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Abstract 

The development of lithium-ion batteries (LIBs) has been hampered by the intrinsic limitations 

of the electrode materials. High-performance LIBs demand electrode materials with fast 

lithium/electron diffusion rate, stable surface chemistry and high specific capacity. Surface 

modification by atomic layer deposition (ALD) is an essential method to optimize the 

performance of the electrode materials. The research in this thesis aims at achieving high-

performance LIBs via surface modification and understanding the mechanisms via synchrotron 

radiation. 

Firstly, by applying ALD FePO4 on LiNi0.5Mn1.5O4 (LNMO), we successfully alleviated the 

electrolyte decomposition under high voltage by using the electrochemically active FePO4 as 

a buffer layer. By coating the high energy Li1.2Mn0.54Co0.13Ni0.13O2 (HENMC) with AlPO4, we 

demonstrated higher thermal resistance compared with the most widely used Al2O3 as the 

coating material. 

The irreversible phase change in cathode materials is an intrinsic property that is difficult to be 

addressed by simple coating, therefore, we extended the practice of ALD to accurately control 

the surface composition by post annealing TiO2 coated LNMO. We demonstrated the 

effectiveness of creating a surface layer of spinel TiMn2O4-like structure and Ti-doped LNMO 

sub-surface, which protect the material surface from the electrolyte attack and prevent the 

intrinsic phase change simultaneously.  

To understand how the structure evolves, we used synchrotron radiation to study the behavior 

of HENMC in the initial cycle and 450th cycle in an in-situ manner. The in-situ X-ray 

absorption (XAS) has been demonstrated to be an outstanding method to track the change of 

transition metals while the cell is under operation. We found that the Ni and Co have lost their 

electrochemical activity after long-term cycling due to the phase segregation. 

We also studied the surface behaviors of graphene nanoribbons (GNRs) synthesized from 

chemically unzipped carbon nanotubes and the correlation with the electrochemical 

performance used as anode materials. We found that defects, surface area and surface 

functional groups introduced by the chemical treatment play pivotal roles. 



 

ii 

 

In summary, the discoveries in this thesis provide important methods and unveil critical 

understandings to achieve high-performance LIBs. 
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Chapter 1  

1 Background Review 

1.1 General Introduction 

The abusive consumption of fossil fuels releases greenhouse gases like carbon dioxide and 

methane to the atmosphere and traps heat, causing global warming. With regard to these 

impacts, the development of sustainable energy is exceptionally imperative. Renewable 

energies will not have the anticipated impact unless we find an efficient way to store and 

use the electricity produced by them. Therefore, high-performance energy-storage devices 

with high energy and power density are highly demanded for electricity-consuming 

products. Electrochemical batteries have been considered as the most qualified candidate, 

taking into account the safety, power density, cost, longevity and efficiency, rechargeable 

lithium-ion batteries (LIBs) are hitherto the most successful technique. The extensive 

application of LIBs not only resides in the vast portable electronics market, but also 

expedites the revolution of electrical vehicles. Although LIBs-driven hybrid vehicles are 

already commercially available in some companies, much more efforts are yet required to 

devote in order to achieve the energy density, safety and cost as the United States Advanced 

Battery Consortium Goals for Advanced Batteries for EVs – CY 2020 Commercialization 

has stated.[1-5]     

LIBs  have attracted massive attention after being commercialized by SONY in 1991 due 

to their high energy density, good performance and long cycling life compared to 

conventional Ni-H, Ni-Cd, and Pb-acid batteries,[6] the drastically growing demand for 

LIBs during the last two decades have stimulated enormous investigations on the 

development of high performance electrode materials. A practical LIB usually comprises 

three functional components, the cathode, anode and electrolyte. Figure 1.1 shows a 

schematic illustration of the working principle of a Lithium-ion battery, where lithium ions 

de-intercalate from the cathode materials and migrate through the separator to the anode 

materials during discharge, electron flows along the external circuit and power up devices, 

during charge, the process is reversed. Primary prototype of LIBs was the LiCoO2/Li 
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system, where LiCoO2 was the cathode material and the lithium metal was the anode 

material. The charge/discharge cycle was achieved on the basis of lithium intercalation and 

de-intercalation from the LiCoO2 layered structure. The metallic lithium was later replaced 

by carbonaceous materials in secondary LIBs due to safety issues. In addition to the 

carbonaceous materials, a myriad of other materials were reported to be eligible as anode 

materials, such as Sn, Si, Li4Ti5O12, metal oxides etc.[7] In sharp contrast to the diversity 

of anode materials, the cathode materials are much less developed, even though the 

intercalation chemistry has been comprehensively studied over centuries, the categories of 

cathode materials are rather scarce.[8]  

 

Figure 1.1 Schematic illustration of the working principle of a Lithium ion battery 

Primary groups of cathode materials include the layered LiCoO2, spinel LiMn2O4, poly-

anion LiFePO4 and their derivatives. Fig. 1.2a shows the cost components of a 

representative graphite/NMC333 (LiNi1/3Mn1/3Co1/3O2 – a derivative of LiCoO2) cell in 

2013 according to the United States Department of Energy,[9] within the six major parts 

of a battery, the cathode costs 38%, the most critical reasons are the difficulty of materials 

manufacturing and the low abundance of cobalt, manganese and nickel that dominate the 
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current LIBs market. Hence, the relatively slow development of cathode materials is the 

major barrier for future low-cost LIBs. Six main types of cathode materials are illustrated 

in Figure 1.2b based on the specific discharge capacity vs voltage. Energy density of a 

specific type of cathode material is calculated on voltage multiplying capacity, therefore, 

in order to achieve high energy density, researchers are looking for cathode materials that 

offer either high voltage or high discharge capacity. The chart shows two cathode materials 

that are of great potential. The spinel LNMO with a working capacity of around 120 mAhg-

1 and a voltage of 5 V and the Li-rich NMC with a working capacity of around 250 mAhg-

1 and a voltage of 4 V. Figure 1.2c-e show the crystal structures of typical cathode 

materials: olivine LiFePO4, spinel LiMn2O4 and layered LiCoO2.  

