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Abstract

Contrast-enhanced ultrasound (CEUS) permits the quantification and monitoring of adap-

tive tumor responses in the face of anti-angiogenic treatment, with the goal of informing tar-

geted therapy. However, conventional CEUS image analysis relies on mean signal intensity as

an estimate of tracer concentration in indicator-dilution modeling. This discounts additional

information that may be available from the first-order speckle statistics in a CEUS image. Het-

erogeneous vascular networks, typical of tumor-induced angiogenesis, lead to heterogeneous

contrast enhancement of the imaged tumor cross-section.

To address this, a linear (B-mode) processing approach was developed to quantify the

change in the first-order speckle statistics of B-mode cine loops due to the incursion of mi-

crobubbles. The technique, named the EDoF (effective degrees of freedom) method, was de-

veloped on tumor bearing mice (MDA-MB-231LN mammary fat pad inoculation) and evalu-

ated using nonlinear (two-pulse amplitude-modulated) contrast microbubble-specific images.

To improve the potential clinical applicability of the technique a second-generation compound

probability density function for the statistics of two-pulse amplitude modulated contrast-enhanced

ultrasound images was developed. The compound technique was tested in an antiangiogenic

drug trial (bevacizumab) on tumor bearing mice (MDA-MB-231LN), and evaluated with gold-

standard histology and contrast-enhanced X-ray computed tomography. The compound sta-

tistical model could more accurately discriminate anti-VEGF treated tumors from untreated

tumors than conventional CEUS image. The technique was then applied to a rapid patient-

derived xenograft (PDX) model of renal cell carcinoma (RCC) in the chorioallantoic membrane

(CAM) of chicken embryos. The ultimate goal of the PDX model is to screen RCC patients for

de novo sunitinib resistance.

The analysis of the first-order speckle statistics of contrast-enhanced ultrasound cine loops

provides more robust and reproducible estimates of tumor blood perfusion than conventional

image analysis. Theoretically this form of analysis could quantify perfusion heterogeneity

and provide estimates of vascular fractal dimension, but further work is required to determine

what physiological features influence these measures. Treatment sensitivity matrices, which

combine vascular measures from CEUS and power Doppler, may be suitable for screening of

de novo sunitinib resistance in patients diagnosed with renal cell carcinoma. Further studies
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are required to assess whether this protocol can be predictive of patient outcome.

Keywords: high-frequency ultrasound, contrast-enhanced ultrasound, speckle statistics, patient-
derived xenograft, breast cancer, renal cell carcinoma, image analysis, tumor heterogeneity,
anti-angiogenesis, chorioallantoic membrane
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Chapter 1

Introduction

1.1 Overview

Blood perfusion, a functional parameter that describes blood flow at the capillary level, reflects

the physiological and metabolic stresses experienced by tissue. It summarizes the adaptive

responses of angiogenesis, the growth of new blood vessels, which occurs both in the normal

tissue environment and under conditions of pathology. Such pathologies include tissue repair,

disease, and the progression of cancer. A measurement of blood perfusion that falls outside

of the normal range can be indicative of heart disease, stroke, tumor growth, or metastasis.

Blood perfusion is of interest in the field of oncology, as tumor-induced angiogenesis perturbs

the delicate balance of pro- and anti-angiogenic factors present in normal tissue. This leads to

chaotic, tortuous, and inefficient vascular beds that are characterized by structural, functional,

and temporal heterogeneity.

Contrast-enhanced ultrasound (CEUS) provides a means to monitor tumor perfusion and

quantify adaptive tumor responses in the face of anti-angiogenic treatment, with the goal of

informing targeted therapy. CEUS has several advantages over competing perfusion modali-

ties: it lacks ionizing radiation, has a high frame rate, low cost, and only requires a small dose

of contrast agent. However, conventional CEUS image analysis uses mean signal intensity as

an estimate of tracer mass in indicator-dilution modeling. This discounts additional informa-

tion that may be available from the first-order speckle statistics in a CEUS image. Heteroge-

neous vascular networks, typical of tumor-induced angiogenesis, should lead to heterogeneous

1
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contrast enhancement of the imaged tumor cross-section. An image analysis technique that

characterizes and quantifies these heterogeneities could prove to be useful for tumor vascular

characterization, and in the evaluation of anti-cancer therapies that target tumor vasculature.

This thesis presents and evaluates novel image analysis techniques to expand the utility of

contrast-enhanced ultrasound perfusion imaging. In this thesis, a B-mode processing approach

that quantifies the change in first-order speckle statistics due to the incursion of microbubbles

was developed in tumor-bearing mice and evaluated using nonlinear contrast enhancement. It

eliminates the need for a cumbersome image subtraction step in preclinical contrast-enhanced

imaging. To improve clinical applicability, a second-generation method for analyzing the first-

order speckle statistics of two-pulse amplitude-modulated CEUS images was developed using

an antiangiogenic drug trial on tumor bearing mice and evaluated with gold-standard histol-

ogy and contrast-enhanced X-ray computed tomography. This technique was then applied to

a clinically relevant drug trial on patient tumor fragments engrafted into the chorioallantoic

membrane (CAM) of the chicken embryo. This study used a front-line small molecule tyrosine

kinase inhibitor (sunitinib) on patient derived renal cell carcinoma xenografts as an antiangio-

genic agent, to predict patient specific drug resistance. The goal of all studies was to quantify

metrics of tumor blood perfusion and generate estimates of perfusion heterogeneity.

To provide some context for the ensuing chapters, this chapter first reviews the rationale for

imaging perfusion in oncology and briefly describes the most common perfusion modalities

used in the clinical and preclinical setting. As the focus of this thesis is on the development of

contrast-enhanced ultrasound image analysis, an overview of CEUS is included. The overview

will cover the composition of microbubble contrast agents, the acoustic response of microbub-

bles, microbubble specific imaging, and some common indicator dilution methods used in

CEUS. It will then briefly review ultrasound speckle statistics, and the common applications

of CEUS.

1.2 The Utility of Perfusion Imaging in Oncology

Broadly speaking, the term ‘cancer’ describes a group of genetic diseases that are characterized

by deregulated and uncontrolled cell division, unconstrained and invasive cell proliferation, and
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metastatic spread throughout the body [1]. It is a diverse group of diseases that exhibits a high

degree of genetic and phenotypic heterogeneity [2]. The causes of oncogenic transformation in

normal cells are multi-factorial and can include, but are not limited to, genetic predisposition,

environmental factors such as exposure to carcinogenic chemicals and/or ionizing radiation,

bacterial or viral infections, and random errors in DNA replication. Furthermore, cancerous

cells may be more susceptible to additional DNA damage due to a reduced ability to self-

regulate and repair. This, in turn, implies that the cells within a tumor can become progressively

more genetically diverse as the disease develops. This has wide reaching implications for

understanding the progression of the disease and in designing effective anti-cancer therapies.

Prevailing research states that, without a supporting vascular network, the size of a tumor

is limited to around 2 mm3 [3]. The metastatic spread of the disease will be restricted to im-

mediately adjacent tissues in the absence of blood vessels and lymphatics to provide transit

around the body [4]. Almost all known forms of cancer will release pro-angiogenic signaling

molecules to prompt the formation of a supporting vascular network [5]. Tumor-induced an-

giogenesis, then, has gained interest as a therapeutic target owing to its importance in cancer

development, its ubiquity in the tumorigenic environment, and the relative genetic homogene-

ity of endothelial cells relative to cancer cells.

Figure 1.1: Diagrammatic example of tumor-induced angiogenesis. Angiogenesis is induced
by hypoxic tumors (left panel), supports primary tumor growth (middle panel), and facilitates
metastatic spread (right panel).

However, conventional treatment response criteria, such as RECIST (Response Evalua-

tion Criteria In Solid Tumours - version 1.1 [6]), are insensitive to the early stage effects of a

successful anti-angiogenic therapy. Inhibition of the formation of tumor vasculature can even-

tually lead to reductions in tumor size, but these effects can take several months to manifest

themselves [7]. This poses a serious problem for clinical trials and preclinical models of anti-

angiogenic therapies. There is, therefore, a need for vascular specific imaging to evaluate the
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treatment efficacy of these types of therapy. Perfusion imaging is a functional imaging tech-

nique that provides biophysical estimates of the blood flow dynamics through tissues. These

techniques provide the framework for evaluation of anti-angiogenic treatments. The following

sections will discuss the unique characteristics of tumor blood vessels, the motivation for tar-

geting angiogenesis in the treatment of cancer, and surrogate measures of treatment efficacy as

measured by perfusion imaging.

1.2.1 Characteristics of Tumor Blood Vessels

Blood perfusion in normal tissues is supplied by an orderly, hierarchical, vascular network

that is regulated by metabolic demand - a network maintained by a balance of pro- and anti-

angiogenic molecular factors. Capillaries are consistently distributed to provide adequate oxy-

gen and nutrients to surrounding cells, with any hypoxic stresses leading to adaptive remodel-

ing of the network to meet demand [8].

Figure 1.2: Contrast-enhanced micro-CT image of a mouse kidney, showing an orderly branch-
ing network. More details concerning the experiment this image came from can be found in
Chapter 3 of this thesis. Image courtesy of Justin Tse.

Tumor vasculature, by contrast, is characterized by irregular structural topography and

functional heterogeneity. The rapid division of cancer cells, along with the accompanying
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metabolic stresses, results in a regional overexpression of pro-angiogenic factors that over-

powers the adaptive quality of controlled vascular remodeling [9]. A cancerous blood supply

is a disorganized mass of underdeveloped vessels, exhibiting flow pathways that are tortu-

ous and circuitous. The boundary between capillary, arteriole, and venule is unclear in these

networks [10], and the diameter and shape of blood vessels is inconsistent [11, 12]. Vessels

exhibit hyper-permeability due to their discontinuous endothelial lining and a lack of support-

ing smooth muscle [13]. The accumulation of fluids leaking from blood vessels leads to an

elevated interstitial fluid pressure [14, 15].

Figure 1.3: Diagram depicting a cut away view of a tumor with visible vasculature. The tumor
vasculature is structurally chaotic and disorganized.

These factors, in addition to flow resistance from irregular network geometry, combine

to greatly limit blood perfusion through tumor vasculature. These inefficient networks often

exhibit regions of hypoxia and sluggish flow, and are inadequate at supplying the tissue demand

of oxygen and nutrients. This functional heterogeneity has clinical consequences that may not

be immediately intuitive; for example, the efficacy of both radiotherapy [16] and chemotherapy

[17] is reduced in hypoxic regions. Anti-angiogenic therapy has undergone a paradigm shift

recently, with the focus of treatment switching from complete vascular elimination to instead

inducing vascular normalization. The next section highlights the rational for the focus of anti-

angiogenic therapy.
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1.2.2 Motivation for Targeted Angiogenic Therapy

In 1971, Judah Folkman pioneered the concept of anti-angiogenic therapy for solid tumors. He

observed that tumor tissues have abnormally high vascularization, that tumors can stimulate the

proliferation of endothelial cells, and that tumors will not grow beyond 2 mm3 in the absence of

angiogenesis [18, 19]. Thus the original motivation for targeting angiogenesis in solid tumors

was straightforward: vascular suppression through anti-angiogenic therapy could, in effect,

‘starve’ a tumor.

The development of anti-angiogenic drugs was spurred on by the discovery of vascular en-

dothelial growth factor-A (VEGF-A), a glycoprotein that is critical for inducing angiogenesis,

vasculogenesis, and endothelial cell growth. This protein also increases vascular permeability,

promotes cell migration, and can inhibit apoptosis. The observations that most tumors will

overexpress VEGF-A, and that selectively inhibiting VEGF-A will reduce tumor growth in

animal models, led to numerous applications of VEGF-A therapy in the clinic.

More recently, the notion of ‘vascular normalization’ via VEGF-A therapy has shifted the

motivation for anti-angiogenic therapy. Instead of ‘starving’ a tumor through excessive vascu-

lar inhibition, the goal is to ‘prune’ the inefficient and tortuous vessels in a tumor [20]. This

works synergistically with other anti-cancer therapies by improving drug delivery and relieving

tumor hypoxia. This is discussed in more detail in Section 1.2.3.

A final point when considering the clinical impact of anti-angiogenic therapy is that few

biomarkers exist to select patients that are considered good recipients for the treatment [21].

Thus it is almost always dosed in an unselected manner. This has had the consequence that the

use of anti-angiogenic agents has had little impact on patient survival and overall survival in

the clinic. A developing area of research is the use of surrogate markers of treatment efficacy

to select those patients that will respond at an early time point [22, 23]. One such candidate

is perfusion imaging, serving as an ‘imaging biomarker’, a topic that will be covered in Sec-

tion 1.2.4.

The motivation for the use of anti-angiogenic drugs in different therapy settings is discussed

below.
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Metastatic Setting

The motivation for the use of anti-angiogenic therapy in the metastatic setting closely follows

the initial idea that angiogenesis is a limiting step in the development of cancer. As tumors

require a vascular supply to grow, inhibiting angiogenesis could induce cancer dormancy, and

stop the spread of metastatic disease. So far, evaluating the clinical efficacy of anti-angiogenic

therapy for metastatic disease has been anything but straightforward. It has been established

that only certain types of cancer have metastases that respond to this therapy, and the mecha-

nism causing this inconsistency is unknown [24].

Specifically, metastatic renal cell carcinoma (mRCC) epitomizes successful anti-angiogenic

therapy. Four FDA-approved tyrosine kinase inhibitors that target VEGF-A (sunitinib, pa-

zopanib, sorafenib, and axitinib) have shown an improved progression free and overall sur-

vival for patients with mRCC [25–28]. The most common subtype of RCC is clear cell RCC

(ccRCC) [29], and 91% of clear cell RCC patients have a somatic inactivation of the von

Hippel-Lindau (VHL) tumor suppressor gene [30]. VHL is involved in hypoxia signaling and

cell metabolism homeostasis, making it a suitable target for anti-angiogenic therapy. Histol-

ogy from this subtype has a characteristically ‘clear’ cytoplasm due to the accumulation of

glycogen and fat deposits within ccRCC cells. Rarer subtypes, such as papillary RCC (named

for its ‘finger-like’ or papillae structures) and chromophobe RCC (which exhibits eosinophilic

cytoplasm) do not typically exhibit inactivation of VHL; thus, there is rarely a clinical benefit

of anti-angiogenic therapies for these subtypes.

A diagram depicting common therapeutic agents targeting the VHL pathway, adapted from

[31], is shown in Figure 1.4. There has also been clinical benefit in the application of anti-

angiogenic agents for the treatment of metastatic colorectal cancer [32], hepatocellular car-

cinoma [33], pancreatic neuroendocrine tumors [34], ovarian cancer [35], and non-small-cell

lung cancer [36].

In contrast, anti-angiogenic therapy has not been shown to improve patient survival for

cancers of the breast [37], prostate [38], pancreas [39], or in melanoma [40]. The history of

anti-angiogenic therapy for metastatic breast cancer (mBC) is particularly noteworthy. Beva-

cizumab, an anti-VEGF monoclonal antibody, was given accelerated approval for the treatment
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Figure 1.4: Schematic demonstrating the therapy targets for clear cell RCC. Anti-angiogenic
drugs are to the bottom and left of this network. *Not FDA approved for use in RCC.

of mBC by the FDA in 2008, based on the extremely promising results of the E2100 phase III

trial [41]. The E2100 phase III trial found that paclitaxel (a chemotherapeutic agent) plus

bevacizumab, versus paclitaxel alone, improved progression-free survival (PFS; 11.8 vs. 5.9

months) in patients with mBC but had no effect on overall survival (OS). Subsequent phase

III trials of bevacizumab combined with chemotherapy (AVADO [42], RIBBON-1 [43], and

RIBBON-2 [44]) found only very modest improvements in PFS, and no change in OS. This

led to the FDA withdrawing its approval of bevacizumab for the treatment of mBC in 2010,

due to the conclusion that these studies did not demonstrate that bevacizumab improved patient

survival.

Adjuvant Setting

Anti-angiogenic agents are administered after the surgical removal of a tumor (adjuvant ther-

apy) to prevent the growth of micro-metastasis, and to avoid the possibility of a local relapse.

Somewhat surprisingly, efficacy of anti-angiogenic agents for a specific cancer in the metastatic

setting does not translate into efficacy for that cancer in the adjuvant setting. For example, a

comparison between colorectal cancer patients that received chemotherapy plus bevacizumab

versus chemotherapy alone showed no increase in overall survival in the adjuvant setting [45],



1.2. The Utility of Perfusion Imaging in Oncology 9

a finding that contrasts with the clear clinical benefit of anti-angiogenic therapy for metastatic

colorectal cancer [32]. This disparity highlights the vast heterogeneity of cancerous disease:

the genotype, phenotype, and response to therapy in established metastatic disease can be very

different than those of micro-metastasis.

Neoadjuvant Setting

There are two main motivations for anti-angiogenic therapy prior to surgical removal (neoad-

juvant therapy): to cytoreduce a non-resectable lesion so that it can be safely excised, or to

downstage the disease in the hope of reducing the risk of both local relapse and/or metastasis.

The current recommended clinical practice for patients with initially unresectable colorectal

liver metastasis is preoperative chemotherapy [46], with evidence showing that bevacizumab

in combination with chemotherapy may provide a larger benefit [47, 48].

It is worth noting that the neoadjuvant setting most closely resembles what is being tested

in the majority of animal models of anti-angiogenic therapy.

1.2.3 Combination of Anti-Angiogenic Drugs with other Therapies

Tumor perfusion is inefficient, leading to regions of hypoxia and cellular acidosis. This mi-

croenvironment is known to accelerate tumor progression and confer resistance to chemother-

apy, radiotherapy, and immunotherapy [20]. From this we would predict that patients with

impaired and heterogeneous tumor perfusion will not respond well to conventional therapies.

Furthermore, targeting VEGF-A signaling has been shown to modify the vasculature in mouse

tumors, by pruning immature and leaky vessels, and by remodeling the remaining vasculature,

so that it more closely resembles normal vasculature. Thus, the reasoning goes, anti-angiogenic

therapy will be synergistic with other targeted therapies by inducing, at least transiently, a

state of vascular normalization that improves local drug delivery and efficacy. In the follow-

ing sections we will briefly overview the rationale for combining anti-angiogenic agents with

chemotherapeutics, radiotherapy, immunotherapy, and finally the potential survival benefit of

relieving hypoxic stress.
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Chemotherapy

The combination of anti-angiogenic agents with chemotherapy appears contradictory. In the

classical view, targeting VEGF will reduce the amount of active vasculature in the tumor and

lower the leakiness of blood vessels. Reduced vasculature should decrease the dosage of

chemotherapeutic agent to the tumor, and the now non-leaky vessels will prevent the agent

from leaving the interstitial space. Both of these factors should greatly reduce the dosage of

drug to tumor tissues.

What has been found, surprisingly, is that the opposite occurs: the combination of chemother-

apy with anti-angiogenic agents increases the dosage of chemotherapeutic agent to tumorous

tissue, and leads to improved patient outcomes. The inefficient organization and aberrant mor-

phology of tumor vasculature reduces drug delivery to the tumor mass [49]. Intra-tumoral drug

delivery is further worsened by the high interstitial fluid pressure within the tumor. Following

anti-angiogenic therapy tumor tissue undergoes a transient phase of vascular normalization,

whereby blood perfusion and drug delivery are improved.

Radiotherapy

Molecular oxygen has an extremely high electron affinity, making it a potent chemical ra-

diosensitizer of tissue. The absorption of ionizing radiation by oxygen leads to the production

of reactive oxygen species - a group of highly reactive DNA damaging molecules [50, 51]. Tu-

mor hypoxia limits tissue oxygen supply, thus reducing production of reactive oxygen species,

and decreases the therapeutic effectiveness of a given dose of radiation. The combination of

anti-angiogenic agents with radiotherapy improves the therapeutic effectiveness of radiation,

allowing for more healthy tissues to be spared, provided that the tumor becomes adequately

oxygenated.

Immunotherapy

The tumor microenvironment modulates immune response. Hypoxia, and cellular acidosis, can

alter the phenotype of circulating macrophages to be protumorigenic and immunosuppressive.

This microenvironment mitigates the efficiency of immune effector cells, and can suppress T
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lymphocyte activity. Low blood perfusion induced hypoxia can inhibit the ability of dendritic

cells to process tumor antigens, which prevents them from presenting tumor antigens to lym-

phocytes [52]. The judicious application of anti-angiogenic agents to alleviate hypoxia can turn

an immunosuppressive microenvironment into an immunosupportive one. This can allow for

a lower dose of immunotherapeutic drugs which would reduce clinical costs and the potential

for patient toxicity [53].

Vascular Normalization to Relieve Hypoxic Stress

RK Jain has put forward the hypothesis that increasing tumor blood flow, through the judicious

use of anti-angiogenic agents to normalize vasculature, may in of itself confer a survival ben-

efit to patients [54]. Hypoxia creates an abnormal microenvironment that is characterized by

cellular acidosis and immunosuppression. This in turn creates a selective survival pressure on

cancer cells that may increase their invasive and metastatic potential, can confer a resistance to

apoptosis, and reduces the effectiveness of systemic therapies. Although this is a relatively new

paradigm for cancer treatment, there is some evidence that increased tumor perfusion/vascular

normalization can improve survival of patients diagnosed with glioblastoma [55, 56].

1.2.4 Surrogate Measures of Treatment Efficacy

Ultimately, the goal of a therapy is to improve the overall survival (OS) and progression-free

survival (PFS) in the patient population. However, assessing treatment efficacy in clinical trials

via a significant increase in patient survival is both costly and time consuming. These trials

require a large patient population, can take years to complete, and have a high risk of patient

drop-out. Furthermore, patient survival does not consider pre-existing health conditions, nor

the cause(s) of death.

An alternative approach instead relies on one or more ‘biomarkers’ of therapy response

measured from a patient at an earlier stage of treatment. These biological markers are quan-

tifiable metrics that are indicative of the current disease state. For example, one of the most

widely used biomarkers of cancer treatment response is a decrease in the anatomical size of a

tumor. An established set of rules governing the assessment of this biomarker was codified in
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the RECIST criteria [6]. A substantial decrease in tumor burden, classified as partial and/or

complete response by RECIST, has been shown to be a good predictor of improved survival

for most forms of cancer [57].

However, conventional treatment response criteria, such as RECIST, are insensitive to the

early stage effects of a successful anti-angiogenic therapy. Anti-angiogenic therapy can eventu-

ally lead to reductions in tumor size, but these effects can take several months to manifest [7].

Instead, many researchers posit that perfusion imaging provides a more appropriate readout

for the evaluation of anti-angiogenic agents by offering biophysical estimates of the blood

flow dynamics through tissues. This hypothesis was supported by a recent study by Bjarnason

et. al. [23] which demonstrated that CEUS could inform the modification of sunitinib dosage

scheduling for patients with mRCC, leading to improvements of OS and PFS. A brief overview

of some commonly used perfusion imaging techniques is provided below, in Section 1.3.

1.3 Perfusion Imaging Techniques

There are several techniques available for perfusion imaging in both the clinical and preclin-

ical setting. Generally, these modalities rely on a vascular tracer to provide additional signal

from blood flow, and perfusion metrics are derived from indicator-dilution kinetics from a re-

gion of interest. Each competing modality represents a trade-off between spatial resolution,

temporal resolution, cost, specificity, and patient exposure to ionizing radiation. The modal-

ities discussed below are predominantly clinical imaging techniques that represent the most

widely used and studied methods of perfusion imaging. The modalities with dynamic con-

trast enhancement are analyzed using kinematic indicator modeling that closely resembles the

models used in CEUS. These techniques, therefore, represent the direct competitors for the

potential clinical translation of the analysis methods being developed for CEUS in this the-

sis. Ultrasound was selected over the other modalities due to its low relative cost, high spatial

and temporal resolution, and potential for high throughput. It was preferred over competing

pre-clinical optical techniques as those modalities have lower potential for clinical translation.
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1.3.1 Dynamic Contrast Enhanced X-ray Computed Tomography (DCE-

CT)

Computed tomography (CT) refers to a processing technique that combines projection informa-

tion, taken from multiple angles along a common axis of rotation, into cross-sectional images.

The most common form of tomography uses x-ray images, projections of the attenuation of

high energy photons through a subject, to produce high resolution anatomical images. Pho-

ton absorption, the main mechanism of image contrast, depends on the atomic number and

density of the tissue being imaged. Intravenous CT contrast agents, such as iodine, are high

atomic number agents. Dynamic contrast enhanced CT (DCE-CT) applies indicator dilution

techniques to the influx of iodine, and resulting radio-opacification, to yield perfusion metrics

from an imaged tissue. The increase in signal intensity is linearly dependent on the contrast

concentration; however, kinetic models must account for the freely diffusible nature of small

molecule agents [58]. This modality also suffers from a moderate to high radiation dosage to

the patient, and iodine contrast agents are potentially nephrotoxic [59].

1.3.2 Single-photon emission computed tomography (SPECT)

Single-photon emission computed tomography (SPECT) is a nuclear medicine tomographic

imaging technique that relies on the detection of intravenously injected radioisotopes to pro-

duce three-dimensional images of relative blood perfusion. SPECT tracers, for example Techne-

tium-99m (99mTc) or Thallium-201 (201Tl), continuously decay by releasing gamma-ray pho-

tons. These elements can be bound to a wide array of pharmaceuticals for different imaging

applications. Volumes are reconstructed via computed tomography using projection images of

gamma photon emission within the patient, giving a three-dimensional volume of the radio-

tracer distribution. Although SPECT has a relatively poor resolution (∼1 cm [60]), its low

cost and the large number of SPECT tracer labeled pharmaceuticals make it a widely-used

modality for myocardial perfusion imaging and functional brain imaging. In oncology, it is

commonly combined with x-ray computed tomography to produce a hybrid imaging modality

(SPECT/CT).
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1.3.3 Positron emission tomography (PET)

Positron emission tomography (PET), much like SPECT, is a functional imaging modality that

measures the spatial distribution of a radio-indicator. In this case positron-emitting radionu-

clides. The system indirectly measures the presence of PET tracers, such as 15O-water or
18F-FDG, by detecting the two gamma photons that result from positron-electron annihilation.

To satisfy the requirement of conservation of momentum, this matter-antimatter interaction re-

sults in the two gamma-ray photons being emitted at a ∼180-degree angle to each other. A

cylindrical gamma camera that surrounds the patient detects these two photons within a nar-

row time window and plots them along a line of coincidence. The coincidence of detection

reduces the ambiguity in three-dimensional reconstruction, leading to an improved resolution

over SPECT (PET resolution 2-3 mm [61]).

1.3.4 Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-

MRI)

Magnetic resonance imaging (MRI) exploits the precessional frequency of tissues, typically

targeting hydrogen atoms in water, which have been placed into a strong uniform magnetic field

(1.5-9 Tesla). An isotope with an uneven number of protons and/or neutrons has an intrinsic

magnetic moment and angular momentum. They will align their magnetic moments with the

direction of an external magnetic field, and begin to precess to conserve angular momentum.

The frequency of this precession, or Larmor frequency, depends on the strength of the external

field and the gyromagnetic ratio of the isotope. Energy can be transferred efficiently into, and

out of, the system with a radio-frequency (RF) pulse tuned to the Larmor frequency. Spatial

information (i.e. imaging data) is acquired with the addition of selection gradients that modify

the Larmor frequency in a predictable and locational manner. The sample is probed by exciting

tissue protons with an RF pulse and recording the magnetization as it undergoes relaxation.

Contrast agents, such as Magnevist, provide perfusion data by modifying the relaxation

rate of surrounding tissues. This manifests as a temporal change in the imaging intensity data

which, when coupled with an arterial input function and an appropriate kinetic model, can

produce estimates of blood perfusion and vascular leakiness in the region of interest.



1.3. Perfusion Imaging Techniques 15

1.3.5 Doppler Ultrasound

The term ultrasound refers to a frequency range of sound waves that is outside of the human

audible range (i.e. greater than 20 kHz). Medical ultrasound evolved as an imaging modality

from radar and sonar technology in the 1940s and 1950s - imaging data are produced from

reflected echoes from deep within tissues. The ratio of reflected versus transmitted energy will

depend on the degree of acoustic impedance mismatch at the tissue interface.

The Doppler effect describes a phenomenon of a predictable frequency shift in a reflected

sound wave, relative to the transmitted wave, when there is absolute motion between the trans-

ducer and the scattering object. Doppler ultrasound takes advantage of this frequency shift to

discriminate between echoes from moving red blood cells and echoes from solid tissues. The

magnitude and direction of the frequency shift corresponds to the magnitude and direction of

blood velocity, either toward or away from the transducer, and the power of the Doppler signal

depends on the number of red blood cells in the sampling volume. These two measures are

the basis for color- and power-Doppler ultrasound imaging, respectively. Both color Doppler

and power Doppler images typically consist of a color overlay on top of a B-mode image for

anatomical context. A color Doppler image maps the mean Doppler frequency to a red (away

from transducer) to blue (toward transducer) map, whereas a power Doppler image maps the to-

tal power of the Doppler signal to a red-yellow map. Power Doppler is preferentially used over

color Doppler for the purposes of perfusion imaging: the signal processing is more sensitive to

small vessels, can detect slower velocity, and is not affected by aliasing of high velocities.

1.3.6 Contrast Enhanced Ultrasound (CEUS)

Contrast-enhanced ultrasound is a perfusion imaging modality that relies on an intravenous

injection of a signal enhancing microbubble contrast agent. An in-depth description of this

perfusion imaging technique can be found in the following section.
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1.4 Overview of Contrast-Enhanced Ultrasound

Contrast-enhanced ultrasound detects signal from vasculature using micron diameter bubbles

(microbubbles) to greatly increase the acoustic backscatter from blood. This section overviews

some applications of CEUS, the nature and composition of microbubbles, a brief description of

microbubble response to acoustic radiation, forms of microbubble specific imaging and func-

tional imaging, and finally some common types of indicator-dilution models used in contrast-

enhanced ultrasound imaging.

1.4.1 Contrast-Enhanced Ultrasound Applications

The high contrast-to-tissue ratio of CEUS imaging, along with the varied response of microbub-

bles to acoustic waves, has led to a diverse array of clinical applications for this modality.

These applications are briefly discussed below, divided into the categories of echocardiogra-

phy, potential therapeutic applications, and the detection, diagnosis, and characterization of

solid tumors.

General Radiology

The use of microbubbles in general radiological examination can be divided into two broad

groups: the enhancement of ultrasound signal intensity from blood vessels, and the injection of

microbubbles into lumen to improve tissue delineation. Ambiguous Doppler examinations

can be salvaged with microbubble enhancement to improve diagnostic accuracy, so called

‘Doppler-rescue’ [62]. For example, transcranial Doppler signal is heavily attenuated while

traversing the skull and contrast enhancement improves the detection of flow in intracranial

arteries [63]. Enhancement is not limited to vascular imaging, as microbubbles have been pre-

viously used in the diagnosis of vesicourectic reflux by injection into the bladder [64], and to

test the patency of fallopian tubes via intrauterine injection [65].
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Echocardiography

Historically, the first reported use of microbubble contrast agent in ultrasound imaging was by

Gramiak and Shah for the enhancement of the aortic root in cardiology [66]. The addition of

microbubbles to the heart is still commonly performed in the clinic to make the tissue-blood

boundary clearer, thus improving the delineation of the endocardial border [67]. Properly

evaluating myocardial function is critical in the management of many heart pathologies, with

the addition of microbubble enhancement demonstrating tangible improvements in diagnostic

accuracy [68]. Ultrasound contrast agents have also been used to evaluate myocardial perfusion

[69, 70] and to directly measure cardiac output [71].

