Critical Power 

CPT - Carnitine Palmitoyltransferase 

ETC - Electron Transport Chain 

FABP - Fatty Acid Binding Protein 

FAT/CD36 - Fatty Acid Translocase 

FFA - Free Fatty Acid 

LT – Lactate threshold/Gas Exchange Threshold 

h - Hour 

H+ - Hydrogen ion 

HSL - Hormone Sensitive Lipase 

IMTG - Intramuscular Triglyceride 

J - Joules 

km - kilometre 

K+ - Potassium ion 

kcal - Kilocalories 

LCFA- Long Chain Fatty Acids 



x 
 

min - minute 

MVC - Maximal Voluntary Contractions 

N2 - Nitrogen 

Na+ - Sodium ion 

O2 - Oxygen 

PCr - Phosphocreatine 

Pi - Inorganic Phosphate 

RAMP - Incremental Ramp Test 

RER - Respiratory Exchange Ratio 

RIDE - Experimental Group 

RPE - Rate of Perceived Exertion 

RPM - Revolutions per Minute 

s - Second 

SD - Standard Deviation 

SDH - Succinate Dehydrogenase 

SE - Standard Error 

SED - Sedentary 

SNS - Sympathetic Nervous System 

SR - Sarcoplasmic Reticulum 

VCO2 - Carbon Dioxide Production 

VO2 - Oxygen Consumption 

VO2max - Maximal Oxygen Consumption 

VO2peak - Peak Oxygen Consumption 

W - Watts 

Wʹ - Anaerobic Capacity



1 
 

 

Chapter 1 

1.0 Review of Literature 

 

1.1 Introduction 

 

The purpose of this study was to observe the pre- and post-responses of a long duration 

exercise cycle (RIDE) on VO2peak, VO2, VCO2, peak aerobic power, fat oxidation, anaerobic 

capacity (Wʹ), arterialised-capillary lactate concentration and the maximal sustainable power 

output (critical power (CP)) during an incremental ramp test to volitional fatigue (RAMP) and a 

3 min all-out test.  

The testing and intervention protocols in the present study were designed to mimic a 

cycling road race (stage) similar to the 21 stages performed in Le Tour de France. Typically, at 

the onset of each stage there is a 30-45 min period in which cyclists will attempt to break away 

from the main group of cyclists (peloton). This requires high intensity power outputs equivalent 

to CP and/or maximal oxygen consumption (VO2max) (Ebert et al. 2006; Vogt et al. 2006). This 

initial high intensity segment of the race is typically followed by a moderate intensity cycle 

(below the estimated lactate threshold) that is maintained for ~3 h. With 10-20 km remaining, 

this previous moderate intensity segment is commonly followed by greater power outputs by 

the cyclists in the peloton as they endeavor to catch the cyclists that had escaped earlier. This 

latter phase of the race requires sustained efforts in proximity to CP, VO2max, as well as 

supramaximal intensity efforts, culminating in a sprint to the finish line. 

In the present study, the efforts of the cyclists (RIDE) during the initial phase of a stage 

were replicated through a RAMP and a 3 min all-out test performed on a cycle ergometer in the 

lab. This was followed by a moderate intensity cycle, approximately 3 h in duration, performed 

on the open road. Upon returning to the lab, the latter portion of the race was replicated by 
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performing the same RAMP and the 3 min all-out tests. These results were contrasted with a 

group of recreationally active individuals who performed these same tests before and after a 3 h 

sedentary period (CONT). 

It was hypothesized that the fat oxidation profile during the RAMP test in both the 

RIDE and CONT group will not be dissimilar to the inverted U shape profiles observed in 

constant load exercise. Moreover, the rate of energy production from oxidative phosphorylation 

of fats up to and including CP intensities, would increase during the RAMP test post-long 

duration exercise. Lastly, the anaerobic capacity (Wʹ) will be reduced post-long duration 

exercise as a result of glycogen depletion, with no changes in CP during the 3 min all-out test.  

This chapter will review the relevant literature associated with the rationale, and the 

data collection equipment linked to this study.   

1.2 Incremental Ramp Test 

 

An incremental ramp test to limit of tolerance (RAMP) was utilized in the present study 

to simulate the intensities performed during the beginning and final phases of a race, where 

cyclists are working to break away from the peloton or working to catch up and/or outpace 

opposing cyclists respectively. The RAMP test protocol demands a progressive increase in 

exercise intensity until volitional exhaustion is reached. The RAMP test is used to delineate 

peak oxygen consumption (VO2peak), estimated lactate threshold (LT) and associated power 

outputs (Carey et al. 2001, Martin et al. 1993, Coggan et al. 1993, Horton et al. 1998). VO2peak 

was determined to be the VO2 recorded over the last 15 seconds on the RAMP test, whereas 

estimated LT was determined to be the point at which VCO2 begins to increase out of 

proportion to VO2 (Beaver et al. 1986). In addition, progressive changes in VO2, and VCO2 

were monitored during the RAMP test (Carey at al. 2001, Martin et al. 1993; Boone et al. 2009; 



3 
 

Ferreira et al. 2007). Moreover, the RAMP test can be utilized to assess performance and the 

associated effects of different exercise interventions, and/or utilized to observe different 

populations (i.e. trained versus untrained), as demonstrated  in previous studies (Clark et al. 

2014; Boone et al. 2009).  

1.3 Critical Power (CP) 

 

The 3 min all-out critical power test (Vanhatalo et al. 2007) was performed 15 min after 

the RAMP test and prior to the RIDE in the present study. The 3 min all-out test, along with the 

RAMP test, simulates both the initial and final efforts made by the cyclists within a racing 

stage. The 3 min all-out test can also be used to evaluate an individual’s maximal sustainable 

power output (CP), anaerobic capacity and peak power (Vanhatalo et al. 2007). These are key 

factors in determining a cyclist’s performance abilities. Critical power has been established as 

the boundary between heavy to very heavy exercise intensities (~80% VO2max) and is the 

maximum power output during which a steady-state in cellular H+ , blood lactate, and inorganic 

phosphate concentrations, as well as VO2 can be sustained (Jones et al. 2010, Coats et al. 2003). 

Moreover, the quantification of the finite capacity of the anaerobic energy systems (Wʹ) during 

the initial two thirds of the  3 min all-out test, is possible, as all work performed above CP 

during this test constitutes Wʹ  (Vanhatalo et al. 2007; Jones et al. 2010). Any increase in power 

output performed above CP, elicits an increased anaerobic contribution which results in the 

accumulation of H+, lactate and inorganic phosphate. This increase in metabolites is imminently 

followed by fatigue. The Wʹ represents ATP-PCr and substrate level phosphorylation or 

anaerobic glycolysis (Vanhatalo et al. 2007, Jones et al. 2010).  
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The endurance (aerobically) trained individual, such as the cyclists (RIDE) in the 

present study, will manifest a greater CP compared to the untrained or to those that are sprint 

trained (Jones et al. 2010). 

1.4 Energy Systems Associated with VO2max and Critical Power Testing 

 

 Utilizing both the RAMP test, 3 min all-out test as well as the long duration exercise 

cycle to mimic a competitive cycling race requires different energy contributions at different 

phases of the event.  

Mammalian cells generate energy through the aerobic (with O2) and anaerobic (without 

O2) energy systems. There are two systems within anaerobic metabolism, known as the alactic 

(no lactate production) and lactic (producing lactate) energy systems (Hill 1999; Duffield et al. 

2004; Duffield et al. 2005a; Duffield et al. 2005b).  

The alactic energy system, also known as the ATP-PCr system, is the major energy 

contributor during the most rapid demands of energy utilisation (maximal intensity exercise) 

and during the initial or transitioning from a lower to higher power output, as PCr breakdown 

facilitates ATP synthesis (Gastin 2001; Forbes 2005). Furthermore, the ATP-PCr system 

contributes an increasing amount of energy as exercise intensity increases from moderate to 

heavy to very heavy exercise (Forbes 2005). Finally, during maximal sprint exercise 

comparable to the 3 min all-out test, the ATP-PCr energy system contribution will predominate 

over the first 10 s of the exercise bout (Hill 1999; Duffield et al. 2004; Gastin 2001; Karlsson 

and Saltin 1970). As such this 3 min all-out test initially utilises the greatest rate of ATP 

demand, supporting measurement of the peak phosphorylation rates (ATP re-synthesis) 

originating from ATP-PCr.  
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The lactic anaerobic system produces energy (ATP) from glycogen and glucose stores 

through anaerobic glycolysis by anaerobic reactions also known as substrate level 

phosphorylation, resulting in lactate and hydrogen ion formation (Gastin 2001). Blood lactate 

can be used as an estimate of the anaerobic glycolytic contribution during and post-exercise 

testing (Hermansen and Stensvold 1972; Gollnick et al. 1986; Brooks 1985). Moreover, 

anaerobic glycolysis contribution increases when the energy supply by aerobic metabolism does 

not meet the demand of the energy required to perform a physical task or exercise intensity 

(Hill 1999; Duffield et al. 2005a; Duffield et al. 2005b; Gastin 2001; Spencer and Gastin 2001; 

Bangsbo et al. 1992; Brooks 1985). The same changes in energy contribution occur during the 

initial and final phases of a competitive cycling race when power outputs exceed LT and up to 

all-out efforts.  

The 3 min all-out test has been utilized to quantify peak power and the capacity of this 

anaerobic system (ATP-PCr and anaerobic glycolysis) as well as CP (Vanhatalo et al. 2016). 

The aerobic energy system predominately uses carbohydrates (CHO) and fats to 

phosphorylate ADP through chemical reactions in the mitochondria associated with beta-

oxidation, Kreb’s cycle and the electron transport chain (ETC). These processes that ultimately 

utilise O2 to form H2O in the electron transport chain are collectively known as oxidative 

phosphorylation, (Rakus et al. 2015; Gastin 2001; Chance and Williams 1955; Senior 1988). 

For the continual re-synthesis of ATP, the aerobic energy system is dependent on the 

availability of the reducing agents NAD+ and FAD+, as well as oxygen within the mitochondria 

for oxidative phosphorylation to proceed (Chance and Williams 1955; Senior 1988). The 

oxidation of CHO occurs when the end product of glycolysis, pyruvate, enters the Kreb’s cycle 

resulting in electrons being transported to the ETC. Its maximal rate of ATP formation is much 

slower than anaerobic glycolysis. Moreover, fat oxidation results in the free fatty acid chains 
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being cleaved into fragments in beta-oxidation and used in the Kreb’s cycle and ETC to 

produce ATP. This fat oxidation results in the slowest rate of oxidative phosphorylation 

compared to CHO oxidation (Senior 1988; Chance and Williams 1955). It is the result of these 

additional reactions within the Kreb’s cycle and ETC in the mitochondria that make oxidative 

phosphorylation slower to reach maximal activation than both the alactic and lactic energy 

systems (Senior 1988; Chance and Williams 1955).  

