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ABSTRACT 
 

Maternal nutrient restriction (MNR) in guinea pigs results in placental structural 

abnormalities that reduce nutrient transport contributing to fetal growth restriction 

(FGR). However, whether brain weights are similarly reduced, or preserved by “brain 

sparing” mechanisms, and whether energy levels are depleted leading to membrane 

failure and overt injury remains unknown. Guinea pig sows were fed ad libitum 

(Controls) or 70% of the control diet pre-pregnant switching to 90% at mid-pregnancy 

(MNR). Animals were necropsied near term for fetal growth measures and fetal brains 

were assessed for markers of necrotic cell injury, apoptotic cell injury, endoplasmic 

reticulum stress, and altered development proteins. MNR resulted in FGR with brains 

that are large relative to body weight and livers that are small relative to body weight, 

which suggests a degree of blood flow redistribution.  These fetuses have reduced brain 

weights, but with substantial brain sparing, and with no increased necrotic cell injury 

and no changes in synaptic development, indicating that the threshold for membrane 

failure or aberrant development with energy depletion has likely not been reached. 

However, apoptotic indices were increased in FGR-MNR cohort compared to 

appropriate for gestational age (AGA)-control cohort and more so in males than 

females. Changes in apoptosis were primarily in hippocampal regions and were not 

accompanied by significant changes of protein levels of investigated pro-apoptotic 

factors.   
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1.1 CLINICAL RELEVANCE  

 

1.1.1 Incidence and Classification of FGR 

Fetal growth restriction (FGR), also known as intrauterine growth restriction 

(IUGR), and formerly as fetal growth retardation, is defined clinically as birth weight 

below the 3rd, 5th, or 10th percentile for gestational age and is indicative of a reduction in 

growth rate that prevents a newborn from achieving their complete growth potential 

(Lackman, Capewell, Richardson, DaSilva, & Gagnon, 2001). FGR pregnancies have up 

to a 6-fold increase in fetal mortality and a 5-30 fold increase in neonatal mortality which 

correlates with the severity of FGR (Piper et al., 1996; Seeds et al., 1998), as well as 

increased neonatal morbidity (Bernstein, Horbar, Badger, Ohlsson, & Golan, 2000; 

Kramer, Olivier, McLean, Willis, & Usher, 1990). Approximately 30% of pregnancies 

with weights below the 10th percentile have a pathological origin, whereas the remaining 

70% are constitutionally small. This incongruity highlights that these measures are not 

always able to accurately delineate genuine FGR from infants that are simply small for 

gestational age (SGA). 

Early differentiation between FGR and constitutionally small fetuses arising from 

non-pathological conditions in utero is important, as misdiagnosing small, healthy fetuses 

as FGR may waste valuable resources. As such, other measures of fetal growth are used 

to provide supplementary criteria for a clearer definition of FGR, rather than 

constitutional SGA. Customized growth curves, which account for maternal, 

environmental, and socioeconomic status may be beneficial for the identification of 

pathological FGR (Arbuckle, Wilkins, & Sherman, 1993; Figueras et al., 2007; Gardosi 

& Francis, 2009; Hutcheon, Walker, & Platt, 2011; Kierans et al., 2008; Kramer et al., 

2001). The child of a mother that is 10 cm taller and 10 kg heavier than an average 
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mother would have an expected mean body weight at term that is 140 g heavier than a 

child born to an average sized mother (Gardosi & Francis, 2009). Therefore, 

identification of FGR would require a higher threshold based on maternal size to avoid 

misdiagnosis of FGR. These customized growth curves result in reclassifying 2.7-4.3% of 

babies (Figueras et al., 2007).  

Other measures of fetal growth are used in conjunction with fetal growth curves 

to produce a clearer definition of FGR vs. SGA. Ratios of fetal weight/length, are used as 

a measure of leanness and fetal nutrition at birth. Additional studies have found placental 

weight and placental function to positively correlate with birth weight and thus relate to 

FGR (Lackman, Capewell, Richardson, et al., 2001; Pollack & Divon, 1992). Markers of 

fetal size and shape at a particular gestational age are useful predictors of fetal health and 

postnatal outcome. 

 

1.1.2 Symmetrical vs. Asymmetrical Growth 

FGR presents phenotypically as symmetrical (sFGR) or asymmetrical (aFGR) 

fetal growth restriction; this distinction is based primarily on head and body proportions. 

An sFGR fetus is typically impacted very early in pregnancy, with all growth parameters 

being affected equally. This presents with brain growth inhibition remaining proportional 

to reductions in weight, length, and head circumference and with a normal ponderal index 

at birth (al Riyami et al., 2011; Halliday, 2009; Pollack & Divon, 1992) In aFGR, growth 

restriction onsets later in pregnancy, which tends to occur in a more severe fashion, 

however the later onset is associated with better health outcomes compared to the very 

early-onsetting growth restriction seen in sFGR cases. aFGR presents with average head 

dimensions but a small abdomen (due to decreased visceral organ sizes), decreased 
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muscle mass, and low weight/length ratios (due to increased leanness reflective of 

disproportionate body dimensions) (al Riyami et al., 2011; Campbell & Thoms, 1977; 

Halliday, 2009; Jones & Parer, 1983). This “brain sparing” effect occurs as a mechanism 

of adaptation when chronically exposed to a hypoxic in utero environment to ensure fetal 

survival. There is a redistribution of blood towards essential organs such as the brain, the 

heart, and the adrenal glands at the expense of other organs such as the liver, kidneys, and 

skeletal muscle (Dubiel, Breborowicz, & Gudmundsson, 2003; Dubiel, Breborowicz, 

Marsal, & Gudmundsson, 2000; Poudel, McMillen, Dunn, Zhang, & Morrison, 2015; 

Salihagic-Kadic et al., 2006). This redistribution is intended to ensure that the brain 

continues to receive sufficient nutrient supply and maintain relative growth. The effects 

of this are visible at birth, with the size of the fetal head being relatively large compared 

than that of the abdomen, giving rise to the observable asymmetry observed in aFGR 

fetuses (Jensen, Storgaard, Madsbad, Richter, & Vaag, 2007). 

Unlike aFGR, sFGR can be difficult to distinguish from inherently small 

fetuses because they are proportionally similar, it is the presence of pathological 

processes that causes an infant to be considered sFGR rather than constitutionally SGA; 

therefore, additional tests, such as umbilical artery Doppler assessment or extreme 

discrepancy from a growth curve may be necessary to infer pathological sFGR. The 

most reliable means of differentiating aFGR and sFGR is by measuring brain-to-liver 

weight ratios. An aFGR fetus will have a disproportional decrease in liver weight, 

but a relatively normal brain weight and therefore an increased brain-to-liver 

weight ratio. Whereas sFGR fetuses will have small livers but with the brain being 

similarly reduced and thus similar brain-to-liver weight ratios compared to 
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appropriate for gestational age (AGA) fetuses (P. Cox & Marton, 2009). 

Consequently, the brain-to-liver weight ratio is used in many animal studies to 

identify aFGR at the time of necropsy. In clinical settings, head circumference-to-

abdominal circumference ratio measurements can serve as a proxy in a newborn or 

human fetus.  

 There is a higher incidence of aFGR, reportedly occurring in 70% of growth 

restricted fetuses (Campbell & Thoms, 1977). Population studies report that 60-

80% of growth restricted babies born in developed countries are aFGR whereas 70-

80% of growth restricted babies in developing countries are classified as sFGR 

(Villar, Altobelli, Kestler, & Belizan, 1986).  This indicates that both aFGR and sFGR 

do not arise as the result of a single anatomical dysfunction or abnormality during 

development; as such, there is a large amount of research dedicated to learning 

more about the exact combination of conditions that contribute to FGR.  

 

1.1.3 Etiology of FGR 

Fetal growth is dependent on the interplay between maternal, placental, and 

genetic factors. Optimal fetal growth is achieved when there is a balance of genetic 

growth potential of the fetus, efficiency of the placenta in nutrient and oxygen transport, 

and the state of the maternal environment. These maternal-placental-fetal factors work 

synergistically to provide a healthy intrauterine environment for the development of 

the fetus throughout gestation while supporting physiological changes in the mother. 

When one or more of these factors is impacted, a sub-optimal intrauterine environment 

is created that is incapable of supporting normal growth and development (Cetin et al., 
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2004; Han, 1993; Pollack & Divon, 1992). Maternal causes for FGR can arise pre-

pregnancy or during pregnancy; maternal etiologic factors include weight, age, and 

parity as well as variables like undernutrition, hypertension, hypoxic conditions, 

vascular disease and environmental choices such as cigarette smoking and substance 

abuse (Fang, 2005; Pollack & Divon, 1992). Placental factors that can contribute to FGR 

and sub-optimal development include abnormal cord insertion, nuchal cord, placental 

infarcts, placenta previa, and multiple gestations (Pollack & Divon, 1992). Fetal factors, 

though relatively uncommon, are capable of contributing to FGR; fetal etiologic factors 

include genetic factors such as fetal aneuploidy, congenital irregularities such as major 

heart abnormalities, and infections such as cytomegalovirus (Demirci et al., 2015). Any 

one of these factors is sufficient to cause FGR, however it is estimated that 60% of FGR 

is idiopathic in nature and likely derived from a combination of factors, the majority of 

which involve some form of abnormal placental development, commonly referred to as 

placental insufficiency (Ghidini, 1996; Pallotto & Kilbride, 2006; Pollack & Divon, 1992). 

 

1.1.4 Placental Insufficiency 

The placenta is responsible for the transfer of nutrients between maternal and 

fetal tissue throughout gestation. The human placenta has a complex system of blood 

vessels that constitute the main area of fetal-maternal exchange. At approximately 21 

days of gestation, there is an increase in fetal-placental blood vessels that allows for 

vascularization and transforms the initially hypoxic in utero environment to one that is 

capable of supporting fetal growth and organ system development during later 

gestation (J. Kingdom, Huppertz, Seaward, & Kaufmann, 2000). This increase in 

vasculature incudes a 10-fold increase in volume, an increase in surface area of the 
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placental labyrinth, and a decrease in trophoblast thickness, all of which promote 

elevated exchange of nutrients, essential substrates, and oxygen between maternal and 

fetal tissue (Myatt, 2006).  

The majority of conditions compromising fetal growth, especially in developed 

countries, involve idiopathic aberrant development of the placenta referred to as 

placental insufficiency (Hashimoto et al., 2012; Lumey, 1998). Placental insufficiency is 

a term used to describe conditions in which the placenta is unable to transfer 

appropriate amounts of nutrients or oxygen for full fetal growth. Clinical studies of 

placental insufficiency with FGR have shown aberrant placental vascularization, 

involving insufficient or incomplete trophoblastic invasion of spiral arteries in the 

placental bed, and decreases in umbilical blood flow (J. Roberts, 1998; Salafia, Charles, & 

Maas, 2006; Wang, Walsh, & Kay, 1992). This decrease in umbilical blood flow may 

result in inadequate nutrition and oxygen reaching the fetus, resulting in a hypoxic, 

nutrient deprived in utero environment (Economides & Nicolaides, 1989; Giussani, 

Salinas, Villena, & Blanco, 2007; Romo, Carceller, & Tobajas, 2009; Salafia et al., 2006); 

thus resulting in poor fetal development and therefore FGR. Under these conditions, the 

fetus adapts by altering metabolic and developmental processes at the expense of 

complete growth (T Jansson & Persson, 1990; Jones & Parer, 1983; Myatt, 2006). It 

should be noted that independent of reductions in nutrient supply, hypoxia alone has 

been shown to have a significant impact on fetal growth, therefore hypoxia may be a 

major contributor to impaired fetal growth and FGR (Giussani et al., 2007). 

 

1.1.5 Maternal Undernourishment 
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As previously stated, FGR is a prevalent problem worldwide, however there are 

differences in FGR etiology between developed and developing countries. While the 

majority of conditions negatively affecting fetal growth in developed countries involve 

placental insufficiency, in developing countries maternal nutrition plays a more 

prominent role (Hashimoto et al., 2012; Lumey, 1998). It is estimated that 11% of 

offspring in developing countries fail to reach their full growth potential due to 

nutritional, social, and health factors related to poverty (de Onis, Blossner, & Villar, 

1998; S. P. Walker et al., 2007a). Early evidence of the impact of maternal nutrition on 

fetal health outcomes was observed in population studies during the Dutch famine of 

the 1940s; studies of infants whose mothers’ nutrition was compromised at the time of 

conception or in early pregnancy showed increases in placental weight but not in birth 

weight (Lumey, 1998).  These increases in placental weight are possibly an attempt to 

compensate for the reduced availability of substrates in the maternal circulation, which 

is what is seen in examination of human FGR cases (Lumey, 1998). Clinical study in 

populations subjected to food restriction (Lumey, 1998) and in mothers deemed 

underweight with low body mass index (Ehrenberg, Dierker, Milluzzi, & Mercer, 2003; 

Kalk et al., 2009; Li et al., 2013; Sebastián Manzanares et al., 2012; Sebire, Jolly, Harris, 

Regan, & Robinson, 2001) also support the notion that maternal undernourishment is 

undoubtedly causative for FGR.  

It has been found that nutritional supplementation throughout pregnancy led to 

better outcomes in motor development of the child at 8 months, but not at the 5-year 

mark. Similar supplementation given during the final trimester of pregnancy and 

throughout infancy provided no benefit from 6 months to 3 years (Adair & Pollitt, 1985; 

Waber et al., 1981). Additional studies have shown that maternal weight and nutrition 
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prior to pregnancy are actually better determinants of fetal growth and development 

compared to changes in weight during pregnancy (Stevens-Simon, Metlay, & 

McAnarney, 1995), reflecting the fact that the majority of women do not significantly 

improve lifestyle habits and nutrition over the course of pregnancy (Crozier, Robinson, 

Godfrey, Cooper, & Inskip, 2009). These studies show evidence that the placenta adapts 

to maternal nutrient supply early on in pregnancy and is not easily altered or rescued in 

response to supplementation later on in pregnancy. This shows the importance of 

maternal nutrition in fetal programming and development as it has the potential to be a 

chronic stressor on the mother, placenta, and developing fetus.  

In cases of maternal nutrient restriction (MNR), the mother’s nutrient reserves 

are depleted which results in a reduction of nutrient transport to the fetus and the 

placenta, increasing the risk of FGR. In addition to this, MNR has been shown to 

generate placentas with altered vascular development and increased barrier thickness, 

in both animal models (Belkacemi, Nelson, Desai, & Ross, 2010; Redmer, Wallace, & 

Reynolds, 2004; C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001) and human cases 

(Aherne & Dunnill, 1966) of maternal undernourishment; which will further diminish 

the transport of glucose, amino acids and lipids to the fetus (Belkacemi et al., 2010; 

Gaccioli, Lager, Powell, & Jansson, 2012) in a manner similar to that seen in placental 

insufficiency induced FGR. 

 

1.1.6  FGR and long-term health 

 FGR remains the second most common adverse condition, behind preterm birth, 

that arises from complications in pregnancy; and studies have shown that FGR is 

actually associated with an increased risk of spontaneous preterm delivery (Lackman, 
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Capewell, Richardson, et al., 2001). FGR pregnancies have up to a 6-fold increase in fetal 

mortality and a 5-30 fold increase in neonatal mortality which correlates with the severity 

of FGR (Piper et al., 1996; Seeds et al., 1998), as well as increased neonatal morbidity. In 

addition to risk of adverse fetal and neonatal outcomes, FGR is also a recognized risk 

factor for long term adverse health outcomes including heart disease, diabetes and 

neurodevelopmental disability, with the greatest risk observed in those with severe and 

early-onsetting FGR (Barker, 2004; Thomas Jansson & Powell, 2007; Low et al., 1992; 

Pryor, Silva, & Brooke, 1995; Zaw, Gagnon, & da Silva, 2003). Studies on sex differences 

in FGR offspring found that there is a significantly higher incidence of FGR in females, 

which suggests that there is a higher tendency for adaptation to a sub-optimal 

intrauterine environment in females relative to males (J. Liu, 2014); however females 

tend to have more favourable outcomes and a better likelihood of surviving FGR related 

outcomes compared to males (Synnes et al., 2010). Studies of MNR in mice showed a 

higher susceptibility to FGR in males, with a higher incidence of impaired cognitive 

function (Akitake et al., 2015) and this sex difference persists in adults, as less tissue 

damage for an equivalent insult has been reported in global and focal cerebral ischemia 

in adult female rodents compared to males (Alkayed et al., 1998; Hall, Pazara, & 

Linseman, 1991). 

 At the time of birth, FGR newborns are at high risk for hypoxia, hypoglycemia, 

and hypothermia due to limited nutrient supply and storage, low tissue adiposity, 

diminished gluconeogenesis and impaired lipid metabolism (Fang, 2005; Rodríguez et 

al., 2011). Interventions in early pregnancy are aimed at promotion of fetal growth and 

survival. Mothers often receive glucocorticoid supplementation if they are at risk of 

preterm delivery in order to attempt to replicate the endogenous glucocorticoid burst 
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that is necessary for lung development. Another major goal of intervention in postnatal 

care is the achievement of catch-up growth, whereby there is rapid growth after birth to 

match the growth curves of AGA infants. Previous studies have demonstrated that aFGR 

infants are capable of full catch-up growth within 3 years, however sFGR infants have a 

reduced rate of weight gain and growth up to 40 weeks, followed by an increased linear 

weight gain until approximately 8 months (Strauss & Dietz, 1997). The same study 

demonstrated that 70% of sFGR infants had weights greater than that of the 10th 

percentile but remained at a lower weight compared to AGA infants up to 3 years old 

(Strauss & Dietz, 1997). A related study, which examined growth of sFGR infants, found 

that weight, height, and head circumference were still reduced even up to 14 years of 

age (Indredavik et al., 2010). While post-natal treatment may aid in catch-up growth, it 

does not lessen the long-term morbidity that arises due to sub-optimal in utero 

conditions and aberrant development.  