Imaging the Liver

Liver contrast imaging greatly improves the visibility of focal liver lesions such as metastatic

tumors and hepatocellular carcinoma [72–76]. Contrast-enhancement substantially increases

ultrasound’s sensitivity to metastatic disease in the liver, particularly for detecting lesions that

are under 1 cm in diameter [76]. Furthermore, the enhancement pattern of liver lesions can

lead to increased specificity in ultrasound liver imaging. Benign hemangiomas demonstrate a

characteristic peripheral enhancement pattern [77]. Many benign lesions show a late uptake

of microbubbles [78], with early enhancement being typical of the vascular shunting seen in

malignancies and cirrhosis [79, 80].

Therapeutic Applications

Microbubbles can aid in drug delivery through sonoporation and/or by acting as drug carrying

containers [67]. The structure of the contrast agent permits surface-ligand targeting of specific

regions of interest, an important factor when considering effective dose and systemic toxicity.

Microbubbles will cavitate in response to strong acoustic pressures, creating temporary non-

lethal perforations in cell membranes that permeabilize the endothelial lining in capillaries.

These now leaky blood vessels permit the diffusion of therapeutic agents, particularly macro-

molecules which are usually too large to pass through the intact endothelial lining [81].
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Detection, Diagnosis, and Characterization of Solid Tumors

CEUS is routinely used outside of North America for the detection and diagnosis of abdominal

lesions. The use of microbubbles has been shown to significantly improve the diagnostic ac-

curacy of solid tumors in the liver [82–86], kidney [87], prostate [88], bladder [89], and many

others [90]. The weight of evidence supporting the clinical benefit of CEUS in the diagno-

sis of liver lesions (see also Section 1.4.1) has led to the recent FDA approval of Lumason R©

(SonoVue) for liver imaging applications [91]. It has also seen off-label use in the evaluation of

anti-angiogenic treatment response for patients with metastatic renal cell carcinoma [92–94].

In this thesis, CEUS is used to extract perfusion indices from solid tumors via an intravas-

cular injection of microbubbles that enhances ultrasound backscatter from microvasculature.

These perfusion indices, which reflect the underlying physiology of the tumor vasculature, are

used to discriminate between treated and untreated cohorts in preclinical cancer models.

1.4.2 Composition of Microbubble Contrast Agents

Microbubble contrast agents are composed of a gas-filled core, typically a neutral heavy gas

(e.g. perfluorocarbons), encapsulated by a stabilizing shell. Shell materials can include phos-

pholipids, polysaccharides, or albumin and other proteins. The exact nature of the shell ma-

terial and encapsulated gas will dictate the microbubbles’ response to acoustic radiation. As

such, microbubbles are often engineered for specific imaging applications and optimized for

the frequency range and ultrasound system being used. Their development as an indicator went

through several phases of evolution, each step improving upon a desirable characteristic of the

shell-gas combination.

Zeroth generation: The earliest type of microbubbles used for clinical ultrasound image en-

hancement were formed spontaneously from the agitation of saline. This was first reported by

Gramiak and Shah for the enhancement of the aortic root in cardiology [66]. The image con-

trast was attributed to the high compressibility of the trapped gas leading to a large impedance

mismatch with the surrounding blood and tissues. The size distribution of these bubbles was

poorly controlled, which increased the risk of embolism. Furthermore, the lifetime of this

contrast agent was limited to a few seconds in circulation.
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First generation: The first manufactured microbubbles added a stabilizing shell to encap-

sulate atmospheric gases. For example, the Albunex R© (GE Healthcare Systems) contrast agent

used a manufacturing process that led to an air-filled albumin shell. This increased the imaging

lifetime of the agent. Albunex R© was the first microbubble contrast agent approved by Food and

Drug Administration (FDA) for clinical ultrasound imaging.

Second generation: The next step in microbubble engineering was to incorporate a heavy

gas, typically a fluorocarbon, to reduce the rate of gas loss across the shell membrane. This

further improved the lifetime of microbubbles in blood circulation. Examples of these agents

include OptisonTM (GE Healthcare Systems), which is a protein-shelled microsphere contain-

ing a fluorinated gas, and Definity R© (Lantheus Medical Imaging) which was the first agent to

use a phospholipid shell to contain a fluorocarbon gas. The pliable lipid shell of Definity R©

produced pronounced resonance effects of the microbubble in the face of ultrasound waves,

leading to new imaging schemes to improve the detection of the agent in tissues. The contrast

agent used in all studies presented in this thesis, Vevo MicromarkerTM, is a second-generation

agent.

1.4.3 Microbubble Response to Acoustic Radiation

Microbubbles behave as damped spring-mass systems in response to acoustic waves. As a

consequence they exhibit oscillatory standing waves at their resonant frequencies. The size

distribution of microbubbles that are most relevant for vascular perfusion (i.e. a diameter of

less than 5 µm to allow flow through capillaries) serendipitously exhibit strong resonances, and

larger scattering cross-sections, at medical ultrasound frequencies (5 MHz).

When attempting to optimize the transmit frequency of microbubble imaging, it can be

useful to investigate the scattering cross-section of the microbubble as a function of frequency

and bubble size. The scattering cross-section describes the ratio of the scattering power relative

to the incident ultrasound intensity; it is modeled as follows:

σs(r, f ) =
4πr2((

fr(r)
f

)2
− 1)

)2
+ δtot(r, f )2

, (1.1)

where f is the frequency, r is the resting state radius, fr(r) is the the undamped resonant fre-
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quency of the microbubble [95], and δtot(r, f ) is the total effect of damping due to a stabilizing

shell. This relationship is shown in Figure 1.5.

Figure 1.5: Microbubbles have the largest scattering cross-section at their resonant frequency.

Microbubbles have a variable response to acoustic energy that depends on the magnitude of

the incident pressure. The outer shell of microbubbles can be compromised when exposed to a

peak negative pressure that is beyond the Blake threshold. To explore a microbubble’s response

to incident pressure, it is useful to define a quantity referred to as the Mechanical Index (MI):

MI =
P̂neg(MPa)√
f req(MHz)

. (1.2)

This index is based on an analytical model of a gas bubble in a liquid medium during the

propagation of sound as the peak negative pressure approaches the Blake threshold [96]. It is

not based on first principles, and thus is usually reported as a unit-less quantity.

The following section will describe in more detail the differences in the acoustic response

that can be expected from microbubbles as they are exposed to variable intensities of acoustic

radiation.
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Figure 1.6: The backscatter intensity, and microbubble response, depend on the mechanical
index of imaging.
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Low Incident Pressure

At low acoustic energies (MI <0.1), microbubbles behave as linear oscillators. The radial

expansion and contraction of the microbubble is symmetric, leading to a scattering response

with few harmonic components. An example of the oscillatory response of a microbubble to

low acoustic pressure, and the corresponding scattered pulse from the microbubble, is shown

below in Figure 1.7. This figure depicts the simulated microbubble response as predicted by the

Hoff equation [97], and is meant for demonstrative purposes only. More sophisticated models,

such as the Marmottant equation [98], take the physical properties of a lipid monolayer coating

into account but are beyond the scope of this thesis.

Moderate Incident Pressure

Microbubbles respond in a nonlinear manner when exposed to moderate acoustic pressures

(0.1 <MI <0.3) that are around the resonant frequency of the contrast agent. The microbubble

begins to vibrate with an uneven degree of radial expansion and contraction, leading to a char-

acteristic nonlinear oscillatory response. Typically, the duration and degree of the expansion

phase will outweigh the contraction phase. This nonlinear response generates a radiated energy

spectrum with a wide range of harmonic and subharmonic components relative to the incident

ultrasound frequency [99]. An example of this nonlinear behavior is show in Figure 1.8.

High Incident Pressure

At high pressure (MI >0.5) microbubbles will undergo extreme oscillations that compromise

the outer shell and lead to the release of bubble contents. This response is referred to as iner-

tial cavitation - a rapid collapse of the bubble structure that produces a shockwave of acoustic

energy. The ‘burst’ or ‘flash’ of bubbles as they cavitate is readily detectible by an ultrasound

transducer, an early technique to produce blood specific image contrast. The intentional cavi-

tation of microbubbles is typically used in contrast-enhanced Doppler imaging (often referred

to as Doppler rescue), and in destruction-reperfusion protocols.
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Figure 1.7: Simulated microbubble response to low incident pressure. The microbubble’s ra-
dius oscillates in a linear manner, yielding a scattered pulse with few harmonic components.
This simulation was performed using Hoff’s BubbleSim package for a single 3 µm shelled
microbubble (shell thickness 4 nm) excited with a 2.5 cycle, 0.07 MPa pulse with a center
frequency of 2.25 MHz [97].
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Figure 1.8: Simulated microbubble response to moderate incident pressure. The microbub-
ble’s radius responds asymmetrically, resulting in a wide range of harmonic and subharmonic
components in the scattered echo. In this simulation, a single 3 µm shelled microbubble (shell
thickness 4 nm) is excited with a 2.5 cycle, 0.7 MPa pulse with a center frequency of 2.25 MHz.
The scattered pressure was calculated using Hoff’s Bubblesim package [97].
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1.4.4 Microbubble Specific Imaging

The unique acoustic properties of microbubbles lend themselves to contrast-specific forms of

imaging. In the following section, these techniques have been organized based on the physical

bubble response that each method is trying to exploit.

Digital Image Subtraction

The earliest form of microbubble imaging involved taking advantage of the high acoustic

impedance mismatch between air and tissue. This leads to a time-dependent increase in the

backscatter magnitude of B-mode ultrasound images as microbubbles gradually flow into the

imaging plane. Quantification is performed with baseline image subtraction, where the en-

hanced B-mode frames taken from every time point of the cine loop are subtracted from an

unenhanced reference image.

This technique is limited in its ability to produce meaningful vascular images [100]. There

are inherent difficulties with frame-to-frame registration, and this processing is highly suscep-

tible to tissue motion. As well, the nature of ultrasound image speckle lends variable texture

to the image, meaning that an individual B-mode pixel may not enhance in a way that could be

easily predicted. As such, other forms of microbubble signal processing are greatly preferred

over this technique, however, they may not be available to some pre-clinical scanners (e.g.

those with swept-scan transducers).

Second Harmonic Imaging

Harmonic imaging was one of the first techniques proposed to take advantage of the nonlinear

scattering of microbubbles in response to sound waves. Acoustic waves are transmitted cen-

tered at a fundamental frequency, f0, and the received signal is bandpass filtered at the second

harmonic, 2 f0. In principle, this should suppress all linear scattering from background tissues

but retain the nonlinear response from microbubbles.

This form of processing must contend with a trade-off between contrast and imaging res-

olution. Any overlap in transmit and receive bandwidth leads to ambiguity as to the origin of

the scattering. Reducing the transmit bandwidth, thereby limiting the overlap and increasing
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the system specificity, will compromise the axial resolution of the contrast image.

Figure 1.9: An example of a harmonic imaging bandwidth. The overlap of transmit and receive
bandwidths leads to reduced specificity in microbubble imaging.

Other limitations of second harmonic imaging include large transducer bandwidth require-

ments. A transmit signal centered at f0 with a frequency range f0±B/2 would require a receive

frequency response that spans 2 f0 ± B to capture all reflected second harmonics. This leads to

an exceptionally large passband of at least f0 − B/2 to 2 f0 + B. Transmission efficiency is low

when the transmit band is shifted close to the lower cutoff bound. Likewise, the shift of the

receive filter to the upper cut off of the transducer’s frequency response limits the sensitivity

to nonlinear signals. This is further compounded with the unfavorable frequency dependent

attenuation of the high-frequency (i.e. microbubble) components.

Multi-pulse Processing

Multi-pulse processing was developed to alleviate many of the shortcomings of second har-

monic imaging. Two or more pulses that differ in amplitude, phase, or both, are transmitted

along the same line of sight. The assumption is that tissues will respond in a linear manner
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to these modulations, allowing for a linear combination of the received echoes to suppress

the non-contrast background. Any nonlinear scattering, ideally originating only from the mi-

crobubble contrast agent, will remain after the cancellation and thus yield a high contrast-to-

tissue ratio.

Pulse Inversion

Pulse inversion is a multi-pulse contrast-specific imaging technique that involves transmission

of two pulses of equal amplitude but opposite phase in rapid succession [101]. The two scan

lines are then shifted to align in time and summed together. This should result in the complete

cancellation of tissue reflections, which are assumed to respond in a linear manner to the phase

difference, but retain the even harmonics of nonlinear reflectors such as microbubbles. Nonlin-

ear component separation [102], which assumes is that the received echo is a sum of nonlinear

components, can be used to make an arithmetic prediction of a pulsing scheme with a 180◦

phase shift, yielding a contrast-specific image constructed from the summation of pulses:

f (p(t)) + f (−p(t)) = 2a2 p(t)2 + 2a4 p(t)4 + . . . (1.3)

where p(t) is some arbitrary transmit waveform, f (p(t)) is the pulse distortion on the received

echo, and an are constants.

It should be noted that this retains all even harmonics of the transmitted pulse, with the

suppression of all odd harmonics. This is shown diagrammatically below, in Figure 1.10. The

limitations of this technique are similar to those found in second harmonic imaging, namely

that a large transducer bandwidth is required to receive the reflected odd harmonics.

Amplitude Modulation

Amplitude modulation is another pulsing scheme that is in some sense the complement of pulse

inversion: the second pulse has the same phase as the first, but it differs in amplitude [103]. The

received reflections from the lower amplitude pulse are linearly scaled to match the magnitude

of the higher amplitude pulse. The two pulses are then subtracted from one another. Any tissue

scattering should scale linearly with the amplitude change, so signals reflected from anatomical
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Figure 1.10: Diagrammatic example of wave form responses to pulse inversion processing.
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structures will be suppressed in the subtraction. Microbubble contrast agents respond in a

nonlinear fashion to the amplitude difference and thus are retained after the subtraction. A

simple example of a 1
2 amplitude pulsing scheme with scaled subtraction of the two pulses:

f (2p(t)) − 2 f (p(t)) = 2a2 p(t)2 + 6a3 p(t)3 + . . . (1.4)

This example is further described below, in Figure 1.11, using a depiction of the wave form

response to this processing.

It should be noted that Equation 1.4 demonstrates that amplitude modulation retains both

the even and odd harmonics of the signal, and that the coefficients of the higher order compo-

nents are of greater magnitude. Furthermore third order harmonic spectrum exhibits spectral

foldback onto the transmit bandwidth (i.e. a peak centered at f0) [104]. It is expected then that

amplitude modulated processing should outperform pulse inversion by circumventing the need

for a broad transducer bandwidth, and by retaining more of the contrast-specific signal after

processing.

Pulse Inverted Amplitude Modulation

Pulse inverted amplitude modulation is a combination of the above two multi-pulse schemes

[104]. Two pulses are fired in rapid succession along the same scan line that differ in both

amplitude and phase. An example is shown below for a half phase shifted second pulse that

is scaled by 1
2 amplitude, where the summation of these two pulses shows the most promising

result out of the three multi-pulse methods:

f (2p(t)) − 2 f (p(t)) = 2a2 p(t)2 + 6a3 p(t)3 + . . . (1.5)

This form of processing should yield the most contrast signal by retaining the odd har-

monics, as in amplitude modulation, with additional contribution from even harmonics. In

practice pulse inverted amplitude modulation tends to have statistically similar performance to

amplitude modulation [105].
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Figure 1.11: Diagrammatic example of wave form responses to amplitude modulation process-
ing.
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Burst Imaging

As the name implies, burst imaging relies on the intentional cavitation of microbubbles within

the imaging plane to enhance signal from vasculature. In current practice this is typically

performed to salvage ambiguous Doppler examinations, a technique referred to as ‘Doppler

Rescue’ [62]. The principle is straightforward, the shockwave released during the cavitation

of microbubbles leads to high amplitude reflected echoes that are also temporally decorrelated.

Some limitations of this technique include acoustic shadowing, flash artefacts, signal satura-

tion, and the transient nature of the enhancement.

1.4.5 Indicator Dilution Theory

Indicator dilution methods work on the assumption that the kinematics of an imaged intravascu-

lar tracer should reflect the physiology of local blood circulation. Dispersion of the indicator,

through branching vascular architecture, Brownian motion, or turbulence, will lead to tracer

particles traversing the imaging plane at different time points. As such, the indicator dilution

curve is often interpreted as the probability density function of the indicator transit times of

the microvasculature. Relating the dynamics of indicator dilution to physiological features

relies on several assumptions for both model-free perfusion metrics, as well as model-based

hemodynamic indices.

In CEUS imaging, the instantaneous microbubble concentration, or mass of indicator, is

unknown. Instead, analysis is performed on the backscatter intensity I(t) of the contrast signal

with the assumption that there is a linear relationship between the number of microbubbles in

the imaging plane and the intensity [106]. This means that all perfusion indices are relative

measures of blood kinematics. The Stewart-Hamilton relations [107] provide estimates of the

volumetric blood flow rate (F) and the blood volume (V), with no assumption on the shape of

the indicator-dilution curve:

F = C · (AUC)−1 (1.6)

V = F · MTT (1.7)
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where C is the amount of indicator in the bolus injection, AUC is the area under the indicator-

dilution curve, and MTT is the mean transit time through the imaging cross-section. To ensure

that different curves can be directly compared, the amount and concentration of the injected

microbubble solution (i.e. C) must be kept constant.

There are two main techniques for supplying microbubbles (the tracer) in CEUS imaging.

The first is an intravenous injection of a bolus of microbubbles, equivalent to the conventional

dosing techniques of contrast-enhanced CT or contrast-enhanced MRI. The second technique,

referred to as destruction reperfusion imaging [69], is unique to CEUS. Destruction-reperfusion

involves the use of temporary high-energy acoustic waves to ‘burst’ all microbubbles within the

imaging volume. This creates what is effectively a negative bolus of indicator. Each technique

has its own advantages and disadvantages. These two methods require different kinematic

models to capture and explain their time-intensity characteristics.

1.4.6 Common Kinematic Models for Bolus Enhancement

Bolus enhancement describes the technique where a large amount of indicator is injected ‘in-

stantaneously’ into the venous system, producing a delta function for the system input. It is

much simpler to implement than destruction-reperfusion techniques as it avoids the complex-

ities involved with constant infusion, such as the set-up of catheterization, surgical tubing,

controlled constant flow rates, and agitation of the indicator to maintain a constant injection

concentration. Also, a single bolus injection requires less total indicator and set-up time than

constant infusion.

However, it has several limitations that reduce its applicability to quantitative imaging. A

true bolus injection is not physiologically plausible, especially when considering the small

time scale of contrast-ultrasound imaging. The path of indicator though the circulatory system

prior to entering the imaging plane convolves the delta input with a more complicated function,

representing cardio-pulmonary transit, that is unknown (see Figure 1.12). This greatly reduces

the reproducibility of the technique, and limits the physiological interpretation of indicator

dilution metrics. Furthermore, repeated bolus imaging of the same imaging ROI requires full

clearance of the indicator, a process that can take hours.

Despite the above limitations bolus imaging is still useful for clinical and pre-clinical imag-
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Figure 1.12: Diagrammatic example of bolus injection. The initial delta function becomes
spread out by transit through the circulatory system prior to entering the imaging plane.

ing. It is also the more popular technique for clinical contrast agent administration. The rest

of this section is a brief description of the indicator dilution models commonly used in bolus

CEUS imaging, adapted from [108]. This thesis uses the Gamma Variate Function in Chapter 2,

and the Diffusion with Drift Model in Chapter 3.

Lognormal Function

The lognormal distribution is a widely used density function describing several phenomenon

in biological sciences [109, 110]. The application of the lognormal function to biological

phenomenon is usually an empirical fit with little physiological justification, but for vascular

networks the lognormal distribution is drawn readily if it is assumed that an arbitrary vascular

tree will exhibit a fractal branching geometry [111]. The lognormal indicator dilution model,

first introduced to CEUS by [112], is as follows:

I(t) =
AUC

√
2πσ(t − t0)

e−([ln(t−t0)−µ]2)/(2σ2) + I0 (1.8)

where the parameters µ and σ are the mean and standard deviation of the random variable’s

logarithm. The two constants t0 and I0 are time and intensity offsets, respectively, to fit ex-
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perimental data to the assumptions of the theoretical model. The time offset represents the

estimated bolus arrival time; this value can be set to zero by truncating the data. The sig-

nal intensity offset is the baseline signal intensity caused by acquisition noise and incomplete

cancellation of the tissue signal.

Gamma Variate Function

The gamma variate probability density function arises from an extension of the Erlang distri-

bution. The assumption of the model is that blood flow is comprised of n homogeneous mixing

chambers of equal volume that are connected in series [113]. Blood, or indicator, flow is uni-

directional from one compartment to the next, with each compartment having only one input

and one output. For a one compartment system, this model simplifies to a mono-exponential

wash-out. If the constraint on an integer number of compartments is relaxed, then the gamma

variate function can be extracted [114]:

I(t) =
AUC

βv
αv+1Γ(αv + 1)

(t − t0)αve−(t−t0)/βv + I0 (1.9)

where αv ≡ n − 1, βv = V
nF is the time constant of a single compartment, and Γ(x) = (x − 1)!.

The gamma variate model is widely used in CEUS, and other perfusion modalities, owing to

its simplicity relative to other indicator dilution models. However, a criticism of the standard

gamma variate formulation is that the relationship between curve shape and the governing

parameters is unintuitive. Thus, the simplified gamma variate function was introduced as a

reformulation of the standard gamma variate function where there is no coupling between the

parameters [115]:

I(t) = Imaxt′αveαv(1−t′) + I0. (1.10)

where αv is a curve shape parameter, Imax is the peak signal intensity, Tmax is the time point

when I(t) = Imax, and t′ = t/Tmax.
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Diffusion with Drift Model

The diffusion with drift model considers the transit of indicator to be dependent on both diffu-

sion and convection:

∂C(x, t))
∂t

= D
∂2C(x, t))
∂x2 − v

∂C(x, t))
∂x

, (1.11)

where C(x, t) is the concentration of indicator at location x and time t, D is a coefficient of effec-

tive longitudinal diffusion, and v is the blood velocity. The parameter D is an umbrella variable

that represents the contributions of many unknown physical mechanisms (e.g. turbulent blood

flow, vascular bed topography, etc.).

Equation 1.11 was solved [116] for an impulse bolus injection, with no special boundary

conditions at the outlet, to obtain the local density random walk model (LDRW):

I(t) = AUC
(
eλ

µ

) √
µ

t − t0

λ

2π
exp

[
−
λ

2

(
µ

t − t0
+

t − t0

µ

)]
+ I0 (1.12)

where µ is the mean transit time of indicator, λ is inversely proportional to the skewness of the

curve, t0 is a time delay before wash-in occurs, and I0 is an intensity offset.

The Lagged Normal Function

The first group to propose the lagged normal function as an indicator dilution model [117]

considered the idealized case where a single large artery flows into a capillary bed. The large

vessel was characterized by a Gaussian dispersion of tracer transit times, and the capillary bed

was a homogenous mixing chamber characterized by an exponential function. Mathematically,

the model is a convolution of a Gaussian density function, f (τ), with one or more exponential

density functions, g(t − τ):

I(t) =

∫ t

−∞

f (τ)g(t − τ)dτ (1.13)

where the density functions are defined below:
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f (t) =
1

√
2πσ2

e−(t−µ)2/(2σ2), −∞ < t < ∞ (1.14)

g(t) = λe−λt, t ≥ 0 (1.15)

The compartment represented by the Gaussian distribution has a MTT of µ, and a transit time

variance of σ2. The mixing compartment only has a rate constant parameter, λ. It has been

demonstrated [118] that the lagged-normal indicator-dilution model can be represented by:

I(t) =
AUC

2
K[1 + er f (L)] + I0 (1.16)

where er f () is the error function, and

K = λexp[−λt + λµ +
1
2
λ2σ2], L =

t − µ − λσ2

(2σ2)1/2 (1.17)

Comparison of Indicator-dilution Models for Bolus CEUS Imaging

The differences between the models can be roughly summarized by the characteristics of the

initial wash-in phase and the shape of the curve tail during wash-out (see Figure 1.13). The

general consensus is that the local density random walk model has superior fitting performance

for bolus wash-in images [108].

1.4.7 Common Kinematic Models for Destruction Reperfusion

The observation that microbubbles will cavitate under high acoustic pressures led to the de-

velopment of a novel method to quantify blood perfusion, known as destruction-reperfusion,

or disruption-replenishment. This technique, introduced by Wei et al. in 1998 [69], is unique

to contrast-enhanced ultrasound. Instead of relying on an intravenous bolus injection of con-

trast agent washing into the imaging plane, destruction-reperfusion uses a constant infusion of

microbubbles into systemic circulation and implements a high-energy ultrasound pulse to in-

duce the complete destruction of all indicator within an acoustic window. This creates what is
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Figure 1.13: Example of the four indicator dilution models fitted to the same raw dataset. The
raw data points were synthetically produced by adding random noise to a lognormal wash-in
curve.
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effectively a ‘negative’ bolus for indicator-dilution analysis. A diagram depicting destruction-

reperfusion can be found in Figure 1.14.

This technique has several advantages over conventional tracer-based methods, particu-

larly that the input kinetics into the indicator-dilution model are greatly simplified and that

the technique is repeatable either within the same imaging plane (to gauge measurement er-

ror and reproducibility) or across multiple imaging planes in the organ of interest (to give a

more global measurement of perfusion). In bolus imaging, the delta function of an instanta-

neous injection is first convolved by an unknown density function representing the vasculature

of cardio-pulmonary passage before entering the imaging plane (Figure 1.12). Destruction-

reperfusion imaging, however, only depends on the blood flow of vasculature that is adjacent

to the imaging plane (Figure 1.14).

Figure 1.14: Illustrative representation of destruction-reperfusion imaging. Microbubbles are
administered via a constant infusion, yielding a steady-state of indicator transit (panel A). In
(B) a high-energy ultrasound pulse bursts all of the microbubbles in the imaging plane. The
contrast agent is then allowed to reperfuse into the vasculature in (C).

The rest of this section introduces some of the common indicator-dilution models used to

quantify perfusion data acquired with destruction-reperfusion techniques. The simplified in-

put kinetics, relative to bolus imaging, has allowed for the inclusion of ultrasound acquisition

parameters in the more complex destruction-reperfusion models. This, in turn, has led to im-

proved perfusion quantification accuracy and repeatability over conventional bolus techniques.
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This thesis uses the mono-exponential kinematic model to characterize destruction-reperfusion

cine loops in Chapters 4 and 5. This model was selected because the kinematics of the statisti-

cal parameters are difficult to predict, and it’s currently unclear how ultrasound beam geometry

affects the time course of the speckle model.

Mono-exponential Kinematic Model

The most commonly used destruction-reperfusion model is a mono-exponential fit, proposed

by Wei et al. [69], that represents microbubble circulation as a perfect mixing chamber of blood

in tissue.

I(t) = Imax(1 − e−λt) (1.18)

where the maximum signal intensity, Imax, is interpreted as the relative blood volume and the

parameter λ is the mean flow velocity in the imaging region of interest. The product Imax × λ,

equivalent to the slope at time zero, is an estimate of the flow rate.

This model’s popularity is owed primarily to its simplicity and the ease and robustness of

fitting the parameters to the model. However, its major criticisms are that it is not a realistic

model of tissue perfusion and the reproducibility of the parameters is low.

Krix’s Multivessel Model

In 2003 Krix et al. proposed a multivessel model [119], based on a three-dimensional distribu-

tion of vessel velocities and blood flow angles, to address the concerns raised about the physio-

logical interpretation of a mono-exponential fit. The multivessel model is a piecewise-defined

function, comprised of two sub-functions applied with an interval boundary at the two-thirds

maximum intensity time-point. The initial phase of reperfusion is modeled by a linear equation

with a slope mkrix:

mkrix =
I2/3max

t2/3
(1.19)

where t2/3 is the time at which I = (2/3)Imax. The mean velocity in the model is calculated as:
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v̄ = d ·
mkrix

I2/3max
(1.20)

where d is the width of the ultrasound beam in the elevation plane. After the two-thirds intensity

time-point, the intensity signal is modeled as:

I(t) = Imax ·

(
1 −

d2

3(v̄ · t)2

)
(1.21)

Arditi’s Perfusion Model

In 2006 Arditi et al. [120] developed one of the first perfusion models that considers the influ-

ence of ultrasound acquisition in addition to a realistic microvascular model. The authors chose

a Gaussian function as a transmit/receive sensitivity distribution and a lognormal distribution

to model blood flow. The Arditi perfusion model is as follows:

I(t) = Imax

∫ ∞

0
PD(τ) · per f

(
1.94

KDe

2τ
(t − τ)

)
dτ (1.22)

where PD is a probability density function of flow transit times, K is a transmit-receive param-

eter, De is the extent of microbubble destruction in the elevational direction, τ is flow transit

time, and per f is a function defined as:

per f (q) = 0.5 · (1 + er f (q)) (1.23)

The distribution of transit times was assumed to follow a lognormal probability density func-

tion:

PD(τ) =
1

√
2πστ

e−([ln(τ)−µ]2)/(2σ2) (1.24)

where µ and σ2 are the mean and variance of the distribution of the natural logarithm of transit

times.
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Hudson’s Lognormal Perfusion Model

Much like the above Arditi model, Hudson’s perfusion model also accounts for ultrasound

beam geometry in addition to a physiologically plausible model of blood perfusion [121]. It

is a generalized model that is composed of two independent functions, an ‘ultrasound beam’

component B(y, z) and a ‘blood flow’ component F(z, t). The model is outlined below:

I(t) =

∫
V

B(y, z) · F(z, t)dV (1.25)

where the z-coordinate is distance in the elevational direction and the y-coordinate is imaging

depth. The main differences from the Arditi model are the ability to account for the non-

uniformity of microbubble destruction and sensitivity in the ultrasound beam geometry, and

the distinction between the boundaries of microbubble destruction and microbubble detection.

Furthermore, the beam geometry is modeled as a sinc2 function, as opposed to a Gaussian

distribution:

B(y, z) = sinc2
(

2z
BW(y)

−
2BS (y) + BW(y)

BW(y)

)
· Π(y, z) (1.26)

where BW(y) is a ‘beam width’ function representing the elevational sampling size at some

imaging depth ‘y’, BS (y) is a ‘beam separation’ function to account for the difference between

the boundaries of microbubble destruction and detection, and Π(y, z) is a rectangular window.

The ‘blood flow’ component is modeled as a lognormal distribution of flow velocities:

F(z, t) =
AC

2
· er f c

 ln(v) − µ f

σ f
√

2

 (1.27)

where AC is the total vascular cross-section, v is velocity, er f c is the complementary error

function, and µ f and σ f are the mean and standard deviation of the natural logarithms of

velocity, respectively.

Comparison of Models for Destruction-Reperfusion CEUS Imaging

Each of the above destruction-reperfusion models represent a trade-off between ease of imple-

mentation and power of physiological interpretation. The mono-exponential fit is the simplest
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model, one that will fit practically any dataset, but has the worst reproducibility and poorly

represents vessel physiology. The models that account for ultrasound beam geometry more

precisely capture the sigmodal wash-in shape of indicator, and exhibit superior reproducibility

and physiological interpretation, but are often prohibitively complicated to implement in most

clinical settings. The differences between wash-in shape captured by the model can be seen in

Figure 1.15.