 

Figure 1.2 (a) The cost components of a representative graphite/NMC333 battery in 

2013; (b) voltage vs capacity chart of main cathode materials (LNMO: LiNi0.5Mn1.5O4, 

LMO: LiMn2O4, LFO: LiFePO4, NMC: LiNi1/3Co1/3Mn1/3O2 up to 4.3 V, NCA: 

LiNi0.8Co0.15Al0.05O2) (c) crystal structure of LiFePO4 (d) crystal structure of LiMn2O4 

and (e) crystal structure of LiCoO2 

In order to maximize the efficiency of a cathode material, researches have been dedicated 

to the exploration of advanced materials, the development of various synthetic methods 
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and the modification of existing materials.[10-14] While all of these directions have been 

under rigorous investigation, the topic will always end up with a critical concern – the 

materials surface. The surface is where lithium ions or electrons diffusion ends in the 

material and transfer into the electrolyte or conductive agents, thus the majority of the side 

reactions happen here due to non-equilibrium diffusion.[15, 16] Attempts of surface 

modification aimed at adjusting the surface chemical or physical properties have been 

made within the past decades, but the underlying mechanisms have not yet been fully 

unraveled. In this chapter, we present a comprehensive review of surface modification 

methods on cathode materials by starting with an understanding of the fundamental origins 

of the surface behaviors, followed by possible explanations to how surface modification 

work and a prospect of advanced surface modification methods. 

1.2 Surface Behaviors of Cathode Materials 

1.2.1 Surface Phase Reconstruction 

1.2.1.1 Layered LiMeO2 (Me = Co, Mn, Ni) 

Owing to the considerable voltage and capacity and easy scalability, LiCoO2 has been 

registered as the most successful cathode material so far. Layered LiCoO2 belongs to a 

rhombohedral space group R3̅m with edge-sharing CoO6 octahedra, which gives CoO2 

sheets.[17] Lithium ions reside in between the CoO2 sheets so that the electrochemical 

deintercalation forms LixCoO2.[18] Despite the theoretical capacity of LiCoO2 is 

calculated to be 272 mAhg-1, in practical, LiCoO2 can only be deintercalated to Li0.5CoO2 

within a cut-off voltage of 4.5 V, hence only half of the theoretical capacity can be 

reversible.[18] The reason is that LiCoO2 undergoes phase transition from layered to quasi-

spinel (QS) structure when half of the lithium is deintercalated. It is suggested that the 

transition is due to the migration of Co ions into Li planes because of the higher thermal 

diffusivity.[19] Dahn et al. initially reported the synthesis of QS-LiCoO2 (or in some cases 

written as Li1+yCo2O4) in space group Fd 3̅ m at low temperature (400 oC), the 

thermodynamic stability of which is lower than that of layered LiCoO2.[20] Various 

approaches to synthesizing LiCoO2 with both layered and quasi-spinel configurations were 

reviewed by Antonelli.[21] In-depth study of the two phases revealed that the QS-LiCoO2 
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shows much lower capacity and higher polarization than layered LiCoO2, thus turning out 

to be an inferior candidate for battery materials.[20] X-ray absorption near-edge spectra 

(XANES) confirmed that there are intermediate phases between the layered and spinel 

structures due to the higher oxidation state of spinel LiCoO2,[22] it was thereafter found to 

be LixCo1-x[Co2]O4 by Thackeray et al.[23]  

The formation of spinel phase in layered LiCoO2 was found to initiate from the surface and 

extends to the bulk upon intensive cycling, extended voltage window and operation under 

high temperature. Transmission electron microscopy (TEM) studies revealed that there are 

dislocations and internal strains within the lattice of LiCoO2 even at low cycle numbers, 

the accumulation of these defects is directly responsible for long term capacity fade.[24, 

25] The presence of strains indicates that the interlayer spacing within LiCoO2 lattice has 

been changed, which is in accordance with the in-situ X-ray diffraction (XRD) study 

carried out by Dahn et al.[19] A recent study found that post-thermal treatment of LiCoO2 

forms a thin spinel LixCo2O4 film on the surface and improves the performance 

significantly since the spinel phase is strongly conductive.[26] This report is however 

contradictive to previous studies, probably due to the different formation mechanisms of 

this phase. 

The layered to spinel phase change has also been observed in other species of metal oxide 

cathodes such as LiNiO2 and LiMnO2, which are iso-structures of layered LiCoO2 as shown 

in Figure 1.3a.[27-29] Each of these ending members of LiMeO2 (Me = Ni, Co, Mn) 

possesses its unique advantages as a cathode material. Nevertheless, other than the 

structural transition, these materials suffer from severe Jahn-Teller distortion, which is 

another chief factor of the capacity decay.[30, 31] In the case of LiNiO2, the low spin Ni3+ 

ion has a 𝑡2𝑔
6 𝑒𝑔

1 electronic configuration, the Jahn-Teller distortion can be induced by the 

eg energy level, resulting in the structural destruction due to internal stress.[31] Earliest 

observation of the Jahn-Teller distortion of LiNiO2 was reported by Delmas et al. in 

1995.[30] Two Ni-O bond lengths with 1.91Å and 2.09 Å were found to exist in LiNiO2 

by employing extended x-ray absorption fine structure (EXAFS). Unlike Ni3+, the 

electronic configuration of Co3+ can be expressed as 𝑡2𝑔
6 , with one less valence electron, 

therefore, the Jahn-Teller distortion in LiCoO2 is not as profound as LiNiO2.[31] In regard 
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of this, plenty of efforts have been dedicated to the investigation of dopants induced 

suppression, such as Al, Co, Mn, Cr etc.[32, 33] The fundamental principle is to lower the 

concentration of the Jahn-Teller effective ions, for instance, doping LiNiO2 with Co to 

form LiCo0.5Ni0.5O2 has been suggested to change the Ni electronic configuration from 

𝑡2𝑔
6 𝑒𝑔

1 to 𝑡2𝑔
6 𝑒𝑔

2, which is Jahn-Teller inactive.[34, 35]  