 

1.1.7 Developmental Programming 

Fetal programming is the theory that there are critical periods of organ 

development, during which the system is highly sensitive to environmental cues, which 

are capable of setting the platform for health outcomes in later life (Barker, 2004). This 

is known as the “Barker hypothesis” or the “developmental origins of health and 

disease” in later life. The adaptations that occur in response to adverse intrauterine 

conditions during these critical periods of development are capable of causing 

permanent structural and functional changes to several of the body’s systems. The three 

primary means by which fetal programming can occur are: 1) direct damage, such as 

early loss of a limb; 2) induction, deletion, or impaired development of a somatic 
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structure resulting from insult during a critical period of development; or 3) 

physiological re-setting by an early stimulus or insult at a critical period with long term 

consequences for endocrine/autocrine/paracrine axes (Lucas, 1994). Barker described 

these periods as most likely occurring in the fetus during phases of rapid cell division, 

and being more impacted by intrauterine environment than genetics (Cosmi, Fanelli, 

Visentin, Trevisanuto, & Zanardo, 2011).  Early evidence which supported claims that 

undernutrition in utero, resulting in FGR, increased the risk of cardiovascular disease in 

adult life lead to the popularization of the idea of fetal programming (Barker, 2004).  

More recently, studies have found a positive correlation between low birth weight, 

caused by either FGR or preterm birth, and increased rates of cardiovascular disease 

and type-2 diabetes in adult life (Langley-Evans, 2009). There is growing evidence that 

supports Barker’s hypothesis of developmental adaptations in utero having long-term 

changes on the “programming” of later life health outcomes (Barker, 2004), and there is 

an increasing amount of research that suggest that the etiology of many neurological 

disorders can also be attributed to the effects of the suboptimal intrauterine 

environment seen in FGR.  

 Maternal undernutrition gives rise to fetal programming by means of the above 

mentioned physiological re-setting. The early stimulus of placental compromises in 

nutrient/oxygen delivery causes growth restriction to occur as an adaptive process by 

which energy needs are decreased in order to ensure survival (Hochachka, Buck, Doll, & 

Land, 1996). However, this has consequences for aberrant growth processes which lead 

to an increased predisposition to later life disease.  
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1.2 FGR AND THE BRAIN 

1.2.1 FGR and neurological outcome 

 The link between FGR and neurological disorders and cognitive deficits is 

apparent in all age groups and has been reported in many studies. FGR is associated 

with a higher risk of development of a number of neurological disorders that manifest 

in early childhood including cerebral palsy, attention deficit hyperactivity disorder, and 

autism spectrum disorder (Halliday, 2009; Indredavik et al., 2010; Rodrigues, Mello, & 

Fonseca, 2006). The effects of FGR in early childhood can be observed with reductions 

in cognitive skills, impaired memory, learning difficulties, difficulties reading, writing, 

and with adaptive skills, inattention, reduced psychosocial function, behavioural 

problems, sensorineural deterioration, reduced mathematics abilities, and reduced 

intelligent quotient (IQ) scores (Geva, Eshel, Leitner, Fattal-Valevski, & Harel, 2008; 

Pallotto & Kilbride, 2006; Rodrigues et al., 2006; Synnes et al., 2010; D.-M. Walker & 

Marlow, 2008). More severe effects can be seen with altered brain development later in 

life as FGR-born adults are at a higher risk of schizophrenia, epilepsy, and psychiatric 

hospitalization (M. Cannon, Jones, & Murray, 2002); studies of these neurological 

disabilities show that their severity correlates positively with the severity of FGR.  

Neurological difficulties in FGR-born children continue through adolescence and 

into early adult life. At 10 years of age, late-onset aFGR-born children were found to 

have continued deficiencies in verbal short term memory of auditory or visiospatially 

presented information and reduced IQ scores (Geva et al., 2008). Studies comparing 13 

year-old FGR-born children to age matched controls showed poor everyday memory, 

mathematical reasoning and numerical operation skills even after learning-skills 

interventions (Isaacs et al., 2000). At 14 years of age a cohort of sFGR-born children 
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were reported to still have reduced head circumference as well as increased 

hyperactivity, inattention, psychiatric diagnosis, autism spectrum disorder scores and 

reduced psychosocial function (Indredavik et al., 2010). These studies indicate that 

behavioural and cognitive difficulties seem to become more complex and quite possibly 

more severe with age for FGR-born offspring.  

Regional differences exist in the brain’s development and thus, certain areas can 

be affected differently by in utero insults. For example, the hippocampus is the least 

genetically regulated region of the brain and is therefore more vulnerable to 

environmental and developmental influences compared to areas of the brain under 

higher levels of genetic influence (Lodygensky et al., 2008). A study by Lodygensky et al. 

showed reductions in hippocampal volume of FGR-born infants at 2 years of age, with a 

significant correlation between total hippocampal volume and size at birth, this cohort 

was also found to have poor performance in motor, attention-interaction, and self-

regulation behavioural function maturation assessments (Lodygensky et al., 2008). 

Hippocampal differences have been observed in other studies as well, with reduced 

hippocampal volume and enlarged ventricles appearing on magnetic resonance imaging 

(MRI) scans in FGR-born infants compared to age matched controls (Isaacs et al., 2000). 

These irregularities in the development of the hippocampus may, in part, explain the 

basis for several of the neurological deficits observed in FGR as the hippocampus and 

associated areas are critical for learning, memory, and proper cognitive function (Reed 

& Squire, 1997). 

 

1.2.2 Fetal Brain Growth and Development 
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 Brain growth and development are intricate processes that occur throughout the 

entirety of gestation and continue to be refined after birth. At term, the developing 

human fetal brain is responsible for approximately 20% of body mass and 80% of 

energy expenditure (Gilles, 2011). The rate of brain growth peaks around term; this 

involves the formation and migration of neurons, and once neurons reach their final 

migration point myelination begins and there is a notable decrease in the rate of brain 

growth which plateaus at about two years after birth (Gilles, 2011); after which brain 

alteration is largely dependent upon experience and environmental factors.  

Complete growth of the brain requires neuronal generation and differentiation, 

navigation and organization of axonal projections between neurons, and the formation 

and maturation of synaptic contacts (Bourgeois, 1997). It is theorized that there is an 

initial formation of large amounts of synaptic contacts by means of intrinsic 

mechanisms of growth; however, subsequent maturation of specific neuronal 

connections occurs by means of selective usage (Bourgeois, 1997). As a result, it is 

believed that environmental influences play a major role in the development of these 

processes and can have significant impacts on later life neurological health.  

 

1.2.3 Synaptogenesis 

Synaptogenesis is a process that occurs during gestation and through to about 

puberty in humans (Bourgeois, 1997). The early phases involve neurogenesis, neuronal 

migration, individualization of cortical layers and synapse formation that are controlled 

by intrinsic mechanisms which are considered experience-independent (Bourgeois, 

1997). In later phases synapses are formed at a much faster rate, driven by an 

experience expectant mechanism, which generates an abundance of synapses in the 
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brain and pre-adapts the brain for an experience dependent phase with individual 

customization on the basis of experience and environmental cues (Bourgeois, 1997). A 

plateau phase exists, in which there is elimination of select synapses and selective 

maturation of others, in order to fine tune and establish certain neuronal connections. 

(Bourgeois, 1997). In order to mature, a synapse requires an abundant amount of 

energy. Areas with newly forming synapses have high levels of mitochondria in order to 

supply the large amount of energy necessary for protein synthesis and synapse 

formation (Mjaatvedt & Wong-Riley, 1988); as such compromises in nutrient/oxygen 

delivery as a result of a poor intrauterine environment are capable of affecting the 

earlier phases of synaptogenesis and may predispose the fetal brain to deficiencies in 

later life.  

Synaptophysin (SYN) is a 38 kDa presynaptic protein marker present in all 

presynaptic boutons on presynaptic vesicle membranes in the central nervous system 

(Calhoun et al., 1996; Jahn, Schiebler, Ouimet, & Greengard, 1985). Histological staining 

using SYN antibodies shows punctate staining localized to presynaptic boutons 

(Calhoun et al., 1996; Fletcher, Cameron, De Camilli, & Banker, 1991). This presynaptic 

protein marker has been used in animal studies of FGR as a measure of synaptic 

numbers in the brain (Camm, Gibbs, Harding, Mulder, & Rees, 2005; Tolcos et al., 2003). 

It is also found in immature synapses and small synaptic vesicles, and its protein levels 

directly increase with synapse formation and development (Daly & Ziff, 1997; Fletcher 

et al., 1991). Using immunohistochemistry, the immunoreactivity (IR) of SYN has been 

shown to be an accurate presynaptic marker for the detection of synapse formation. 

1.2.4 Myelination 
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Myelin is necessary for the insulation of electrochemical signals that are sent 

along neurons; proper myelination throughout development ensures neuronal 

communication and connectivity between areas of the brain. The presence of neurons 

and the electrical activity of axons perpetuates myelination in a specific axon (Barres & 

Raff, 1993). The degree to which an axon is myelinated dictates the conduction velocity 

of an axonal signal and is critical to the synchronous firing of action potentials, which is 

necessary to strengthen neuronal connections (Fields, 2008). As such, the increasing 

electrical activity in a maturing neuron aids in myelination which in turn establishes 

saltatory conduction and aids in the coordination of synaptogenesis between neuronal 

connections. 

In humans, the rate of myelination of the brain increases towards the end of 

gestation and into the 2nd year of life. Myelin sheath proteins are seen in the brain as 

early as the 5th week of gestation and become more abundant with advancing 

gestational age (Jakovcevski, Mo, & Zecevic, 2007; Kinney, Brody, Kloman, & Gilles, 

1988). The high rate of signaling and protein turnover required for myelination makes 

it a process with high energy demand; therefore, extended periods of compromised 

nutrient/oxygen delivery may impact on the process leading to poor myelination and 

therefore poor synaptogenesis and aberrant development of the brain.  

 

1.2.5 Apoptosis 

Apoptosis, or programmed cell death, has a physiological basis during the 

fetal/neonatal period of brain development that coincides with neuronal differentiation 

and synaptogenesis, and possibly relates to the competition for trophic factors 

produced by target cells and the establishment of axonal-target connectivity (Blaschke, 
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Staley, & Chun, 1996). The process of apoptosis involves stimulation of intrinsic and/or 

extrinsic signaling pathways leading to the downstream cleavage of caspase-3, which 

together with effector caspases can target multiple proteins for proteolysis causing a 

resultant fragmentation of the cell’s DNA and dismantling of cellular structures 

(Banasiak, Xia, & Haddad, 2000; D’Amelio, Cavallucci, & Cecconi, 2010). Apoptosis can 

be pathologically activated in the brain in cases of chronic hypoxia and result in 

selective neuronal loss (Burke et al., 2006; Yue et al., 1997) with immature neurons 

and/or milder insults more likely to result in apoptotic death, while terminally 

differentiated neurons and/or severe insults are more likely to result in death by 

necrosis ( a D. Edwards et al., 1997; Scott & Hegyi, 1997; Yue et al., 1997). 

 

1.2.6 Mechanisms of Damage and Aberrant Development 

The histo-pathological alterations seen in human pregnancies with 

undernourishment resulting in FGR (Aherne & Dunnill, 1966), have been shown to 

result in reductions in nutrient transport to the fetus for glucose, amino acids, and lipids 

(Crozier et al., 2009). Recent studies have also shown evidence for chronic hypoxia with 

MNR-FGR in guinea pigs (Elias, Matushewski, Zhao, Regnault, & Richardson, 2013), low 

grade oxidative stress may play a mechanistic role here given its known role in the 

pathogenesis of chronic disorders (Hracsko, Orvos, Novak, Pal, & Varga, 2008; Mohn et 

al., 2007). If these insults occur during critical time points in brain growth and 

development, there is a high risk for potential derangements.  

As previously stated, in FGR with compromised nutrient/oxygen delivery there is 

adaptive programming in which growth restriction occurs and select developmental 

processes are shut down in order to conserve limited energy stores for the maintenance 
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of essential processes necessary for survival. (Hochachka et al., 1996). Variable 

alterations to brain development and injury may be observed on the basis of the insult. 

Selective neuronal loss has been observed in developing brain cells upon exposure to 

hypoxia or ischemia; with milder insults likely to impact immature neurons and result 

in apoptotic death and more severe insults likely to affect terminally differentiated 

neurons and result in death by necrosis (Scott & Hegyi, 1997; Yue et al., 1997). 

Sensitivity to insults and brain injury also varies on the basis of energy demand, with 

areas that have a higher energy demand being more sensitive; as such hippocampal 

cells are expected to see the largest change (Zhao & Flavin, 2000). Additionally, there is 

regional variation in susceptibility, with the cortex and striatum being more sensitive 

than the thalamus (Dirnagl, Iadecola, & Moskowitz, 1999). In prenatal brain developers 

such as guinea pigs, and for humans as perinatal brain developers, the most rapid phase 

of synapse formation and neuronal myelination onsets during the latter half of 

pregnancy (McIntosh, Baghurst, Potter, & Hetze, 1979; Penn & Shatz, 1999). As such, 

FGR with nutrient transport impairment may disrupt synapse formation and neuronal 

myelination, as they are energy demanding growth processes (Jiang & Schuman, 2002). 

This may lead to alterations in brain development and underlie risk for later cognitive 

impairment and neuropathology.  

Additionally, hypoxia, a decrease in amino acid levels, and/or oxidative stress can 

lead to the accumulation of misfolded or unfolded proteins in the endoplasmic 

reticulum (ER), which if prolonged can initiate a pro-apoptotic cascade (Koumenis et al., 

2002; Marciniak & Ron, 2006; Szegezdi, Logue, Gorman, & Samali, 2006). Hypoxia and 

low amino acid supply, as seen in the MNR guinea pig model (Elias et al., 2013; C. T. 

Roberts, Sohlstrom, Kind, Earl, et al., 2001; C. T. Roberts, Sohlstrom, Kind, Grant, et al., 
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2001), have been demonstrated to hinder disulfide bond formation – one of the key 

processes underlying protein maturation and folding within the ER lumen, thus 

augmenting ER stress (Benham, van Lith, Sitia, & Braakman, 2013; Frand & Kaiser, 

1999; Yu et al., 2012; Zhang et al., 2014). In cases where ER stress is not sufficiently 

alleviated, downstream apoptotic pathways will be activated (D. Liu, Zhang, & Yin, 

2013; Matsumoto, Minami, Takeda, Sakao, & Akira, 1996). G-protein coupled receptor 

78 (Grp78) is an essential component of the ER translocation machinery and plays a 

significant role in retrograde transport of aberrant proteins destined for degradation by 

the proteasome; as such, synthesis of Gpr78 is induced under conditions that lead to the 

accumulation of unfolded polypeptides in the ER (Hendershot, Valentine, Lee, Morris, & 

Shapiro, 1994; Ting & Lee, 1988); Consequently, Grp78 is used as an early marker of ER 

stress. Since the ER is the primary site of protein synthesis and maturation within the 

cell, prolonged ER stress could negatively impact essential signaling and transport 

function necessary for proper development of the fetal brain (Braakman, Hoover-Litty, 

Wagner, & Helenius, 1991; Frand & Kaiser, 1999; Kawakami et al., 2014; Red-Horse et 

al., 2004). 

 

1.2.7 Mechanisms of Adaptation 

Previous studies have shown that there are compensatory mechanisms in action 

that deal with prolonged episodes of lowered energy and oxygen that involve 

suppression of energy-demanding pathways to regulate the cell at new steady state 

levels, even during drastic energy depletion. These mechanisms include channel arrest 

of membrane ion pumps, cessation of synaptic transmission, and decreased protein 

synthesis (Hochachka et al., 1996)  In some cases, if the nutrient impairment is severe 
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enough, it is possible that these compensatory mechanisms, which are usually 

protective for the brain, may become limited and brain energy levels may be sufficiently 

impacted, leading to membrane failure with an increase in necrotic cell injury and/or 

changes in apoptotic regulators (Rocha, Hammond, & Richardson, 2004). While these 

mechanisms have yet to be elucidated, regional differences in the balance of pro-

apoptotic and anti-apoptotic gene expression and activity-dependent changes in this 

balance with the strengthening of incoming afferent activity are likely to be involved 

(Anand & Scalzo, 2000).   

Some of these pro- and anti-apoptotic factors include Bcl-2 associated X protein 

(Bax), B-cell Lymphoma 2 (Bcl-2), poly ADP ribose polymerase 1 (PARP1), and cleaved 

caspase-3. Pro-apoptotic Bax and anti-apoptotic Bcl-2 are known to synergistically 

regulate apoptosis (D. Liu et al., 2013; McCullough, Martindale, Klotz, Aw, & Holbrook, 

2001). PARP1 is required for translocation of apoptosis-inducing factor (AIF) from the 

mitochondria into the nucleus, in which it induces large scale DNA fragmentation 

(Daugas et al., 2000). Extrinsic and intrinsic apoptotic pathways both converge on 

caspase-3, with the downstream event consisting of substrate cleavage. There is 

abundant evidence that pathways leading to caspase-3 cleavage/activation are engaged 

following neonatal hypoxia-ischemia (Blomgren et al., 2001; Felderhoff-Mueser et al., 

2002; Hu, Liu, Ouyang, Blomgren, & Siesjö, 2000; Northington, Ferriero, Flock, & Martin, 

2001). It is of note that caspase-3 activation does not always lead to DNA fragmentation, 

in the developing brain caspase-3 appears to also play a non-apoptotic role in cellular 

differentiation and remodeling of neuroplasticity through selective removal of existing 

synaptic connections (D’Amelio et al., 2010; Xu et al., 2015). 
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1.3 ANIMAL MODELS OF FGR AND ADVERSE DEVELOPMENT  

1.3.1 Guinea pig brain development 

Guinea pigs and sheep have been used to model human FGR due to their delivery 

of precocious young after a relatively long gestational period (Dobbing & Sand, 1970). 

These species demonstrate a similar timeline of developmental events in the brain to 

those occurring in utero during human pregnancy; therefore, intrauterine insults will 

coincide with critical periods of development and the associated long-term outcomes 

more accurately parallel that of the human situation. Additionally, both humans and 

guinea pigs are thought to be born with the full complement of neuronal and synaptic 

numbers (Lennon, Francon, Fellous, & Nunez, 1980). This is in contrast to rodents, 

which have a shorter gestation and altricial young; therefore many of their 

developmental processes occur in the postnatal period and are less affected by the in 

utero environment.  