Finally oxidative phosphorylation is the major energy contributor during maximal 

efforts of two min and longer (Hill 1999; Gastin 2001; Spencer and Gastin 2001; Jones et al. 

2010; Vanhatalo et al. 2007).  

1.5 Blood Lactate 

 

During the high intensity performances during the initial and final stages of a cycling 

race, replicated by both the RAMP and 3 min all-out tests, cyclists will utilize heavy intensity 

power outputs (>65% VO2max) to break away from the peloton or to catch and outpace opposing 

cyclists (Ebert et al. 2006; Vogt et al. 2006). This change in power output results in blood 

lactate accumulation that reflects anaerobic use of CHO at intensities greater than the lactate 

threshold (Hermansen and Stensvold 1972; Gollnick et al. 1986; Brooks 1985). The production 

of lactate is the result of the breakdown of glucose and glycogen molecules by glycogenolysis 

and/or glycolysis, and the catalytic enzyme activity of lactate dehydrogenase (LDH) to form 

lactate (Brooks 1985; Sjodin et al. 1982). Blood lactate accumulation during exercise occurs 

when lactate production exceeds the rate of lactate removal (Hermansen and Stensvold 1972; 

Bang 1936; Gollnick et al. 1986). This accumulation of lactate occurs during maximal efforts 

similar to that elicited by the RAMP and 3 min all-out tests (Hermansen and Stensvold 1972; 

Gollnick et al. 1986; Brooks 1985). Moreover, blood lactate concentrations can be affected by 
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lactate uptake and oxidation by oxidative skeletal, respiratory and cardiac muscle fibers. This 

oxidation of lactate is possible as monocarboxylate tranporters (MCT) transport lactate 

produced from the cell into the mitochondria of adjacent or neighbouring oxidative muscle 

fibres, where it is oxidized (McCullagh et al. 1997). This oxidizing process results in lower 

blood lactate levels. Moreover, during steady-state exercise the accumulation of blood lactate 

may reach an elevated but unchanging concentration (Hermansen and Stensvold 1972; Brooks 

1985). This remains true during exercise intensities up to and including critical power (CP) 

(Vanhatalo et al. 2007; Jones et al. 2010; Keir et al. 2015). However, as exercise intensities 

increase above CP, a greater contribution from substrate level phosphorylation disrupts the 

steady-state condition, resulting in an increase in cellular H+, inorganic phosphate and lactate 

concentrations (Vanhatalo et al. 2007; Jones et al. 2010). 

1.6 Substrates for Aerobic and Anaerobic Work 

 

The energy released in the body is obtained from carbohydrates, proteins and fats. Of 

these macronutrients, CHO and fats are the most readily used endogenous substrates during 

exercise (Ranallo and Rhodes 1998; Essen et al. 1977; Brooks and Mercier 1994; Torrens et al. 

2016).  

CHO are stored in the body in the form of glycogen, yielding 4 kcal per gram of CHO 

(glucose) derived energy (Ranallo and Rhodes 1998; Brooks and Mercier 1994; Essen et al. 

1977). Muscle and liver glycogen, as well as blood glucose are the preferred energy sources 

during high intensity exercise (>65% VO2max), where ATP is supplied either by anaerobic or 

oxidative (aerobic) glycolytic systems (Torrens et al. 2016; Bergman et al. 1999; Romijn et al. 

1993; Brooks and Mercier 1994). During the RAMP test above LT and for the entire duration 
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of the 3 min all-out test, CHO are expected to be the most important substrate for ATP 

production. 

Free fatty acids (FFA) are stored in the body as triglycerides, and are broken down 

through hydrolysis by a cascade of lipolytic reactions through lipases (triglyceride lipase and/or 

hormone sensitive lipase (HSL)) and regulatory proteins at rest and during low to moderate 

intensities of exercise (<65%VO2max) (Aon et al. 2014). The end products are three long chain 

fatty acids (LCFA) and a glycerol. These end products are then released into the vasculature, as 

they bind with an albumin protein carrier that carries the LCFA through the circulating blood 

plasma (Aon et al. 2014). The LCFAs can then be utilized in beta-oxidation to produce 

substrate for the ETC through oxidative phosphorylation in mitochondrial respiration 

(Kienesberger et al. 2013). However, in order to get the LCFAs to the mitochondria to take part 

in beta-oxidation, the non-esterified LCFAs have to be transported through various cellular 

structures and membranes to reach the ETC (Aon et al. 2014; Hagberg et al. 2013).  

Once LCFA reach the area of energy demand (i.e. active muscles during exercise), 

LCFA are transported across the endothelium and cell membrane by fatty acid translocase 

proteins (FAT/CD36) and fatty acid binding proteins (FABP) (Elmasri et al. 2009; Glatz et al. 

2010; Hagberg et al. 2013). After the LCFAs have been transported from the blood plasma into 

the cell, they must be transported across the mitochondrial membrane in order to take part in 

beta-oxidation to produce ATP. LCFAs are esterfied to form LCFA-CoA (coenzyme A) 

(Ramsay and Tubbs 1975; Zammit et al. 2009), and are transported through a shuttle system of 

carnitine palmitoyltransferase 1 (CPT1) and 2 (CPT2) into the mitochondrial matrix (Zammit 

1999a; Zammit 1999b; Zammit et al. 2009). In the mitochondrial matrix, fatty acids are cleaved 

into 2 carbon-acyl fragments that enter the Kreb’s cycle as acetyl-CoA to eventually form ATP 

in the ETC (Houten et al. 2016). Greater availability of fatty acids in the mitochondrial matrix, 
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results in greater beta-oxidation and whole body fat oxidation (Watt et al. 2002; Watt et al. 

2003). During endurance exercise (<65% VO2max), whole body fat oxidation has been observed 

to increase its contribution to the total energy requirement as the duration of the exercise bout is 

lengthened (>15 min) (Bradley et al. 2012; Carey et al. 2001; Watt et al. 2003). The same 

response during the long duration exercise cycle in the present study is expected.  

1.7 Fat Oxidation 

 

During cycling stage racing, much of the race requires moderate to heavy intensity 

work. These intensities elicit an increasing contribution from fats, with a concurrent reduction 

in CHO use as exercise duration increases (Bradley et al. 2012; Carey et al. 2001; Watt et al. 

2003; Ranallo and Rhodes 1998). The ability to transport, uptake and oxidise free fatty acids in 

the active muscle cells, is essential for meeting metabolic demands as CHO stores alone cannot 

supply the total energy required during prolonged periods of exercise (>60 min) (Ranallo and 

Rhodes 1998). Although fatty acids cannot provide energy as rapidly as carbohydrates (CHO), 

and are energetically less efficient per unit of oxygen (23 moles of O2 per moles of fatty acid 

vs. 6 moles of O2 per mole of glucose), fat provides much more energy per gram (4 kcal vs 9 

kcal), making it an invaluable source of energy for low to moderate intensity (<65%VO2max) 

exercise during prolonged exercise durations (>60 min). The ~3 h long duration exercise cycle 

(below LT) in the present study would utilise fat as the major substrate (Holloway et al. 2008; 

Romijn et al. 2000).  

Moreover, with endurance training greater fat utilization at sub-maximal intensities of 

exercise (<LT) compared to the pre-training state is observed (Martin et al. 1993; Hurley et al. 

1986; Mole et al. 1971; Henriksson 1977; Phillips et al. 1996; Coggan et al. 1993). This up-

regulation of fat oxidation, post-training, allows the individual to spare their glycogen stores to 
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delay fatigue and reserve substrate availability for relatively greater intensities of exercise 

where the metabolic demand is greater and substrate level phosphorylation is necessary to meet 

the increased energy demand as expected in the final stages of a competitive cycling race 

(Phillips et al. 1996; Coggan et al. 1990, Coggan et al. 1993; Coggan et al. 1995; Holloszy and 

Coyle 1984; Romijin et al. 1993; Brooks and Mercier 1994). 

1.8 Fat and Carbohydrate Oxidation Rates derived from VCO2 and VO2 

 

During the RAMP tests, pre- and post-long duration exercise in the present study, 

pulmonary oxygen consumption (VO2) and carbon dioxide output (VCO2) were used to 

compare changes in fat and CHO oxidation as a consequence of the long duration exercise 

cycle, utilized in competitive cycling.  It is from the collection of VO2 and VCO2 data that it is 

possible to derive estimations of the energy provided from CHO versus fat oxidation (Peronnet 

and Massicotte 1991). It assumes that other metabolic processes involved in the production and 

utilization of CO2 and O2, respectively, such as gluconeogenesis from proteins and ketone body 

formation, are quantitatively negligible compared to glucose and fatty acid oxidation (Peronnet 

and Massicotte 1991; Ferrannini 1988; Frayn 1983). Assuming that these other metabolic 

processes are quantitatively negligible, greater or stable VO2 and lower VCO2 (relatively 

compared to VO2) is associated with an increased contribution in fat oxidation (Peronnet and 

Massicotte 1991), whereas a reduction in CHO derived substrate utilization in trained versus 

untrained individuals during low-moderate intensity exercise is observed (<65% VO2max) 

(Coggan et al. 1990; Coggan et al. 1993; Hurley et al. 1986). Furthermore, lower or stable VO2 

and greater VCO2 (relatively compared to VO2) is linked with an increased contribution in 

CHO oxidation (Peronnet and Massicotte 1991).  
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1.9 Muscle Fibre Types 

 

During the RAMP test, 3 min all-out test, and the long duration exercise cycle, the use 

of fat and CHO will depend on the recruitment of different skeletal muscle fibre types during 

various exercise intensities and durations. Skeletal muscle fibres come in two distinct types, 

Type I and Type II fibres (Schiaffino and Reggiani 1994; Thomson et al. 1979; Sant’Ana 

Pereira et al. 1996; Picard et al. 2011; Davie et al. 1999; Essen et al. 1975; Guegeun et al. 2005; 

Vanhatalo et al. 2016). Type I or slow twitch, fatigue resistant, oxidative fibres increasingly 

contribute  with increasing exercise intensity during low to maximal O2 consumption intensities 

(≤ VO2max) (Thomson et al. 1979; Davie et al. 1999) and are expected to be the predominately 

active fibers during the long duration exercise cycle and up to CP intensities (~80% VO2max) 

elicited during the RAMP and 3 min all-out test (Thomson et al. 1979; Vanhatalo et al. 2016). 