The attempts of doping fundamental layered metal oxides introduce numerous derivatives, 

which are of remarkable value now. Among them, LiNixMnyCo1-x-yO2 (NMC) and 

LiNi0.8Co0.15Al0.05O2 (NCA) have found applications in current electrical vehicles. The 

high operational voltage and specific capacity have made these materials outperform many 

other cathode materials.[36-40] 
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Figure 1.3 (a) Compositional phase diagram of LiMnO2-LiNiO2-LiCoO2 (Reproduced 

from ref. [41] with permission, copyright 2015 Wiley-VCH); (b) reconstructed surface 

layer after 1st cycle within 2.0-4.7 V (Reproduced from ref. [37] with permission, 

copyright 2014 Nature Publishers); (c) Degradation mechanism of Ni-rich 

LiNi0.5Co0.2Mn0.3O2 (Reproduced from ref. [42] with permission, copyright 2014 

Wiley-VCH) 

Within the category of NMC layered cathode materials, LiNi1/3Mn1/3Co1/3O2 with a ratio 

of 1:1:1 (NMC111) has been most studied since it combines the rate performance of 

LiCoO2, safety of LiMnO2 and capacity of LiNiO2 as has been illustrated in Figure 1.3a, 

the surface reconstruction upon aggressive exposure to electrolyte has, however, also been 

reported in these materials, as shown in Figure 1.3b.[37] In an attempt to achieve high 

energy density cathode materials for EVs, Ni-rich NMC with high capacity has become a 
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focus in recent years. The rich Ni content in the material, however, involves safety issues 

and preparation difficulty.[42] Due to the close ionic radii and charge with Li+, Ni2+ in Ni-

rich NMC materials has been found to show very high degree of interlayer mixing with the 

Li+, which results in strong phase segregation and capacity fade.[43] Figure 1.3c shows a 

schematic illustration of the degradation mechanism of a LiNi0.5Co0.2Mn0.3O2 (NMC523) 

material. In this study, different degradation mechanism from NMC111 was proposed, 

specifically, O3 to O1 phase transformation was supposed to be the major reason of 

capacity fade in NMC111 due to the formation of stacking fault. However, no such phase 

transformation was observed in NMC523, probably due to the higher Ni-Li site exchange 

since the Ni percentage in NMC523 is much higher. These studies have unambiguously 

pointed out that the stabilization of Ni in Ni-rich NMC cathodes is the key to stabilized 

performance. A possible strategy is to design a Ni rich bulk and Mn rich surface NMC 

material, this gradient concentration has proven to be effective in controlling the surface 

Ni disorder.[44-46]   

1.2.1.2 Layered Lithium-rich Oxides Layered LiMeO2 (Me = Co, 
Mn, Ni) 

Lithium-rich layered oxides are controversially recognized as either the solid solutions or 

nano-domains of Li2MnO3 (monoclinic, C2/m) and LiMeO2 (Me = transition metals) 

(rhombohedral, R3̅m).[47] The crystalline structure of a typical Li-rich layered NMC 

material is shown in Figure 1.4a(i), lithium ions occupy part of the transition metals and 

result in off-stoichiometric lithium content compared with conventional NMC based 

materials.[48, 49] It has drawn much attention because of the high capacity (above 250 

mAhg-1) and high voltage. Dissimilar with other layered materials, this material shows an 

anomalous voltage plateau at ~4.5 V during the first charge, where all of the transition 

metals should have reached their final oxidation state. Early researches speculated that the 

mysterious charge plateau was originated from the removal of lithium and oxygen, but 

direct observation was not reported until 2006.[50] By using in situ differential 

electrochemical mass spectrometry (DEMS), P. Bruce et al. found that there was O2 release 

when the material was initially charged to above 4.2 V. The lithiation/de-lithiation process 

of Li-rich NMC under different cutoff voltages is illustrated in Figure 1.4a. When the cell 



9 

 

is charged to a cutoff voltage of 4.2 V, the whole process resembles a conventional NMC 

that the lithium ions from the lithium ion layer are removed. However, at a voltage above 

4.2 V, the lithium ions that reside in the octahedrally coordinated transition metal layer get 

extracted, associated with the loss of O2-, which is subsequently oxidized to O2 and is 

responsible for the “anomalous plateau”. The oxygen vacancies de-stabilize the transition 

metals, in particular Ni ions, resulting in the diffusion of transition metals into the lithium 

ion layers and form a spinel phase that blocks lithium ions transportation.[51] Once the O2 

gas is released, a series of side reactions take place. Yabuuchi et al. combined synchrotron 

X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron 

spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) to 

investigate the surface behaviours of Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. The released O2 may 

undergo oxygen reduction reaction at the material surface and form Li2CO3 which is 

responsible for the disappearance of the reversible capacity of the surface redox reactions 

during the first several cycles.[52] On the other hand, O2 gas facilitates the decomposition 

of electrolyte under high voltage and results in undesirable solid electrolyte interphase 

(SEI) growth, low initial coulombic efficiency and impedance buildup. In addition, O2 

release potentially increases the risk of battery thermal runaway and leads to safety 

concern.[53, 54]   

Aside from the oxygen formation, severe voltage decay has also been observed in this type 

of cathode materials as has been shown in Figure 1.4b. The voltage decay leads to the drop 

of cell energy density,[55] it is supposed to be the major factor that should be addressed in 

order to commercialize lithium rich NMC. Gu et al. examined the phase distribution of 

Li1.2Ni0.2Mn0.6O2 and found that Ni was highly inhomogeneous, as shown in Figure 1.4c, 

whereas the Mn was rather uniform. This observation proves that phase segregation exists 

in cycled Li-rich layered materials, which is possibly the reason of low capacity and poor 

rate capability.[56-58] The sluggish lithium diffusion across the surface caused by the 

phase segregation is directly responsible for the voltage decay, therefore strategies aimed 

at suppressing voltage fade are mostly focused on surface phase change suppression. In 

addition, corrosion induced pits are often found in heavily cycled particles and the 

formation of these pits evidently happens on specific crystallographic facets. The surface 

topographical change can be a reason of capacity fade in lithium rich materials. Extra 
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diffraction spots are always observed in extensively cycled particles, as can be seen from 

Figure 1.4d, which is also an evidence of cation migration. 