Figure 1.15: Example of the four destruction-reperfusion models fitted to the same raw dataset.
The raw data points were synthetically produced by adding random noise to a monoexponential
wash-in curve.

1.5 Overview of Speckle Statistics

Speckle is a signal intensity pattern that manifests in all coherent imaging techniques including,

but not limited to, confocal laser scanning microscopy, radar, optical coherence tomography,

and medical ultrasound. This section concerns specifically the statistical nature and physical

interpretations of speckle in acoustic imaging for medical ultrasound, but can be generalized

to most forms of speckle phenomena.

The substructure of almost all acoustically scattering materials consists of a collection of

randomly distributed sub-resolution scatterers. Ultrasound signals received from these scat-

tering materials will consist of many coherent wave components, each reflected off a different

sub-resolution scatterer. The result is a granular or mottled intensity pattern to the image due to

the interference of the randomly phased coherent wave components. The position and magni-

tude of an individual speckle cell is unpredictable a priori, however the speckle texture follows

a well-defined probability density function.
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To define these distributions, and the situations in which they arise, we must first intro-

duce phasors (Equation 1.28) a complex number representing the amplitude and phase of a

sinusoidal wave.

ae± j(ωt+φ) = a cos(ωt + φ) ± j a sin(ωt + φ) (1.28)

We can simplify this notation by considering only the scattering of a single frequency,

removing the need for the inclusion of the ω component, so that the phasor notation becomes

ae jφ. A monotone wave disturbance, for example the scattering of an incident sound wave by

an individual sub-resolution scatterer, can be represented using this phasor notation. Thus, the

result of ultrasound scattering from many small independent scatterers is the complex addition

of many small independent phasors - a random phasor sum. This random phasor sum can be

conceptualized as a random walk on the complex plane.

In the following sections, we will consider some commonly encountered distributions of

scatterers, along with their corresponding speckle probability density functions. This thesis

builds upon the models presented here, which describe the statistics of B-mode images, and

applies them to scattering from CEUS cine loops. In the context of this thesis, the backscatter

signal intensity of microbubbles flowing through vasculature is seen as roughly analogous to

that arising from randomly distributed sub-resolution scatterers at a high concentration. We

will first consider the case of fully developed speckle.

1.5.1 Fully Developed Speckle

No Coherent Component (Rayleigh)

The derivation in this section is taken from [122], which first considered the case involving

many scatterers with no periodicity in their location (coherent signal). We assume that there are

a large number of scatterers per resolution cell, that the medium is homogeneous, the scatterers

are randomly distributed, and that the region being imaged is distant from the transducer of the

ultrasound system. From this we can state that the amplitude and phase of each elementary

phasor (those reflected from a sub-resolution scatterer) are statistically independent from one

another. The signal from this homogenous material is then a sum of N complex phasors [123,
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124], with the kth phasor having a random length αk/
√

N and random phase φk.

ae jφ =
1
√

N

N∑
k=1

αke jφk (1.29)

This random phasor sum can be conceptualized as a random walk on the imaginary plane,

originating from the origin. We further assume that the lengths αk are identically distributed

for all k, and that the phases φk are uniformly distributed on (−π, π).

By the central limit theorem, as N → ∞ the probability density functions of the real, r,

and imaginary, i, components are Gaussian. We’ve also assumed that the real and imaginary

components are uncorrelated and statistically independent. Therefore, the joint probability

density function of the random phasor sum is the two-dimensional Gaussian:

P(r, i | σ2) =
1

2πσ2 e−
(

r2+i2

2σ2

)
(1.30)

The probability density function of the length of the random phasor sum a =
√

r2 + i2,

which is equivalent to the signal magnitude measured by an ultrasound transducer, is the

Rayleigh distribution:

P(a | σR) =
a
σR

2 e
− a2

2σR2 , a ≥ 0 (1.31)

where a is the echo amplitude and σR is the scale parameter of the distribution.

1.5.2 Non-Rayleigh Speckle

No Coherent Component (K-Distribution)

We will now consider the case where either the number of scatterers per resolution cell is low,

or the scattering cross-sections of the scatterers are different from one another, or both. This

invalidates the assumption of a large number of independent identically distributed scatterers in

the medium. The echo envelope from a variable density of random scatterers, with no coherent

component to the signal, has been shown to follow a K-distribution [125, 126]:
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Figure 1.16: Graph of the Rayleigh probability density function, which is fully defined by
single scaling parameter. The signal-to-noise ratio (SNR) of Rayleigh-distributed speckle will
be approximately 1.91. SNR is calculated from the ratio of ā/σR, which is constant in the
Rayleigh distribution.

P(a|M, σsc
2) =

4aM

(2σsc
2)

M+1
2 Γ(M)

KM−1

√ 2
σsc

2 a
 ,M > 0, σsc > 0 (1.32)

where Kz is the modified Bessel function of the second kind with order z, Γ(z) is the gamma

function, a is echo amplitude, M is a parameter representing the effective density of the scatter-

ers, and σsc represents the effective cross section of the scatterers. When the scatterer density

M → ∞ the K-distribution becomes the Rayleigh distribution.

This model was first applied to ultrasound imaging by Shankar et al. [127] where the param-

eter M was viewed as the density of scatterers (i.e. the number of scatterers per resolution

cell) multiplied by a coefficient that depends on the scanning parameters, geometry, and the

backscatter coefficient statistics.

Coherent Component (Homodyned K-Distribution)

The case of a variable effective density of scatterers with a coherent signal component (i.e.

periodically located scatterers) can be accounted for using the homodyned K-distribution [126,
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128]. This probability density function does not have a closed form expression, so it is repre-

sented in terms of the improper integral:

P(a|M, sc, σe) = a
∫ ∞

0
xI0(scx)I0(ax)

(
1 +

x2σe
2

2M

)−M

dx (1.33)

where I0(z) is the modified Bessel function of the first kind with order zero, a is echo amplitude,

sc
2 is the coherent signal energy, σe

2 is the diffuse signal energy, and M is the effective density

of the scatterers.

The K-distribution is a special case of the homodyned K-distribution (when sc = 0). When

the effective density of scatterers M approaches infinity the homodyned K-distribution be-

comes the Rician distribution [123, 124]. Equivalently, if there is no coherent component and a

very high number of effective scatterers per resolution cell, then the homodyned K-distribution

approaches the Rayleigh distribution.

The homodyned K-distribution is a three-parameter compound representation of a Rician

distribution (2 parameters) modulated by a gamma distribution (1 parameter). Despite repre-

senting a wide range of scattering conditions, the use of this distribution to describe speckle

is limited, owing to its complex analytic formulation and the computational difficulty in gen-

erating estimates of the governing parameters. This limitation lead to the introduction of the

Nakagami distribution as a simplified approximation to the homodyned K-distribution for ul-

trasound speckle [129].

Approximation to the Homodyned K-distribution (Nakagami)

The Nakagami distribution is a relatively new distribution, being formulated in 1960 as a model

for fading in long-distance high-frequency radio wave propagation [130]. The Nakagami dis-

tribution has been applied to many wave related phenomena including medical ultrasound,

wireless communication, and meteorology. It was introduced as an empirical model of ul-

trasound speckle by Shankar [129] with the justification that it approximates the homodyned

K-distribution. It is currently the most commonly used model for ultrasonic tissue characteri-

zation [131]. The Nakagami distribution has the following probability density function:
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f (|s|; m,Ω) =
2mm

Γ(m)Ωm |s|
2m−1e−

m
Ω
|s|2 , (1.34)

where the shape parameter, m, and the scale parameter, Ω, can be estimated from the moments

of the envelope:

m =
E2[a2]

Var[a2]
, Ω = E[a2] (1.35)

The shape parameter m was found to be able to separate different scattering conditions,

with an m < 0.5 representing a low scatterer density, the density function is pre-Rayleigh for

0.5 < m < 1, Rayleigh for m = 1, and Rician for m > 1. In the absence of regularly spaced

scatterers, m can be thought of as a clustering parameter that increases with increasing scatterer

density. The scale parameter Ω is a measure of the average power.

1.6 Challenges in Contrast Enhanced Ultrasound

1.6.1 Frame-to-frame Variability due to Subject Motion can mask Con-

trast Perfusion

Motion artifacts (respiratory motion, subject movement, tissue deformation) lead to erratic mi-

crobubble sampling that alters the shape of the wash-in curve and interferes with the ability

to extract perfusion parameters and quantify blood flow [132]. There are a number of motion

correction algorithms that have been successfully applied to CEUS cine loops to account for

in-plane tissue rotation and translation [132, 133]. However, out-of-plane motion produces un-

predictable tissue sampling that is often impossible to correct for with two-dimensional imag-

ing.

1.6.2 Preclinical CEUS Processing Techniques can be Highly Susceptible

to Motion Artifacts

A frequently used form of CEUS processing in the preclinical setting is digital image subtrac-

tion, where a baseline image is formed by averaging a short cine loop of unenhanced frames.
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This baseline image is then subtracted from all subsequent enhanced frames to reveal regions

of contrast infiltration. Unfortunately, this processing is highly susceptible to registration errors

and motion artifacts [134], which lead to reduced contrast-to-tissue ratios [135] in small ani-

mal imaging. Chapter 2 of this thesis is focused on developing a new technique for preclinical

B-mode CEUS quantification that does not rely on an image subtraction step, as many preclin-

ical scanners do not have access to the multi-pulse ‘contrast-specific’ techniques outlined in

Section 1.4.4.

1.6.3 CEUS uses 2-D Sampling to Measure Perfusion in a 3-D Vascular

Network

The most common current CEUS practice involves the measurement of an indicator-dilution

curve through a 2-D cross-section of the organ or tumor of interest. Two-dimensional sampling

of a 3-D vascular network may not reflect the overall physiology within the organ, particularly

in heterogeneous vasculature, and is susceptible to bias in the selection of the imaging plane

[136, 137]. This may negatively impact both the accuracy and reproducibility of perfusion

indices drawn using CEUS as the perfusion indices will depend on the variable transducer

placement and tissue movement. This challenge is most pronounced in longitudinal studies.

1.6.4 The Relationship between Microbubble Concentration and Con-

trast Signal is Complex and Multifactorial

The received echo intensity from a CEUS acquisition depends on an interplay of microbubble

specific components (microbubble concentration, size distribution, shell composition, and gas

contents), ultrasound acquisition and transmission settings (transmit/receive frequency, trans-

mit pressure, receiver gain, and frame rate), and underlying physiology (nonlinear propaga-

tion, tissue attenuation, blood flow, volume, and perfusion). All of these factors undermine the

method’s reproducibility and ability to measure the physiology of interest [134, 138].
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1.6.5 Contrast Perfusion in Heterogeneous Vascular Networks (e.g. tu-

mors) may be Poorly Represented by Point Estimates of Mean Con-

trast Intensity

The conventional technique for CEUS perfusion quantification involves fitting an indicator-

dilution model to point estimates of the mean contrast signal intensity over time. These esti-

mates are taken from an ROI that surrounds the cross-section of the organ/tumor of interest.

This discounts additional perfusion information that may be available from the temporal, and

spatial, enhancement heterogeneity that occurs during indicator wash-in. Several groups have

applied additional image processing and analysis to CEUS cine loops to assess tumor perfusion

heterogeneity, as discussed in Chapter 3 of this thesis.

1.6.6 Signal Processing can Alter Indicator-Dilution Curve Shape and

Interpretation

The indicator-dilution curve shape, and corresponding perfusion indices, depend on the sig-

nal processing that occurs to convert microbubble acoustic intensity into image pixel values.

In conventional CEUS processing, this is done under the assumption that there is a linear

relationship between the number of microbubbles in the imaging plane and the backscatter in-

tensity [106]. Even when this assumption holds true, intensity scaled perfusion indices, such

as peak intensity and area-under-curve, will depend on the dynamic range and gain of scan

conversion [139]. This issue is exacerbated if images undergo log-compression.

This challenge is of particular interest for this thesis as we are attempting to develop new

variables, extracted via CEUS image analysis, to plot onto indicator dilution curves.

1.7 Hypothesis and Objectives

The overall hypotheses of this thesis are that analyzing the first-order speckle statistics of CEUS

images can provide more robust perfusion indices over conventional techniques, and allows

for the quantification of the perfusion heterogeneity in tumor cross-sections. We posit that
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the first-order statistics of speckle in contrast-enhanced ultrasound images can be understood

and analyzed using the same models and tools used in literature for B-mode scattering. The

long-term goal of this work is to improve the microvascular quantification of pre-clinical anti-

angiogenic agent trials. To achieve this research goal, this thesis has been divided into the

following four specific technical objectives:

1. Develop and evaluate, by comparison with nonlinear CEUS acquisition, a linear process-

ing approach that uses the first-order speckle statistics of B-mode cine loops to quantify

tumor vascular perfusion in a pre-clinical mouse model.

2. Develop a second-generation model, that expands on the one outlined above, that can be

applied to nonlinear (two-pulse amplitude-modulated) CEUS images. This objective is

necessary to improve the potential clinical applicability of the technique.

3. Improve the clinical translation of pre-clinical anti-angiogenic trials by developing a

CEUS imaging protocol for an ultrafast patient-derived xenograft (PDX) model of RCC

in chicken embryos to screen for patient-specific drug resistance(s). Assess intratumoral

functional heterogeneity by producing drug sensitivity matrices from multiple core biop-

sies within the same tumor.

4. Apply the statistical CEUS analysis technique developed in objective 2 to the data set

acquired in objective 3 to quantify RCC PDX perfusion heterogeneity and improve the

confidence in patient core classification as resistant/sensitive to sunitinib therapy.

1.8 Thesis Outline

This thesis presents and evaluates novel image analysis techniques to expand the utility of

contrast-enhanced ultrasound perfusion imaging, with a specific focus on quantifying perfusion

heterogeneity. Each of the four objectives outlined above is addressed in one of the chapters

summarized in this section. Chapters 2 through 5 represent work that is either published or

in preparation for submission to a peer-reviewed journal. Chapter 6 is a discussion of future

directions for this research and includes concluding remarks for the work so far.
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1.8.1 Chapter 2

Chapter 2 presents a linear (B-mode) processing approach, named the EDoF (effective degrees

of freedom) method, to quantify the change in the first-order speckle statistics of B-mode cine

loops due to the incursion of microbubbles. The technique was developed on tumor bearing

mice (MDA-MB-231LN mammary fat pad inoculation) and evaluated using nonlinear (two-

pulse amplitude modulated) contrast microbubble specific images. In the proposed method,

the speckle signal is approximated as a mixture of temporally varying random processes, rep-

resenting the microbubble signal, superimposed onto spatially heterogeneous tissue backscatter

in multiple subvolumes within the region of interest. It eliminates the need for a cumbersome

image subtraction step in preclinical contrast enhanced imaging. The EDoF method shows

promise for improving the robustness of linear CEUS based on reduced frame-to-frame vari-

ability compared with the conventional linear subtraction time-intensity curves. Wash-in curve

parameters estimated using the EDoF method also demonstrate higher correlation to nonlinear

CEUS than the conventional linear method.

1.8.2 Chapter 3

Chapter 3 aims to improve the potential clinical applicability of the technique presented in

Chapter 2 by developing a second-generation model for the analysis of the first-order speckle

statistics of two-pulse amplitude modulated contrast-enhanced ultrasound images. The com-

pound technique was tested on an antiangiogenic drug trial (bevacizumab) on tumor bearing

mice (MDA-MB-231LN), and evaluated with gold-standard histology and contrast-enhanced

X-ray computed tomography. The area under curve produced using the compound statistical

model could more accurately discriminate anti-VEGF treated tumors from untreated tumors

than conventional contrast-enhanced ultrasound image processing. Vascular complexity, es-

timated using the ultrasound compound statistical model, performed similarly to micro-CT

fractal dimension with respect to discrimination between treated and control tumors.
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1.8.3 Chapter 4

Chapter 4 introduces an ultrafast PDX model of RCC in chicken embryos that permits quan-

tification of tumor volume, tumor vascularity, and tumor perfusion via ultrasound in a high-

throughput manner. For this proof of concept study, we relied on conventional ultrasound

indices of vascularity (power Doppler vascularization index) and perfusion (CEUS). The vas-

cularization index (VI) of the tumor was estimated by calculating the percentage of voxels in

the segmented tumor volume that contained detected blood flow (i.e. Doppler color pixels). Tu-

mor perfusion was quantified using CEUS estimates of relative blood volume. Implantation of

tumor specimens into the chorioallantoic membrane (CAM) of the chicken embryo resulted in

high engraftment efficiencies, permitting large scale “tumor avatar” studies that demonstrated

intratumoral functional heterogeneity in the context of sunitinib treatment. These findings sug-

gest that genetic tumor heterogeneity exists, but evidence for a direct relationship to the drug

resistant phenotype did not manifest in DNA mutations, as determined by exome sequencing

and gene copy number variation analysis. Therefore, these results support a phenotype based

readout to predict drug resistance as opposed to a genotype signature, and that drug resistance

to targeted therapy is heterogeneous across the tumor.

1.8.4 Chapter 5

Chapter 5 combines the compound speckle model (Chapter 3) with the data set acquired from

the CAM PDX model (Chapter 4) to quantify PDX perfusion heterogeneity and to improve

the confidence in patient core classification as resistant/sensitive to sunitinib therapy. First-

order speckle analysis reduced the coefficient of variation of CEUS estimates of blood volume

compared to conventional CEUS methods. With all three of the vascular quantification tech-

niques presented in this study we observed intratumoral functional heterogeneity, both within

untreated core biopsies and in the response to sunitinib therapy. Treatment sensitivity matrices

constructed with compound speckle model could discriminate clear cell from chromophobe

RCC samples, suggesting that the assay can detect sunitinib resistance at the biopsy level, and

may be suitable for screening of de novo drug resistance in patients with mRCC.
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1.8.5 Chapter 6

Chapter 6 is a discussion of the potential future directions for this research, including technical

improvements, the next steps for preclinical validation, and plans for clinical translation. It

concludes with some final remarks concerning the significance of the research presented in this

thesis.
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2.1 Introduction

Preventing angiogenesis, the growth of new blood vessels, is a desirable therapeutic goal in the

fight against cancer [1]. However, it is difficult to evaluate treatment response with conven-

tional methods of tumor monitoring, which are typically insensitive to vascular changes [2].

Perfusion imaging provides quantifiable metrics of vascularity, blood flow organization, and

oxygen delivery within living tissue [3]. Contrast-enhanced ultrasound (CEUS) is an attrac-

tive modality for clinical perfusion imaging due to its noninvasiveness, high accessibility, and

lack of ionizing radiation. Microbubbles are limited to only the intravascular volume and

mimic blood rheology [4]. These properties prevent enhancement of nonfunctioning vessels

and the perivascular region, which is an advantage when imaging the functional volume of

the characteristically leaky [5] and chaotic [6] vascular networks generated via tumor-induced

angiogenesis.

In a preclinical setting, the advantages of CEUS for microvascular imaging include its low

relative cost and high spatial and temporal resolution. Unfortunately, the conventional baseline

image subtraction methods frequently used for small-animal imaging are susceptible to regis-

tration errors and motion artifacts [7], which lead to reduced contrast-to-tissue ratios [8]. These

problems were addressed in clinical CEUS by the introduction of nonlinear contrast imaging

methods, but the optimal imaging strategy for preclinical nonlinear processing is still being

explored [9]. A linear array-based micro-ultrasound imaging system has been commercial-

ized [10], but the large established base [11] of small-animal scanners using single-element,

mechanically scanned transducers indicates that many users of preclinical CEUS would still

benefit from improvements to linear processing.

This paper proposes a new linear processing approach that quantifies the change in first-

order speckle statistics due to the incursion of microbubbles without requiring an image sub-

traction step. The proposed approach circumvents the artifacts associated with conventional

linear CEUS subtraction methods. In the proposed method, the echo signal from circulating

microbubbles is modeled as a temporally varying random process that is superimposed onto

a Rayleigh distributed signal from tissue backscatter. The microbubble signal component can

be viewed as a second population of diffuse scatterers in the active vasculature within the tis-
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sue volume. Addition of the microbubble signal component is equivalent to adding additional

random walk steps to the speckle signal from a subset of the image data corresponding to

perfused pixels, meaning the received backscatter can be modeled as a mixture distribution

of signal components from unperfused and perfused pixels. The relative contribution of the

microbubble-enhanced subpopulation to the image speckle depends on the contrast signal and

therefore can act as a surrogate measure for the active vascular volume fraction of the tumor.

The hypothesis is that a speckle statistic-based method of image analysis will provide a more

robust metric than conventional frame subtraction to quantify tumor vasculature using linear

CEUS.

Analysis of first-order statistical characteristics of speckle in CEUS images has been shown

to be useful by other investigators. Tsui et al. [12] developed a method for microvascular flow

estimation, called time-Nakagami curves (TNC), in which Nakagami parameter images rep-

resenting local scatterer concentration are constructed from contrast-enhanced signals. The

method was initially tested in flow phantoms and healthy rabbit eyes. Further work [13] demon-

strated that Nakagami parameter images are robust to shadowing from microbubbles, so their

method improves flow quantification accuracy at deeper regions in flow phantoms.

Mixtures of distributions from multiple signal components have been proposed previously

for ultrasonic tissue characterization. Semi-automated segmentation of the intima and media of

the carotid artery has been performed in B-mode images by modeling the signal backscattered

from the endothelial wall as a mixture of three Nakagami distributions [14]. Recently, mixtures

of distributions were also applied to CEUS images by Akkus et al. [15], who employed a

Gaussian mixture model to segment neovascularization within carotid plaques. Similar to the

motivation for our proposed method, first-order statistical analysis of CEUS images was used

in [15] to circumvent artifacts associated with conventional CEUS imaging.

This paper introduces our proposed method for analyzing first-order speckle statistics in a

sequence of CEUS images and applies the method to images acquired from a murine xenograft

breast cancer model. The method fits a Nakagami distribution to the histogram of the mag-

nitude signal within the tumor and estimates the EDoF of the Nakagami distribution in each

frame of the image sequence; the technique is therefore named the EDoF method. The time

course of the EDoF yields a wash-in curve that can be interpreted using time-intensity analysis
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in a manner comparable to conventional CEUS imaging. We show that wash-in curve pa-

rameters estimated using the EDoF method demonstrate higher correlation to nonlinear CEUS

than the conventional linear method. The hypothesized relationship between the EDoF of first-

order CEUS speckle statistics and the complexity of the active tumor vascular network is also

discussed.

This paper builds upon the preliminary results reported in [16] in that the EDoF method

is applied to linearized speckle signals here, whereas [16] was limited to analysis of log-

compressed data. The relationship between the EDoF and TNC methods is also clarified; that

comparison was neglected in [16]. The mixture model used in our method was initially devel-

oped independently of TNC image analysis and, at first glance, appears to be a different method

of contrast image quantification. The analysis in Sect. 2.2 demonstrates that our method is

mathematically equivalent to the TNC technique when identical parameter estimation win-

dows are used. This equivalence increases confidence that the EDoF model is appropriate for

describing CEUS speckle. However, in our method each component of the mixture distribution

is interpreted as originating from a different population of ultrasound scatterers. Therefore, the

physical interpretation of the EDoF statistical parameter is different for our method than TNC

analysis. We propose that this new parameter is a metric of tumor heterogeneity and may be

useful for analysis of vascular tortuosity if used for contrast analysis.

2.2 Statistical Model

2.2.1 Contrast-Enhanced Speckle Statistics

Consider first the case of a baseline (pre-injection) image of a tumor. The EDoF method

assumes that the tumor consists of several subregions whose backscatter characteristics are

statistically homogeneous and potentially different from the backscatter characteristics of the

remaining subregions. The probability density function (PDF) of the speckle signal analyzed

over the entire tumor volume can therefore be viewed as a weighted mixture of distributions,

where each component of the mixture corresponds to the speckle in one of the subregions and

the weighting depends on the relative volume of each subregion. We assume for simplicity
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that the backscatter in each subregion satisfies the conditions for producing fully developed

speckle.1 The PDF of the demodulated analytic signal, s, over the entire tumor volume is

therefore modeled by:

fk[s] =

k∑
i=1

ωiN(0, σ2
i ), (2.1a)

k∑
i=1

ωi = 1, ωi ≥ 0, (2.1b)

where N(0, σ2
i ) is a zero-mean, circularly symmetric complex Gaussian distribution with vari-

ance σ2
i , ωi denotes the relative weighting of each signal component, and k is the number of

subregions within the tumor. At baseline, the weights, ωi, are in principle constant for fixed

imaging conditions.

The PDF of the normalized squared norm (i.e., the backscatter signal intensity, where

I = |s|2) of a mixture of an arbitrary number of zero-mean Gaussian distributions, where each

component differs in variance, can be expressed as a single chi-squared distribution with re-

duced effective degrees of freedom [17] (expressed as n∗ ≤ n, where n is degrees of freedom).

There are two such mixture distributions in the analytic signal to account for the real and imag-

inary components of (2.1a); hence, the normalized squared norm of a mixture of k zero-mean

circularly symmetric complex Gaussian distributions follows a chi-squared distribution with

n∗ ≤ 2k effective degrees of freedom. If the signal intensity, I, is normalized by
∑k

i=1 ωiσ
2
i ,

then, by the substitution of variables in [17] (specifically, Eq. 16), the squared norm of the

normalized analytic signal (2.1a) can be expressed as:

fk[I] ≈ (n∗ − 1)
((n∗ − 1)I)(n∗/2)−1e−(n∗−1)(I/2)

2n∗/2Γ( n∗
2 )

. (2.2)

In Equation (2.2), (n∗ − 1)I possesses a chi-squared distribution with n∗ degrees of freedom.

By introducing a scaling parameter ρ to normalize the area under fk[I] to unity, where ρ =

1The nominal resolution of 75 µm axial by 165 µm lateral by 165 µm elevational in our experimental images
would correspond to approximately sixty 40 µm diameter cancer cells per resolution volume, exceeding the scat-
terer number for Rayleigh speckle statistics. At the time of inoculation, the tumors had a volume of 5 mm3 which,
assuming roughly spherical geometry, would correspond to about 2450 independent samples of the backscatter
signal at the nominal resolution.
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2
(n∗−1) (

∑k
i=1 ωiσ

2
i ) , the PDF of signal intensity without normalization becomes:

fk[I] ≈
1

ρn∗/2Γ( n∗
2 )

I(n∗/2)−1e−I/ρ . (2.3)

In this context, fk[I] represents the square magnitude of the uncompressed echo envelope and

follows a gamma distribution. This approximation is more accurate if the variances of the

individual components are similar. The upper limit of 2k degrees of freedom corresponds to

an analytic signal with independent real and imaginary components. The reduced degrees of

freedom in the general case is a consequence of overlap in signal space of the k Gaussian com-

ponents of s, i.e., cases where a sample value could plausibly come from either the distribution

it was actually drawn from or one of the higher-variance components. The lower limit of (2.3)

is a single complex Gaussian component with n∗ = 2 degrees of freedom, in which case the

right-hand side of (2.3) simplifies to an exponential PDF.

The norm of a mixture of k zero-mean Gaussians follows a distribution described by the

square root of the random variable I = |s|2 in (2.3). Applying a transformation of random

variables from I to |s| in (2.3) yields the PDF of signal magnitude:

fk[|s|] ≈
2

ρn∗/2Γ(n∗
2 )
|s|n

∗−1e−|s|
2/ρ. (2.4)

For the limiting case of a homogeneous tissue region, n∗ = 2 again and (2.4) simplifies to a

Rayleigh PDF. It can be shown that (2.4) possesses a Nakagami distribution by inducing the

variables Ω = mρ and m = n∗/2, such that:

f (|s|; m,Ω) =
2mm

Γ(m)Ωm |s|
2m−1e−

m
Ω
|s|2 , (2.5)

where m is the Nakagami shape parameter and Ω is the Nakagami scaling parameter. Therefore,

use of the gamma distribution of (2.3) for the PDF of signal intensity is mathematically equiva-

lent to use of the Nakagami distribution of (2.5) for the PDF of the signal magnitude [18] [19].

Shankar demonstrated that the Nakagami distribution can model tissue backscatter [19] and

that the Nakagami shape parameter, m, can be interpreted as the square of the signal-to-noise

ratio of the signal intensity.

Consider now the addition of contrast enhancement to the above model. A portion of
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the speckles in a subregion of the tumor now include contributions from microbubble echoes.

The microbubbles add additional steps to the random walk for the contrast-enhanced speckles,

which increases the variance of the PDF for those speckles. The extent to which the variance

increases depends on the concentration and scattering strength of the microbubbles in each en-

hanced speckle. The subregion, which at baseline was statistically homogeneous, now consists

of one nonenhanced speckle population and a mixture of contrast-enhanced speckle popula-

tions with differing levels of enhancement. The influx of microbubbles has therefore increased

the effective degrees of freedom of the speckle pattern for that subregion specifically and for the

tumor generally. The EDoF method characterizes the kinematics of this change in the degrees

of freedom of the tumor speckle during microbubble wash-in.

Mathematically, contrast enhancement alters (2.1a) by introducing a time dependence to

the relative weighting of the analytic signal:

fk[s(t)] =

k∑
i=1

ωi(t)N(0, σ2
i ). (2.6)

The weighting function, ωi(t), is in general a continuous function of time to enable this formu-

lation to fully describe the kinematics of microbubble wash-in to a vascular network. During

contrast-enhanced imaging, k is expected to be greater than the number of tissue subregions in

the tumor due to the fact that the image now consists of a mixture of unenhanced and enhanced

speckles. The first-order statistics of the magnitude signal over the entire tumor remains a Nak-

agami PDF with n∗ ≤ 2k effective degrees of freedom as in (2.4). Many other mixture mod-

els require weighting estimates of each individual component, which introduces an extra step

of complexity in analysis with no closed-form solution and generally requires an assumption

about the number of components. The advantage of using either the gamma distribution (for

intensity) or the Nakagami distribution (for magnitude) is that the first-order speckle statistics

of a region of interest (ROI) consisting of a mixture of scatterer populations, such as a contrast-

enhanced tumor, can be represented by a single-component distribution if the reduced degrees

of freedom are accounted for as in (2.3) and (2.4).
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2.2.2 Parameter Estimation

During the wash-in phase of a CEUS imaging study, the time-dependent weighting variable

ωi(t) changes to reflect an increased relative weighting of the contrast-enhanced Gaussian sig-

nal components. This change in weighting increases the effective degrees of freedom of the

speckle PDF. The EDoF method models the histogram of the speckle within the ROI using

(2.3) for the intensity signal or (2.4) for the magnitude signal and detects the change in the

effective degrees of freedom, n∗, of the distribution during wash-in of a microbubble bolus.

In the current implementation of the EDoF method, a maximum likelihood estimate of the

effective degrees of freedom (equivalently, the Nakagami shape parameter) of the speckle in

the frame acquired at time t, n̂(t), is computed from the magnitude image by solving for n̂(t)

using [20, p.156]:

ln
(
n̂(t)
2

)
− ψ

(
n̂(t)
2

)
= ln

 1
N

N∑
i=1

Ii

 − 1
N

N∑
i=1

ln (Ii), (2.7)

where ψ(A) is the digamma function:

ψ (A) =
d

dA
ln Γ (A) =

Γ ′(A)
Γ(A)

, (2.8)

N is the number of pixels within the ROI, and Ii is the intensity of the ith pixel. Equation

(2.7) can be solved using the Newton-Raphson method described in [21], or by a binary search

algorithm [14]. Alternatively, a less computationally expensive but less accurate estimate of

n̂(t) can be obtained using the method of moments [22]. Since (2.7) does not depend on the

scaling of I, the normalization step in (2.3) does not affect the estimation of n∗.