In comparison to humans, the guinea pig brain is larger and at a more developed 

stage of functionality at birth. In the human situation brain growth plateaus at 

approximately 2 years of age, this plateau occurs just prior to birth in the guinea pig 

(Dobbing & Sand, 1970). At birth, guinea pig brain functions include motor, cognitive 

and regulatory processes that are comparable to that of a human toddler, this is due to 

peak neurogenesis occurring in several brain areas much earlier in guinea pigs than in 

humans (Clancy et al., 2007). Therefore, in utero insults may actually be magnified in 

the guinea pig brain in comparison to humans; while the impact of post-natal 

environmental influences that play a role in ongoing brain development will be lessened 

in the mature guinea pig brain. The precocious function and comparable anatomy of the 

guinea pig brain in comparison to the human brain are major assets in the 
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determination of changes in neurodevelopment and their extrapolation to the human 

situation.  

 

1.3.2 Animal Studies of FGR with Placental Insufficiency 

 Clinical studies have shown that a major contributor to placental insufficiency, 

and therefore FGR, is aberrant placental vascularization and the accompanying changes 

in umbilical blood flow. As a result of this, research on animal models of placental 

insufficiency has been a growing area of research. The guinea pig is a good model of 

human placental insufficiency because it has a very similar placenta; both human and 

guinea pigs have a discoid haemochorial placenta in which fetal vessels and maternal 

blood are in direct contact. Placental insufficiency can be induced by a variety of 

interventions at pre-pregnancy, mid-pregnancy, and late pregnancy. Some of these 

include: uterine caruncletomy, the removal of endometrial tissue, exposure to 

hypothermic environment in pregnant sheep, placental embolization midway through 

gestation, or uterine artery ligation/ablation midway through gestation; these 

techniques have successfully resulted in decreased fetal weight, increased brain-to-fetal 

weight ratios in sheep, and increased markers of hypoxemia and hypoglycemia 

(Gagnon, Murotsuki, Challis, Fraher, & Richardson, 1997; Harding, Jones, & Robinson, 

1985; Murotsuki, Challis, Han, Fraher, & Gagnon, 1997; Regnault, Orbus, Battaglia, 

Wilkening, & Anthony, 1999). Of particular interest to this study, are reports of uterine 

artery ligation in rodents and sheep that have successfully induced FGR with 

accompanying reductions in fetal brain development and long-term brain function 

(Olivier et al., 2007; Rees, Breen, Loeliger, McCrabb, & Harding, 1999). Guinea pig 

models of uterine artery ligation have resulted in decreased placental size, and 
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decreased transfer of oxygen and nutrients (T Jansson & Persson, 1990; Jones & Parer, 

1983; Lafeber HN, Rolph TP, 1984), which successfully models human placental 

insufficiency. Recent studies have additionally shown that uterine artery ligation is 

capable of leading to disruptions in synapse formation, regional synapse maturation, 

and myelination (Piorkowska et al., 2014). These animal models that mimic placental 

insufficiency are highly effective in producing FGR with variable levels of hypoxemia 

and nutrient deficiency, however they are not without their flaws. There have been high 

reported rates of mortality in the pups in uterine artery ligation and ablation models ( a. 

J. Turner & Trudinger, 2009), and they involve a one-time, invasive procedure, which 

doesn’t ideally parallel the human condition of a chronic, non-invasive insult.  

 

1.3.3 Animal Studies of FGR with Maternal Undernourishment 

As previously stated, clinical studies have also shown that maternal nutrition is a 

major contributor to the health outcomes of a fetus. As a result, there are many animal 

models that aim to investigate the impacts of maternal undernourishment on fetal and 

placental growth and development. These models use a variety of levels of nutrient 

restriction and different time points for restriction relative to gestation resulting in a 

large range of different levels of growth restriction and altered development. These 

models can range from “moderate” restrictions, whereby animals are fed 70-85% of a 

control ad libitum diet, to “severe” restriction studies, whereby animals are provided 

with 50% of a control ad libitum diet to mimic cases of extreme undernourishment. 

Animal models of MNR have been used to study developmental outcomes with induced 

FGR (Belkacemi et al., 2010; Thomas Jansson & Powell, 2007; Redmer et al., 2004; C. T. 

Roberts, Sohlstrom, Kind, Earl, et al., 2001; Vonnahme et al., 2003). MNR has been 
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shown to generate placentas with altered vascular development and increased barrier 

thickness, in both animal models (Belkacemi et al., 2010; Redmer et al., 2004; C. T. 

Roberts, Sohlstrom, Kind, Earl, et al., 2001) and human cases (Aherne & Dunnill, 1966) 

of maternal undernourishment; recent studies have also shown evidence for chronic 

hypoxia with MNR-FGR in guinea pigs (Elias et al., 2013). 

Studies conducted in sheep and guinea pig animal models, ranging from 

moderate to severe nutrient restriction, result in a range of different levels of growth 

restriction and altered development. MNR starting pre-conception and lasting over the 

entire course of pregnancy in guinea pigs has been shown to be sufficient in causing 

altered fetal and placental weights consistent with FGR (C. T. Roberts, Sohlstrom, Kind, 

Earl, et al., 2001). Studies that utilized pre-conception moderate MNR showed a 

significant impact on fetal-placental growth. MacLaughlin et al. demonstrated that MNR, 

applied pre-conception through to gestational day 7 in sheep, was sufficient to impact 

fetal and placental weight at birth. Previous studies have used moderate MNR in guinea 

pigs, applied pre-conception and through pregnancy, and have observed reduced fetal 

weight and altered fetal development, as well as structural and functional changes in 

the placenta, including increased barrier thickness, decreased size of the placental 

labyrinth, and therefore decreased availability for nutrient exchange between maternal 

and fetal tissue (C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001; C. T. Roberts, 

Sohlstrom, Kind, Grant, et al., 2001). 

 

1.3.4 Animal Studies of FGR and Altered Brain Development 

 Animal studies of aFGR have demonstrated that, despite brain weights being 

relatively similar to age matched controls, there are maladaptive changes in brain areas 
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such as the hippocampus, retina, ventricles, cerebellum, brain stem, and cortex 

(Mallard, Loeliger, Copolov, & Rees, 2000; Rees & Bainbridge, 1992; Rees et al., 1999; 

Rehn et al., 2004; Tolcos et al., 2003; Tolcos & Rees, 1997). There have been several 

studies in FGR guinea pigs showing that synapse formation and myelination are 

reduced (Dieni & Rees, 2003; Mallard et al., 2000; Piorkowska et al., 2014). Guinea pig 

offspring that utilized a uterine artery ligation model of placental insufficiency were 

found to have reduced neuronal numbers in select brain regions at 7 days of age; these 

changes significantly correlated with reductions in brain weight (Mallard et al., 2000). 

Another study using a uterine artery ligation model in guinea pigs found FGR-born 

animals to have increased lateral ventricle size and reduced basal ganglia volume at 8 

weeks of age (Rehn et al., 2004). Additional studies in guinea pig models of placental 

insufficiency have found reduced myelination and a reduced number of myelinated 

fibers in FGR offspring compared to control animals, as well as disproportionally thin 

myelin sheath in growth restricted fetuses (Nitsos & Rees, 1990) A number of structural 

changes occur in the brain with a great deal of regional variability, and these changes 

persist after birth.  

 

1.4 SUMMARY 

Fetal growth restriction is a failure to attain full genetic growth potential during 

fetal life. It can manifest as asymmetrical or symmetrical growth restriction, based on 

the incidence of brain sparing. FGR occurs due to a combination of maternal, placental, 

and genetic factors; the most common being the occurrence of placental insufficiency in 

developed countries or undernutrition in developing countries. In both cases there is a 

reduction in the transport of nutrients and oxygen that reach the fetus from the mother; 
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either by reduced capacity of the placenta to transport nutrients, and/or by reduced 

concentration of nutrients in maternal circulation. FGR leads to an elevated risk of 

cognitive deficits and neurological disorders in later life. This includes increased risk of 

autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia. 

Cognitive deficits may present as poor academic performance, learning disabilities and 

memory deficiencies in childhood and throughout life. Clinical study and research on 

potential mechanisms behind FGR have led to the creation and use of many animal 

models to mimic the human situation. Previous studies have shown that there is a 

connection between FGR and altered growth and development of the fetal brain; 

however, there has been little study in models of MNR. As such, determining the effects 

on brain growth and development resulting from MNR leading to FGR may lead to a 

better understanding of the human situation and may be utilized in extrapolation of 

potential treatments and interventions in human FGR.  
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2.1 RATIONALE 

Next to premature birth, fetal growth restriction (FGR) is the most common 

antenatal complication in developed countries contributing to increased risk for 

fetal/neonatal morbidity and mortality (Ghidini, 1996; Lackman, Capewell, Richardson, 

et al., 2001). Furthermore, FGR-born offspring have an increased risk for the 

development of adverse health outcomes in later life including heart disease, diabetes, 

and neurodevelopmental disability, with the greatest risk observed in those with severe 

and early-onsetting FGR (Barker, 2004). A majority of FGR cases arise as the result of an 

unknown combination of maternal, fetal, and placental factors giving rise to incomplete 

growth; though many cases are associated with idiopathic placental insufficiency 

(Ghidini, 1996; Pallotto & Kilbride, 2006; Pollack & Divon, 1992).  

Clinical studies of placental insufficiency with FGR have shown aberrant 

placental vascularization, involving insufficient or incomplete trophoblastic invasion of 

spiral arteries in the placental bed, and decreases in umbilical blood flow (J. Roberts, 

1998; Salafia et al., 2006; Wang et al., 1992). These studies have led to animal models of 

placental insufficiency induced by uterine artery ligation, placental embolization, or 

carunclectomy, primarily in sheep and guinea pigs, producing FGR offspring with 

reduced fetal weight, and often associated with asymmetrical fetal growth restriction 

(aFGR) with increased brain-to-body weight ratios, and increased polycythemia and 

hypoglycemia as commonly seen with human FGR (Gagnon et al., 1997; Harding et al., 

1985; Murotsuki et al., 1997; Regnault et al., 1999). These animal models are relevant 

for representation of human FGR and developmental programming, however they 

mainly affect the latter portion of pregnancy and also limit the ability of researchers to 

observe placental responses with artifactual blood flow manipulations. The study of 
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maternal nutrition and FGR is complex, and while maternal undernourishment is 

causative for FGR, its full effect will depend upon severity and timing both pre-

conception and throughout pregnancy. This has led to animal models of maternal 

nutrient restriction (MNR) induced pre-conception, peri-conception, and throughout 

pregnancy. These models have been found to be sufficient to cause FGR (Lumey, 1998; 

C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001; C. T. Roberts, Sohlstrom, Kind, Grant, et 

al., 2001), are relevant for representing human FGR and have the additional benefit of 

targeting the insult in a chronic and non-invasive way, which more closely parallels the 

human situation with severe FGR (Low et al., 1992). However, the specific impact that 

these changes have on the brain in MNR-FGR fetuses is yet to be determined.  

Growth restricted infants have a higher risk for the development of short and 

long term neurological deficits. FGR-born children have a higher chance of developing 

cerebral palsy, attention deficit hyperactivity disorder, and autism spectrum disorder 

(Halliday, 2009; Indredavik et al., 2010; Rodrigues et al., 2006; D.-M. Walker & Marlow, 

2008). In later life, higher risks of schizophrenia, epilepsy, and psychiatric 

hospitalization are observed in FGR-born offspring than offspring of normal size (T. D. 

Cannon et al., 2003). Deficits of cognitive function associated with FGR can be observed 

from a very young age; FGR-born children are observed to have reductions in cognitive 

skills, impaired memory, learning difficulties, difficulties reading, writing, and with 

adaptive skills, inattention, reduced psychosocial function, behavioural problems, 

sensorineural deterioration, reduced mathematics abilities, and reduced intelligence 

quotient scores (Geva et al., 2008; Pallotto & Kilbride, 2006; Rodrigues et al., 2006; 

Synnes et al., 2010; D.-M. Walker & Marlow, 2008). These neurological skills are 

associated with particular areas of the brain, such as the hippocampus, that have an 
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abundance of neuronal connections, which develop prenatally (Bourgeois, 1997). 

Neuronal connection is partially dependent upon the creation of an immature synapse 

and selective maturation of the synapse at the synaptic cleft (Bourgeois, 1997). 

Therefore, a sub-optimal uterine environment may lead to altered development of 

synapses and therefore altered development of these neuronal connections and 

consequently, contribute to these observed pathologies.  

Development of the fetal brain is an intricate process that involves successful 

completion of many processes. An interruption in these processes could lead to 

aberrant neuronal communication between brain regions. A sub-optimal intrauterine 

environment may lead to reduced energy levels, accumulation of misfolded or unfolded 

proteins in the endoplasmic reticulum (ER), and the exhaustion of adaptive mechanisms 

leading to altered synapse formation or membrane failure with an increase in necrotic 

cell injury and/or changes in apoptotic regulators. These in utero changes may underlie 

the cognitive deficiencies observed in F GR-born children. Examination of the 

expression of markers of necrosis, apoptosis, ER stress, and synaptogenesis may 

provide some insight to their contribution to these neurological deficits associated with 

FGR. 

 

2.2  HYPOTHESES 

1. Maternal nutrient restriction in guinea pigs beginning pre-conception and continuing 

throughout pregnancy will result in aberrant placental growth and fetal growth 

restriction in near term pups; with the growth restriction being asymmetrical with 

increased brain-to-body weight and brain-to-liver weight ratios compared to control 

animals. 
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2.  Maternal nutrient restriction in guinea pigs leading to fetal growth restriction with 

evidence for chronic hypoxia/nutritional impairment will have threshold effects on 

brain growth and development, depending on severity and timing, ranging from occult 

injury with altered growth processes including synapse formation to overt injury with 

cellular necrosis/apoptosis. 

3. Maternal nutrient restriction in guinea pigs leading to fetal growth restriction with 

evidence for chronic hypoxia/nutritional impairment will show increased pro-apoptotic 

factors and increased endoplasmic reticulum stress as mechanistic pathways for occult 

and/or overt brain injury.  

 

2.3  OBJECTIVES 

1. To further characterize pregnancy outcomes and fetal and brain growth in a well-

established model of FGR by application of moderate MNR in guinea pig sows (70% of 

ad libitum diet at least 4 weeks prior to pregnancy and continuing throughout and 

increased to 90% of ad libitum diet at mid gestation until near term put-down). 

2. To determine differences in structural cell damage in the grey matter, periventricular 

white matter, thalamus, CA1, CA4 and the dentate gyrus between control appropriate 

for gestational age (AGA) and MNR-FGR guinea pig fetuses, by examining cellular 

necrosis and apoptosis using Hematoxylin and Eosin (H&E) staining and ApopTag® 

Peroxidase In Situ Apoptosis Detection Kit, respectively. 

3. To determine differences in the expression of endoplasmic reticulum stress proteins 

and pro-apoptotic proteins in subcortical regions of the brain between AGA-control and 

MNR-FGR guinea pig fetuses, by examining levels of Bcl-2-associated X protein (Bax), 
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cleaved caspase 3, G protein-coupled receptor 78 (Grp78) and Poly ADP Ribose 

Polymerase 1 (PARP1) via Western Blot. 

4. To determine differences in synaptic protein expression in the grey matter, thalamus, 

and CA1, CA4 and the dentate gyrus between AGA-control and FGR-MNR guinea pig 

fetuses, by examining Synaptophysin immunoreactivity using immunohistochemistry 

techniques.  
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CHAPTER 3 

MATERNAL NUTRIENT RESTRICTION IN GUINEA PIGS AS AN ANIMAL MODEL FOR 
INDUCING FETAL GROWTH RESTRICTION 
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3.1 INTRODUCTION  

Fetal growth restriction (FGR) with infants small for their gestational age when 

born is a major contributor to perinatal morbidity and mortality as well as for later 

adverse health outcomes, including heart disease, diabetes, and neurodevelopmental 

disability (Barker, 2004; Kramer et al., 1990; Lackman, Capewell, Richardson, et al., 

2001; Piper et al., 1996; Pryor et al., 1995). This has led to the notion that the 

intrauterine environment can “program” the development of risk factors for these later 

adverse outcomes during fetal life and an increasing number of human and animal 

based studies examining mechanisms underlying this relationship support this concept 

of fetal programming (Armitage, Khan, Taylor, Nathanielsz, & Poston, 2004; Barker, 

2004; Fowden, Giussani, & Forhead, 2006; K. M. Godfrey & Barker, 2000).  

Fetal growth restriction remains widespread in developed countries where 

aberrant placental development or placental insufficiency is a major cause, and in 

developing countries where maternal undernourishment plays a more prominent role 

(Thomas Jansson & Powell, 2007; S. P. Walker et al., 2007b). Clinical study of placental 

insufficiency with FGR demonstrates aberrant placental vascularization and associated 

decreases in umbilical blood flow (Ferrazzi et al., 2000; J. C. P. Kingdom & Kaufmann, 

1997). This has led to animal models of placental insufficiency induced by pre-

pregnancy uterine carunclectomy, mid-pregnancy exposure to hypothermic 

environments, uterine artery ligation/ablation, or placental embolization later in 

pregnancy (Detmer & Carter, 1992; T Jansson & Persson, 1990; Lafeber HN, Rolph TP, 

1984; McIntosh et al., 1979; Murotsuki et al., 1997; Regnault et al., 1999;  a. J. Turner & 

Trudinger, 2009). These models are primarily in sheep, rats, and guinea pigs, and lead 

to FGR with variable hypoxemia and nutrient restriction. While relevant for 
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representing human FGR and developmental programming, these vascular models are 

variable in their timing and severity throughout pregnancy and can limit the study of 

placental responses with artifactual blood flow manipulations.  

Clinical study of maternal nutrition and FGR is complex, and while maternal 

undernourishment is indeed causative for FGR, the impact will depend upon severity 

and timing pre-conception as well as throughout pregnancy (K. Godfrey & Robinson, 

1998; Thomas Jansson & Powell, 2007; Lumey, 1998; S. P. Walker et al., 2007b). This 

has led to animal models of maternal nutrient restriction (MNR) induced by global 

nutrient restriction or protein restriction, pre-conception, peri-conception, and through 

pregnancy, in a number of animal species and leading to variable degrees of FGR 

(Belkacemi et al., 2010; Clarke, Heasman, Juniper, & Symonds, 1998; L. J. Edwards & 

McMillen, 2001; Thomas Jansson & Powell, 2007; MacLaughlin, Walker, Roberts, 

Kleemann, & McMillen, 2005; Redmer et al., 2004; Sohlstrom et al., 1998; Soo et al., 

2012; Vonnahme et al., 2003). These models of MNR are also relevant for representing 

human FGR and developmental programming, and have the advantage of targeting the 

insult throughout pregnancy, which is analogous to the human situation where 

intrauterine deprivation is likely onset early in pregnancy (J. C. P. Kingdom & Kaufmann, 

1997; MacLaughlin et al., 2005; Wienerroither, Steiner, Tomaselli, Lobendanz, & Thun-

Hohenstein, 2001). 