 

Figure 1.4 (a) Proposed phase changes in a lithium rich NMC under different cutting-

off voltages; (Reproduced from ref. [51] with permission, copyright 2013 Royal 

Society of Chemistry); (b) Typical charge/discharge curves of lithium rich NMC 

showing voltage decay; (Reproduce from ref.[59] with permission, copyright 2015 
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American Chemical Society) (c) HAADF Z-contrast image and XEDS maps showing 

non-uniform distribution of elements in a cycled lithium-rich NMC particle. 

(Reproduced from ref. [56] with permission, copyright 2013 American Chemical 

Society) (d) Low magnification STEM-HAADF images and corresponding [010] zone 

axis SAED patterns of the lithium rich cathodes after different cycles (Reproduced 

from ref. [60] with permission, copyright 2015 American Chemical Society) 

1.2.1.3 Spinel LiMn2O4 

The spinel type LiMn2O4 belongs to space group symmetry of Fd3̅m, in which Mn shows 

an average valence of 3.5, indicating the coexistence of Mn3+ and Mn4+.[61] However, the 

equilibrium can be easily broken by Li+ insertion or temperature change, causing the Jahn-

Teller distortion of Mn3+ at the octahedral sites. The onset of Jahn-Teller distortion at 4.0 

V has been regarded as the principal origin of capacity loss.[62, 63] Study on the surface 

structure of LiMn2O4 revealed that the net valence differs from the bulk, with more Mn3+ 

in presence due to the non-equipoised dynamics of Li+ insertion (C-rate controlled) and 

extraction (diffusion-controlled) at the surface.[64, 65] This was suggested to result in the 

formation of Li2Mn2O4, which is much less electrochemically reactive.[66] Nonetheless, 

the phase transition from cubic to tetragonal induced by the Mn3+ Jahn-Teller distortion 

was speculated to generate phase boundary at the particle surfaces and thwart the diffusion 

of Li+. Similar with the strategies of doping alien elements in layered LiMeO2, the doping 

of LiMn2O4 has also been a vastly studied topic aimed at suppressing the Jahn-Teller 

distortion.[61, 65] Of the various doping elements, introducing Ni to form P4332 

LiNi0.5Mn1.5O4 is the most successful one, due to the electrochemical reactivity of Ni2+ and 

the disappearance of Mn3+.[67] Furthermore, the incorporation of Ni2+ provides two 

voltage plateaus at about 4.7 V (Ni2+/Ni3+, Ni3+/Ni4+), making it a very promising high 

power cathode material. Even though trace Mn3+ was reported in oxygen-deficient 

LiNi0.5Mn1.5O4-δ with space group Fd 3̅m, the Jahn-Teller distortion is much more 

suppressed.[68-70] 
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1.2.2 Stress-induced Cracking 

Mechanical cracking is most reported in anode materials that suffer from tremendous 

volume expansion upon lithiation, such as Si and Sn. The cathode materials, however, are 

also found to develop cracks upon high rate cycling when the lithium ions do not have 

sufficient time to diffuse homogeneously, ending up with extra stress in particles.[71, 72] 

On a brittle cathode material, the C-rate that initiates cracks decreases with increasing 

particle size.[73, 74] The internal stress of electrode materials during preparation and phase 

change (such as Jahn-Teller distortion, O2 release) induced stress can also help develop 

cracks at the materials bulk and keep propagating.[75] In addition, if the volume expansion 

of cathode materials is non-elastic deformation, it will lose contact with binders and 

conductive carbon, forming gaps in between. The occurrence of cracks segregates part of 

the materials from the electrolyte and leads to the increase of impedance and subsequent 

battery failure. An in-situ SEM study on LiNi0.8Co0.15Al0.05O2 shows direct visual evidence 

of the cracks development and separation of active materials from electrolyte, as shown in 

Figure 1.5a-d. Surprisingly, such cracks development started even from the first cycle, 

indicating that the prevention of cracking in cathode materials is very necessary. A 

schematic diagram showing the segregation consequence of the cracking towards lithium 

diffusion is presented in Figure 1.5e. Zhang et al. investigated the crack formation on 

lithium rich layered Li[Li0.2Ni0.2Mn0.6]O2.[76] Micro-cracks were found in deeply cycled 

particles due to the large strain caused by simultaneous removal of lithium and oxygen, 

ending up with pulverized surface structures. The surface Mn ions were found to have been 

reduced as revealed by electron energy loss spectroscopy (EELS), indicating the break of 

surface structural consistency. 
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Figure 1.5 SEM images of LiNi0.8Co0.15Al0.05O2 particle cracking after (a) 1; (b) 2; (c) 

3; (d) 4 electrochemical cycles; (Reproduced from ref. [77] with permission, copyright 

WILEY-VCH 2013) (e) Schematic illustration of the segregation consequences of 

cracks towards the lithium ions diffusion 
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1.2.3 Electrolyte Decomposition and Transition Metal Dissolution 

1.2.3.1 Electrolyte Decomposition  

Electrolytes for LIBs are generally liquid or solid with electrical conductivity below 10-10 

S/cm and lithium ion conductivity above 10-4 S/cm.[78] Organic carbonate esters based 

blends, including ethylene carbonate (EC), diethylene  carbonate (DEC), propylene 

carbonate (PC), dimethylene carbonate (DMC) and ethylmethyl carbonate (EMC) are 

widely used as electrolyte solvents,[79] LiPF6 is the common salt currently.[80] The 

operation voltage windows of these solvents are typically from 1.0 V to 4.7 V vs. 

