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Abstract 

Recent studies have linked neuropsychiatric disorders to older parents. These disorders often 

include changes in social behaviours like the social spacing between neighbouring 

individuals, which can be modeled in organisms such as Drosophila melanogaster. I 

investigated the effects of aging on the social space between neighbouring D. melanogaster 

and how aging impacts the next generation. To achieve this, I used the social space assay and 

found that individuals become less social with age and that this effect is passed on to the first 

generation only. Additionally, accelerating the physiological process of aging via increased 

rearing temperatures or exposure to oxidative stress resulted in individuals and their progeny 

that were less social. Finally, I found that only male progeny of old fathers were less social. 

Although it is unclear how aging affects gametes leading to changes in social behaviours, the 

powerful model system of Drosophila will allow us to identify the underlying mechanisms. 
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Chapter 1 – Literature Review 

Overview 

In this thesis, I explore how aging affects the social behaviour of Drosophila 

melanogaster and its progeny. It is known that some behaviours, including social 

behaviour, changes with aging. However, certain social behaviours such as the social 

spacing between individuals have not been yet been investigated. My question is: how 

does social spacing change with aging and can this effect be passed on to the next 

generation? This question is especially important as certain neuropsychiatric disorders 

like autism and schizophrenia, which each have a social component, have been linked to 

older parents. To better understand the context and significance of this work, I first 

review the basic definition of aging and several theories that attempt to explain how and 

why aging occurs. I then define social behaviour, the evolution of behaviour in groups, 

and how we can assess social behaviours in the lab. I connect these two concepts by 

discussing how social behaviours may change with age and how this effect may be 

transmitted to the next generation. Finally, I discuss the model organism, Drosophila 

melanogaster, and explain how Drosophila can be used to study social behaviour and 

aging due to its biological similarity and relevance to humans.  

 

1 Introduction to Aging and Social Behaviour  

1.1 Aging 

1.1.1 Aging And Senescence 

In this section, I provide basic definitions for the concepts of aging, longevity, and 

cellular senescence and explain the differences between these occasionally overlapping 

ideas. Aging is an almost universal phenomenon for living organisms, although studying 

aging in the wild is difficult because of environmental factors like starvation, drought, 

and predation (Bowles, 1998). In its broadest definition, aging describes any change in an 
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organism over time following development (Austad, 2004). A more narrowed definition 

of aging is the progressive deterioration of physiological function and fertility 

accompanied by an increased susceptibility to death (Hayflick, 1998; Kirkwood and 

Austad, 2000). Some have more strictly defined aging as the increase in molecular 

disorder after reproduction, which might not be determined by the genome alone 

(Hayflick, 1998). This increase in molecular disorder is thought to be due to excess 

energy reserves following reproduction that are unable to be replenished at the same rate 

as prior to reproductive maturity and therefore molecular disorder ensues (Hayflick, 

1998).  

 

Longevity is the length of time an organism can live, and as suggested by Leonard 

Hayflick, is distinguished from aging because longevity is influenced or is indirectly 

linked to the genome, whereas aging is not (Hayflick, 1998). Hayflick argues that 

throughout evolution, organisms have developed better avoidance techniques to evade 

predators, which was accompanied by the expansion of energy reserves to be used in case 

of emergency for wound healing, disease survival, and as a heightened response to 

sensory information. A greater reserve of physiological capacity (energy) results in a 

higher chance for organismal survival and successful reproduction. Following 

reproduction, any excess of this physiological capacity may be used towards increased 

longevity. This capacity to live after reproduction is known as longevity determination. 

Therefore, genes that enable the organism to maintain these reserves and reach sexual 

maturity to reproduce have the potential for longevity. Because these reserves do not 

replenish, molecular disorder can still occur and thus lead to a progressive decline in 

physiological function.  

 

Chronological aging is defined as the number of years an organism has lived and is 

mostly determined by heritable genes (Iliadi et al., 2012). Biological aging, however, is 

influenced by both genetic and environmental factors and is sometimes referred to as 

biological senescence, or simply senescence (Iliadi et al., 2012). Senescence may be 

genetically programmed to either limit cell population growth or increase population 

turnover following reproduction to allow faster adaptation to the environment (Kirkwood 
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and Austad, 2000). Evolutionary theorists state that senescence is actually a consequence 

of a decline in natural selection for genes acting in later life. Kern et al (2001) expanded 

this idea and thought that older parents who have begun to senesce should therefore have 

children that are less viable. They showed that older Drosophila melanogaster had a 

reduction in overall egg-to-adult viability (how many adults survive compared to the 

number of eggs laid) (Kern et al., 2001). From this we can also include the quality of the 

offspring into definitions of senescence as this captures the impact of the tradeoff 

between aging and reproduction.  

 

Cellular senescence is different from aging, as senescence refers to a state in which cells 

will be following a certain sequence of events, such as a chemical or morphological 

change (Dröge, 2002). These changes can be due to oxidative stress, repeated replication 

events that shorten telomeres (replicative senescence), double stranded breaks, and 

improper repair (Lou and Chen, 2006). Each of these cellular changes contributes to the 

aged phenotype as they result in a decline in cells’ ability to divide or perform other 

normal functions (van Deursen, 2014). Senescence is due to an accumulation of cellular 

damage due to factors such as telomere erosion, DNA lesions, activated oncogenes, and 

increased heterochromatic DNA (van Deursen, 2014; De Loof, 2011). Some have also 

suggested that senescence is mainly due to reactive oxygen species (ROS) damage. 

However there is some critique of this as the overexpression of antioxidant enzymes in 

several model organisms has not been able to ameliorate the effects of ROS damage 

(Back et al., 2010; Doonan et al., 2008).  

 

1.1.2 Theories Of Aging: Evolutionary And Oxidative Stress 

Several theories aim to explain why and how aging occurs. Here, I discuss several 

evolutionary theories that explain aging over a longer time scale and other theories that 

focus on the genome or molecular events within the cell (Table 1-1). It is important to 

understand the evolutionary theories, which may not be mutually exclusive, before the 

cellular theories, as they shed light on how aging evolved as a result of damage, error, or 
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small changes over time. Alternatively, the oxidative stress theory may explain how an 

individual will develop a visible aged phenotype. 

Table 1-1 Several theories of aging attempt to explain how or why aging occurs. 

Type of 
Theory 

Name of 
Theory Description Reference 

Evolutionary 

Antagonistic 
Pleiotropy 
 

Genes that are involved in development and early 
reproduction are pleiotropic and can become 
detrimental later in life (Williams, 1957) 

Mutation 
Accumulation  

Genes are beneficial in early life and possibly 
detrimental later, although these would be 
selected for during reproductive years  (Medawar, 1952)  

Programmed 
Death 

There is an overall benefit to the group to remove 
older individuals to make resources for the 
collective group more available  

(Weismann, 
1882) 

Error/Damage 
(Stochastic 
Theories) 

Disposable 
Soma  Wear and tear of the soma over time at the 

expense of healthy gametes in early life  
 (Kirkwood, 
1977) 

Wear and Tear  
Normal damage accumulates over time that will 
lead to an aged phenotype  (originally also 
proposed by August Weismann) (Medawar, 1946)  

ROS 
accumulation 

Oxidative 
Stress Theory 

Reactive oxygen species are detrimental to the 
individual and may lead to wear and tear of the 
soma (Harman, 1956)  

Mitochondrial 
Theory 

Revision of the oxidative stress theory: 
mitochondrial DNA is vulnerable to ROS as they 
are the site of respiration  (Harman, 1972) 

Reliability theories 
  

Aging results from an accumulation of very small 
defects  

(Gavrilov and 
Gavrilova, 2001) 

Telomere Hayflick Limit 
Theory 

Each cell has a defined replication point based on 
telomere length, at which point cells will become 
senescent (Hayflick, 1998) 

1.1.2.1 Antagonistic Pleiotropy Theory 

The antagonistic pleiotropy theory of aging that was originally developed by George C. 

Williams states that many genes involved in development are also involved in the aging 

process (Williams, 1957). Therefore, aging is a timed mechanism and is not the result of 

decay. The timed mechanism is due to beneficial genes that are involved in early life 

processes like reproduction that have a pleiotropic function and become damaging in later 

life (Gavrilov and Gavrilova, 2002; Partridge and Gems, 2006). One caveat of this 

mechanism is that these pleiotropic genes that are harmful later in life cannot be selected 

against as the detrimental effects will only be phenotypically visible following 

reproduction (Kaplan and Robson, 2009). 
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Tradeoffs between longevity and reproduction have often been studied to determine if 

there is a direct link between reproduction and longevity. In male Drosophila 

melanogaster, decreases in sexual activity have been shown to lead to extensions in 

longevity (Partridge and Farquhar, 1981). As seen in female Drosophila subobscura, 

increased egg production can accelerate aging (Maynard-Smith, 1958). Mating and egg 

production are stressful for the female and can impact longevity. Therefore, antagonistic 

pleiotropy theory states that if the factors that increase egg production are absent, females 

will not lay eggs and will have increased longevity. It has even been suggested that if 

predation and starvation in the wild are eliminated, thus removing the main barrier to 

aging in the wild, animals will still not age to the lengths we have seen in humans as 

reproduction will be strongly selected for (Halle et al., 2015). Indeed, in order for wild 

animals to age (without the “interventions” we have available to us today), they will need 

to invest great amounts of energy into generating an efficient repair system, which is far 

more costly than reproduction (Hayflick, 1998). The cost of reproduction may also be 

due to generating germ cells, as seen in Drosophila melanogaster females who have an 

increased lifespan when they are unable to generate germ cells (Barnes et al., 2006).  

1.1.2.2 Mutation Accumulation Theory 

One alternate evolutionary theory of aging is called the mutation accumulation theory and 

was originally introduced by Peter Medawar (1952). This theory states that genes that 

reduce fitness early in life, such as a gene that would lead to death in children, are 

strongly selected against and are not passed on to the next generation (Gavrilov and 

Gavrilova, 2002). For example, individuals with Progeria experience premature aging 

and often do not live beyond the age of 12 and thus do not have the ability to pass on 

their genes. These cases could therefore only arise from specific gene mutations and are 

quickly eliminated from the population, as these individuals will not be able to reproduce. 

Alternatively, genes that would cause lethal effects in later life (post-reproductive age) 

are not selected against and remain in the population. These deleterious genes could also 

accumulate and lead to an aging phenotype. One question is therefore: would larger 

genomes be able to absorb mutations due to genomic redundancy and resist an 

accumulation of mutations and result in an individual who is unaffected? One study on 
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radiation inducing chromosomal damage on the lifespan of haploid and diploid male 

wasps (Habrobracon juglandis) revealed that both males had the same lifespan when 

exposed to radiation, which suggests that mutational load is not dependent on the number 

of gene copies (Clark and Rubin, 1961).  

1.1.2.3 Disposable Soma Theory  

The disposable soma theory states that throughout aging, damage randomly accumulates 

throughout the genome and, instead of repairing this damage with costly repair pathways, 

cells opt for repair with reduced accuracy or no repair at all (Gavrilov and Gavrilova, 

2002). Throughout development, accelerated growth in somatic tissue is more favorable 

and the repair capacity is not high because this aligns with the needs to the rapidly 

dividing cells. However, this will become detrimental as it permits DNA damage to 

continue to new cell populations and will result in an accumulation of mutations. This 

damage may also have a lesser chance of being fixed because repair machinery depletes 

with age, which leads to higher incidences of chromosomal breaks and point mutations 

(Sloter et al., 2004).  

 

Practical implications of this theory would mean that shorter-lived individuals will invest 

more energy into reproduction rather than somatic repair and will have more damage 

accumulating in the somatic genome rather than the gametes, as opposed to longer-lived 

individuals (Lucas and Keller, 2014). Longer-lived individuals would need to invest more 

energy into somatic repair, which reduces energy for reproduction and would therefore 

yield fewer offspring. Critiques of this theory have stated that the theory absolutely 

challenges evolutionary theory because cells would have to store energy and avoid 

somatic repair when resources are available in order to invest energy into reproduction 

later in life when resources may be more scarce (Blagosklonny, 2010). Intriguingly, the 

disposable soma theory suggests that menopause in older women serves the function of 

investing energy and resources for grandchildren, as opposed to menopause simply acting 

as a byproduct of aging, as suggested by others (Kachel et al., 2011; Kim et al., 2012). 

Benefit to the future generations by grandparents can only happen if the benefit of 

helping to rear reproductively successful grandchildren offsets the cost of preventing 
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mortality and reproduction in later life, which can be a very big strain on resources 

(Kachel et al., 2011). Interestingly, this likelihood of rearing successful grand-offspring 

increases in social groups where there is resource sharing (Kachel et al., 2011). Overall, 

the disposable soma theory cannot be tested accurately in the lab and can be viewed as a 

more refined version of other evolutionary theories of aging. 

1.1.2.4 Oxidative Stress Hypothesis  

The oxidative stress hypothesis originally proposed by Denham Harman states that the 

rate of aging depends on the rate of oxidative damage, which is often mediated by 

reactive oxygen species (ROS) (Harman, 1956). ROS accumulates in cellular components 

and can have deleterious effects leading to an aged phenotype, thus linking oxidative 

damage and the regulation of lifespan (Harman, 1956). Biologically, oxidative 

phosphorylation generates ROS as a by-product and causes damage by accumulating on 

lipids, proteins, and nucleic acids that can then alter cellular function (Baraibar et al., 

2012; Speakman and Selman, 2011). For example, residues such as methionine and 

cysteine are highly reactive to ROS, thus affecting protein structure or function. If this 

ROS-induced change is irreversible, it will cause functional impairment. If this ROS-

induced damage is reversible, such as ROS used for signaling purposes, or if it can be 

repaired, it will not lead to damage (Baraibar et al., 2012). For example, the aquatic 

salamander Proteus anguinus is able to live upwards of 68 years due to its ability to 

tolerate very high levels of anoxia and food deprivation thereby preventing the damaging 

effects of ROS (Speakman and Selman, 2011).  

 

Although antioxidants naturally found in cells work to combat ROS stress, they can 

lessen in both quality and quantity over time. This leads to cells that are more vulnerable 

to ROS, which then accumulate and cause an aged phenotype. For example, a reduction 

in the antioxidant manganese superoxide dismutase (MnSOD or SOD2) in Drosophila 

mutants led to reduced longevity, accelerated senescence, increased neuronal 

degeneration, and double stranded breaks in the DNA of neurons (Paul et al., 2007). 

Interestingly, this model did not work in all organisms, as C. elegans that were 

experimentally engineered to express five different superoxide dismutase isoforms 
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individually did not lead to enhanced longevity (Doonan et al., 2008; Orr and Sohal, 

1994). However, longevity was extended in Drosophila expressing three versions of the 

antioxidant simultaneously (Doonan et al., 2008; Orr and Sohal, 1994).  

 

There is also a link between changes in organ function as a result of age and oxidative 

stress. For example, Cook-Weins and Grotwiel (2002) tested Drosophila melanogaster 

with behavioural assays and found an age-related decline in olfactory avoidance and 

motor behaviour but no change in both their ability to avoid aversive stimuli such as 

shock, and in their orientation toward attractive stimuli such as light (Cook-Wiens and 

Grotewiel, 2002). Interestingly, this change in behaviour through aging was observed in 

both control flies and the long-lived methuselah (mth) flies that have enhanced resistance 

to oxidative stress. Therefore, the mechanism by which these flies resist stress does not 

reverse the effects of aging on all behaviours. Others found a dissociation between 

resistance to stressors and longevity because removal of a key substrate in the 

insulin/insulin growth factor signaling pathway resulted in increased lifespan but did not 

affect stress resistance (Clancy, 2001). As such, the relationship between increased stress 

resistance and senescence remains unclear.  

 

Mitochondria are the primary target of this oxidative stress because they contain the main 

site of respiration, the electron transport chain, which is a key generator of ROS. 

Additionally, mitochondrial DNA (mtDNA) do not have histones that are present in 

nuclear DNA that can act to shield DNA from ROS (Amaral and Ramalho-Santos, 2009). 

Therefore mitochondria are both the source and target of ROS damage. The 

mitochondrial theory of aging links ROS generated by mitochondria and the aging 

phenotype because there is an increase in the amount of ROS modified proteins and lipids 

with age, however the exact mechanism of this process has been debated (Amaral and 

Ramalho-Santos, 2009; Baraibar et al., 2012). Additionally, one study looked at the link 

between ROS (hydrogen peroxide) generated by mitochondria in long-lived (>15 years) 

and short-lived (<10 years) colubrid snakes (family Colubridae) and found that long lived 

snakes had reduced peroxide levels, possibly contributing to their enhanced longevity 

(Robert et al., 2007).  
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1.1.3 The Cellular Aging Process 

Some of the many cellular changes associated with aging include changes to the genome, 

telomere shortening, changes in epigenetic marks as a result of interaction with the 

environment, and changes to protein stability (López-Otín et al., 2013). Many of these 

macromolecules, pathways, or processes contribute to the aged phenotype in many 

organisms. To limit what could be a very long section, I am choosing to focus on those 

pathways that have been previously linked to an increase or decrease in lifespan of an 

organism and can be targeted in the lab.  

 

One of the main pathways involved in the aging process is the Insulin/ Insulin Growth 

Factor (IGF) signaling pathway. This essential pathway, that can cause diabetes in 

knockout mice, also contributes to aging in several model organisms. Indeed, specific 

manipulations within the pathway can lead to enhanced longevity through changes in 

gene expression by changing different Forkhead box O (FOXO) transcription factors and 

heat shock transcription factors (HSF-1) (Garigan et al., 2002). These transcription 

factors further up-regulate or down-regulate stress response genes, genes encoding 

microbial peptides, chaperons, and lipases that work in complex pathways to lead to the 

aged phenotype (Kenyon, 2010). For example, C. elegans that is deficient in the FOXO 

ortholog daf-2 can only enhance longevity when autophagy, the recycling of organelles, 

is possible (Meléndez et al., 2003). Other proteins, such as NAD+ -dependent protein 

deacetylases known as sirtuins are involved in longevity can also act through this 

pathway to extend longevity, as seen in the overexpression of sir-2.1 in C. elegans 

(Berdichevsky et al., 2006). Increased longevity through this pathway has even been seen 

in humans who have a variant of AKT and FOXO3A (Pawlikowska et al., 2009).  

 

Target of rapamycin (TOR) kinases are downstream of the insulin receptor. TOR kinases 

sense amino acids and nutrients and are involved in stimulating growth and blocking 

pathways like autophagy when there is enough food (Kenyon, 2010). TOR works by 

regulating gene expression and can increase translation when activated by different 

nutrients. TOR can also inhibit translational inhibitors and activate the ribosomal subunit 
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S6 kinase. The inhibition of the targets of TOR have been shown to extend lifespan in C. 

elegans (Vellai et al., 2003), mice (Miller et al., 2014) and Drosophila (Kapahi et al., 

2004), each through pathways distinct from the Insulin/IGF pathway.  

 

Another pathway involves AMP activated protein kinase (AMPK) that has been linked to 

extension of lifespan by sensing energy levels, blocking energy consumption, and 

activating energy production (Ostojić et al., 2009). Overexpression of AMPK has been 

shown to extend lifespan in C. elegans and activation of this pathway through drugs such 

as metformin, used in the treatment of diabetes, can increase longevity in mice (Anisimov 

et al., 2008; Apfeld et al., 2004).  

 

In addition, the electron transport chain has been implicated in lifespan extension in 

several model organisms (Copeland et al., 2009; Rea et al., 2007). It has been shown that 

the RNAi knockdown of respiratory complexes I, III, IV and V each have led to the 

extension of lifespan in Drosophila, where just the knockdown of complex I was 

sufficient to cause longer life (Copeland et al., 2009). Interestingly, the RNAi knockdown 

of Complex I increased longevity without reducing fertility, increasing resistance to other 

stressors, or reducing ATP production. It is thought that lifespan extension through 

respiratory inhibition is due to the activation of genes that up-regulate substitute energy 

production pathways when mitochondria are impaired and is due to improved oxidative 

stress response (Cristina et al., 2009). These alternate pathways suggest conserved 

underlying mechanisms of energy production in different organisms that are present to 

compensate for the loss of energy production in one pathway.  

Finally, although telomeres are often first thought of when discussing cellular aging 

processes, telomeres cannot extend longevity in somatic tissues, as the enzyme 

telomerase is not present. Some authors even suggest that if telomerase were present in 

these tissues, cells would most likely develop cancer as opposed to demonstrating 

extension of longevity and thus lifespan would only increase in organisms that could 

resist cancer (Kenyon, 2010). Additionally, and importantly for this project, the structure 

of Drosophila telomeres is different from eukaryotic telomeres and they are maintained 
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by a unique transposition mechanism and thus cannot be used as a measure of aging or be 

attributed to damage associated with aging (Louis, 2002).  

1.2 Social behaviour 

The purpose of this section is to define social behaviour and review the literature 

regarding the evolution of social behaviour. In later sections I will bridge the concept of 

aging with social behaviour by describing what is known regarding changes to social 

behaviour with age. For the context of this project, I then describe what is currently 

known about the inheritance of the aging process and how behavioural changes can also 

be transmitted to the next generation.  

1.2.1 What Is Social Behaviour?  

Behaviour can be defined as a coordinated response of an individual or group to a 

stimulus, whether internal or external, that cannot be attributed to developmental stages 

of life (Levitis et al., 2009). Thus, social behaviours are responses to specific stimuli. 

Evolutionarily, working in groups was beneficial to both the individual and the entire 

group and thus specific social behaviours arose (Levitis et al., 2009). As such, 

cooperative individuals in a group were more likely to survive and reproduce, which then 

began the social behavioural network in response to specific cues from other individuals 

in that group or in the surrounding environment (Kokko et al., 2001). These group 

interactions often involve members of the same species and thus the social group is 

composed of like animals.  

Social cues are contextual information generated by one member of a group that inform 

the behaviour of other members of the group (Kacsoh et al., 2015; Raven et al., 2005). 

For example, animals that were not exposed to a predator would adjust their behaviour as 

though they were exposed by observing and learning from others who have been exposed 

to the predator (Kacsoh et al., 2015). Cues may also be in the form of a chemical signal. 

For example, in Drosophila, the transfer of the hydrocarbon cis-vaccenyl acetate (cVA) 

from males to females during copulation (social behaviour) can act as a long-range 

attractant to promote aggregation of a group (social behaviour) (Bartelt et al., 1985).  
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These social cues must then be integrated with internal physiological information in order 

to generate a behavioural output (Rubenstein and Hofmann, 2015). While the behavioural 

outputs may be different among animal groups, the underlying biological function (and 

metabolic need) that drives the behaviour is shared among different species (Figure 1.1). 