Guinea pigs deliver precocious young after a relatively long gestational period 

with many developmental events occurring during fetal life, similar to what is seen in 

humans (Carter, 2007). They have therefore proved useful for modeling human FGR 

with uterine artery ligation and ablation, but with high fetal loss rates and variable 

occurrence of growth restriction (Detmer & Carter, 1992; T Jansson & Persson, 1990; 
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Lafeber HN, Rolph TP, 1984;  a. J. Turner & Trudinger, 2009). Moderate MNR in guinea 

pigs at 70% of an ad libitum diet from four weeks pre-conception until mid-pregnancy 

increasing to 90% thereafter, has also been well studied for modeling human FGR (Kind 

et al., 2003, 2005; C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001; Sohlstrom et al., 

1998). Here the capacity of the mother to deliver nutrients to the fetus is further 

impaired since her own fuel reserves are depleted prior to conception (C. T. Roberts, 

Sohlstrom, Kind, Earl, et al., 2001). This better reflects the human situation with 

maternal undernourishment where pre-pregnancy weight is a better determinant of 

fetal growth and development than weight gain during pregnancy (Stevens-Simon et al., 

1995) and the majority of women do not make improvements to their dietary and 

lifestyle patterns during pregnancy (Crozier et al., 2009). Studies with moderate MNR in 

guinea pigs have shown fetal weights to be decreased by as much as 40% in animals 

near term in association with maternal insulin-like growth factor (IGF) and insulin-like 

growth factor-binding protein (IGFBP) alterations (C. T. Roberts, Sohlstrom, Kind, Earl, 

et al., 2001; Sohlstrom et al., 1998), and leading to insulin resistance in male offspring as 

also seen in FGR-born humans (Barker, 2004; Kind et al., 2003). Of note, placental 

weights are decreased less than fetal weights suggesting compensatory growth, but 

with reduced surface area for nutrient exchange, increased barrier thickness, and 

altered vascular development (C. T. Roberts, Sohlstrom, Kind, Grant, et al., 2001; Sung, 

Vohr, & Oh, 1993). These structural alterations in the placenta indicate functional 

impairment and can be seen in human FGR with maternal undernourishment (Aherne & 

Dunnill, 1966; Belkacemi et al., 2010) and with pre-eclampsia associated placental 

insufficiency (Aherne & Dunnill, 1966; Teasdale & Jean-Jacques, 1988). Accordingly, 

moderate MNR in guinea pigs may result in adverse in utero conditions similar to that 
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seen with maternal undernourishment or placental insufficiency during human 

pregnancy and prove useful for modeling FGR in both conditions.  

Moderate MNR in guinea pigs has proved useful for inducing FGR and studying 

maternal, placental and fetal growth characteristics, and offspring outcomes (Kind et al., 

2003, 2005; C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001; Sohlstrom et al., 1998). 

However, there has been little study of breeding and pregnancy success, the 

distribution of fetal weights and means by which FGR might be denoted, and the impact 

on fetal organ weights and blood metabolites. We have therefore studied moderate 

MNR in guinea pigs and report on our breeding and pregnancy success, and distribution 

of fetal weights near term and means for denoting FGR to further characterize the utility 

of this model. We have also determined the impact on fetal crown rump length, organ 

weights, and blood hemoglobin and glucose, hypothesizing that MNR-FGR animals will 

be lean with asymmetrical growth restriction, and polycythemia and hypoglycemia, as 

often seen in human pregnancy with moderate to severe FGR (K. Godfrey & Robinson, 

1998; Kramer et al., 1990; Piorkowska et al., 2014). 

 

3.2 MATERIALS AND METHODS  

3.2.1 Animal Feeding, Breeding and Pregnancy 

A previously established model of moderate MNR in guinea pigs (Sohlstrom et 

al., 1998) was used with all experimental procedures approved by The University of 

Western Ontario Animal Use Subcommittee and followed the guidelines of the Canadian 

Council on Animal Care. Nulliparous female guinea pigs (Dunkin-Hartley, from Charles 

River Laboratories, Sherbrooke, Que, Canada) were housed in individual cages in a 

dedicated small animal care facility with a 12 hour light/dark cycle and temperature at 
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25ºC. Animals were fed a guinea pig ration diet (Guinea Pig Diet 5025, LabDiet, St. Louis, 

MO) and after a two week period of acclimatization, daily food consumption was 

monitored and estrous cycles were tracked (Lilley, Epping, & Hafner, 1997). 

Thirty guinea pig sows were randomly assigned to either a control group fed ad 

libitum or an MNR group fed 70% of the average food intake per kilogram of body 

weight of the ad libitum fed animals as described by Sohlstrom et al. (1998). After four 

weeks of adaptation to respective feeding regimens, animals were mated. A female 

found to be in estrous was placed in a cage with a male for 48-72 hours and removed 

when the vaginal membrane was again closed. Animal pregnancies were confirmed by 

ultrasound 14-21 days later with conception calculated as the day prior to membrane 

closure and thereby day zero of gestation. Animals that were not pregnant were rebred 

at their next estrous cycle. During the first 34 days of pregnancy, the MNR animals 

continued at 70% average food intake of the control animals per kilogram body weight, 

and from 35 days onward this was increased to 90% average food intake of the control 

animals per kilogram body weight. Throughout the experiment, food intake was 

monitored daily and body weights were monitored 3-4 times per week and the dietary 

intake of the MNR animals was adjusted as needed to maintain their food intake at 70% 

or 90% of the average food intake per kilogram of body weight of the ad libitum fed 

animals. 

 

3.2.2 Necropsy, Tissue Collection and Blood Analytes 

On day 60-61 of pregnancy (term = ~68 days), guinea pig sows were weighed 

and then sedated with an intramuscular injection of Versed (midazolam, 5 mg/kg; 

Sandoz Canada Inc., Boucherville, Que., Canada) and after 10 minutes an intramuscular 



 57 

injection of Vetalar (ketamine, 50 mg/kg; Bioniche Animal Health, Belleville, Ont., 

Canada) and Rompun (xylazine, 3 mg/kg; Bayer Inc., Toronto, Ont., Canada). A sub-

umbilical midline incision was made after local infiltration of the abdominal skin with 

lidocaine (2%; Pfizer Animal Health, Kirkland, Que., Canada) followed by uterine 

incision and delivery of each of the fetuses. Approximately 1cc of amniotic fluid was 

obtained from each gestational sac prior to delivery, which was cold-centrifuged and 

stored at -80ºC for later analysis. All liveborn fetuses were treated with Vetalar as 

above, with body and placental weights then obtained along with crown rump length 

measurements. The number of live and demised fetuses in each uterine horn was also 

noted. Fetuses were considered to be appropriate for gestational age (AGA) if ≥ 80 g and 

FGR if < 80 g, which is in accord with the criteria we (Piorkowska et al., 2014) and 

others (T Jansson & Persson, 1990) have used for categorizing AGA and FGR fetal 

weights in guinea pigs near-term. Subsequently, only AGA fetuses from control group 

litters and FGR fetuses from MNR group litters were subjected to full necropsy, with 

priority given to the medial fetuses in each uterine horn meeting these criteria and with 

no more than three full necropsies per litter to ensure rapid tissue collection. Full 

necropsy consisted of a cardiac puncture to obtain ~1cc of blood in a heparinized 

syringe which was then placed on ice until analysis for glucose and hemoglobin using an 

ABL 725 Blood Gas Analyzer (Radiometer, Copenhagen, Denmark). This was followed 

by dissection and weighing of the brain, heart, liver and kidneys, extraction of the 

gonads for determining fetal sex, and extraction of skeletal muscle and peri-renal 

adipose tissue. These organs/tissues along with the placenta were partitioned and both 

fixed in 4% paraformaldehyde and frozen in liquid nitrogen for later analysis. 
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3.2.3 Data Acquisition and Statistical Analysis 

Litter size was based on the number of liveborn and demised fetuses noted at 

necropsy. Fetal body weight (g)/crown rump length (cm) was calculated as a measure 

of leanness. Overall control and MNR Population characteristics included data from all 

control sows and their liveborn fetuses, as well as all MNR sows and their liveborn 

fetuses, excluding data from animals who failed to conceive, and those delivering prior 

to necropsy. Select AGA-control and FGR-MNR population characteristics included data 

from all AGA-control and FGR-MNR fetuses that were liveborn and underwent full 

necropsy. Maternal and fetal characteristic findings are presented as group means ± 

SEM. Overall control and MNR population characteristics and select AGA-control and 

FGR-MNR population characteristics were compared using analysis of variance and 

non-paired student`s t-test which were also nested for litter size (Graphpad Software, 

San Diego, CA). For all analysis, statistical significance was assumed for p<0.05. 

 

3.3 RESULTS 

3.3.1 Breeding and Pregnancy Outcomes 

Of the 30 guinea pig sows, 12 were bred under ad libitum feeding conditions and 

18 under MNR feeding conditions assuming breeding and pregnancy outcomes would 

be more adverse for the MNR animals and with the smaller litter size reported for MNR 

pregnancies. Of the 12 animals bred under ad libitum feeding conditions, three or 25% 

failed to become pregnant despite up to four breeding attempts while the remaining 

animals took 2.4 breeding attempts on average to conceive. All nine of these control 

animals had continuing pregnancies to necropsy at day 60/61 of gestation with 31 

liveborn fetuses and one fetal demise, forming the overall control population. Of the 18 



 59 

animals bred under MNR feeding conditions, three or 17% failed to become pregnant 

despite up to four breeding attempts while the remaining animals took 2.6 attempts on 

average to conceive. However, three of these pregnant MNR sows delivered preterm 

and prior to necropsy at day 60/61 of gestation; one at 54 days with three fetuses 

weighing 21, 27, and 35 g, one at 56 days with three fetuses weighing 50, 60, and 75 g, 

and one at 57 days with 4 fetuses weighing 22, 33, 51, and 66 g. The remaining 12 MNR 

animals had continuing pregnancies to the time of necropsy with 42 liveborn fetuses 

and one fetal demise which formed the overall MNR population. 

 

3.3.2 Maternal and Fetal Population Characteristics  

The overall maternal and fetal population characteristics from all ad libitum fed 

control pregnancies and all MNR pregnancies excepting the three MNR sows delivering 

preterm, are shown in Table 3.1. These data are presented for all fetuses to indicate the 

population variance and allow for comparison with past studies. While maternal 

weights were not different at conception averaging 800 g, by 60/61 days gestation MNR 

sows were ~17% lighter at 1046±g than control sows at 1253 ± 60 g (p<0.01). Food 

consumption for both animal groups increased through pregnancy as maternal weight 

increased, with the actual food consumption of MNR sows at conception and at 60/61 

days gestation being ~65 % and 70 %, respectively, of that consumed by the control 

sows. While litter size did not differ between the two study groups averaging 3-4, the 

combined fetal weight per litter was less for the MNR animals at 242 ± 21 g than that of 

the control animals at 331 ± 30 g (p<0.05). This was due to fetal weights at necropsy 

being ~28% less in the MNR pregnancies at 69 ± g than in the Control pregnancies at 96 

± 2 g (p<0.01). The 31 liveborn control fetuses ranged in weight from 119 g to 70 g with 
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the 50th and 10th percentiles being ~96 g and 78 g, respectively, while the 42 liveborn 

MNR fetuses ranged in weight from 102 to 41 g with the 50th and 10th percentiles 

being ~69 g and 50 g, respectively (Figure 3.1). Placental weights were also decreased 

in the MNR pregnancies by ~23% at 5.1 ± 0.2 g compared to that of the control 

pregnancies at 6.6 ± 0.3 g (p<0.01). As such, placental weights were decreased less than 

the fetal weights with the placental-to-fetal weight ratio thereby increased in the MNR 

pregnancies at 7.6 ± 0.3% vs. that of the control pregnancies at 6.8 ± 0.3% (p<0.05). 

Fetal crown rump lengths were also decreased in the MNR pregnancies by ~15% at 

10.6 ± 0.1 cm vs. that of the control pregnancies at 12.3 ± 0.2 cm (p<0.01), but again less 

than the decrease in fetal weights. As such, fetal weight-to-length ratio as a measure of 

leanness was also decreased in the MNR pregnancies by ~15% at 6.4 ± 0.1 g/cm vs. that 

of the control pregnancies at 7.8 ± 0.1 g/cm (p<0.01). 

While MNR fetuses were on average smaller than control fetuses, there was 

considerable overlap in the population weight distributions as seen in Figure 3.1. This is 

not surprising since litter size, number of fetuses per uterine horn, and fetal position 

within the horn are all known to impact fetal growth (Piorkowska et al., 2014; A. J. 

Turner & Trudinger, 2000). We therefore chose to establish a cohort of AGA fetuses 

from the control group pregnancies and a cohort of FGR fetuses from the MNR group 

pregnancies to allow for more in-depth comparative study of growth related 

parameters. As noted, we used 80 g as our threshold for categorizing AGA and FGR fetal 

weights at 60/61 days gestation and determining which control and MNR fetuses were 

to be subjected to full necropsy with priority given to the medial fetuses in each uterine 

horn and with no more than three full necropsies per litter. This resulted in 20 AGA-

control fetuses and 25 FGR-MNR fetuses with the select population characteristics from 
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these animals shown in Table 3.2 and Figure 3.1. After examining the gonads for sexing 

animals, it was determined there were 10 AGA-control males and 10 AGA-control 

females, and 11 FGR-MNR males and 14 FGR-MNR females with no sex differences 

evident for any of the select fetal population characteristics as assessed using analysis 

of variance. Accordingly, these data are presented for all males and females combined 

as a measure of the population variance and to allow for comparison with past studies. 

While all fetal weights in MNR pregnancies were decreased ~28% on average compared 

to control pregnancies, FGR-MNR fetal weights were decreased by ~37% at 64 ± 2 g 

compared to that of the AGA-control fetuses at 101 ± 2 g (p<0.01). FGR-MNR brain 

weights were also decreased, but less so, by ~12% at 2.39 ± 0.04 g vs. that of the AGA-

controls at 2.73 ± 0.05 g (p<0.01) while FGR-MNR liver weights were markedly 

decreased by ~40% at 2.8 ± 0.1 g vs. that of the AGA-controls at 4.7 ± 0.2 g (p<0.01). 

Accordingly, the brain-to-fetal weight ratio and brain-to-liver weight ratio, as measures 

of asymmetrical growth, were increased 40-50% in the FGR-MNR fetuses at 3.8 ± 0.1% 

and 0.90 ± 0.03% compared to that of the AGA-control fetuses at 2.7 ± 0.1% and 0.61 ± 

0.03%, respectively (both p<0.01). FGR-MNR heart weights also showed a smaller 

decrease than the corresponding decrease in fetal weights, by ~23% at 0.46 ± 0.03 g vs. 

that of AGA-controls at 0.60 ± 0.03 (p<0.01). As such, the heart-to-fetal weight ratios 

were increased ~22% in the FGR-MNR fetuses at 0.72 ± 0.05% compared to that of the 

AGA-controls at 0.59 ± 0.03% (p<0.05). It is also of note that the threshold of 80 g here 

used at 60/61 days gestation for denoting AGA and FGR fetal weights, is close to the 

10th percentile for the population weight distribution of the 31 liveborn Control fetuses 

at ~78 g and thereby in accord with the FGR definition often used for human 

pregnancies (Lackman, Capewell, Gagnon, & Richardson, 2001). Using this 80 g 
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threshold, 26 of the 31 control fetuses or ~85% met weight criteria for AGA study, 

while 32 of the 42 MNR fetuses or ~75% met weight criteria for FGR study (Figure 3.1). 

 

3.3.3 Blood Analytes 

Blood glucose and hemoglobin values obtained by cardiac puncture at the time 

of full necropsy in the select AGA-Control and FGR-MNR animals are shown in Table 3.2. 