2.3 Materials and Methods

2.3.1 Animal Model

The Western University Council on Animal Care approved all experiments used in this study.

Human breast cancer xenografts were induced in 8 female nude mice (nu/nu, 8-10 weeks of

age) by injection of 2×106 MDA-MB-231-luc-D3H2LN cells into the abdominal mammary fat
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pad. Cells were suspended in a mixture of 50% phosphate-buffered saline and 50% Matrigel

(BD Biosciences, Mississauga, Canada), as per the tumor inoculation procedure described by

Goulet et al. [23]. Animals were imaged once weekly starting at three days after tumor inocu-

lation until they were sacrificed at the end of week six.

2.3.2 Image Acquisition

The Vevo MicroMarkerTM (Fujifilm VisualSonics Inc., Toronto, Canada) microbubble solution

was reconstituted following the instructions given by the supplier. In brief, a phospholipid and

gas (nitrogen and perfluorobutane) vial was mixed with 0.7 mL of sterile saline and agitated

manually. This process yielded a solution with approximately 2 × 109 microbubbles/mL with

median diameter of 2.3 – 2.9 µm.

All ultrasound measurements were performed using a Vevo R© 2100 high-frequency imag-

ing system (VisualSonics Inc.) equipped with a 256 element linear array transducer (MS-250,

20 MHz center frequency, 70% −6 dB two-way bandwidth; 75 µm nominal axial resolution,

165 µm nominal lateral resolution) transmitting at 18 MHz in nonlinear contrast mode. Ani-

mals were gas anesthetized using 3% isoflurane in oxygen for induction and 2% isoflurane in

oxygen for maintenance. Following induction of anesthesia, the mouse was secured to a heated

physiological monitoring platform (THM-150, VisualSonics Inc.) with transpore surgical tape

and electrolytic contact gel. A disposable, autoclaved brace pad was placed between the animal

and the platform to support the tail. The surface temperature of the platform was maintained at

40± 0.1 ◦C to heat the pad to approximately 37 ◦C. The experimental environment is similar to

the one illustrated in Fig. 2 of [11].

All visible hair was removed from the site of the primary tumor using depilation cream

(Nair R©, Church & Dwight Co., Inc., Princeton, NJ) and then warmed ultrasound coupling gel

was applied. Microbubbles were administered through a bolus tail vein injection (50 µL, about

1.0 × 108 microbubbles). The transducer was fixed above the center of the tumor and oriented

to produce an anatomical transverse imaging plane. Nonlinear (subharmonic) imaging was

performed using an amplitude modulation method [9] over a field of view sized to completely

enclose the tumor. Cine loops consisting of 1,500-2,000 frames were acquired at frame rates

between 9 and 28 Hz. The frame rate varied because a larger subharmonic field of view was
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necessary at later time points. Contrast wash-in cine loops were exported as log-compressed,

magnitude signal data files. Linear (B-mode) data were quantized to 8 bits at a 336 MHz sam-

pling frequency; nonlinear contrast images were quantized to 16 bits at a 288 MHz sampling

frequency. Linear and nonlinear image data were acquired simultaneously during the same

bolus injection, with one B-mode frame acquired for every non-linear frame.

2.3.3 Image Analysis

Contrast enhancement was analyzed separately in the linear and nonlinear images using matched

ROIs. Tumor boundaries were manually segmented on the first frame of the B-mode cine loops

and the tumor was assumed to not move or deform during wash-in. Segmentation coordinates

in linear images were rigidly registered to the corresponding nonlinear coordinates via trans-

lation and scaling. The dependence of wash-in curve parameter estimation on segmentation

accuracy was assessed by scaling the area of manual ROIs by 90% and 110%. All analysis was

performed using MATLAB (version R2013a, The MathWorks Inc., Natick, MA).

Linearly scaled envelope data were recovered by reversing the log compression of the ex-

ported B-mode images (dynamic range 40 dB, linear gain 30 dB, fixed TGC of 0.54 dB/cm

MHz [24]). Nakagami PDFs as in (2.4) were fit to the linearized magnitude data within the

ROI in each frame of each cine loop. The effective degrees of freedom of the speckle were

obtained by applying the Newton-Raphson method to the maximum likelihood estimator (2.7)

with a convergence limit of 1 × 10−6 and a maximum of 200 iterations. The goodness of fit of

the Nakagami PDF to the image histogram was visually compared to the goodness of fit of the

Rayleigh distribution.

2.3.4 Wash-In Curve Analysis

Wash-in time series were constructed to characterize the kinematics of contrast enhancement

as measured using conventional linear CEUS, nonlinear CEUS, and the EDoF method. For

linear CEUS, a baseline B-mode image was constructed by averaging 150 frames acquired

immediately prior to injecting the contrast bolus. Contrast enhancement in each frame during

wash-in was estimated on the linearized data by performing pixel-by-pixel subtraction of the
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baseline image from each image in the post-injection cine loop and then computing the average

signal magnitude within the ROI for each frame of the difference image. For nonlinear CEUS,

contrast enhancement was estimated by averaging the nonlinear signal magnitude within the

ROI for each frame of the post-injection cine loop. In the EDoF method, contrast enhancement

was estimated from the linearized images by determining the time history of the estimated

effective degrees of freedom, n̂(t), of the Nakagami distribution fit to the B-mode histogram

within the ROI for each frame of the post-injection cine loop.

A simplified gamma variate function [25] was fitted to each set of time series data as a

wash-in curve model:

Y(t) = Ymaxt′αveαv(1−t′), (2.9)

where t′ is t/Tmax, Tmax is the time of the wash-in curve peak, Ymax is the amplitude of the curve

peak, and αv controls the curve shape. There is no coupling between the parameters defining

this function, which makes longitudinal comparisons straightforward because the evolution of

each parameter can be analyzed independently from the other parameters. Curve parameters

were calculated using an unconstrained nonlinear minimization (Nelder-Mead method) of the

sum of squared residuals with maximum 800 iterations and a convergence criterion of 1 ×

10−4. Initial estimates for the parameters were Ymax equal to the observed maximum contrast

enhancement, Tmax equal to the time at which Y(t) = Ymax, and αv = 1, where the latter choice

yields the wash-in curve for two homogeneous mixing compartments in series [26], which is

the simplest model of a hierarchical vessel network. The frame-to-frame variability of each

method was assessed by computing the signal-to-noise ratio, SNR, in decibels, of the raw time

series signal relative to the fitted curve. This was calculated as the ratio of the summed squared

signal magnitude (Y(t)) over the summed squared of the curve fitting residual. The area under

the curve (AUC) was calculated from the fitted gamma variate parameters as:

AUC = YmaxTmaxeαvαv
−αvΓ(αv). (2.10)

PDFs were constructed as in [12] on the same manual ROIs as above with a sliding window

of 240 × 240 µm. Processing was performed on both the log-compressed images and the

linearized images. The estimate of Nakagami shape parameter, m, was averaged across all
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sliding windows for each frame of the cine loop and plotted as a function of time, m̄(t). The

resulting averaged TNC curves were compared visually to the corresponding EDoF wash-in

curves.

The AUC and each of the three wash-in curve parameters derived from analysis of conven-

tional linear and EDoF CEUS wash-in curves were compared to the corresponding nonlinear

CEUS estimate using linear regression and the Pearson correlation coefficient such that the

nonlinear CEUS parameters were interpreted as the gold-standard measurements. The sig-

nificance of the difference between each pair of correlation coefficients was assessed using a

two-tailed Fisher r-to-z transform [27].

2.4 Results

2.4.1 Contrast-Enhanced Speckle Histograms

Figure 2.1 shows a representative segmented tumor image and fits of Nakagami and Rayleigh

PDFs to speckle magnitude within the ROI taken prior to injection of contrast agent (Fig. 2.1c)

and immediately following the bolus injection of microbubbles (Fig. 2.1d). As predicted by

the speckle model, the number of effective degrees of freedom of the fitted Nakagami distribu-

tion increased as the tumor became perfused with microbubbles. Visually, the histogram peak

shifted to the right and the distribution became more symmetric. There is close visual agree-

ment of the fitted Nakagami functions to the image histograms. The relatively poor agreement

between the histograms and the Rayleigh fit illustrates the appropriateness of the mixture model

for these images.

2.4.2 Wash-In Curves

Figure 2.2 shows time-intensity curves obtained from another representative tumor using the

three CEUS imaging techniques. A movie comparing this cine loop with the corresponding

dynamic EDoF curve can be found in the online supplement. Note in this cine loop that the

gradual increase in EDoF corresponds to the heterogeneity of enhancement in the outlined

tumor. In this example, the EDoF method produced less frame-to-frame variability than con-
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(a) Pre-injection Baseline (b) Post-injection Enhanced

(c) Pre-injection Baseline (d) Post-injection Enhanced

Figure 2.1: Representative tumor images with manual ROIs taken (a) prior to contrast enhance-
ment and (b) immediately following a microbubble bolus and the probability density function
fit to image histogram data taken (c) at baseline and (d) after enhancement. The histograms
show signal magnitude in arbitrary units (a.u.). A Nakagami distribution with effective degrees
of freedom (c) n∗ = 2.96 and (d) n∗ = 4.15 was the closest fit to the data.
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ventional linear image subtraction, as evidenced by a higher signal-to-noise ratio, SNR, with

respect to the analytic wash-in function, (2.9). Some frame-to-frame variability in intensity

is expected as individual microbubbles move through the image plane. The improved robust-

ness to motion of the EDoF technique in comparison to linear image subtraction is apparent

in the example in Fig. 2.3, which shows an example of an especially large subject motion

during the manual tail vein injection. Averaging over 47 wash-in curves (8 animals times 6

imaging sessions, one animal was sacrificed a week early), the mean ± standard deviation of

the SNR between the raw signal and the curve fit from (2.9) was 23.8 ± 2.7 dB for nonlinear

CEUS wash-in curves, 18.3 ± 3.2 dB for conventional linear CEUS, and 33.1 ± 6.2 dB for the

EDoF method. The higher signal-to-noise ratio for EDoF processing implies reduced frame-to-

frame variability compared to image subtraction. The difference in performance between the

two linear processing methods was statistically significant (two-tailed Fisher r-to-z transform,

p < 0.0001).

Regions of interest were generally consistent on repeated segmentations due to well-defined

tumor boundaries in B-mode images, which is an indication of tumor encapsulation. Scaling

the segmentation by 110% of the original area led to a consistent overestimation of peak signal

enhancement, which was likely caused by the inclusion of highly vascularized adipose and

dermal tissues. Furthermore, the sensitivity of all methods was reduced if the ROI was too

close to the skin surface, as it would then include pixels within the coupling gel in some frames.

Smaller segmentations (area scaled by 90%) generally produced the same results as the original

contour; however, the frame-to-frame variability of the signal magnitude was often greater.

2.4.3 Comparison of EDoF and TNC Wash-In Curves

Time-Nakagami curves were constructed for the same manual ROIs used in EDoF processing.

Figure 2.4 shows an example of an EDoF wash-in curve in comparison to the corresponding

TNC wash-in curve on both linearized (left column) and log-compressed (right column) image

data. For recovered linearized data the EDoF method performed well, but TNC processing pro-

duced wash-in curves that were difficult to interpret and the expected relationship of n∗ = 2m̄

did not hold over the entire time course of the wash-in curves. This difference in performance

was most apparent for end-point tumors that exhibited heterogeneous contrast enhancement.
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(a) Nonlinear (b) Linear Subtraction (c) EDoF Method

Figure 2.2: Wash-in curves for the three methods of contrast analysis applied to a representative
tumor. The dotted line is a nonlinear regression fit to a simplified gamma variate function,
(2.9). The curves have signal-to-noise ratios of (a) 25.5 dB for nonlinear CEUS, (b) 18.1 dB
for conventional linear CEUS, and (c) 28.7 dB for the EDoF method, respectively. Nonlinear
and conventional linear CEUS data are reported in arbitrary unit (a.u.).

(a) Nonlinear (b) Linear Subtraction (c) EDoF Method

Figure 2.3: Wash-in curves for the three methods of contrast analysis applied to a tumor with
high subject movement. The statistical EDoF method demonstrates improved robustness to
motion artifacts. Signal-to-noise ratios for the fitted wash-in curves are (a) 23.2 dB for nonlin-
ear CEUS, (b) 16.1 dB for conventional linear CEUS, and (c) 35.7 dB for the EDoF method.
Nonlinear and conventional linear CEUS data are reported in arbitrary unit (a.u.).
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Although not theoretically justified, both methods performed well on log-compressed data,

with the main difference being estimated peak signal amplitude.

(a) Linearized EDoF (b) Log-compressed EDoF

(c) Linearized TNC (d) Log-compressed TNC

Figure 2.4: An example comparison of the EDoF method to a sliding-window based TNC. On
linearized envelope data, the (a) EDoF method produced interpretable wash-in curves, but the
(c) results of TNC processing were difficult to analyze. The curve shape of the two methods
was very similar on log-compressed image data (b) and (d), with the main difference being the
peak signal amplitude.

2.4.4 Wash-In Curve Parameter Estimation

Linear regression analysis of wash-in curve AUC and estimated curve fit parameters for both

linear techniques, in comparison to the nonlinear gold standard, can be found in Figs. 2.5 –

2.8. For the AUC (Fig. 2.5), the EDoF method exhibited a higher Pearson correlation to the

nonlinear CEUS AUC (r = 0.6776) than did conventional linear processing (r = 0.4919). The
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difference between the EDoF and conventional linear correlation coefficients was not statisti-

cally significant (p = 0.1738). The correlation of AUC between conventional linear subtraction

and EDoF was weak (r = 0.5872).

(a) Linear Subtraction Regression (b) EDoF Method Regression

(c) Linear Subtraction to EDoF Regression

Figure 2.5: Linear regression for area under curve (AUC) for the two linear contrast methods
in comparison to gold-standard nonlinear CEUS. The (a) linear subtraction method did not
demonstrate a strong correlation to the AUC for nonlinear CEUS (R2 = 0.2420, p = 0.0005)
and was outperformed by the (b) EDoF method (R2 = 0.4591, p < 0.0001). The correlation
of AUC between the linear techniques was weak (R2 = 0.3448, p < 0.0001). All areas are
reported in arbitrary units (a.u.).

The conventional linear and EDoF estimates of maximum amplitude, Ymax, (Fig. 2.6) had

similar statistically significant, moderate Pearson correlation to the nonlinear CEUS estimate

(r = 0.6912 and r = 0.7692, respectively). There was no significant difference between the

correlation coefficients for Ymax (p = 0.4237). The correlation between linear subtraction and



82 Chapter 2. Improved Linear CEUS Imaging

EDoF was also moderately strong (r = 0.7171).

(a) Nonlinear to EDoF Regression (b) Nonlinear to Linear Subtraction Regression

(c) Linear Subtraction to EDoF Regression

Figure 2.6: Linear regression of the maximum amplitude of the wash-in curve, Ymax, for the
two linear contrast methods in comparison to gold-standard nonlinear CEUS. (a) The linear
subtraction estimate was statistically significantly correlated with the gold-standard Ymax from
nonlinear CEUS (R2 = 0.3834, p < 0.0001). (b) The EDoF estimate exhibited marginally
higher correlation (R2 = 0.5916, p < 0.0001). (c) Comparing the linear methods yielded a
coefficient of determination of R2 = 0.5142, p < 0.0001. Nonlinear and conventional linear
CEUS data are reported in arbitrary units (a.u.).

The time to peak enhancement estimated using the conventional linear method was moder-

ately correlated to the nonlinear CEUS estimate (r = 0.5553, Fig. 2.7). The EDoF correlation

coefficient was higher than that of conventional linear subtraction (r = 0.6889); the difference

in correlation coefficients was not statistically significant (p = 0.2983). The correlation for es-

timated Tmax between the two linear techniques was weaker (r = 0.4334) than their correlations
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to the nonlinear estimate.

(a) Nonlinear to EDoF Regression (b) Nonlinear to Linear Subtraction Regression

(c) Linear Subtraction to EDoF Regression

Figure 2.7: Linear regression for time of maximum enhancement Tmax estimated using the
two linear contrast methods in comparison to gold-standard nonlinear CEUS. The (a) linear
subtraction method (R2 = 0.3084, p < 0.0001) was similar in performance to the (b) EDoF
method (R2 = 0.4746, p < 0.0001). (c) The two linear methods were weakly correlated (R2 =

0.1878, p = 0.0033).

For the final fitting variable, the shape parameter αv (Fig. 2.8), the estimate obtained with

conventional linear CEUS was not significantly correlated to the nonlinear CEUS estimate

(r = 0.2054, p = 0.1710). The EDoF estimate was moderately correlated with the nonlinear es-

timate (r = 0.5618, p < 0.0001). The difference in correlation coefficients was not statistically

significant (p = 0.0854). The correlation in αv parameter estimates between EDoF and linear

subtraction was again weaker than their correlations to the nonlinear estimate (r = 0.3636).
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(a) Nonlinear to EDoF Regression (b) Nonlinear to Linear Subtraction Regression

(c) Linear Subtraction to EDoF Regression

Figure 2.8: Linear regression for the wash-in curve shape parameter, αv, estimated using the
two linear contrast methods in comparison to gold-standard nonlinear CEUS. The (a) linear
subtraction method (R2 = 0.0422, p = 0.1710) was outperformed by the (b) EDoF method
(R2 = 0.3156, p < 0.0001). The correlation in αv parameter estimates between the linear
techniques was weak (R2 = 0.1322, p = 0.0165). All reported units are dimensionless.
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2.5 Discussion

This study introduces an alternative approach to linear CEUS processing that relies on the non-

Rayleigh speckle statistics of contrast-enhanced tumor images. In this approach, the PDFs of

the backscattered echoes are described using a either a Nakagami or gamma distribution for

the first-order statistics of the magnitude and intensity signals, respectively. The number of

effective degrees of freedom of the fitted Nakagami distribution increases over baseline during

contrast enhancement to produce well-behaved wash-in curves. The measurement of effective

degrees of freedom, EDoF, is therefore a promising alternative to baseline subtraction for linear

quantification of contrast enhancement.

Effective degrees of freedom is an index of the complexity of the mixture weighting func-

tion, ωi(t), as opposed to microbubble concentration as in conventional time-intensity meth-

ods. Therefore, the EDoF wash-in curve should indicate the time dependence of the spatial

heterogeneity of the microbubble concentration. The fact that the EDoF method generally un-

derestimated the wash-in rate of the tumor as compared to nonlinear CEUS is consistent with

this interpretation. For bolus imaging, the magnitude signal peak is mostly due to the first pass

of the initial injection concentration through fast-flowing vessels. While the total microbubble

concentration begins to drop after the first pass of the bolus, the mixture weighting function

complexity continues to increase as the slow-flow vascular components perfuse with contrast

agent. The time of highest contrast enhancement, when the nonlinear wash-in curve peaks,

should precede the most heterogenous spatial distribution of microbubbles, which is expected

to coincide with the peak of the EDoF wash-in curve. As a consequence, the interpretation of

the EDoF metrics should reflect this difference in the physical basis of the wash-in curves. The

microbubble concentration heterogeneity implicitly depends on the vascular organization, so

it is hypothesized that the EDoF method would be more sensitive to vascular tortuosity than

conventional time-intensity techniques. Specifically, the magnitude of the EDoF wash-in curve

peak should correlate with vascular organizational complexity. This prediction could be tested

using post-mortem contrast-enhanced micro-CT (e.g., [28, 29]).

The wash-in curves obtained using the two linear processing methods were compared to the

nonlinear CEUS gold standard via their area under curve and via estimation of three curve fit-
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ting parameters. All techniques are intended to quantify tumor vasculature, so some degree of

correlation is expected between all forms of processing. Weak-to-moderate correlations were

found for curve-fit parameters estimated using both linear subtraction and the EDoF method in

comparison to those estimated using nonlinear CEUS. For all four parameters, the EDoF-to-

nonlinear CEUS correlation was slightly higher than the linear-to-nonlinear CEUS correlation,

but not significantly so. Intriguingly, despite being drawn from the same set of B-mode cine

loops, the EDoF-to-linear CEUS correlation was weaker than the EDoF-to-nonlinear correla-

tion. This again implies that the two linear processing techniques are measuring different as-

pects of tumor perfusion. The marginal improvement in correlation to nonlinear CEUS gained

from EDoF processing could stem from the technique more reliably generating well behaved

wash-in curves.

The EDoF approach was able to generate indicator wash-in curves without the need for sub-

traction of a baseline image. This feature of the EDoF method eliminates errors associated with

registering the pre-injection baseline image with a post-injection dataset. There is a risk, par-

ticularly with manual tail vein injections, of out-of-plane motion due to subject manipulation.

Furthermore, the EDoF method demonstrates reduced frame-to-frame variability compared to

linear subtraction, thereby indicating improved robustness to physiological or transducer mo-

tion artifacts. The ease of implementation of the EDoF method, requiring only a B-mode cine

loop of the contrast wash-in, enables it to be applied retrospectively. Although not theoretically

justified, the method appears to produce viable wash-in curves on log-compressed data [16],

so the method could potentially be used to salvage preclinical datasets that did not perform

adequately in conventional linear subtraction analysis. Users needing to salvage their datasets

will more typically have video data rather than raw data. The issue of applicability of this type

of analysis to log-compressed data has been previously debated in the context of Nakagami

tissue characterization [30] [31] [32]. The ability to perform linear contrast analysis without

an image subtraction step would also benefit three-dimensional imaging where registration of

pre- and post-enhancement images is particularly problematic.

In view of the mathematical equivalence of the EDoF parameter, n∗, and the Nakagami

shape parameter, m, computed using the TNC method, it is surprising that the resulting wash-

in curves do not match when the techniques are applied to linearized images (e.g., Figs. 2.4(a)
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and 2.4(c)). This observation implies that a value of m = n∗/2 computed over a large ROI

containing Nakagami-distributed speckle is not necessarily equal to the average value of m

computed within multiple overlapping subregions covering the ROI. This interpretation was

confirmed numerically using vectors of Nakagami-distributed random samples drawn from

distributions with known values of m. At window lengths comparable to the TNC windows

used in Fig. 2.4, the average sliding-window estimate of m differed from the whole-population

estimate of m by approximately 20%. This result can be understood by recalling that m is equal

to the squared SNR of the intensity signal, i.e., m = E(I)2/var(I) [19]. The average of many

estimates of an SNR is not necessarily equal to the average value of the signal divided by the

average value of the noise, where the latter calculation corresponds to estimating a single value

of m over the entire tumor cross-section. Therefore, the EDoF and TNC methods are related

but not interchangeable approaches to CEUS image analysis.

The EDoF method failed to produce sigmoidal wash-in curves for very small tumors (ap-

proximate volume ≤ 5 mm3). This limitation may be due to a violation of the assumption of a

sufficiently large number of independent samples of the backscattered signal. If the number of

samples contributing to one scatterer population (degree of freedom) is small, then the param-

eter estimate for that population will have high uncertainty. The total number of independent

speckle samples is necessarily small for small tumors. The performance of the EDoF method

was also degraded by shadowing artifacts. Our mouse model tended to develop skin surface

ulcerations above large tumors that acoustically shadowed the center of the tumor. In these

images, the shadowing artifact prevented detection of microbubbles in a substantial proportion

of the tumor volume, so little to no change was measured in the effective degrees of freedom

of the backscattered signal.

In this paper, the performance of the EDoF method for characterizing vessel networks in

healthy tissue was not assessed. Vessel networks in organs such as the kidney are known to

exhibit approximately fractal architecture [33]. This observation raises the possibility that the

contrast-enhanced signal from such structures may possess a coherent component that is not

accounted for in (2.6). The effect of a coherent scattering component on the resulting EDoF

wash-in curve requires further investigation.

The main focus of this research was to improve preclinical CEUS image analysis, specif-
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ically for those researchers who do not have access to nonlinear-contrast capable transducers

and systems. In principle, an analysis method similar to the EDoF technique could be applied

to nonlinear CEUS images, thereby creating a pathway for clinical translation of the EDoF

method. Clinical application of this method would be particularly valuable if further studies

support the interpretation that the EDoF method measures vascular complexity. Currently, vas-

cular tortuosity is inferred from indicator-dilution kinematics and analysis of wash-in curve

shape [34]. Wash-in time and, especially, time-to-peak metrics suffer from operator depen-

dence [26]. The fact that an EDoF wash-in curve yields multiple parameters that should each

depend on vascular tortuosity represents a distinct advantage of this technique because the

consistency of the estimated parameters can be evaluated as a test of their reliability.

2.6 Conclusions

The statistical EDoF method of wash-in curve analysis shows promise in improving the ro-

bustness of linear CEUS, with the important caveat that curve interpretation may differ from

conventional time-intensity analysis. The EDoF method appears to outperform conventional

linear CEUS with respect to both the SNR of the wash-in curve and the correlation of the

wash-in curve with gold standard nonlinear CEUS. The removal of baseline image subtraction

streamlines imaging workflow, eliminates the problems associated with registration of pre- and

post-injection images, and enables real-time linear CEUS perfusion imaging. The conceptual

basis of the EDoF method presented in this paper implies that EDoF wash-in curves should

carry information about vascular complexity, although that hypothesis requires testing in fu-

ture studies. Vascular tortuosity is characteristic of malignant cancers [35], so EDoF analysis

may provide valuable new imaging biomarkers for diagnosis and monitoring of treatment re-

sponse in cancer patients.
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3.1 Introduction

Tumor angiogenesis leads to the growth of structurally chaotic and tortuous vessel networks

in comparison to the organized micro-circulation of healthy tissues [1]. It has been proposed

that successful anti-VEGF therapies function in part through a process of vascular normal-

ization [2], where the vascular network is modified toward a more organized structure that

improves local blood flow and relieves regional hypoxia. Vascular perfusion imaging, such

as contrast-enhanced ultrasound (CEUS), is valuable in evaluating the vascular normalization

effects of anti-angiogenic therapies. However, conventional CEUS image analysis involves

modeling the wash-in kinetics of a microbubble contrast agent bolus using a point estimate

of contrast signal intensity as a surrogate for its concentration. This overlooks additional in-

formation that may be available from the first-order speckle statistics in a CEUS image. In

particular, structural differences in tumor micro-circulation should lead to heterogeneous con-

trast enhancement within a region of interest (ROI). A method to quantify those heterogeneities

would provide a useful tool for tumor vascular characterization.

This paper proposes a method for analyzing the first-order speckle statistics of sub-harmonic

CEUS images from tumors. This statistical model assumes that the signal intensity can be ex-

pressed as a compound distribution of exponential probability density functions (PDFs). The

relative contribution of each exponential speckle distribution to the image is expressed using

a weighting function. The weighting function characterizes the heterogeneity of the contrast

speckle pattern which should correspond to microbubble spacing among vessel lumina in the

tumor. The proposed method is an extension of our previous work on analysis of B-mode

speckle in contrast-enhanced images [3]. The model was first proposed in [4], where the ability

to distinguish between different vascular environments in and around the tumor was demon-

strated. Further work was required to a) compare the estimates of fractal dimension acquired

from this technique to contrast-enhanced casting CT and b) validate the vascular quantification

generated through this method using gold-standard estimates of micro-vascular density (MVD)

from histology.

Other groups have used CEUS to assess tumor perfusion heterogeneity. To account for

flow heterogeneity, a log-normal perfusion model was applied to CEUS data collected from
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an anti-angiogenic clinical drug trial on metastatic renal cell carcinomas [5]. They found that

velocity filtering reduced measurement variability and improved treatment effect sensitivity.

Work has also been done on the diagnostic usefulness of spatial heterogeneity. Microvascular

morphology and architecture in breast lesions, assessed using micro flow image processing

on clinical CEUS data, were found to reliably distinguish between benign and malignant tu-

mors [6]. However, their classification was a qualitative, subjective analysis by radiologists. A

follow-up study [7] performed quantitative perfusion analysis showing that perfusion features,

such as regional enhancement and morphologic heterogeneity, provided valuable indices for

differentiating between malignant and benign breast tumors. Similar studies have applied a

clustering algorithm to CEUS images from murine kidneys [8], where it was found that the

number of clusters (related to enhancement heterogeneity) could discriminate between control

kidneys and those exposed to anti-angiogenic drugs. Contrast ultrasound dispersion imaging,

a spatiotemporal similarity analysis, has demonstrated closer agreement in the localization of

prostate cancer on histology sections than conventional CEUS in a preliminary clinical eval-

uation [9]. Finally, the fractal dimension of tumors has been estimated using the relative dis-

persion of two CEUS ROIs [10]. It was found that CEUS fractal dimension showed good

agreement to, and discrimination of, MVD for two different cell lines of prostate cancer in

mice. Our technique, in contrast, quantifies spatial heterogeneity and estimates fractal dimen-

sion using a single ROI encompassing the entire tumor cross section analyzed at two time

points during wash-in.

This paper introduces our method for analyzing the first-order speckle statistics on a time-

series of nonlinear CEUS images acquired from a mouse xenograft model. Animals were

inoculated with a human breast cancer cell line (MDA-MB-231-D3H2-LNluc) and treated

with a monoclonal anti-VEGF antibody (murine version bevacizumab B20-4.1.1) as an anti-

angiogenic therapy. The method is applied to contrast-specific, amplitude-modulated, CEUS

cine loops acquired after a bolus injection of microbubbles. For validation, animals were per-

fused with a quick-fixing erbium-based silicone vascular perfusion agent at end point. Whole

animals and selected organs were imaged in a micro-CT scanner to generate three-dimensional

volumes of perfused vasculature. Tissue samples were collected for histological analysis. We

demonstrate the ability of the weighting function analysis to detect a significant reduction in
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MVD, due to the anti-angiogenic therapy, as measured by area under curve during contrast

wash-in. We also evaluate the ability of the compound statistical method to detect changes

in tumor vascular complexity in response to bevacizumab, using vascular fractal dimension

estimated with post-mortem micro-CT as a gold-standard.

3.2 Statistical Model

3.2.1 Nonlinear Contrast Speckle Statistics

An assumption used in this study is that the statistics of CEUS images, which depend on

the concentration of microbubble subpopulations, can be considered using the same models

as speckle formation in B-mode images. We only consider the statistics of uncompressed,

intensity signal data (i.e., the squared magnitude of the echo envelope measured prior to log-

arithmic compression). The model assumes that the demodulated analytic signal, s, of a well

dispersed, randomly scattering microbubble solution of homogeneous concentration will fol-

low a complex zero-mean Gaussian PDF. Local changes in microbubble spacing, such as a

high concentration microbubble bolus surrounded by a low-intensity tissue background in a

contrast-specific image, can be approximated by a mixture of these probability density func-

tions. It follows that the backscatter intensity, I, of an arbitrary microbubble population can be

expressed using a weighted mixture distribution of k speckle sub-regions:

fk[I] =

k∑
i=1

wi pi(I), (3.1a)

k∑
i=1

wi = 1, wi ≥ 0, (3.1b)

where every pi(I) is an exponential distribution [11], assuming fully developed speckle. We

are only considering the case where every subpopulation is modeled as randomly distributed

scatterers (microbubbles) at relatively high concentrations.