For example, the egr1 gene is important for song recognition in the zebra finch 

(Taeniopygia guttata) but is needed for dominance behaviour in cichlid fish 

(Astatotilapia burtoni) (Robinson et al., 2008). Because there are conserved underlying 

pathways of social behaviour, we can use model systems to study basic social behaviours 

in order to understand these networks and mechanism to inform the behaviour of more 

complex animals. In short, while the behaviours may not be translatable, the underlying 

mechanism of the pathways determining social behaviour might be conserved. 

Some examples of commonly studied social behaviours include foraging behaviour 

(Tinette et al., 2004), aggression among males (Zwarts et al., 2012), courtship (Chandra 

et al., 2001), and divisions of labour (Robinson, 1992). Many of these behaviours require 

a neural decision-making network in order to interpret environmental social cues and 

generate a proper social response (Pasquaretta et al., 2016; Sokolowski, 2010). One of the 

most commonly observed social behaviours, and of interest to this project, involves the 

interactions within aggregates of individuals, and their social spacing (Giuggioli et al., 

2013; Simon et al., 2012). Some examples of aggregation include schools of fish, 

swarming insects, and flocks of birds (Emlen, 1952; Mogilner et al., 2003).  
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Figure 1.1 Social behaviours are fine responses to specific environmental stimuli that can vary based 

on species, the development of the brain, and epigenetic modifications to evolutionarily conserved 

pathways. The brain must integrate sensory information from its social environment and interpret this 

information in pathways influenced by the genome, epigenetics, and development to create an appropriate 

response (Robinson et al., 2008). This figure was adapted and used with permission granted from the author 

(personal communication with Dr. Gene Robinson, University of Illinois at Urbana-Champaign). 

1.2.2 Social Versus Non-Social Behaviour 

Sociality is a spectrum ranging from solitary to eusocial, the most social form of an 

animal. This is a spectrum because some animals can be exclusively solitary, meaning 

they do not engage in social behaviours other than those related to mating, or may 

oscillate between solitary and social, known as facultatively social. Some animals are 

rarely solitary, such as birds, but many mammals and amphibians are exclusively solitary 

(Reser, 2014). Solitary behaviour, in addition to various levels of social behaviour, have 

conserved underlying genetic pathways (Trivers, 1971). Interestingly, some researchers 

have compared the neural network of solitary animals to individuals with disorders that 

from recognition of social opportunity in a highly
social cichlid fish (Astatotilapia burtoni) (14). In
many animal societies, dominance hierarchies
structure all social interactions; position in the
hierarchy governs access to resources that determine
who reproduces and how often. A. burtoni has an
elaborate dominance hierarchy, reinforced both by
aggressive fighting and the ability of dominant
males to ascertain relative rank by observation
alone, using transitive inference to determine which
male in a group is most dominant (15). Subordinate
males have reduced fertility.When the alphamale is
removed from a group, a subordinate male quickly
starts to exhibit dominant behavior. In this social
ascent, he displays dramatic changes in body col-
oration and behavior. Within minutes, but after the
onset of behavioral change, egr1 is induced
specifically in the hypothalamic anterior preoptic
area in neurons containing gonadotropin-releasing
hormone (GnRH), a peptide critical for reproduc-

tion. These neurons increase in size and degree of
dendritic arborization, and they also increase
expression of GnRH mRNA and protein. These
cellular and molecular responses depend on the
recognition of a social opportunity and ascension
to dominance; they are not elicited in individuals
who are already dominant. Because egr1 is a
transcription factor, it is likely that these effects
on the GnRH neurons are direct, but this has not
yet been demonstrated. These results show that
social information also can lead to changes in
behavior that transiently alter patterns of brain
gene expression (a variant of Vector 1).

Although egr1 is only one of many socially
responsive genes (see below), its molecular and
cellular character provides insights of general im-
portance. First, egr1 can be induced by brief
experiences, its expression reaching a peak 20 to
60 min later, in a “genomic action potential” (7).
Second, egr1 can immediately suppress or enhance

the transcription of other genes, depending on
which proteins it interacts with in different cell
types (16). Third, results with egr1 suggest how so-
cial experience might trigger changes in larger gene
networks in the brain. By means of the application
of high-throughput technologies for measuring the
expression of many genes simultaneously, it is now
clear that responses to social stimuli can bemassive,
involving hundreds or thousands of genes and
perhaps many different brain regions at once.

In one of the first such studies, microarrays were
used to measure brain gene expression patterns in
the honey bee (Apis mellifera) at distinct life stages,
finding expression differences in thousands of genes
(17). Worker honey bees change jobs as they age.
They spend the first 2 to 3 weeks of their adult life
working in the hive caring for the brood, maintain-
ing the nest and other activities, and then shift to
collecting nectar and pollen outside the hive on be-
half of their colony for the remainder of their 4- to
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behavior
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changes

Evolution
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Male dominance in cichlid fish

Song recognition in zebra finches

Onset age of foraging in honey bees

Courtship communication in fruit fliesMating preference in prairie voles

Mothering style in rats

Treatment of queens by fire ants

Fig. 1. Complex relationships connect genes, the brain, and social behavior.
These relationships operate over three time scales: (i) physiological time via
effects on brain activity (solid lines), (ii) developmental time via slower
effects on brain development and genome modification (dotted lines),
and (iii) evolutionary time via the processes of natural selection (dashed
line). Arrow colors refer to Figs. 2 and 3 (pink, Fig. 2; blue, Fig. 3), which

provide details about the nature of these interactions. Images depict some
of the animals and genes featured in this review, clockwise from top: zebra
finch (T. guttata), cichlid fish (A. burtoni), honey bee (A. mellifera), fruit fly
(D. melanogaster), prairie vole (M. ochrogaster), rat (R. norvegicus), and fire
ant (S. invicta). The genes listed (in italics on the photographs) are
responsive to social interactions as described in the text.C
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have a social deficit, such as the autism spectrum disorders, as one possible way to 

understand the formation of neural networks in a brain that interprets social cues 

differently (Reser, 2014). Within animal sociality, eusocial species are the most social. 

Some examples of these include honeybees, ants and the naked mole rat (Keller and 

Genoud, 1997). A table outlining the spectrum of sociality can be found in Table 1-2.  

Although insects are not typically described as social animals, both honeybee (Apis 

mellifera) and Drosophila have been used in social behavioural studies. Honeybees are 

described as a eusocial species and have been the prevailing model for social behaviour 

research. However, the parasocial genus Drosophila has recently started to be used in 

behavioural studies as well. For example, previously untrained Drosophila females will 

adjust their preference for different media for oviposition based on observing previously 

trained Drosophila’s specific preferences (Battesti et al., 2015). This display of social 

learning in a parasocial species indicates that different types of insects can be used as 

tools to study social interactions and the underlying internal mechanisms or pathways that 

generate social behaviours.  

Table 1-2 Sociality can be divided into groups depending on the type of behaviour displayed 

  
Presocial 

 
   

Parasocial  
 Behaviour Solitary Subsocial Communal Quasisocial Semisocial Eusocial 

Division of labour ✗ ✗ ✗ ✗ ✔ ✔ 

Reproductive caste ✗ ✗ ✗ ✗ ✔ ✔ 

Cooperative brood care ✗ ✗ ✗ ✔ ✔ ✔ 

Occupy same space ✗ ✗ ✔ ✔ ✔ ✔ 

Overlapping generations ✔ ✗ ✔ ✔ ✗ ✔ 

Parental investment ✔ ✔ ✔ ✔ ✔ ✔ 

Typical behaviours that are evaluated when categorized species as different forms of sociality ranging from solitary to 

eusocial, or purely social organisms. Each check mark (✔) indicates the presence of that behaviour in that type of 

social group where a cross (✗) indicates an absence of behaviour. The red check marks indicate that there is conflict 

regarding whether this behaviour is included in this type of social group. Presocial and parasocial are terms that 

describe several groups of sociality. Presocial and parasocial animals are broader terms for several social groups. 

Drosophila is in the presocial/parasocial category of species as they does not usually have cooperative brood care 

(Table adapted from the text of Gadagkar, 1987).   
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1.2.3 Evolution Of Social Behaviour In Groups 

Animals evolved social cognitive frameworks in order to understand, evaluate, and 

respond to many social cues in the environment (Weitekamp and Hofmann, 2014). But 

how is the brain able to evolve novel structures to facilitate new behaviours that lead to 

the creation of the social brain? The complexity of the nervous system has been an 

integral factor in the evolution of the social network (Katz, 2011). It has also been 

suggested that certain behaviours exist in order to allow for novel brain patterns and 

behaviours to be introduced and included in the social network (Katz, 2011). Therefore 

the brain is considered to be a system with high evolvability, which allows for the 

nervous system, and thus behaviour, to adapt to the environment and increase in 

complexity.  

 

Social behaviour may have also arisen through altruistic behaviours between kin. 

Investing resources and aiding in the survival of siblings’ progeny would indirectly 

increase one’s own fitness as shared genes between family members would still be 

transmitted to the next generation; therefore this system is beneficial even if the 

individual dies (Hamilton, 1964; Plomin et al., 2013). This may explain why an 

individual would engage in altruistic acts that do not directly benefit the individual and 

may further explain the occurrence of social behaviour networks in families and other 

groups. However, not all social groups engage in cooperative brood care, so an alternate 

explanation for the evolution of group formation may be due to the availability of 

resources when individuals of a group work together and the combined protection from 

predators in larger groups (Rohlfs and Hoffmeister, 2004).  

 

Robert L. Trivers introduced a theory about the evolution of social behaviour between 

individuals known as reciprocal altruism (Trivers, 1971).  This theory explains 

reciprocity between individuals of either the same or different species that are not related 

(Rankin and Taborsky, 2009; Trivers, 1971). Reciprocity often involves animals, mostly 

primates, sharing food and participating in grooming behaviour (Gomes et al., 2009). 

Through aiding non-relatives, individuals create a mutually beneficial social framework 

where resources are acquired as a group, rather than individuals expending energy to find 
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all their resources alone (Gomes et al., 2009; Taborsky, 2013). Individuals who were able 

to reciprocate with others were likely to be selected for and therefore the social network 

in the brain that allowed for cooperation was maintained.  

 

One type of reciprocity, generalized reciprocity, is based on immediate previous 

experience and essentially involves helping others who have just helped you (Rankin and 

Taborsky, 2009). One example of generalized reciprocity has been seen in common 

vampire bats (Desmodus rotundus) who will share blood meals with non-relatives and 

have been shown to be more likely to receive a blood meal in return in the future from 

those with whom they have shared (Carter and Wilkinson, 2013). Alternatively, indirect 

reciprocity is reserved for animals with higher cognition who will remember previous 

encounters and will reciprocate only with those who have helped them (Rankin and 

Taborsky, 2009). Animals who engage in indirect reciprocity have been shown to invest 

in equal sharing over long periods of time (Rankin and Taborsky, 2009). Reciprocity can 

also give rise to cooperation, even in absence of advanced cognitive abilities, according 

to computer simulations (Barta et al., 2011). Reciprocity leads to cooperation in simple 

steps when the benefits far outweigh the costs in a decision-making framework (Barta et 

al., 2011).  

1.2.4 Social Behaviours Can Be Assessed In Many Organisms  

The study of social behaviour connects organisms with their environment and allows for 

the inclusion of many fields of biology, including neuroscience and physiology, as 

individuals must integrate external information and generate an appropriate response. 

Models can also be used to study simple or basic behaviours to understand the underlying 

behavioural mechanisms that can be found in animals with more complex nervous 

systems and more complex behaviours (Sokolowski, 2010). For example, behavioural 

responses to specific odorants helped to shed light on specific odor pathways within mice 

(Saraiva et al., 2016).  

Various social behaviours observed in nature can be quantified by robust methods, 

allowing for the study of basic behaviours and manipulations of the environment to see 
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the impact on these behaviours. For example, the complex behaviour of bonding between 

individuals has been measured in the prairie vole (Microtus ochrogaster) by quantifying 

the attachment between partners with the partner preference test (McGraw and Young, 

2011). Additionally, male dominance behaviour can be observed in species with 

hierarchical structures like birds or those with non-hierarchical structures like fish (Bayly 

et al., 2006; Desjardins et al., 2012). Recently, video tracking software of mice has 

allowed researchers to quantify various social behaviours in a cage at the same time, 

permitting rapid and robust measurements of social mice (Hong et al., 2015). These tools 

in the lab allow for quick and accurate accounts of social behaviours in animals with 

stereotyped behaviours in groups, which until recently have only been available in larger 

social animals.  

Several basic social behaviours can be quantified in Drosophila. One of these behaviours, 

and of particular interest in this project, is the social spacing between individuals in a 

group (Simon et al., 2012). Social spacing must first take place prior to other behaviours 

such as aggression, courtship (Dankert et al., 2009), and social avoidance of stressed flies 

(Fernandez et al., 2014), all of which can be quantified. Often these measures involve the 

researcher or an automated process scanning for stereotyped behaviours. For example, 

the researcher can map the stages of courtship, count the number of physical interactions 

between males during aggression, or quantify the space between neighbouring 

individuals in social space. These methods are often robust and can assess the genetic and 

environmental contributions to test the effects on behaviour. 

1.3 The Brain And Social Behaviours Change With Aging 

1.3.1 Changes To The Brain With Age  

As discussed above, aging causes many cellular changes. The cells of the brain are no 

exception, and thus aging could affect how individuals perceive and react to social 

situations (Morrison and Hof, 1997). It is important to note that the change to the brain 

associated with age is not due to neuronal death, as previously suggested, but to structural 

and morphological changes (Morrison and Hof, 1997). Neuronal changes with age can be 

accompanied by a reduction in the number of dendritic spines, as seen in non-human 
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primates with a reduction of 28-37%, in addition to reductions in spine density and loss 

of synapses (Duan et al., 2003; Page et al., 2002). Changes in neuronal morphology can 

lead to changes in communication ability between neurons resulting in a loss of 

integration between different parts of the brain over time and changes in communication 

to other tissues like muscle (Bishop et al., 2010; Yeoman and Faragher, 2001). This has 

been seen in aged rhesus macaques that show a reduction in the inhibitory 

neurotransmitter γ-aminobutyric acid (GABA) in the prefrontal cortex. Additionally, an 

analysis of transcriptomic changes with age in human and mouse revealed that a large 

number of genes that have altered expression patterns with age were found in three cell 

types in the brain: astrocytes, neurons, and oligodendrocytes (Loerch et al., 2008). 

However, the overall synapse number and neuron number was unchanged in the aged 

brain (Loerch et al., 2008). In Drosophila, researchers also found a reduced number of 

synaptic connections including fewer branches in 30-day-old flies (Corfas and Dudai, 

1991). These changes to physical brain structures may be implicated in the changes in 

behaviour that are seen over time, perhaps as a programmed change in the brain due to 

functional senescence.  

1.3.2 Changes To Social Behaviour With Age  

Human social networks and behaviours have been shown to change with age. As we get 

older, we will often actively try and reduce the size of the group with which we interact. 

This is thought to be due to changing roles in society and family, and possibly due to 

physical limitations, with age (Charles and Carstensen, 2010). However, some 

researchers suggest that we actively try and reduce the size of our social network such 

that occasional and non-mutually beneficial relationships are eliminated and only 

interactions that will be meaningful and beneficial remain (Charles and Carstensen, 

2010). These studies, however, only evaluate the social relationships among aging 

humans, and do not look at molecular changes associated with aging that may also impact 

social behaviours. 

Animal models have been used to demonstrate the change in social behaviour with aging 

or when parents have been aged. For example, in Drosophila, it has been shown that 23% 

of genes change with aging and certain genes that affect lifespan such as fragile X and 
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SOD2 affect behaviours like climbing and olfactory avoidance (Iliadi and Boulianne, 

2010). Social behaviours have also been shown to change over time. For example, 

honeybees have been shown to adjust their social behaviour inside of the hive (less than 

two weeks old) versus outside the hive (adults, greater than two weeks old; Ben-Shahar et 

al., 2002). These changes were accompanied by changes in gene expression, hormones, 

and brain chemistry to facilitate this timed change (Ben-Shahar et al., 2002). In 

Drosophila, the expression of courtship genes declines with aging (Ruedi and Hughes, 

2009). Importantly, not all behaviours change with aging, as seen in Drosophila that 

continue to respond and avoid an electric shock when aged (Cook-Wiens and Grotewiel, 

2002; Simon et al., 2006).  

1.4 Inheritance of the Aging Process and Neuropsychiatric 

Disorders  

Aging can physiologically change an individual and, if these changes occur at the level of 

the gamete, they can be passed on to the next generation. Epigenetic marks such as 

methylation of DNA or histones can be inherited from parents in humans if they are not 

erased during the two global demethylations that take place; one demethylation program 

occurs immediately following fertilization to remove any existing epigenetic marks that 

were not removed during fertilization and the other occurs in the germline, whereas 

parental marks are removed from somatic tissues (Heard and Martienssen, 2014). While 

epigenetic inheritance of methylation patterns are often paternally derived (Smith et al., 

2009), other types of epigenetic inheritance can be in the form of non-coding RNA such 

as lncRNA, miRNA, siRNA and piRNA that are often, but not exclusively, inherited 

maternally (Heard and Martienssen, 2014). Each of these mechanisms can interfere with 

the regulation of transcription or transcription itself thus imposing maternally or 

paternally derived patterns.  

Aneuploidy is the addition or subtraction of the normal chromosome number and is a 

common age-related problem that can be inherited from both parents. Aneuploidy of the 

21st chromosome in humans is most often inherited from the mother, but researchers have 

found up to 10% of trisomy 21 cases originating from the father (Sloter et al., 2004). 
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Interestingly, while both aged parents have higher incidence of trisomy or autosomal 

chromosomes, such as trisomy 22 that can be inherited from either parent, sex 

chromosome aneuploidy is often inherited from the father (Sloter et al., 2004).  

Transmissible effects of maternal age have mostly been identified in terms of 

chromosomal aneuploidy on the autosomes and changes in crossover (Halle et al., 2015; 

Hunter et al., 2016; Marchetti and Wyrobek, 2005). Conversely, most de novo mutations 

have been found to originate from the father as males contribute to 3.9 times more single 

nucleotide mutations than females to their offspring and have been shown to contribute 

more copy number variants (CNV) than females (Kong et al., 2012). Other mutations 

include point mutations, structural rearrangements, sex chromosome aneuploidy, 

abnormal imprinting, single and double stranded breaks or DNA or protamine adducts 

(Marchetti and Wyrobek, 2005).  

Advanced paternal age (APA) is one factor that has been associated with increased 

mutational load in humans (accumulation of mutations), as by age 40 spermategonia have 

undergone hundreds of divisions (200-660 divisions by age 40) (Malaspina, 2001; Saha 

et al., 2009; Sampino et al., 2014). Male germ cells are also more susceptible to the 

accumulation of mutations because their capacity to repair DNA declines in later (post-

meiotic) spermiogenesis, so mutations introduced later in germ cell formation cannot be 

repaired (Marchetti et al., 2007). For example, Sanger sequencing revealed 4,933 de novo 

mutations introduced into the offspring from older fathers where 2.2 mutations per trio of 

nucleotides were deleterious (Keightley, 2012). The inability to repair damage introduced 

post-meiotically also makes sperm formation highly susceptible to repeated 

environmental stressors such as damage due to smoking which can then be passed to the 

next generation (Marchetti and Wyrobek, 2008). Interestingly, the connection between 

the accumulation of mutations with sperm divisions over time and reduced DNA repair 

capacity has been implicated in the fathers of children with Apert syndrome (Glaser et al., 

2003). Younger males with affected children had a higher mutational frequency at 

younger ages that was then not fixed post-meiotically (Glaser et al., 2003). These 

unrepaired mutations in male germ cells may not persist upon fertilization of the egg as 

repair machinery within the egg has the capacity to repair some of these changes. 
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However, one study found that when chromosomal changes were induced within male 

germ cells, they persisted for several weeks as the cells went through the DNA repair 

deficient phase but, upon fertilization, the lesions were converted into chromosomal 

aberrations by the maternal DNA repair machinery in the zygote (Marchetti et al., 2015). 

Therefore, the damage may not be erased even when egg DNA repair machinery is 

present. Animal models should thus be used to investigate these questions of what is 

specifically affected in the gametes with age and how this affects the next generation.  

APA has been implicated as one potential cause of several sporadic human autosomal 

dominant diseases such as Apert syndrome, Progeria, and Achondroplasia, in addition to 

neuropsychiatric disorders such as Autism Spectrum Disorders (ASD) and Schizophrenia 

(D’Onofrio et al., 2014; Malaspina et al., 2001). It is important to note, however, that 

advanced parental age is not the only source of these disorders, and is simply a proposed 

mechanism by which some of these disorders may manifest. In mice, progeny with old 

fathers (15 months) had communication problems, repetitive behaviours, social deficits, 

and anxiety; phenotypes which resemble those found in ASD (Sampino et al., 2014). 

Additionally, when male mice are aged to 12 months, their offspring were more social 

than offspring of two-month-old males when maternal age was kept constant (Janecka et 

al., 2015). Interestingly, in humans, grandpaternal age can negatively affect 

grandchildren even when the parents of the grandchild are young, however there are little 

data to date on how long this effect will be transmitted through the generations (Frans et 

al., 2013).  

One explanation for why APA is mostly linked to certain types of neuropsychiatric 

disorders is that genes that form synapses in the brain are longer genes and therefore have 

increased probability of acquiring a mutation by chance with aging (King et al., 2013). 

Since these neuropsychiatric disorders are often disorders of the synapses, they are 

referred to as synaptopathies (Grant, 2012). For example, alteration of the post synaptic 

adhesion protein neuroligin or pre-synaptic adhesion protein neurexin will impair 

synaptic development and transmission, which in turn will affect the balance of 

excitatory and inhibitory signals in the brain. Changes to the balance of these signals in 

the brain can result in changes to social behaviours, including courtship songs and social 
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spacing in Drosophila (Hahn et al., 2013), or repetitive behaviours observed in mice 

(Blundell et al., 2010). Interestingly, the human homolog of the Drosophila neuroligin 

genes have been associated with disorders of social behaviour, such as ASD (Jamain et 

al., 2003). Additionally, a recent study found 27 recurrent double stranded break clusters 

located in the middle of long genes that encoded mostly synaptic proteins and cell 

adhesion molecules, where almost all genes were linked to ASD, Bipolar Disorder, 

Intellectual Disability, or Schizophrenia in either humans or mice (Wei et al., 2016). It is 

possible that reduced repair capacity with aging may be contributing to these double 

stranded breaks leading to neuropsychiatric disorders in the next generation. Finally, 

abnormal gene dosage or quantity of synaptic protein associated with changes with aging 

of the parent may also be contributing to the disease phenotype of ASD in the progeny 

(Toro et al., 2010).  

1.5 Drosophila As A Model Organism For Aging And Social 

Behaviour  

Drosophila melanogaster, commonly known as the fruit fly is a widely used model 

organism due to its fast generation time, its ability to be easily genetically manipulated, 

and its relative affordability to house (Lints and Soliman, 1988). The quick generation 

time is additionally beneficial because different generations may be studied in tandem. 