Li/Li+,[81, 82] therefore any cathode materials that require a voltage cutoff value above 

4.7 V (in practical 4.5 V due to the catalytic effect of cathode materials) inevitably involve 

the oxidation decomposition of electrolyte. The consequence of the electrolyte 

decomposition is the formation of a passivation SEI layer, comprising inorganic salts such 

as Li2CO3, LiF, and organic species like poly(ethylene carbonate).[83-85] Due to the 

oxidation nature of the metal oxide cathode materials, the decomposition of electrolyte may 

be accompanied with gas evolution such as CO2.[86-88] The SEI layer is normally 

electrically insulating yet lithium conductive.[89, 90] Much efforts have been dedicated to 

expanding the electrolyte redox window, such as the fluorination of solvents in order to 

lower the highest occupied molecular orbital (HOMO) and lowest occupied molecular 

orbital (LUMO) of organic carbonate esters.[91] The SEI formation causes irreversible 

capacity loss at the first several cycles, in this sense, it is unfavorable to the battery 

performance.  

The intricacy of SEI growth is far from being resolved thus far.[84] Despite the capacity 

consumption during the electrolyte decomposition, the oxidation of electrolyte on the 

surface of cathode materials requires continuous electron transfer,[78, 92] the electrically 

insulating layer can keep the electrolyte from being further oxidized, an SEI layer with 

certain thickness and considerable stability is therefore desired.[79, 93] In order to mitigate 

the electrolyte decomposition, the introduction of sacrificial electrolyte additives has been 

extensively reported.[94] As the electrolyte decomposition mechanisms on anode and 

cathode are reduction and oxidation reactions respectively, the additive selection is distinct. 

In most cases, the additives act as facilitator of the decomposition and stabilize the SEI. 
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Lithium bos(oxalato) borate (LiBOB), glutaric anhydride, 2,5-dihydrofuran, γ-

butyrolactone, 2-(Pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole, 1,1-Difluoro-1-

alkenes, vinyl ethylene carbonate, tris_hexafluoro-iso-propyl_phosphate et al. have been 

reported as suitable additives for cathode materials.[95-102] The inspirational role of SEI 

has motivated researchers to develop the surface coating technique, i.e., instead of 

generating an SEI layer, an artificial layer is intentionally deposited onto electrode 

particles.[103] 

1.2.3.2 Transition Metal Dissolution  

Nonetheless, the decomposition issue is not the only problem that pertains to the 

electrolyte. Practically, there are traces of moisture in the electrolyte or on the surface of 

cathode materials. The LiPF6 salt may undergo the reaction: LiPF6 ⇌ LiF + PF5, followed 

by the hydrolysis of PF5: PF5 + H2O → POF3 + 2HF according to Aurbach and Heider’s 

theory.[88, 104] The HF from the hydrolysis of PF5, along with the inherent HF in the 

LiPF6 salt, triggers obscure side reactions on the cathode materials.[79, 105, 106] Taking 

spinel LiMn2O4 as an example, it was found that cathode materials containing more Mn3+ 

tend to suffer from higher manganese dissolution into the electrolyte.[107, 108] The Mn3+ 

tends to undergo a disproportional reaction: 2Mn3+ → Mn2+ + Mn4+, where the Mn4+ 

remains on the material surface and Mn2+ dissolves into the electrolyte. Aoshima and 

colleagues studied the mechanism of capacity fading in manganese spinels and concluded 

that the dissolved Mn2+ tend to form a layer of MnF2 and ramsdellite-Li0.5MnO2 on the 

surface of cathode, and another layer of metal Mn on the anode, the synergetic deterioration 

of both cathode and anode is responsible for the capacity fading.[66, 109-111] A more 

recent study by Kanno and coworkers found that the dissolution of Mn also differs 

according to the crystal planes exposed to the electrolyte, the (110) plane was found to be 

less stable than the (111) plane.[106] The dissolution of Mn is, however, more intense in 

cathode materials that work under higher voltage such as LiNi0.5Mn1.5O4 and high 

operation temperatures.[112] The side effect of the Mn dissolution, aside from the loss of 

active materials, also involves the degradation of the anode part. An “ion-exchange model” 

was proposed to explain the reaction of Mn on the anode surface as shown in Figure 

1.6.[111] In detail, the Mn is supposed to react with the SEI and changes its composition, 
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by exchanging with the Li+ in the SEI, it becomes Mn-rich and the lithium diffusion 

channels are often blocked by the Mn and thus results in impedance growth.     

 

Figure 1.6 Schematic illustration of the Mn-Li exchange model mechanism for the 

deposition of Mn on graphite in a graphite/LiMn2O4 cell (Reproduced from reference 

[111] with permission, Copyright 2013 Nature Publishers) 

1.2.4 Electrical/Li-Ion Conductivity 

The kinetics of lithium and electrical diffusion in cathode materials are critical factors 

during the electrochemical process. The conduction phenomena of Li-ion batteries has 

been comprehensively reviewed by Fisher et al.[16] and Park et al.[113] The lithium ions 

diffusion paths in typical layered, spinel and olivine structures and their activation energies 

are illustrated in Figure 1.7 adopted from Meng’s review, details are summarized in Table 

1.1.[114] Depending on the diffusion paths and activation energy, various cathode 

materials manifest different lithium diffusion coefficient.  
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Figure 1.7 Lithium diffusion paths and activation energies calculated via density 

function theory (DFT) of (a) layered, (b) spinel and (c) olivine structures (Reproduced 

from ref. [114] with permission, copyright 2009 Royal Society of Chemistry) 

Table 1.1 Lithium ions diffusion in various categories of typical cathode materials 

Material Structure Diffusion path Activation barrier Dimensions 

LiMeO2 Layered Oct.→Oct. 210-310 meV 2D 

LiMn2O4 Spinel Tet.→Oct.→ Tet. 350-400 meV 3D 

LiFePO4 Olivine Oct.→Tet.→Oct. More than 1 eV 1D 
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1.3 Roles of Surface Modifications 