FGR-MNR glucose values were decreased by ~27% at 4.3 ± 0.2 mmol/L vs. that of the 

AGA-control values at 5.9 ± 0.4 mmol/L (p<0.01). Conversely, FGR-MNR hemoglobin 

values were increased by ~9% at 15.9 ± 0.2 g/dL vs. that of the AGA-control values at 

14.6 ± 0.4 g/dL (p<0.05). 
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Table 3.1 Overall Maternal and Fetal Population Characteristics 

 

 
Data presented as means ± SEM; † p < 0.05, ‡ p < 0.01 vs. corresponding control group 
value analyzed using non-paired Student’s t-test, both for the overall populations and 
nested for litter size; * n values were 9 and 12 for maternal and 31 and 42 (overall 
populations) or 9 and 12 (nested) for fetal control and Maternal Nutrient Restricted 
characteristics, respectively, except for litter size where demised fetuses were also 
counted; MNR = maternal nutrient restriction; GA = gestational age. 
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Figure 3.1 Scatter plot showing the fetal weights for all 31 liveborn control fetuses 
(open circles) and all 42 liveborn maternal nutrient restricted (MNR) fetuses (open 
triangles) along with the 50th and 10th percentiles for each of these cohort populations. 
Additionally shown are the distribution of fetal weights for the select 20 AGA-control 
fetuses (closed circles) and 25 FGR-MNR fetuses (closed triangles). 
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Table 3.2 Select Fetal Population Characteristics 

 

 
 
Data presented as means ± SEM; † p < 0.05, ‡ p < 0.01 vs. corresponding AGA-control 
group value analyzed using non-paired Student’s t-test, both for the select populations 
and nested for litter size; *n values were 20 and 25 (select populations) or 9 and 11 
(nested) for fetal AGA-control and FGR-MNR characteristics, respectively, except for 
blood glucose and hemoglobin where these were instead 15 and 19 (select populations) 
or 8 and 11 (nested), respectively; AGA = appropriate for gestational age, FGR = fetal 
growth restricted, MNR = maternal nutrient restricted, Hb = hemoglobin. 
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3.4 DISCUSSION 
 

In the present study, we have characterized pregnancy outcomes in guinea pigs 

subjected to moderate nutrient restriction both before and through pregnancy as a 

useful model for inducing FGR with similarities to that seen in humans with maternal 

undernourishment and idiopathic placental insufficiency. Both control and MNR sows 

had comparable fertility with successful pregnancies in ~80% of the animals, and 

requiring ~2.5 breeding attempts on average. Maternal age did not have an impact on 

pregnancy success, although no animals were bred prior to four months which is 

presumed adulthood for guinea pigs. However, only two animals, one control and one 

MNR, became pregnant with a conception weight less than 750 grams, suggesting an 

effect of maternal weight on pregnancy success which has also been noted in guinea pig 

studies with uterine artery ligation (Detmer & Carter, 1992). Since MNR animals took 

anywhere from 1-4 breeding attempts before becoming pregnant, the duration of 

preconception undernourishment was also impacted, and could be from four weeks up 

to 12 weeks. However, there was no evidence that an increased duration of MNR 

impacted maternal weight at conception, litter size, fetal weights, or the risk of preterm 

delivery. As such, four weeks of moderate MNR prior to breeding in guinea pigs is 

sufficient for inducing FGR, while longer periods of moderate MNR as studied did not 

appear to worsen pregnancy outcomes. The fetal demise rate was low at 1/32 control 

fetuses and 1/43 MNR fetuses and much lower than that reported with uterine artery 

ligation or ablation models, where demise rates upwards of 70–80% have been noted 

(Lafeber HN, Rolph TP, 1984;  a. J. Turner & Trudinger, 2009). This demonstrates the 

early and gradual growth restriction that occurs in response to MNR (Belkacemi et al., 

2010; K. Godfrey & Robinson, 1998; Redmer et al., 2004; C. T. Roberts, Sohlstrom, Kind, 
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Earl, et al., 2001; Sohlstrom et al., 1998) compared to the relatively abrupt nature of 

uterine artery ligation/ablation-FGR with normal fetal growth then a sudden reduction 

in placental blood flow and a variable mismatch between metabolic needs and nutrient 

delivery. However, 3/15 MNR sows delivered preterm and prior to the planned 

necropsy at 60/61 days gestation, with two of these mothers having the lowest 

maternal weights adjusted for gestational age and with low fetal weights at delivery. 

This finding has also been reported in guinea pigs by Kind et al. (2003) with moderate 

MNR-FGR and by Palliser et al. with uterine artery ablation-FGR and likely involves FGR 

associated increases in inflammatory processes with a shift in prostaglandin production 

over metabolism (Palliser, Kelleher, Welsh, Zakar, & Hirst, 2014). In the present study 

the overall fetal loss rate whether from demise or preterm birth was therefore 1/32 or 

3% for the control group and 11/ 53 or 20% for the MNR group which is still 

considerably less than that reported for uterine artery ligation/ablation models as 

noted. Additionally, some of the MNR fetuses delivering preterm were liveborn and did 

survive offering the opportunity for study of longer-term outcomes with FGR and 

preterm birth which is also well known to occur in humans (Lackman, Capewell, 

Richardson, et al., 2001). 

Moderate MNR at 70% of the ad libitum diet beginning at least four weeks pre-

pregnancy and increasing to 90% of the ad libitum diet at mid-pregnancy, resulted in a 

decrease in maternal weights by ~5% and 17% at conception and 60/61 days gestation, 

respectively. This decrease in maternal weight is somewhat less than that previously 

reported by Sohlstrom et al. and Roberts et al. at ~10% and 28% using the same 

moderate MNR dietary regime; however, their animals were smaller to begin with, 

averaging 550 g at mating and likely indicate strain differences to the guinea pigs 
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presently used. Likewise, the actual decrease in food consumption at ~26% and 32% in 

MNR sows at conception and 60/61 days gestation, respectively, was somewhat less 

than that reported by Roberts et al. at ~37% and 36% in their MNR sows which may be 

attributable to their smaller animals. Interestingly, litter size was unchanged in the 

present study which differs from the findings of Sohlstrom et al. where moderate MNR 

decreased litter number from ~3 to 2 when necropsied at 60 days. This may again be 

attributable to their smaller animals and indicates that moderate MNR as outlined may 

adversely affect early developmental events leading to failure pending initial maternal 

weight and thereby fuel reserves for mobilization (Abrams & Newman, 1991; Belkacemi 

et al., 2010; Clarke et al., 1998; K. Godfrey & Robinson, 1998; Kramer, 1987). Fetal 

weights were decreased by 28% on average for all MNR pregnancies necropsied near 

term at 60/61 days gestation, which not surprisingly is less than that reported by 

Sohlstrom et al. at ~40% given their smaller animals. This again emphasizes the 

importance of maternal pre-pregnancy weight as a measure of nutritional availability 

for fetal/placental growth and development during pregnancy (Abrams & Newman, 

1991; Belkacemi et al., 2010; Clarke et al., 1998; K. Godfrey & Robinson, 1998; Kramer, 

1987; Redmer et al., 2004). Of interest, the fetal weight variation in these animal cohort 

populations can be assessed using the coefficient of variation (CV) and calculated as the 

standard deviation divided by the population mean. In the present study and that of 

Sohlstrom et al., this was comparable at ~12% for all fetal weights from control animals 

fed ad libitum, and somewhat less than that at ~18% for control fetuses in the untreated 

uterine horn of animals subjected to uterine artery ligation/ablation, suggesting an 

impact of the surgical procedure here. In both the present and Sohlstrom studies, the CV 

for all fetal weights from MNR animals was substantially increased at ~22%, and now 
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similar to that in the treated horn of uterine artery ligation/ablation animals (a. J. 

Turner & Trudinger, 2009) and indicating an increase in growth variance with these 

animal models for inducing FGR. Placental weights were decreased by 23% on average 

for all MNR pregnancies and less than the corresponding decrease in fetal weights 

thereby resulting in an ~12% increase in the placental/fetal weight ratio which is 

similar to that noted by Sohlstrom et al. with moderate MNR (Sohlstrom et al., 1998). 

Notably this increase in placental-to-body weight ratio is also seen in human 

pregnancies leading to FGR both with maternal undernourishment and presumed 

placental insufficiency and is believed to indicate a degree of compensatory growth by 

the placenta to minimize FGR (Belkacemi et al., 2010; K. Godfrey & Robinson, 1998; 

Thomas Jansson & Powell, 2007; J. C. P. Kingdom & Kaufmann, 1997; Lackman, 

Capewell, Gagnon, et al., 2001; Lumey, 1998; Redmer et al., 2004). Fetal crown-to-rump 

lengths were also decreased in MNR pregnancies, but again less than the corresponding 

decrease in fetal weights resulting in a ~15% decrease in fetal weight-to-length ratio 

and indicating leaner animals which was also noted by Kind et al. with moderate MNR 

in guinea pigs (Kind et al., 2005). Likewise, leanness is often a characteristic in human 

infants with moderate growth restriction whether resulting from maternal 

undernourishment or idiopathic placental insufficiency (K. Godfrey & Robinson, 1998; 

Kramer et al., 1990). 

We set a threshold of ≥ 80 g or < 80 g for categorizing AGA-control and FGR-

MNR fetal cohorts, respectively, which is in accord with the criteria we (Piorkowska et 

al., 2014) and others (T Jansson & Persson, 1990) have used for categorizing AGA and 

FGR fetal weights in guinea pigs near-term. Of note, this threshold of 80 g was close to 

the 10th percentile for the population weight distribution of the liveborn control fetuses 
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at ~78 g further justifying its use. We did not include the requirement for an increased 

brain-to-liver weight ratio for the FGR cohort as in other studies with uterine artery 

ligation/ablation (Detmer & Carter, 1992; Piorkowska et al., 2014), since we did not 

want to presume how this would be impacted by MNR induced FGR. This establishment 

of AGA-control and FGR-MNR cohort groups has the advantage of avoiding any 

confounding effects of tissue/metabolite study in AGA fetuses from MNR pregnancies 

and FGR fetuses from control pregnancies. Furthermore, it reduces the fetal weight 

variation with the CV in these cohort groups being decreased to ~9% and 16%, 

respectively; which better reflects the human situation with AGA and FGR birth weight 

distributions being separate and often delineated by the 10th percentile adjusted for 

gestational age (Lackman, Capewell, Richardson, et al., 2001). As expected, the decrease 

in FGR-MNR fetal weights vs. the AGA-controls at ~37% was considerably more than 

the decrease in overall MNR fetal weights compared to the overall controls at ~28%. 

Moreover, growth restriction in MNR pregnancies was asymmetrical with the mean 

decrease in liver weights at ~40%, which is much higher than that of the brain and 

heart at ~12% and 23%, respectively. Accordingly, the brain-to-liver weight ratio was 

increased by almost 50% in FGR-MNR fetuses which was similar to that noted by Kind 

et al. in their MNR fetuses, while the heart-to-fetal weight ratio was increased by almost 

25% in FGR-MNR fetuses (Kind et al., 2005). This asymmetrical growth restriction is 

likely due in part to chronic blood flow redistribution favouring the vital organs, 

including the brain and heart at the expense of the liver and carcass tissues 

(Richardson, 1989), and altered gluconeogenic capacity and/or protein synthesis with a 

greater impact on the liver and muscle than other tissues (Thorn et al., 2009). Of note, 

asymmetrical FGR is also seen in guinea pigs with mid-gestation uterine artery 
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ligation/ablation (Lafeber HN, Rolph TP, 1984; Piorkowska et al., 2014;  a. J. Turner & 

Trudinger, 2009), and in humans with placental insufficiency leading to growth 

restriction (Abrams & Newman, 1991; Kramer, 1987), with both of these likely to 

involve chronic fetal hypoxemia as a primary signaling mechanism (Lackman, Capewell, 

Richardson, et al., 2001; Lafeber HN, Rolph TP, 1984;  a. J. Turner & Trudinger, 2009). It 

is also of note that MNR induced FGR in sheep leads to ventricular hypertrophy, which 

is thought to reflect increased afterload due to increased placental vascular resistance 

(Vonnahme et al., 2003). Accordingly, the present increase in heart-to-fetal weight ratio 

in FGR-MNR fetuses may also indicate a degree of ventricular hypertrophy secondary to 

increased placental vascular resistance. This is in fact likely with the altered vascular 

development and structural changes reported in the placenta of guinea pigs subjected 

to moderate MNR (C. T. Roberts, Sohlstrom, Kind, Grant, et al., 2001). 

Blood sampling at necropsy revealed FGR-MNR fetuses to be relatively 

polycythemic and hypoglycemic compared to AGA-control fetuses. Likewise, an increase 

in hemoglobin and decrease in glucose are well associated with FGR in several animal 

models and human clinical studies. These include those in guinea pigs after uterine 

artery ligation and sheep after MNR or carunclectomy, and in human pregnancies with 

suspected placental insufficiency subjected to cordocentesis (W. Cox et al., 1988; 

Economides & Nicolaides, 1989; Harding et al., 1985; T Jansson & Persson, 1990; 

Lafeber HN, Rolph TP, 1984; Soothill, Nicolaides, & Campbell, 1987; Vonnahme et al., 

2003). These studies indicate that the basis for the hypoglycemia with FGR is likely 

multifactorial including lowered maternal glucose (Vonnahme et al., 2003), reduced 

placental glucose transport and/or fetal glucose delivery (Economides & Nicolaides, 

1989; Harding et al., 1985; Lafeber HN, Rolph TP, 1984), and reduced fetal 
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gluconeogenesis (T Jansson & Persson, 1990), and dependent on the underlying 

etiology with maternal hypoglycemia likely to play a greater role with 

undernourishment. However, the basis for the polycythemia with FGR is likely 

singularly due to stimulated erythropoiesis attempting to maintain oxygen carrying 

capacity in response to chronic hypoxemia as variably shown in these studies (W. Cox et 

al., 1988; Economides & Nicolaides, 1989; Harding et al., 1985; Lafeber HN, Rolph TP, 

1984; Soothill et al., 1987). 

Moderate MNR in guinea pigs has been well studied for modeling human FGR 

including maternal, placental, and fetal growth characteristics, associated IGF and 

IGFBP alterations, and mechanisms for programming longer-term adverse outcomes in 

offspring (Kind et al., 2003, 2005; C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001; 

Sohlstrom et al., 1998). We now add to these findings by further characterizing 

breeding and pregnancy success in MNR animals and showing low fetal demise rates in 

contrast to that seen with uterine artery ligation/ablation models (Lafeber HN, Rolph 

TP, 1984;  a. J. Turner & Trudinger, 2009), albeit with increased preterm delivery as is 

seen with FGR in humans (Lackman, Capewell, Richardson, et al., 2001). Similar studies 

using the same moderate MNR dietary regime and impact on maternal/fetal weights 

and litter size (C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001; Sohlstrom et al., 1998) 

highlight the importance of maternal pre-pregnancy weight as a measure of nutritional 

availability for fetal/placental growth when nutrient intake is compromised during 

pregnancy (Abrams & Newman, 1991; Belkacemi et al., 2010; Clarke et al., 1998; K. 

Godfrey & Robinson, 1998; Kramer, 1987; Redmer et al., 2004). As previously shown 

(Kind et al., 2005; Sohlstrom et al., 1998), we confirm that MNR fetuses are leaner and 

have increased placental-to-fetal weight ratios as is often seen in human infants with 
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moderate growth restriction whether resulting from maternal undernourishment or 

placental insufficiency (Belkacemi et al., 2010; K. Godfrey & Robinson, 1998; Kramer et 

al., 1990; Lackman, Capewell, Richardson, et al., 2001; Lumey, 1998). We also provide 

justification for using a fetal weight threshold for categorizing AGA-control and FGR-

MNR cohorts which approximates the 10th percentile in our ad libitum fed animals, and 

serves to reduce the population variance in these groups. Of note, these FGR-MNR 

fetuses show asymmetrical growth restriction, and are polycythemic and hypoglycemic 

which are well associated with moderate growth restriction during human pregnancy 

(Abrams & Newman, 1991; W. Cox et al., 1988; Economides & Nicolaides, 1989; Kramer 

et al., 1990; Soothill et al., 1987). These findings along with the altered vascular 

development and structural changes reported in the placenta of guinea pigs subjected 

to moderate MNR (C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001) also raise the 

possibility of chronic hypoxemia as a primary signaling mechanism for the decreased 

fetal growth in these pregnancies which requires further study. As such, the present and 

past studies of moderate MNR in guinea pigs (Kind et al., 2003, 2005; C. T. Roberts, 

Sohlstrom, Kind, Earl, et al., 2001; Sohlstrom et al., 1998) support the utility of this 

model for inducing FGR with many similarities to that in humans with moderate growth 

restriction whether resulting from maternal undernourishment or placental 

insufficiency. While there will be differences in FGR outcomes resulting from maternal 

undernourishment vs. placental insufficiency including the impact on fetal gene 

expression (Nüsken et al., 2011), it is likely that these will also depend on the timing, 

severity and duration of the nutrient deprivation as much as the cause (Clarke et al., 

1998; McMillen et al., 2001). 
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CHAPTER 4 
MATERNAL NUTRIENT RESTRICTION IN GUINEA PIGS WITH FETAL GROWTH 

RESTRICTION LEADS TO ALTERED BRAIN DEVELOPMENT 
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4.1  INTRODUCTION  

Fetal growth restriction (FGR) is associated with a number of neurological 

disorders and cognitive deficits. In children, FGR leads to reduced cognitive skills 

including impaired memory and learning, inattention, reduced psychosocial function 

and lower mathematical ability and intelligence quotient (IQ) scores (Geva et al., 2008; 

Indredavik et al., 2010; Pallotto & Kilbride, 2006; Rodrigues et al., 2006; Synnes et al., 

2010; D.-M. Walker & Marlow, 2008). Studies of the brain in FGR have shown changes in 

neurogenesis, with animal models of FGR having demonstrated reduced number and 

length of neurons (Mallard et al., 2000; Tolcos & Rees, 1997), reduced size of the 

dendritic tree, and a decreased density of dendritic spines (Dieni & Rees, 2003). These 

changes in neuronal connectivity could underlie many of the cognitive deficiencies 

observed in early life of FGR-born children, particularly changes in the hippocampus 

may underlie deficiencies in memory and cognition.  

Development of the fetal brain is an intricate process that involves successful 

completion of many processes, including neurogenesis, axon and dendrite migration, 

and pre-and postsynaptic element coupling. An interruption in these processes could 

lead to aberrant neuronal communication between brain regions. It has been 

demonstrated in a previous study that moderate maternal nutrient restriction (MNR) in 

guinea pigs leading to FGR involves aberrant placental development with chronic 

hypoxia (Elias et al., 2013), as such this disruption in oxygen and nutrient flow, as well 

as increased oxidative/endoplasmic reticulum (ER) stress markers may provide 

mechanistic pathways for adverse fetal development. The human brain, as well as the 

precocious guinea pig brain, undergoes neuronal differentiation at its highest absolute 
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rate of synaptic formation during fetal gestation (Dobbing & Sand, 1970). As such, FGR 

with nutrient transport impairment may disrupt synapse formation, as it is a growth 

process with high energy demand (Jiang & Schuman, 2002) and requires precise 

presynaptic and postsynaptic element coupling, and adequate neuronal growth, 

migration, and branching to achieve proper localization and function (Scheiffele, 2003). 

The exact mechanism underlying synaptic development is not well understood, 

however, presynaptic maturation is evident with an increase in the number of vesicles 

in developing synapses. The amount of vesicle production in the synapse increases with 

its maturation and decreases steadily in the case of synapse degeneration (Ruthazer, Li, 

& Cline, 2006). Studies have shown a presynaptic active zone at the synaptic cleft to 

which vesicles adhere prior to exocytosis; additionally, there is a region of postsynaptic 

density on the dendritic spine that anchors receptors and scaffolding proteins. These 

presynaptic and postsynaptic areas mature to form a functioning synapse and establish 

neuronal communication (Bourne & Harris, 2008; Garner, Kindler, & Gundelfinger, 

2000). As such, proteins present in the vesicle, active zone, and postsynaptic density 

may be used as markers of synaptic maturation, development and degeneration.   