Drosophila also has very well defined genetic tools at our disposal for its genome of 

~18,000 genes (Adams et al., 2000; Attrill et al., 2016). Drosophila has been used 

extensively in genetic research and has been the model involved in five Nobel Prizes in 

Physiology and Medicine (Jennings, 2011). The 1933 prize was awarded to Thomas Hunt 

Morgan for his work on the role of chromosomes in heredity. The 1946 prize was 

awarded to Hermann J Muller for his work with X-ray induced mutations. The 1995 prize 

was awarded to Edward B. Lewis, Christiane Nüsslein-Volhard and Eric F. Wieschaus 

for identifying important and conserved genetic mechanisms that control embryonic 

development. In 2004, the Nobel Prize was awarded to Richard Axel and Linda B. Buck 

for their identification of odorant receptors and how the olfactory system is constructed. 

And finally, in 2011, the prize was awarded to Bruce A. Beutler, Jules A. Hoffmann, and 

Ralph M. Steinman for their work on adaptive and innate immunity.  
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As many basic mechanisms and pathways have been conserved through evolution, a 

simple model organism such as Drosophila is used to study basic processes that are 

evolutionarily conserved throughout the animal kingdom, and even human mechanisms 

and the defects that result in disease. Indeed, almost 66% of disease genes in humans can 

be found in the form of a homolog in Drosophila, according to the Online Mendelian 

Inheritance in Man (OMIM) database (Lee et al., 2014; Okray and Hassan, 2013).  

1.5.1 Life Cycle Of Drosophila  

Drosophila has a four part life cycle beginning with the egg stage followed by larval, 

pupal, and finally the adult stage (Jennings, 2011; Hartwell et al., 2011). At a 

physiological temperature of 25°C, the fertilized egg laid on or near the surface of a food 

source will develop into the embryo for about 24 hours before becoming a larva. The 

larva will then undergo three molts as it eats the food source and grows for about five 

days before becoming a pupa. The process of pupation to metamorphosis, where 

embryonic and larval tissue is replaced with adult tissue, will take about four days. This 

process requires a total of ten days, but can be slowed by keeping stocks at a lower 

temperature of 18°C, where the life cycle will take up to 28 days, as opposed to around 

ten days at 25°C. As shown later in this thesis, and by others before, Drosophila 

melanogaster can live around three months at 25°C.  

1.5.2 Drosophila Neurobiology 

The common ancestry of Drosophila and humans had a similarly complex central 

nervous system, similar subdivisions of the brain (protocerebrum, deutocerebrum, and 

tritocerebrum in Drosophila are evolutionarily similar to the forebrain, midbrain, 

hindbrain of humans), similar neurotransmitters, and common behaviours (O’Kane, 

2011). Although Drosophila has a fraction of the number of neurons as humans (105 vs. 

1011), Drosophila has many of the same cell types such as neurons and glia and exhibit 

the most basic behaviours required for survival, including sleep, courtship, response to 

stimuli and drugs, learning, memory, circadian behaviours, and social behaviours 
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(Jennings, 2011; O’Kane, 2011). Importantly, many molecular mechanisms underlying 

these behaviour are conserved between humans and Drosophila (Sokolowski, 2010).  

1.5.3 Social Behaviour of Drosophila  

Drosophila can be described as a social species according the definition that describes 

sociality as interactions with others and their kin (Gadagkar, 1987). As described above, 

Drosophila does not have a clear division of labour and parents do not participate in 

cooperative brood care and is therefore considered parasocial. Drosophila has a repertoire 

of behaviours that is affected by social experiences, and some direct measurements of 

socialization have been performed (Branson, 2009; Dankert, 2009; Fry, 2008; Schneider, 

2012; Simon and Dickinson, 2010; Slawson, 2009; Wang, 2008). Most of the efforts to 

measure social behaviours in Drosophila have been focused on relatively complex social 

behaviours, such as aggressive interactions (Dankert, 2009; Wang, 2008), various aspects 

of courtship (Dankert, 2009; Ejima and Griffith, 2008; Mery, 2009; Miyamoto and 

Amrein, 2008; Montell, 2009; Villella, 2008), and how social experience affects other 

behaviours such as learning, or circadian rhythm (Billeter, 2009; Ganguly-Fitzgerald, 

2006; Kent, 2008; Krupp, 2008; Levine, 2002). In the context of this project, I will study 

the spatial distancing that occurs during group formation and social spacing. One other 

behaviour I will study is the ability of Drosophila to avoid the aversive stimulus 

Drosophila stress odorant (dSO) in a binary choice assay.  

 

 However, we do need to be aware of some limitations regarding Drosophila as a model 

for social behaviour. The main limitation is that Drosophila has species-specific 

behaviours and although the underlying circuits determining social response may be 

similar among different organisms, the behavioural output may vary. Therefore, a better 

understanding and characterization of Drosophila’s behaviour and ecology must be 

elucidated in order for it to be a well-rounded model for social behaviour. There must 

also be a greater effort put forth by the community to design new assays that are 

ecologically relevant and not limited by laboratory conditions, which will also inform 

why these behaviours exist in the wild.  
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1.5.4 Social Spacing In Drosophila 

Our lab has previously studied factors affecting social space in Drosophila. For example, 

social experience was shown to affect social space, as socially isolated flies were more 

distal and therefore less social and this effect was more pronounced in females than in 

males (Simon et al., 2012). Additionally, the mating status of the fly also affected social 

space, as both virgin male and virgin females were less social (Simon et al., 2012). 

Factors unrelated to sociality also affected social space of groups. For example, a mutant 

for the white (w) gene that affects vision and the pigmentation of the Drosophila eye or a 

mutant for the phototranduction machinery (trp301), were each shown to be less social, as 

well (Burg et al., 2013; Simon et al., 2012). However, some conditions were shown to not 

affect social space, as changes to classical odor sensing did not cause Drosophila to 

behave less socially (Simon et al., 2012).  

Social space can also be affected by changes in synaptic genes that encode proteins 

located on either the pre- or post-synaptic membrane. Some of these genes that can cause 

changes to social space when altered have also been proposed as candidate genes for 

neuropsychiatric disorders (Figure 1.2). For example, the human gene neurobeachin, 

which encodes a large scaffolding protein, has been identified as a candidate gene for 

ASD and mutants of the Drosophila homolog of neurobeachin, called Rugose, were 

shown to be less social (Castermans et al., 2003; Wise et al., 2015). Additionally, a class 

of post-synaptic membrane proteins called neuroligin, which has homologs in human and 

Drosophila, have also been associated with changes in social space and have been 

proposed as candidate ASD genes (Hahn et al., 2013). Members of the dopamine 

pathway including the tyrosine hydroxylase, vesicular monoamine transporter and the 

neurotransmitters dopamine and acetylcholine have recently been implicated in causing 

changes to social space (Fernandez et al., under review).  

Finally, social space can be affected by exposure to environmental toxins. For example, 

increasing concentrations of the chemical Bisphenol A (linked to neurodevelopmental 

disorders and other health effects) resulted in Drosophila that displayed abnormal social 

response and was more proximal, in a dose dependant manner (Kaur et al., 2015). Thus, 
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many factors affect Drosophila’s social spacing including mating status, social 

enrichment, genes, and environmental conditions. However, the effect of chronological or 

biological age of Drosophila has not yet been considered and will be addressed in 

Chapter 3.  

 

 

Figure 1.2 Several proteins and neurotransmitters have been implicated in causing changes to social 

spacing behaviour in Drosophila. These include the presynaptic proteins neuroligin, and narrow-abdomen 

(Burg et al., 2013), post synaptic scaffolding protein neurobeachin (Wise et al., 2015), and members of the 

dopamine pathway such as dopamine (neurotransmitter), VMAT (vesicular monoamine transporter), and 

tyrosine hydroxylase. Figure adapted from an original image by Thomas Splettstoesser 

(www.scistyle.com), permission granted on the website.   
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1.5.5 Drosophila As A Model For Aging Studies 

Drosophila, along with other invertebrates such as C. elegans and Aplysia, has been used 

as a model for normal aging. Many researchers suggest that aging should not be studied 

from diseases that accelerate aging or cause premature aging, as these are not processes 

that affect everyone. Conversely, aging is inevitable given enough time in every member 

of a species. One main advantage of using Drosophila for aging studies is the large 

number of genetic tools available to manipulate the genome and turn gene expression on 

or off in a spatiotemporal manner (He and Jasper, 2014). This allows for the 

identification of single gene mutations, in addition to how, when, and where aging is 

affected throughout the body and how tissue interactions affect aging in order to identify 

tissue-specific functional decline.  

 

However there are several limitations to studying aging in Drosophila. For example, we 

cannot study telomeres and their relation to aging because Drosophila do not have true 

telomeres but two non-LTR retrotransposable elements (Louis, 2002). These elements are 

a modified version of telomeres that help maintain the ends of chromosomes to avoid 

erosion but they are not involved in senescence (Louis, 2002). One other limitation or 

large difference to consider with Drosophila is that male and female gametogenesis are 

very similar to each other in that eggs and sperm are continuously made, whereas in 

humans that is not the case and only sperm are continuously made (Panagopoulos, 2012). 

Therefore it is difficult to make inferences or draw conclusions regarding degradation 

within the egg since they are continuously made. Additionally there is little DNA 

methylation so epigenetic inheritance of methylation patterns cannot be studied (Lyko et 

al., 2000). And finally, as mentioned above, animals do not survive to old age in the wild 

so the aging studies may not be entirely ecologically relevant.  

1.6 Significance And Statement Of Purpose 

In humans, problems associated with advanced age have recently become public interest 

as advances in modern medicine and human intervention have allowed us to extend our 

lifespan. As no prehistoric human remains have been found to be over 50 years old, we 
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can conclude that aging is a modern issue, especially as the proportion of individuals over 

60 in Canada has risen to 24% (Beard et al., 2015; Hayflick, 1998). With increases in our 

aged population and the use of assistive reproductive technologies for individuals at older 

ages, the effect of aging on the next generation is an important area of research.  

 

I first examine, in chapter 2, different methods of analyzing the spacing between 

individuals and the group and different modes of representation to determine the most 

efficient way of communicating the results of the social space assay. My first goal is to 

characterize the effects of parental age on longevity, fertility and social behaviours such 

as social spacing and social avoidance in chapter 3. I hypothesize that aging will have an 

effect on both aged parents and this effect will be passed on to the progeny as other 

behaviours have been shown to change with age and affect the genome that can be passed 

on to the progeny. In the third chapter I also address the effect of having only aged 

fathers on the progeny in social spacing to determine if one aged parent is capable of 

recapitulating the effect of aged parents on the progeny. Here, I hypothesize that having 

just an aged father will result in a change in social spacing in the progeny. My second 

goal is to determine whether changes biological or chronological aging are necessary to 

cause a change in social behaviour by manipulating the aging process and testing the 

effects on social spacing in the parents and first generation (chapter 4). I hypothesize that 

manipulating the biological aging both of parents and their progeny will result in an early 

aged phenotype (when biological aging is accelerated, individuals and their progeny will 

be less social) or a delayed aged phenotype (when biological aging is decelerated, 

individuals and their progeny will be more social) and that this effect will be passed on to 

the next generation.   
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Chapter 2 – Analyzing And Representing Social Spacing In 

Drosophila 

2 Abstract 

I examined several ways of analyzing the distances between pairs and groups of flies in 

the chamber of the social space assay and various modes of representation. Most recently, 

the results of the social space assay have been represented using box and whiskers, 

although this has not been the most effective way to communicate the results. Therefore, 

I proposed a way to transform non-parametric data to parametric data such that I may 

represent the social space data as the mean with standard error to the mean. The three 

main measures used to quantify the social space assay are distance to closest neighbour, 

distance to all flies, and the number of flies within each body length radius away from a 

given fly, which may or may not yield the same trend. In the case of aging, I showed that 

these three measures do show the same trend and I therefore continue to use only one 

measure for the rest of this thesis for simplicity.  

 

2.1 Introduction  

Social interactions between individuals are important for other complex behaviours to 

take place, like courtship and feeding (Rohlfs and Hoffmeister, 2004). One fundamental 

form of social interaction is local enhancement, also known as aggregation (Simon et al., 

2012). Aggregates form groups via short range repulsive cues and long range attractive 

cues, as shown through simulations of social groups (Mogilner et al., 2003). One of these 

long-range cues is often resource availability, like food. Drosophila has been shown to 

move only short distances when there is an abundance of food, but will move farther if 

resource quantities are limited (Lefranc et al., 2001). Group formation is advantageous as 

grouping has been shown to both lower the risk of parasitism with increased larval 
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population and increase the probability of finding a mate and food (Lof et al., 2008; 

Rohlfs and Hoffmeister, 2004).  

Factors that contribute to social spacing will depend on the nature of the interaction 

between individuals and the group. Whereas courtship would promote closeness or more 

proximal interactions, mate competition or male aggression may promote distance or 

more distal interactions (Bretman et al., 2013). Social spacing and social avoidance may 

be emergent behaviours that arise in groups when individuals try to avoid others in the 

same group (Giuggioli et al., 2013). This may be achieved through stigmergy, where 

individuals leave a mark on the environment that is interpreted by another individual in 

the group, which then influences spatial orientation and distance to their nearest 

neighbour that can feedback onto the whole population (Giuggioli et al., 2013). 

Additionally, grooming behaviours and heard immunity would promote distances based 

on the status of the individuals. For example, regarding heard immunity, individuals who 

are not infected would be closer to the group and others may be isolated or even 

quarantined (Cremer et al., 2007; Evans and Spivak, 2010). Social spacing has been 

quantified in many animals such as in herds of sheep (Sibbald and Hooper, 2003), tribes 

of goats (Vas and Andersen, 2015), flocks of birds (Emlen, 1952), schools of fish (Larkin 

and Walton, 1969), and swarms of insects, including Drosophila melanogaster (Parrish 

and Edelstein-Keshet, 1999; Sokolowski, 2010). Oftentimes, the measure of distance is 

reported in terms of body-length units (Mogilner et al., 2003).  

In Drosophila melanogaster, social spacing can be easily quantified with the social space 

assay (Simon et al., 2012; McNeil et al., 2015), that allows measuring the distance of one 

fly to its nearest neighbour, a variable recently used in several other studies (Anderson et 

al., 2015; Burg et al., 2013; Hahn et al., 2013; Kaur et al., 2015; Wise et al., 2015). As 

described in detail in McNeil et al. (2015), the assay forces flies into a group and allows 

flies to decide how close or far to settle away from others along the glass-panes of  a two-

dimensional triangular vertical chamber. When the flies are first added to the chamber 

they will try to escape, then they will begin to explore the chamber, and finally, they will 

decide where to settle in a stable group formation. We then take an image of this settled 

group and process the picture with the free software ImageJ (National Institutes of 
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Health, Bethesda, Maryland, United States) to measure the precise distances between 

neighbouring Drosophila, and use the statistical program GraphPad Prism (Prism version 

7.00 for Mac, GraphPad Software, La Jolla California USA, www.graphpad.com) to 

determine significant differences (Schneider et al., 2012). Many other measures could 

also be performed, such as the orientation of flies within the arena or measuring changes 

through time (Hahn et al., 2013; Schneider and Levine, 2014). Although these methods 

have the capability to measure the group formation over time for every individual 

interaction, I chose a rapid method of identification that required less computer 

programming and analysis and is less expensive. These other methods may be used in the 

future if a change with age is found.  

The data obtained follow a non-Gaussian distribution and are thus non-parametric. The 

data were therefore represented using either histograms (Burg et al., 2013; Simon et al., 

2012), social space index (Burg et al., 2013; Simon et al., 2012) or box and whiskers 

(Kaur et al., 2015; McNeil et al., 2015; Wise et al., 2015). One limitation to using 

histograms is that they require the experimenter to arbitrarily define the bin size and is 

therefore open to user bias. Another previously used representation is the social space 

index, although it has been known to exclude large portion of the data and is therefore not 

an accurate representation of the results. Finally, although the box and whiskers 

representation is an accurate representation of the distribution of the social space of the 

individuals, it is ineffective at delivering the desired take home message of statistically 

significant differences. It is ineffective because overlapping adjacent boxes skew the 

visual interpretation and obscure the fact that even though there is an overlap in 

distribution, the medians and/or the internal variances can be significantly different.  

Therefore, an alternate mode of accurate representation that is more visually effective 

will aid in the efficient delivery of the take home message of the data. Indeed, the box 

and whisker representation includes the flies that are far away from the group but have no 

actual impact on the median, which is what is actually tested with the statistical tests. But 

these far away flies skew the distribution strongly in a non-reproducible manner such that 

although the medians are highly reproducible, the means of the social space assay are not. 

Here, I thus show a method of transforming the original data points from a non-
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parametric distribution to a parametric distribution by removing the statistical outliers, as 

described previously (Motulsky and Brown, 2006). This is also beneficial as statistical 

tests for parametric data are often more powerful (Conover and Iman, 2010). I will use a 

one-way ANOVA or student t-test to test for statistical significance between the means, 

instead of the whole distribution, as was previously compared when the data were non-

parametric. One final way I represent the data is using violin plots, which are a form of 

box plot that also shows the probability density around a certain value, resulting in a 

structure that could resemble a violin.  

I also show three ways data can be gathered from the social space images using in-house 

or published (McNeil, 2015) specially designed ImageJ macros: distance of each fly to its 

closest neighbour, distance between each fly and all other flies in the group, and the 

number of flies within each body length radius around each fly to interpret clustering 

patterns. Each of these measures gives different information about individual and group 

settling behaviour. The questions to address here are: does each measure follow the same 

trend? And if so, which measure is most effective at demonstrating the social spacing 

between flies?  

 

2.2 Methods 

2.2.1 Aging Drosophila melanogaster For The Social Space Assay 

The laboratory control strain Canton-S Drosophila melanogaster was reared in mixed sex 

in bottles over Jazz Mix media (brown sugar, corn meal, yeast, agar, benzoic acid, methyl 

paraben and propionic acid; Thermo Fisher Scientific, Waltham, MA, USA). All flies 

were maintained at 25°C, 50% humidity with a 12:12 light: dark cycle. New bottles were 

made bi-weekly when the parents were less than seven days old. Every Monday, existing 

flies in bottles were removed to prevent new emerging flies cohabitating with their 

parents. Every Wednesday, flies were collected from the bottles (40 flies/ vial, seven 

vials/week) under cold anesthesia (Fernandez et al., 2014). Flies were transferred to new 

media in vials every two-to-three days and were maintained for up to seven weeks. Here I 
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used seven- and 30-day-old Drosophila melanogaster to demonstrate data analysis of the 

social space assay.  

 

An unnamed mutant provided by a collaborator was used to demonstrate how different 

strains of flies might have different trends in social spacing between the nearest 

neighbours and between all flies in a group. Because this mutant was used in another yet 

unpublished study, it is not named here or described further. The data were collected by 

Sam Jolley and were the subject of an Honour’s Thesis.  

2.2.2 Social Space Assay And ImageJ Analysis 

The social space assay was performed and analyzed using the free image processing 

software ImageJ and the accompanying macros as previously described (McNeil et al., 

2015). In short, after flies were acclimated to the assay room (25°C, 50% humidity) for 

two hours, male and female flies were added via aspiration to the 2-dimensional vertical 

chamber composed of a series of glass and acrylic pieces that form a hollow triangle (15 

flies per chamber, separated by sex, n=9 replicates). Flies explore the chamber before 

settling along the glass, which usually occurs around 20 minutes following addition to the 

chamber (Simon et al., 2012). Images of the chamber were then taken at 30 minutes and 

were analyzed using ImageJ. Each fly’s distance to its closest neighbour, distance to 

every other fly in the chamber (denoted distance to all flies) and the number of flies 

within one-to-15 body lengths (average of 0.23 cm per male body length or 0.27 cm per 

female body length, denoted XY radius) were then gathered using specifically designed 

macros (denoted 1, 2, and 3, respectively) and all values were kept in a Microsoft Excel 

spreadsheet.  

2.2.3 Analysis Of The Data From The Social Space Assay Using 

GraphPad Prism 7 

The distances to the nearest neighbour by group were compiled into columns in Prism7 

and represented as box and whiskers to observe the raw distribution. A Kruskall-Wallis 

non-parametric statistical test (three groups or more are compared) or Kolmogorov-
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Smirnov (two groups are compared) was performed by ranking the values and evaluating 

the means of these ranks for significance. This was also performed for the distance to all 

flies and the number of flies per body length away from each fly.  

In order to transform the data from non-parametric to parametric data, outliers were 

removed using robust regression and outlier removal (ROUT) analysis on the original 

data by fitting the data to a model with a robust method in which outliers do not impact 

the fitting to the model (Motulsky and Brown, 2006). The outliers were identified 

through the false discovery rate (FDR) where the value used, Q, is set to its lowest rate 

(Q=0.1%) and only data points that were very far from the rest of the data (as predicted 

by the model) were removed as definitive outliers. The resulting data were then put into a 

new spreadsheet in Prism 7 and analyzed using either a one-way analysis of variance 

(ANOVA, p< 0.05) with a Holm-Sidak post test to correct for multiple comparisons or a 

student t-test as the data can now assume Gaussian distribution. These data were 

represented using a line indicating the mean and bars showing the standard error to the 

mean.  

2.2.4 Representation Of Data Using Violin Plots  

Violin plots were generated using the raw data gathered from the nearest neighbour 

macro (macro 1). The website I used to generate this visualization can be found at 

http://boxplot.tyerslab.com as this method was not available in GraphPad Prism 7 

(accessed June 2016). This method of representation shows the probability density of 

data at different values.  

 

2.3 Results 

In order to determine which mode of quantification of social spacing would best 

represent my data, I investigated several ways of measuring the social group. Figure 2.1 

shows a schematic diagram of transforming the original image taken during the social 

space assay into a black and white image using the software ImageJ. This program can 
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measure the distance to every fly and its nearest neighbour to give information about 

pairs, each fly’s distance in relation to every other fly in the group to give information 

about the whole group and finally the average number of flies located in each body length 

radius away from that fly to provide information about group formation. Each 

representation is shown as a box and whiskers representation with the horizontal line in 

the box representing the median and a “+” representing the mean. The box represents 

50% of the data points, the whiskers each represent 15% of the data points, and beyond 

the whiskers (above and below) each represent 10% of the data points. Young flies tend 

to be two-to-three body lengths away from their nearest neighbour and that is what is 

shown here (Simon et al., 2012). In the case of this aging study, all three measures 

indicate that each 30-day-old fly is more distal to its nearest neighbour, every other fly in 

the chamber, or there are fewer flies within each body length radius away from that fly 

(XY radius). When performing non-parametric tests such as the Kolmogorov-Smirnov 

test, that assess the cumulative ranking of the values for significance, the two groups 

were significantly different in each of the three measures, although the significant 

difference in the XY radius only arose after four body length radii away from each fly.  