Type I fibers generally have two to three fold greater mitochondrial density and lower non-

oxidative ATP synthesis compared to Type II fibres, relying mainly on oxidative 

phosphorylation of fat and glycogen for ATP supply (Picard et al. 2011; Guegeun et al. 2005; 

Essen et al. 1975). The high levels of oxidative phosphorylation in Type I fibres are expressed 

by greater succinate dehydrogenase (SDH) activity, an enzyme involved in the Kreb’s cycle 

and ETC (oxidizing succinate to fumerate in the Kreb’s cycle and reducing ubiquinone to 

ubiquinol in the ETC), compared to Type II fibres (Essen et al. 1975; Vanhatalo et al. 2016; 

Sant’Ana Pereira et al. 1996). Moreover, Type I fibres have greater oxidative metabolic 

machinery than Type II fibres due to larger mitochondrial size and better developed cristae 

(larger surface area for chemical reactions requiring oxygen), resulting in greater oxidative 
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phosphorylation (Vanhatalo et al. 2016; Kugelberg 1973; Schiaffino et al. 1970). Type I fibres 

mainly derive their energy from fat oxidation during long moderate intensity exercise (below 

LT) and express greater levels of sarcolemmal fatty acid transport proteins and intracellular 

fatty acid binding proteins compared to Type II fibres (Picard et al. 2011; Glatz et al. 2003).  

Type II fibres become increasingly involved as exercise intensities increase above LT  

and will have a predominate contribution during intensities above CP (~80% VO2max), and a 

considerable effect on peak power outputs during the RAMP and 3 min all-out tests in the 

present study (Thomson et al. 1979; Picard et al. 2011; Davies et al. 1999). These fibres display 

greater glycerol-3-phosphate and phosphofructokinase (PFK) activity, the regulatory enzyme of 

glycolysis, with only 3 ADP phosphorylated per mole of glycogen resulting in greater use of 

these limited glycogen stores, making them more fatigable than Type I fibres (Picard et al. 

2011; Jackman and Willis 1996; Vanhatalo et al. 2016; Schiaffino and Reggiani 2011). Type II 

fibres have subgroups which are separated into Type IIa and Type IIx fibres (Schiaffino and 

Reggiani 1994; Thomson et al. 1979; Sant’Ana Pereira et al. 1996; Picard et al. 2011; Davie et 

al. 1999; Essen et al. 1975; Guegeun et al. 2005; Vanhatalo et al. 2016). Type IIa fibres are fast 

twitch, fatigue resistant, oxidative fibres and typically have a greater capacity for oxidative 

metabolism, but lower glycolytic metabolism and contractile force capability compared to Type 

IIx fibres (Thomson et al. 1979). As mentioned previously, there is greater reliance on 

glycolysis in Type II fibres resulting in a faster onset of fatigue than Type I fibres, but greater 

force producing capabilities (Vanhatalo et al. 2016; Schiaffino and Reggiani 2011).  

Type IIx fibres are fast twitch glycolytic fibres and are predominately active during 

maximal to supra-maximal (≥VO2max) intensities of exercise (Thomson et al. 1979). These 

fibres rely on non-oxidative phosphorylation for ATP supply, and contain the greatest capacity 

for glycolytic metabolism and considerably higher resting PCr content compared to other fibre 



13 
 

types (Sant’Ana Pereira et al. 1996; Thomson et al. 1979; Vanhatalo et al. 2016; Gueguen et al. 

2005). Since Type IIx fibres are limited to PCr and glycolytic energy supply, and have lower 

Krebs cycle enzyme activity compared to Type IIa fibres, fatigue occurs much quicker than 

Type IIa and Type I fibres (Vanhatalo et al. 2016; Sant’Ana Pereira et al. 1996; Essen et al. 

1975). 

1.10 Fatigue 

 

In competitive cycling, usually the cyclists that wins the race, is the cyclists that fatigues 

the least (Vanhatalo et al. 2011). After cycling the prolonged light-moderate intensity part of 

the race, cyclists will increase their speed or power output in order to catch up or outpace the 

opposing cyclists. The responses of substrate utilization or other fatigue mechanisms could pose 

as limiting factors in maximal sustainable performance and maximal performance during the 

RAMP test and 3 min all-out test post-long duration exercise cycle. Fatigue has been defined as 

the sensations of tiredness and reductions in muscular performance and function (Abbiss and 

Laursen 2005; Kay et al. 2001; Green 1997; Kay and Marino 2000; Millet et al. 2000; Millet et 

al. 2002; Pinniger et al. 2000; St Clair Gibson et al. 2001). Numerous models have been 

proposed to explain the causes of fatigue during prolonged moderate intensity exercise (≤65% 

VO2max) which include, but not limited to, substrate supply and neuromuscular mechanisms. 

The substrate supply model links glycogen levels with fatigue. There is a strong relationship 

between pre-exercise glycogen levels and cycling time to exhaustion (Abbiss and Laursen 

2005; Kay and Marino 2000; Shulman and Rothman 2001; Coyle and Montain 1992; Dennis et 

al. 1997). The association between low glycogen levels and impaired contractile function 

demonstrates that the depletion of glycogen results in a reduction in the rate of ATP 

regeneration (Ortenblad et al. 2013). The glycogen shunt model, proposed by Shulman and 
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Rothman (2001), states that as glycogen concentration is reduced, muscle glycogen fails to 

provide the rapid burst of glucogenolysis (glycogen break down), needed to compensate for the 

energy demands of muscle fibres during high-intensity exercise (Chin et al. 1997; Kabbara et 

al. 2000; Helander et al. 2002; Duhamel et al. 2006a; Duhamel et al. 2006b; Ortenbald et al. 

2011; Ortenbald et al. 2013). In addition, it is possible that the connection between glycogen 

and sarcoplasmic reticulum (SR) Ca2+ release is not related to glycogen as an energy source, but 

to the action of enzymes associated with the glycogen particles, which themselves might 

modulate the function of the SR Ca2+ release channels in their proximity, e.g. by 

phosphorylation or de-phosphorylation of proteins involved in E-C coupling during repeated 

contractions (Hamilton and Serysheva 2009; Sharma et al. 2012; Ortenblad et al. 2013). 

Following a prolonged moderate intensity exercise session (>60 min; ≤65% VO2max), glycogen 

depletion has been observed in both Type I and II fibers (Thomson et al. 1979), and performing 

a similar long duration exercise cycle in the present study and competitive road race cycling 

could possibly result in glycogen depletion and associated fatigue. 

Moreover, the neuromuscular and muscle contractile model has also been associated 

with fatigue. It has been suggested that fatigue can be related to the central nervous system 

activation failure, where it has been shown that as fatigue develops during prolonged exercise 

(>60 min), there is an increase in intracortical inhibition resulting in lower power outputs, 

reflected by decreased skeletal muscle recruitment (Abbiss and Laursen 2005; Millet et al. 

2003; Paasuke et al. 1999). Fatigue has also been observed at the level of the muscle, where a 

decline in the action potential conduction velocity within the muscle fibre is thought to be 

reflective of transformations within the muscle (i.e. the accumulation of metabolic by products) 

resulting in decreased contractile tension of the actin-myosin cross bridges (Schillings et al. 

2003). This was demonstrated in Lepers et al. (2002), where endurance trained cyclists cycled 
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for 5 h at 55% VO2max and observed decrements in force as a result of the decreased action 

potential and excitability of the exercising muscle. These alterations in the muscle action 

potential may reflect a decrease in membrane excitability caused by imbalances in 

transmembrane gradients (Na+ and K+) resulting in reduced EMG activity during prolonged 

cycling exercise (Abbiss and Laursen 2005; Allman and Rice 2002; St Clair Gibson et al. 2001; 

Jammes et al. 2000; Nielson and Clausen 2000; Fowles et al. 2002; Hamada et al. 2003).  

Muscle contractile properties have also been reported to become affected after 

prolonged exercise (2-5 h) (Lepers et al. 2000; Lepers et al. 2002). There may also be a 

reduction in Ca2+ release and uptake from contractile proteins to the SR, which may be 

responsible for an increase in the muscle relaxation time (actin-myosin cross-bridge detachment 

rate), resulting in lower power outputs compared to pre-exercise state (Abbiss and Laursen 

2005; Hill et al. 2001; McKenna et al. 1996). This fatigue mechanism has been observed by 

Lepers et al. (2002), after a 5 h cycle at 55% VO2max which resulted in decrements in peak 

twitch torque, and an increase in the contraction time of the quadriceps muscle (Lepers et al. 

2000; Lepers et al. 2002; Duchateau and Hainault 1985). 

1.11 Rationale 

 

 Competitive endurance sports that require physical activity for 2-4 h, such as cycling 

and long distance running, require long periods of sustained power outputs (Schumacher and 

Mueller 2002; Billat et al.2003). Improving these sustainable power outputs, allows athletes to 

complete a distance of a race course within a shorter period of time. These changes in 

sustainable power output may increase up to and including CP intensities (Joyner and Coyle 

2008). In the present study, the initial period (~30 min) of a typical competitive cycling race 

was replicated using a RAMP test and 3 min all-out test, followed by an approximate 3 hour 
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light-moderate intensity cycling period (≤65% VO2max). Utilizing this simulated cycling race, 

insight in substrate and performance changes that moderate intensity prolonged physical 

activity may have on the athlete can be attained. These observations could provide coaches and 

athletes with information on limitations to performance, and key elements in pacing strategies 

and tactics during a competitive racing event, especially near the end of race, where an increase 

in speed or work rate to outpace competing cyclists is required (Joyner and Coyle 2008). 

Despite there being an abundance of literature associated with the reduction in glycogen stores 

and increase in fat oxidation during prolonged exercise, as well as the effects glycogen 

depletion has on performance and fatigue (Carey et al. 2001; Bradley et al. 2012; Lepers et al. 

2000; Thomson et al. 1979; Vollestad et al. 1984; Vollestad et al. 1985), little is known about 

what changes in maximal sustainable power outputs (CP) occur after performing at moderate 

intensity for a prolonged period. Knowing the limitations to maximal sustainable power outputs 

observed during the present study, pacing strategies and tactics could be developed by coaches 

and athletes to maximize the speed at which the distance of the race is completed and focusing 

on the goal of outpacing opposing cyclists. 
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Chapter 2 
 

2.0 The Responses of VO2, VCO2, Substrate Utilization and Maximal Performance to 

Long Duration Exercise  

 

2.1 Introduction 

 

 The Grand Tours of cycling, such as Le Tour de France, demand some 21 days of 

racing (stages) by as many as 180 participants. The mean duration and distance of these stages 

is ~four hours and ~170 km (Le Tour, 2016). It is not unusual for these stages to begin with 

several high intensity efforts by the riders in the vicinity of their maximum oxygen uptake 

(VO2max) and/or at their highest sustainable work rate (critical power (CP) (Moritani et al. 