Synaptophysin (SYN) is a common 38 kDa presynaptic protein marker that is 

present in the presynaptic bouton and on the membrane of presynaptic vesicles in the 

central nervous system (Calhoun et al., 1996; Jahn et al., 1985). SYN shows punctate 

staining along a neuron localized to the presynaptic bouton (Calhoun et al., 1996; 

Fletcher et al., 1991; Mundel et al., 1997); it is found in the vesicles of mature synapses 

as well as in immature synapses prior to vesicle development (Daly & Ziff, 1997; 

Fletcher, De Camilli, & Banker, 1994). Thus, an increase in SYN protein levels is 

indicative of synapse formation and maturation (Daly & Ziff, 1997; Fletcher et al., 1991). 
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It has been found in excitatory and inhibitory synapses and is involved in competitive 

strengthening of synapses as well as activity dependent synapse maturation (Tarsa & 

Goda, 2002). SYN is consequently often used as a marker of the presence of synapses 

and overall changes in synaptic numbers.  

Previous studies have shown that compensatory mechanisms in the brain, which 

are usually protective in times of low energy and oxygen supply, may become limited 

and brain energy levels may be sufficiently impacted, leading to membrane failure with 

an increase in necrotic cell injury and/or changes in apoptotic regulators (Rocha et al., 

2004). While these mechanisms have yet to be elucidated, regional differences in the 

balance of pro-apoptotic and anti-apoptotic gene expression and activity-dependent 

changes in this balance with the strengthening of incoming afferent activity are likely to 

be involved (Anand & Scalzo, 2000).  Some of these pro- and anti-apoptotic factors 

include Bcl-2 associated X protein (Bax), B-cell Lymphoma 2 (Bcl-2) and cleaved 

caspase 3. Pro-apoptotic Bax and anti-apoptotic Bcl-2 are known to synergistically 

regulate apoptosis (D. Liu et al., 2013; McCullough et al., 2001). Extrinsic and intrinsic 

apoptotic pathways both converge on caspase-3, with the downstream event consisting 

of substrate cleavage. There is abundant evidence that pathways leading to caspase-3 

cleavage and activation are engaged following neonatal hypoxia-ischemia (Blomgren et 

al., 2001; Felderhoff-Mueser et al., 2002; Hu et al., 2000; Northington et al., 2001). 

 A previous study on apoptotic pathways after neonatal cerebral ischemia found 

that a sex difference exists in both the mechanism and the degree of apoptotic injury 

(Renolleau, Fau, & Charriaut-Marlangue, 2008). This study reported findings of an 

apoptosis-inducing factor (AIF) dependent pathway in males and a cytochrome 

c/caspase dependent pathway in females (Du et al., 2004). The male pathway included 
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activation of poly ADP ribose polymerase 1 (PARP1) which is required for translocation 

of AIF from the mitochondria into the nucleus, where it induces large scale DNA 

fragmentation (Daugas et al., 2000). The female pathway, however, had a release of 

cytochrome c, which activated caspase-3 and led to a downstream caspase-dependent 

cell death (Renolleau et al., 2008) Therefore, sex is an additional variable that needs to 

be accounted for in study design, this does however present another possible avenue by 

which to better understand the occurrence and mechanism of brain injury in the FGR 

fetus.  

 Another means by which we can study mechanisms of brain injury as a result of 

hypoxia and low amino acid supply is via investigation of ER stress. ER stress arises due 

to improper protein maturation and folding in the ER lumen, and in cases where it is not 

alleviated, leads to activation of downstream apoptotic pathways (D. Liu et al., 2013; 

Matsumoto et al., 1996). G-protein coupled receptor 78 (Grp78) is an essential 

component of the ER translocation machinery and plays a key role in degradation of 

aberrant proteins, as such, synthesis of Grp78 is induced under conditions of ER stress 

(Hendershot et al., 1994). Therefore, Grp78 can be utilized as an early marker of ER 

stress. Hypoxia and low amino acid supply, as seen in the MNR guinea pig model (Elias 

et al., 2013; C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001; C. T. Roberts, Sohlstrom, 

Kind, Grant, et al., 2001) have been demonstrated to hinder disulfide bond formation, 

which is essential to protein maturation and folding in the ER lumen (Benham et al., 

2013; Frand & Kaiser, 1999; Yu et al., 2012; Zhang et al., 2014). Prolonged ER stress 

during critical time points in development of the fetal brain may have negative impacts 

on essential signaling and transport functions and give rise to aberrant development 
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(Braakman et al., 1991; Frand & Kaiser, 1999; Kawakami et al., 2014; Red-Horse et al., 

2004). 

 In the present study we sought to determine the extent to which moderate MNR 

in guinea pigs as a causative factor for FGR also impacts markers for brain necrosis and 

apoptosis and ER stress as measured by Western blot as well as differences in structural 

cell damage and SYN expression as measured by histology, thereby indicating threshold 

effects on brain growth and development, ranging from no measurable effect, to occult 

injury with altered synapse formation to overt injury with cellular necrosis/apoptosis. 

 

4.2  MATERIALS AND METHODS 

4.2.1  Animal Cohorts and Tissue Collection  

 A previously established model of moderate MNR in guinea pigs (Kind et al., 

2005; C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001; Sohlstrom et al., 1998) was used, 

with all experimental protocols approved by The University of Western Ontario Animal 

Use Subcommittee and following the Canadian Council on Animal Care. Animal feeding, 

breeding and pregnancy outcomes have been reported in Chapter 3. Briefly, nulliparous 

female guinea pigs (Dunkin-Hartley, from Charles River Laboratories, Sherbrooke, Que, 

Canada) were fed a guinea pig ration diet (Guinea Pig Diet 5025, LabDiet, St. Louis, MO) 

and after a two week period of acclimatization, daily food consumption was monitored 

and estrous cycles were tracked.  

 Guinea pig sows were assigned to either the control group, which was fed ad 

libitum, or the MNR group, which was fed 70% of the average food intake per kilogram 

of body weight of the control animals. After 4 weeks on their respective feeding 
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regimes, animals were mated. During the first 34 days of pregnancy, the MNR animals 

continued at 70% average food intake of the control animals per kilogram body weight, 

and from 35 days onward this was increased to 90% average food intake of the control 

animals per kilogram body weight.  

On day 60-61 of pregnancy (term = ~68 days), animals were sedated followed 

by laparotomy and delivery of each of the fetuses. Body and placental weights were 

obtained from all live-born fetuses along with crown-rump length measurements. 

Fetuses were considered to be appropriate for gestational age (AGA) if ≥ 80 g and FGR if 

< 80 g, which is in accord with the criteria we (Piorkowska et al., 2014)  and others (T 

Jansson & Persson, 1990) have used for categorizing AGA and FGR fetal weights in the 

near-term  guinea pig. Moreover, this threshold of 80 g is close to the 10th
 
percentile for 

the population weight distribution of the live-born control fetuses at ~78 g and thereby 

in accord with the FGR definition often used for human pregnancies (Lackman, 

Capewell, Gagnon, et al., 2001). Litter size, number of fetuses per uterine horn, and fetal 

position within the horn are all variables known to impact fetal growth (Piorkowska et 

al., 2014; A. J. Turner & Trudinger, 2000), therefore we chose to establish a cohort of 

AGA fetuses from the control group pregnancies and a cohort of FGR fetuses from the 

MNR group pregnancies to allow for more in-depth comparative study of growth 

related parameters.  Subsequently, only AGA fetuses from control group litters and FGR 

fetuses from MNR group litters were subjected to full necropsy which consisted of an 

initial cardiac puncture to obtain ~1cc of blood for glucose and hemoglobin analysis 

using an ABL 725 Blood Gas Analyzer (Radiometer, Copenhagen, Denmark). This was 

followed by dissection and weighing of the brain, heart, liver and kidneys, extraction of 

the gonads for determining fetal sex, and extraction of skeletal muscle and peri-renal 
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adipose tissue. The brain was dissected coronally between the cerebral peduncle and 

the mammillary body as well as through the caudal limit of the optic chiasm. The caudal 

section was fast frozen in liquid nitrogen and stored at -80C for later molecular 

analysis by Western Blot. The rostral and middle sections which were used for later 

immunohistochemistry analysis, were immersion fixed in 4% paraformaldehyde for 72 

hours, then washed in phosphate buffered saline (PBS) daily for 3 days before being 

placed in 70% ethanol for 7-14 days; they were then blocked in paraffin wax and cut at 

a thickness of 5m on a rotary microtome and mounted on superfrost Plus slides (VWR 

Scientific, Westchester, PA).  

Eighteen AGA-control fetuses (9 male and 9 female) and 18 FGR-MNR fetuses (9 

male and 9 female) were selected for brain tissue analysis. These animals were 

representative of the mean fetal weights for their respective cohort groups and were 

either the first or second medial position in the uterine horn, and with no more than 

one male and one female fetus from each litter.  

 

4.2.2  Necrosis Analysis with Haematoxylin and Eosin (H&E) Stain   

 Necrotic cell injury in the brain was studied by staining with H&E. Tissue 

sections were deparaffinized with three 5-minute washes in xylene and then rehydrated 

in a series of ethanol baths (100%, 100%, 90%, 90% and 70%) lasting 2 minutes each. 

Tissue sections were then rinsed once in deionized water for 5 minutes before being 

immersed in Harris modified haematoxlyn stain (Fisher Scientific) for 10 seconds. The 

stain was differentiated in 1% acid ethanol (2 mL HCl in 198 mL 70% ethanol) for 
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approximately 1 second and then flushed with running water for 1 minute. Next, 

sections were stained with eosin (1% eosin Y in 95% ethanol and 0.5% acetic acid; 

Fisher Scientific) for approximately 1 second. Tissue sections were then dehydrated in a 

series of ethanol baths (70%, 70%, 90%, 100% and 100%) followed by three 5-minute 

washes in xylene and coverslipped using Permount (Fisher Scientific). Slides were left 

for 24 hours to dry in a fume hood before being visualized. All slides were stained on 

the same day using the same solutions to minimize variation in intensity of stain.  

 Analyses were carried out in coronal sections at the level of the mammillary 

bodies and at the level of the optic chiasm. Brain regions analyzed included the 

parasagittal gray matter, convexity gray matter, periventricular white matter, thalamus, 

and hippocampus regions CA1, CA4, and dentate gyrus (Figure 4.1). Grey matter regions 

were further divided into layers 1-3 and layers 4-6 for analysis and thalamus was 

divided into medial and lateral thalamus, but results were combined for all grey matter 

and thalamic subregions from both coronal sections when no significant differences 

were found. Images were captured using a Zeiss upright light microscope (Carl Zeiss 

Microimaging, Thornwood, NY) with a 40x objective. Identical illumination settings 

were used for all brain regions to allow for comparison between regions. For all 

experiments, a minimum of 6 randomly selected 40x high-power fields (HPFs) per 

region were captured, with the goal being 4 HPFs per region per side of the brain. 

Necrotic-appearing cells were identified by the characteristic hallmarks of cellular 

necrosis in H&E staining, including eosinophilic cytoplasm, concave/elongated cell 

bodies and a loss of nuclear detail (Figure 4.2) and were scored manually. Each HPF was 

scored on a 5-point scale based on the estimated percentage of necrotic-appearing cells, 

with 0 = 0% necrotic cells, 5 = 1%-10% necrotic cells, 30 = 11%-50% necrotic cells, 70 = 
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51%-90% necrotic cells and 95 = 91%-100% necrotic cells, as reported previously 

(Rocha et al., 2004). In order to eliminate experimenter bias, all tissue slides were 

coded with the experimenter blinded to the animal treatment group.  

 

4.2.3  Apoptosis Analysis with ApopTag 

 Apoptotic cell injury in the brain was measured by the presence of DNA 

fragmentation within cells using the terminal deoxynucleotidyl transferase dUTP nick 

end labeling (TUNEL) assay method (Apoptag Peroxidase In Situ Appoptosis Detection 

kit; Millipore, Billerica, Massachusetts). To reduce variability, all staining was 

performed on the same day with the same batch of antibody and solutions. Tissue 

sections were deparaffinized as described in H&E, they were then equilibrated in PBS 

for 5 minutes. Tissues were then incubated with proteinase K (20 ug/mL) for 20 

minutes at room temperature and then rinsed 4 times in deionized water for 1 minute 

each. Positive control slides were generated by equilibrating sections in DN buffer for 5 

minutes and then removing excess water and applying 1:25 DNAse 1:DN Buffer (Sigma 

D7291 Sigma-Aldrich; Oakville, Ontario). A parafilm coverslip was applied and the 

positive control slides were incubated at 37C for 10 minutes in a humidifying chamber 

and then rinsed 4 times in deionized water for 1 minute each. All slides were quenched 

with 3% hydrogen peroxide in methanol for 10 minutes at room temperature and then 

washed in running tap water for 5 minutes and then rinsed in deionized water for 1-2 

minutes. Tissue sections were covered with the provided equilibration buffer for 30 

minutes in a humidifying chamber at room temperature. They were then incubated with 

terminal deoxynucleotidyl transferase (TdT) enzyme at 37C for  1 hour in a 
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humidifying chamber. Negative control slides were generated via omission of TdT 

enzyme with and without DNAse 1. Sections were then placed into coplin jars 

containing 1:34 mix of the provided Stop/Wash buffer and deionized water, they were 

agitated then incubated for 10 minutes.  Slides were then washed in PBS 3 times and 

then incubated with rhodamine-conjugated antidigoxigenin antibody for 30 minutes in 

a humidifying chamber at room temperature. Excess antibody was removed by four 2-

minute washes in PBS. A peroxidase substrate (Cardassian Diaminobenzidine (DAB), 

Biocare Medical; Concord, California) was prepared using 1 mL of the provided DAB 

substrate, and 1 drop of the DAB enchancer and DAB chromogen for every 5 slides. The 

substrate was applied, one slide at a time, for exactly 2 minutes before being rinsed in 

running tap water for 5 minutes and then placed in deionized water. Tissues were 

counterstained in 50% Harris modified Haematoxylin (Fisher Scientific) for 5 seconds, 

rinsed in running tap water, dehydrated as described in H&E, and then coverslipped 

using Permount (Fisher Scientific) and stored at 4C.  

Analyses were carried out in coronal sections at the level of the mammillary 

bodies and at the level of the optic chiasm in a similar manner to that described for the 

necrosis analyses (Figure 4.1). Grey matter regions were again divided into layers 1-3 

and layers 4-6 for analysis and thalamus was divided into medial and lateral thalamus, 

but results were combined for all grey matter and thalamic subregions when no 

significant differences were found. Images were captured using a Zeiss upright light 

microscope (Carl Zeiss Microimaging, Thornwood, NY) with a 40x objective. Identical 

illumination settings were used for all brain regions to allow for comparison between 

regions. For all experiments, a minimum of 6 randomly selected 40x HPFs per region 

were captured, with the goal being 4 HPFs per region per side of the brain. Apoptotic-
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appearing cells were identified as all cells with 3,3’-diaminobenzidine-stained 

cytoplasm (Figure 4.3). Thresholds were set to count positively stained cells in the 

positive control slides, while at the same time ensuring no signal was scored as positive 

within the negative control slides. Image analysis software used was Image Pro Premier 

9.2 software (Meyer Instruments), the software was calibrated for magnification.  

 

4.2.4  Markers of ER stress and Apoptosis via Western Blot 

 Fast frozen caudal sections of the brain were put on dry ice and a cortical 

portion was removed and homogenized in RIPA buffer (50mM Tris-HCl, pH 7.4, 150 mM 

NaCL, 1mM EDTA, 1% Nonidet P40, 0.25% C24H39NaO4), supplemented with 

phosphatase inhibitors (20 mM NaF, 40 mM Na-pyrophosphate, 40mM Na3Vo44, 200 

mM -glycerophosphate disodium salt hydrate), and a protease inhibitor cocktail 

(Roche). The solution was sonicated at 30% amplitude for 5 seconds total, 1 second per 

pulse. It was then mixed in a rotator for 10 minutes at 4C and centrifuged at 300g for 

15 minutes at 4C. The supernatant was collected and centrifuged at 16000g for 20 

minutes at 4C. The supernatant was collected as the total cellular protein extract and 

quantified by colorimetric DC protein assay (BioRad).  

Loading samples were prepared with fresh total cellular protein extract 

(avoiding repeated freeze-thaw cycles), NuPAGE LDS Sample Buffer (4X) (Invitrogen), 

NuPAGE Reducing Agent (10X) (Invitrogen), and deionized water. Loading samples 

were heated at 70C for 10 minutes to denature the proteins. Proteins (20 ug/well) 

were separated by size via electrophoresis at a voltage of 180V in gradient 
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polyacrylamide gels (Invitrogen Life Technologies Inc.). AGA-control and FGR-MNR 

male samples were loaded and run together on one gel, while AGA-control and FGR-

MNR female samples were run together on a separate gel. Each gel included a positive 

control consisting of a rat placenta that had shown reactivity in a previous study using 

the same antibodies (Wong, Nicholson, Holloway, & Hardy, 2015). Electrophoresis was 

followed by a transfer onto polyvinylidene difluoride membrane (Millipore) at 100V for 

two hours. Protein transfer was confirmed and visualized with Amido Black (Sigma-

Aldrich). Membranes were blocked in 1X Tris-buffered saline-Tween 20 (TBST) buffer 

with 5% non-fat milk (blocking solution) for two hours at room temperature, and then 

probed using primary antibodies of the protein targets of interest, all diluted in the 

blocking solution (Table 4.1), overnight at 4C. Secondary antibodies were used to 

detect the species-specific portion of the primary antibody, all diluted in the blocking 

solution (Table 4.2).  

Immuno-reactive bands were visualized using a Luminata Forte Western HRP 

enhanced chemiluminescence detection system (Thermo Scientific) and imaged using 

VersaDoc Imaging System (BioRad Laboratories). Protein bands underwent 

densitometry analysis using Image Lab 4.0 Software (Bio-Rad). -actin is ubiquitously 

expressed, and so probing for it allowed for the normalization of blot densities to 

correct for loading variances.  

 

4.2.5  Synaptic Development with Synaptophysin Immunohistochemistry 

 SYN immunoreactivity (IR) was assessed using ImmPRESS Polymerized 

Reporter Enzyme Staining System (Vector Laboratories). To reduce variability, all 
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immunohistochemistry for SYN was performed on the same day with the same batch of 

antibody and solutions. Tissue sections were deparaffinized as described in H&E, then 

endogenous peroxidase was quenched by a 10-minute bath in 3% hydrogen peroxide. 