Figure 2.2 shows an unnamed mutant and its control following the social space assay. 

Both the distance to the nearest neighbour and the distance to all flies are shown. 

Notably, the mutant’s median and mean distance to the nearest neighbour is more 

proximal than control (p< 0.01), where the median and mean of the mutant in the distance 

to all flies is more distal (p< 0.0001), exemplifying a scenario where these measures do 

not show the same trend.  

Figure 2.3 shows an additional mode of data visualization using the violin plot. The 

violin plots are used to represent the distances to the nearest neighbour at different ages 

to see if the values cluster around a specific distance. This representation is different from 

the box plot, as the box and whiskers will show the distribution with the size of the box 

but not where these values cluster. The seven-day-old males appear to have a more 

narrowed distribution indicative of the distribution within the social space chamber 

whereas the 30-day-old males have a wider and taller distribution indicative of a more 
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spread out pattern within the chamber, although this does not capture more information 

than was already provided by the box and whiskers in this case.  

While the box and whiskers representation has been used in the past, Figure 2.4 shows 

how the raw data represented as box and whiskers can be transformed and shown as a 

mean and standard error to the mean by conservatively removing the definitive outliers 

(Q=0.1%, robust regression and outlier removal analysis). In this case, the mean distance 

to the closest neighbour of seven-day-old male flies before outlier removal was 0.85 ± 

0.04 cm and 30-day-old flies had an average distance of 1.062 ± 0.05 cm with significant 

difference between the two groups (Kolmogorov- Smirnov non-parametric t-test p< 

0.0001). Additionally, the median for seven-day-old flies was 0.61 cm and for 30 days 

was 1.06 cm. Following outlier removal, the seven-day-old males had an average 

distance of 0.70 ± 0.03 cm with a median of 0.54 cm and 30-day-old males remained on 

average 1.06 ± 0.05 cm and median of 1.06 cm as no outliers were found. The median for 

seven-day-old males change during this transformation as it is much closer to the mean 

value. I performed this same analysis on the distance of each fly to every other fly in the 

chamber and the number of flies within each body length radius away from that fly using 

sex-specific body lengths (average of 0.23 cm per male body length or 0.27 cm per 

female body length) and found no outliers in either data set among young and old flies. 

This may be because of the large data set for both groups (15 measurements per fly per 

chamber with nine chambers total) and thus all measurements were considered part of the 

normal variation. 
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Figure 2.1 Schematic diagram of obtaining distance to nearest neighbour, distance of each fly to 

every other fly in the chamber (all flies) and the number of flies occupying each body length radius 

around each fly (XY radius) from the original social space image. The original image is converted to 8-

bit to transform each fly into a black figure on a white background. The scale sticker indicates a constant 

width of 1.9 cm on each image to be used during analysis for consistency among images. Using previously 

designed macros, distances to the nearest neighbour (NN), all flies (AF) and how many flies are within 

body length radii (XY radius) are given as an output. These measurements are then put into GraphPad 

Prism 7 for representation and analysis, as shown at the bottom of the diagram in a box and whiskers 

representation for the NN (left) and AF (center) and mean with standard error to the mean (XY radius - 

right). The box represents 50% of the distribution and the whiskers include 10-90% or the data points while 

the mean is represented within the box as a horizontal line and the mean as a + sign. In the case of aging 

flies, older flies (30-day-old males) are significantly further apart from their nearest neighbour (****p< 
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0.0001) and from all flies in the group (****p< 0.0001). As for how many flies lie within each body length 

radius (0.23mm per male body size), the differences between seven-day-old and 30-day-old group size are 

only significant after four body length radii away, as older flies are further away from the group than 

younger flies (*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001). Kruskall-Wallis non-parametric test 

with a Dunn’s post hoc test.  

 

 

Figure 2.2 Distance to nearest neighbour and distance to all flies for a control and an unnamed 

mutant shown with box and whiskers (+ indicates mean, horizontal line is the median). (A) The 

unnamed mutant is closer to its nearest neighbour in relation to the control and therefore have pairs of flies 

that are closer together (**p< 0.01; Kruskal Wallis). (B) The unnamed mutant has a further distribution of 

flies when measuring the distance of each fly to every other fly in the chamber as compared to control 

(****p< 0.0001). Kruskall-Wallis non-parametric test with a Dunn’s post hoc test. 
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Figure 2.3 The Violin plot representation shows the probable density distribution around each data 

point for the distance to the closest neighbour in seven and 30-day-old males. The black box is a box 

and whiskers representation with the white dot as the mean value. The shape surrounding the box is the 

clustering of values around a specific distance. In both the seven-day-old and 30-day-old males shown, 

there is clustering around the average of the box but a second cluster is seen in the 30-day-old males. 

However, this method does not yield more clarity regarding the distribution of the values for the distance to 

nearest neighbour than the box and whiskers.  

 

Figure 2.4 Schematic diagram of the transformation from raw data with ROUT analysis to identify 

outliers. ROUT analysis is applied to the raw data to remove only definitive outliers. The data now follow 

a normal distribution and can be represented using the mean and standard error to the mean in the distance 

to the nearest neighbour. The median of seven day old flies was 0.61 cm and for 30 days was 1.06 cm 

(Kruskall-Wallis non-parametric test with a Dunn’s post hoc test). Following outlier removal, the seven-
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day-old males had an average distance of 0.70±0.03cm with a median of 0.54 cm and 30-day-old males 

remained on average 1.06±0.05 cm and median of 1.06 cm as no outliers were found (one-way ANOVA 

with a Holm-Sidak post test). As no outliers were found in the data set of the distance to all flies or XY 

radius, the ROUT analysis was not included subsequently in this thesis.  

 

2.4 Discussion  

The social space assay is a behavioural assay that measures the distance between flies in 

a group. This information can vary based on mating status of the flies and previous social 

experience (Simon et al., 2012), certain mutant backgrounds (Wise et al., 2015), and 

finally age, as I will explore in later chapters. There are several ways of gathering and 

analyzing data from the social space assay. Each measure provides different information 

about the group’s spatial formation in the chamber. The distance to closest neighbour 

gives information regarding the spacing of pairs within the chamber, but not in relation to 

the group. To gain insight into the formation of the group, the number of how many flies 

occupy each body length radius away from a single fly is measured, which is information 

that is built upon the closest neighbour. The final measure is the distance to all flies, 

which is a collection of measurements of how far one fly is from every other fly in the 

group, which informs the formation of the entire group.  

When evaluating Drosophila group behaviour in the social space assay, all three 

measures of the social space assay must be evaluated for each condition. Although the 

overall group spacing (distance to all flies) may not be variable among treatment groups, 

one must keep in mind that these are averages of each fly to every other fly in the 

chamber and the mean may be masking some of the group properties. For example, flies 

may be gathered in smaller groups dispersed throughout the chamber, and a measure that 

would capture this may be the distance to nearest neighbour, where the nearest neighbour 

would be closer than the average of all flies. Similarly, the number of flies within each 

body length radius would reveal this pattern of smaller groups that would be lost in the 

distance to all flies measurement. Therefore, all three measurements should be performed 

for each experiment and then evaluated to see if the measures show a similar or different 
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trend. In the context of this thesis, analyzing the social spacing of Drosophila at different 

ages does not yield different trends among the three measures. This means that only one 

measure may be chosen as a proxy for the others as the pairing, small groups, and overall 

group information follows the same trend. However, in the case of the unnamed mutant, 

the distance to closest neighbour and distance to all flies did not yield the same trend. 

Here it is possible that the overall distribution of the population was dispersed throughout 

the chamber but was arranged in pairs or other small groups such that the distance to the 

nearest neighbour was more proximal but the overall social space in the chamber was 

more distal than control. Therefore, each measure must be evaluated to identify potential 

differences in pair and group formation.  

There are also several modes of representing these data. The first mode of representation 

is box and whiskers, as the data gathered from the social space assay is non-parametric. 

While this method represents the entire distribution, it is not as visually informative and 

can lead to some confusion as the statistics are performed on the entire cumulative 

distribution and may lead to significance, although the boxes may overlap, giving the 

appearance that their distributions are similar. However, we can eliminate this biased 

visual and generate parametric data by removing outliers of the entire distribution and 

representing the information as the mean with standard error to the mean. Finally, violin 

plots look at the shape of the distribution and where individuals choose to cluster. The 

violin plots showed the distribution of values clustered around the mean and therefore did 

not give more clarity or different information than the box and whisker do, and are thus 

not more visually different than the mean and standard error to the mean in this case.  

The outliers that are removed in the social space assay data are often “primer” flies that 

veer away from the group and look for new food sources to then direct the rest of the 

group to this source (Tinette et al., 2004). These primer flies are not reproducible at the 

same distance away from the group and may be constantly moving as the group is stable. 

While the reasons why these flies leave and how they behave may be of interest, as they 

may be entirely asocial, they are not of interest to the present study. These flies may be 

skewing the distances between flies and within the group and are therefore removed as 

statistical outliers. When the outliers are removed, the data are parametric where an 
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analysis of variance (ANOVA) or student t-test can be calculated to determine significant 

differences between groups. Visually this graph effectively produces a visual 

representation that demonstrates the statistical difference between the groups. Therefore, 

the mean and standard error to the mean will be used for all future studies. 

In conclusion, each of the three measures of distances between flies in a group should be 

used to understand the pair and group dynamics of the social model, Drosophila. 

Additionally, several modes of representation may be employed to visualize the data in a 

meaningful way.  Within the contexts of this project, each of the three measures led to a 

similar conclusion and for simplicity, only the distance to the nearest neighbour will be 

used for future analysis. Additionally, only the mean with standard error to the mean 

error bars will be used to represent these data, as this is the most effective way to 

demonstrate these results.  
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Chapter 3 – Thirty and 50-Day-Old Drosophila melanogaster And 

Their Progeny Are Less Social Than Seven Day Old Flies 

3 Abstract  

I explored whether social behaviours, specifically social spacing and social avoidance, 

change with aging using the social space and social avoidance assays. I also tested the 

transmissibility of these age effects by testing the progeny of aged Drosophila with both 

assays. I then investigated the effects of having one aged parent on the social behaviour 

of the progeny. I chose to study the effects of the progeny of aged fathers. In parallel, a 

student in our lab (Shirley Long, Honour’s Thesis 2015-2016) studied aged mothers and 

found that maternal age did not impact the social space of the male or female progeny.   

3.1 Introduction 

3.1.1 Behavioural Changes To Individuals With Age 

Specific behaviours are variable over time. Some behaviours have been shown to decline 

over time, such as locomotion, phototaxis, and geotaxis (over three proposed phases of 

aging, see Figure 3.1). Conversely, some behaviours have been shown to be more stable 

with aging, such as free fall flight, emission of Drosophila stress odorant (dSO) in 

response to a stressor, and avoidance of electric shock (Cook-Wiens and Grotewiel, 2002; 

Simon et al., 2006). In an analysis of Drosophila behaviours from life to death, walking, 

resting, feeding and flying behaviours each declined with age and were correlated with 

time-of-death (Carey et al., 2006). Similarly, a decline in negative geotaxis at four weeks 

of age has been seen in both males and females in addition to increased activity at night 

and increased courtship behaviour at night in males (Ratliff et al., 2015). However, fewer 

studies have reported the changes to group behaviours, such as the social spacing 

between individuals within a group, with aging. Therefore, I am investigating how group 

social behaviours change with aging. My first aim for this chapter is to characterize the 

social behaviour of aged individuals, particularly in terms of their social spacing and 
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ability to avoid vials that were previously occupied with stressed flies. My second aim is 

to determine if aging of the parents causes a change to the behaviour of the first 

generation via heritable material. If so, my third aim will be to determine for how many 

generations this effect persists. And finally, my last aim is to determine which parent is 

responsible for a change to the social behaviour of the progeny.  

 

Figure 3.1 Some of the behaviours that have been previously characterized as changing with age in 

Drosophila melanogaster. The performance of each behaviour begins at 100% when individuals are young 

(performance index on the y-axis, denoted %PI) and declines with aging at different rates. In the first phase 

of aging, survival is relatively stable but after two-to-three weeks, behaviours such as locomotion, 

phototaxis and geotaxis begin to decline in performance. In the second phase of aging, Drosophila begins 

to die and there is a plateau in the behaviour. In the third and fourth week of life where phototaxis, 

geotaxis, and learning appear to display stable behaviour while locomotion is also still declining. In the 

third phase of aging, the decline in locomotion has plateaued but phototaxis and geotaxis decline until 

death. Both free-fall flight and emission of the Drosophila stress odorant (dSO) are stable throughout life 

(Simon et al., 2006; Yost et al., unpublished lab data). This figure is used with permission granted from the 

authors (personal communication Dr. Anne Simon, University of Western Ontario).  

 

Emission 
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3.1.2 Changes To The Progeny Of Aged Parents  

Advanced parental age has been linked to decreases in progeny viability and behaviour 

(Nystrand and Dowling, 2014). It is suggested that this tradeoff occurs so parents can 

allocate more energy to producing high quality offspring at the expense of their own 

survival (Partridge and Gems, 2006). Likewise, it has been shown that rapid reproduction 

in early life reduces longevity in Drosophila, as resources have been invested into 

reproduction at the cost of longevity later in life (De Loof, 2011). Tradeoffs among 

longevity and fertility have been shown in relation to smaller testis size that produced 

fewer sperm, but these sperm were shown to also produce highly viable offspring in older 

male Drosophila melanogaster (Decanini et al., 2013). Studies have even shown that 

female D. melanogaster prefer to mate with older males as they are thought to have 

sperm of higher quality with genes that have allowed them to live longer (Rezaei and 

Krishna, 2015). Although both parents can contribute damage to the next generation, the 

type of damage introduced by each parent is often different. It is suggested that, in 

humans, issues arise in very young fathers due to fertilization with immature spermatids, 

whereas older sperm in fathers over 45 years have accumulated de novo mutations 

(Weiser et al., 2008). Alternatively, older mothers contribute increased trinucleotide 

repeats to the progeny (Weiser et al., 2008). Interestingly, parental age has been shown to 

affect the progeny in a sex-specific manner where mothers have been shown to have 

shorter lived D. melanogaster daughters whereas, to a lesser extent, fathers had shorter 

lived sons (Priest et al., 2002). 

In this chapter, I address how parental age can affect the social spacing of the next 

generation as advanced parental age has been shown to cause negative and irreversible 

effects on the progeny of these aged parents. Some traits that are affected include 

offspring viability, offspring longevity and changes to typical social and non-social 

behaviour in Drosophila (Hercus and Hoffmann, 2000), humans (D’Onofrio et al., 2014; 

Malaspina et al., 2001), and mice (Janecka et al., 2015). Many physiological traits change 

with age and affect the next generation, although this effect of aged parents on behaviour 

in the progeny has been less explored. I focus on both the joint effects of aged parents 

and the effect of having just an aged father. This is because recent studies have linked 
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behavioural disorders such as the Autism Spectrum Disorders (ASD) and Schizophrenia 

to older fathers (D’Onofrio et al., 2014). This is of particular interest to this project as 

ASD and Schizophrenia are types of neuropsychiatric disorders that include some form of 

social deficit. Thus, studying the effects of aging and social behaviour in Drosophila may 

give some insight into how these disorders may manifest in humans from having an aged 

parent.  

3.1.3 Oogenesis In D. melanogaster Changes With Age 

To determine how parental age can have an effect on the next generation, it is important 

to first understand how gametes are produced in both males and females and where 

damage can be introduced that will affect the progeny in terms of behaviour. Female 

gamete formation, or oogenesis, is complete in 14 stages and an overview is given in 

Figure 3.2 (Becalska and Gavis, 2009; Miller et al., 2014). The age of the female mostly 

has an adverse affect on the early stages, known as the previtellogenic phase, where the 

germ stem cells (GSCs) have developed into the oocyte and accompanying nurse cells. 

One way female age can affect oogenesis is via GSC exhaustion, which may account for 

some of the reduction in fecundity (progeny viability) with aging (Zhao et al., 2008). For 

example, in Drosophila serrata, increased maternal age resulted in decreased fecundity, 

which was compounded when both mother and grandmother were aged, while fathers 

consistently remained young (Hercus and Hoffmann, 2000). Similarly, in Drosophila 

melanogaster, aged mothers have been shown to lay eggs with lower egg-to-adult 

viability, lower larval-to-adult viability, and reduced egg-hatching success (Kern et al., 

2001). Additionally, changes in the production and sensing of hormones with aging may 

cause changes to egg production. For example superoxide dismutase, an enzyme that 

resists free radicals, has been linked to GSC proliferation and longevity and reduction in 

this enzyme may accelerate GSC depletion (Pan et al., 2007). Therefore, damage can be 

introduced to the female gametes during oogenesis that will subsequently affect the next 

generation. 
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Figure 3.2 Oogenesis of Drosophila is divided into 14 stages. Throughout the female Drosophila 

lifespan, eggs are constantly made from a limited pool of germ stem cells (GSC) and somatic stem cells 

(SSC) within the germarium. The GSCs will become cytoblasts that will further divide into nurse cells and 

an oocyte and the SSCs divide to become the egg chamber. The following stages of oogenesis are divided 

into the early stages, known as the previtellogenic phase, and the later phase called the vitellogenic phase 

(adapted from Becalska and Gavis, 2009). This figure is used with permission granted from the authors 

(personal communication Dr. Elizabeth R. Gavis, Princeton University).  

 

3.1.4 Spermatogenesis In D. melanogaster Changes With Age 

The process of spermatogenesis is divided into three stages including the proliferative, 

meiotic, and spermiogenesis phases (Marchetti and Wyrobek, 2005; Figure 3.3). 

Spermatogenesis in Drosophila is maintained by GSCs in the tip of testes around somatic 

cells called the apical hub. These hub cells are an important part of the stem cell niche in 

Drosophila and one study saw the level of a secreted ligand called unpaired (Upd; 

important for GSC self renewal) decreased with age (Boyle et al., 2007). Measuring 

sperm viability, motility, and identifying testes morphology have all been used to test the 

quality of sperm (Sloter et al., 2004). One study found that when comparing older (30-

and 50-day-old) male flies to young (1-to-2 day old) male flies, the testes appeared much 

thinner under phase contrast microscopy with fewer differentiated germ cells, indicative 

of decreased spermatogenesis (Boyle et al., 2007).  
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Over time, mature spermatozoa can become damaged due to thermodynamic changes in 

DNA leading to deamination, depurination, and the formation of thymine dimers (Siva-

Jothy, 2000). Additionally, sperm have very little cytoplasm containing proteins to 

facilitate the repair of these types of damage (Siva-Jothy, 2000). The sperm genome is 

also highly compacted in many organisms, including humans and Drosophila, compared 

to the genome of other cells (Belloc et al., 2009). This is due to the exchange in histones 

for more basic proteins called protamines, which further compact the genome and make 

repair more challenging (Belloc et al., 2009). Also, metabolic activity over time within 

the sperm can result in oxidative stress of DNA which can lead to a reduction in fertility, 

as shown in humans (Ahmadi and Ng, 1999). Interestingly, in Drosophila, advanced 

paternal age has not been shown to significantly affect overall mortality and only slightly 

affected egg-to-adult viability of the progeny after fathers were five weeks of age (Price 

and Hansen, 1998). However, damage to the sperm genome with aging can cause changes 

to the progeny, particularly in terms of their social behaviour. For example, in mice, the 

progeny of old fathers were less social with other individuals and displayed less 

exploratory behaviour when alone (Smith et al., 2009). A similar study even showed this 

effect when just the grandfathers of young mice tested were aged and the parental 

generation remained young (Sampino et al., 2014). Therefore, I will be investigating the 

effect of parental and paternal aging on social behaviours, including the social spacing 

between individuals and the avoidance of stressed individuals.  
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Figure 3.3 Spermatogenesis in Drosophila is comprised of three main stages. The first phase is the 

proliferative phase where stem cells undergo division in spermatogonia to become meiotic spermatocytes, 

The second phase is the meiotic phase where recombination generations haploid spermatids. The final stage 

is the spermiogenesis phase where mature spermatozoa are created by morphological and biological 

changes (Marchetti and Wyrobek, 2005). Spermatogenesis in Drosophila is maintained by germline stem 

cells (GSC) in the tip of testes around somatic cells called the apical hub (Tran et al., 2000).  This figure is 

adapted from a review on spermatogenesis with permission granted by the author (personal correspondence 

Dr. Steve DiNardo, University of Pennsylvania).  

3.1.5 Significance And Hypothesis  

Many of the studies that have been done on advanced parental age and social behaviour 

in human has been in the context of disorders such as ASD. ASDs are a heterogeneous 

group of disorders in which a social deficit is an important criterion for diagnosis, in 

addition to communication deficits and repetitive or restrictive behaviour (Holt and 

Monaco, 2011). Importantly, one example of the social deficit experienced by individuals 

with ASD is difficulty regulating personal space (Gessaroli et al., 2013). Additionally, 

fathers over the age of 45 have been linked to children with neuropsychiatric disorders 

such as ASD and Schizophrenia, which are diseases that include a change in stereotypical 

social behaviours (D’Onofrio et al., 2014). Interestingly, one study found that individuals 

born to both very young fathers (under 20 years old) and older fathers (over 45 years old) 
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had poorer social function than those born to fathers in between these ages (Weiser et al., 

2008). Similar changes in children were correlated with very young mothers and mothers 

over the age of 35 years and particularly affected male children (Myrskylä and Fenelon, 

2012). Individuals with psychopathy, which is another neuropsychiatric disorder, actually 

prefer to have closer interpersonal space, although no information regarding parental age 

and psychopathy has been determined (Vieira and Marsh, 2014).  

Based on this, I hypothesize that social space will change with age and this effect will be 

passed onto the next generation. I first determine what is considered “aged” for 

Drosophila by generating a survival curve and expect that at 25°C Drosophila will live 

until around three months according to previous studies (Maynard-Smith, 1958). I then 

characterize Drosophila at 100%, 90% and 50% survival using the social space assay and 

test the progeny of flies at these ages as well and test subsequent young generations to see 

how long the effect, if any, will last. I also characterize the avoidance of a form of stress 

in both aged individuals and their progeny. And finally, I characterize the social space of 

the progeny of old fathers and perform morphological measures of the sperm in males of 

different ages.  

3.2 Methods  

3.2.1 Fly Handling 

All flies were maintained at 25°C, 50% humidity with a 12:12 light: dark cycle. Weekly 

fly collections and sexing was always done over cold anesthesia. All flies were 

maintained over Jazz mix media (brown sugar, corn meal, yeast, agar, benzoic acid, 

methyl paraben and propionic acid; Fisher Scientific).  