1981)), as cyclists attempt to escape from the main group of cyclists or peloton. These 

“escapees” may be chased down by cyclists in the peloton, and subsequently other cyclists may 

attempt to get away. It is not unusual for a smaller group of riders to eventually break away 

from the main group and gain several min advantage on the peloton. After these initial efforts 

the peloton may settle into two to four hours of below lactate threshold (LT) (moderate 

intensity) cycling, with no intention of trying to catch the cyclists in the breakaway. The 

peloton may now wait until the final 10-20 km to work together, taking turns breaking the wind 

at the front of the peloton, to catch the escapees. These efforts also require power outputs at or 

above CP. If the escapees are caught, the race will culminate in a mass sprint to the finish 

requiring maximal efforts from the cyclists.   

The experimental protocol of this present study attempted to replicate the power output 

profile of a Grand Tour stage in cycling by performing maximal effort tests in the lab, including 

an incremental test to fatigue (RAMP) and a 3 min all-out effort (Vanhatalo et al. 2007), before 
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and after a moderate intensity, long duration solo cycle ride (~ 3 h) on the open road. The 

experimental group in the present study was composed of trained cyclists.  

The effects of this long duration cycle ride (RIDE) on VO2, VCO2 (carbon dioxide 

production), fat oxidation, anaerobic capacity (Wʹ), arterialised-capillary lactate concentration 

and CP, during the RAMP and 3 min all-out tests, before and after this RIDE, were assessed. 

Moreover, these results from the RIDE group were compared and contrasted with a control 

group consisting of recreationally active individuals (CONT) who performed the identical 

testing regime as the RIDE group, but substituted three hours of inactivity (SED) for the long 

duration cycling intervention.  

Earlier work has observed increased fat oxidation rates at rest and during light, 

moderate and heavy intensity constant load exercise pre- and post-training, although none have 

observed fat oxidation rates continuously over a range of power outputs up to and including CP 

(Martin et al. 1993; Hurley et al. 1986; Mole et al. 1971, Carey et al. 2001; Bradley et al. 2012; 

Lepers et al. 2000, van Loon et al. 2001). It is suggested that increased fat oxidation, will be 

observed in the cyclists before the RIDE, compared to CONT during incremental exercise as 

observed in previous studies (Hurley et al. 1986; Carey et al. 2001), with a further increase 

observed after completion of this long duration ride. Since CP is performed predominately with 

Type 1 fibres (Vanhatalo et al. 2016), which rely on fats as substrate for oxidative 

phosphorylation (Essen et al. 1975), it is expected that the contribution of fats to oxidative 

phosphorylation will approach CP post-RIDE. Pilot data from our lab has suggested that the 

profile of the VO2 and VCO2 derived fat oxidation rates (Peronnet and Massicotte 1991) as 

intensity increases during RAMP exercise will not be dissimilar than those calculated from 

various constant load exercise bouts in the literature (van Loon et al. 2001; Achten and 

Jeukendrup 2004). Rowlands (2005) suggested that the VO2 and VCO2 derived fat oxidation 
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estimates will result in an overestimation of CHO oxidation rates and an underestimation of fat 

oxidation rates due to the excretion of non-respiratory CO2 at work rates above estimated 

lactate threshold (LT).  However, it was also suggested that that below LT during incremental 

exercise estimated substrate oxidation derived from VO2 and VCO2 is valid (Rowlands 2005). 

Reductions in anaerobic capacity (Wʹ) have been associated with muscle glycogen 

depletion (Miura et al. 2000). Moreover, glycogen depletion in Type I, Type IIa and Type IIx 

fibres have been reported after long duration, continuous exercise bouts at intensities equivalent 

to 60% VO2peak (60 -120 min) in both trained and untrained individuals (Thomson et al. 1979; 

Gollnick et al. 1974; Vollestad et al. 1984; Vollestad et al. 1985). Importantly, it has been 

demonstrated that there are different glycogen depletion rates of individual fibres within the 

same muscle. Consequently, particular fibres within the muscle may become depleted whereas 

others do not (Vollestad et al. 1985). This infers that despite whole muscle glycogen being only 

partially reduced, glycogen depleted Type II fibres would be unable to contribute to force 

generation at intensities requiring substrate level phosphorylation. Accordingly, a reduction in 

Wʹ would be expected post-RIDE in the present study (Miura et al. 2000). 

 Finally, over the course of the RIDE a decrease in VO2peak and peak aerobic power 

would be observed as a consequence of the decreased stroke volume and concomitant cardiac 

output, at any particular heart rate. This has been termed “cardiovascular drift” (Dawson et al. 

2005). This reduced stroke volume, is the corollary to the reduced end diastolic volumes that 

result in decreased arterial pressures, lower venous return and increased HR for a given cardiac 

output, in previously observed long duration exercise bouts (Dawson et al. 2005; Ketelhut et al. 

1994).  

The purpose of this study was to assess and compare, VO2, VCO2, fat oxidation rates, 

peak power, peak aerobic power, critical power and anaerobic capacity during incremental 
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exercise to VO2peak and a 3 min all-out test, before and after a RIDE or SED period, in 

endurance trained cyclists and recreationally active individuals, respectively, and observe how 

these responses would affect performance at the conclusion of cycling. 

It was hypothesized that 1) the fat oxidation profile during the RAMP test in both the 

RIDE and CONT group will not be dissimilar to the inverted U shape profiles observed in 

constant load exercise. 2) The rate of energy production from oxidative phosphorylation of fats 

up to and including CP intensities, would increase during the RAMP test post-long duration 

exercise and, 3) Wʹ will be reduced post-long duration exercise as a result of glycogen 

depletion, with no changes in CP during the 3 min all-out test.  

2.2 Methods 

 

Participants. The control (CONT) group consisted of healthy recreationally active individuals 

(n=7; 26 ± 4 y, VO2peak 3.81 ±0.5 L*min-1, relative VO2peak 48.63 ± 3.5 ml*kg-1*min-1). The 

experimental group (RIDE) consisted of healthy male trained cyclists (n = 12; 28 ± 6 y, VO2peak 

4.20 ± 0.5 L*min-1, relative VO2peak 55.63 ± 4.4 ml*kg-1*min-1), able to complete an 89 km ride 

below LT in ~3 h. All participants volunteered to participate in this study, were non-smokers 

with no known history of cardiovascular, respiratory, metabolic or musculoskeletal disease, and 

were not taking any medication that could have affected the physiological variables that were 

investigated. Participants and were informed all of the procedures and risks of the study prior to 

giving written consent to participate. The Western University Health Sciences Research Ethics 

Board approved this study. 

Experimental Overview. Each participant was asked to arrive at the laboratory in a rested state 

and to avoid strenuous exercise in the 24 h proceeding the upcoming ~five hour testing and 

RIDE/SED protocol. The participants in both the RIDE group and CONT group (one subject 
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per day) performed an incremental ramp (RAMP) test and a 3 min all-out test, separated by a 

15 min period of inactivity. Upon completion of the RAMP and the 3 min all-out tests, the 

cyclists (RIDE group) completed a long duration exercise cycle, whereas the CONT group 

completed a SED period. The RIDE were instructed to maintain a rating of perceived exertion 

(RPE) of 11 (light effort) (see Appendix C) (Borg 1982) during the RIDE along a planned route 

on the open road (Figure 1). This intensity is equivalent to a power output that is below the 

estimated lactate threshold (LT) (Ozyener et al. 2001). The RPE scale quantifies the perception 

of physical effort that one is exerting during exercise. Confirmation that the RIDE was 

performed in the moderate intensity domain was determined by maintaining their effort during 

the RIDE at an RPE of 11, a heart rate (HR) equal to, or below the combined mean estimated 

LT HR observed during the pre- and post-RAMP test, and a post-RIDE arterialised-capillary 

lactate of < 4 mM (Nicholson and Sleivert 2001, Pyne et al. 2001). Heart rate, distance, speed 

and time were recorded during the RIDE (Garmin FORERUNNER 310XT watch (Garmin, 

Kansa City, MO, USA)). Once completed, participants performed the identical RAMP and 3 

min all-out tests, separated by 15 min of inactivity.  

Food Intake. Breakfast and RIDE/SED food intake were recorded for both RIDE and CONT 

groups. Participants were instructed to consume their typical breakfast before a long duration 

exercise cycle whereas during the RIDE/SED period, participants were asked to consume their 

usual supplementary drinks (i.e. Gatorade) and snacks (i.e. Cliff Bar). Total grams of 

carbohydrates, proteins and fats were recorded for both breakfast and RIDE/SED food intake. 

Ramp Incremental (RAMP) Test. All participants were measured for appropriate seat height 

before testing (slight bend in knee at the six o’clock position of the leg). This configuration was 

used for all testing protocols. All participants completed a RAMP test to volitional fatigue on 

an electromagnetically braked cycle ergometer (Velotron Pro, Seattle, WA, USA). This test was 
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performed pre- and post-RIDE/SED. This test was administered to determine peak oxygen 

uptake (VO2peak), peak aerobic power, LT and associated VO2 and power outputs. The test 

began with four min of 20 W cycling after which the work rate was increased by 30 W*min-1 to 

volitional fatigue. The participants were instructed to pedal at 70 RPM with the Velotron 

ergometer in the RPM independent of power output mode. VO2 was measured breath-by-breath 

and VO2peak was determined by the average VO2 over the last 15 s of the test. The test ended 

when the subject was unable to maintain 60 RPM. These incremental test have been shown to 

give an accurate assessment of VO2max when performed by young, healthy cyclists that are used 

to pushing themselves to exhaustion (Chidnok et al. 2013; Poole & Jones 2017). The LT was 

estimated by visual inspection using standard gas exchange and ventilatory variables as 

previously described (Beaver et al. 1986). Briefly, LT was determined to be the VO2 at which 

CO2 output (VCO2) and ventilation (VE) began to increase out of proportion to VO2. This point 

was corroborated with the observation of an increase in end-tidal PO2 (PetO2), while the VE-to-

VCO2 ratio and end-tidal PCO2 (PetCO2) were unchanged. Two exercise physiologists with 

experience in identifying LT evaluated each dataset. If a discrepancy arose between the two 

investigators, a mean of the identified points was utilized.  