A closer approximation to the bolus diffusion example above would account for a diffu-

sion gradient of indicator, which necessitates a continuous weighting function. To relax the

constraint on discrete sub-populations of fully developed speckle, we generalize Eq. 3.1a by
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parameterizing the weighting function, w(θ), and expressing the exponential distribution as

conditional on this new parameter, θ:

p(I|θ) = θe−θI . (3.2)

Therefore, the new speckle distribution can be expressed as the compound distribution:

f [I] =

∫
Θ

w(θ)p(I|θ) dθ. (3.3)

It has been shown by [12] that an arbitrary vascular network can be simplified by assuming

a fractal branching geometry that yields a distribution of vessel diameters and flow velocities

governed by a log-normal distribution. Earlier work demonstrated that intercapillary distance

can also be modeled as a log-normal distribution [13]. Therefore, a random cross section

(i.e., image plane) through a heterogeneous multiple-vessel network, modeled here as random

sampling from the distribution of vessel sizes and locations, would be expected to display a

log-normal distribution of flow velocities and capillary spacing. As the contrast signal inten-

sity is determined by the microbubble concentration, and assuming good tissue suppression,

it is reasonable to state that a log-normal weighting function is most appropriate for the com-

pound model. However, this form of compound model has no known analytic solution [14],

which limits its practicality as a model for image analysis. As an alternative, the gamma fam-

ily of PDFs can serve as an approximation to the log-normal distribution [15], with the distinct

advantage that its compound distribution is well characterized. This approximation is further

justified by [16], which showed that the spatial distribution of terminal endpoints (i.e. capillar-

ies) of an arterial tree model, grown by the method of constrained constructive optimization,

was well characterized by a two-parameter gamma distribution. Therefore, the weighting func-

tion of the compound distribution is assumed to belong to the gamma family of distributions:

w(θ|α, β) =
αβ

Γ(β)
θβ−1e−αθ, (3.4)

where α and β are hyper-parameters. Substitution of Eq. 3.2 and Eq. 3.4 into Eq. 3.3 yields

the model’s approximation to the backscatter intensity distribution, a Type-II Pareto (Lomax)

probability function [17]:
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f (I|α, β) =
β αβ

(I + α)β+1 . (3.5)

The hyper-parameters, α and β, of this compound model can be determined by applying

established maximum likelihood estimators (MLE) to intensity samples from the image [18].

The shape of the weighting function can then be reconstructed from the MLE values for further

analysis. To draw from the established literature [19, 20] examining the relationship between

the log-normal distribution’s shape parameter and the fractal dimension of the vascular net-

work, it is useful to demonstrate that the log-normal shape parameter (σLN) can be estimated

from the gamma parameter, β. By assuming that the coefficient of variation for the two distri-

butions are equal [21], we can state that:

σLN =
√

ln(β−1 + 1). (3.6)

It is worth noting that, in this definition of the gamma probability function, the relative

dispersion of the distribution is inversely proportional to the square-root of the β parameter.

Relative dispersion has been shown to be useful in characterizing the fractal dimension of

CEUS images [10].

Each frame in a CEUS cine loop yields a separate estimate of α and β, so the final step

in this model is to make explicit the time-dependence of the hyper-parameters, α(t) and β(t),

and likewise the time-dependence of the weighting function, w(θ|α(t), β(t)). Tissue perfusion

can then be analyzed from the kinematics of w(θ|α(t), β(t)), as detailed in section 3.3.4. The

log-normal shape parameter (σLN) is expected to depend only on microvascular architecture

in a fully perfused tumor. Therefore, fractal dimension is estimated as ∆σLN = σLN(t)max -

σLN(t)min for peak and baseline enhancement, respectively.

3.2.2 Parameter Estimation

The maximum likelihood estimates of the Pareto shape and scale parameters of the speckle in

the contrast-specific frame acquired at time t, α̂(t) and β̂(t), are computed from the intensity

samples in the ROI as follows [18]:
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l = nlog(β) − nlog(α) − (1 + α)
n∑

i=1

log
(
1 +

Ii

α

)
, (3.7)

and

∂l
∂α

= −

(n
α

)
+

[
(1 + β)
α

] n∑
i=1

[
Ii

α + Ii

]
, (3.8)

∂l
∂β

=

(
n
β

)
−

n∑
i=1

log
(
1 +

Ii

α

)
, (3.9)

where n is the number of independent intensity samples within the ROI and Ii is the intensity

of the ith sample. In principle, this method can be applied to either the intensity samples in

the B-mode frame, the intensity samples from the contrast-specific frame, or both. Analysis

of contrast-specific frames is preferred due to superior tissue suppression because the gamma

weighting function is justified based upon modeling of vascular networks. Based on Eq. 3.8

and Eq. 3.9, there is no closed form solution to Eq. 3.7, but the log-likelihood is strictly con-

cave, permitting numerical methods to solve for the parameters [18]. As such, Eq. 3.7 can be

solved using an unconstrained nonlinear optimization with initial guesses from the method of

moments as the starting values:

α0 = −0.5

 Ī2

σI − 1

 , (3.10)

β0 = 0.5Ī

 Ī2

σI
+ 1

 , (3.11)

where Ī and σI are the sample mean and standard deviation of the intensity, respectively. Pa-

rameter estimation using the above MLE is generally stable for even relatively small datasets

(i.e. a low number of intensity samples within a small ROI). In a Monte Carlo simulation, we

found that the α estimator converged to an asymptote at around n = 50, with a coefficient of

variation of approximately 0.02, and the β estimator converged at a sample size of n = 120,

with a coefficient of variation around 0.1. The smallest ROI used in this study had n > 2000

samples.
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3.3 Materials and Methods

3.3.1 Cell Line and Animal Model

The Western University Council on Animal Care approved all experiments used in this study.

The human breast carcinoma MDA-MB-231-D3H2-LNluc cell line (D3H2-LN, Caliper Life-

Sciences, Alameda, CA) [22] was suspended in a mixture of 50% phosphate-buffered saline

and 50% Matrigel (BD Biosciences, Mississauga, ON, Canada). For xenograft inoculation, 36

eight-week old female nude mice (nu/nu, Charles River, MA) were sedated and 50 µL (2× 106

cells) of the cell solution was injected into the right abdominal mammary fat pad without an

incision, as per the tumor inoculation procedure described by Goulet et al. [23].

A stock solution (17.26 mg/mL) of Murine version bevacizumab (B20-4.1.1, Genentech,

South San Francisco, CA) was diluted with PBS to a concentration of 1.1 mg/mL. On day 2 of

the experiment (48 hours after tumor cell inoculation), half of the mice (n = 18) were injected

intravenously with a dose of 5 mg/kg dilute B20-4.1.1 (approximately 0.1 mL for the average

22 g mouse). The control group (n = 18) received 0.1 mL of PBS vehicle. The antibody or

vehicle control were administered twice weekly. Mice were divided into three cohorts with

endpoints at the end of T = 1, 2, and 3 weeks.

3.3.2 CEUS Image Acquisition

All contrast-enhanced ultrasound imaging was performed using Vevo MicroMarkerTM (Fuji-

Film VisualSonics Inc., Toronto, ON, Canada) microbubble solution, reconstituted following

the instructions given by the supplier (concentration of 2×109 microbubbles/mL). Animal anes-

thesia was initiated using a gas induction chamber containing an atmosphere of 3% isoflurane

mixed with O2 and maintained with an anesthesia maintenance mask supplying 2% isoflurane

mixed with O2. All visible hair was removed from the site of the primary tumor using depila-

tion cream (Nair R©, Church & Dwight Co., Inc., Princeton, NJ) and then warmed ultrasound

coupling gel (Aquasonic R© 100, Parker Laboratories, Inc., Fairfield, NJ) was applied over the

entire palpable region.

Sonography was performed at the study endpoint, just prior to animal sacrifice, CT per-
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fusion, and formalin fixation. All ultrasound measurements were performed using a Vevo

2100 high-frequency imaging system (VisualSonics Inc.) equipped with a 20 MHz linear ar-

ray (MS-250, 75 µm nominal axial resolution, 165 µm nominal lateral resolution) transmitting

at 18 MHz in nonlinear contrast mode. The transducer was fixed above the center of the tu-

mor and oriented to produce an anatomical transverse imaging plane. Microbubbles were then

administered via a tail-vein injection as a manual bolus (50 µL, ∼ 1.0 × 108 microbubbles).

Nonlinear (sub-harmonic) imaging was performed over a field of view sized to completely en-

close the tumor and cine loops consisting of 1000 two-dimensional images were acquired at a

frame rate of 20 Hz.

3.3.3 CEUS Image Analysis

Contrast wash-in cine loops were exported as uncompressed, intensity signal data files. Non-

linear contrast images were quantized to 16 bits at a 288 MHz sampling frequency. Regions

of interest surrounding the tumor were manually segmented on the first frame of the cine loop

with the assumption that the tumor would not move or deform substantially during wash-in.

This assumption was qualitatively validated by reviewing all of the cine loops, and can be at-

tributed to the placement of the tumor in a location that does not experience much respiratory

motion. All image analysis was performed using MATLAB (version R2013a, The MathWorks

Inc., Natick, MA).

Generalized Pareto PDFs (Eq. 3.5) were fit to the contrast intensity samples within the ROI

in each frame of each cine loop. Maximum likelihood estimates of the Pareto shape (α) and

scale (β) parameters of the nonlinear speckle (Eq. 3.7) were solved for using an unconstrained

nonlinear optimization (MATLAB function fminsearch, Nelder-Mead simplex direct search)

with initial guesses from the method of moments. The maximum number of function evalua-

tions and iterations allowed was set to 200 times the number of sample points. The termination

tolerances on the function value and on the input value were set to 1 × 10−4.

Estimates of the log-normal distribution’s shape parameter (σLN(t)) were generated at every

time-point in the cine loop from the fitted gamma parameter (β(t)), as in Eq. 3.6. The increase

in σLN(t) from unenhanced tumor to peak enhancement level was taken as a surrogate measure

of vascular complexity.
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3.3.4 Wash-In Curve Analysis

Wash-in time series were constructed to characterize the kinematics of contrast enhancement

as measured using conventional nonlinear CEUS processing and a method based upon the

weighting function (Eq. 3.4). For conventional nonlinear CEUS, contrast enhancement was

estimated by taking the mean nonlinear signal intensity within the ROI for each frame of the

cine loop. For the compound method, the weighting function was reconstructed at every time-

point t from the estimates of the Pareto parameters (α(t) and β(t)). These were used to estimate

the enhanced volume percentage of the tumor over time by determining the area of overlap

between the weighting function at timepoint t and the weighting function of the unenhanced

tissue, when t = t0. The weighting function is a PDF describing the expected value of the ex-

ponential speckle distribution, and so any area of overlap with the baseline weighting function

should represent unenhanced populations of speckle. One minus this area of overlap, termed

the weighting function discrepancy, was plotted as a function of time and serves as an estimate

for total tracer mass in our kinematic analysis.

The local density random walk model (LDRW) [24] was selected for fitting to the bolus

wash-in curves due to its superior fitting performance [25]:

Y(t) = AUC
(
eλ

µ

) √
µ

t − t0

λ

2π
exp

[
−
λ

2

(
µ

t − t0
+

t − t0

µ

)]
+ Y0 (3.12)

where AUC is the area under the curve, µ is the mean transit time of microbubbles, λ controls

the curve skewness, t0 is the time delay, and Y0 is a signal offset. Curve parameters were

calculated using an unconstrained nonlinear minimization (Nelder-Mead method) of the sum

of squared residuals. Maximum iterations was set to 800 with a tolerance of 1 × 10−4. Initial

estimates for the parameters were AUC equal to the integral of unfitted data points, µ equal

to the time at which Y(t) = Ymax, λ = 1, and t0 was set to the first cine loop frame when

enhancement reached 10% of the maximum observed intensity, Ymax. Data fitting was truncated

in the wash-out tail to where the intensity value deceased to 50% of Ymax in an effort to isolate

the first pass of indicator and thus avoid a recirculation artifact.

Quantitative perfusion metrics were calculated from the fitting parameters of the LDRW

model to the wash-in curves. In this study, we considered commonly used perfusion parameters
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that reflect MVD (from the area under curve, given by the integral of the fitted LDRW model),

blood velocity (from the mean transit time, and time to peak, given by MTT = µ and tp =(
µ

2λ

) (√
1 + 4λ2 − 1

)
, respectively), and blood flow (from the wash-in rate, given by Ymax/tp).

The area under curve (AUC) of CEUS time-intensity data has been previously corre-

lated with micro-vascular density (MVD) [26, 27], which is a key measure of angiogenesis.

This perfusion parameter is of particular interest for this study design as successful anti-

angiogenic therapy would manifest predictably as a decrease in MVD in the mouse tumor

model [28]. Furthermore, AUC has been shown to be useful in discriminating responsive

from non-responsive patients who are undergoing bevacizumab therapy for hepatocellular car-

cinoma [29]. Treatment-induced changes in the other parameters, which depend on blood flow

rate and velocity, are less easily predicted due to the potential confounding effect of improved

blood perfusion from vascular normalization.

3.3.5 Whole Mouse CT Contrast Agent Perfusion

The contrast agent used for CT imaging was a quick-fixing erbium-based silicone vascular

casting agent. For contrast-enhanced CT analysis, animals were prepared in accordance with

[30]. The procedure is briefly outlined below.

Animals were anesthetized, via a mask, with a mixture of 5% isoflurane mixed with O2,

at a flow rate of 2 mL/min. In preparation for vascular perfusion, animals received an intra-

peritoneal injection of 150 µL heparin (1000 USP/mL, Sandoz, Boucherville, QC, Canada)

contra-lateral to the tumor mass. Heparin was allowed to circulate for 5 minutes before an

incision was made laterally, just below the sternum, through the peritoneum to expose the

abdominal cavity. The diaphragm was pierced and the incision was then continued along both

sides of the ribcage. A hemostat was secured to the sternum and the ribcage was pulled up to

reveal the heart.

A 500 mL saline bag was heparinized with 1 mL of the heparin stock solution. The bag

was secured to an IV-drip stand and attached to a blunted 21G butterfly catheter (BD Systems,

Franklin Lakes, NJ). The blunted catheter was pushed into the left ventricle parallel to the

apex of the heart. The right atrium was cut open to allow the saline full passage through the

vasculature, displacing blood. Animals were perfused with saline for 20 minutes (250 mL of



3.3. Materials andMethods 103

heparinized saline), followed by perfusion of the erbium-based contrast agent. The contrast

agent was allowed to circulate for 30 minutes before flow was stopped and the silicone was

allowed to cure for an additional 20 minutes. Whole animals were then placed in 4% buffered

formaldehyde solution for fixation and storage. CT imaging took place at least one month after

fixation.

3.3.6 CT Imaging

Whole animal CT scans were performed on a GE Vision 120 (speCZT, GE HealthCare, Lon-

don, ON, Canada). Data were acquired at 90 kVp, 40 mA, over 900 projections at 0.4◦ incre-

ments, with a scan time of 5 minutes. Images were collected and reconstructed with 50 µm

isotropic voxels. All samples were imaged with a water filled calibrator to allow for image

rescaling into Hounsfield units (HU).

Tumor-containing mammary fat pads, as well as contra-lateral kidneys, were then excised

for high resolution CT scanning. Each organ was embedded in paraffin to minimize sample

movement and scanned using a GE Locus (GE HealthCare, London, ON, Canada) at 80 kVp,

450 mA, over 900 projections at 0.4◦ increments, 5 frames averaged per view, with a scan time

of 6.5 hours. Images were collected and reconstructed with 20 µm isotropic voxels. A vial of

water and bone mimicking calibrator (SB3, Gamex RMI, Middleton, WI) were concurrently

run with each sample to allow for image rescaling into HU.

3.3.7 CT Analysis

Tumor volume segmentation from the surrounding fat pad in the excised samples was per-

formed in MicroView (v.2.1.2.; GE Healthcare, London, ON, Canada) through manual bound-

ary contouring in parallel planes with 60 µm spacing. Contours were then combined serially to

produce three-dimensional ROIs. Kidney samples also underwent the same manual segmenta-

tion procedure. Segmented image volumes were exported as Sun TAAC (.vff) uncompressed

raster image files and then imported into MATLAB (version R2013a, The MathWorks Inc.,

Natick, MA) for quantification.

Surrogate estimates of vascular volume fraction were generated by taking the mean HU
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value for the segmented tumor mass, under the assumption that the volume contains only soft

tissue and contrast agent. Both tumor and kidney texture volumes were then processed using

power spectrum analysis to estimate the fractal dimension of the image. The erbium-based

contrast medium had an average radiodensity of 3500-4000 HU compared to about 50 HU for

soft tissue, so the power spectrum of the image was dominated by the contributions from the

enhanced voxels. Fractal dimension was calculated from the slope, mFD, of a straight line fitted

to a log-log plot of power vs. frequency considering the following equation:

P(ω) ∝ ω−(9−2FD), (3.13)

based on the power spectrum dependence of fractional Brownian motion [31]. The fractal

dimension FD is calculated as FD = (mFD + 9)/2. The slope of the curve is a measure of the

spatial correlation in the image volume. Volumes that express some degree of self-similarity

(or, more precisely, self-affinity) will have steeper slopes than those that do not, where the upper

limit of FD = 4 represents a volume composed entirely of white noise. An advantage of this

technique over direct measures of tortuosity, such as the distance metric, is that it is applied

directly to the images, thus avoiding need to preprocess the image data (e.g., by applying a

threshold for skeletonization).

3.3.8 Histology and Staining

A MVD assessment protocol adapted from [32] was followed. Briefly, 5 µm thick sections

were acquired at six evenly spaced locations throughout the paraffin embedded tumors. Hema-

toxylin and eosin (H&E) staining was applied to all tissues. Each tumor section was examined

first at a low magnification (25x) to identify 5 regions of high vascularization, i.e., so-called

“hot spots” [33]. Vessels were identified by the presence of CT contrast agent on the his-

tological section (see Fig. 3.4). Slides were digitized with a TISSUEscopeTM 4000 (Huron

Technologies, Waterloo, ON, Canada) and then exported to ImageJ [34] for processing. Vessel

segmentation was performed in a semi-automated fashion by applying Huangs fuzzy thresh-

old [35] to each RGB channel separately, using a sample of in-frame contrast agent to select

threshold limits. Microvessel counts were then performed manually at a higher magnification
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(200x; 10x magnification, 20x ocular). MVD is reported as the mean number of microvessels

per mm2 of tumor cross-section.

3.3.9 Statistical Analysis

All statistical analysis was performed using GraphPad Prism version 6.04 (GraphPad Software,

La Jolla, CA) with a p value of 0.05 to determine significance. An ordinary two-way ANOVA

was conducted on each dataset to compare the main effects of treatment status and tumor age

on the dependent measure of vascularity. Treatment status included two levels (control or beva-

cizumab) and tumor age consisted of three levels (T = 1, 2, and 3 weeks). A linear discriminant

analysis (LDA) was performed using the classify function in MATLAB, which applies Fisher’s

LDA algorithm, on each dataset to estimate the classification error of the measured parameter.

The performance of each vascularity measure’s LDA was assessed by taking the average test

error of 10 cycles of 10-fold cross validation, yielding a 95% confidence interval for each mea-

sure. Significance of correlation between metrics was calculated via a Pearson’s correlation

coefficient test.

3.4 Results

3.4.1 Weighting Function Analysis

The CEUS intensity within the tumor ROI demonstrated a close agreement to the generalized

Pareto probability density function (Eq. 3.5) at every frame in each cine loop. The Nelder-Mead

simplex direct search, described in section 3.3.3, converged within the supplied termination

tolerances for all analyzed frames. An example of a Pareto fitting to two selected cine loop

frames, along with their corresponding weighting functions, is shown in Fig. 3.1. The area of

overlap in Fig. 3.1d, shaded in green, represents the unenhanced fraction of tumor cross-section

at that time point, which can be used as a time-kinetic measure for perfusion analysis. Fig. 3.1e

shows a plot of a wash-in curve generated using the technique.
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Figure 3.1: Representative CEUS tumor images (anatomical transverse plane, 14 days post
inoculation) taken at (a) baseline (unenhanced) and at (b) peak bolus enhancement, with (c)
corresponding Pareto fits to intensity ROI histograms, and (d) weighting functions. The change
in area of overlap (yellow region) over time in (d) was used to construct wash-in curves as
demonstrated in (e).
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3.4.2 Contrast-Enhanced MicroCT

Fig. 3.2 shows CT images of a mouse acquired after vascular perfusion with an erbium-based

silicone contrast agent. A maximum-intensity projection (MIP) image of the (a) whole mouse

body reveals well-enhanced vasculature with evidence of complete venous return and no con-

trast pooling, implying contrast perfusion at the capillary level. Selected organs were extracted

and re-scanned at a higher resolution. The following representative images (Fig. 3.2) were

generated by applying an isosurface with a threshold of 800 HU: (b) a control kidney (week 1),

(c) a control tumor (week 2), and (d) a bevacizumab treated tumor (week 2). Visual inspection

supports a decrease in active tumor vasculature in response to bevacizumab therapy, which is

supported by (e) the box-plot of the mean HU of the segmented tumor volumes and (f) the

corresponding linear discriminant (LDA) analysis used to distinguish treated from untreated

(control) tumors.

A two-way ANOVA was conducted on the influence of the two independent variables (drug

group, time) on the mean HU of the tumor sample. The only statistically significant effect (p

<0.05) was the drug group (p = 0.0176, Sidak’s multiple comparison correction). The 95%

confidence interval of the classification accuracy of linear discriminant analysis was 66% ±

2.4%, where tumors lying below the decision boundary were classified as “treated”.

3.4.3 Surrogate Measures of Vascular Complexity

Fig. 3.3a demonstrates an analysis of the estimated log-normal shape parameter (Eq. 3.6) of

the contrast weighting function. The span of this value ∆σLN = σLN2 − σLN1, where σLN2 is

measured at peak enhancement and σLN1 at baseline, is summarized as a box-plot in (b), with

the corresponding LDA in (c). The estimated fractal dimension (FD) of the contrast-enhanced

CT volumes serves as a validation for these results. Fig. 3.3d is a diagrammatic example

of power spectrum analysis on one representative tumor, where the fitted slope was used to

estimate FD. Fig. 3.3e is a box-plot of tumor fractal dimension data, with kidney data for

comparison. A linear discriminant analysis was performed in panel (f).

A two-way ANOVA reported that both techniques had a statistically significant effect for

the drug group factor (p = 0.0416 for CEUS log-normal shape parameter, p = 0.0275 for



108 Chapter 3. Compound SpeckleModel for CEUS

Figure 3.2: Contrast-enhanced CT images of (a) a MIP projection through the whole mouse
body, (b) a binarized kidney, (c) a control tumor, and (d) bevacizumab treated tumor. The
box-plot in (e) demonstrates the mean HU of the segmented tumor volumes (whiskers are min
to max, box extends from the 25th to 75th percentiles), along with the corresponding LDA
analysis to the right.
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CT FD). A Pearson’s correlation test did not report a significant correlation between these two

measures of vascular complexity (r = 0.322, p = 0.06). Linear discriminant analysis of contrast

CT data had a 95% confidence interval for classification accuracy of 61.7% ± 1.9%, where

tumors lying below the decision boundary were classified as “treated”. For the compound

CEUS data, 56.8% ± 1.2% of tumors were correctly classified as “treated” when below the

boundary.

3.4.4 Histological Validation

Representative H&E stained histology sections, taken from both PBS vehicle and bevacizumab

treated tumors, are shown in Fig. 3.4. The arrows in panels (c) and (d) highlight the presence of

the CT contrast agent perfusing blood vessels at the capillary level. Measures of MVD, shown

as a box-plot in panel (e), yielded a clear difference between treated and control groups. A

two-way ANOVA on this dataset detected significance for both drug group and time (p <0.001

for both). Linear discriminant analysis on MVD, panel (f), had a 95% confidence interval for

classification accuracy of 92.8% ± 0.19%, where tumors lying below the decision boundary

were classified as “treated”.

3.4.5 Bolus Time-Intensity Kinematics

Area Under Curve (AUC):

The AUC for both methods of image analysis are shown in Fig 3.5. Only the compound

model detected a significant reduction of AUC in bevacizumab treated tumors (p <0.001).

Linear discriminant analysis, panels (c) and (d), accurately classified 59.7% ± 3.7% of tumors

using conventional CEUS processing and 77.5%±1.7% of tumors with the compound method.

For both techniques, tumors lying below the decision boundary were classified as “treated”.

This is a significant improvement in classification performance (p <0.001). The measures

from the two techniques had a significant correlation to each other (r = 0.40, p = 0.016).

Longitudinal trends imply rapid vascularization of untreated tumors, and gradual vessel growth

in bevacizumab treated tumors.
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Figure 3.3: The (a) compound model weighting functions for a representative tumor at both
baseline and peak enhancement levels. (b) Box-plot of span of the estimated sigma value
with corresponding (c) linear discriminant analysis. (d) Diagrammatic example of power spec-
trum analysis on a contrast-enhanced CT tumor volume. (e) Box-plot of fractal dimension of
contrast-CT tumors and kidneys, along with (f) linear discriminant analysis.
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Figure 3.4: Low magnification images of H&E stained histology sections taken from (a) vehi-
cle treated tumor and (b) bevacizumab treated tumor. Higher magnification reveals evidence
of vascular perfusion of silicone-based contrast agent (arrows), with the relatively higher mi-
crovascular density of (c) control tumors compared to (d) bevacizumab treated tumors. Quan-
tified MVD is plotted in (e) with an LDA performed in (f).
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Figure 3.5: The compound model detected a significant reduction of AUC in bevacizumab
treated tumors compared to control. Conventional processing did not demonstrate a signifi-
cant effect. (a) Box-plot of conventional CEUS analysis AUC with corresponding (c) linear
discriminant analysis. (b) Box-plot of compound model’s AUC, along with (d) linear discrim-
inant analysis.
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Blood Velocity Metrics (MTT and tp):

A two-way ANOVA analysis on the measures of blood flow velocity, as measured by both

image analysis techniques, yielded significant increases in the metrics over the course of the

study. For conventional CEUS analysis the significance level was p = 0.0023 for an increase

in MTT , and p = 0.0239 for tp. This reflects a progressively slower rate of contrast wash-in as

the tumors developed. Compound CEUS analysis detected an increase in MTT (p = 0.0215),

but not tp. Neither image processing technique showed a significant difference between drug

treated and control tumors, and neither had its LDA classification perform better than random

chance.

Wash-in Rate (WiR):

Conventional CEUS analysis detected a time dependent decrease in WiR, implying that the

blood flow in the tumors became more sluggish as they grew (p = 0.0243). However, it did not

detect a significant difference in WiR between the drug groups. The compound model detected

a significant difference in the WiR of bevacizumab treated and control tumors (p = 0.0237),

and opposing non-significant trends in WiR for either group. The control tumors showed a

trend of lower WiR over time, and the bevacizumab treated tumors had a trend of progressively

increasing WiR. Linear discriminant analysis of conventional CEUS WiR accurately classified

50% ± 3.7% of tumors, where tumors lying below the decision boundary were classified as

“treated”. For the compound CEUS data, 69% ± 1.8% of tumors were correctly classified as

“treated” when below the boundary.

3.5 Discussion

This study proposes a compound model for analyzing the first-order speckle statistics on a time-

series of nonlinear CEUS images. The compound PDF of the statistical model exhibits close

agreement to the CEUS intensity histogram over the entire duration of the wash-in dataset,

implying that the model is an accurate description of nonlinear CEUS speckle from tumors.

The model produced well-behaved wash-in curves, and the introduction of a weighting function
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that relates first-order statistics of CEUS speckle to fractal vessel geometry is potentially useful

for quantifying microvascular morphology. This was tested in an mouse model of breast cancer,

treated with a monoclonal anti-VEGF antibody (murine version bevacizumab B20-4.1.1), to

produce a dramatic change in tumor vasculature.

It has previously been reported that the AUC of a CEUS time-intensity series will correlate

positively with the microvascular density of an imaged tumor [26, 27, 36]. It is expected

that anti-VEGF treatment would result in reduced neovascularization, lowered MVD, and a

corresponding reduction in AUC. A significant decrease in tumor MVD, due to bevacizumab

therapy, was validated with gold-standard histological techniques. Only the compound CEUS

model detected a significant reduction of AUC in bevacizumab treated tumors; the conventional

method showed no detectable treatment effect. Although this apparent increase in treatment

effect sensitivity is promising, it is not clear if this is a general result.

Several other indices of vascular perfusion were explored in this study. For contrast-

enhanced CT, a measure of the mean HU of the segmented tumor volumes served as an es-

timate for vascular volume fraction. A reduction in relative vascular volume, represented by

a decrease in mean HU, was the expected result of anti-angiogenic therapy. The decreased

HU correlated well with the decrease in MVD as measured by histology. For CEUS imaging,

the MTT , tp, and wash-in rate of the tumor were quantified through both conventional CEUS

processing and the compound method. Neither image analysis technique found a main effect

for treatment group on MTT or tp. For wash-in rate, conventional CEUS detected a time de-

pendent decrease in wash-in rate, but no treatment effect, and the compound method found a

significant treatment effect, but no longitudinal effect. Overall, the performance of these two

CEUS techniques in quantifying additional perfusion indices seems similar. However, these

results must be considered within the context of the curve-fitting performed in this study. A

number of groups [37–39] have shown that the multiplicative nature of speckle noise in CEUS

cine loops necessitates the use of MLE fitting of indicator-dilution curve models instead of a

nonlinear least squares method. There is a possibility that switching to MLE for LDRW fitting

would result in improved discrimination of treatment groups. We opted to use nonlinear least

squares to provide a direct head-to-head comparison between the techniques as nature of the

variability, and hence the optimal curve fitting method, for the statistical technique requires
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further study.

This study also assessed whether the metrics derived from the weighting function were

related to microvascular morphology. Specifically, it assessed if the metrics could be used to

infer fractal vessel geometry as a surrogate for vascular tortuosity. This was tested with power

spectrum analysis on tumors that underwent micro-CT perfusion casting, with contra-lateral

kidneys as a second control group. It is expected that vascular normalization would produce

vessel networks with a more regular branching structure and thus the measured fractal dimen-

sion of bevacizumab-treated tumors would be lower than untreated (control) tumors. Kidneys

had the lowest fractal dimension, followed by treated tumors, then untreated tumors; however,

the difference between the treatment groups was modest. Direct measures of tortuosity, such

as the distance metric, were consistent with measures of FD in exhibiting at most a modest dif-

ference between the treatment groups. The motivation for the use of power spectrum analysis

over other metrics of tortuosity in this study was to avoid a threshold and skeletonization step.

The trend in FD aligns with the expected increase in vascular complexity going from highly or-

ganized organs (kidneys) to chaotic vessel beds (untreated tumors). Both the compound CEUS

model and micro-CT analysis detected a significant treatment effect for their respective mea-

sure of vascular complexity, but the measures themselves had a weak correlation, and neither

performed particularly well as a classifier. An important consideration for these results is that

the degree of vascular normalization caused by bevacizumab therapy was not known in ad-

vance for this study. It is not clear what experimental design would produce a predictable and

major change in the fractal dimension of tumor vasculature.

A limitation of the proposed statistical model is a bias toward overestimating the weighting

function width in small tumor volumes. More robust estimators of the Pareto parameters [40]

are being explored to address this overestimation of the weighting function variance. A further

limitation is the assumption of a gamma-family weighting function. In principle, if an arbitrary

vascular network may be approximated by a fractal branching tree, then the weighting function

should be log-normal to be consistent with the results of Qian et al. [12]. The gamma function

used in this analysis served as an approximation to the log-normal distribution to facilitate pa-

rameter estimation. This was justified by literature indicating that these two distributions are

often interchangeable [15]; however, this statement may not hold for strongly enhanced tumors
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that would be more accurately described with the heavier tailed log-normal distribution. Fur-

thermore, the assumption of fully developed speckle in all microbubble sub-populations does

not hold for low concentrations of indicator. This is particularly important in the early wash-in

phases of contrast-enhancement. Addressing this would require a change in the parameterized

distribution from an exponential to a K distribution [39], but the gain in model accuracy may

be outweighed by decrease in parameter estimation stability.