3.2.2 Stocks Of Canton-S Drosophila melanogaster And Aged 

Flies  

The laboratory control strain Canton-S Drosophila melanogaster was reared in mixed sex 

in bottles over Jazz Mix media. Fresh food bottles of Drosophila are made bi-weekly 

when the parents are less than seven days old. Every Monday, existing flies in bottles 
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were removed to prevent new emerging flies cohabitating with their parents. Every 

Wednesday, flies (one-to-three days old) were collected from the bottles (40 flies/ vial, 

seven vials/ week) under cold anesthesia (Fernandez et al., 2014). Aging flies were 

transferred to new media in vials every two-to-three days.  

3.2.3 Survival Curve 

Survival curves were performed as in Simon et al. 2003. Specifically, Canton-S D. 

melanogaster were collected from stock bottles under cold anesthesia at two to three days 

old (40 flies mixed sex flies/ vial, n=9 vials, tested in parallel over three consecutive 

weeks (n=3 per week for 3 weeks)) and maintained over Jazz Mix media (50% humidity, 

25°C, and 12:12 light: dark cycle) until death. D. melanogaster were transferred to new 

food every two-to-three days and the number of dead flies were then counted. The 

resulting survival curve was generating using Microsoft Excel. This curve was then used 

as the basis for all subsequent studies that required flies at 100%, 90% and 50% survival.  

3.2.4 Fertility And Fecundity Curves 

Fertility and fecundity curves were performed as in Simon et al. 2003. Fertility is 

measured here as the number of eggs laid per female over the course of the Drosophila 

lifespan. Fecundity, however, is a measure of the number of progeny that arise from the 

eggs laid, and can also be referred to as the egg-to-adult viability. Both fertility and 

fecundity are average values per female per day and are represented as cumulative values 

over time. Virgin female Canton-S D. melanogaster are collected with young male (< 2 

days old) D. melanogaster and maintained over Jazz Mix media containing several drops 

of blue food dye (club house®) for contrast to visualize eggs (5 males and 5 females per 

vial, n= 3 vials tested in parallel, repeated on 3 different weeks for a total of n= 9 vials). 

Flies were transferred daily into fresh vials and the number of eggs laid per day was 

counted daily to quantify fertility. The number of dead males and females were also 

quantified for later calculations of the number of eggs and progeny laid per female. 

Fecundity (egg-to-adult viability) was assessed by counting the resulting progeny ~11 

days later, when they emerge as adults. The fecundity of the progeny of 30-day-old flies 
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(first generation) and the progeny of 30-day-old grandparent flies (second generation) 

were also measured. The resulting cumulative curves of fecundity were generated using 

Microsoft Excel.  

3.2.5 Generating Old Flies And The Progeny Of Old Flies 

The old flies were generated through maintaining Canton-S Drosophila melanogaster by 

transferring them to new food every two days (see 3.2.2). At 90% survival (30 ± 1.53 

days, Figure 3.4) the progeny of old flies were saved and allowed to develop to adulthood 

(first generation). At one week old, the progeny of this first generation were collected and 

allowed to develop to adulthood and were also be used for behavioural tests (second 

generation). This cycle of maintaining flies and collecting the progeny of both young and 

aged flies continued for several generations (second, third, fourth and fifth generations of 

young and old flies) and were tested with the social space assay.  

3.2.6 Generating The Progeny Of Old Fathers  

In order to generate progeny from an old father but a young mother, D. melanogaster 

were collected from stock bottles under cold anesthesia (two-to-three days old; 40 flies/ 

vial, 7 vials/ week) and were aged to 30 days by transferring them to new Jazz Mix media 

every two-to-three days. Thirty-day-old D. melanogaster males were then separated from 

females under cold anesthesia and were set aside to be mated (5 males/vial; n= 9). Virgin 

female D. melanogaster were collected from stock bottles several hours after removing 

existing flies and were put into vials containing 30-day-old males (5 females/ vial; n= 9). 

Three days following mating, the flies were removed and the resulting eggs were allowed 

to emerge to adulthood. The progeny of 30-day-old fathers were then separated by sex at 

seven-days-old (15 flies/ vial; separated by sex; n= 9).  

3.2.7 Social Space Assay 

The social space assay was performed as previously described (McNeil et al., 2015; 

Simon et al., 2012), and in Chapter 2. The assay was always performed at the same time 

of day, Zeitgeber time (after the onset of light) 4 to 7 (12 pm to 3 pm) as the time of day 
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has been shown to affect social spacing (McNeil et al., 2015). In short, Drosophila was 

acclimated to the behavioural room (25°C, 50% humidity) for two hours prior to being 

added via aspiration to a two-dimensional vertical space composed of a series of glass 

and acrylic pieces that form a hollow triangle, known as the chamber (15 flies per 

chamber, separated by sex, n= 9 replicates). Flies were permitted to explore before 

settling along the glass (~20 minutes until settled). Images of the chambers were taken at 

30 minutes when flies have settled (Simon et al., 2012). The images were analyzed using 

ImageJ to get the distance to the closest neighbour. These distances were analyzed with 

the statistical program Prism7 to assess significance using a one way-ANOVA with a 

Holm-Sidak test to correct for multiple comparisons in groups larger than two, or an 

unpaired t-test for groups of two (all measurements expressed as a mean ± standard error 

to the mean, see chapter 2 for details). Social space assays were performed using flies at 

14, 21, 30 or 50 days of age flies and the progeny (first generation) of flies at seven, 30 

and 50 days of age, as compared to seven-day-old flies. 

3.2.8 Social Avoidance Assay 

The social avoidance assay was performed as previously described (Fernandez et al., 

2014). In short, I utilized a T-maze apparatus to provide a binary choice to groups of 

same sex flies (responders): whether to enter a clean vial or enter a vial that has been 

filled with Drosophila stress odorant (dSO) by vortexing (emitter) flies. The performance 

index was calculated as the number of responder flies that avoided the stress minus the 

number of flies that did not avoid the stress multiplied by 100 and divided by the total 

number of flies in the assay. Responder and emitter flies were collected at least 24 hours 

prior to the assay. As sex does not affect emission of dSO (Fernandez et al., 2014), 

emitter flies were seven days old in equally mixed sex per responder group. Responder 

flies were young (seven days old), old (30 days old) or the progeny of young or old flies 

(20 flies/ vial, separated by sex, n= 9 per sex and condition). All conditions within the 

behaviour room are described above. All results are reported as a performance index that 

evaluates the number of flies that enter the stress vial, the non-stress or empty vial, and 

those that do not make a choice (Kruskall-Wallis non-parametric test with a Dunn’s post 

hoc test).  
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3.2.9 Microscopy Of Drosophila melanogaster Testes Morphology 

And Quantification Of Sperm Bundles   

Male Drosophila at seven, 30, and 50 days of age were submerged in testes buffer 

(deionized water, 183 mM KCl, 47 mM NaCl, 10 mM Tris-HCl; n= 10 males per age 

group) on a glass dish under a dissection microscopy (Nikon SMZ1500). Tweezers were 

used to remove the testes and surrounding accessory gland tissue and whole testes were 

transferred to a new glass slide containing testes buffer and secured with a glass 

coverslip. The gross testes morphology was evaluated and the sperm bundles are counted 

before adding DAPI solution (0.2% mg/ml) to visualize the sperm heads (Sitaram et al., 

2014). The number of bent versus the number of straight sperm heads was also quantified 

and a two-way ANOVA was used to compare the number of straight and bent sperm 

heads at different ages.  

3.3 Results  

3.3.1 Survival and Fecundity Of Drosophila melanogaster  

A survival curve was generated to determine when Canton-S Drosophila melanogaster 

begin to die and can then be considered “old” for future studies (Figure 3.4). Drosophila 

at seven days is used as control from now on because there is no known senescence at 

this age and there is 100% survival (referred to as “young”). Thirty-day-old flies are 

considered “old” as this is when survival begins to decline (90% survival) and will 

continue to decline (50 days old, 50% survival; 72 days old, 10% survival). Although 

groups of flies can be aged until 10% survival, these aged flies were not used in this study 

due to the inherent low quantity limitation. The cumulative fecundity (egg-to-adult 

viability) of female Drosophila with age is also shown on Figure 3.4, where egg-to-adult 

viability is maintained until 49 ± 3.18 days (65.53 progeny per female, cumulative), at 

which point fecundity then plateaus until female death. Interestingly, there appears to be 

a lag period of fecundity under 10 days, as seen in other studies of age, before a steep 

increase in the egg-to-adult ratio per female between 10 and 40 days (Novoseltsev et al., 

2003).  
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Figure 3.4 Survival and fecundity curve of Canton-S Drosophila melanogaster at 25°C (40 flies/ vial, 

n=9 vials). Seven-day-old flies have 100% survivability and are considered young, whereas 30-day-old 

(90% survival) and 50-day-old (50% survival) flies are both considered old (40 flies per vial, mixed sex, n= 

9). Egg-to-adult viability of the progeny is stable until 49 ± 3.18 days when fecundity reduces until female 

death (5 male and 5 female per vial, n= 9 vials).  

3.3.2 Social Space Of Drosophila Changes With Aging  

Now that I have established a baseline for the ages to study, I chose to test young 

Drosophila melanogaster (seven-day-old, control) compared to those at 14, 21, 30 and 50 

days when Drosophila survival declines. Young flies are around three body lengths apart 

from their nearest neighbour, which falls into the upper boundary of what has been 

previously reported for this age (Simon et al., 2012). Young Drosophila is more proximal 

to their closest neighbour at seven days of age than those at 30 and 50 days of age in both 

sexes (one-way ANOVA, ****p< 0.0001; Figure 3.5A). However, flies at 14 and 21 days 

of age are more proximal to their closest neighbour than those at seven days old for both 

sexes (****p< 0.0001 males, **p< 0.01 females). Interestingly, this time period overlaps 

with the steep incline in fecundity seen in Figure 3.4. All values for the distances between 

neighbouring flies at different ages can be found in Appendix A.  
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3.3.3 Changes To Social Space Are Passed On To The Next 

Generation Only 

I then studied the progeny of the aging flies. The seven-day-old progeny of parents that 

are either seven, 14, 21, 30 or 50 days old are tested with the social space assay (Figure 

3.5 B). All values for the distances to the nearest neighbour can be found in Appendix B. 

The progeny of 30-day-old parents and 50-day-old parents are more distal to their closest 

neighbour than the progeny of seven-day-old parents (***p< 0.001 males, *p< 0.05 and 

****p< 0.0001, respectively in females; one-way ANOVA). In males, the progeny of 14-

day-old parents and 21-day-old parents are no more or less distal to the nearest neighbour 

than controls or the progeny of 30-day-old parents. However, the female progeny of 14-

day-old parents are more proximal to the nearest neighbour than the progeny of seven-

day-old parents (*p< 0.05), whereas the progeny of 21-day-old parents are no more or 

less proximal. Interestingly, their progeny also displays the pattern observed in the 

parents, which is consistent with an inherited factor or mechanism.  

Finally, the effect of having aged parents is somewhat ameliorated by the second 

generation as the social space between the progeny of old grandparents and the progeny 

of young grandparents is not significantly different (Figure 3.5 C). This is also true for 

the next three generations where the intervening generations remain young and only the 

parental generation is aged, although some variation is observed (Figure 3.5 D-F; 

Appendix B).  
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Figure 3.5 Aged D. melanogaster are more distal to their closest neighbour and this effect is 

transmitted to the next generation but then stops in the following generations. (A) to (F): each graph 

represents the distance of each fly to its nearest neighbour in the social space assay. The sex of the animal 

is indicated above each column. Social spacing is shown as the mean and standard error to the mean of the 
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closest distance between neighbouring flies (One-way ANOVA followed by a Holm-Sidak post hoc test in 

each sex separately - Each set of asterisks represents statistical significance: *p< 0.05, **p< 0.01, ***p< 

0.001, and ****p< 0.0001.). (A) Effect of age: Social space of males and females as compared to seven 

days old, 14, and 21 days old are closer to their closest neighbour and older flies at 30 and 50 days old are 

further (B) Effect of having parents aged beyond seven days old: Social spacing in the progeny of parents 

aged to seven, 14, 30, or 50 days old while the progeny are tested at seven days old. The progeny of 30- 

and 50-day-old D. melanogaster are more distal to their closest neighbour in both males and females than 

the progeny of seven-day-old flies. The male progeny of 14 and 21-day-old parents are no more or less 

social than the progeny of seven-day-old. However, the female progeny of 14-day-old flies only is 

significantly closer to their closest neighbour than control. (C,E,F) The second, fourth and fifth generations 

of seven and 30-day-old flies do not differ in social space in both sexes. (D) The third generation of seven 

and 30-day-old flies do not differ in social space in males but the third generation of 30-day-old flies in 

females are further apart from the third generation of seven-day-old flies.  

 

3.3.4 Social Avoidance Of Aged Flies And The Progeny Of Aged 

Flies 

I then assessed how the aging process affected another social behaviour: avoidance of the 

marking left by stressed flies, or dSO. Seven-day-old males and females have a higher 

performance index, and are therefore more able to avoid the stressor, than flies at 14, 21, 

and 30 days of age (Figure 3.6). Due to a lack of flies at 50 days old required for this 

assay (20 flies per replicate versus 15 for social space that was also carried out over an 

extended period of time), I was unable to test flies at this age with social avoidance but 

was able to obtain enough progeny to test them with the social avoidance assay. Because 

the 14- and 21-day-old flies appeared to have a lower performance index similar to those 

at 30 days old, I chose to test the progeny of 30 days old and not the progeny of 14 or 21 

days old. The progeny of 30-day-old flies and 50-day-old flies have a lower performance 

index than the progeny of young flies, but not significantly differently. All values for 

performance index at different ages and the progeny of different ages can be found in 

Appendix C.  
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Figure 3.6 Aged flies and the progeny of aged flies have a lower performance in the social avoidance 

assay than young flies. (A-B) both graphs represent the performance index of Drosophila at different ages 

or the progeny of parents at different ages using the social avoidance assay to test the ability of these flies 

to avoid vials with previously stressed flies. A lower performance index indicates a fly’s lack of ability to 

avoid this stress. The sex of the animal is indicated below each column. Social avoidance is shown as the 

mean and standard error to the mean of performance (Kruskal-Wallis non-parametric test followed by a 

Holm-Sidak post hoc test in each sex separately, the asterisks represent statistical significance with *p< 

0.05). (A) At 14 days, males are significantly lower on the performance index of avoiding stress than 

control seven-day-old males and 21- and 30-day-old males follow the same trend, although not 

significantly different. Similarly, aged females have lower performance, where only females at 21 days old 

are significantly lower in performance. (B) The young male progeny of 30 days old flies are significantly 

lower on the performance index of avoiding stress than control seven-day-old males and the male progeny 

of 50-day-old parents follow the same trend, although not significantly. Females follow a similar trend of 

decreased performance although not significantly.  
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3.3.5 The Progeny Of Aged Parents Live Longer And Have 

Reduced Fecundity  

To identify how aging of parents would affect life history traits of the progeny and grand-

progeny, a survival and fecundity curve of the first and second generation of aged parents 

is generated. I also extracted the number of eggs laid and progeny that developed from 

those eggs at 100%, 90%, and 50% survival for each generation.  

The seven-day-old progeny of 30-day-old Drosophila are able to live up to 160 days in 

the lab (Figure 3.7A), exceeding the lifespan of the progeny of seven-day-old Drosophila 

who are able to live until 90 days. The second generation of 30-day-old flies do not live 

longer than the first generation or control. Additionally, differences in survival among the 

three groups (control, first generation of aged parents and second generation of aged 

parents) are significant after each group reaches 50% survival, as shown in Figure 3.7A. 

Control flies reached 50% survival at 52 ± 7.51 days, whereas the first generation reached 

this survival at 66.5 ± 0.50 days and the second generation at 33 ± 8.00 days (Figure 

3.7B). The maximum survival also significantly different among the three groups, as the 

control lived to a maximum of 91.3 ± 2.60 days, the first generation of old parents lived 

to 148 ± 9.00 days and the second generation of old parents was 64 ± 1.00 days (Figure 

3.7B). Fertility per female (Figure 3.7C) and fecundity per female (Figure 3.7D) each 

show no difference in the egg laying and progeny viability at the different age points for 

each group. The differences among fertility (number of eggs laid, cumulative) and 

fecundity (number of progeny developed, cumulative) rates were not different at 100% 

and 90% survival. However, the fertility and fecundity at 50% survival of the control 

(fertility: 102.08 ± 11.82, fecundity 56.92 ± 5.09) were significantly different from the 

first generation (fertility: 161.92 ± 25.90, fecundity: 96.76 ± 14.48) and second 

generation (161.62 ± 21.77, fecundity: 102.73 ± 14.25) of old parents. Additionally, 

maximum fertility and maximum fecundity was greatest for the second generation of old 

parents (fertility: 202.02 ± 31.67, fecundity: 105.81 ± 13.68), followed by the first 

generation of old parents (fertility: 164.45 ± 27.25, fecundity: 101.82 ± 16.14), in 

comparison to control (fertility: 112.51± 8.67, fecundity: 57.52 ± 4.91).  
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Figure 3.7 The progeny of 30-day-old parents (red) has increased longevity and reduced fecundity, 

which is not fully recovered in the second generation. (A) The first generation of old parents have 

increased survival until 160 days. The progeny of young individuals (control, purple) has similar longevity 

to the progeny of old grandparents (blue). The second generation of old parents (old grandparents) survives 

until 72 days. Cumulative fecundity among for each generation is also shown on the secondary axis. (B) 

Differences among survival only arise when comparing 50% survival in the three generations. At 50%, the 

control generation (parental, mean survival 52.3 ± 7.51 days) and the first generation (66.5 ± 0.50 days) are 

not statistically different. However, the second generation (33 ± 8.00 days) is significantly different from 

both control (*p< 0.05) and the first generation (***p< 0.001). The maximum (max) survival of the control 

(91.3 ± 2.60 days) was significantly different from both the first generation (148 ± 9.00 days; ***p< 0.001) 

and the second generation (64 ± 1.00 days; ****p< 0.0001; two-way ANOVA with a Holm-Sidak post hoc 

test). (C) The fertility among the different generations was not significantly different at 100% and 90% 

survival, but was different at 50% survival and in terms of maximum number of eggs laid per female. 

Control flies laid fewer eggs per female (102.08 ± 11.82 eggs) by 50% survival, than the first generation of 

old flies (161.92 ± 25.90; *p< 0.05) and the second generation (161.62 ± 21.77; *p< 0.05). Control flies 

also had reduced maximum fertility per female (112.51± 8.67) relative to the first generation (164.45 ± 

27.25; *p< 0.05) and the second generation (202.02 ± 31.67; ***p< 0.001; two-way ANOVA with a Holm-

Sidak post hoc test). (D) The fecundity among the different generations was not significantly different at 

100% and 90% survival, but control flies had fewer adult progeny per female (56.92 ± 5.09) by 50% 

survival than the first generation (96.76 ± 14.48; **p< 0.01) or the second generation (102.73 ± 14.25; 

**p<0.01). Control flies also had fewer progeny overall per female (57.52 ± 4.91) as compared to the first 

generation (101.82 ± 16.14; **p< 0.01) and the second generation (105.81 ± 13.68; ***p< 0.001; two-way 

ANOVA with a Holm-Sidak post hoc test). 
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3.3.6 30-Day-Old Fathers Have Seven-Day-Old Progeny That Are 

Further Apart And Have Altered Sperm Morphology  

To see the impact of having one aged parent on the progeny, I mated old male flies (30 

days) with virgin females and tested their progeny in social space. I found that the male 

progeny of 30-day-old males are more distal to their closest neighbour than the male 

progeny of seven-day-old males (**p< 0.01;Figure 3.8; Appendix D). However, the 

female progeny of 30-day-old males is no more distal to their closest neighbour than the 

female progeny of seven-day-old males.   

I then used both light microscopy and fluorescent microscopy to see if there were any 

visual differences in the number of sperm bundles, testes morphology and sperm head 

morphology of young and old males that may give an indication into how the fathers are 

affecting the progeny (Figure 3.9A). On average, 7-day-old males yielded 18.6 ± 1.50 

sperm bundles per testis, whereas 30-day-old males had 14 ± 1.18 sperm bundles per 

testis and 50-day-old males had 10.4 ± 1.02 sperm bundles (Figure 3.9B). Due to the 

reduction in visual sperm heads in 50-day-old males, only 30-day-old males sperm are 

shown but the sperm bundles present within the testes were still visible. When sperm 

were treated with a dye that intercalated between the bases of DNA, DAPI, the overall 

morphology of the sperm heads was visible. As seen in Figure 3.9A, the sperm heads of 

young males appear straight whereas the heads of older males appears bent. In each testis 

of seven-day-old males there were on average 39 ± 2.48 straight sperm heads and no bent 

sperm heads, whereas in 30-day-old males there were an average of 15 ± 4.95 straight 

sperm heads to 12.5 ± 5.39 bent sperm heads and 50-day-old males had an average of 

19.5 ± 8.65 straight sperm heads and 8.5 ± 2.99 bent sperm heads (Figure 3.9C).  
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Figure 3.8 The male progeny of aged fathers are less social. The male progeny of 30-day-old fathers are 

more distal to their closest neighbour than the progeny of young fathers (unpaired t-test; **p< 0.01). 

Females are not statistically different if their fathers were young or old.  
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Figure 3.9 Older males have altered testes morphology and a bent sperm head shape. (A) The images 

on the left show the sperm and testes of seven-day-old males (top) and 30-day-old males (bottom) under 

light microscopy. Testes in older males appear thinner and darker with fewer sperm bundles than those in 

younger males. Images on the right show the same males under fluorescent microscopy where sperm heads 

are visualized with DAPI. The sperm heads of older males appear bent or misshaped as compared to the 

straight heads of seven-day-old sperm. (B) With age, the average number of visual sperm bundles present 

in the testes declines with age (18.6 ± 1.50 bundles in seven-day-old flies, 14 ± 1.18 bundles in 30-day-old 

males, and 10.4 ± 1.02 bundles in 50-day-old males; n= 5, mean and standard error to the mean). (C) With 

age, the number of straight sperm heads decreases with age and there are bent sperm heads at older ages 

(39 ± 2.48 straight: 0 bent at seven days old, 15 ± 4.95 straight: 12.5 ± 5.39 bent at 30-days-old, and 19.5 ± 

8.65 straight: 8.5 ± 2.99 bent at 50-days-old). Seven-day-old males have significantly more straight sperm 

heads than 30-day-old males (*p< 0.05), 50-day-old bent sperm heads (**p< 0.01), and than seven-day-old 

bent sperm heads (***p< 0.001). However, the differences between straight and bent sperm heads were not 

significantly different among 30- or 50-day-old males (two-way ANOVA). 
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3.4 Discussion 

3.4.1 Survival And Fecundity Decrease With Aging 

Drosophila melanogaster survival begins to decline at 30 days and further at 50 days so 

these ages were used continuously throughout this study as measures of aged individuals 

and parents, which corresponds to what others have used in aging studies (Hu et al., 

2014; Maynard-Smith, 1958; Simon et al., 2003, 2006). I found that fecundity, or egg-to-

adult viability, a common measure of progeny sustainability, declined after 49 ± 3.18 

days (similar to Simon et al. 2003). However, the progeny could still be tested and 

collected from the parents of 50-day-old individuals (Price and Hansen, 1998). Between 

one and around nine days, there was a lag in the rate of egg and progeny production that 

then increased after 10 days, which has been reported by other researchers (Novoseltsev 

et al., 2003). Perhaps this is due to the presence of seminal fluid in the female 

reproductive tract following the onset of mating in early life (under one week old) that 

has been shown to affect behaviour and up-regulate oogenesis (Wolfner, 1997).  