3 minute All-Out Test. Fifteen min after the RAMP test, all participants completed a 3 min all-

out test on the same electromagnetically braked cycle ergometer (Velotron Pro, Seattle, WA, 

USA). This test was used to determine anaerobic capacity (Wʹ) and critical power (CP) 

(Vanhatalo et al. 2007, Jones et al. 2010). Initially participants completed 40 s of 20 W cycling. 

At 35 s of this 20 W cycling period, participants were instructed to increase their RPM to over 

100. At 40 s participants began the maximal effort portion of this 3 min all-out test. The 

participants were directed to maintain a maximal effort for the 180 s duration of this test. 

Participants were not informed of the elapsed time to prevent pacing and verbal encouragement 



38 
 

was provided throughout the test. The cycle ergometer was set using the linear mode (linear 

factor = power/ cadence squared) during the 3 min all-out test. The cycle ergometer was set to a 

resistant torque factor equal to a work rate that was 50% of the difference between LT and 

VO2peak at 70 RPM for each subject as determined from the pre-RAMP test. This load setting 

was utilised for both the RIDE and CONT participants, pre- and post-RIDE/SED. The 

individual torque factors were calculated from Equation 1. 

Equation 1 

Torque factor= (Work Rate (watts) × 6.12)/ (body weight in kg × 4 meters × RPM) 

 Where RPM equals revolutions per minute. 

Equation 2 

Wʹ= (∑(PO-CP)/N) 

Where PO equals power output, CP equals critical power and N equals the number of 

time intervals. This average power output in watts was then converted to Joules (see 

equation 3). 

Equation 3 

J= W × s 

Where J equals Joules, W refers to the mean wattage above Wʹ and s is time in seconds 

of the test (180). 

VO2 was measured breath-by-breath, and power output was measured every 0.1 s for the 

entire 3 min duration. The highest sustainable work rate (CP) was determined to be the mean 

power output of the last 30 s of the test. Wʹ was calculated as the total work completed above 

the calculated CP (Vanhatalo et al. 2007, Jones et al. 2010).  

Long duration exercise cycle (RIDE). Participants were to cycle along a planned route that 

measured out to 89 km. The cyclists were instructed to familiarize themselves with the planned 
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route the day before testing and to maintain an RPE of 11/20 throughout the entire road cycle. 

The cyclists wore a Garmin FORERUNNER 310XT watch (Garmin, Kansa City, MO, USA) 

that continuously gathers and analyzes data from the heart rate monitor and GPS tracking 

system throughout the RIDE for each subject. On completion of the RIDE participants were 

instructed to stop the watch from recording any further information. The information was 

transmitted wirelessly from the watch to the computer and Garmin Connect software 

(Garmin.com) within 2 h of completion of the ride. At the conclusion of the RIDE participants 

were instructed to immediately enter the building in which the data collection lab was located 

and take the elevator to the appropriate floor. The post-testing protocols were initiated within 5 

min of the completion of the long duration exercise cycle.  

Data Collection. VO2 was measured breath-by-breath, similar to measurements previously 

described (Keir et al. 2014). Briefly, the inspired and expired flow rates were analyzed by a low 

dead space (90mL) bidirectional turbine (Alpha Technologies VMM 110). The turbine was 

calibrated before each test using a 3 L syringe. Inspired and expired gases were monitored at 

the mouth and analyzed for concentrations of O2, CO2 and N2 by a mass spectrometer 

(Innovision, Amis 2000, Lindvedvej, Denmark). Each subject wore a nose clip to cut off nasal 

airflow. The delay between volume and gas concentration was accounted for by measuring the 

time delay for a square wave bolus of gas to travel from the turbine transducers through a 

capillary line to the mass spectrometer for analysis. Flow volume data and gas concentration 

data were then transmitted to the lab computer. The lab computer built a profile of each breath 

by aligning the gas concentration information with the inspiratory and expiratory volume 

recordings. Breath-by-breath gas exchange was determined from the algorithms developed by 

Swanson (1980).  
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Power output from the RAMP test was recorded via the Velotron Coaching Software 

program (version 1.6.458 RacerMate, Inc., Seattle, WA, USA) and aligned by Powerlab 

software to designate a power output at each breath. Power output during the 3 min all-out test 

was also recorded by Velotron Wingate Software (version 1.0.2 RacerMate, Inc., Seattle, WA, 

USA) at 0.1 s intervals for the 180 s testing period. 

During testing heart rate (HR) was collected using a Polar Wearlink Chest Strap, H1 

Heart Rate Sensor and SP0180 Polar Transmitter (Polar Electro Inc., Lachine, QC, Canada) 

linked to a PowerLab Chart data collection system (v.7.3.1 ADInstruments Inc., Colorado, CO, 

USA) during both tests.  

Arterialised-capillary lactate concentration was measured 3 min before both RAMP and 

3 min all-out tests and 3 min after both tests. Arterialised-capillary blood was drawn using 

ACCU-CHEK Safe-T-Pro Plus sterile, single use lancing device and was measured by SensLab 

GmbH Lactate SCOUT arterialised-capillary lactate analyzer ([Lac-]; mM). Latex gloves were 

worn by the attending researcher. Prior to the use of the lancet, a rubbing alcohol swab was 

used to sterilize the finger volunteered by the participant for each test. 

Data Analysis. Breath-by-breath VO2 and VCO2 recordings from all tests were edited by the 

removal of aberrant data points lying outside of 4 standard deviations of the mean (Rossiter et 

al. 2000; Lamarra et al. 1987). The breath-by-breath VO2 and VCO2 data were then interpolated 

to 1 s intervals, then averaged into 5 s bins for the RAMP and 3 min all-out tests, to provide a 

single average time response for each participant.  

Heart rates at LT were recorded for each individual participant during the RAMP tests.  

Carbohydrate oxidation rates were determined by the following equation (see equation 

4) (Peronnet and Massicotte 1991, Bradley et al. 2012, Carey et al. 2001).  
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Equation 4  

The oxidation rate of carbohydrates = 4.585 × VCO2 L*min-1 – 3.226 × VO2 L*min-1 

Fat oxidation rates were determined by the following equation (see equation 5) 

(Peronnet and Massicotte 1991, Bradley et al. 2012, Carey et al. 2001).  

Equation 5 

The oxidation rate of fats = 1.695 × VO2 L*min-1 – 1.701 × VCO2 L*min-1  

Power output data were averaged to 5 s intervals for both RAMP and 3 min all-out tests 

for graphic presentation and analysis.  

Statistical Analysis. Statistical analyses were performed with Sigma Plot version 12.3 (Systat 

Software Inc., San Jose, CA). Statistical significance was accepted at an alpha level of 5%. 

Differences between pre- and post-RIDE/SED periods were compared to detect changes in 

VO2, VCO2 and power output over the duration of the tests. VO2, VCO2 and power output were 

analyzed using two way repeated measures ANOVA. Differences in pre- and post-arterialised-

capillary lactate concentrations, VO2peak, peak aerobic power, LT, max heart rate, heart rate at 

LT, peak power output, CP and Wʹ,  were compared using a paired t-test.  Carbohydrate, fat and 

protein intake were also compared between CONT and RIDE groups using one way ANOVA. 

Table data are presented as means ± SD, and bar graphs and scatter plots are presented as 

means. 

 



42 
 

 

Figure 1. Long duration exercise cycle route. Black arrows indicate direction of the route and 

Green arrows indicate the second loop each cyclist had to complete during the long duration 

exercise cycle.  

 

 

2.3 Results 

 

Subject Characteristics. The mean height, weight and age of the CONT group were 180 ± 8 cm, 

78 ± 7 kg, and 26 ± 4 y. Their absolute and relative VO2peak was 3.81 ±0.5 L*min-1, 48.6 ± 3.5 

ml*kg-1*min-1, respectively. The mean height, weight and age of the RIDE group were 181 ± 6 

cm, 76 ± 5 kg, and 28 ± 6 y respectively. Their absolute and relative VO2peak was 4.20 ± 0.5 

L*min-1, and 55.63 ± 4.4 ml*kg-1*min-1, respectively. There was no difference in absolute 

VO2peak between CONT and RIDE groups (P>0.05). The RIDE group was able to complete the 

long duration exercise cycle at an RPE of 11 on the 20 point scale. The mean HR at LT from 

both pre- and post-RAMP tests were not different from the mean HR during the long duration 

exercise cycle (140 ± 9 bpm, 140 ± 13 bpm, respectively; P>0.05).  

Loop 2 
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Long duration Cycle (RIDE). Average distance for the intervention was 89 ± 7 kilometers 

which took an average of 3.25 h ± 0.36 h to complete. The average heart rate and speed were 

140 ± 9 bpm and 27 ± 3 km/h respectively (Figure 1). 

Incremental Ramp Test. Peak aerobic power output and VO2peak decreased for the RIDE group 

pre- to post-RIDE (P<0.05), whereas no changes over the pre- to post-SED period were 

observed in the CONT group (P>0.05) (Table 1). The maximum heart rate attained during the 

RAMP test was unchanged pre- to post-RIDE/SED (P>0.05). VO2 at LT was unchanged in both 

the RIDE and CONT groups post-RIDE/SED period (P>0.05) (Table 1). The mean HR at LT, 

from both pre- and post-incremental tests, was compared to the mean HR over the course of the 

RIDE (140 ± 9 bpm and 140 ± 13 bpm respectively; P>0.05). The work rate at LT was lower in 

pre- to post-RIDE (P<0.05), whereas LT in the CONT was unchanged (Table 1). HR at LT was 

unchanged pre- to post- RIDE/SED period (p>0.05) (Table 1). There were no pre- to post-

differences within the CONT group’s resting RER, 1.00 ± 0.12, 0.95 ± 0.11 (P>0.05), however 

the resting RER of the RIDE group was significantly lower pre- to post-long duration exercise 

cycle, (0.95 ± 0.1, 0.85 ± 0.1, respectively (P<0.05)). There were no pre-post differences within 

the CONT group’s resting fat oxidation (0.00 ± 0.20 g*min-1, 0.05 ± 0.27 g*min-1 (P>0.05)), 

whereas resting fat oxidation within the RIDE group was significantly greater pre- to post-

RIDE (0.08 ± 0.15 g*min-1, 0.25 ± 0.18 g*min-1, respectively (P<0.05)). Fat oxidation rates 

during the RAMP test was not different pre- to post-SED period in the CONT group (Figure 2a) 

(P>0.05), whereas increased fat oxidation rates were observed in the RIDE group on the post-

RIDE RAMP (P<0.05) (Figure 2b). Carbohydrate oxidation rates during the RAMP test was 

not different pre- to post-SED period in the CONT group (Figure 3a) (P>0.05), whereas 

decreased carbohydrate oxidation rates were observed during the RAMP test post-RIDE (Figure 

3b) (P<0.05). Power outputs at 0.99 RER during the RAMP were higher pre- to post-RIDE 
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(P<0.05), whereas no changes were observed in the CONT (P>0.05) (Table 1). Arterialised-

capillary lactate concentrations were unchanged pre- to post-RAMP testing, post-SED period 

(P>0.05) (Figure 4a). Post-RIDE, arterialised-capillary lactate concentrations remained 

unchanged before both the pre- and post-RAMP tests, whereas decreases were observed after 

the post-RIDE RAMP (P<0.05) (Figure 4b). 