3.6 Conclusions

The proposed compound statistical model describing nonlinear CEUS speckle shows promise

in providing additional information for CEUS analysis. The AUC of wash-in curves produced

using the compound statistical model could more accurately discriminate anti-VEGF treated

tumors from control tumors than could conventional CEUS; these results were confirmed with

gold-standard histological measures of tumor MVD. The model’s weighting function can char-

acterize tumor fractal vessel geometry, which is theoretically a good measure of vascular nor-

malization; however, gold-standard micro-CT perfusion casting demonstrated that the design

of this study only had a modest effect on vascular fractal dimension. It is also possible to extract

estimates of blood velocity and wash-in rate using the statistical model, with a classification

performance that is similar to conventional CEUS analysis. The proposed technique quantifies

the perfusion within a tumor and simultaneously provides an index of vascular complexity,

making it a potentially useful addition to the clinical detection of vascular normalization in

anti-angiogenic combination therapies.
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4.1 Introduction

Renal Cell Carcinoma (RCC) is resistant to chemotherapy and high-dose radiation therapy,

with partial/full nephrectomy offered when the primary tumor is >4 cm. Following tumor re-

section, metastatic RCC patients (mRCC) receive targeted therapy drugs such as sunitinib (a

VEGF receptor tyrosine kinase inhibitor), which antagonizes tumor angiogenic and metabolic

pathways. Targeted therapy is initially effective in most cases, as RCC is highly dependent on

tumor-driven angiogenesis [1], but a minority of RCC patients will exhibit de novo resistance

to their selected therapy. This renders such first-line treatments ineffective at the outset for

these patients [2]. The molecular mechanisms responsible for drug resistance are unclear, with

no biochemical or genetic signature assays available to identify this patient population [3–5].

Furthermore, for patients with mRCC, sensitivity to sunitinib at the outset is temporary, with

drug resistance eventually occurring in all patients within 2-3 years [6]. This resistant pheno-

type is collectively driven by intrinsic and extrinsic factors (e.g. tumor, microenvironment) that

parry the targeted therapy regardless of dose [7, 8].

We have developed an ultra-fast RCC patient derived xenograft (PDX) model for high-

throughput phenotype-based evaluation of intratumoral specimen responses to various targeted

therapies within 10 days using the ex ovo chick embryo (hence PDXovo). The effectiveness of

this tumor avatar model is leveraged by high-frequency ultrasound imaging to quantify tumor

vasculature, blood flow, and growth after continual drug treatment. This imaging modality is

non-invasive and is an excellent readout for anti-angiogenic interventions. The PDXovo tumor

avatar model is superior to immunocompromised mouse PDX models with respect to engraft-

ment efficiency. Mouse PDX models are currently beset by low tumor take rates (∼10-12% will

have a palpable tumor after implantation) in comparison to the tumor take rates observed in the

chorioallantoic membrane (CAM) of the chick embryo [9, 10]. The ex ovo CAM of the chick

embryo is essentially an exposed two-dimensional ‘lung’ with a dense capillary bed that can ac-

commodate various xenografts. CAM xenografts can then be topically treated with drug(s) and

visualized longitudinally with light microscopy and/or ultrasound imaging. Xenograft growth

is rapid in the CAM, and drug treatment of xenografts is straightforward, wherein drugs are

topically administered to the tumor surface. Although previous studies have demonstrated the
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CAM’s ability to accommodate PDXs from RCC biopsies [11, 12], its utility as a preclinical

drug evaluation model for PDXs has not been described. More importantly, its usefulness as a

preclinical model for optimizing targeted therapy within the context of personalized medicine

has also not been explored.

The notion of a genetic biomarker to guide personalized medicine for RCC is questionable,

given recent reports describing tumor heterogeneity in RCC [13, 14], and the relative abun-

dance of intratumoral clones that harbor mutations which may render the tumor unresponsive

to current pharmacological offerings. This intratumoral heterogeneity is further complicated

by temporal heterogeneity, wherein changes in distinct clonal populations are observed over

time within the same tumor, notably during and after treatment with targeted therapy [14].

Evaluating the impact of, or resistance to, targeted therapy due to tumor heterogeneity using

mouse based PDX models is challenging, since the majority of biopsies fail to grow in mice.

Engraftment into the CAM of the chick embryo overcomes this logistical challenge, provided

that each biopsy is equally capable of “taking” in each embryo host. Another requirement

for evaluating PDX response to anti-angiogenic therapies, such as sunitinib, is a non-invasive

means to quantify functional vasculature within the tumor.

We describe the preclinical utility of the CAM as a “tumor avatar” PDX model for the eval-

uation of tumor and microvasculature response when treated with anti-angiogenic drugs, hence

the PDXovo model. This economical and high-throughput preclinical model offers simulta-

neous evaluation of several drugs within two weeks from freshly collected tumor specimens.

This model offers high engraftment rates of patient tumor samples, either directly implanted or

cultured in vitro and expanded prior to engraftment. This model is ideal for identifying genetic

signatures for drug resistance due to prospective analysis of treated and untreated PDXs from

the same patient, taking into account intratumoral heterogeneity and temporal heterogeneity.

This is in contrast to the majority of resistance gene signature studies which are, by their nature,

case control studies that do not control for patient tumor variability and temporal heterogene-

ity over the course of drug treatment. We show that a vascular phenotype based prediction

scheme, where tumors are implanted and evaluated by ultrasound imaging for tumor perfusion

rates, offers a more convenient and effective means of predicting drug resistance than genotype

based readouts.
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4.2 Material and Methods

4.2.1 Regulatory Ethics Board Approvals

Tumor samples were obtained from patients that provided oral and written consent to a Univer-

sity of Western Ontario Research Ethics Board approved protocol (REB #104278), allowing

for the use of surgical specimens for research at the London Health Sciences Centre.

4.2.2 Preparation of Reagents

Stock solutions of the following small-molecule, multi-targeted receptor tyrosine kinase in-

hibitors sunitinib, sorafenib, axitinib, pazopanib, dovitinib, sirolimus, and everlimous were

obtained from LC Laboratories (Woburn, MA). TAK-441 was obtained from Takeda Pharma-

ceuticals, JA. Samples were dissolved with dimethyl sulfoxide (DMSO) to a concentration of

10 µM (Sigma, ON). Vehicle control was DMSO diluted with PBS at a 1:5 dilution ratio.

4.2.3 Cell Culture Techniques

The 786-O cell line was obtained from American Type Culture Collection Inc. (Bethesda,

MD). The primary RCC cell lines, XP127, XP158, XP185, XP206, and T258, were provided

by Dr. James Brugarolas (UT Southwestern Medical Center, Austin, TX). 786-O cells were

maintained in RPMI 1640 (Wisent, QC) supplemented with 20 mM HEPES pH 7.4 and 5 g/L

glucose. Primary RCC cells were maintained in MEM with Earles salts and 2 mM glutamine,

10 ng/ml EGF (Sigma), 1% MEM non-essential amino acid (Wisent), and 0.4 µg/ml hydro-

cortisone (Sigma). All media were supplemented with 10% FBS (Hyclone, UT) and 1% Peni-

cillin/Streptomycin (Wisent) unless otherwise specified. All cells were grown in a 37◦C, 5%

CO2 humidified incubator.

4.2.4 Primary RCC cell line generation and culture

Tumor core samples (8 mm diameter) were taken from patient tumors at the time of par-

tial/full nephrectomy. Cores were kept in transport medium (MEM with Earles salts and
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2 mM glutamine supplemented with 50 µg/mL of gentamycin (Life Technologies), 1% Peni-

cillin/Streptomycin and 1% Fungizone (Wisent)) and processed immediately upon return to

the lab. Tissues were transferred to 33 mm Petri-dish (Cellstar) and minced to <0.5 mm. Sub-

sequently, 1 mL of tissue digestion medium (consisting of transport medium supplemented

with 0.1 mg/mL collagenase (Sigma), 0.1 mg/mL hyaluronidase (Sigma) and 20 µg/mL de-

oxyribonuclease I (Sigma)) was added. Processed tissues were incubated in a 37◦C humidified

incubator with 5% CO2 for 1-2 hrs. Samples were transferred to 1 mL Eppendorf tubes and

centrifuged for 2 minutes at 600 × g. Pellets were washed with 1 mL of transport medium and

centrifuged again for 2 minutes at 600 × g. Pellets were resuspended with primary RCC cell

medium (described for RCC cell maintenance, above) and plated in 12-well plates. Medium

was changed every 3 days and cells were split 1:2 as necessary. Primary RCC cells were trans-

duced with a lentivirus encoding cytoplasmic zsGreen (pLVX-ZsGreen1-C1, Clontech) and

selected with puromycin (2 mg/mL, Sigma) to generate fluorescently green versions of each

cell line prior to CAM implantation.

4.2.5 Cancer Cell Preparation for chick embryo CAM engraftment

Cells were grown to full confluency for the day of engraftment. Cell culture flasks were washed

twice with PBS, trypsinized (0.05% Trypsin-EDTA, Wisent) until completely detached, and

then transferred to 50 mL tubes. Cells were centrifuged for 5 minutes at 200 × g. Supernatant

was removed and the pellet resuspended in 10 mL of PBS. 10 µL samples of the cell suspen-

sion were analyzed using the Countess cell counter (Life Technologies). Basement Membrane

Matrix LDEV-Free, BD Matrigel (BD Bioscience) was used to dilute cells to obtain a final

mixture of 1x106 cells/10 µL inoculation dose. The cell-Matrigel mix was kept on ice until

implantation into the CAM.

4.2.6 Engraftment of Cell lines and/or Patient derived xenografts into the

CAM

Fertilized chicken eggs were obtained from McKinley Hatchery (St Marys, ON). We refer the

reader to a protocol describing each step of the chick embryo cultivation process, as described
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in [15, 16]. On day 9 of embryonic development (EDD-9), a 5 mm disk of autoclaved What-

man No.1 filter paper was briefly placed over some of the smaller allantoic vessels near the

center of the CAM. The disk is allowed to adhere to the CAM, and when detached, scores the

chorionic epithelium, exposing the capillary bed of the CAM. Immediately after, 10 µL of the

cell-Matrigel mixture is pipetted into the abrasion. The embryo is then immediately placed

back into the incubator. At EDD-12, EDD-14, and EDD-16 tumors were topically treated with

5 µL of the indicated drug at varying concentrations. At EDD-18 when the tumors have spent

T>7 days in the CAM, xenografts are submitted to a variety of endpoint analyses.

4.2.7 Engraftment of Patient Tumor Fragments into the CAM

Tumor engraftment procedures were performed on EDD-9 embryos (N>300/patient tumor).

At the time of partial/full nephrectomy, 5-9 tumor cores (8 mm diameter) were extracted per

patient to obtain ample coverage of the entire tumor. Each tumor core was stored in transport

medium until engraftment. Using a scalpel blade, tumor cores were cut into ∼ 2 × 2 × 2 mm

tumor fragments. Immediately after removal of the chorionic epithelium with Whatman filter

paper, a single tumor fragment was placed into the scored area, followed by the addition of

10 µL of diluted Matrigel (1:10 in RPMI media). Embryos were immediately returned to

the incubator after tumor implantation. At 24 hours post implantation, 10 µL of BLES lung

surfactant (BLES Biochemicals Inc. ON) was applied topically over the tumor.

4.2.8 Volumetric Ultrasound Imaging Protocol

All ultrasound measurements were performed using a Vevo R© 2100 high-frequency imaging

system (VisualSonics Inc., Toronto, Canada). The transducer was attached to the supplied

linear stepper motor (VisualSonics Inc.) and fixed above the center of the tumor. Ultrasound

coupling gel (Aquasonic R© 100, Parker Laboratories, Inc., Fairfield, NJ) was applied over the

interface surface of the transducer to provide an acoustic standoff between the piezoelectric

elements and the CAM surface. To prevent the acoustic gel from adhering to the CAM, a small

amount of saline was deposited on the tumor surface prior to coupling. The saline allowed the

transducer to glide over the CAM surface.
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B-mode images were acquired using a 40 MHz linear array (MS-550D, 40 µm nominal

axial resolution, 80 µm nominal lateral resolution). The imaging field of view was set to

10.00 mm in the axial direction and 14.08 mm in the lateral direction. Three-dimensional

volumetric images were acquired, before any injection of contrast agent, using the stepper

motor with a step size 0.076 mm and a total step distance 15.01 mm. This provided an imaging

volume large enough to cover the entire tumor in all of the imaged embryos. Doppler images

were acquired using the same 40 MHz linear array transmitting in power Doppler mode. Three-

dimensional Doppler acquisition was performed using a color box sized to completely enclose

the largest cross-section of tumor. Operator settings were fixed to 100% transmit power, a 2RF-

cycle pulse length, 22 dB receiver gain, 3 kHz PRF, a low wall filter, a high priority (92%), and

frame rate of 32 Hz.

4.2.9 Contrast-Enhanced Ultrasound Protocol

All contrast-enhanced ultrasound imaging was performed using an intravenous injection of

the commercially available Vevo MicroMarkerTM (VisualSonics Inc.) microbubble solution.

For this study, the microbubbles were reconstituted with 0.7 mL of sterile saline yielding a

solution with approximately 2 × 109 microbubbles/mL, with a nominal median microbubble

diameter in the range of 2.3 – 2.9 µm. This size range allows the microbubbles to pass through

capillaries, allowing complete pulmonary transit and venous recirculation. The contrast agent

has a biological half-life of approximately 20 minutes in active vasculature, well within the

imaging time window of this study.

For CAM injection, an 18G x 1 1/2 in. beveled needle tip was attached to 8 cm of Tygon R©

R-3603 laboratory tubing. The open end of tubing was fitted with a glass capillary needle.

With the aid of a confocal microscope, the glass capillary needle tip was manually cannulated

into a high-order vein on the CAM surface for contrast injection. A total volume of 50 µL of

the microbubble solution was injected into each embryo.

For microbubble specific imaging the system was equipped with a 20 MHz linear array

(MS-250, 75 µm nominal axial resolution, 165 µm nominal lateral resolution) transmitting at

18 MHz in nonlinear contrast mode. Nonlinear imaging was performed over a field of view

sized to completely enclose the tumor. Destruction reperfusion cine loops consisting of 700
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frames were acquired at a frame rate of 20 Hz, with a 1-second bursting pulse (MI = 0.9) at

frame 100. The bursting pulse destroys all microbubbles within the imaging volume, creat-

ing what is effectively a negative bolus for indicator-dilution analysis. Destruction reperfusion

imaging was repeated for five anatomical planes throughout the tumor volume to acquire inde-

pendent perfusion sampling.

4.2.10 Volumetric Ultrasound Quantification

Volumetric image reconstruction and analysis was performed using the supplied software (Vevo

2100 workstation, VisualSonics Inc.). Estimates of tumor volume were computed from the B-

mode dataset via manual planimetry on reconstructed three-dimensional images. The blood

volume in the tumor was calculated by summing the number of Doppler color pixels in the

segmented volume and dividing by the total number of voxels in the volume. This Doppler

metric is termed the vascularization index (VI) of the tumor.

4.2.11 Contrast-Enhanced Ultrasound Perfusion Analysis

Cine loops of the contrast-enhanced ultrasound data were exported as uncompressed, inten-

sity signal data files. One B-mode frame was acquired for every non-linear frame, with the

linear and nonlinear image data being acquired simultaneously during the destruction reperfu-

sion sequence. The encapsulated tumor tissue boundary layer was easier to delineate on the

anatomical images. Manual regions of interest segmenting the tumor were placed on the first

frame of the B-mode cine loop, and reused for every subsequent frame in that cine loop, as the

amount of subject motion was low during acquisition. These segmentations were then rigidly

registered to the nonlinear images via translation and scaling. All analysis was performed us-

ing MATLAB (version R2013a, The MathWorks Inc., Natick, MA). The mean intensity of the

nonlinear signal within the ROI was calculated at each frame of the cine loop to serve as an es-

timate of the total indicator mass. The kinematic model used in this study was the conventional

mono-exponential fit first proposed by Wei et al [17]. The fitted mono-exponential parameters,

and the Stewart-Hamilton relations, were used to quantify three blood perfusion parameters:

relative blood flow, relative blood velocity, and relative blood volume.
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4.2.12 Biopsy Classification Matrix

Tumor biopsies were classified as sunitinib sensitive/resistant based on an F-statistic calcu-

lated from power Doppler (VI) and CEUS (relative blood volume) data in a two-way ANOVA

to determine if the population means between the sunitinib group and DMSO control were

significantly different. The factors in this analysis were drug group (sunitinib or DMSO) and

imaging modality (power Doppler or CEUS). A biopsy was classified as sunitinib sensitive if

the F-statistic was greater than 3.17, sunitinib resistant if the F-statistic was below 1.46, and

partial response otherwise. The threshold values were set based on a pilot study testing the

sunitinib sensitive 786-O cell line, and the sunitinib resistance XP121 cell line, each with 4

embryos per treatment group. The threshold value of F = 3.17 corresponds to an alpha level of

0.10, and the F = 1.46 value corresponds to an alpha level of 0.25.

4.3 Results

4.3.1 Engrafted Renal Cell Carcinoma Tumors on the Chorioallantoic

Membrane of Chick Embryos

The CAM is a vascular membrane, spread above the embryo, yolk, and surrounding albumin,

acting as the main site of gas exchange for the embryo. Resected RCC tumor specimens were

>5 cm in diameter, yielding 5-6 cores per primary tumor (Figure 4.1A). Tumor cores were sec-

tioned into 2 × 2 × 2 mm fragments (>36 fragments per patient tumor core), and then directly

implanted onto CAMs on EDD-9 (Figure 4.1A). Within 2 days, individual tumor fragments

were viable and revealed marginal growth over an 8 day incubation period (Figure 4.1B). A

characteristic spoke-wheel patterning of CAM vasculature surrounding the xenografts was ob-

served, with the network radiating toward the center of the tumor fragments (Figure 4.1B,

middle and right panels). All patients enrolled during the course of the prospective PDX stud-

ies were evaluable (12-14 days of drug testing and analysis), highlighting the high engraftment

rate efficiency of RCC PDXs into the chick embryo CAM. Every core from every patient tu-

mor in this study produced viable xenografts on the CAM, with our engraftment technique
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yielding a ∼90% tumor take rate for patient tumor fragments and 100% take rate of all tumor

regions. During growth, engrafted tumors extend below the CAM, leaving only a portion of

tumor volume visible from the surface (Figure 4.1C). Histological examination of tumor frag-

ments revealed viable tumor cells juxtaposing CAM stromal tissue (Figure 4.1D, middle and

right panels). High magnification pathology revealed a clear cell RCC subtype, corroborating

reports from the nephrectomy samples which represented the entire tumor pathology (Supple-

mentary Figure 4.1). Engrafted RCC tumors induce a strong angiogenic response, resulting

in co-option of surrounding CAM vessels and the establishment of a microvascular capillary

network in the tumor interior. The recruitment of pre-existing vessels by the tumor (vascular

co-option) is a potential mechanism of resistance to anti-angiogenic therapy [18, 19]. The high

degree of tumor vascularization was confirmed using high-frequency ultrasound (Figure 4.1E);

microbubble enhancement permits rapid quantification of contrast agent perfusion, a surrogate

measure of the relative amount of active vasculature in a cross-section of the engrafted tumor.

4.3.2 Ultrasound Evaluation of Intratumoral Hemodynamics in RCC PDXs

in the CAM

Although the majority of the tumor is generally hidden below the CAM surface (Figure 4.1C,

left panel), tumor volume can be superficially estimated when tumor cells are fluorescently

labeled (Figure 4.2A). This technique is used to qualitatively verify that sunitinib sensitive

cell lines in the CAM model exhibit reduced tumor burden and vascularization in response to

targeted therapy. Topical application of sunitinib on XP185 tumors resulted in a reduction of

tumor growth and vessel formation (Figure 4.2A, left panels). The sunitinib resistant cell line

T258 [9] did not demonstrate a treatment effect (Figure 4.2A, right panels). These results sug-

gest that the CAM supports RCC PDX growth while preserving their drug resistant/sensitive

phenotype.

High-frequency ultrasound permitted rapid generation of reconstructed 3-D xenograft im-

age volumes at a high spatial resolution (Figure 4.2B). Segmentation of tumor boundaries

via manual planimetry generated precise and reproducible estimates of tumor volume (Fig-

ure 4.2B, left panel). Power Doppler acquisition allowed visualization and quantification of
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Figure 4.1: Patient derived xenograft (PDX) models for renal cell carcinoma (RCC) tumors
using chick embryos. A) Primary RCC tumor resected for intratumor core extraction. Each
core is divided into fragments and then implanted into the chorioallantoic membrane (CAM)
of a chick embryo ex ovo. B) RCC tumor fragments are implanted on EDD-9 embryos and are
viable on the CAM for another 10 days. C) Diagram demonstrating that tumor tissue extends
below the surface of the CAM. D) Histological examination of tumor sections revealed viable
xenograft tissue and a clear cell RCC subtype. E) At endpoint, contrast agent (microbubbles)
is intravenously injected and then high-frequency ultrasound imaging performed to quantify
tumor volume and the rate of tumor perfusion using a destruction-reperfusion protocol. This
permits the investigator to definitively reveal functional tumor vasculature with various bio-
physical parameters (relative blood flow, relative blood volume).
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feeding arterioles surrounding the tumor (Figure 4.2B, right panel) with B-mode acquisition

providing anatomical context (Figure 4.2B, middle panel). Perfusion imaging of tumors was

performed using a ‘destruction-reperfusion’ sequence following an intravenous injection of mi-

crobubble contrast agent (Figure 4.2C). Maximum intensity projections over time demonstrate

a reduction in contrast signal intensity, a measure of microvascular density, in sunitinib treated

XP185 tumors in comparison to vehicle control (Figure 4.2C, left panel). It should also be

noted that sunitinib treated XP185 tumors exhibited a pattern of peripheral contrast enhance-

ment (Figure 4.2C, bottom left panel), implying a lack of capillary support in the tumor core.

Contrast enhanced images of resistant tumors did not show a trend between signal intensity

and treatment group (Figure 4.2C, right panel). Quantified metrics of tumor perfusion (blood

flow, velocity, and volume) are derived from a time-series analysis of the contrast-enhanced

ultrasound image sequences [17].

4.3.3 Functional Heterogeneity of Intratumoral Biopsies on RCC PDXs

Ex Ovo

Anti-angiogenic drugs, such as sunitinib, are first-line treatments for patients with RCC as

they commonly produce strong anti-tumor effects by impeding tumor vasculature formation

and causing tumor vessel collapse [20]. A subset of patients will exhibit de novo resistance

to targeted therapy upfront, prompting the need to identify these patients prior to administra-

tion of targeted therapy. Furthermore, the diverse tumor microenvironment poses a number

of regionalized stresses to cancer cells, which, in combination with Darwinian selection, lead

to intratumoral heterogeneity on both a genetic and phenotypic level [14]. In Patient #2, the

ccRCC and Fuhrman Grade scores were consistent between the renal biopsy, CAM PDX on-

plant, and nephrectomy sample, but in Patient #1 the nephrectomy whole mount specimen

revealed regions of ccRCC tumor with a Fuhrman Grade of 4 compared to a Fuhrman Grade

of 3 in the renal biopsy and CAM PDX onplant (Supplementary Figure 4.1). As such, a single

core biopsy for PDX engraftment may underestimate tumor heterogeneity and be insufficient

for fully informed intervention by the PDX model.

RCC tumor core samples readily form viable xenografts with high engraftment percentage
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Figure 4.2: Ultrasound evaluation of intratumoral hemodynamics in RCC PDXs in the CAM.
A) Tumor volume and vasculature superficially estimated when tumor cells are fluorescently
labeled. Tumors generated using sunitinib sensitive cell lines (786-O and XP185) demonstrated
a reduction in tumor growth and vessel formation in response to topical application of the
targeted therapy. In comparison, tumors grown from resistant cell lines (XP121 and T258)
did not demonstrate a treatment effect. B) When ultrasound imaging is performed, the tumor
volume can be delineated (left panel), and fine structures of the tumor can be imaged when
using B-mode ultrasound imaging (middle panel). When power Doppler mode ultrasound
imaging is performed, areas of red blood cell movement are identified throughout the tumor and
overlaid onto the B-mode image (orange-red signal, right panel). Feeding arterioles have been
labeled with cyan arrows. C) Contrast enhanced ultrasound imaging confirms the presence of
internal tumor vasculature. Sunitinib treated XP185 tumors demonstrated a reduction in vessel
specific enhancement in comparison to vehicle control (left panel). Peripheral enhancement
pattern implies lack of capillary bed in tumor core. Therapy on resistant T258 tumors did not
show a trend between signal intensity and treatment group.
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Figure 4.3: Functional heterogeneity of intratumoral cores on RCC PDXs ex ovo. A repre-
sentative patient had 6 tumor cores taken from their primary tumor (labeled C1-C6), and 3
tumor cores taken from a nearby metastatic site (labeled Met1-Met3), for CAM engraftment
(n >36 embryos/core). One half of each tumor core cohort received topical application of
sunitinib and the other half received vehicle control. Patient tumor fragments underwent both
volumetric and perfusion ultrasound analysis (middle graphs, shown here only from this rep-
resentative patient). This patient exhibited intratumoral functional heterogeneity both within
untreated tumor cores, and in response to sunitinib therapy. The metastatic cores also exhibited
heterogeneity within untreated samples, but was more consistently sensitive to sunitinib.
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rates in the CAM, making this an ideal model to assess functional intratumoral heterogene-

ity in a highly powered manner. Selected patients have 5-9 tumor cores taken from distinct

sites in their primary tumor for engraftment. Each tumor core is implanted into n>36 em-

bryos/core, with one half receiving topical application of sunitinib and the other half receiving

vehicle control over the next 7 days (Figure 4.3). This set of “tumor avatars” is submitted to

high-frequency ultrasound imaging to determine any difference in tumor characteristics such

as tumor volume, tumor vascularity, and tumor blood flow in the context of sunitinib treatment.

RCC cells were also cultured in media containing either DMSO (vehicle) or sunitinib, and no

difference in cell viability was noted for either therapy (Supplementary Figure 4.2B). In all

patients, we observed intratumoral functional heterogeneity regardless of treatment with vehi-

cle or sunitinib (Figure 4.4A). Using this technique, patient cores were classified as responder

(green), partial responder (yellow), and non-responder (red).

4.3.4 Targeted Therapy Drug Panel Evaluation on RCC PDXs with the

PDXovo Platform

There are several different targeted therapies that are indicated for metastatic RCC patients

that antagonize tumor angiogenesis (sunitinib, sorafenib, axitinib, pazopanib) or growth factor

driven proliferation (dovitinib). For these large drug matrix studies, patient derived cell lines

that recapitulate drug resistance phenotypes were used. Three commercially available RCC

cell lines were evaluated with this drug panel (Figure 4.5A, 1 µM final concentration each drug

treatment) and all three cell lines exhibited decreased tumor take rates compared to vehicle con-

trol (DMSO <1%). When three RCC PDX cell lines from sunitinib sensitive patients (XP158,

XP185, and XP206) were evaluated with this drug panel, significant decreases in tumor take

rates were observed (Figure 4.5B). However, XP206 exhibited minor resistance to pazopanib

(1/6 compared to 3/6 for vehicle treatment) and XP158 exhibited strong resistance to sorafenib

(7/13 compared to 11/14 for vehicle treatment). When three RCC PDX cell lines from suninitib

resistant patients were evaluated with the same drug panel (Figure 4.5C), major resistance to

several other targeted therapies was observed with no single drug outperforming any other

drug in these experiments. For XP121, sunitinib and sorafenib exhibited no impact on tumor
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Figure 4.4: Core classification and genomic analysis of RCC PDXs ex ovo. A) Sunitinib sensi-
tivity matrix for each core biopsies taken from all patients. Patient tumor cores were classified
as being a responder (green), partial responder (yellow), or non-responder (red) on the basis
of both the power Dopper vascularity metric and contrast-enhanced ultrasound blood volume.
The number in each box represents the F-statistic for that particular core. B) Exome and copy
number variation (CNV) analysis was performed on all biopsy samples, and representative
PDX samples from each tumor core that was implanted into the PDXovo model.
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take rates (7/12 and 6/9 respectively compared to 4/8 for vehicle control) whereas pazopanib,

dovitinib, and axitinib (1/8, 1/7, 0/6) treatments resulted in significantly decreased tumor take

rates. For XP127, minor resistance was observed in all drug treatments with no single drug

outperforming the entire drug panel. However, for T258, major resistance was observed with

sunitinib treatment, but this PDX was highly sensitive to sorafenib (0/10), with minor resistance

observed for pazopanib, dovitinib, and axitinib (2/10, 2/8, and 3/8 respectively). These drug

paneling results indicate that sensitivity to sunitinib in our RCC PDX model results in similar

drug responses with other targeted therapies, with some exceptions between RCC PDX cell

lines. This technique offers a straightforward means to corroborate sensitivity to sunitinib and

other indicated targeted therapies for RCC treatment, whilst identifying de novo resistance to

drugs ahead of administration of targeted therapy. This technique can also provide the opportu-

nity to identify targeted therapies for sunitinib-resistant RCC patients for improved sequencing

of targeted therapy treatments.

A similar drug panel was performed on a patient derived cell line that exhibited poten-

tial sunitinib resistance, harvested from a “partial responder” metastatic tumor core. Tumor

volume and vascularization index (VI) was quantified for each treatment group using recon-

structed 3-D power Doppler ultrasound. A trend toward reduced tumor volume was noted for

all tested antiangiogenic therapies (sunitinib, pazopanib, sorafenib), but this did not reach sta-

tistical significance (Figure 4.5D). No consistent trend for tumor volume was noted for the

anti-proliferative drugs (everolimus and sirolimus). A statistically significant reduction in tu-

mor vascularity was observed only for sorafenib therapy (22.5 ± 5.6% vs. 6.8 ± 1.3%, p<0.05),

with no trend observed in tumor vascularity for any of the other treatments (Figure 4.5E). A

scatter plot of tumor vascularity versus tumor volume demonstrated no clear correlation be-

tween the two measures (Figure 4.5F).