1.3.1 Surface Modification as Phase Transition Blocker 

1.3.1.1 Surface Doping Design 

Bulk doping on cathode materials has been studied over decades, the aim of this process is 

to control the phase change or enhance the diffusion rate within a particle. However, bulk 

doping elements, usually Ti, Al and so on, are normally electrochemically inactive, 

restricting the doping to the material surface has therefore become a prevalent topic since 

minimum capacity sacrifice is expected in this scenario. Cho had conducted tremendous 

work on the surface protection of LiCoO2 and in most of the cases, the metal ions in the 

coating oxide materials, such as Al, Zr and Sn were speculated to have migrated into the 

near surface lattice of the cathode materials, forming a solid solution.[115-118] His early 

work in 2000 showed that when the surface of LiCoO2 was slightly doped with Al, the c 

axis would have 1.7% shift during the first cycle whereas the ones with solid solution on 

the surface showed only 0.14%, which was also observed in their later report on Zr doped 

surface. This opinion was however opposed by Dahn et al. when they conducted a ZrO2 

coating study on LiCoO2 with careful examination on the structural change, no difference 

was observed on the coated and bare samples.[119, 120] Therefore, closer investigation on 

the mechanism through which surface doping works to suppress the phase reconstruction 

is needed. Recently, Park et al. reported another possible explanation.[121] MgO was 

deposited onto the surface of LiCoO2 followed by heat treatment under different 

temperatures. Before electrochemical cycling, the structure remained exactly the same on 

both the near surface and bulk. However, when the material was cycled, extra diffractions 

can be observed on the non-coated areas and the bulk, these weak reflections were 

supposed to be lithium and vacancy ordering, which were not observed in the coated 

region. Therefore, they concluded that the incorporation of Mg into the LiCoO2 actually 

occupied the Li sites instead of Co sites and this is the reason why it did not undergo any 

phase transition. Similar with this study, Cho also reported another possible design of 

surface solid solution recently, they used Ni2+ ions to reside in the Li slabs on the near 

surface of LiNi0.62Co0.14Mn0.24O2 with a thickness of about 10 nm. This material showed 

exceptional structural stability especially at elevated temperature.[122] A more recent 
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study of Cabana and coworkers has adopted Al2O3 to modify the surface of LiMn2O4 

nanoparticles and found that an expitaxially grown Mn3+-depleted phase was formed on 

the surface as shown in Figure 1.8a. The replacement of Mn3+ by non-soluble Al3+ on the 

surface has reduced the risk of surface destruction and resulted in significant performance 

enhancement. Similar study has also been reported by Amine and co-workers.[123] 

 

Figure 1.8 (a) High-resolution HAADF image indicating an Al-rich surface on the 

LiMn2O4 nanoparticle; (b) Stability test of the bare LiMn2O4 and Al-modified 

LiMn2O4 under 55 oC. (Reproduced from ref. [124] with permission, copyright 2014 

American Chemical Society) 

When it comes to the issue of Jahn-Teller distortion caused phase transitions, surface 

doping design often shows very apparent improvement. Taking LiMn2O4 as an example, 

as has been discussed above, the Jahn-Teller distortion is most intense at the material 

surface where the charge equilibrium is always broken by the lithium diffusion. With 

respect to this, many researchers believe that modifying only the surface of LiMn2O4 to 

replace part of the Jahn-Teller active ions can help avoid performance fade at lowest 

expense of capacity loss.[125] Chung et al. adopted a coating material composed of 

LiM0.05Mn1.95O4 (M = Co, Ni) to deposit onto the surface of LiMn2O4.[126] The slightly 

doped LiM0.05Mn1.95O4 was supposed to be able to suppress the Jahn-Teller effect. Similar 

speculation was also proposed by Xiong et al.[127] They found that when Al2O3 coated 

LiMn2O4 was subject to annealing, the Al that diffused into the surface lattice will help 



20 

 

suppress the Jahn-Teller distortion and the remaining crystalline Al2O3 shielded the 

electrolyte from attacking the Mn. Though many people have reported the feasibility of 

this surface modification method, there is however still a lack of means to fully unveil the 

change of surface structure upon such treatment and the role of it towards enhancing the 

electrochemical performance.  

Surface doping design has also been proven to be effective in suppressing the O2 evolution 

in lithium-rich materials. Previous discussion has implied that the release of O2 resulted 

from the simultaneous leaching of Li2O from the layer of Li2MnO3. It becomes very 

interesting if hetero atoms are introduced to the surface layers, since the imported ions may 

impose extra stress to the Li2MnO3 and change its behavior under cycling. This speculation 

was proven by Park et al.[128] in their attempt to improve the performance of a lithium-

rich Li[Li0.167Ni0.233Co0.100Mn0.467Mo0.0333]O2. Specifically, a layer of Al2O3 or AlPO4 was 

deposited onto the material surface followed by heat treatment under 600 oC for 3 h, the Al 

was, within expectation, found to have diffused into the surface lattice. By applying a 

pressure sensor in the battery, they found that when the surface was modified, the pressure 

dropped noticeably, which is due to the suppressed O2 release. The basic reason was that 

the Al incorporated into the surface and bonded strongly with the O and simultaneously 

created smaller domains of LiMn2O3.  

A pillar effect was proposed by Cho et al.[129] They found that by annealing Mg2(PO4)3 

coated Li1.17Ni0.17Co0.17Mn0.5O2, the Mg can be introduced into the Li (4h) site. The 

replacement of Li by Mg was responsible for the suppression of voltage fade because it 

hindered the migration of transition metals into the Li slab. Likewise, Na has been studied 

as a doping element, the Na ions enlarged the Li+ slab and helped realize the pinning effect 

with stabilized structure and faster Li+ diffusion rate.[130] In addition, partial formation of 

artificial spinel phase that provides both good lithium and electron conductivity has been 

reported by annealing carbon materials on lithium rich cathode through carbonthermal 

reaction or exposure to reducing agent such as hydrazine.[131, 132] 

Previous solid doping design was almost focused on the metal ions diffusing into the bulk, 

there is actually another possible consequence - to have part of the surface lithium or 
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transition metals diffused into the coating layer to form a second phase. This mechanism 

was reported by Wu et al.[133] When a layer of electrochemically active MnOx was applied 

on the surface of Li[Ni0.2Li0.2Mn0.6]O2 subject to post annealing, they found that the 

improved performance could be associated with the occurrence of lithium vacancies on the 

surface because of diffusion into the MnOx. The partially lithium depleted surface resulted 

in an oxygen depletion, therefore decreased the chance of O2 formation. In addition, the 