3 min All-Out Test. CP remained unchanged pre- to post-RIDE/SED (Table 1). Wʹ was also 

unchanged in the CONT group pre- to post-SED (Table 1; Figure 5a) whereas Wʹ was lower 

pre- to post-RIDE during the 3 min all-out test in the RIDE group (P<0.05) (Table 1; Figure 

5b). Furthermore, RER at CP was unchanged post-SED in the CONT group (Table 1), but was 

lower post-RIDE (P<0.05) (Table 1). Peak power was unaffected in both groups, pre- to post-

RIDE/SED period (P>0.05) (Table 1). VO2 over the duration of the test was also unchanged 

pre- to post- RIDE/SED period in both groups (Figure 6a & b). VCO2 over the duration of the 

test was unchanged pre- to post-SED period in CONT group (Figure 7a) (P>0.05), whereas 

VCO2 was lower pre- to post- RIDE (Figure 7b) (P<0.05). The maximum heart rate reached 

during the 3 min all-out test was also unchanged pre- to post-RIDE/SED period in both groups 

(P>0.05) (Table 1).  Arterialised-capillary lactate concentrations were unchanged for the CONT 

group pre- to post-SED 3 min all-out testing (P>0.05) (Figure 4a). However, arterialised-

capillary lactate concentrations were lower before and after the post-RIDE CP test (P<0.05) 

(Figure 4b). Food Log. Both groups consumed similar amounts of carbohydrates, proteins and 

fats for breakfast (P>0.05) (Table 2). However, protein intake was higher for the CONT group 

during the SED period versus the RIDE group during the long duration exercise cycle (18.6 ± 

4.0 grams vs. 11.2 ± 7.5 grams (P<0.05)), with carbohydrate and fat intake remaining the same 

(P>0.05) (Table 2). 
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Table 1.  Control and Experimental group, RAMP (incremental test) and 3 min all-out tests results, 

before and after (PRE to POST) sedentary period (SED) and long duration exercise cycle (RIDE). All 

values are presented as the group means with standard deviation (±). 

Variable Control PRE Control POST Significance Ride PRE Ride POST Significance 

Incremental Ramp Test 
      

Estimated Lactate Threshold (L/min) 2.27 ± 0.16 2.22 ± 0.16 P= 0.19 2.53 ± 0.43 2.46 ± 0.40 P= 0.48 

Estimated Lactate Threshold (watts) 187 ± 20 187 ± 21 P= 0.97 211 ± 34 197 ± 29 P= 0.01* 

Power Output at 0.99 RER (watts) 195 ± 40 190 ± 44 P= 0.30 266 ± 49 293 ± 26 P= 0.006* 

RER at CP Work Rate 1.08 ± 0.06 1.08 ± 0.07 P= 0.83 1.08 ± 0.08 1.03 ± 0.06 P= 0.01* 

Heart Rate at LT (bpm) 139 ± 7 144 ± 10 P= 0.09 138 ± 9 143 ± 9 P= 0.07 

Heart Rate Max (bpm) 176 ± 9 177 ± 10 P= 0.90 179 ± 11 177 ± 11 P= 0.29 

VO2max (L/min) 3.81 ± 0.5 3.76 ± 0.3 P= 0.62 4.20 ± 0.5 3.84 ± 0.4 P= 0.009* 

Peak Aerobic Power (watts) 356 ± 43 352 ± 44 P= 0.51 397 ± 32 366 ± 33 P=<0.001* 

3 min all-out Test 
      

Resting RER 0.82 ± 0.1 0.81 ± 0.05 P= 0.88 0.92 ± 0.25 0.87 ± 0.31 P= 0.23 

CP (watts) 243 ± 57 250 ± 51 P= 0.12 309 ± 34 306 ± 39 P= 0.77 

RER at CP 1.18 ± 0.05 1.17 ± 0.05 P= 0.28 1.15 ± 0.07 1.08 ± 0.07 P= 0.01* 

Peak Power (watts) 773 ± 167 777 ± 134 P= 0.92 693 ± 122 672 ± 104 P= 0.37 

Wʹ (Joules) 15080 ± 3530 13527 ± 4537 P= 0.10 9817 ± 4135 6353 ± 2600 P= 0.004* 

Heart Rate Max (bpm) 172 ± 8 174 ± 7 P= 0.06 165 ± 16 166 ± 17 P= 0.89 

 

(*) P<0.05; significant within group differences before and after (PRE and POST) SED or RIDE. 
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Figure 2. Mean fat oxidation (g*min-1) during incremental testing (RAMP). Open 

circles pre-long duration exercise cycle (RIDE); closed circles post-RIDE/Control 

group (CONT). a. CONT; pre-post-SED (n=7); b. RIDE; pre-post-RIDE (n=11). * 

P<0.05 significant differences before and after (PRE and POST). 
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Figure 3. Mean carbohydrate (CHO) oxidation (g*min-1) during incremental testing 

(RAMP). Open circles pre-long duration exercise cycle (RIDE); closed circles post-

RIDE/Control group (CONT). a. CONT; pre-post-SED (n=7); b. RIDE; pre-post-RIDE 

(n=11). * P<0.05 significant differences before and after (PRE and POST). 
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Figure 4. Mean ± SD arterialised-capillary lactate concentrations (mM). Open bars pre-

long duration exercise cycle (RIDE)/ Sedentary period (CONT), and black bars post- 

RIDE/CONT. a. CONT; pre-post-SED (n=7); b. RIDE; pre- to post-RIDE (n=12). 
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Figure 5. Mean power output during 3 min all-out testing. Open circles pre-long 

duration exercise cycle (RIDE); closed circles post-RIDE/Control group (CONT). a. 

CONT; pre-post- SED (n=7); b. RIDE; pre-post-RIDE (n=12). * P<0.05 significant 

differences before and after (PRE and POST). 
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Figure 6. Mean Oxygen consumption (VO2) L*min-1 during 3 min all-out test. Open 

circles pre-long duration exercise cycle (RIDE); closed circles post-RIDE/Control group 

(CONT). a. CONT; pre-post-SED (n=6); b. RIDE; pre-post-RIDE (n=12). * P<0.05 

significant differences before and after (PRE and POST). 
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Figure 7. Mean carbon dioxide production (VCO2) L*min-1 during 3 min all-out 

testing. Open circles pre-long duration exercise cycle (RIDE); closed circles post-

RIDE/Control group (CONT). a. CONT; pre-post-SED (n=6); b. RIDE; pre-post-RIDE 

(n=12). * P<0.05 significant differences before and after (PRE and POST). 
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Table 2. Control and Ride group dietary mean and standard 

deviation, breakfast and long duration exercise cycle 

(RIDE)/sedentary (SED) period. 

Breakfast Control Ride Significance 

Carbohydrates (grams) 65.8 ± 58.7 53.7 ± 58.7 P>0.05 

Proteins (grams) 19.5 ± 12.0 12.7 ± 8.8 P>0.05 

Fats (grams) 15.7 ± 15.5 7.6 ± 6.1 P>0.05 

Ride/Rest Control Ride Significance 

Carbohydrates (grams) 154.2 ± 28.5 131.7 ± 70.7 P>0.05 

Proteins (grams) 18.6 ± 4.0 11.2 ± 7.5 P<0.05* 

Fats (grams) 10.4 ± 2.2 8.8 ± 7.4 P>0.05 
 

                         (*) P<0.05. 
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2.4 Discussion 

In the present study, the effects of a long duration cycle (~3 h) (RIDE) and a 3 h 

sedentary period (SED) on, VO2, VCO2, substrate utilization, peak power, aerobic power, critical 

power (CP) and anaerobic capacity (Wʹ) were observed in cyclists and recreationally active 

individuals (CONT). It was hypothesized that 1) the fat oxidation profile during the RAMP test 

in both the RIDE and CONT group would not be dissimilar to the inverted U shape profiles 

observed in constant load exercise, 2) the rate of energy production from oxidative 

phosphorylation of fats up to and including CP intensities, would increase during the RAMP test 

post-long duration exercise and, 3) Wʹ would be reduced post-long duration exercise as a result 

of glycogen depletion, with no changes in CP during the 3 min all-out test.  

The major findings, resulted in both the RIDE and CONT group showing a similar 

inverted U shaped profile with increasing exercise intensity and showed an increase in fat 

utilisation up to and including CP during the ramp incremental test pre- to post-RIDE as well. 

Reductions in VO2peak, peak aerobic power and Wʹ (4.20 ± 0.5 L*min-1 vs. 3.84 ± 0.4 L*min-1; 

397 ± 32 W vs. 366 ± 33 W; (P<0.05) respectively), were observed post-RIDE, whereas CP 

remained unchanged (309 ± 34 W vs. 306 ± 39 W; (P>0.05)). No changes in any of these 

variables were observed in the CONT group pre- to post-SED.  

Evidence that the RIDE in the present study was performed at or below the estimated 

lactate threshold (LT), was established from the unchanged mean arterialised-capillary lactate 

concentration of  < 4 mM pre- to post-RIDE (pre-RIDE 2.45 mM and post-RIDE 2.96 mM; 

P>0.05), a sustained RPE of 11/20 (light effort) during the RIDE, and a mean heart rate (HR) 

during the RIDE that was similar to the mean HR at LT from both the pre- and post-RAMP  

(RIDE HR - 140 ± 9 bpm and RAMP LT HR 140 ± 13; P>0.05).   
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A mean arterialised-capillary lactate concentration of 4 mM within a population has been 

established as the power output and/or VO2 at which the onset of blood lactate accumulation 

occurs (Nicholson and Sleivert 2001, Pyne et al. 2001). Moreover, an RPE of 11, on the 20 point 

RPE scale during exercise has been demarcated as moderate intensity exercise (Scherr et al. 