4.3.5 Engrafted Patient Tumors Maintain Viability in the CAM through

Co-Option of Pre-Existing Tumor Vasculature

Histology of patient xenografts grown in the CAM reveal viable and well-vascularized tumor

tissue with an absence of large regions of necrosis (Figure 4.6A). Our method appears to ac-
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Figure 4.5: Targeted therapy drug panel evaluation on RCC PDXs. Five different targeted ther-
apies used for the treatment of metastasis were evaluated on A) three commercially available
RCC cell lines, B) three RCC PDX cell lines from patients sensitive to sunitinib and, C) three
RCC PDX cell lines from patients resistant to sunitinib. The asterisk denotes lack of tumor
take in that drug treatment group. The fraction of tumor take rates is presented above each
bar for each drug treatment group. D-F) A patient derived cell line, harvested from a “partial
responder” metastatic core, subjected to a drug panel of antiangiogenic and anti-proliferative
drugs. Tumor volume and VI was quantified for each treatment group using reconstructed
3-D power Doppler ultrasound. D) A trend toward reduced tumor volume was noted for all
tested antiangiogenic therapies (sunitinib, pazopanib, sorafenib), but this did not reach statis-
tical significance. No consistent trend for tumor volume was noted for the anti-proliferative
drugs (everlimus and sirolimus). E) A statistically significant reduction in tumor vascularity
was observed only for sorafenib therapy (22.5 ± 5.6% vs. 6.8 ± 1.3%, p<0.05), with no trend
observed in tumor vascularity for any of the other treatments. F) A scatter plot of tumor vascu-
larity versus tumor volume demonstrated no clear correlation between the two measures.
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commodate the majority of RCC xenografts, with relatively high rates of engraftment (>90%)

across different patient tumors. The CAM microenvironment is highly angiogenic, resulting in

well perfused RCC PDX specimens as determined by contrast-enhanced high-frequency ultra-

sound imaging (Figure 4.6B). When selected embryos with RCC PDXs were injected with a

chick and human endothelial cell specific lectin (lens culinaris agglutinin, [21, 22]), the major-

ity of human CD31+ve microvessels (green) were also positive for lectin (red) (Figure 4.6C-D),

revealing a co-option of both host (chick) and tumor (human) vessels. To our knowledge this

has not been previously described in literature. Confocal imaging at a low magnification (10x)

demonstrates extensive tumor vasculature throughout the PDX, (Figure 4.6C) and upon higher

magnification (20x), shows the CAM reperfusing pre-existing tumor vasculature to maintain

PDX tissue viability (Figure 4.6D). This pattern of vascular co-option was consistent among

all examined patient tumors regardless of subtype (Figure 4.6E, chromophobe RCC). Although

the rate of de novo angiogenesis from the CAM could support a tumor, our model reveals the

ability of the CAM to “re-cannulate” pre-existing tumor vasculature, thus foregoing the typical

time lag needed for vascular perfusion throughout a tumor xenograft. This results in viable

RCC PDXs within two days, preempting studies for immediate drug testing/matrices. In some

areas of the tumor, red blood cells can be seen present in the microvasculature (Figure 4.6A,

lower half), consistent with the contrast-enhanced ultrasound imaging data (Figure 4.6B) and

lectin labeling results (Figure 4.6C-E).

4.3.6 Multi-region Exome and Gene Copy Number Variation Analysis of

PDX Samples

Total exome and single nucleotide variation (SNV) analyses was performed on tumor material

in Figure 4.4A that had already been submitted to multi-regional analysis for drug resistance

to sunitinib. For each biopsy region (primary or metastatic) a total of three fragments were

selected for genomic sequencing analysis: one CAM engrafted tumor fragment that was sub-

mitted to vehicle treatment (Tveh), one CAM engrafted tumor fragment that was submitted to

sunitinib treatment (Tsun), and one tumor fragment (T0) that was not xenografted. Comparison

of the T0 vs. Tveh tumor fragments revealed minimal differences in terms of SNV and copy
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Figure 4.6: Pre-existing vessel co-option leads to rapid vascularization of patient tissues. A)
Histology of engrafted PDX show densely vascularized tumor tissue evident from a large
amount of red blood cells present in the section. B) Parametric contrast-enhanced ultra-
sound imaging corroborates dense vascularization and highlights functional heterogeneity in
this PDX tumor. Structural and temporal vessel heterogeneity are also apparent in the time
kinetics of the contrast enhancement. C) Sections from RCC PDX bearing embryos that were
injected with an endothelial cell specific lectin (lens culinaris agglutinin) and stained with anti-
CD31-FITC antibody and Hoechst. Low magnification (10x) confocal imaging demonstrates
extensive tumor vasculature throughout the PDX. D) High magnification (20x) reveals that the
majority of human CD31+ve microvessels (green) were also positive for lectin (red), reveal-
ing a co-option of both host (chick) and tumor (human) vessels. This implies that the CAM
reperfuses pre-existing tumor vasculature to maintain PDX tissue viability. E) This pattern of
vascular co-option was consistent among all examined patient tumors regardless of subtype
(chromophobe RCC).
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number variation (CNV) analysis, confirming that the implantation procedure does select parts

of the tumor for phenotypic analysis. In terms of tumor heterogeneity prior to sunitinib treat-

ment, multi-regional analysis also revealed substantial heterogeneity in terms of SNVs and the

identities of genes mostly commonly held with SNVs, thus corroborating earlier reports by

Gerlinger and colleagues [22]. Treatment with sunitinib did not yield differences in SNVs and

CNVs between Tveh and Tsun, indicating that drug treatment does not alter the tumor fragments

genetic blueprint over a drug treatment time course of 7-9 days.

Based on the SNV profile of the mostly commonly mutated genes present de novo in each

tumor fragment, the RCC fragments that exhibited resistance to sunitinib clustered on the basis

of SNVs in the ZNF569 gene locus (Figure 4.7A). This included tumor regions C1, C4, and C3,

which all exhibited resistance to sunitinib treatment according to the PDXovo platform (Fig-

ure 4.4A). Moreover, the ZNF569 SNVs within the ZNF569 gene loci were the most abundant

SNV type throughout the tumor regardless of region (Figure 4.7D). Regions of the tumor sam-

pled that were shown to be sensitive to sunitinib, including the metastases (Met1-Met3), did

not have nonsynonymous SNV mutations in the ZNF569 gene locus and fewer SNVs relative

to those regions resistant to sunitinib (C1, C4, C3). In terms of branched evolution, none of the

metastases (Met1-Met3) were related to any regions of the primary tumor (C1-C6), likely due

to lack of multi-region representation of the primary tumor in our analysis. Of greater interest

was the lack of the ZNF569 mutation in the metastases which were shown to be sensitive to

sunitinib in the PDXovo platform and the presence of ZNF569 mutations in regions C1, C4,

and C3 that were resistant to sunitinib according to PDXovo testing.

4.4 Discussion

This study is the first to describe a functional consequence of tumor genetic heterogeneity [22]

and the pre-existence of drug resistant clones or regions within primary and metastatic tumors

prior to therapy. Our PDX platform revealed stark variations in targeted therapy response

throughout a patient’s tumor. These variations also correlate to patient clinical outcome, par-

ticularly for the clear cell RCC subtype where a significant portion of patients will be sensitive

to sunitinib or pazopanib, whereas chromophobe and papillary RCC subtypes seldom respond
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Figure 4.7: A) The total SNV count per fragment sample. B) The proportion of variants of
the given base change and the functional consequence per fragment sample. C) The profile
of the mutated genes for each sample demonstrating the functional consequence on that gene.
RCC fragments that exhibited resistance to sunitinib (C1, C4, and C3) clustered on the basis of
SNVs in the ZNF569 gene locus. D) The proportion of samples demonstrating a variant within
each gene, the ZNF569 SNVs within the ZNF569 gene loci were the most abundant SNV type
throughout the tumor regardless of region.
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to these drugs. Exome and gene copy number variation analysis did not reveal a genetic sig-

nature specific for a drug resistant phenotype, even when the same tumor biopsy samples were

used for both baseline and drug resistance modeling. For one such patient, half of the biop-

sies responded well to sunitinib, whereas the other half exhibited a drug resistant phenotype,

with 12-18 PDXs for each treated biopsy. Biopsies of the metastases were also evaluated, re-

vealing potential branched evolution from the sunitinib-responsive portions of the tumor, as

per functional analysis but not via total exome sequencing. Most importantly, we discovered

the prevalence of pre-existing drug resistant phenotypes throughout the primary tumor prior to

administration of sunitinib or pazopanib; however, the intrinsic qualities that produce the drug

resistant phenotype de novo remain unclear.

The PDXovo model presents many advantages over conventional mouse PDX models due

to one key strength: efficient tumor take rates. Regardless of subtype, the PDXovo model is ca-

pable of ∼90% tumor take rates which occurs within the first 48 hours of implantation onto the

CAM of the chick embryo. Consequently, the utility and potential of this PDX model directly

depends on the amount of tumor tissue obtained for evaluation. In this study, we were able

to prepare >300 PDX models for each tumor, permitting multi-regional analysis of both the

primary tumor (6 sites) and any nearby metastases (3 metastases) in a well-powered manner

(n>36 per tumor core). Due to the nature of implantation, the tumor is readily accessible for

manipulation or drug treatment, eliminating the need for intravenous injection of drug. Pairing

this PDX model with high-frequency ultrasound imaging allows for a high-throughput means

of quantifying tumor blood flow rates and vascularity (5–10 minutes/tumor). This is an ideal

readout for evaluating the efficacy of anti-angiogenic targeted therapies on the xenograft. Tu-

mor xenografts from the same biopsy core generate consistently similar results in terms of

tumor blood flow rates and vascularity, even in response to targeted therapy, underscoring the

reliability and utility of the model in accommodating xenografts. However, the relationship

between topical sunitinib dosing on the CAM xenograft model and clinical dosages remains

unclear. The concentrations set in this study were based on patient-derived cell lines that exhib-

ited sensitive/resistant phenotypes in mouse PDX studies. Determining the clinical equivalence

of a PDXovo therapy is ongoing work.

Contrary to previous findings [23], the xenografts were re-vascularized via the pre-existing
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tumor vasculature by the CAM, which was confirmed by immunohistochemistry and vessel

mapping. This mechanism is more plausible than the CAM exclusively vascularizing the tu-

mor through the production of new chick blood vessels, because xenograft blood flow is very

active within 48 hours post-implantation of the RCC tumor implants. Furthermore, the tumor

microvasculature of RCC xenografts is dense, indicating that a portion of the tumor vascula-

ture would be eventually re-cannulated over the 7-9 day implantation period. The implantation

rates of these tumor fragments is similar to results found by Folkman et al. [23], in which var-

ious normal tissue types were re-vascularized by the CAM within 1-3 days post-implantation.

The novelty in this report is that we observe high tumor take-rates within 24-48 hours after

implantation, regardless of the biopsy site, and these xenografts can be treated with drug or

vehicle over the course of 7-9 days.

Based on our data, multi-region analysis of the tumor is critical and requires phenotype-

based evaluation that can directly inform clinical management. In this case, we rely on high-

frequency ultrasound to quantify tumor perfusion rates and vascularity to monitor functional

changes, or a lack thereof, caused by targeted therapy. Although genomics-based approaches

are more scalable, we have opted for a phenotype-based understanding of drug resistance,

as opposed to a biomarker-driven approach which would eventually necessitate the studies

described here. Understanding the genetic “blueprint” responsible for drug resistance is clearly

needed; however, the use of a phenotype-based readout, as presented here, can at least provide

clinically actionable information for RCC patients who are at risk of de novo drug resistance.

In essence, this platform allows us to predict the location of drug resistant clones at the time

of nephrectomy and before they are manifest in the patient, outmaneuvering the tumor before

it can become refractory to any targeted therapy. A genetic signature for drug resistance will

eventually arise, and the PDXovo model can be used to confirm those results in a prospective

fashion, as opposed to case-control genomics studies.

Our genotype analysis of these biopsies is unique, despite various other next-generation

sequencing (NGS) efforts focused on RCC, because of the prospective nature of our analysis

on de novo resistant clones. By definition, all previous NGS efforts have been highly-powered

case-control studies consisting of extracted tumors from patients at baseline; these are then

compared to clinical outcomes. While these efforts are valid in the a priori sense of genotype-
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based causality, the extent of intratumoral diversity between patients within the same cohort

may obscure several genotypes that initiate the drug-resistant phenotype. Therefore, in this

prospective PDX study, there does not appear to be a bonafide drug-resistant genotype (or

gene signature) when comparing intratumor clones that successfully respond to sunitinib. This

conclusion was made possible through the use of an equal number of untreated clones for

comparison.

4.5 Conclusions

Functional tumor heterogeneity exists at the time of nephrectomy, which gives rise to signif-

icant future considerations for clinicians who will select the targeted therapy for the first-line

treatment. This functional tumor heterogeneity may also warrant further studies in combina-

tion with PD-1 based immunotherapy regiments, which have already suggested that functional

tumor heterogeneity can influence clinical outcomes. It may also explain, to an extent, why

some patients exhibit partial response to PD-1 based immunotherapies [24] and reinvigorate

the discussion of optimal dosages of currently used targeted therapies, prior to introduction of

immunotherapies.
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Supplementary Figure 4.1: Intratumoral heterogeneity is evident from multiple core biopsies.
Tissues taken during renal biopsy and the nephrectomy whole mount specimen reveal intra-
tumoral heterogeneity. Patient #1 demonstrated a consistent clear cell renal cell carcinoma
pathology and Fuhrman Grade scores between the renal biopsy, nephrectomy sample, and
CAM PDX onplant. In contrast, Patient #2 had regions of ccRCC tumor with a Fuhrman Grade
of 4, whereas renal biopsy was classified as Fuhrman Grade 3. Tumor pathology and Fuhrman
Grade of the renal biopsy is maintained after CAM engraftment of tissue specimens. This in-
dicates that a single core biopsy for PDX onplanting may underestimate tumor heterogeneity
is likely insufficient to inform patient therapy.
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Supplementary Figure 4.2: Clinically relevant sunitinib dosages do not negatively impact the
structure and function of developing CAM vasculature. A) Mock onplanted embryos were
treated with either sunitinib, or DMSO control, with the same dose and schedule used in main
section of this study. Topical drugs were mixed with dilute (100x) Alexa Fluor 555 dye to
visualize surface concentration. At the end of the nine day therapy, animals were intravascu-
larly injected with Dylight 649 agglutinin (1:10 dilution with PBS). Confocal imaging reveals
that sunitinib treatment did not impact on the CAMs vascular development when compared
to control. The gray line highlights the border between drug treated and drug free regions of
CAM. B) Digital microscope images of RCC cells cultured with DMSO (vehicle) or sunitinib.
No difference in cell viability was noted for either therapy.
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Chapter 5

Compound Speckle Model Reduces

Contrast Ultrasound Variability in a

Patient-Derived Xenograft Model of Renal

Cell Carcinoma

The contents of this chapter are in preparation to be submitted to: Ultrasound in Medicine &

Biology as: “Compound Speckle Model Reduces Contrast Ultrasound Variability in a Patient-

Derived Xenograft Model of Renal Cell Carcinoma”, by Matthew R. Lowerison, Ann F. Cham-

bers, Hon S. Leong, Nicholas E. Power, and James C. Lacefield.
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5.1 Introduction

Contrast-enhanced ultrasound (CEUS) permits rapid, longitudinal, and non-destructive quan-

tification of blood perfusion in normal and pathological tissues. This capability is particularly

important for detection of neoplastic lesions and characterization of tumor-associated angio-

genesis. CEUS has seen application in the clinical setting for liver specific contrast imaging,

where the administration of microbubbles improves the visibility of focal liver lesions (such as

metastatic tumors and hepatocellular carcinoma), and is increasingly being used for the assess-

ment of tissue vascularity [1–3]. In a preliminary study on patients diagnosed with metastatic

renal cell carcinoma (RCC), CEUS was found to be sensitive to the vascular changes induced

by sunitinib therapy [4]. In the preclinical setting, CEUS has been used on animal models of

tumor-induced angiogenesis to evaluate anti-angiogenic therapy efficacy [5–7]. To quantify tu-

mor perfusion, investigators will typically fit time-series CEUS data to an indicator-dilution

model to extract surrogate indices of blood volume, velocity, and flow [8–10]. However,

conventional CEUS image analysis relies on the mean backscatter signal intensity from mi-

crobubbles to estimate indicator concentration for indicator-dilution modeling. This discounts

additional information that may be available from heterogeneous contrast enhancement in the

imaged tumor cross-section. Furthermore, the widespread application of CEUS analysis in

anti-angiogenic trials has been limited due to the high variability and low reproducibility of

flow parameters [11].

A compound statistical model for the analysis of the first-order speckle statistics of CEUS

images was introduced by Lowerison et al. [12] as a method for improving the perfusion quan-

tification of tumor vasculature during anti-angiogenic therapy. In the model, contrast signal

intensity, I, is considered as a compound distribution of exponential probability density func-

tions, p(I), weighted by a gamma probability function, w(θ|α, β), as shown in Eqs. 5.1a- 5.1b.

This formulation yields a Type-II Pareto (Lomax) probability density function (Eq. 5.1c) [13]

for the signal intensity in a region of interest:
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f (I|α, β) =

∫
Θ

w(θ|α, β)p(I) dθ, (5.1a)

f (I|α, β) =

∫
Θ

[
αβ

Γ(β)
θβ−1e−αθ

]
θe−θIdθ, (5.1b)

f (I|α, β) =
β αβ

(I + α)β+1 . (5.1c)

The gamma probability weighting function serves as an approximation for log-normally

distributed flow velocities in tumor vasculature. The technique yields two metrics for the evalu-

ation of tumor perfusion: an estimate of the time-dependent change in enhanced tumor fraction,

and an estimate of the fractal dimension of the tumor vasculature. Enhanced tumor fraction is

calculated by reconstructing the weighting function at every time point during enhancement

and comparing it to the unenhanced weighting function (Figure 5.1B). The time-dependent

discrepancy between these two distributions serves as an estimate of enhanced volume per-

centage and can be analyzed using the same tools as conventional indicator-dilution curves.

The fractal dimension of the tumor vasculature is related to the log-normal shape parameter

σLN , which can be estimated from the gamma parameter, β, by assuming that the coefficient of

variation for the two distributions are equal [14]:

σLN =
√

ln(β−1 + 1). (5.2)

When applied to a mouse xenograft model of breast cancer [12], the compound speckle

model significantly improved the classification accuracy between control and bevacizumab-

treated tumors over conventional CEUS analysis, demonstrated reduced frame-to-frame vari-

ability, and showed promise in providing quantified metrics of vascular heterogeneity as ver-

ified by contrast-enhanced micro-CT. These studies provided a framework for evaluating the

performance of the statistical method for detecting anti-angiogenic treatment responses that

were validated with gold-standard histological and imaging techniques in a well-established

murine breast cancer model. However, that study was limited in its clinical translatability due

to a focus on antiangiogenic therapy for breast cancer. There is growing evidence that VEGF

targeting therapies do not improve overall survival of patients with this disease, a finding that



5.1. Introduction 153

led to the FDA withdrawing its approval of bevacizumab for treatment of metastatic breast

cancer [15–17].

In this article, we apply the compound statistical technique to CEUS images acquired from

a patient-derived xenograft (PDX) model of renal cell carcinoma (RCC) in the chorioallantoic

membrane (CAM) of chick embryos (Chapter 4). RCC accounts for the majority of diagnosed

kidney cancers in North American adults and is the most lethal of all genitourinary cancers [18].

Targeted therapies, such as sunitinib, are initially effective in most cases as RCC is highly de-

pendent on tumor-driven angiogenesis. Four FDA-approved tyrosine kinase inhibitors (TKI)

that target VEGF-A (sunitinib, pazopanib, sorafenib, and axitinib) have been shown to im-

prove progression free and overall survival of patients with metastatic RCC [19–22]. However,

an estimated 25-30% of patients exhibit de novo resistance to their prescribed front-line ther-

apy [23–25]. There is currently no established means to identify resistant patients before can-

cer progression, which is observed months after the beginning of therapy. We have developed

an ultra-fast RCC PDX assay for high-throughput phenotype-based evaluation of intratumoral

specimen responses to targeted therapy within 10 days. Response to therapy in tumor frag-

ments, a predictor of patient response, is evaluated using a combination of both power Doppler

and CEUS estimates of vascular perfusion. Additionally, this PDX assay uses RCC tumor frag-

ments taken from multiple biopsy sites in the primary tumor and metastatic lesions to further

improve its potential utility as a predictor of treatment efficacy. This is possible due to the su-

perior engraftment efficiency that chick CAM PDXs demonstrate over immunocompromised

mouse PDX models.

The rationale for applying the compound statistical technique to CEUS images from the

CAM RCC PDX model is two-fold. Firstly, RCC tumors have been reported to exhibit a high

degree of intratumoral genetic heterogeneity that may promote resistance to antiangiogenic

strategies [26, 27]. It is reasonable to assume that some of this genetic heterogeneity would

manifest as intratumoral functional heterogeneity both within untreated core biopsies and in the

response to antiangiogenic therapy. Thus, applying the compound statistical model, which was

developed as a technique to quantify enhancement heterogeneity independently of indicator

dilution modelling, may add new information to this PDX platform. Secondly, the original

analysis of the CEUS images from the CAM PDX model demonstrated a high amount of
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variability in the quantification of flow parameters. Reducing the variability of tumor perfusion

quantification would improve the confidence of classification of tumor biopsies as being either

sensitive or resistant to therapy.

Thus, this is a hypothesis-generating pilot study to determine whether statistical processing

of CEUS images might add new information to the chick CAM PDX assay. In the study

presented here, two sets of sunitinib drug sensitivity matrices, one generated using conventional

CEUS analysis and the other with the statistical model, are produced for four patients with

metastatic RCC. Drug sensitivity matrices (Chapter 4) classify individual tumor biopsies from

a patient as being either sensitive or resistant to sunitinib in an effort to capture treatment

response consequences of intratumoral heterogeneity. We demonstrate that analysis of the

first-order speckle statistics of nonlinear (subharmonic) CEUS images reduces the variability

in tumor perfusion quantification, particularly for estimates of blood volume, and reduces the

sensitive/resistant classification ambiguity caused by heterogeneous tumor samples.

5.2 Materials and Methods

5.2.1 Patient Characteristics

Tumor samples were obtained from patients that provided oral and written consent to a Univer-

sity of Western Ontario Research Ethics Board approved protocol (REB #104278), allowing for

the use of surgical specimens for research at the London Health Sciences Centre. CAM PDX

engraftment was performed for specimens obtained from four patients diagnosed with large

kidney lesions (>5 cm), two of which also had chest-wall metastases. Pathological analysis

confirmed that three patients had clear cell RCC (1 with metastases) and the remaining patient

had chromophobe RCC with metastases. All patients underwent complete nephrectomy.

5.2.2 Preparation of Reagents

A stock solution of sunitinib, which is a small-molecule, multi-targeted receptor tyrosine ki-

nase inhibitor, was obtained from LC Laboratories (Woburn, MA). Sunitinib was diluted with

dimethyl sulfoxide (DMSO) to a concentration of 10 µM (Sigma, ON). Vehicle control was
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produced by diluting DMSO with PBS at a 1:5 dilution ratio.

5.2.3 Engraftment of Patient Tumor Fragments into the CAM

Fertilized chicken eggs were obtained from McKinley Hatchery (St Mary’s, ON) and stored in

a humidified incubator at 38 ◦C. We refer the reader to [28, 29] for a protocol describing each

step of the chicken embryo cultivation process. Tumor engraftment procedures were performed

on the ninth day of embryonic development (EDD-9) with at least 300 embryos per patient tu-

mor. At the time of partial or full nephrectomy, 5-9 tumor core biopsies (8 mm diameter) were

extracted from multiple independent sites in the primary tumor, and any nearby metastases,

to sample for tumor heterogeneity. Biopsies were sectioned into ∼ 2 × 2 × 2mm fragments

and implanted into the CAM immediately after the abrasion of a small area of chorionic ep-

ithelium. At 24 hours post implantation, 10 µL of BLES lung surfactant (BLES Biochemicals

Inc., London, ON) was topically applied to the tumor fragment. Tumor fragments were treated

every two days, starting on EDD-11, with either 3 µL (10 µM) of sunitinib or DMSO control,

until imaging on EDD-18.

5.2.4 Volumetric Ultrasound Imaging Acquisition Protocol

All ultrasound imaging was performed using a Vevo R© 2100 high-frequency imaging system

(VisualSonics Inc., Toronto, Canada). B-mode and power Doppler images were acquired using

a 40 MHz linear array transducer (MS-550D, 40 µm nominal axial resolution, 80 µm nominal

lateral resolution). Ultrasound coupling gel (Aquasonic R© 100, Parker Laboratories, Inc., Fair-

field, NJ) was liberally applied over the surface of the transducer to provide an acoustic standoff

between the transducer and the CAM. Saline was topically applied to the tumor surface imme-

diately prior to coupling to prevent the acoustic gel from adhering to the CAM. The imaging

field of view was set to 10.00 mm in the axial direction and 14.08 mm in the lateral direc-

tion, with a Doppler color box sized to completely enclose the largest cross-section of tumor.

Three-dimensional volumetric images were acquired with a linear stepper motor (P/N 11484,

VisualSonics Inc.) with a step size of 0.076 mm and a total travel distance of 15.01 mm. This

imaging volume was large enough to enclose the entire tumor in all of the imaged embryos.
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5.2.5 Contrast-Enhanced Ultrasound Image Acquisition Protocol

All contrast-enhanced ultrasound imaging was performed with the Vevo MicroMarkerTM (Vi-

sualSonics Inc.) microbubble agent reconstituted with 0.7 mL of sterile saline to yield a solu-

tion with approximately 2×109 microbubbles/mL. CAM vasculature was manually cannulated

with a glass capillary needle to inject a total volume of 50 µL of the microbubble solution

into each embryo. The Vevo 2100 system was equipped with a 20 MHz linear array trans-

ducer (MS-250, 75 µm nominal axial resolution, 165 µm nominal lateral resolution), transmit-

ting at 18 MHz in nonlinear contrast mode for all CEUS acquisition. The nonlinear contrast

mode performs subharmonic imaging using a two-pulse amplitude modulation method [30].

Destruction-reperfusion imaging was performed over a field of view sized to completely en-

close the cross-section of the tumor. Cine loops consisting of 700 frames were acquired at a

frame rate of 20 Hz with a 1-second bursting pulse (MI = 0.9) at frame 100. This acquisition

protocol was repeated for five anatomical planes throughout the tumor volume.

5.2.6 Volumetric Ultrasound Image Analysis

Volumetric image reconstruction and analysis was performed using the manufacturer’s soft-

ware (Vevo 2100 Workstation, VisualSonics Inc.). Estimates of tumor volume and vascularity

were computed via manual planimetry on the reconstructed three-dimensional images. The

vascularization index (VI) of the tumor was estimated by calculating the percentage of voxels

in the segmented volume that contained detected blood flow (i.e. Doppler color pixels).

5.2.7 Contrast-Enhanced Ultrasound Image Analysis

All CEUS image analysis was performed using MATLAB (version R2013a, The MathWorks

Inc., Natick, MA). Cine loops of the nonlinear contrast image data were acquired using the

Vevo 2100’s digital RF mode and exported as uncompressed, intensity signal data files (quan-

tized to 16 bits at a 288 MHz sampling frequency). The first frame of each cine loop was

manually segmented to produce the tumor region of interest (ROI) used in the analysis of all

subsequent frames.
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Generalized Pareto PDFs (Eq. 5.1c) were fit to the contrast intensity samples taken from the

ROI in each frame of each cine loop. Maximum likelihood estimates of the Pareto parameters

(α,β) were solved for using an unconstrained nonlinear optimization (Nelder-Mead simplex

direct search) with initial guesses from the method of moments. The maximum number of

function evaluations and iterations allowed was set to 200 times the number of sample points

in the ROI. The termination tolerances on the function value and on the input value were set

to 10−4. Estimates of the log-normal distribution’s shape parameter (σLN) were generated at

every time-point in the cine loop from the fitted gamma parameter (β), as in Eq. 5.1c. The

image analysis procedure is described in more detail in [12].

5.2.8 Wash-in Curve Analysis

The kinematics of contrast enhancement were characterized for both the conventional method

of CEUS analysis, as well as the method based on the statistical model, using a mono-exponential

fit [31]. For conventional CEUS, wash-in curves were constructed by plotting the mean signal

intensity within the ROI for every frame in the cine loop. Relative blood volume was estimated

from the scaling parameter of the fitted mono-exponential function. For the statistical model

technique, the gamma probability density weighting function in Eq. 5.1b was reconstructed us-

ing the extracted Pareto parameters (α,β) for every frame in the cine loop. The time-dependent

gamma PDF was then used to estimate the enhanced tumor fraction (Figure 5.1B) by deter-

mining the overlapping area between the weighting function at time point t and the gamma

weighting function of unenhanced tissue (i.e., just after the destruction pulse). One minus this

area of overlap, which represents enhanced populations of speckle, was plotted as a function

of time and is considered comparable to the conventional CEUS blood volume estimate.

5.2.9 Biopsy Classification as Drug Resistant or Sensitive

Sunitinib sensitivity matrices were constructed (as in Chapter 4) to classify every tumor biopsy

taken from all patients in this study as being either a responder (green), partial responder (yel-

low), or non-responder (red). Classification of tumor biopsies was performed via the calcula-

tion of an F-statistic in a two-way ANOVA to determine if the population means between the



158 Chapter 5. Compound Speckle CEUS RCC PDX

sunitinib group and DMSO control were significantly different using both the power Doppler

VI and CEUS data measures. Two such biopsy classification matrices were completed to com-

pare the performance between both CEUS techniques, with factors being drug group and imag-

ing modality (power Doppler with conventional CEUS, or with compound CEUS). In either

case, a biopsy was classified as sunitinib-sensitive if it was found to have an F-statistic of

greater than 3.17, and sunitinib-resistant if the F-statistic was below 1.46. Biopsies between

these values were classified as an intermediate, or partial, response. The threshold values

for the F-statistic were determined from a pilot study testing CAMs engrafted with a known

sunitinib-sensitive cell line (786-O) and a known sunitinib-resistant cell line (XP121). Each

pilot study had 4 embryos per treatment group, where the F = 3.17 value corresponds to an

alpha level of 0.10, and the F = 1.46 to an alpha level of 0.25.

5.3 Results

5.3.1 Engraftment Efficiency of Renal Cell Carcinoma Tumors

All of the patients in this study had primary RCC tumors that were at least 5 cm in diameter

at the time of nephrectomy. This permitted multiregional analysis of sunitinib response via the

extraction of multiple biopsies from the primary tumor (5-6 biopsies) and any nearby metas-

tases (3 biopsies in both patients with metastases). The total number of biopsies per patient

in this study was 5-9. Each biopsy was subdivided into at least 36 fragments, and fragments

were engrafted directly into the CAM on EDD-09, yielding 200-320 engrafted embryos per

patient in this study. Engrafted fragments rapidly vascularized and maintained a high viability

in the CAM over the duration of the study (N >5 fragments in each treatment group survived

until imaging on EDD-18, per core biopsy). Ultrasound imaging confirmed a high degree of

vascularization as depicted by power Doppler and CEUS acquisitions (Figure 5.2).
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Figure 5.1: CEUS analysis of a sample tumor. A) Selected frames from a CEUS cine loop
that represent different phases of contrast wash in. From left to right these frames represent
baseline signal, arteriole enhancement, and complete perfusion. B) Weighting functions con-
structed using intensity samples taken from the CEUS frames shown in (A). The inset to the
right demonstrates how the enhanced fraction at the third time point was calculated. C) The
conventional CEUS wash-in curve of contrast signal intensity for this tumor. D) A wash-in
curve constructed using the enhanced fraction estimated from the statistical method’s weight-
ing functions. The wash-in curve samples highlighted by the red and blue dots in (c) and (d)
correspond to the “fast flow” and “slow flow” frames, respectively, in (a).
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Figure 5.2: Example ultrasound images taken from a tumor-bearing embryo, showing evidence
of A) feeding arterioles (2-D power Doppler image, yellow lines denote placement of Doppler
color box) and B) dense capillary networks (nonlinear CEUS image). Bottom panels show 3-D
reconstruction of C) tumor anatomy (B-mode) and D) arteriole network (power Doppler).