MnOx could provide lithium diffusion channels.[134] Croy et al. carried out a delicate 

study using X-ray absorption spectroscopy at the metal K-edges.[135] They used a Li-Ni-

PO4 composition to modify the surface of Li1.2Mn0.4Co0.4O2, also followed by 

annealing.[49] It was found that the Ni after annealing was not in the phase of phosphate 

any more, instead, it replaced the surface Li in the transition layers and formed a NiMn6 

unit that made the Li2MnO3 phase more stable. Also, there are reports on treating the 

lithium-rich material with mild acid or hydrazine to replace part of the surface Li+ with H+ 

or incorporate N into the surface.[136-139] 

1.3.1.2 Surface Coating 

The role of surface coating towards surface phase transition suppression is actually under 

debate. In theory, surface phase change that results from cation disorder is an intrinsic 

behavior, therefore lots of researchers believe that simple coating is not as effective in 

controlling the phase transition upon electrochemically cycling.[140] AlF3 coating was one 

of the few materials that were reported to be effective in mitigating the layered to spinel 

phase transition in Li-rich cathode materials by increasing the structural stability.[141]  

Al2O3 is a prevalent coating material from atomic layer deposition, therefore its application 

in surface modification of cathode materials is widely reported. But the effectiveness of 

Al2O3 in controlling the surface phase transition, especially in Li-rich cathode materials, 

has been under debate. A recent study by Wang’s group provided visualized evidence on 

the suppression of layered to spinel phase transition in Al2O3 coated Li1.2 

Ni0.2Mn0.6O2.[142] Figure 1.9 shows their STEM-EELS results. In a typical uncoated 

particle, the Mn valence on the surface dropped apparently after only 40 charge/discharge 

cycles, whereas the coated particles showed rather stable composition. The uncoated 

particle also showed surface reconstruction with a depth of about 5 nm, however, the coated 
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sample remained unchanged. The role of coating layers in suppressing the surface change 

of cathode materials is more complicated than it seems to be and thus more work are 

required aimed at elucidating this problem. 

 

Figure 1.9 STEM-EELS study of Li1.2Ni0.2Mn0.6O2 and Al2O3 coated Li1.2Ni0.2Mn0.6O2 

and their corresponding lattice images (Reproduced from ref. [142] with permission, 

copyright 2016 American Chemical Society) 

1.3.2 Surface Modification as A Mechanical Buffer Layer 

While there have been enormous reported coating materials aimed at suppressing 

mechanical cracks in anode, the cathode part is not as profound. The surface modification 

required for a cracking surface should be able to accommodate the strain upon 

electrochemical cycling.  

Some metallic compounds such as Al2O3 and AlF3 have been studied aimed at suppressing 

the crack formation inside of particles and were found to be effective.[143-145] But 

problems may arise since these materials are mostly brittle, too heavy crack formation may 

result in coating peeling off and lead to performance decay. Taking this into consideration, 

polymers with better mechanical properties may be better candidate.[146] There has been 
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some excellent work on coating aimed at suppressing cracks on anode materials such as 

the self-healing polymers reported by Cui et al.[147] Also, a molecular layer deposition 

(MLD) has been designed for polymer coating at the molecular level, this can be a potential 

method to adjust the cathode surfaces.[148] Such polymer coating has to have wide voltage 

window in order to remain consistent. In addition, since one of the reasons for the cracking 

formation is the phase transition on the surface, the strategies discussed in last session 

should also be helpful in avoiding the local cracking occurrence. 

1.3.3 Surface Modification as HF Scavenger 

The role of surface modification as HF scavenger is quite straightforward, in many cases, 

metal oxides have been used as surface coating materials in order to neutralize the HF 

originated from the electrolyte with the following reactions:[119, 149-155] 

MgO + 2HF → MgO + H2O 

ZnO + 2HF → ZnF2 + H2O 

TiO2 + 4HF → TiF4 + 4H2O 

ZrO2 + 4HF → ZrF4 + 4H2O 

Al2O3 + 6HF → 2AlF3 + 3H2O 

More importantly, the metal fluorides formed in these reactions are very stable in non-

aqueous electrolyte, thus shielding the cathode materials from further loss when the surface 

metal oxides are completely consumed after extensive cycles.[156] The direct use of these 

metal fluorides or other metal phosphates is therefore also reported owing to their stable 

nature.[134, 157-160] 

HF generation in the system causes transition metal dissolutions. As has been discussed 

before, transition metal reduction, in particular Mn, is a direct cause of metal dissolution. 

A study from our group on ALD derived LiTaO3 coated LiNi1/3Mn1/3Mn1/3O2 has proven 

that the transition metal dissolution can be apparently suppressed by coating, the bare 

sample demonstrated 20 times higher transition metal dissolution than the sample with only 
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10 ALD cycles coating after 100 charge/discharge cycles.[161] Also, in our study in 

protecting LiNi0.5Mn1.5O4 with atomic layer deposition derived FePO4, the surface Mn 

chemical state after electrochemical cycling was found to be closely related to the 

performance and the presence of coating. X-ray absorption spectroscopy (XAS) study of 

Mn was conducted in this report. Transition metal L3,2-edge XAS measures the unoccupied 

density of state of the transitional metal 3d and oxygen 2p bands, provides important 

information of the oxidation state, the spin state and the metal oxide covalence.[162, 163] 

The Mn L3,2 edge XAS are shown in Figure 1.10a, it can be seen that an obvious peak shift 

to lower energy happened when the material was electrochemically cycled. The samples 

without any coating showed much less sharp peak at 646.5 eV as has been marked by the 

red arrow. The higher intensity indicates that the Mn in the coated sample was at higher 

oxidation state after cycling. Figure 1.10b shows the stability tests, apparently the sample 

with higher Mn oxidation state after cycling demonstrated much less intense capacity fade. 

Therefore, surface coating is effective in suppressing the Mn reduction and subsequent 

dissolution. A pre-lithiation method that enabled electrolyte reduction reaction manually 

by charging the cell from relatively lower voltage was reported by Wu and co-

workers,[164] they found that the process generated a desirable SEI layer and allowed for 

full protection over NMC532/CNTs composites from metal dissolution. 