Slides were rinsed with tap water for 5 minutes and then placed in a humidity chamber 

and rinsed with PBS. Slides were then blocked for 30 minutes using ImmPRESS 2.5% 

Normal Horse Serum and then rinsed with PBS. Sections were then incubated with 

primary antibody (mouse anti-rat monoclonal SYN, 1:400, Sigma-Aldrich, Oakville 

Ontario) overnight at 4C. Slides were then rinsed with PBS 3 times at room 

temperature. Sections were then incubated with secondary antibody (ImmPRESS 

(Peroxidase) Polymer Anti-Mouse IgG Reagent) for 40 minutes at room temperature. 

Slides were rinsed 3 times with PBS and then a peroxidase substrate DAB kit was used 

as described in ApopTag. Tissues were counterstained in Carazzi’s Haematoxylin for 90 

seconds, rinsed in running tap water, rinsed in deionized water, dehydrated as 

described in H&E and then coverslipped as described for ApopTag. Negative control 

slides were generated by the substitution of the primary antibody with pure diluent.  

 Analyses were carried out in coronal sections at the level of the mammillary 

bodies. Slides were coded prior to image analysis to ensure this was done blinded to the 

animal cohort. Brain regions analyzed included the parasagittal gray matter, thalamus, 

and hippocampus regions CA1, CA4, and dentate gyrus (Figure 4.1). Images were 

captured using a Zeiss upright light microscope (Carl Zeiss Microimaging, Thornwood, 

NY) with a 63x objective with immersion oil. For all experiments, a minimum of 6 

randomly selected 40x HPFs per region were captured, with the goal being 4 HPFs per 

region per side of the brain. Figure 4.4 illustrates appropriate SYN IR in the 

hippocampal regions of the brain, as clustered, punctate staining throughout the 
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terminal end of the axon surrounding neurons, indicating the presence of synapses. 

Identical illumination and exposure settings were used for all SYN slides to allow for 

comparison between animals and regions. With each new slide, the field diaphragm was 

centered and re-focused to maximize Kohler illumination.  

 Percent area positive staining, as well as intensity of stain, were measured using 

ImagePro Premier 9.2 software (Meyer Instruments, Houston Texas). The software was 

calibrated for magnification. SYN IR was identified as DAB-stained cytoplasm. 

Thresholds were set using several images to count positively stained cells, while at the 

same time ensuring no signal was scored as positive within the negative control slides.  

 

4.2.6  Data Acquisition and Statistical Analysis  

Overall control and MNR population characteristics included data from all 

control sows and their liveborn fetuses and all MNR sows and their liveborn fetuses 

undergoing necropsy at 60/61 days gestation (Figure 4.5). Select AGA-control and FGR-

MNR population characteristics included data from 18 (9 male and 9 female) control 

animals and 18 (9 male and 9 female) MNR animals who were liveborn, underwent full 

necropsy, and met the weight criteria noted, thus making them representative of their 

respective groups (Figure 4.6). Outliers were statistically identified using the Grubbs’ 

test (Grubbs, 1969). Maternal and fetal characteristic findings are presented as group 

means ± SEM. Overall control and MNR population characteristics and select AGA-

control and FGR-MNR population characteristics were compared using ANOVA and a 

non-paired student`s t-test which were also nested for litter size (Graphpad Software, 

San Diego, CA). Comparison for apoptosis and necrosis findings were done using a one-
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way ANOVA followed by unpaired t tests. Comparison for SYN IR was performed using a 

non-paired student’s t-test. Western Blots were evaluated using a non-paired student’s 

t-test on the difference between normalized mean values. All statistical analyses were 

performed using GraphPad Prism 6 software. All results were expressed as means of 

normalized values  SEM and for all analyses statistical significance was assumed at 

p<0.05 compared to the AGA-control cohort.  
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Figure 4.1 Gross picture of the fetal guinea pig brain microdissection. Areas of interest 
were labelled 1) parasagittal grey matter, 2) CA1, 3) CA4, 4) dentate gyrus, 5) convexity 
grey matter, 6) periventricular white matter, 7) medial thalamus, and 8) lateral 
thalamus.  Scale bar is 1,000 m 
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Figure 4.2 High power section from FGR-MNR fetus of necrotic-appearing cells in the 
parasagittal grey matter displaying eosinophilic cytoplasm with concave and elongated 
cell bodies and a loss of nuclear detail indicated by arrow (Image at 40x magnification, 
scale bar is 20m).  
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Figure 4.3 High power section from FGR-MNR fetus of a TUNEL positive cell in the 
periventricular white matter. Identified as dark brown stained nuclei indicated by 
arrow (Image at 40x magnification, scale bar is 20m).  
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Figure 4.4 High power section from AGA-control fetus of SYN IR in the thalamus. 
Showing SYN IR punctate staining in the original HPF for analysis (top) and the 
threshold applied (blue) indicating positive stain (bottom) (image at 63x magnification, 
scale bar is 10m).  
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Figure 4.5 Growth measures for all control (9 sows/31 fetuses) and MNR (12 sows/42 
fetuses) animals. Data presented as mean % change from control values with SEM; 
**p<0.01, ***p<0.001 
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Figure 4.6 Growth measures from select AGA-control (18 fetuses) and FGR-MNR (18 
fetuses) animals undergoing full necropsy. Data presented as % change from control 
values with SEM; ***p<0.001 
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Table 4.1 Western Blot primary antibodies, dilutions used in experiments and company 
and catalogue information. 

Antibody 
name 

Source Dilution Company (#Catalogue) 

Grp 78 Mouse monoclonal 1:300 Santa Cruz Biotechnology Inc., Santa Cruz, CA, 

USA (#sc-58774) 

Bax Rabbit monoclonal 1:2000 Santa Cruz Biotechnology Inc., Santa Cruz, CA, 

USA (#sc-493) 

PARP1 Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, 

USA (#9542)          

Capasase-3 Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, MA, 

USA (#9665)          

-Actin                     Mouse monoclonal 1:50000 Sigma-Aldrich Co., St. Louis, MO, USA 

(#A3854) 

 

Table 4.2 Western Blot secondary antibodies, dilutions used in experiments and 
company and catalogue information. 

Antibody 
name 

Dilution Company (#Catalogue) 

Donkey Anti-
Rabbit IgG 
(H+L) 

1:10000 Jackson ImmunoResearch Laboratories, West Grove, PA, USA       

(#711-011-033) 

Donkey Anti-
Mouse IgG 
(H+L) 

1:5000 Jackson ImmunoResearch Laboratories, West Grove, PA, USA       

(#715-011-033) 
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4.3 RESULTS  

4.3.1  Fetal Population Characteristics  

 As stated in Chapter 3, nine control animals and 12 MNR animals had continuing 

pregnancies out to necropsy at 60/61 days gestation with 31 and 42 liveborn fetuses 

respectively, which formed the overall control and MNR populations. The fetal growth 

characteristics from these animals are shown in Table 4.3 and have previously been 

reported in Chapter 3. In summary, fetal weights were ~28% lower in the MNR 

pregnancies than in the control pregnancies (p<0.001). Placental weights were also 

~23% lower in MNR pregnancies (p<0.001), resulting in placental/fetal weight ratios 

being increased by ~12 % (p0.05). Fetal crown rump lengths were also decreased in the 

MNR pregnancies by ~15% (p<0.01), but again less than the decrease in fetal weights 

such that the fetal weight/length as a measure of leanness was also decreased by ~15% 

(p<0.001).  

 As noted, 80 g was used as the threshold for categorizing AGA and FGR fetal 

weights and determining which control and MNR fetuses were to be subjected to full 

necropsy. This resulted in 20 AGA-control fetuses and 25 FGR-MNR fetuses, which have 

also been outlined in the results section of Chapter 3. From each of these groups 9 male 

and 9 female AGA-control and FGR-MNR fetuses were selected for full necropsy and 

further analysis. These fetuses were representative of the mean fetal weights from these 

select cohort groups with their population characteristics shown in Table 4.4. Changes 

in these population characteristics in the FGR-MNR fetuses from that of the AGA-control 

fetuses were similar for both males and females with no sex differences noted. In 

summary, FGR-MNR fetal weights were decreased by ~37% compared to that of AGA-
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control fetuses (p<0.001). FGR-MNR brain weights were also decreased, but only by 

~12% (p<0.001) while FGR-MNR liver weights were markedly deceased by ~40% 

(p<0.001). Consequently, the brain/liver weight ratio as a measure of asymmetrical 

growth was increased almost 50% in the FGR-MNR fetuses compared to that of the 

AGA-control fetuses (p<0.001).  

4.3.2  Quantification of Necrotic-Appearing Cells 

A total of 36 late-gestation fetal brains were examined by means of H&E staining 

for quantification of necrotic-appearing cells.  As previously described, characteristic 

morphologic features were used to distinguish necrotic-appearing cells (Figure 4.2). 

The mean percentage of necrotic-appearing cells per HPF for each examined brain 

region is shown in Figure 4.7. Overall, low levels of necrotic appearing cells were 

observed in studied brain regions, averaging 0.45/HPF and 0.59/HPF (40x) for AGA-

control and FGR-MNR animals, respectively. Most values were not significantly different 

from zero and no differences were observed between AGA-control and FGR-MNR 

animals for any of the brain regions studied. 

4.3.3  Quantification of Apoptotic-Appearing Cells 

 A total of 36 late-gestation fetal brains were examined for the appearance of 

apoptotic-appearing cells by means of TUNEL assay. The mean count of apoptotic-

appearing cells per HPF for each examined brain region is shown in Figure 4.8. While 

low levels of apoptotic appearing-cells were observed, FGR-MNR levels were higher in 

the periventricular white matter at 3.83  0.66 cells/HPF (2x) (p<0.05), the 

hippocampus CA1 at 0.26  0.06 cells/HPF (3x) (p<0.05), CA4 at 1.19  0.15 cells/HPF 
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(1.7x) (p<0.05) and dentate gyrus at 0.34  0.10 cells/HPF(3x) (p<0.05) compared to 

their respective AGA-control levels. Additionally, apoptotic indices were significantly 

increased in males compared to females with AGA-control levels being higher in all 

areas but of particular note the periventricular white matter at 3.09  0.55 cells/HPF 

(3.7x) (p<0.05), the hippocampus CA1 at 0.17  0.05 cells/HPF (8.5x) (p<0.01) and CA4 

at 1.05  0.22 cells/HPF (2x) (p<0.01) and dentate gyrus at 0.17  0.05 cells/HPF (2.8x) 

(p<0.01). The same trend held in FGR-MNR animals with apoptotic indices being 

significantly increased in males compared to females in all areas, but of note being the 

periventricular white matter at 5.11  0.91 cells/HPF (1.9x) (p<0.05), the hippocampus 

CA1 at 0.45  0.08 cells/HPF (4x) (p<0.01) and CA4 at 1.55  0.17 cells/HPF (1.7x) 

(p<0.01) (Figure 4.9). 

4.3.4  Western Blot Analysis  

A total of 15 male and 15 female late-gestational fetal brains were examined for 

each Western Blot that was performed for measurement of markers of ER stress and 

apoptosis. Grp78 was significantly increased in the female FGR-MNR cohort with a 224 

 31% increase relative to female AGA-control animals. Otherwise there were no 

significant changes in male Grp78, male Bax, female Bax, male PARP1, female PARP1, or 

female cleaved caspase-3 content between groups (Figure 4.10). 

4.3.5      Quantification of SYN IR 

A total of 36 late-gestation fetal brains were examined for SYN-IR using the 

ImmPRESS Polymerized Reporter Enzyme Staining System (Vector Laboratories). As 

previously described, SYN IR was observed as clustered, punctate staining throughout 
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the terminal end of the axon surrounding neurons, indicating the presence of synapses 

(Figure 4.4). The mean percent area stained per HPF for each examined brain region is 

shown in Figure 4.11. Results showed no significant differences between AGA-control 

and FGR-MNR groups and no significant differences between male and female AGA-

controls or male and female FGR-MNR cohorts.  
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Table 4.3 Overall Fetal Population Characteristics 

Data presented as means  SEM; *p<0.05, **p<0.01, ***p<0.001 vs. corresponding 
control group value; n values were 31 and 42 for fetal control and MNR characteristics 
respectively. 
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Table 4.4 Select Fetal Population Characteristics 

  Male  Female 
 AGA-Control FGR-MNR AGA-

Control 
FGR-MNR 

Fetal weight (gms) 1003 633*** 1013 614*** 

Brain weight (gms) 2.720.08 2.360.07* 2.750.07 2.45.09* 
 
Liver weight (gms) 

 
4.70.4 

 
2.70.2*** 

 
4.70.2 

 
2.60.3** 

 
Brain/liver weight ratio 

 
0.580.05 

 
0.870.05** 

 
0.580.02 

 
.0950.08** 

 
Data presented as means  SEM; *p<0.05, **p<0.01, ***p<0.001 vs. corresponding 
control AGA-control group value; n values were 18 and 18 for fetal AGA-control and 
FGR-MNR characteristics, respectively. 
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Figure 4.7 Bar chart of necrotic-appearing cells as assessed by morphologic change in 
H&E-stained sections for the brain regions shown of AGA-control (n=18) and FGR-MNR 
(n=18) fetuses. Data presented as mean % necrotic-appearing cells/HPF  SEM. 
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Figure 4.8 Bar chart of TUNEL positive cells as assessed by Apoptag Peroxidase In 
Situ Appoptosis Detection kit (Millipore, Billerica, Massachusetts) for the brain regions 
shown of AGA-control (n=18) and FGR-MNR (n=18) fetuses. Data presented as mean 
TUNEL positive cells/HPF  SEM. 
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Figure 4.9 Bar chart of TUNEL positive cells as assessed by Apoptag Peroxidase In 
Situ Appoptosis Detection kit (Millipore, Billerica, Massachusetts) for the brain regions 
shown of AGA-control (n=18) and FGR-MNR (n=18) fetuses as well as AGA-control male 
(n=9) and AGA-control female (n=9) fetuses. Data presented as mean TUNEL positive 
cells/HPF  SEM. 
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Figure 4.10 Representative immunoblots (top) of Grp78 (78kDa), Bax (23kDa), PARP1 
(89kDa), cleaved caspase-3 (17,19kDa) and -Actin (42kDa) from male and female AGA-
control and FGR-MNR animals. Density of immunoblots (bottom) normalized to -Actin 
and presented as the mean fold change  SEM for the male and female FGR-MNR fetuses 
(green bars, n=8) from that of the male and female AGA-control fetuses (blue bars, n=7). 
*p<0.05. 
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Figure 4.11 Bar chart of % area SYN-IR per HPF for the brain regions shown of AGA-
control (n=18) and FGR-MNR (n=18). Data presented as mean % area stained/HPF  
SEM. 
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4.4 DISCUSSION  

In the present study, we have examined markers of necrosis, apoptosis, ER 

stress, and synaptogenesis in fetal guinea pigs subjected to moderate MNR before and 

continuing throughout pregnancy as a model for inducing FGR with similarities to that 

seen in humans with maternal undernourishment and idiopathic placental insufficiency. 

As discussed in Chapter 3, and in other studies (C. T. Roberts, Sohlstrom, Kind, Earl, et 

al., 2001; Sohlstrom et al., 1998), moderate MNR at 70% of the control ad-libitum diet 

beginning 4 weeks pre-pregnancy and increasing to 90% of the control ad-libitum diet 

at mid-gestation, results in a decrease in fetal weights by 30-40% on average for all 

MNR pregnancies necropsied near term. Increased placental/fetal weight ratios are 

observed in these pregnancies, which parallels what is seen in human FGR pregnancies 

with maternal undernourishment and placental insufficiency, and likely indicates a 

degree of adaptive compensatory growth by the placenta in an effort to minimize FGR 

(Abrams & Newman, 1991; Kramer, 1987). These placental changes make it likely that 

the FGR-MNR fetuses are likely to be hypoxic and therefore at risk of increased 

oxidative and ER stress, a possible mechanism for altered growth and development. 

These fetuses also have a decrease in brain weights and markedly decreased liver 

weights, giving rise to an increased brain/liver weight ratio which is characteristic of 

asymmetrical fetal growth restriction (aFGR) (Lackman, Capewell, Richardson, et al., 

2001; Lafeber HN, Rolph TP, 1984;  a. J. Turner & Trudinger, 2009). Of note, aFGR is also 

seen in humans with placental insufficiency leading to growth restriction (W. Cox et al., 

1988; Economides & Nicolaides, 1989; Soothill et al., 1987).  

Development of the fetal brain requires the completion of several complex 

processes in order to develop in a complete and healthy manner. Adverse intrauterine 
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conditions may lead to prolonged episodes of lowered nutrients, including oxygen, and 

thus generate an unsuitable environment for the completion of necessary growth and 

development processes (Hochachka et al., 1996); this may result in a variety of 

consequences ranging from threshold effects on brain growth, to altered synapse 

formation and aberrant neuronal communication, all the way to alterations leading to 

cellular death in severe cases (Astrup, 1982). This is particularly true in perinatal brain 

developers such as humans, and guinea pigs as prenatal brain developers, as the most 

rapid phases of brain growth and development occur in the latter half of pregnancy 

(McIntosh et al., 1979), in these cases insults are occurring during critical time points in 

development and are significantly increasing the risk of potential derangements. The 

processes involved in brain growth and development are very dynamic with a very high 

energy demand. As such, FGR with oxygen and nutrient impairment may disrupt 

processes such as growth and synapse formation as energy demanding processes (Jiang 

& Schuman, 2002). Cellular death can occur in a physiological manner and likely also 

plays a central role during the fetal period of brain development that coincides with 

neuronal differentiation and synaptogenesis (Blaschke et al., 1996). Additionally, in 

cases of chronic hypoxia, reduced amino acid levels, and/or oxidative stress, it is 

possible to see an accumulation of misfolded or unfolded proteins in the ER, which if 

prolonged, can lead to the initiation of pro-apoptotic cascades (Koumenis et al., 2002; 

Marciniak & Ron, 2006; Szegezdi et al., 2006). 