5.3.2 Application of the Compound Speckle Model to RCC PDX CEUS

Data

The contrast intensity data from tumor ROIs demonstrated a close agreement to the Type-II

Pareto probability density function (Eq. 5.1c) in every frame of each CEUS cine loop, and in

all cases the model fitting converged within the specified termination tolerances. Figure 5.1A

shows an example of selected frames from a CEUS tumor reperfusion cine loop with distinct

phases of wash-in. The left frame shows the tumor just following the destruction pulse se-

quence, where very little enhancement is present. The middle panel is taken just after the

complete filling of an arteriole within the middle of the tumor (t = 1.58 seconds). The last

panel is a later time point when all of the slower flowing vasculature has perfused (t = 12.07

seconds). These three time points have the example weighting functions constructed in Fig-

ure 5.1B. The inset demonstrates how the enhanced fraction of the tumor is calculated at every

time point in the cine loop. A comparison of the two wash-in curves constructed from this

example cine loop are shown in Figure 5.1C-D. The conventional CEUS processing shows a

very rapid wash-in to an asymptote at or around the time that the arteriole is perfused, whereas
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the curve constructed with the statistical method shows distinct fast and slow flow phases of

wash in.

5.3.3 Compound Model Reduces Coefficient of Variation of CEUS Blood

Volume Estimates

One of the advantages of the compound statistical model that was demonstrated in our previous

work [12] was reduced frame-to-frame variability in indicator dilution curves. An example

wash in curve demonstrating this advantage can be found in the comparison in Figure 5.1C-D.

Furthermore, the analysis of first-order speckle statistics reduced the coefficient of variation

(CoV) of CEUS estimates of blood volume when compared to conventional CEUS methods

(CoV of 0.554 vs. 0.828, Brown-Forsythe test, p-value <0.05). The CoV was significantly

higher in the sunitinib-treated cohort (CoV of 0.677 and 0.901 for compound and conventional

CEUS, respectively) than in the DMSO cohort (CoV of 0.388 and 0.756 for compound and

conventional CEUS, respectively).

5.3.4 Correlations Among Ultrasound Vascular Metrics

Linear regression analysis of power Doppler vascularization index in comparison to both CEUS

analysis techniques can be found in Figure 5.3. Conventional CEUS blood volume demon-

strated a weak correlation to power Doppler VI (Figure 5.3A, R2 = 0.1955, p = 0.0013), and

compound statistical analysis of CEUS data marginally improved this correlation (Figure 5.3B,

R2 = 0.4331, p <0.0001). There was only a slight correlation between the two CEUS analysis

techniques (Figure 5.3C, R2 = 0.2707, p = 0.0001). Generally, the σLN value exhibited the

same trends as the compound-model enhanced volume fraction, implying that it does not add

new information to CEUS analysis. The correlation between the compound-model enhanced

volume fraction and the σLN parameter was weak, but statistically significant (Figure 5.3D, R2

= 0.2302, p = 0.0004).
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Figure 5.3: Comparisons of perfusion and vascularity parameters produced in this study. A-C)
Linear regressions between the three modalities were significant in all cases. A) Conventional
CEUS blood volume to Doppler vascularization index correlation (R2 = 0.1955, p = 0.0013).
B) Compound CEUS enhanced volume fraction to Doppler vascularization index correlation
(R2 = 0.4331, p <0.0001). C) Correlation between the two CEUS analysis blood volume
estimates (R2 = 0.2707, p = 0.0001). D) The correlation between the log-normal σLN and
compound model’s blood volume estimate (R2 = 0.2302, p = 0.0004).
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5.3.5 Quantification of Ultrasound Images to Classify Tumor Biopsies

All of the tumor biopsy fragments from every patient in this study were imaged using both

power Doppler and CEUS acquisition (Figure 5.2). Every group of sunitinib-treated tumor

fragments was compared to the DMSO control group from that same biopsy to detect a sig-

nificant decrease in vascularization index (as measured by 3-D power Doppler), relative blood

volume (conventional CEUS), or enhanced volume fraction (compound model CEUS). Fig-

ure 5.4A shows the combined Doppler and CEUS metrics for the primary tumor biopsies of

a patient diagnosed with clear cell RCC. This patient demonstrates sunitinib-dependent de-

creases in VI and blood volume or enhanced volume fraction in the majority of the biopsies,

implying that this patient would exhibit sensitivity to sunitinib therapy. In comparison, for the

patient represented by the plots in Figure 5.4B, fewer biopsies showed a treatment response to

sunitinib. This patient, diagnosed with chromophobe RCC, is not expected to respond well to

sunitinib therapy in the clinical setting. Classification matrices for treatment sensitivity were

produced for each of the three ultrasound modalities (Figure 5.4C, sensitive biopsies in green

and resistant in red). A significant difference (i.e., reduction in an ultrasound vascular met-

ric) between sunitinib and DMSO treated tumor fragments would classify that biopsy as being

sensitive to therapy. The clear cell RCC patients are Patients 1, 2, and 3 in Figure 5.4C; the

chromophobe RCC patient is Patient 4. There was a high degree of heterogeneity in treatment

sensitivity within each patient as well as frequent differences in classification results for indi-

vidual biopsies using different ultrasound modalities (only 18 out of 28 examined cores had the

same classification with all 3 methods).

5.3.6 Dual Modality Patient Classification

Evaluating treatment sensitivity by considering both power Doppler and CEUS measurements

has the advantage of providing two independently acquired measures of tumor vascularization.

Scatter plots of Doppler VI versus either of the CEUS perfusion metrics demonstrate that a

linear decision boundary can distinguished treated from control specimens for most of the

tumor fragments from a biopsy that is suspected to be sunitinib-sensitive, taken from a patient

with clear cell RCC (Figure 5.5A). An equivalent scatter plot from the chromophobe RCC
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Figure 5.4: Sensitivity or resistance classification of tumor biopsies based on ultrasound image
quantification. A) Doppler and CEUS vascular metrics from a representative patient diagnosed
with clear cell RCC, taken from Patient 3. Note that most biopsies demonstrate a sunitinib-
dependent decrease in vascularization index and/or blood volume or enhanced volume fraction.
B) Doppler and CEUS vascular metrics from the patient diagnosed with chromophobe RCC
(Patient 4). In each case a statistically significant decrease in a vascular metric would classify
that biopsy as sunitinib sensitive (in green); otherwise, the biopsy was considered resistant
(in red). C) Matrices demonstrating the sensitive/resistant classification using each ultrasound
modality for every biopsy from all patients in this study.
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patient, who is expected to be sunitinib resistant, shows substantial overlap in the ultrasound

data from the treated and control tumor fragments (Figure 5.5B).

Figure 5.5: A) Scatter plots of Doppler VI and CEUS blood volume or enhanced volume
fraction from a suspected sunitinib-sensitive biopsy. A linear discriminant analysis demon-
strates that a simple decision boundary is able to correctly classify the majority of treated and
untreated tumor fragments in a drug sensitive biopsy. B) An equivalent scatter plot from a
sunitinib-resistant biopsy taken from the patient with chromophobe RCC. The choice of deci-
sion boundary is less obvious, and does not perform well as a classifier.

Two sets of drug sensitivity matrices were produced using power Doppler along with either

CEUS analysis technique for all patients in this study (Figure 5.6). Each biopsy core was clas-

sified as sunitinib sensitive (green), partial responder (yellow), or resistant (red) based on the

F-statistic calculated to assess the differences in Doppler VI and one of the CEUS parameters

between the treated and control fragments for that core (number in each box in Figure 5.6).

Clear cell RCC cores were more consistently classified as sunitinib sensitive, and cores from

the chromophobe patient as sunitinib resistant, with the compound CEUS model.
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Figure 5.6: Treatment sensitivity of tumor biopsies was classified using a combination of power
Doppler VI with one of the CEUS techniques. A) Drug sensitivity matrix constructed using
Doppler VI and conventional CEUS blood volume for all patient cores in this study. B) An
equivalent sensitivity matrix generated using Doppler VI and the compound statistical CEUS
enhanced volume fraction. The number in each box is the F-statistic comparing ultrasound
vascular metrics for treated and control fragments from that particular core.
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5.4 Discussion

This study applied a compound probability density function model to analyze the speckle statis-

tics of CEUS images acquired from a CAM PDX model of RCC that underwent sunitinib ther-

apy. The contrast intensity samples taken from tumor ROIs demonstrated a close agreement to

the compound PDF at every frame of each CEUS cine loop. The model produced well behaved

wash-in curves with a reduced coefficient of variation in blood volume estimates over conven-

tional CEUS analysis, implying that the compound model provides more reproducible quan-

tification of tumor vasculature. The compound model demonstrated distinct wash-in phases,

corresponding to fast-flow and slow-flow, in CEUS cine loops taken from tumor fragments

with large in-plane arterioles. The application of the compound technique to this RCC PDX

model improved the confidence of patient core biopsy classification as being either sensitive or

resistant to sunitinib therapy.

For both CEUS techniques, the CoV of blood volume estimates was consistently higher in

the treated tumor fragment group in comparison to the vehicle control group. There are several

possible explanations for this observation. First, RCC tumors exhibit a high degree of genetic

heterogeneity, which implies that the tumor core biopsies themselves could contain distinct

sub-clones that may have varied intrinsic resistance to sunitinib. This could be tested through

similar drug dosing studies on expanded clones from patient tumors, under the assumption that

the timeline of the study is short enough to avoid acquired resistance from random mutation

events. Secondly, this study applied sunitinib dosing topically, a technique that adds experi-

mental variability to the total dose of drug absorbed by the tumor fragment versus spill-over

into the surrounding tissues. Intravascular injection of sunitinib would allow for tighter control

of sunitinib pharmacodynamics at the expense of study power. An intravascular drug dosing

scheme would require scaling back the scope of the project as it is more time consuming, and

prone to embryo attrition, compared to topical dosing. Finally, the dose of sunitinib has not yet

been optimized for maximum vascular impact at safe-to-embryo doses in the tumor fragment

CAM xenograft model.

Many of the CEUS cine loops from this PDX platform demonstrated distinct wash-in

phases that correspond to fast-flow and slow-flow (i.e., arteriole and capillary) enhancement,
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as in Figure 5.1. Arteriole enhancement can often obscure the perfusion kinematics of the sur-

rounding capillary bed in CEUS acquisition, which necessitates manual segmentation of these

features to exclude them from the analysis ROI. This additional segmentation step is cumber-

some, time consuming, and operator dependent, but is often required for conventional CEUS

analysis of tumors/organs with dominant vascular features [11]. However, indicator-dilution

curves generated using the compound model demonstrated these phases of wash-in distinctly,

using only a single tumor-encompassing ROI, which could permit the study of slow-flow com-

ponents of wash-in without the need for re-segmentation. Identification of the most appropriate

indicator-dilution model to decompose the two (or more) components of wash-in for this type

of analysis requires further investigation.

The motivation for this study is ultimately the diagnosis of de novo sunitinib resistance

in patients with metastatic RCC. We have opted to attempt this using 3-D power Doppler

ultrasound in combination with serial 2-D CEUS acquisitions. Even at high frequencies, power

Doppler is relatively insensitive to the capillary level effects of sunitinib therapy, being only

able to detect feeding arterioles in tumors (i.e. no smaller than the nominal scanner resolution

of 40 µm axial by 80 µm lateral [32]), but the 3-D acquisition provides a global measure

of tumor blood volume. CEUS is sensitive to microvascular flow, but the 2-D time-series

acquisition means that tumors will be spatially under-sampled for perfusion, even with multiple

imaging planes. Therefore, Doppler VI and the CEUS vascular metrics are not expected to

be strongly correlated [33, 34]; this assumption was confirmed for this study in Figure 5.3A

and 5.3B. Rather, the expectation is that the strength of one technique will compensate for the

limitations of the other, and thus the combination will provide the best classification of biopsies

as sunitinib sensitive/resistant. This study demonstrates the merit of applying the compound

statistical model to RCC biopsy classification as the technique more consistently classified

clear cell RCC biopsies as being sunitinib sensitive, and chromophobe RCC biopsies as being

sunitinib resistant, over conventional CEUS.

Our previous research demonstrated the compound speckle model’s ability to significantly

improve the classification accuracy between control and bevacizumab treated tumors in a

mouse xenograft model of breast cancer, over conventional CEUS analysis [12]. This im-

provement in performance was attributed to an increased sensitivity of CEUS area under the
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curve to the changes in micro-vascular density caused by the anti-angiogenic agent. This ob-

servation may explain the improved classification performance presented in this study from

application of the statistical CEUS method. We also previously reported that the lognormal

σLN value (Eq. 5.2) was modestly correlated with the fractal dimension of tumor vasculature,

as verified with contrast-enhanced micro-CT [12]. This drove the hypothesis that the com-

pound model could capture differences in fractal vessel geometry in this CAM PDX model,

potentially supplying more information for classifiers to discriminate between sunitinib sensi-

tive/resistant cores. However, the estimated σLN value was found to exhibit the same trends

as estimates of blood volume. Sensitivity matrices could have been produced using Doppler

VI and σLN (or Doppler VI, enhanced volume fraction, and σLN together), but this was not

explored because Figure 5.3D suggests that σLN does not add enough new information to be

useful. Further work is required to determine what physiological features affect the compound

model’s estimate of σLN .

The treatment sensitivity matrices produced in this study demonstrated an ability to dis-

criminate clear cell from chromophobe RCC tumor fragments based only on functional imag-

ing of their treatment response to sunitinib therapy. This suggests that the assay can detect

treatment sensitivity of individual tumor biopsies and may be suitable for screening of de

novo drug resistance in patients with metastatic RCC. However, these results have yet to be

validated on a per core basis (we expect heterogeneous treatment sensitivity within a single

patient) or through patient outcome measures. Given the poor track record of microvascular

density in evaluating anti-angiogenic treatment response [35], tumor fragment resistance sta-

tus should be validated through serial histology to quantify endothelial cell proliferation [36].

Next-generation sequencing provides an alternative means of validation, but total exome and

single nucleotide variation analyses provided no stand-out biomarker for sunitinib resistance

in the CAM RCC PDX model (Chapter 4). Transcriptome profiling (e.g. RNA-Seq) may be

more sensitive to changes in angiogenic status.

A major limitation of this study is the low number of patients, and low representation of

known sunitinib resistant samples, which restricts the interpretation of the presented results.

At the time of writing, the three clear cell patients in this study have undergone systemic

targeted therapy, but for TKIs other than sunitinib. Patients 1 and 2 have shown signs of pro-
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gression and have discontinued systemic therapy due to intolerable side effects (PFS of 5.3

and 7.5 months, respectively). Patient 3 has not shown evidence of progression after 5 months

of pazopanib therapy. Patient 4, diagnosed with chromophobe RCC, has not started systemic

therapy. It is not clear how resistance/sensitivity to one drug translates to other TKIs. Fu-

ture studies should include a wider array of patient populations, including clear cell, papillary,

and chromophobe RCC tumors, compared against outcome measures from patients undergo-

ing systemic targeted therapy with the TKI used in the screen. The genetic heterogeneity of

RCC tumors, which in turn implies heterogeneous treatment sensitivity within a single pa-

tient, further complicates study design as variable intra-patient response needs to be accounted

for. To assess whether this protocol can be predictive of patient outcome (including de novo

resistance, acquired resistance, and progression free-survival) would require adequate repre-

sentation from these patient populations. The compound statistical model provided a more

reproducible quantification of tumor vasculature, and both treatment matrices presented in this

study could discriminate presumably sunitinib-resistant (chromophobe) tumor fragments from

presumably sunitinib-sensitive ones (clear cell). A larger study appears justified, provided the

validation techniques and outcome measures discussed above are taken into consideration.

5.5 Conclusion

Implantation of RCC tumor specimens into the CAM resulted in high engraftment efficiencies

(take rate of 90%) relative to those typically observed in immunocompromised mice [37]. In-

tratumoral functional heterogeneity was observed, both within untreated core biopsies and in

the response to antiangiogenic therapy, with all three of the vascular quantification techniques

presented in this study. First-order speckle analysis reduced the coefficient of variation of

CEUS estimates of blood volume compared to conventional CEUS methods (CoV of 0.554 vs.

0.828, Brown-Forsythe test p-value <0.05) and thereby improved patient classification confi-

dence. Indicator-dilution curves generated using the compound model demonstrated distinct

slow-flow and fast-flow phases of wash-in for tumor fragments with dominant vascular features

(i.e. in-plane arterioles), permitting the study of slow-flow components of wash-in without the

need for manual vessel segmentation. Treatment sensitivity matrices, which classified individ-
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ual tumor biopsies as being sunitinib resistant or sensitive, could discriminate clear cell from

chromophobe RCC samples, suggesting that the assay may be suitable for screening of de novo

drug resistance. Further studies, with a larger and more representative patient population, are

required to assess whether this protocol can be predictive of patient outcome.
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Chapter 6

Summary and Future Work

6.1 Summary

6.1.1 Chapter 2: Improved Linear Contrast-Enhanced Ultrasound Imag-

ing via Analysis of First-Order Speckle Statistics

Chapter 2 demonstrated a linear (B-mode) processing approach to quantify the change in the

first-order speckle statistics of B-mode cine loops from the incursion of microbubbles. The

technique, named the EDoF (effective degrees of freedom) method, showed promise for im-

proving the robustness of linear CEUS based on a reduced frame-to-frame variability com-

pared with conventional linear subtraction time-intensity curves. The reduced frame-to-frame

variability manifested as a statistically significantly higher SNR (p < 0.0001) of the EDoF

method’s wash-in curves (33.1 ± 6.2 dB) compared with the conventional linear technique

(18.3±3.2 dB). Wash-in curve parameters estimated using the EDoF method also demonstrated

a higher correlation to nonlinear CEUS than the conventional linear method. In particular, the

AUC of the EDoF method exhibited a higher Pearson correlation to the nonlinear CEUS AUC

(r = 0.6776) than did conventional linear processing (r = 0.4919).
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6.1.2 Chapter 3: Compound Speckle Model Detects Anti-Angiogenic Tu-

mor Response in Preclinical Nonlinear Contrast-Enhanced Ultra-

sonography

Chapter 3 expanded the potential clinical applicability of the technique presented in Chapter 2

by presenting a second-generation model for the analysis of the first-order speckle statistics of

two-pulse amplitude modulated contrast-enhanced ultrasound images. The area under curve

produced using the compound statistical model could more accurately discriminate anti-VEGF

treated tumors from untreated tumors than conventional contrast-enhanced ultrasound image

processing. A linear discriminant analysis accurately classified 59.7% ± 3.7% of tumors using

conventional CEUS processing and 77.5%± 1.7% of tumors with the compound method. Both

the compound CEUS model and micro-CT analysis detected a significant treatment effect for

their respective measure of vascular complexity (p = 0.0416 for CEUS σLN parameter, p =

0.0275 for CT FD), but the measures themselves had a weak correlation (r = 0.322, p = 0.06),

and neither performed particularly well as a classifier (accuracy of 56.8%± 1.2% and 61.7%±

1.9%, respectively). An important consideration for these results is that the degree of vascular

normalization caused by bevacizumab therapy was not known in advance for this study.

6.1.3 Chapter 4: PDXovo: Ultrafast Prediction of Drug Sensitivities via

Intratumoral Multiregional Analysis

Chapter 4 demonstrated an ultrafast PDX model of RCC in ex ovo chicken embryos (PDXovo)

that permitted quantification of tumor volume, tumor vascularity, and tumor perfusion via ul-

trasound in a high-throughput manner. This proof of concept study relied on conventional ul-

trasound indices of vascularity (power Doppler VI) and perfusion (CEUS). The PDXovo model

exhibited a high engraftment efficiency (∼90% tumor take rate), regardless of RCC subtype or

biopsy site. We were able to prepare >300 PDX models for each tumor, permitting multi-

regional analysis of both the primary tumor (6 sites) and any nearby metastases (3 metastases)

in a well-powered manner (n>36 per tumor core). These large scale “tumor avatar” studies

demonstrated intratumoral functional heterogeneity in the context of sunitinib treatment, and
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suggest that genetic tumor heterogeneity exists, but evidence for a direct relationship to the

drug resistant phenotype did not manifest in DNA mutations. These results support a pheno-

type based readout to predict drug resistance as opposed to a genotype signature, and provide

evidence that drug resistance to targeted therapy is heterogeneous across the patient’s tumor.

6.1.4 Chapter 5: Compound Speckle Model Reduces Contrast Ultra-

sound Variability in a Patient-Derived Xenograft Model of Renal

Cell Carcinoma

Chapter 5 applied the compound speckle model presented in Chapter 3 to the CEUS cine

loops acquired in Chapter 4. Intratumoral functional heterogeneity was observed, both within

untreated core biopsies and in the response to antiangiogenic therapy, with all three of the vas-

cular quantification techniques presented in this study. First-order speckle analysis reduced the

coefficient of variation of CEUS estimates of blood volume compared to conventional CEUS

methods (CoV of 0.554 vs. 0.828, Brown-Forsythe test p-value <0.05) and thereby improved

patient classification confidence. The compound model was hypothesized to capture fractal

vessel geometry in this CAM PDX model, but the estimated lognormal sigma value was found

to exhibit the same trends as estimates of blood volume. Treatment sensitivity matrices, which

classified individual tumor biopsies as being sunitinib resistant or sensitive, could discrimi-

nate clear cell from chromophobe RCC samples, suggesting that the assay may be suitable for

screening of de novo drug resistance. Further studies, with a larger and more representative

patient population, are required to assess whether this protocol can be predictive of patient

outcome.

6.2 Future Work

6.2.1 Technical improvements

There are a number of potential technical improvements that should be addressed to further

develop this model. During this thesis we only considered the statistics of uncompressed,



178 Chapter 6. Summary and FutureWork

intensity signal data (i.e., the squared magnitude of the echo envelope measured prior to loga-

rithmic compression). This limits the applicability of the model, particularly for retrospective

studies, as CEUS datasets will more typically be acquired as video data rather than raw data.

Future work should include a derivation of this model (or similar) for log-compressed CEUS

images.

A further limitation concerns the assumptions of the distributions of scatterers (i.e. mi-

crobubbles). We assumed that the weighting function will be a gamma probability distribution.

If an arbitrary vascular network can be approximated by a fractal branching tree, then the

weighting function should be log-normal to be consistent with the results of Qian et al. [1].

This was justified in this thesis as these two distributions are often interchangeable [2], but this

may not hold for strongly enhanced vascular beds that would be more accurately described

with the heavier tailed log-normal distribution. Furthermore, we are only considering the case

where every microbubble subpopulation was modeled as randomly distributed scatterers at rel-

atively high concentrations. We justified this choice in the model by assuming that the average

mouse weighs approximately 20 grams with a density that is close to water (1 g/cm3). At

a nominal scanner resolution of 75 µm axial by 165 µm lateral by 165 µm elevational, with

an injection volume of 50 µL at 2 × 109 microbubbles/mL, this yields an average of 10.25 mi-

crobubbles per mouse voxel - just over the line for Rayleigh speckle statistics to hold. However,

the inherent heterogeneity of tissue vasculature implies that some regions will not have fully

developed speckle even when fully perfused with microbubbles. This especially does not hold

for the early phases of wash-in where there is necessarily a low concentration of microbubbles.

To address this, the parameterized distribution should be changed from an exponential to a K

distribution [3].

The optimal choice of wash-in function is unknown for the time-dependent statistical pa-

rameters presented in this thesis. We opted to use the same indicator-dilution models for both

the conventional CEUS analysis as well as the statistical analysis to provide a direct compar-

ison of the quantified perfusion parameters. This is particularly important for Chapters 4 and

5, which employed a mono-exponential fit to their destruction-reperfusion curves. The mono-

exponential model has received a fair amount of criticism as it is not a realistic model of tissue

perfusion and the reproducibility of the parameters is low. More sophisticated kinematic mod-
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els, such as the Hudson lognormal perfusion model [4], which use physiologically plausible

blood perfusion and take into account the ultrasound beam geometry should be used for all fu-

ture studies of tumor heterogeneity. Additional work should be done to characterize and model

the time-dependency of the extracted statistical parameters and more rigorously determine the

best curve to fit. Furthermore, it was noted in Chapter 5 that several of CEUS cine loops

acquired from the CAM PDX model had distinct ‘slow-flow’ and ‘fast-flow’ components in

their wash-in curves when analyzed with the compound statistical model. A preliminary result,

shown in Figure 6.1, demonstrates that a superposition of two monoexponential curve fits can

extract these components for independent analysis. It is currently unknown what impact this

could have on the technique’s ability to discriminate responding from non-responding tumor

fragments.

Figure 6.1: Example superposition of two monoexponential curve fits to the wash-in curves
from Figure 5.1. This relatively simple analysis could extract the fast and slow-flow compo-
nents of the compound model’s wash-in curve. On the conventional CEUS data, both of the
components are overlapping.

Finally, all of the work presented in this thesis focused on first-order statistical modeling.

Heterogeneity in CEUS cine loops may be captured more finely through second-order speckle

analysis. For example, there is a large amount of established literature on the utility of gray

level co-occurrence matrices for the characterization of medical images [5]. Applying similar

analyses to CEUS data may yield fruitful indices of vascular perfusion, provided such methods

are properly tuned to the task at hand.
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6.2.2 Next steps for preclinical validation

The statistical speckle models presented in this thesis produce estimates of heterogeneity that

are hypothesized to correspond with vascular tortuosity. In Chapter 3, the compound model’s

estimated σLN value was modestly correlated with the fractal dimension of tumor vasculature

from a mouse xenograft model of breast cancer, as verified with contrast-enhanced micro-CT.

However, in Chapter 5, the estimated σLN value was found to exhibit the same trends as esti-

mates of blood volume in a CAM PDX model of RCC. Further work is required to determine

what physiological features affect the compound model’s estimate of σLN and how this value

can be used for therapy monitoring. Ideally, these studies would include several vascular envi-

ronments (including normal and pathological tissues) and be validated with gold-standard mea-

sures of vascular structure (very high-resolution contrast-enhanced micro-CT and/or corrosion

casting). Vascular tortuosity is characteristic of malignant cancers [6], and may be indicative

of the vascular normalization effects encountered in successful anti-angiogenic therapy.

The studies presented in Chapters 4 and 5 analyzed CEUS cine loops acquired from RCC

tumor fragments that underwent sunitinib therapy at a fixed drug dose. Future studies should

include all four FDA approved tyrosine kinase inhibitors (TKIs) that target VEGF-A (sunitinib,

pazopanib, sorafenib, and axitinib), as these all have improved progression free and overall

survival for patients with mRCC [7–10]. The optimal dose of each TKI for maximum tumor

vascular impact, that is still safe for the embryo, needs to be determined via dose-response

analysis (for example, see Figure 6.2 which shows preliminary results of an RCC CAM model

study we have initiated in collaboration with Drs. Leong and Power). The relationship between

topical sunitinib dosing on the CAM xenograft model and clinical dosages remains unclear,

so further work must be done to determine the clinical dose equivalence. Additionally, an

alternative to straight topical dosing for these TKIs should be explored, such as mixing the

drug with a gelling agent to maintain consistent dosing. These alterations could increase the

magnitude of treatment response in sensitive cores, and reduce the experimental variability

with CEUS datasets, and thereby improve confidence of classification accuracy.

The treatment sensitivity matrices produced in Chapters 4 and 5 demonstrated an ability

to discriminate clear cell from chromophobe RCC tumor fragments based only on functional
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Figure 6.2: Sorafenib dose response curves of tumor volume and power Doppler VI, taken
from a patient derived cell line engrafted into the CAM. The cell line originated from one of
the metastatic biopsies taken from the patient diagnosed with chromophobe RCC.

imaging of their treatment response to sunitinib therapy. However, given that we expect hetero-

geneous treatment sensitivity within a single patient, tumor fragment resistance status should

be validated through serial histology to quantify endothelial cell proliferation [11]. This would

give a gold-standard measure of the impact that the anti-angiogenic therapy has on tumor frag-

ment vasculature.

6.2.3 Plans for clinical translation

The above section discussed the need to validate patient treatment sensitivity matrices on a

per core basis to confirm anti-angiogenic therapy effect. However, the most important gold-

standard for this technique is patient overall, or progression-free, survival. A prospective study,

where patients are assigned to a TKI based on the output of the treatment sensitivity matrices,

would be ideal from a project design standpoint but is unethical. Instead, the plan for clinical

translation is through a retrospective study, where patients are assigned to systemic TKI therapy

by their physician, and their outcome measures are compared against the predictions of the

treatment sensitivity matrices presented in Chapters 4 and 5.

This study design would also benefit from the additional acquisition and analysis of genetic

information from patient samples. The data in Chapters 4 and 5 presented the consequences

of tumor heterogeneity through a phenotype-based analysis, highlighting the need for multi-
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regional analysis of patient tumors. Genomics-based approaches are more scalable than the

CAM PDX, but the genetic “blueprint” responsible for drug resistance is currently unknown.

The PDXovo model can potentially confirm the results of a genetic signature for drug resistance

in a prospective fashion, as opposed to case-control genomics studies.

A growing area of research for the treatment of RCC is PD1 based immunotherapy reg-

iments (e.g. Nivolumab), either as a mono-therapy or in combination with target therapies,

where it has been suggested that functional tumor heterogeneity can influence clinical out-

comes. This may also explain, to an extent, why some patients exhibit partial response to PD1

based immunotherapies [12]. The PDXovo platform may be able to predict immunotherapy

drug responses for patients with metastatic renal cell carcinoma due to its high engraftment ef-

ficiency and lack of host immune cell function. The treatment response seen in CAM PDXs fol-

lowing immunotherapy would be due to the activation of human leukocytes and macrophages

present in the tumor fragment when biopsied. PDXs would be submitted to high frequency

ultrasound to determine if there is a treatment effect in terms of tumor vascularity and blood

perfusion, and to estimate the degree of necrosis. After imaging, each PDX could be submitted

to cell dissolution and stained with leukocyte markers and activation markers for flow cytomet-

ric enumeration of all immune cells and the proportion of activated immune cells within the

PDX. Since the tumor volume is quantified by high-frequency ultrasound imaging, calculations

can be made based on the percentage and abundance of non-activated and activated immune

cells within each PDX.

One of the main motivations for the development of the compound speckle model for non-

linear CEUS imaging was the potential for clinical translation of the analysis technique. Al-

though this has not been explicitly tested, there is no reason to believe that the basic principles

of the model would not apply to clinical frequencies. However, there is a concern that the

dosages of microbubbles used in clinical CEUS scanning would be insufficient to permit the

assumption of fully developed speckle in nonlinear images to hold. The parameterized distribu-

tion should be changed from an exponential to a K distribution [3] to account for pre-Rayliegh

speckle statistics. The proposed technique quantified the perfusion within a tumor and simul-

taneously provided an index of vascular complexity, making it a potentially useful addition to

the clinical detection of vascular normalization in anti-angiogenic combination therapies.
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6.3 Final Remarks

The analysis of the first-order speckle statistics of contrast-enhanced ultrasound cine loops

provides more robust and reproducible estimates of tumor blood perfusion than conventional

image analysis. Theoretically this form of analysis could quantify perfusion heterogeneity

and provide estimates of vascular fractal dimension, but further work is required to determine

what physiological features influence these measures. Treatment sensitivity matrices, which

combine vascular measures from CEUS and power Doppler, may be suitable for screening of

de novo sunitinib resistance in patients diagnosed with renal cell carcinoma. Further studies

are required to assess whether this protocol can be predictive of patient outcome.
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