Interestingly, the fecundity and fertility of the first generation of old parents was not 

reduced but longevity was increased, as compared to the progeny of young parents and 

the second generation of old parents. Some studies have shown that the first generation of 

parents that have been exposed to a stressor (aging, in this case) have increased longevity 

and reduced fertility and fecundity as a mode of stress resistance. It is suggested that 

energy is diverted away from progeny production in order to extend longevity (De Loof, 

2011). However, this tradeoff was not seen as the progeny production of the first 

generation of old flies was increased relative to control and was maintained in the second 

generation of aged parents. Therefore, it is possible that the aging stressor was not a 

powerful enough force to induce this strong trade-off with longevity and fecundity, 

although behaviour was affected, as discussed below. Interestingly, the second generation 

of aged parents had reduced longevity relative to control but maintained fertility and 

fecundity.   
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3.4.2 Aged Flies And The Progeny Of Aged Flies Are Less Social  

Group formation is proposed to be necessary for more complex behaviours to take place, 

such as courtship and feeding (Dankert et al., 2009; Hahn et al., 2013; Schneider and 

Levine, 2014). I found here that the social spacing between pairs of flies in a group 

changes with aging and can be passed on to the next generation, in an atypical manner for 

behaviour. Changes through age of social spacing did not follow any of the patterns 

described in Fig. 3.1. Instead of a progressive change, I found that there was a stepwise 

pattern. 

I found that at 14 and 21 days of age, both males and females were more proximal and 

therefore more social with respect to the nearest neighbour as compared to those at seven 

days old. This may be correlated with increased fertility and fecundity at this age as 

individuals have a high fecundity rate at this age. It is possible that females would have 

an increase in seminal fluid buildup, as discussed above, which could lead to changes in 

female behaviour and thus more proximal social space at this age. Additionally, other 

chemical compounds transferred during copulation could be affecting social spacing. For 

example, cis-vaccenyl acetate (cVA), which has been implicated in proper social spacing 

and aggregation (often around food), is also transferred during copulation from males to 

females (Bartelt et al., 1985). Thus when Drosophila females are most fertile, they are 

most receptive to copulation and will have a buildup of these chemicals possibly resulting 

in more proximal social space (Lof et al., 2008). Similarly, when individuals are highly 

fertile, they may be more social as to look for sexual partners, which may explain the 

increased social space in individuals at 14 and 21 days of age. Interestingly, at older ages 

(four and seven weeks of age), individuals become more distal. An evolutionary 

explanation for this phenomenon may be the antagonistic pleiotropy theory, which 

explains how pleiotropic genes that are beneficial in early life and promote reproduction 

will become detrimental in later life. This may also be the pattern that is seen with social 

spacing, as individuals are more proximal at younger ages when they are highly fertile 

and then become more distal at older ages when fecundity declines.  
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At older ages, however, both males and females were more distal, or less social. There 

are several possibilities that may explain this result. Firstly, there may be an advantage to 

being more distal, or less social when older, as it has been suggested in humans who tend 

to have smaller social networks as they age so they can focus on more meaningful 

relationships (Charles and Carstensen, 2010). Perhaps this could be occurring in flies as 

they are only interacting with the same sex in the social space assay who may not be 

providing them with any specific benefit and thus there is no pull factor to bring them 

closer together. Secondly, there may be no reproductive or other incentive to be more 

social when older so individuals may be indifferent to being closely grouped. And finally, 

if sensory perception such as olfaction is important for proper social spacing, decline in 

the sensory modalities with age may be causing a change in the social behaviour of aged 

flies. The age at which flies become more (two and three weeks) or less (four and seven 

weeks) social falls into the second and third phase of aging, respectively, where other 

behaviours are in decline but have plateaued in the second phase before completely 

declining in the third, such as locomotion and geotaxis (Simon et al., 2006). It is possible 

that the change in these behaviours has an effect on social behaviours as well. 

Additionally, at two and three weeks, the social spacing is closer which corresponds with 

the plateau of some behaviour.     

The effect of both more proximal social spacing at two and three week old parents and 

more distal spacing at four and seven week old parents was transmitted to the next 

generation. Because the progeny were more social with two and three week old parents 

and less social when their parents were older, this cannot be explained by decay in 

sensory modalities or an accumulation of genetic mutations that are passed on, as I would 

expect a gradual increase in their social spacing or a progressively less social phenotype. 

This also cannot be a learned behaviour from the parents as the different generations were 

never in contact.  

Several ideas may explain this phenomenon. Firstly, random mutations have a higher 

chance of affecting longer genes. Many long genes are often involved in the structure and 

function of the synapse and thus random mutations that are likely to affect longer genes 

will affect synapses and thus social behaviour, including social spacing (King et al., 
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2013). Perhaps fewer mutations, that accumulate in two or three weeks, result in an 

inhibition of repulsive cues in the environment causing the progeny to be more social, 

whereas more mutations that have accumulated by 30 or 50 days old in the parent result 

in greater repulsive cues causing them to be less social. Secondly, the damage that is 

introduced to the gametes is due to factors external to the genome, like certain types of 

RNA. Mutations in part of the RNA silencing system known as Piwi RNA have 

previously been shown to cause defects in oogenesis and reduce the number of GSCs 

(Malone and Hannon, 2009). One member of the piwi RNA (piRNA) group found in 

Drosophila, known as Aubergine (Aub) has also been shown to interfere with 

gametogenesis, the development of the embryo and has even been linked to 

accumulations of double stranded breaks in the DNA of germ cells (Harris and 

Macdonald, 2001; Klattenhoff et al., 2007). These piRNA are also involved in silencing 

transposons and defects would lead to increased transposition, which could affect genes 

of the next generation and possibly interfere with their ability to perceive environmental 

cues (Malone and Hannon, 2009).  

The effect of having aged parents was not visible following the first generation, as the 

second through fifth generation of old parents were as social as those with young parents. 

This may be due to increased heterogeneity within the population, which could 

ameliorate the damaging effects of the aged parents, and thus changes in social behaviour 

were not observed. However, there were differences in third and fifth generation of old 

parents in females were the third generation females were less social and the fifth 

generation females were more social. This may be due to inherent genetic variation 

within the population that may also be affecting the seven-day-old controls resulting in a 

significant difference between the third and fifth generations of old and young parents. 

Perhaps these generations should be characterized again based on other behaviours to see 

if there is a difference.  
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3.4.3 Aged Flies And The Progeny Of Aged Flies Are Less Able To 

Avoid the Drosophila Stress Odorant  

Social avoidance is the avoidance of a stressor, where in this context the stressor is a vial 

that previously contained stressed flies that emit the Drosophila stress odorant (dSO). In 

a more typical manner for behaviour with aging, both males and females were less 

efficient at avoiding this stressor. This may be due to a loss of sensory perception with 

time, like the ability to detect odors, which has been previously shown to deteriorate with 

aging and the effect can even be passed on to the next generation (Burns and Mery, 

2010). Another explanation as to why the aged flies were less able to avoid the stressor 

could be due to decline in the function of the nervous system with aging (Paul et al., 

2007). However this effect cannot explain why the same trend was seen in the next 

generation as they were tested when they were young. This suggests that the change in 

performance with parental age can be due to mutation accumulation within the parental 

gametes that are transmitted to the next generation. Because this behaviour does not 

follow the pattern observed with social space, as the avoidance of stressors did not 

improve in individuals that were 14 and 21 days old and their young progeny, I can 

conclude that these behaviours are affected by aging in different ways. However, it must 

also be considered that this is a lab artifact as these flies being housed in lab for a very 

long time and its possible that have learned to be indifferent to other flies, whether 

stressed or not, in the vial, although this still does not account for the inheritance of the 

phenotype.  

3.4.4 Older Fathers Affect The Sons But Not The Daughters In 

Social Space 

One notable finding in this chapter is that older fathers transmit damage to the sons but 

not the daughters as the sons were less social with their nearest neighbours. This is 

interesting because these aged fathers contribute very little cytoplasm to the zygote and 

thus, the material that is most likely passed on to the progeny that is damaged is genomic 

DNA. This may be due to reactive oxygen species that have been shown to be 

particularly detrimental to sperm, as ROS can attack the double bonds of unsaturated 
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fatty acids leading to a loss in cellular membrane integrity (Aitken and Krausz, 2001). 

Additionally, the sex difference observed when the sons but not the daughters are 

affected is interesting because these females are somehow able to resist this damage. And 

finally, aged fathers are sufficient to cause this change in social behaviour whereas 30-

day-old mothers are not sufficient to cause a change in the sons or daughters (as 

demonstrated by others in the lab; see Appendix E).  

One piece of evidence that leads to the conclusion that DNA is damaged with male age, 

and that this may be contributing to changes in social behaviour, is that the sperm heads, 

as visualized with fluorescent microscopy, are bent in older males. This may be due to 

the improper exchange of histones for protamines when the genome is compacted. As 

seen in mice, improper timing of the expression of protamine 1 or improper rationing of 

protamines 1 and 2 lead to male infertility (Aoki, 2005). And interestingly, removal of 

the genes for protamines lead to 20% of sperm heads having a bent shape in Drosophila, 

while remaining fertile (Rathke et al., 2010). Improper compaction of the genome can 

leave areas of the DNA exposed to stressors and damage such as reactive oxygen species, 

which will then affect the next generation. Alternatively, others suggest that improper 

packaging of the genome during compaction may be a way for repair mechanisms to 

interact with the DNA and repair damage that was previously not fixed (Belloc et al., 

2009). This mechanism may be beneficial in younger males that have intact repair 

machinery but older males have less efficient DNA repair methods and thus improper 

compaction of the genome causes vulnerability that can lead to more inherited damage. 

Additionally, incomplete exchange of histones for protamines, as seen in both humans 

and mice, will result in the transmission of post-translational modifications on histones, 

an epigenetic mechanism, affecting the progeny (Johnson et al., 2011).  

The sons of old fathers were found to be less social, while the daughters remained as 

social as those with young fathers. This is particularly striking, as the only difference 

between the groups is the sex of the fly, as they are siblings. There are several 

possibilities as to why the phenomenon occurred. Firstly, compensation from an 

additional X chromosome in the females may be ameliorating the effects of an aged X 

chromosome from the father that is not masked in males. Additionally, females have been 
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shown to be more resistant to stressors like starvation, so aging of the parent may be one 

of these stressors that females are able to suppress or not be affected by while males lack 

this ability (Matzkin et al., 2009). Alternatively, the presence of a Y chromosome may be 

perpetuating the damage provided by the father causing the sons to be less social. The Y 

chromosome will remain mostly intact from one generation to the next, as there is no 

cross over with an additional Y chromosome. Therefore mutations gathered here can 

accumulate throughout aging and will not be diluted and transferred to the next 

generation. It has even been reported that the neo-Y chromosome of Drosophila miranda 

has eroded over generations since there is no strong defense to resist damage (Kaiser and 

Bachtrog, 2010). Alternatively, hormonal differences between males and females may 

account for the sex difference observed in behaviour, as sex differences have previously 

been shown in relation to senescence (Bowen and Atwood, 2004). However, more work 

is needed to determine which factor, sex chromosomes or sex hormones, has a larger 

impact on behaviour when fathers are aged.  

3.4.5 Conclusion and Significance 

This chapter has illuminated the phenomenon that damage associated with parental age 

can be inherited and impact the next generation, including the spacing between 

individuals and the avoidance of stress. This effect mostly dissipates in the second 

generation of aged parents as survival and social spacing returns closer to parental levels. 

Interestingly, the fathers are more important for affecting the social behaviour of sons and 

not daughters. Future work on this topic includes understanding this sex difference 

observed in the progeny of old fathers and using neuro-genetic tools available in 

Drosophila to manipulate the sex determination pathway such that I may understand how 

parental aging affects the next generation based on hormonal expression in the fly. This 

sex difference is paralleled in human studies as males are diagnosed with the 

neuropsychiatric disorder, autism spectrum disorders, at a rate four times higher than 

females. Additionally, older fathers have been correlated with children with 

neuropsychiatric disorders like autism and schizophrenia in human. 
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Chapter 4 - Manipulations of the Biological Aging Process Affect 

Social Behaviour of Parents and Progeny 

4 Abstract  

Previously, I showed that social spacing differs with age and that parental aging also 

affects the social spacing of the next generation. Here, I show which biological 

mechanism of aging might be responsible for the changes to social behaviours with aging 

and with parental aging. I used different laboratory tools to accelerate the aging process 

(increased rearing temperature and exposure to reactive oxygen species generator, methyl 

viologen) or decelerate the aging process (caloric restriction). I then tested both the 

parents exposed to these conditions and their progeny in social spacing. I found that 

accelerating physiological aspects of aging results in an aged phenotype of social spacing 

(more distal) earlier in individuals and can be passed on to the progeny. Alternatively, 

when parents are exposed to conditions that decelerate aging, I found that older parents 

and their progeny behave like younger parents (more proximal) or progeny with younger 

parents in social spacing.  

4.1 Introduction 

There are many interconnected mechanisms of aging that lead to an aged phenotype and 

may affect conserved neural circuits in the developing progeny. In the context of my 

study, there are many unanswered questions, such as: which mechanism of aging is 

responsible for causing a change in social behaviour? Additionally, do these mechanisms 

that can affect aging also result in a change to the next generation? Finally, is it age-

related changes (biological aging) or learned social experience, such as total time spent 

together (chronological aging), required to result in a change in social space? In order to 

begin addressing these questions, I adjusted environmental conditions in order to 

accelerate or decelerate the biological aging process. I then used the social space assay to 

assess if accelerating or decelerating the aging process will have an effect on aging 

individuals and if this change is transmitted to the next generation.  
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Chronological age is length of time an organism has lived and the length is determined by 

heredity (Iliadi et al., 2012). In contrast, both genes and the environment influence 

biological aging. Throughout life, metabolism can change and can be influenced by 

biological aging factors and lead to an aged phenotype. One way that metabolism can 

affect the individual is by a gradual accumulation of metabolic by-products that can 

damage pathways and proteins (Conti, 2008). As Drosophila does not internally regulate 

its body temperature (Conti, 2008), one way to manipulate its metabolism is to adjust the 

temperature, as higher temperatures (29°C as opposed to 25°C) can speed up metabolism, 

and lower temperatures (18°C) can slow down metabolism. Increased metabolism at 

higher temperatures has been shown to affect protein and enzyme stability and may 

explain why individuals at higher temperatures experience reduced longevity (Conti, 

2008; Halle et al., 2015). Alternatively, lower temperatures have been shown to extend 

longevity. For example, during colder months, insects such as Drosophila and 

grasshoppers have been shown to down-regulate metabolism and pause reproduction in 

order to preserve energy to survive until the warmer months and in the process, extend 

longevity (Flatt and Schmidt, 2009). As a consequence, it is also expected that increased 

metabolism would result in reduced longevity and fecundity. Previously, behaviours, 

such as motor activity, have also been affected by changes in temperature. For example, 

senescence of negative geotaxis in Drosophila was accelerated at higher temperatures 

and was slower at lower temperatures (Grotewiel et al., 2005). Therefore, it is not 

chronological aging, but factors that influence biological aging that can lead to 

senescence and changes in negative geotaxis (Grotewiel et al., 2005). 

 

The oxidative stress hypothesis states that the rate at which aging occurs depends on the 

rate at which oxidative damage accumulates in cell components (Harman, 1956). Around 

10% of the reactive oxygen species (ROS) generated in cells is created in a controlled 

way for processes such as cell signaling and immune function (Dröge, 2002). However, 

the remaining 90% of ROS arises from by-products of metabolism during production of 

ATP through the electron transport chain of mitochondria that accumulate over time 

(Balaban et al., 2005). Thus the generation of ROS is intimately linked with metabolic 
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processes like respiration. Moreover, the integrity of the mitochondrial membrane 

weakens over time and ROS can leak into other regions of the cell causing damage to 

macromolecules and possibly DNA (Balaban et al., 2005). Therefore, this damage could 

affect both the individual and, if present in the gametes, could be passed on to the 

progeny.  

Oxidative stress can be a major cause of aging, especially behavioural senescence, 

because the brain is vulnerable to free radicals since it has a high metabolic rate. One 

study tested how oxidative stress affects learning and memory in Drosophila that were 

five, 25 and 50 days of age (Haddadi et al., 2014). They found a significant reduction in 

long term memory retention in older flies (Haddadi et al., 2014). They also saw older 

flies had higher order neurodegeneration in cell bodies, a reduced number of synapses, a 

reduction in antioxidant enzyme activity, and a decrease in the level of neurotransmitter 

enzymes in mushroom body extrinsic neurons (Haddadi et al., 2014). Oxidative stress 

and lifespan regulation have also previously been linked, although there is conflicting 

data regarding whether a reduction in antioxidant enzymes such as superoxide dismutase 

(SOD) has an effect on lifespan (Paul et al., 2007; Speakman and Selman, 2011).  

Caloric restriction (CR) is the practice of reducing calorie intake by 30-40% while 

maintaining the same protein content and, in the case of Drosophila, yeast content (De 

Loof, 2011; Ostojić et al., 2009). This has proven successful in promoting longevity in 

models such as Drosophila, mouse, S. cerevisiae and C. elegans (Kenyon, 2010; 

Partridge et al., 2005). Although, the exact pathway in which CR operates could be via 

conserved pathways or may vary among organisms (Kenyon, 2010; Partridge et al., 

2005). One evolutionarily conserved pathway that has been shown to be affected by CR 

is the Insulin/IGF pathway, as it is involved in nutrient sensing (Kenyon, 2010). Energy 

from food is divided amongst reproduction, maintenance of the soma, and storage in fat 

for later use so cells must be able to sense the amount of nutrients that are ingested such 

that energy can be shuttled into these pathways (Skorupa et al., 2008). One study 

suggested that by adjusting levels of protein and carbohydrates, energy shuttling and 

storage adapts so the animal consumes enough nutrients. Thus behaviour such as feeding 

and egg-laying will be affected in addition to changes in longevity when the levels of 
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protein and carbohydrates are changed. For example, in a study where flies were fed a 

low protein/ high calorie diet, flies adjusted their eating behaviour and suppressed 

reproduction to consume more protein, which resulted in obese flies that had shortened 

lifespans (Skorupa et al., 2008). However, when flies were fed the high protein/ low 

calorie diet, flies promoted reproduction, inhibited fat storage, and ate less. In this 

condition, longevity did not increase as energy was used in high reproduction (Skorupa et 

al., 2008). It is suggested that a reduction in calories will reduce excess ROS buildup to 

then lower metabolic demand. Therefore, with age, individuals on a CR diet should be 

biologically “younger” as there has been less ROS damage over time that would preserve 

macromolecules and pathways from damage associated with aging. As long as the calorie 

content is not reduced such that it is causes starvation, caloric restriction should extend 

longevity.  

 

Mutants such as methuselah, Indy, chico and mutations in the ecdysone receptor of 

Drosophila have each been shown to alter longevity (Balaban et al., 2005; Cook-Wiens 

and Grotewiel, 2002; Simon et al., 2003). Although much can be learned from artificially 

accelerating or decelerating the aging process genetically, it is not an accurate 

representation of the normal aging process that is affected by the environment. Therefore, 

I will not be using mutant flies and will be adjusting rearing temperatures and diet in 

order to manipulate the aging process to adjust as few variables as possible.  

 

My hypothesis is that adjusting the biological aging of Drosophila melanogaster will 

affect social spacing and that this effect will be passed on to the next generation that has 

not been exposed to these conditions. Here, I will accelerate the biological aging of 

Drosophila melanogaster via increased aging temperature and exposure to methyl 

viologen (paraquat, a ROS generator) and test the artificially aged individuals in social 

space. I will also test the progeny of these parents in social space, although the progeny 

have not been exposed to either higher temperatures or paraquat. I expect flies that are 

exposed to the stress condition to demonstrate the aged phenotype earlier than those who 

are not exposed and that this effect will be passed on to the next generation. I will also 

counter the aging process by feeding Drosophila a calorie-restricted diet and will test 
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these flies and their first generation in social space. I expect older flies exposed to 

calorie-restricted food to have the social spacing more similar to younger flies and that 

this effect would be passed on to the progeny.  

4.2 Methods 

Please see chapter 3 section 3.2.1- 3.2.7 for fly handling, separating by sex, and methods 

for the social space assay and statistical analysis. All modifications to these methods are 

listed below.  

4.2.1 Aging, Survival, and Fecundity Curve At 29°C 

The aging Drosophila at 29°C as well as the survival and fecundity curves were 

performed as mentioned in chapter 3. Again, fecundity is defined here as the number of 

progeny that arise from eggs laid (fertility) and is represented as a cumulative value over 

the lifespan of the female fly. Following collection of Canton-S Drosophila melanogaster 

from bottles reared at 25°C, flies were placed in a 29°C incubator. Flies were transferred 

to new food every two-to-three days and were always placed back into the 29°C 

incubator. Resulting survival curves were generated using Microsoft Excel and the 100%, 

90%, 50% and maximum survival were extracted and compared to 25°C using GraphPad 

Prism 7 and a two-way ANOVA with a Holm-Sidak test to correct for multiple 

comparisons.  

4.2.2 Social Space Assay Of Aged Flies And The Progeny Of Aged 

Flies At 29°C 

Drosophila aged at 29°C were tested with the social space assay at seven, 14, 21, and 30 

days of age against age-matched flies at 25°C as previously described (15 flies/ chamber, 

separated by sex, n=9x15 flies; Simon et al., 2012). Additionally, the first generation of 

flies aged to seven days at 29°C were placed back at 25°C to be aged to seven days prior 

to testing with the social space assay against flies who have been raised and aged at 25°C 

(15 flies/ chamber, separated by sex, n= 9x15 flies). Flies were acclimated to the 

humidity chamber (24°C, 50% humidity) for two hours prior to being added via 
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aspiration to the two dimensional apparatus. Images of the chambers were taken at 30 

minutes when flies have settled (Simon et al., 2012). The images were analyzed using 

ImageJ to get the distance to the closest neighbour within the chamber that were then 

added to the statistical program Prism 7 using a one way-ANOVA with a Holm-Sidak 

post hoc test to correct for multiple comparisons in groups larger than two, or an unpaired 

t-test for groups of two (all measurements expressed as a mean ± standard error to the 

mean, see chapter 2 for details). 