The most pertinent finding in this study was the increase in TUNEL positive 

staining in the FGR-MNR cohort when compared to the AGA-control cohort and more so 

in males than females, although this was also evident in the AGA-control group. This 

finding likely points to a sexual dimorphism in the mechanism and degree of apoptotic 
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injury, a finding that is consistent with previous studies of apoptosis in neonatal 

cerebral ischemia (Renolleau et al., 2008). The study by Renolleau et al. suggested that 

males and females undergo apoptosis at different levels and via different mechanisms. 

It is suggested that males may be more vulnerable to oxidative stress leading to 

production of reactive oxygen species in the mitochondria, large mitochondrial 

permeability with a subsequent release of pro-apoptotic proteins, such as AIF, leading 

to activation of PARP1 and subsequent translocation of mitochondrial AIF into the 

nucleus for DNA cleavage, resulting in a caspase-independent cell death (Renolleau et 

al., 2008). Females however, have an estrogen microenvironment which upregulates 

levels of anti-apoptotic Bcl-2 and may in part preserve the stability of the mitochondrial 

membrane and reduce the release of pro-apoptotic proteins; however in situations 

where cellular death pathways are sufficiently activated, females undergo a caspase 

dependent cell death involving the release of cytochrome c and activation of caspase-3 

(Renolleau et al., 2008). This suggests there is a sexual dimorphism in apoptotic 

pathways and may implicate oxidative stress as a possible method by which damage is 

occurring in the fetal brain in the case of MNR induced FGR. The changes in apoptosis 

that were observed in our study were not accompanied by significant changes in the 

protein levels of pro-apoptotic factors such as Bax, PARP1, and cleaved casapse-3. This 

points to activity dependent changes in other apoptotic factors, such as AIF to explain 

the increases in apoptosis that are observed here.  

In general, this study investigated sub-areas of the hippocampus due to its role 

in memory and learning. In normal development, neurons of the dentate gyrus and 

areas CA1 and CA4 synapse with each other in the formation of a functional 

hippocampus (Berger, Song, Chan, & Marmarelis, 2010). Hippocampal neurons of the 
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CA1 are thought to be more sensitive to hypoxic or ischemic insults (Bickler & Buck, 

1998; Maiti, Singh, Muthuraju, Veleri, & Ilavazhagan, 2007). Considering that MNR-FGR 

fetuses have previously been found to be hypoxic (Elias et al., 2013), our findings would 

be consistent with these studies as these more susceptible regions did have increased 

evidence of apoptosis 

 Processes with high energy demand have been found to be highly sensitive as 

they are the most likely to be shut down in order to conserve energy necessary for 

cellular integrity and survival (Hochachka et al., 1996; Jiang & Schuman, 2002; Zhao & 

Flavin, 2000). On the basis of this and previous studies in FGR guinea pigs (Piorkowska 

et al., 2014), we hypothesized that MNR leading to FGR would have threshold effects on 

brain development processes, such as synaptogenesis, and thus we would see 

differences in SYN IR as a marker of the total number of synapses. Therefore, our results 

were unexpected. The dissimilarity in our results compared to previous studies may 

indicate a difference in the result of the long-term chronic insult that manifests with 

MNR compared to the more abrupt, acute insult in models such as uterine artery 

ligation/ablation. The chronic nature of nutrient restriction begins to impact the animal 

very early on in gestation and thus may create a larger window of opportunity for 

adaptations in the fetus and/or placenta. These adaptations may include mechanisms 

such as antioxidant release and result in better outcomes compared to animal models 

undergoing a one-time invasive procedure at mid-gestation. Additionally, studies of 

cerebral ischemia have demonstrated a reproducible sequence of changes, with an 

upper ischemic flow threshold of synaptic transmission failure but the maintenance of 

energy levels and a lower ischemic flow threshold of membrane failure with the 

development of structural cell damage (Astrup, 1982). With this study in mind, it is 
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possible that animal models of uterine artery ligation/ablation are below the upper 

ischemic flow threshold and above the lower ischemic flow threshold, whereas the MNR 

model is above both the upper and lower ischemic flow threshold, and therefore does 

not yield synaptic transmission failure or large amounts of structural cell damage.  

 In summary, there were overall low levels of necrosis and apoptosis, but with 

significant increases in apoptosis in FGR-MNR animals compared to AGA-controls, as 

well as in males compared to females. The lack of necrotic changes indicates that the 

threshold for membrane failure with energy depletion has likely not been reached; 

these findings paired with the increases in apoptosis are consistent with previous 

studies which state that milder insults are more likely to impact immature neurons and 

result in apoptotic death, while more severe insults are likely to affect terminally 

differentiated neurons and result in death by necrosis (Scott & Hegyi, 1997; Yue et al., 

1997). The changes in apoptosis were however, not accompanied by any observable 

changes in protein markers of apoptosis or ER stress, which may indicate that other 

upstream pathways are responsible for the resultant apoptosis that is associated with 

MNR induced FGR. There was, unexpectedly, no changes in markers of synaptic 

numbers. Due to the constant state of nutrient restriction, it is likely that an adaptive 

response occurred in these animals at an earlier time point in gestation and therefore, 

by the time of the near-term necropsy, these FGR-MNR fetuses had better outcomes 

compared to those observed in previous studies with uterine artery ligation/ablation.  
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5.1 GENERAL DISCUSSION  

 It is now recognized that the condition of the intrauterine environment that 

supports the development of a fetus is a key determinant to the long term neurological 

health and cognitive capacity of that fetus. Several studies have demonstrated a link 

between low birth weight, suggestive of a sub-optimal intrauterine environment, and 

long-term adverse outcomes, including cardiovascular conditions, metabolic 

disabilities, cognitive deficits and neurological disorders. Conditions associated with 

fetal growth restriction (FGR) include common disorders such as cerebral palsy, 

attention deficit hyperactivity disorder, schizophrenia, epilepsy, and psychiatric 

hospitalization (M. Cannon et al., 2002; Halliday, 2009; Indredavik et al., 2010; 

Rodrigues et al., 2006; S. P. Walker et al., 2007b). The severity of the associated deficits 

and diseases correlates to the degree of FGR, often there is no recovery (Geva et al., 

2008; Indredavik et al., 2010; Isaacs et al., 2000; Synnes et al., 2010). As such, altered 

development of the brain during critical periods may result in permanent impairments 

from which there is currently no course for recovery. Although many factors contribute 

to the incidence of FGR, improper placental growth and therefore impaired nutritional 

transport to the fetus, plays a major role in many human cases of FGR. As such, this 

study was designed to further characterize how a model of maternal nutrient restriction 

(MNR) may act as a representative model of human FGR, and to investigate alterations 

in the growth and development of the brain that arise from FGR.  

 Previous studies have utilized moderate MNR in guinea pigs to model the 

maternal, placental and fetal growth characteristics of human FGR (Kind et al., 2003, 

2005; C. T. Roberts, Sohlstrom, Kind, Earl, et al., 2001; Sohlstrom et al., 1998). This 
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study has further characterized the MNR guinea pig model via the addition of breeding 

success and pregnancy outcomes as outlined in Chapter 3. This study also demonstrated 

the utility of the MNR model to induce FGR, resulting in dramatically lower rates of fetal 

loss compared to those seen in uterine artery ligation/ablation models (Lafeber HN, 

Rolph TP, 1984;  a. J. Turner & Trudinger, 2009), however an increase in preterm 

delivery was reported, as is seen in human cases of FGR (Lackman, Capewell, 

Richardson, et al., 2001). This study has confirmed the findings of previous studies, 

which have stated that MNR guinea pig fetuses have increased placental/fetal weight 

ratios; a finding that is often observed in human cases of FGR (Belkacemi et al., 2010; K. 

Godfrey & Robinson, 1998; Kramer et al., 1990; Lackman, Capewell, Gagnon, et al., 2001; 

Lumey, 1998). This study provided validation for the use of a fetal weight threshold of 

80 g for categorizing average for gestational age (AGA)-control and FGR-MNR cohorts, 

with 80 g being representative for the 10th percentile in the control animals. A key 

finding within the FGR-MNR cohort, is that the fetuses displayed asymmetrical fetal 

growth restriction (aFGR) and were polycythemic and hypoglycemic, all of which are 

characteristic of moderate growth restriction during human pregnancy (Abrams & 

Newman, 1991; W. Cox et al., 1988; Economides & Nicolaides, 1989; Kramer, 1987; 

Kramer et al., 1990; Soothill et al., 1987). 

 Moderate MNR alters the vasculature and structure of the placenta (C. T. 

Roberts, Sohlstrom, Kind, Earl, et al., 2001; C. T. Roberts, Sohlstrom, Kind, Grant, et al., 

2001) and leads to reductions in blood and nutrient flow from maternal to fetal tissues, 

mimicking the human condition of placental insufficiency that often occurs in human 

FGR. This chronic insult has been shown to lead to a decrease in brain protein synthesis 

as a metabolic defense in hypoxia tolerant species, which was believed to have the 
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potential to impact brain development (Gagnon et al., 1997; Matthews, 2000). 

 The current study had the goal of investigating the consequences of MNR-

induced FGR in the fetal brain and looking to gain a better understanding of the 

mechanisms at play.  These fetuses have substantial “brain sparing”, as their brain 

weights are reduced, but not nearly to the same degree as other organs such as the liver. 

There is also no increase in necrotic cell injury, which indicates that the threshold for 

membrane failure with energy depletion has likely not been reached. Apoptotic indices 

were found to be very low in both AGA-control and FGR-MNR cohorts but a statistically 

significant increase was observed in FGR-MNR animals compared to AGA-control 

animals, primarily in hippocampal regions This finding is consistent with previous 

studies of developing brain cells exposed to hypoxic/ischemic conditions; these studies 

state that milder insults are more likely to impact immature neurons and result in 

apoptotic death, while more severe insults are likely to affect terminally differentiated 

neurons and result in death by necrosis (Scott & Hegyi, 1997; Yue et al., 1997). 

Additionally, TUNEL-positive cells were observed to be significantly higher in males 

compared to females, and this was true for both AGA-control and FGR-MNR cohorts, 

which likely points to a sex difference in the mechanism and degree of apoptotic injury; 

which is consistent with findings from Renolleau et al. The study by Renolleau 

postulated a mechanism of apoptosis by which males were undergoing a caspase-

independent cell death, via PARP1 initiating the translocation of apoptosis-inducing 

factor (AIF) to the nucleus for the induction of large scale DNA fragmentation (Daugas 

et al., 2000) and that this pathway was triggered by increases in oxidative stress. 

(Renolleau et al., 2008). These changes in apoptosis that were observed in our study 

were not accompanied by significant changes in the protein levels of pro-apoptotic 



 131 

factors such as Bcl-2 associated X protein (Bax), poly ADP ribose polymerase 1 (PARP1), 

and cleaved casapse-3. This points to activity dependent changes in other apoptotic 

factors, such as AIF to explain the increases in apoptosis that are observed here.  

 Following investigations on necrosis and apoptosis, this study focused on 

determining if guinea pigs with MNR induced FGR exhibited changes in synaptogenesis. 

Synaptophysin (SYN) immunoreactivity was measured as a marker of the total number 

of synapses. No significant changes were observed in SYN immunoreactivity between 

AGA-control and FGR-MNR groups, which was unanticipated as a previous study 

measuring SYN immunoreactivity in FGR guinea pigs found significant decreases 

relative to fetuses of normal birth weight (Piorkowska et al., 2014). Synaptic formation 

and maturation are high-energy consuming processes and therefore the compromised 

supply of nutrients and oxygen observed in MNR induced FGR would be expected to 

result in reduced synapse formation and maturation. The maintenance of synaptic 

numbers possibly demonstrates the effectiveness of the brain-sparing response 

observed in aFGR fetuses in ensuring sufficient energy is preserved for the 

developmental processes occurring in the brain. Alternatively, it is possible that this 

may indicate a difference in the result of the long-term chronic insult observed in MNR 

compared to the abrupt/invasive nature of the insult in models such as uterine artery 

ligation/ablation. It is possible that the chronic nature of nutrient restriction begins to 

impact the animal early in gestation and as a result the placenta and/or fetus has a 

larger window of opportunity to adapt, with mechanisms such as increased release of 

antioxidants, and thus may yield better outcomes in comparison to animal models 

which involve a one-time invasive procedure performed at mid-gestation with less of an 

opportunity for adaptation and recovery. Additional studies of cerebral ischemia have 
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demonstrated a reproducible sequence of changes, with an upper ischemic flow 

threshold of synaptic transmission failure but the maintenance of energy levels and a 

lower ischemic flow threshold of membrane failure with the development of structural 

cell damage (Astrup, 1982). With this study in mind, it is possible that animal models of 

uterine artery ligation/ablation are below the upper ischemic flow threshold and above 

the lower ischemic flow threshold, whereas the MNR model is above both the upper and 

lower ischemic flow threshold, and therefore does not yield synaptic transmission 

failure or large amounts of structural cell damage.  

 This study as well as past studies of moderate MNR in guinea pigs support the 

utility of this model for the induction of FGR which parallels the condition of human 

FGR resulting from placental insufficiency or maternal undernourishment. This is the 

first study to date to investigate the impact of FGR in the brain of the MNR guinea pig 

model. This study has exhibited the merit of using a translatable chronic insult to induce 

growth restriction. The results provide insight into possible mechanisms by which MNR 

induced FGR is impacting the brain and also set the stage for future studies to further 

our understanding of the topic. 

 A major limitation of this study is that all investigations of the brain were carried 

out at a single time point in development. This raises the question of how certain 

markers, particularly apoptotic indices change over the course of development. 

Apoptosis is known have a physiological basis during fetal brain development that 

coincides with neuronal differentiation and synaptogenesis, therefore without 

measuring apoptosis across multiple time points we cannot know if the increase in 

apoptotic markers that we observe is a result of the MNR induced FGR, or an indicator 
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of a delayed developmental process. Additionally, the state of the caudal portion of the 

brain that was used for our Western Blots was less than ideal as the brains were 

damaged in the fast freezing process. This made it difficult to ensure which brain areas 

we were removing for our investigation and may have led to some of the high variability 

of our results here.  

 

5.2 FUTURE STUDIES 

 Based on the current findings, future studies should focus on additional markers 

that may provide more insight in regards to the mechanisms by which neurological 

changes are occurring.  Additionally, future studies should explore associated 

behavioural outcomes in the growth restricted MNR fetus. It would be worthwhile to 

further investigate markers of oxidative stress in the fetal guinea pig brain as they may 

elucidate more about mechanisms by which neurological changes are occurring. 

Examples of oxidative stress markers that can be investigated include the antioxidant 

glutathione, by-products of oxidative stress like malondialdehyde, and measures of DNA 

oxidative stress and cell damage like 8-hydroxyguanosine and 3-Nitrotyrosine.  

Defining behavioural` changes in animal models can be done using various 

psychological tests that may suggest changes in learning, memory, cognition, and 

behavior. Tests such as the Morris water maze, T-arm maze, open field test, and forced 

swim test could provide information regarding the extent to which cognitive changes 

are occurring and the extent to which these changes can be associated with MNR and 

thus FGR. Correlating these behavioural changes with the severity of FGR resulting from 

MNR may provide useful information into the most beneficial forms of therapy, 
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depending on the duration, type, and severity of insult occurring during gestation.  

 Previous animal models of placental insufficiency, such as those using uterine 

artery ligation, have demonstrated neurological changes in the FGR fetus. Since this 

study has demonstrated that MNR leads to FGR, with an inclination towards aFGR it 

would be a valuable use of resources to further investigate additional markers of 

neurological changes and at multiple time points in the life of the animal. Initiation of 

myelination, axonal and dendritic growth and the proliferation of microglia and 

astrocytes are all examples of processes occurring during development that can be 

impacted if oxygen and nutrient supply are insufficient during critical period of 

development (Kind et al., 2005). A previous study, performed in a uterine artery ligation 

model, demonstrated reduced synaptophysin (SYN) immunoreactivity (IR) (Piorkowska 

et al., 2014). It would be worthwhile to test further markers from Piorkowska’s study in 

the MNR model. Some of these markers include synaptopodin, which is found in 

dendritic spines of telencephalic neurons and is closely associated with the spine 

apparatus that plays a role in learning and memory  (Deller, Merten, Roth, Mundel, & 

Frotscher, 2000; Deller, Mundel, & Frotscher, 2000; Mundel et al., 1997) and myelin 

basic protein, which comprises 35% of the protein in they myelin sheath, and is often 

used as a marker of myelination (Back et al., 2001). It would be useful to conduct 

studies of these markers in addition to those investigated in this study, and to look at 

them at the fetal stage, at the neonatal stage, and at the adult stage in order to 

investigate how MNR induced FGR affects these markers throughout life.  

 An additional area of future research that could be investigated once there is a 

better understanding of the type of injury and developmental change that occurs in the 
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brain as a result of MNR induced FGR, would be to determine the presence and extent of 

structural brain injury that could be detected using noninvasive approaches, such as 

magnetic resonance imaging (MRI) in the developing neonate. These measures could be 

used as a means for determining structural biomarkers for FGR adverse 

neurodevelopmental outcomes that could be correlated to microstructural changes in 

the brain found via accompanying histological analyses.  

 

5.3 CONCLUSIONS  

 In conclusion, the focus of this thesis was on determining the relationship 

between MNR and the changes in fetal-placental growth, fetal-brain growth, 

neurodevelopment, and markers of cellular injury. The major findings of this study 

were: 

1) MNR leads to aFGR fetuses with high brain-to-liver weight ratios. 

2) Markers of necrosis do not change. 

3) Markers of apoptosis are significantly increased in FGR-MNR cohort relative 

to the AGA-control cohort, however they do remain at generally low levels.  

4) Markers of apoptosis are increased in males relative to females. This is true 

for both AGA-control and MNR-FGR cohorts. 

5) Markers of synapse formation do not change. 

These studies suggest that MNR induced FGR in fetal guinea pigs can have a significant 

role in future research. This model appropriately parallels the human condition as seen 

with placental insufficiency and under nutrition during pregnancy. These results 

suggest that there is a difference in the impact of MNR induced FGR on the brain 
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compared to more abrupt/invasive models such as uterine artery ligation with normal 

fetal growth then a sudden reduction in placental blood flow and a variable mismatch 

between metabolic needs and nutrient delivery. They also suggest that there may be 

differences in the incidence and mechanism of hypoxia-induced apoptosis in the brains 

of males and females.  
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