2013) and moderate intensity exercise has been defined as a power output performed below LT 

(Ozyener et al. 2001).  

 As per previous research, the fat oxidation rates derived from the constant load, steady 

state, 20 W four min baseline exercise, increased pre- to post-RIDE (pre-0.08 ± 0.15 g*min-1 vs. 

post-0.25 ± 0.18 g*min-1;) (Bradley et al. 2012; Carey et al. 2001; Watt et al. 2003). As work rate 

increased during both pre- and post-RIDE/SED RAMP tests, fat oxidation rates increased in a 

parabolic fashion with work rate (Figure 2a & b). This inverted U shaped profile of fat oxidation 

rates has been observed previously by van Loon et al. (2001), during constant load exercise, 30 

min in duration, at power outputs equivalent to 40%, 55% and 75% of peak aerobic power (418 

W at a VO2max of 5.4 L*min-1) in very well trained cyclists. The calculated post-RIDE fat 

oxidation rates observed by van Loon et al. (2001) (0.68 g*min-1, 0.80 g*min-1 and 0.51 g*min-1 

respectively) at the aforementioned intensities, were observed in the present study below and 

above the estimated LT at intensities equivalent to 31%, 40% and 66% of VO2peak. The similar 

fat oxidation rates at the higher power outputs observed in the van Loon et al. (2001) research, 

compared to the RIDE group of the present study, required a greater contribution from 

carbohydrates (1.44 g*min-1; 2.04 g*min-1; and 3.90 g*min-1 compared to 0.49 g*min-1; 0.42 

g*min-1; and 2.4 g*min-1 respectively (Figure 3b)). This is not unexpected as the 30 min constant 

load power outputs were performed at greater relative intensities of peak aerobic power in the 

van Loon et al. (2001) study and would require a greater contribution from carbohydrates. This 
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inverted U shaped fat oxidation rate profile with increasing intensities, below and above LT has 

also been observed by Achten and Jeukendrup (2004).  

As was hypothesised, the greater post-RIDE versus pre-RIDE fat oxidation rates 

continued to be observed up to and including CP (Table 1; Figure 2b). This would be predicted 

as the predominant recruitment of Type 1 fibres to perform CP (Vanhatalo et al. 2016), which 

would entail increased fat utilisation post-RIDE.  The RIDE group also exhibited the anticipated 

greater fat oxidation rates compared to the recreationally active individuals in the CONT 

(Coggan et al. 1990; Coggan et al. 1993; Hurley et al. 1986) during both pre- and post-

RIDE/SED on the RAMP tests.     

VO2 at LT remained the same post-RIDE, whereas power output at LT decreased (Table 

1). This suggests that the reduced power output at a similar VO2 was a function of the reduced 

work efficiency per litre of O2 that is associated with oxidative phosphorylation of fats (23 mol 

of O2 per fatty acid molecule) compared to that of oxidative phosphorylation of CHO (6 mol of 

O2 per glucose molecule) (Sabapathy et al. 2006). The VO2 at LT and power output pre- to post-

SED in the CONT group was unchanged (Table 1). 

Previous endurance training studies have suggested that the decrease in arterialised-

capillary lactate accumulation post-exercise, similar to that observed after the post-RAMP and 3 

min all-out tests of the RIDE group in the present study (Figure 4b), reflects a reduction in 

substrate level phosphorylation. This reduction in the present study may have resulted from the 

reduced sympathetic nervous system (SNS) stimulation linked to decreased blood epinephrine 

concentrations (<SNS activity) (Brooks and Mercier 1994; Gold et al. 1963; Lehmann et al. 

1981) that perhaps would have transpired during the RIDE, which has been associated with 

increased oxidative phosphorylation of fats and reduced Type II fibre recruitment (Brooks and 
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Mercier 1994; Deuster et al. 1989; Bloom et al. 1976; Mora-Rodriguez and Coyle 2000; 

Lehmann and Keul 1986; Jubrias et al. 2003). That being said, it is more probable that glycogen 

depletion and the consequent reduction of substrate for substrate level phosphorylation 

contribution in individual Type II fibres (Vollestad et al. 1985; Shulman and Rotham 2001) 

during the latter stages of the RAMP and the 3 min all-out tests is the culprit.  

It is suggested that the observed reduction in VO2peak and peak aerobic power, post-RIDE, 

is a result of decreased O2 delivery from the evolving cardiovascular drift that transpired over the 

RIDE. This phenomenon of cardiovascular drift has been ascribed to reduced cardiac stroke 

volume that decreases cardiac output at a given heart rate as a consequence of long duration 

exercise (Bassett and Howley 2000; Gonzalez-Alonso and Calbet 2003). The unchanged peak 

heart rates, and decreased VO2 pre- to post-RIDE on the RAMP suggests CV occurred (Table 1), 

Using the standard O2 cost of work (10mls*min-1*W-1) (Hansen et al. 1987; Barstow and Mole 

1991) this reduction in O2 delivery would be sufficient to explain the observed reduction in peak 

aerobic power post-RIDE. In comparison, no change in VO2peak, peak aerobic power, or 

maximum heart rate were observed in the CONT pre- to post-SED period (Table 1).  

Wʹ was lower post-RIDE (Table 1; Figure 5b). A similar reduction in Wʹ has been 

demonstrated in previous studies after performing work rates in the severe intensity domain 

(Simpson et al. 2012; Vanhatalo and Jones 2009). These authors proposed that the decline in Wʹ 

was a function of the reduced power output linked to Type II muscle fibre fatigue associated with 

glycogen depletion (Vollestad et al. 1985). A decrease in muscle glycogen has also been 

observed by Thomson et al. (1979) (70% reduction in Type IIa and a 30% reduction in Type IIx 

fibres) utilizing a comparable, although shorter, long duration moderate intensity exercise model  

compared to the present study (120 min at 60% VO2max vs. ~195 min at 62%VO2peak 
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respectively). An expected reduction of muscle glycogen post-RIDE in the present study would 

include glycogen depletion in select Type IIa/x fibres (Vollestad et al. 1985). This would result 

in a reduction in substrate level phosphorylation and associated power output from those 

glycogen depleted fibers (Vollestad et al. 1985). Moreover, the reduced arterialised-capillary 

lactate concentration observed after the post-RIDE RAMP and 3 min all-out tests, that originates 

from substrate level phosphorylation at power outputs > LT, also intimates glycogen depletion in 

some in Type II fibres (Genovely and Stamford 1982) (Figure 4b). Finally, the lower VCO2 post-

RIDE during the 3 min all-out test (Figure 7b from the same test, also suggests decreased 

substrate level phosphorylation (Tesch 1978; Karlsson et al. 1981). This reduced substrate level 

phosphorylation contribution would reduce substrate (H+) for the carbonic anhydrase reaction 

and manifest the observed decrease in VCO2 coupled to ventilatory buffering (Jones, 1980).  

 No change in Wʹ was observed in the CONT group post-SED period (Figure 5a). This 

implies that any glycogen depletion that may have occurred from the RAMP and/or the 3 min 

all-out tests was not great enough to elicit a drop in Wʹ (Vandenberghe et al. 1995; Jenkins et al. 

1994). Furthermore, the unchanged arterialised-capillary lactate concentration observed post-

SED period, before and after the RAMP and 3 min all-out tests (Figure 4a) also suggests that the 

3 h SED period did not change the substrate level phosphorylation contribution to these 

performances. If there was a significant decrease in muscle glycogen after the pre-tests the return 

of glycogen back to pre-testing levels during the SED period may have been accelerated by the 

greater protein content ingested by the CONT (Table 2). A carbohydrate and protein mixture has 

been linked to faster glycogen repletion rates in the immediate hours post exercise than a high 

carbohydrate diet (Karp et al. 2006; Ivy et al. 2002). 
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As hypothesised, the maintenance of CP during the last 30 s of the 3 min all-out test 

during both CONT and RIDE groups was observed (Simpson et al. 2012; Sargeant 1994; 

Vanhatalo et al. 2016). CP has been attributed to the exclusive recruitment of fatigue resistant 

Type I fibres (Vanhatalo et al. 2016). It is plausible that any reduction in oxidative 

phosphorylation from glycogen depletion in the Type I fibres may have been replaced by 

observed increased oxidative phosphorylation from fats at this power output (Metcalfe et al. 

2015; Conley et al. 2001; Torrens et al. 2016; Vanhatalo et al. 2016).   

Lastly, peak power outputs (0-10 s) during the 3 min all-out test remained unchanged 

post-RIDE (Table 1). This suggests that the ATP-PCr system was unaffected by the long 

duration exercise cycle (Gastin 2001; Vanhatalo and Jones 2009). Previous research focusing on 

the consequential effects of prolonged cycling exercise bout (2-5 h), observed reductions in a 

related measure of peak force production, maximal voluntary contractions (MVC) (Lepers et al. 

2000; Lepers et al. 2002). It was suggested that the reductions were associated with increased 

muscle compound action potential durations (M-wave) and reduced isometric twitch force 

suggested to be accompanied by increases in H+, Pi and/or a decrease in the sarcoplasmic 

reticulum release and uptake of Ca2+ (Metzger and Moss 1990; Lepers et al. 2000; Lepers et al. 

2002). The maintenance of the peak power output observed in the present study, despite a 

substantially longer duration exercise, could be attributed to the lower intensity, and 

subsequently reduced accumulation of fatigue related metabolites (Urhausen et al. 1995), as 

exhibited by the lower heart rate and RPE recorded (141 bpm and RPE 11 vs 161 bpm and RPE 

19 (Lepers et al. 2002)) during the RIDE, compared to this earlier research. The performance of 

this lower intensity in the present study would blunt the increases in H+, Pi and/or decrease the 

sarcoplasmic reticulum release and uptake of Ca2+ that has been observed to induce reductions in 
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peak power output post-long duration exercise  (Lepers et al. 2000, Lepers et al. 2002).  

Alternatively, pedaling motions on a bike resemble isotonic contractions, suggesting that the 

results in the present study are similar to the speeded rates of recovery of isotonic power (within 

5 min) compared to isometric MVC after fatiguing contractions that have been observed 

elsewhere (Cheng and Rice 2005).  

In summary, 1)  an inverted U shaped profile of fat oxidation was observed in both the 

CONT and RIDE groups during incremental exercise, 2) critical power remained unchanged pre- 

to post- long duration cycle whereas fat oxidation rates increased at power outputs ≤ critical 

power during incremental exercise, and 3) the decreased Wʹ, and lower arterialised-capillary 

lactate concentrations post- long duration cycle , after both incremental and 3 min all-out tests, 

suggests diminished substrate level phosphorylation associated with depleted glycogen stores.  