4.2.3 Survival Curve Of D. melanogaster Exposure To Reactive 

Oxygen Species (Methyl Viologen/ Paraquat) 

A survival curve was first generated in order to determine the 90% biological age of flies 

fed Methyl Viologen (Sigma Aldrich, St. Louis, Missouri, USA; hereby known as 

paraquat). Canton-S D. melanogaster were aged six days old in mixed sex prior to 

separation by sex and starved for six hours in an empty vial (5 males or females per vial, 

n= 9 per concentration of paraquat; 25°C, 50% humidity 12:12 light: dark cycle). Flies 

were then administered either 0 mM, 10 mM, 20 mM or 40 mM of paraquat in a solution 

of 5% sucrose and 1% blue dye (club house®) to confirm food consumption as the dye 

was visible in the intestines of the fly (Hosamani and Muralidhara, 2013; Lawal et al., 

2010). The solution was added to Whatman®3 filter paper (Sigma Aldrich, 500 ul/ paper) 

in empty vials and new aliquots of sucrose solution were replaced every 24 hours. The 

number of dead flies in each vial was measured every two hours until all flies were dead, 

in the 10 mM, 20 mM, and 40 mM conditions. The number of dead flies in the 0 mM 

condition was then measured once each day until all flies were deceased.  

4.2.4 Social Space Assay Of Paraquat-Exposed Flies 

After 13.5 hours of either 0 mM or 20 mM paraquat exposure, both male and female flies 

reached the biological age of 90% survivability; therefore this time was used to measure 

paraquat-exposed flies in social space. Flies were starved 6 hours and were fed 20 mM of 

paraquat in a solution of 5% sucrose and 1% blue dye (club house®) for 13.5 hours before 

addition to the social space assay (note that a mouth aspirator was not used here, but a 
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funnel was used to add flies to the chamber to avoid possible paraquat exposure to the 

experimenter). The social space assay was then performed as previously described 

(separated by sex, 15 flies/ chamber, n= 9, 25°C, 50% humidity; Simon et al., 2012). The 

images were analyzed as mentioned in chapter 4.1.2 and chapter 2.  

4.2.5 Generating The Progeny Of Males Exposed To Paraquat And 

The Social Space Assay  

To see if ROS exposure of one parent could cause changes to the behaviour of the 

progeny, six-day-old males were starved and fed either 0 mM or 20 mM paraquat, as 

described above. After 13.5 hours, males were mated with young, non-exposed, virgin 

females and permitted to mate in bottles for several days before they were removed. The 

resulting progeny of paraquat fed fathers in these bottles were separated by sex at seven 

days of age (15 flies/ vial; separated by sex; n= 9) and were tested with the social space 

assay as previously described (Simon et al., 2012). The images were analyzed as 

mentioned in chapter 4.1.2 and chapter 2. 

4.2.6 Social Space Assay Of The Progeny Of Paraquat-Exposed 

Flies 

Six-day-old D. melanogaster were starved for six hours and flies were fed either 0mM or 

20 mM paraquat for 13.5 hours as described above. Flies in mixed sex were then 

transferred to bottles containing Jazz Mix media (brown sugar, corn meal, yeast, agar, 

benzoic acid, methyl paraben and propionic acid; 50% humidity, 25°C, and 12:12 light: 

dark cycle) for two-to-three days before removal. The eggs in the bottles were allowed to 

develop to adulthood prior to testing with the social space assay as previously described 

(Simon et al., 2012; separated by sex, 15 flies/ chamber, n= 9). The images were analyzed 

as mentioned in chapter 4.1.2 and chapter 2. 
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4.2.7 Aging Flies, Survival, Fecundity And Social Space Over 

Caloric Restriction Food  

All aging, survival, fecundity, and social space assays were performed as described above 

and in chapters 2 and 3. Upon collection of Drosophila from stock bottles, flies were 

placed over food with low yeast/low sucrose content, as this was found to be the most 

efficient combination of adjusting sugar and protein (yeast) to reduce the calories by 30-

40% in Drosophila  (recipe adapted from (Min et al., 2007), 50.8 kcal/ 100 ml media, 

Appendix G).   

 

4.3 Results 

4.3.1 Survival And Fecundity Of Drosophila Melanogaster At 29°C, 

Fed 20 mM Of Paraquat, And Fed Caloric Restriction Food  

In order to see the effect of altered environmental or food conditions on Drosophila 

longevity and reproduction, survival curves were generated for all three conditions and 

fecundity curves was performed for individuals at 29°C and on caloric restriction (CR) 

food. The fecundity curve was not performed for individuals fed paraquat as this 

chemical kills flies within two-to-six days (depending on the concentration to which they 

were exposed) and thus egg laying and progeny viability were not determined. 

 

Individuals aged at increased temperature (29°C) have both accelerated aging and 

reduced fecundity as compared to flies aged at 25°C (Figure 4.1A). Flies aged at higher 

temperatures had 100% survivability at seven days old but reached 90% survival at just 

11 days followed by 50% survival at 35 days. As compared to survival values at 25°C, 

the 90% survival, 50% survival and maximum survival rates were significantly reduced 

at 29°C (respectively; Figure 4.2A). Fertility, as measured by the cumulative egg laying 

per female, was not different throughout life between individuals at 25°C (112.514 ± 

8.67) or 29°C (77.66 ± 11.13; Figure 4.2B). However, there was a difference between the 

fecundity, as measured here by egg-to-adult viability, among flies at different ages at 
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25°C and 29°C after flies reached 90% survival (Figure 4.2C). Fecundity declined after 

just 18 days with a cumulative fecundity (total number of progeny per female) of 17.24 ± 

3.30, which is 2.5 times earlier than flies at 25°C whose fecundity declined after 47 days 

(Figure 4.2B). Therefore, I was unable to use the progeny of individuals aged to 30 days 

at 29°C to test in social space.  

 

To determine when Drosophila fed paraquat reach 90% survival, a measure of when flies 

begin to die, I generated a survival curve. I generated several survival curves at 

concentrations of paraquat in a glucose-water mixture of 0 mM, 10 mM, 20 mM and 40 

mM (Appendix F). I chose 20 mM as the time to 90% survival was 13.5 hours for both 

males and females. This was also a convenient amount of time to prepare the flies for 

feeding, feed them, and test the flies in social spacing at the necessary time (Zeitgeber 

time 4-7 when lights are on at 8am) and because this concentration has been used to 

accelerate aging in other studies as it does not kill Drosophila too quickly but still has a 

measureable effect (Lawal et al., 2010; Figure 4.1B).  

 

I also performed a survival curve on Drosophila fed caloric restriction (CR) food to 

evaluate longevity extension and determine when they reach 90% survival. However, due 

to methodological errors, I have not yet obtained the data. I am currently repeating this 

experiment and the data are currently being collected. I was able to gather data for a 

fecundity curve and found that egg-to-adult viability began to decline around 42 days, 

which is similar to those on regular food (Figure 4.1C). Both fertility and fecundity were 

increased in flies raised on caloric restriction following 90% survival, where the 

cumulative fertility was 364.77 ± 92.65 for caloric restriction and was 112.51 ± 8.67 for 

regular food and the cumulative fecundity was 109.6 ± 22.70 for CR and 57.52 ± 9.10 

cumulative progeny per female on regular food; Figure 4.3).  
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Figure 4.1 Survival and fecundity (cumulative egg-to-adult viability) in D. melanogaster exposed to 

(A) increased aging temperatures at 29°C, (B) 20 mM of methyl viologen (paraquat), or (C) calorie 

restricted food. (A) Survival and fecundity of D. melanogaster aged at 29°C (40 flies/ vial, n= 9 vials) 

compared to survival and cumulative fecundity of flies aged at 25°C. Seven-day old flies have 100% 

survivability and are considered young. Flies reach 90% survivability at 11 ± 6.77 days, and 50% survival 

at 35 ± 3.21 days old, which is greatly reduced compared to those raised at 25°C that reach 90% survival at 

30 days at 50% survival at 50 days. Fecundity at 29°C declined after 18 days as compared to those raised at 

25°C that declines after 47 days with cumulative fecundity of 13.68±2.62 with reduced cumulative 

fecundity as compared to 25°C (65.53 ± 5.52).  (B) Survival Curve of male and female D. melanogaster 

exposed to 20 mM paraquat over time. After 13.5 hours, flies were at 90% survival (fecundity was not 

tested). (C) Fecundity of flies fed calorie restricted food declines after 36 days but has increased cumulative 

fecundity (109.6 ± 22.03) compared to those on regular food.  
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Figure 4.2 Comparison of survival and fecundity of flies at 25°C and 29°C. (A) 100%, 90%, 50% and 

maximum survival of Drosophila at 25°C and 29°C shows that individuals at 29°C die more rapidly. Two 

way ANOVA with a Holm-Sidak post test, with the bar graph representing the mean and standard error to 

the mean (*p< 0.05, ***p< 0.001). Significant differences arise at 90% survival as Drosophila raised at 

25°C reach 90% survival at 30 ± 1.53 days, 50% survival at 50 ± 7.5 days and have max survival 91 ± 2.60 

days but Drosophila at 29°C reach 90% survival at 11 ± 6.77 days, 50% survival 35 ± 3.21 days and 

maximum survival at 57±3.61 days. (B) Cumulative fertility at each age point does not differ between 

individuals at 25°C or at 29°C (two- way ANOVA, Holm-sidak post hoc test). The cumulative fertility at 

25°C was 112.514 ± 8.67 and was 77.66 ± 11.13 at 29°C. (C) The fecundity of individuals at 29°C was 

significantly reduced compared to those at 25°C for 90% and 50% survival, in addition to cumulative 

fecundity (****p< 0.0001). The cumulative fecundity at 29°C was 17.24 ± 3.30 as compared to 57.52 ± 

4.91 at 25°C (two-way ANOVA with a Holm-Sidak post test; ****p< 0.0001). 
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Figure 4.3 Flies on CR food have increased fertility and fecundity compared to those on regular food. 

(A) Flies on caloric restriction food have increased fertility as compared to those on regular food after 90% 

survival with a cumulative fertility of 364.77 ± 92.65 for CR and 112.51 ± 8.67 for regular food (****p< 

0.0001, two-way ANOVA with a Holm-Sidak post test; mean and standard error to the mean) (B) Flies on 

caloric restriction food have increased fecundity as compared to those on regular food after 90% survival 

with a cumulative fertility of 109.6 ± 22.70 for CR and 57.52 ± 9.10 for regular food (***p< 0.001, two-

way ANOVA with a Holm-Sidak post test; mean and standard error to the mean). 

4.3.2 Social Space Of Drosophila melanogaster And Their Progeny 

At 29°C, Fed 20 mM Of Paraquat And Fed Caloric 

Restriction Food  

In order to see how increased temperature affects the social spacing of aged Drosophila, I 

tested flies that were aged at 29°C for either seven, 14, 21, or 30 days. Because survival 

decreases quickly at 29°C, I was unable to test individuals at 50 days old. Thirty day old 

flies aged at 29°C are more distal to their closest neighbour than seven-day-old flies as 

hypothesized (one-way ANOVA, p< 0.01, p< 0.0001; Figure 4.4A). Fourteen and 21-

day-old individuals aged at 29°C are more proximal to their closest neighbour (one-way 

ANOVA, p< 0.0001) as compared to those aged to seven days old. However, they are 

still more distal than age- and sex-matched individuals at 25°C.   
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To see if the effects of increased temperature on parental aging can be passed on to the 

second generation, I tested the progeny of seven-day-old and 30-day-old flies aged at 

29°C were reared and aged to seven days at 25°C using the social space assay as 

compared to those whose parents were aged at 25°C. I found that both male and female 

progeny of parents aged at 29°C were more distal than those that were both reared and 

aged to seven days old at 25°C, although females were not significantly different and 

males were (*p< 0.05; Figure 4.4B; for distance values please see Appendix H).  

 

Male flies that were fed 20 mM of paraquat for 13.5 hours and then tested with social 

space were more distal to their closest neighbour than males fed 0 mM of paraquat (one-

way ANOVA, p< 0.0001; Figure 4.4C; for distance values please see Appendix I). 

However, regardless of whether of females were fed 20 mM or 0 mM of paraquat, they 

had similar social space and were not significantly different. I then tested the next 

generation of flies whose parents had been exposed to 20 mM or 0 mM of paraquat while 

the individuals tested in social space were not exposed to paraquat, I found a similar 

result where the progeny of fed parents were more distal than those parents who were not 

fed paraquat (Figure 4.4D; for distance values please see Appendix I). Specifically, the 

male progeny fed 20 mM of paraquat were more distal to their nearest neighbour as 

compared to those that were fed 0 mM paraquat (p< 0.0001). Additionally, the female 

progeny fed 20 mM of paraquat were more distal to their nearest neighbour as compared 

to those that were fed 0 mM paraquat although not significantly different.  

 

Both males and females aged 30-days or 50-days-old on caloric restriction (CR) food 

were not more distal to their closest neighbour as compared to those at seven days old on 

CR (one-way ANOVA, Figure 4.4E; for distance values please see Appendix J). 

Interestingly, the young progeny of parents aged either 30-days or 50-days-old on CR 

food were more proximal to the nearest neighbour in both males (p< 0.0001 and p< 0.05, 

respectively) and females (p< 0.001 and p< 0.01, respectively) as compared to the 

progeny of seven-day-old parents on this diet (Figure 4.4F; for distance values please see 

Appendix J).  
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Figure 4.4 Social space of young and old D. melanogaster and their progeny exposed to either 29°C 

(A-B), paraquat (C-D) or calorie restricted food (E-F). Each set of asterisks represents statistical 

significance using a one-way ANOVA with a Holm-Sidak post test *p< 0.05, **p< 0.01, ***p< 0.001, and 

****p< 0.0001. Each graph represents the mean and standard error to the mean. (A) D. melanogaster aged 

at 29°C are more distal to their closest neighbour. (B) The progeny of seven-day-old D. melanogaster at 
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29°C are more distal than the progeny of seven-day-old flies at 25°C. (C) Male D. melanogaster fed 

paraquat were more distal to their closest neighbour than males who were not fed but females who were fed 

paraquat did not differ with respect to distance. (D) The Progeny of D. melanogaster fed 20 mM paraquat 

were more distal to their closest neighbour. (E) Males on calorie-restricted food, and to some extend 

females, are closer to their closest neighbour at older ages and are not very different from young calorie 

restricted and non-calorie restricted flies. (F) The male first generation of older flies fed calorie restricted 

food are closer to their closest neighbour than the first generation of young flies on caloric restriction.  

4.3.3 Social Space Of Fathers Fed Paraquat 

Paraquat was fed to non-virgin seven-day-old males for 13.5 hours before mating with 

virgin females. Both the male and female progeny of males fed 20 mM of paraquat were 

more distal to their closest neighbour than the progeny of males who were fed 0 mM (p< 

0.01 male, p< 0.001 female; Figure 4.5; for distance values please see Appendix I). 

 

Figure 4.5 The male and female progeny of fathers fed paraquat (20 mM, 13.5 hours) are more distal 

to their closest neighbour compared to fathers fed 0 mM paraquat (15 flies/chamber, n= 9; One-way 

ANOVA; **p< 0.01, *** p< 0.001; graph represents the mean and standard error to the mean).  
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4.4 Discussion 

4.4.1 Manipulations of the Biological Aging Process Cause Changes 

to Survival and Fecundity 

By accelerating metabolism using increased aging temperature, I found that both survival 

and fecundity were reduced. When increasing the metabolism and its by-products, 

including ROS, I expected the longevity to be reduced, as the onslaught of chemicals 

generated would be detrimental to the fly. Especially as decreases in temperature have 

been shown to mediate the damaging effects of metabolism (Flatt and Schmidt, 2009). 

The reduction in fecundity may be due to a decrease in viability of eggs laid from the 

accelerated metabolism and a build up of by-products or damage to proteins that is 

impeding necessary pathways for proper development.  

Due to a methodological error, I was unable to quantify the survival of Drosophila fed 

CR food but was able to measure the fertility and fecundity and found that both the 

number of eggs laid and the egg-to-adult viability increased. In accordance with other 

studies, I expected a reduction in fertility and fecundity, as individuals would be shuttling 

energy towards longevity and away from reproduction and thus would expect an 

extension in longevity (Conti, 2008). However it is possible that the increase in fertility 

and fecundity in early age was due to the availability of yeast in the food that is known to 

stimulate egg production (Skorupa et al., 2008). This effect was seen previously when 

Drosophila had greatly increased egg production but no extension in longevity when they 

were fed increased protein and reduced calories (Skorupa et al., 2008). The increased 

fecundity declines after 42 days, which is similar to what was seen on regular food. This 

is not what was expected as the caloric restriction theory states that progeny production 

would decrease to promote an extension in longevity. Therefore a study on the longevity 

is necessary to determine if actual caloric restriction was taking place here. A calorie 

reduced diet has also been shown to reduce core body temperature in homeotherms, such 

as mice, and thus these mechanisms (increased temperature and caloric restriction) may 

be opposing mechanisms in terms of accelerating or decelerating metabolism (Conti, 

2008). Although, it has been suggested long ago that the mechanisms of aging are 
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different at different temperatures and thus individuals at lower temperatures may not 

have the exact opposite experience of those at higher temperatures (Maynard-Smith, 

1958).  

Survival at various concentrations of paraquat ranged into a scale of hours whereas the 

scale at 29°C was in days. Because flies must be fed paraquat in the absence of regular 

food, no fecundity was performed. This is because any eggs that would have been laid 

would have been on filter paper, which did not provide any food for the eggs. Each egg 

would also have to be transferred individually to a vial containing food, which can be 

difficult and cause physical damage. Therefore, a comparison of fecundity when flies are 

fed paraquat is not discussed.  

4.4.2 Drosophila Aged At Increased Temperature And Their 

Progeny Are Less Social  

Individuals exposed to higher temperatures for several weeks and tested with the social 

space assay appear to follow a similar pattern to those at physiological temperatures 

(Chapter 3.3.2). Flies at 25°C appear more social at 14 and 21 days old, while only male 

14-day-old flies at 29°C are more social and both males and females are as social as 

control at 21 days. This shows that accelerating the metabolism also accelerates the aged 

phenotype of social space.  

The highly reduced fertility at 29°C affected how we tested the next generation. Because 

the fecundity is greatly reduced early on (after 18 days), I chose to test the young progeny 

of parents that were exposed to higher temperature for just one week and the eggs laid by 

these parents were placed back at physiological temperature to develop. Interestingly, 

both males and females are less social than those whose parents were aged at 

physiological temperature. Therefore the effects of accelerated metabolism in the parents 

are enough after one week to cause a change in the social behaviour of the progeny. This 

phenomenon has been seen with other behaviour, as Drosophila parents entrained with a 

sensory motor task yield progeny that are able to respond the same way to a learning and 
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memory test (Williams, 2015). This shows an inheritance of behaviour even when the 

progeny are not exposed to the condition.  

Some have suggested that changes in temperature do not affect longevity as simply as 

altering metabolism. Altering the temperature of the environment may be a selection 

mechanism that only promotes the survival of those that can withstand the fluctuation of 

temperature and thus those individuals display somewhat typical behaviour (Robert et al., 

2007). As seen here, the flies that survived to the different age time points (one, two, 

three, and four weeks), displayed social behaviour that was similar to those at 

physiological temperature, although with an accelerated pattern. However, the progeny of 

parents exposed to increased temperature were less social than the parents exposed these 

temperatures. Therefore increased temperature and thus metabolism affects the gametes 

more than the individual. In fact, temperature fluctuation has been shown to affect sperm 

development (Radhakrishnan and Fedorka, 2011). From this, we can see uncoupling of 

changes to gametes and longevity determination. As previously suggested, energy 

provided to the progeny would negatively affect energy stores for the individual and thus 

more progeny would result in decreased longevity.  

4.4.3 The Progeny Of Males Or Both Parents Exposed To Paraquat 

Are Less Social 

When flies are fed a moderate concentration of paraquat (ROS generator) for a short 

period of time, males become less social while females are unaffected. In contrast, both 

the male and female progeny of those exposed to this stress for the same amount of time 

are also less social. Interestingly, when only males are fed paraquat for this same period 

of time and mated with virgin female, both male and female progeny are less social. 

Therefore, ROS affects individuals and gametes in different, but interconnected, ways. 

For example, it has been suggested that energy diverted to reproduction will result in a 

need for increased metabolism and thus higher ROS as a byproduct (Alonso-Alvarez et 

al., 2004). Naturally, as individuals age and continue to produce gametes, ROS is also 

accumulating, which can impact behaviour as ROS may affect neuronal processes. As 

males and females invest different amounts of energy into gamete production, the buildup 
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of ROS may be imbalanced and thus an individual’s threshold to withstand such stress 

may also differ (Scharf et al., 2013). This may explain why I found that females who 

were fed paraquat were resistant to the stressor and displayed normal social space. 

Perhaps this is because more energy is required to make the large egg and therefore 

females may be better adept as shielding themselves from the harmful effects of ROS 

whereas males are more susceptible causing them to be affected and, in this case, causing 

a change in behaviour (Alonso-Alvarez et al., 2004). A sex difference to other stressors 

has also been seen in Drosophila as females were better adapted to resist both starvation 

and desiccation (Matzkin et al., 2009). However, this mechanism doesn’t explain how 

ROS affects the progeny, where both males and females were affected the same way 

when parents were fed paraquat. Therefore, this alludes to different mechanisms by 

which ROS affects somatic and gametic tissues. Perhaps this could be an accumulation of 

ROS in sperm with time leading to DNA fragmentation and changes to chromatin within 

sperm heads (Zubkova et al., 2005). However, one other factor with the addition of ROS 

has caused both male and female progeny to be affected so there must be another 

mechanism here to explain this phenomenon.  

4.4.4 Flies On Caloric Restriction Food And Their Progeny Are 

More Social With Age 

Caloric restriction is suggested to operate by redirecting energy stores to reduce energy 

metabolism but increase production the synthesis of biomolecules and turnover of 

proteins (Weinert and Timiras, 2003). These changes in energy metabolism often include 

adjustments in pathways such as the Insulin/ Insulin-like Growth Factor-1 (IGF-1) 

pathway and target of rapamycin (TOR) pathway that has been linked to caloric 

restriction related increases in longevity in other animals (Kenyon, 2010). This is 

suggested to occur by limiting damaging by-products of metabolism that can prevent 

damage to macromolecules, including DNA. These damaging by-products may also 

account for the changes in behaviour with age and may explain why individuals fed 

caloric restriction (CR) food for 30 days were as social as those fed the same food for 

seven days or fed non-CR food. These flies were able to mitigate the effects of the by-

products, which then prevented changes to social spacing behaviour. Changes in the 
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quantity of calories ingested has been shown to affect other behaviour such as locomotion 

and flight, as very high increases in caloric content were shown to impair these behaviour 

(Bross et al., 2005).  

 

The effect observed in the parents fed CR food was also seen in the next generation, as 

the progeny of 30-day-old parents fed caloric restriction food were as social, or even 

more social than the progeny of parents fed CR food for one week or not at all. Similarly, 

alterations to parental diets have been shown to affect the behaviour of their offspring in 

rats. For example, when female rats were fed a CR diet during weaning (post-natal), their 

progeny experiences behavioural changes, where they were more sensitive to predator 

odor and exhibited a fear response, but also had reduced anxiety- like behaviour (Govic 

et al., 2014). These researchers then looked the progeny of male rats (fathers) fed a CR 

diet and found that progeny also had reduced anxiety-like symptoms (Govic et al., 2016). 

Therefore, caloric restriction of the parent causes changes to the progeny that improve 

certain behaviour.  

 

One compounding variable in my experiment may be that the effects of the progeny 

ingesting CR food during the larval stage and first week of life as the eggs were not 

transplanted to non-CR food. Therefore it is possible that larvae fed CR also has an effect 

on behaviour that makes them more social, whereas the effects of the parental age on CR 

food may be less important. This has been shown previously where rats that are fed a 

calorie restricted diet in early life have epigenetic reprogramming of the hypothalamus-

pituitary-adrenal axis that further affects behaviour (Harris and Seckl, 2011). Further 

testing must therefore take place to disassociate the effects of the progeny versus the 

parents eating CR.  

4.4.5 Conclusion  

Overall, I have shown that alterations to the biological aging process of Drosophila can 

cause changes to their social space. When the aging process is accelerated with either 

exposure to 29°C or paraquat, individuals show a pattern of accelerated aging in social 

space as compared to those aged at physiological temperature or in the absence of 
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paraquat. These effects were also passed on to the next generation. When aging is 

decelerated with caloric restriction, individuals and their progeny are as social or more 

social. This shows that chronological aging is not required for the changes to behaviour, 

but it is the underlying biological mechanisms that can affect behaviour. Future work will 

include determining if the metabolic pathway or oxidative stress pathway are more 

important for this change in behaviour to occur or if there are other biological aging 

mechanisms that may also be responsible for changes to social behaviour with age. 
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Chapter 5 – Implications and Limitations of the Study 

 

5.1 Implications Of The Study 

I found that through aging individuals change their social spacing, as Drosophila is 

initially more social (two-to-three weeks old) and then less social (four and seven weeks 

old) compared to when they are one-week-old. Therefore, there is an age-specific effect 

on social spacing. One hypothesis to explain the age-specific effect is that cuticlar 

hydrocarbons, which are a known factor in promoting aggregation of flies, change with 

age (Bartelt et al., 1985). It is possible that at two and three weeks of age these 

hydrocarbons promote closeness or proximity but promote more distal interactions at 

older ages. Another hypothesis would be that the change in social spacing is correlated 

with the changes in reproduction and tighter or smaller groups may be forming at peak 

reproductive times. For example, the social honeybee (Apis mellifera) will change its 

behaviour from nest dwelling to foraging after two or three weeks of age (Amdam, 2011). 

At this time point, it has been found that honeybees that forage for pollen have a higher 

reproductive potential (measured by ovariole number) than those that collect nectar. 

Therefore, there is a relationship between types of foraging behaviour and reproductive 

potential (Amdam, 2011). This idea could be tested in Drosophila using reproductively 

low or reproductively high strains of Drosophila melanogaster to see if their social 

spacing is more distal in very successful strains or more proximal in reproductively 

unsuccessful.   

Perhaps the low sociability observed in older flies is due to selection of longer-lived flies. 

At 30 days, 10% of the population has died off and the social behaviour of those flies 

may be different than what can survive to four weeks old. It is possible that these longer-

lived flies have different social spacing from those on the verge of death. This effect may 

be diluted by other younger flies within the chamber or among different replicates that is 

mitigated in the sample of young flies. It is also possible that this the change in behaviour 

through aging is due to pleiotropic genes that promote closeness at younger ages but then 
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change at older ages causing individuals to be less social. One way to test this would be 

to do a “smurf” test where flies are fed dissolved sucrose and blue food dye for several 

days (Rera et al., 2012). When Drosophila is close to death (around two days before 

death), their intestines become leaky, causing the whole organism to turn blue. If we test 

these flies compared to the non-dyed flies, perhaps we will see a difference in the social 

spacing of flies that are “long-lived” compared to those about to die, which would 

indicate health rather than longevity underlying observed differences in social behaviour 

with aging.  

The progeny of old parents had a similar social spacing pattern to their parents; both old 

individuals and their young progeny were less social. It is possible that changes in the 

epigenome of the parent, including the presence of non-coding RNA in the gametes of 

aged parents was influencing the development and behaviour of the next generation. 

Interestingly, studies have shown evidence of imprinted RNA genes that have brain-

specific expression that may be involved in neuropsychiatric disorders (Mattick and 

Makunin, 2006). Therefore, if non-coding RNA is introduced into the gametes and 

influences expression in the brain, then it could affect the development of the brain and 

behaviour.  

One other type of material that can be inherited is the microbiome. The microbiome has 

previously been linked to metabolism and neuropsychiatric disorders via epigenetic 

mechanisms that can be transmitted trans-generationally (Heard and Martienssen, 2014). 

Microbes can communicate information to the host via metabolites, which has been 

shown to directly affect the host behaviour (Archie and Theis, 2011; Dillon et al., 2002; 

Forsythe et al., 2010). The microbiome of the parents may be responsible for causing 

changes in the neurodevelopment in the progeny of both old parents causing them to have 

a similar behaviour phenotype. The progeny may be exposed to this microbiome 

following egg laying in the vial. Because the parents are still present in the vial, any 

excrement from the adult flies, which likely contain bacteria, can then interact with the 

developing larvae and affect the fly and possibly behavior later in life. Therefore, raising 

parents and progeny in an axenic environment and testing them in behavioural assays 

may help elucidate if the microbiome is involved.  
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One other explanation could be changes to the epigenome. Because there is very little 

DNA methylation that is inherited to the progeny in Drosophila, it is possible that histone 

modifications remain in the gametes that are then passed on to the next generation 

(Bonasio et al., 2010). In mice and humans, it is known that 1-4% of the nucleosomes 

remain in the sperm with epigenetic modifications on the histones (Daxinger and 

Whitelaw, 2012). Additionally, this has been shown to affect the next generation as 

epigenetic modifications in C. elegans was been shown to influence lifespan of the next 

generation (Greer et al., 2011). Similarly, epigenetic modifications of Drosophila parents 

exposed to heat stress caused a change in eye color in the progeny (Seong et al., 2011). 

Therefore, because there is improper exchange of histones and protamines in the sperm 

with aging (Belloc et al., 2009), histone modifications can be passed on to the progeny 

which may explain why the effect was seen (in the sons) of old fathers but not of old 

mothers.  

A sex effect was seen in the sons of old fathers, which implies that either the sex 

chromosomes or hormonal differences between males and females influence how 

parental changes or damage manifests in behavioural changes. This also implies that 

females are somewhat more resistant to damage from the father, possibly due to the 

presence of a second X chromosome or due to hormones.  

Finally, this effect of behavioural inheritance to the next generation was only seen in the 

first generation of old parents. Therefore, the mechanism by which aging affects the first 

generation disappears in the second generation, along with the effect on survival and 

fecundity. Therefore more work must be done to determine if this is due to an increase in 

heterogeneity in the population or some other factor that is eliminating the effect seen in 

the first generation. The mechanism that is lessened in the second generation may be 

linked to repair of the metabolic pathway as caloric restriction led to more proximal 

social space and increased temperature led to more distal social space in the progeny. 

This is also of importance to other researchers as the age of the fly makes a difference to 

behaviour but that this difference can be reversed in future generations.  
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Overall, an important practical implication of this study is to stress the importance of age 

and reproduction. Males are often thought of as having an unlimited reproductive 

capacity as they could theoretically conceive at any age, although females have a very 

clear limit on reproduction. However, this study highlights how changes to social 

behaviour as a result of aging can be inherited and specifically how aged males can pass 

on this effect on behaviour. Thus, although males may be able to conceive at any age, 

there are still risks associated with fathering children at older ages. 

 

5.2 Limitations Of The Study  

One limitation of this study in terms of extrapolating the results to humans includes the 

fact that female gametogenesis in Drosophila is more similar to male gametogenesis than 

mammalian female gametogenesis. Therefore, female Drosophila was continuously 

making eggs like males make sperm. The limitation of this is that we may be missing 

some key aspect of egg damage in humans that is not captured in the fly that may be 

affected by age and may impact behaviours in the progeny.  

Another limitation is that the methods I chose to accelerate aging (increased aging 

temperature and exposure to paraquat) in Drosophila may be too similar. Recent research 

has found that initially, doses of ROS will not directly affect the genome or other proteins 

through oxidative stress but will first interact with the electron transport and thus will 

have a similar effect as increased temperature on metabolism (Personal communication 

with Dr. Jamie Kramer, University of Western Ontario).  

Finally, throughout fly maintenance I have been generating each new generation from 

young individuals and have thus been selecting for early senescence. This may therefore 

not be capturing ecologically relevant situations as flies are constantly laying eggs and 

new populations of flies can be generated from flies at any age, whereas I have been 

selecting for populations from young flies. However, this might be helping in my study of 

senescence, as I want to test flies that would be undergoing the aging process that would 

affect behaviour.  
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5.3 Future Work  

Work in parallel to this project includes testing this phenomenon in other Drosophila 

melanogaster backgrounds as aging is a universal phenomenon and thus the aging 

phenotype in social spacing should be similar. The hypothesis is that aging is a universal 

phenomenon and should affect the social space of aged Drosophila melanogaster of 

different genetic backgrounds and their progeny similar to what is shown in this thesis 

with Canton-S.  Preliminary results from our lab show that Oregon-R Drosophila 

melanogaster are less social with age and this effect can be passed on to the progeny, and 

a recently wild-caught strain (Elwood) in males (Yost, unpublished data 2016). 

This thesis originally included understanding the sex difference observed in the progeny 

of old fathers by using a specific tool in Drosophila that would allow us to age the Y 

chromosome in the mothers and have it inherited to the sons (Hardy, 1975). The idea 

behind this is that if the Y chromosome is important in regulating the social spacing of 

the male progeny, then aged fathers who do not pass on the Y chromosome to their sons 

using this system will have normal social space. However, when mothers are aged and 

pass on this Y chromosome to their sons, their social space will be affected. However, 

practically, this approach did not work as males did not live past two weeks and females 

at four weeks were infertile. Therefore, a longevity curve must be performed on these 

strains to determine when these flies reach 90% survival to know when to consider them 

aged. Once the age at which they begin to die has been determined, I can age the old 

males with virgin females and test the progeny in social space. One other way to tackle 

this sex difference is by masculinizing female flies by using an RNAi line to the RNA 

transcript of important component of the sex determination pathway in Drosophila 

known as transformer (tra; Rideout et al., 2015). This will be done to see if having the 

hormonal expression of a male inside of a female (with an XX genome) will have a 

behavioural phenotype similar to a male or female and thus it may tell us if the hormonal 

pathway is involved in this sex difference in behaviour. The hypothesis is that 

masculinized females whose fathers were aged will display a change in social behaviour 

compared to the sons of 30-day-old fathers.  
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We do not know how the gut microbiome will affect social behaviours and how the 

microbiome will affect behaviours with age. As mentioned above, the microbiome may 

be passed on from parent to progeny from both mothers and fathers. As females lay eggs, 

the egg is exposed to both the maternal microbiome as well as the microbiome present in 

the environment. Similarly, males can pass on their microbiome through excrement when 

they are in contact with the fertilized eggs laid on the surface of the food. Therefore one 

approach would be to rear flies in axenic conditions and test the population through age 

in social space and their progeny. Additionally, the endosymbiotic α-proteobacteria 

Wolbachia pipientis has been shown to affect gene expression of Drosophila 

melanogaster (Gutzwiller et al., 2015). Therefore, to determine if these bacteria affect 

social spacing behavior, we can use a Drosophila strain devoid of these bacteria and test 

them with the social space assay. If W. pipientis does influence changes in social space 

behavior, then flies that do not have the bacteria will have altered social space. 

And finally, as mentioned above, smurf flies (flies on the verge of death) will be tested in 

social space to see if there is a difference between the behaviour of longer-lived flies 

compared to those that are about to die. The hypothesis is that flies on the verge of death 

will have a different social behaviour to those that are longer lived. One prediction is that 

smurf flies will be less social than those that are going to live longer because they no 

longer depend on the social group because they are going to die soon. Whereas the flies 

that are not about to die still rely on or benefit from the social group and will be closer 

together in social space. This may then further shed some light on the mechanisms that 

change close to death within the brain.  
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Appendices 

Appendix A Distances to the nearest neighbour of males and females aged to seven, 14, 

21, 30 and 50 days and their progeny. Individuals are 14 and 21 days old are closer 

together in social space than those at seven days, whereas individuals aged 30 and 50 

days are further apart. This effect is passed on to the next generation. (One-way ANOVA 

with a Holm-Sidak post test, distances are means± standard error to the mean, ns= not 

significant) 

Age Tested 
Distance to nearest 

neighbour  
Significance in relation to 

same sex control 

Parental Age 
(Days) 

  Male Female Males Females 
7 0.70±0.02 cm 0.47±0.02cm Control Control 

14 0.37±0.02 cm 0.32±0.01cm  p< 0.0001 p< 0.01 
21 0.39± 0.02cm 0.30±0.01cm p< 0.0001 p< 0.01 
30 1.06± 0.05cm 0.94±0.04cm p< 0.0001 p< 0.0001 
50 1.14± 0.09cm 0.89±0.05cm p< 0.0001 p< 0.0001 

First 
Generation of 

parents at 
ages (Days) 

7 0.40±0.02cm 0.45±0.02cm control control 
14 0.45±0.02cm 0.27±0.01cm ns p< 0.001 
21 0.56±0.05cm 0.40±0.03 cm ns ns 
30 0.56±0.03cm 0.60±0.03cm  ns p< 0.01 
50 0.81± 0.06cm 0.88±0.06cm p< 0.0001  p< 0.0001 
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Appendix B Distances to the nearest neighbour of the progeny of young or aged parents 

in the second, third, fourth and fifth generation with young generations in between. The 

effect of having an aged parent dissipates in the second generation, although the females 

of old parents in the third generation are significantly different (distances are means± 

standard error to the mean, ns= not significant, unpaired t-test). 

Generation Tested 
Distance to closest 
neighbour (cm) 

Significantly 
different? 

Male Female Male Female 

Second Generation 
(grandparents aged 

only) 

Progeny of 7-
day-old 0.38± 0.03 0.37±0.02 ns ns 

Progeny of 30-
day-old 0.35±0.02 0.4±0.02 ns ns 

Third Generation 
(great-

grandparents aged 
only) 

Progeny of 7-
day-old 0.71±0.04 0.64±0.04 ns ns 

Progeny of 30-
day-old 0.59±0.03 0.81±0.05 ns p< 0.05 

Fourth Generation 
(great great 

grandparents aged 
only) 

Progeny of 7-
day-old  0.63±0.03 0.59±0.04 ns ns 

Progeny of 30-
day-old 0.68±0.04 0.61±0.04 ns ns 

Fifth Generation 
(great great great 

grandparents aged 
only) 

Progeny of 7-
day-old  0.79±0.05 0.78±0.06 ns ns 

Progeny of 30-
day-old 0.77±0.05 0.62±0.04 ns ns 
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Appendix C Performance index of the Drososophila melanogaster in the social 

avoidance assay through aging and in the progeny of aged flies. Drosophila’s ability to 

avoid vials that previously contained stressed flies declines with age, and this effect is 

transmitted to the next generation (values are performance index ± standard error to the 

mean, ns = not significant, Kruskall Wallis non-parametric test with a Dunn’s post hoc 

test).  

Age Tested Performance Index  
Significance in relation to 

same sex control 

Parental 
Age (Days) 

  Male Female Males Females 
7 55.96±7.00 61.47±6.20 Control Control 

14 26.69±5.01 39.33±9.03  p< 0.05  ns 
21 37.65±7.97 31.36±8.51 ns p< 0.05 
30 33.87± 5.93 32.92±6.19 ns ns 

First 
Generation 

of aged 
parents 
(Days) 

7 51.80±9.53 62.08±8.22 control control 

30 24.1±9.75 53.01±5.09 ns ns 

50 26.32±8.68 50.64±10.64 ns ns 
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Appendix D Distances to the nearest neighbour of the progeny of aged fathers in social 

space. The male progeny of old fathers were less social. The progeny of seven-day-old 

males and 30-day-old males mated with virgin females were tested in social space. Only 

the male progeny of 30-day-old males were further from their nearest neighbour 

(distances are means± standard error to the mean, ns= not significant, unpaired t-test). 

Generation Tested 
Distance to closest neighbour 

(cm) 
Significance in relation to 

same sex control  
Male Female Male Female 

The progeny of 7-day-
old males x virgin 

females 0.64±0.04cm 0.41±0.02cm Control Control 
The progeny of 30-

day-old males x virgin 
females 0.83±0.05cm 0.38±0.02cm  p< 0.01 ns 

 

 

 

Appendix E Social spacing of the progeny of aged mothers mated with young fathers. At 

30 days, mothers do not have an effect on male or female progeny. When mothers are 50 
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days old, both male and female progeny are further from their nearest neighbour, where 

only females are significant (Shirley Long, Honour’s thesis 2015-2016). 
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Appendix F Survival curves of Drosophila melanogaster fed 0 mM, 10 mM, 20 mM and 

40 mM of Methyl Viologen (Paraquat). 

 

 

 

 

 

 

 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 100 200 300 400 500 600 700 

Su
rv

iv
al

 (%
) 

Time Exposed (Hours) 

0mM 
Male 
0mM 
Female 
10mM 
Male 
10mM 
Female 
20mM 
Male 
20mM 
Female 
40mM 
Male 
40mM 
Female 



 

138 

 

Appendix G Recipe to alter Jazz Mix media into caloric restriction food. Recipe for 

caloric restriction food adapted from (Min et al., 2007), components for Jazz mix media 

were provided by the manufacturer (personal communication). Jazz mix media is a high 

yeast and high sugar food source with 16% yeast and 16% sucrose content per 100ml of 

food. Restriction of both of these ingredients (calories) to 4% yielded individuals with 

enhanced longevity. The chart below shows the content of each ingredient that was 

provided from the manufacturer as a range of % composition. In order to calculate how to 

reduce the calorie content, I calculated average of the upper and lower content % in terms 

of grams per 100 mL of water and determined how to supplement the other ingredients.   

JAZZ-Mix 
Ingredients 

% 
Composition 

Upper % 
Content  
(g In 
100mL) 

Lower % 
Content 
(g In 
100mL) 

Average 
Content 
(g In 
100mL) 

Supplemented 
Ingredients (g 
In 100mL) 

    
  

    
Brown Sugar  60-65% 11.34 12.285 11.8125   
Yeast 7-11% 1.323 2.079 1.701 1.5 
Corn Flour 12-20% 2.268 3.78 3.024 2 
Agar  2.50 – 3.50%  0.4725 6.615 3.54375 2.5 
Sodium 
Propionate  - - - - - 
Benzoic Acid  - - - - - 
Methyl Paraben  - - - - - 
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Appendix H Distances to the nearest neighbour of Drosophila aged at 29°C and their 

progeny in social space. Drosophila that are aged at 29°C are less social than younger 

flies. This pattern recapitulates what is seen at 25°C, where older individuals are further 

apart from their nearest neighbour. When flies are placed at 29°C for seven days and the 

progeny develop at 25°C until 7 days old, they are less social than those whose parents 

were aged to one week at 25°C (distances are means± standard error to the mean, ns= not 

significant, unpaired t-test or One-way ANOVA with a Holm-Sidak post test). 

Age Tested Distance to nearest neighbour  
Significance in relation to 

same sex control 

Parental 
Age 

(Days) 

  Male Female Males Females 
7 0.63±0.04cm 0.60±0.04cm Control Control 

14 0.44±0.02cm 0.51±0.03cm  p< 0.05 ns 
21 0.67±0.04cm 0.60±0.39cm ns ns 
30 0.96±0.05cm 0.97±0.68cm p< 0.0001 p< 0.0001 

First Generation of 7-
day-old parents at 

25°C 0.49±0.03cm 0.45±0.02cm control control 
First Generation of 7-

day-old parents at 
29°C  0.62±0.04cm  0.53±0.04cm  p< 0.05 ns 
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Appendix I Distances to the nearest neighbour of Drosophila fed methyl viologen 

(paraquat) in social space.  Male Drosophila that are fed paraquat for 13.5 hours are 

further apart from their nearest neighbour as compared to those that were not fed 

paraquat. Females are not further apart from their nearest neighbour when they are fed 

paraquat. Both male and female progeny of parents fed paraquat are further from their 

nearest neighbour. Additionally, when only fathers are fed paraquat, both male and 

female progeny are further from the nearest neighbour as compared to fathers that were 

not fed paraquat (distances are means± standard error to the mean, ns= not significant, 

unpaired t-test) 

Treatment 
Distance to nearest neighbour  

Significance in relation to 
same sex control 

Male Female Males Females 

0 mM paraquat 
0.51±0.04cm 0.80±0.50cm Control Control 

20 mM paraquat 
1.01± 0.08cm 0.70±0.05cm  p< 0.0001 ns 

Parents Fed 0 mM 
paraquat 0.51±0.02cm 0.60±0.03cm Control Control  
Parents Fed 20 mM 
paraquat 0.75±0.05cm 0.72±0.04cm p< 0.0001 p< 0.05 
Fathers Fed 0 mM 
paraquat 0.36±0.02cm  0.34±0.02cm Control Control  
Fathers Fed 20 mM 
paraquat 0.53±0.04cm  0.50±0.04cm p< 0.01 p< 0.001 
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Appendix J Distances to the nearest neighbour of Drosophila fed caloric restriction food 

and their progeny in social space. Drosophila fed caloric restriction food for 30 or 50 

days are as far apart from their nearest neighbour as those that are fed the same diet for 

only seven days. Similarly, the progeny of parents fed CR food for 30 or 50 days are also 

as social as those whose parents were fed for seven days (distances are means± standard 

error to the mean, ns= not significant, One-way ANOVA with a Holm-Sidak post test). 

Age Tested  
Distance to nearest neighbour  

Significance in relation to 
same sex control 

Male Female Males Females 

Individuals 
fed CR 

7 0.66±0.42cm 0.52±0.04cm Control Control 
30 0.57±0.04cm 0.38±0.02cm ns ns 
50 0.63±0.04cm 0.58±0.05cm ns ns 

parents fed 
CR 

7 0.76±0.08cm 0.75±0.67cm control control 
30 0.56±0.06cm  0.76± 0.08cm p< 0.0001 p< 0.001 
50 0.53±0.07cm  0.44± 0.08cm p< 0.05 p< 0.01 
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