This study has demonstrated that over a simulated stage race, substantial changes in 

substrate oxidation and performance will evolve over the duration of the stage. The novel finding 

that CP was unchanged post-long duration exercise suggests that CP can be used as a key 

parameter to devise pacing strategies and tactics to outpace opposing cyclists during the final 

stages of the race. This advocates that a cyclist with a high CP and low Wʹ relative to other 

cyclists, should attempt to distance themselves from the peloton with 5-10 k remaining to 

capitalise on their unchanged CP and the reduced W´ of the sprinters , whereas a cyclist with a 

low CP and a high Wʹ relative to other cyclists, would attempt to  keep the pace of the race at a 

lower speed and shutting down any attempts from cyclists with high critical (read time trialling 

abilities) and use their relatively greater Wʹ near the finish line to outpace the opposing cyclists 

(Jones et al. 2010, Vanhatalo et al. 2011).  
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Chapter 3 
 

3.0 Limitations and Future Directions 

 

  In the present study, the changes to CP performance were only observed for the last 30 s 

of the 3 min all-out test, which does not provide evidence of the extended sustainability of CP 

performance at the end of a race. To fully understand the effects of a prolonged exercise bout on 

CP performance, a protocol designed to observe CP at an extended duration would need to be 

elicited.  Moreover, leading up to the testing day, no measure of nutritional intake was collected 

for each individual. Therefore, individuals utilizing a high CHO diet prior to the study could 
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have resulted in greater stored muscle glycogen, affecting performance capacity and substrate 

utilization contributions (Lambert et al. 2001; Rauch et al. 1995), post-long duration exercise 

cycle/SED period data. Furthermore, diet was not standardized on the day of testing, as subjects 

were instructed to consume breakfast meals that would be their regular food intake prior to a 

competitive race. This allowed cyclists to consume a variety of food choices, resulting in 

different macronutrient and micronutrient intake for each cyclist. Diet during the long duration 

exercise cycle was also not standardized, as cyclists were instructed to consume their normal 

snack intakes during a long cycle. This also allowed the cyclists freedom to choose a variety of 

differing food sources, which also resulted in different nutritional intakes for each individual. 

Both the breakfast meals and snack intakes during the long duration cycle ride could affect 

performance and substrate utilization (Lambert et al. 2001; Rauch et al. 1995). 

For future studies, muscle biopsies could be utilized before and after the long duration 

exercise cycle to measure glycogen content of the vastus lateralis, providing a better measure of 

glycogen depletion associated with the decrements in the performance observed post-long 

duration exercise cycle. In addition, observing changes in proteins and enzymes that regulate fat 

metabolism such as vascular endothelial growth factor B (VEGF-B) and fatty acid binding 

proteins (FABP) obtained from tissue samples through muscle biopsies of the vastus lateralis 

could provide further insight in substrate utilization changes observed post-long duration 

exercise cycle (Bradley et al. 2012; Watt et al. 2003; Hagberg et al. 2010; Hagberg et al. 2013; 

Liang and Ward 2006; Holloway et al. 2008). Moreover, blood work measures of epinephrine 

(Gold et al. 1963; Lehmann et al. 1981) and plasma fatty acid concentrations (Coggan et al. 

1993; Romijn et al. 1993) could provide further information in the association between 

sympathetic nervous system activity and fat oxidation. Lastly, by performing an identical 
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experiment on female participants gender related differences in substrate utilization, muscle 

deoxygenation and performance post-long duration exercise cycle could be investigated (Murias 

et al. 2013; Horton et al. 1998). 
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Appendix B: Letter of Information and Consent Forms 

 

LETTER OF INFORMATION:  

Study Title: The necessity of long duration training sessions for maximal aerobic 

adaptations: The acute responses of energy system contributions, lactate threshold 

and regional blood flow distribution to maximal performance before and after a 3 

hour training session.  

Principal Investigator: Glen Belfry PhD Co-investigators – Michael Bitel 

Introduction and Background  

In such sports as swimming, rowing and road race cycling it is believed, by 

coaches, that long training sessions (2-6hrs) of moderate intensity work must be 

performed for 20-30 hours a week, for a number of months, for a number of 

years to be successful. The physiology of these long training sessions is not well 

understood. This study will attempt to discover the benefits to these long 

duration exercise sessions. 

 Purpose of Study:  

You are being invited to participate in a study that examines the effects of a 3 

hour exercise session on several physiological variables because you are a well 

trained member of the London Cycling Community that has been riding for at 

least 3 years. Participation in this study involves 2 visits to the laboratory of the 

Canadian Centre for Activity and Aging on the same day requiring less than 45 

minutes. Canadian Centre for Activity and Aging Laboratory is located in the 
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Arthur and Sonia Labatt Health Sciences Building, at The University of Western 

Ontario in London, Ontario, Canada. A total of 10 healthy males will be invited to 

participate in this study. In order to participate you must be between 18-41 years 

of age. You will not be able to participate in the study if you have been diagnosed 

previously with any respiratory, cardiovascular, metabolic, neurological or 

musculoskeletal disease; or you are currently on medication; or you are a smoker; 

or you respond to the exercise protocol in an irregular manner or cannot tolerate 

the exercise or exercise training protocol.  

What you will be required to do if you decide to participate in this study: During 

the first visit to the laboratory you will complete a two cycling tests. The first test 

will begin with the exercise intensity being very light and easy (very little 

resistance). After a few minutes the exercise intensity will gradually and 

continuously increase until you are unable to continue because of fatigue, or until 

you wish to stop. Following this the work rate will be reduced for 10 minutes to 

mild exercise and then a maximal three minute effort will be performed. This visit 

will last approximately 45 min. The second visit will be after you have completed 

the 3 hour moderate intensity exercise session as part of your regular exercise 

regimen. You will then come complete the identical two tests that you have 

performed before your ride. During both testing periods information will be 

collected based on your breathing and the amount of oxygen in your thigh 

muscle. After each test we will take your blood lactate concentration via standard 

finger prick apparatus. We will analyze your blood lactate levels by a portable 

lactate analyzer (Lactate Scout from Lactate.com). Your blood lactate 

concentration will enable us to determine the anaerobic energy involvement after 

the two cycling tests.  

Breathing apparatus: During each of the exercise tests you will be required 

to wear a nose-clip (to prevent you from breathing through your nose) and a 

rubber mouthpiece (similar to breathing through a snorkel or diving mask). These 

will be washed and sterilized between users. This will enable us to measure the 

the volume of air that you breathe in and out, and measure the gas concentration 
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in that air. You may experience some initial discomfort from wearing the nose-clip 

and mouthpiece.  

Thigh measurements: During the 3 minute and incremental cycling tests 

the relative oxygenation of the outside of your thigh muscles will be measured 

using near-infrared spectroscopy. This technique involves projecting light into 

your thigh and measures the amount of light coming out at another location. Two 

plastic probes will be attached to your leg approximately midway between your 

hip and knee. The probes will be secured with tape, covered to prevent other light 

from entering or leaving the area, and bound with elastic bandage to minimize 

movement of the probes. You may experience a bit of discomfort by having the 

probes secured to your leg during the exercise period.  

Finger prick: After both of the incremental and 3 minute tests a pin prick 

will be administered to your left middle finger and a drop of blood will be used to 

observe the muscle by-products (lactic acid) of high intensity exercise.  

Possible Risks and Discomforts: Any exercise carries a slight risk of heart 

attack or may be uncomfortable if you are unfit or not used to exercise. The risk, 

as stated by American College of Sports Medicine, is 6 in 10,000 for adverse 

outcome in people at higher risk – these risks would be much lower in healthy 

young adult athletes, who have no signs or symptoms, that would cause one to 

avoid exercise.  

There may be discomfort during the exercise testing. You may experience 

increased awareness of breathing, muscle pain and/or fatigue, increased 

sweating, or a general feeling of fatigue or nausea, all of which are not 

unexpected consequences of exercise.  

Potential Benefits of Participation: This is a basic physiology study and, as such, 

there will be no direct benefits received as a consequence of participating in the 

study. However, due to the nature of the exercise training there may be some 
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beneficial cardiovascular adaptations (increased fitness); however these may be 

only temporary and disappear within a few weeks of the completion of the study. 

If you are interested, the rationale for conducting the research and theory and 

significance of each of the tests will be explained, as will your individual results 

from each of the tests. You will also have the opportunity to learn about and 

better understand your physiological response to these exercise situations.  

Other Pertinent Information:  You are encouraged to ask questions regarding the 

purpose of the study, specific measures or outcomes of your exercise tests, or 

overall findings and conclusions from this research study. 

Pirvacy and Confidentiality Procedures: Data are stored for the duration of the 

study and then will be deleted or shredded.  Your records are listed according to 

an identification number rather than by your name. We will ask permission to 

store your de-identified study data in the Centre for Activity and Aging database 

for future research. Data collected in this database will be stored indefinitely. You 

do not have to agree to have your information stored in this database in order to 

participate in this study.   Published reports resulting from this study will not 

identify you by name. Representatives of the University of Western Ontario 

Health Sciences Research Ethics Board may contact you or require access to your 

study-related records to monitor the conduct of this research.  

Voluntary Participation: Participation in the study is voluntary. You may refuse to 

participate, refuse to answer any questions and withdraw from the study at any 

time with no effect on your academic or employment status. You will be given a 

copy of this letter of information and signed consent form. You do not waive any 

legal rights by signing the consent form. If you have any questions regarding this 

study please contact Glen Belfry or Thinisia Thiruchelvam, The University of 

Western Ontario, London. If you have any questions about the conduct of this 

study or your rights as a research participant you may contact the Office of 

Research Ethics, The University of Western Ontario. 
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Consent Form 

 Study Title: The necessity of long duration training sessions for maximal aerobic 

adaptations: The acute responses of energy system contributions, lactate 

threshold, and regional blood flow distribution to maximal performance before 

and after a 3 hour training session. 

 Principal investigator: Dr Glen Belfry PhD Co-investigator 

I have read the Letter of Information and have had the nature of the study 

explained to me and I agree to participate. All questions have been answered to 

my satisfaction. 

Participant Name (please print): ____________________________  

 Signature ________________________  

Date 

 Investigator (Person Responsible for Obtaining Informed Consent): 

____________________________ ___________________________  

Name (please print) ____________________________  

Signature ________________________ Date: Initials of participant__________ 
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Appendix C: Borg’s Rate of Perceived Exertion (RPE) Scale 
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