 

Figure 1.10 (a) XAS results of different LNMO samples and standard manganese 

oxides; (b) Cyclic stability tests of LNMO with various FePO4 coating thicknesses 

(Reproduced from ref. [165] with permission, copyright 2014 WILEY-VCH) 
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1.3.4 Surface Modification as Metal-oxygen Bond Stabilizer 

The dissolution of transition metals originates from the break of metal-oxygen bonds, 

therefore strengthening the bond at the surface can be a possible strategy to improve the 

performance. A regular coating diminishes the contact between the cathode materials and 

the electrolyte to combat with metal dissolution, the electron and ion diffusion is, however, 

restricted by the coating material. Numerous investigations have been reported on the 

doping method to deal with the above-mentioned scenarios, however, concerns regarding 

the loss of active components in the cathode materials arise when it comes to the bulk scale. 

The principle of surface doping design is more effective in this regard. In fact, surface 

doping design works at two aspects in terms of metal dissolution suppression, the first one 

is the stabilization of metal-oxygen bond and the second one is to minimize the amount of 

susceptible metal ions without affecting the structural integrity.  

A systematic study of the role of surface Mg doping on the LiNi0.5Mn1.5O4 cathode material 

was carried out by Cabana and coworkers using synchrotron soft X-ray absorption 

spectroscopy (XAS) focusing on the metal L3,2-edges and oxygen K-edge.[166] The 

LiNi0.5Mn1.5O4 charged to a voltage as high as 5 V undergoes very intensive chemical 

change since the Ni-O bond turns into highly oxidized and unstable state which is prone to 

be reduced by the electrolyte. Close scrutiny reveals the existence of a new Ni-O bond as 

a sign of electron depletion on the cathode materials with Mg doped surface and peak 

intensity ratio changes in both Ni L3,2-edges and O K-edge in the surface sensitive total 

electron yield (TEY) spectra, indicating that the Mg doped surface helps retain a more 

oxidized surface upon electrochemical cycling, which is a result of more robust Ni-O bond 

so as to resist severe reduction by the electrolyte. It is worthwhile to note that this research 

was focusing on Ni-O bond state, more interesting results would be obtained if Mn L3,2 

edges were taken into consideration, since the reduction of surface Mn and the subsequent 

Jahn-Teller distortion effect can be tracked easily. The combination of these observation 

presents important guidelines of the principle through which surface doping design works 

in terms of stabilizing metal-oxygen bonds. 

As has been mentioned above, the mechanism through which surface doping design works 

also involves the replacement of soluble metal ions on the surface. A representative 
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example is the formation LiCo1-xAlxO2 solid solution on the LiCoO2 cathode material 

surface. Previous discussions have mentioned the role of Al in suppressing surface phase 

transition in LiCoO2, the incorporated Al, as an insoluble source in non-aqueous 

electrolyte, also reduces the dissolution of Co. The fundamental principle was presented 

by Dahéron and coworkers in 2009.[167] They tracked the surface acid-base properties of 

the LiCo1-xAlxO2 while adjusting the value of x. To be more specific, NH3 and SO2 gases 

were absorbed onto the surface of LiCo1-xAlxO2. Depending on the way the N and S are 

bonded on the Lewis acidic sites, Lewis basic sites and Brönsted acidic sites, they will 

display different binding energy on the N 1s and S 2p when characterized by XPS. The 

results showed that the surface basicity will drop drastically when Al is incorporated into 

the surface to form solid solution. The lower basicity makes the material much less 

vulnerable in the presence of HF. 

1.3.5 Surface Modification as Electronic/Li+ Conductivity 
Accelerators 

Surface coating does not change the inherent electronic and lithium ion conductivity of 

cathode materials, it actually provides conducting network among individual particles so 

as to guarantee consecutive mobile channels to maximize the utilization of active materials. 

The way through which surface modification functions depends on the properties of the 

materials and how they are deposited. 

1.3.5.1 In-situ Deposition of Conductivity Accelerators 

The first category of the coating materials involves the substances that are intrinsically 

conductive. Metals such as Ag, Cu and Al have been studied, but the high cost is not 

acceptable for scaled-up productions, nevertheless, metals do not always cover the surface 

of powders well and the acidic nature of electrolyte will certainly dissolve the metal into 

ions and contaminate the active materials.[168, 169] Additionally, metals are generally 

mechanically rigid, cracks may happen when volume change of active materials is 

significant. Similarly, coating some metallic compounds that possess considerable 

electronic conductivity such as TiN and RuO2 is also feasible regardless of the cost.[170, 

171] Rutile TiO2 is another possible carbon-free coating material thus can promote the 
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electrical conductivity profoundly as reported by Wang et al.[172] in their attempts of 

growing rutile-TiO2 on the edge of Li4Ti5O12 as an anode material. 

Alternatively, the in-situ growth of conductive polymers has been widely reported. The 

polymers include polyaniline (PANi), polypropylene (PPy), polythiophene (PT), poly(3,4-

ethylenedioxythiophene) (PEDOT), polyimide etc.[146, 173-177] The benefit of the in-

situ growth of polymers is that the monomers can be easily nucleated on the surface of 

powders and get polymerized with the help of catalyst, therefore the thickness is quite 

uniform.  

On the other hand, some carbon-based materials such as graphene, carbon nanotubes 

(CNTs), graphite and amorphous carbon have been used to form composites with the 

cathode materials. These carbon-based materials generally help build 3-D conductive 

network, not many of them were “coated” onto cathode powders. For materials that do not 

involve dissolution problem such as LiFePO4, using graphene or CNTs to form composites 

is very effective in improving the electrical conductivity.[178-181] On the other hand, 

Song and coworkers used a high speed ball milling method to tether very thin and porous 

graphite layers onto LiMn2O4, they found that this conformal layer can double the LiMn2O4 

capacity, the coating and performance of this sample is shown in Figure 1.11a-b.[182] 

Besides, a novel concept of hybrid coating, i.e. a composite coating layer that contain both 

electrical and lithium conductive substances has been reported, Figure 1.11e shows the 

mechanism of the hybrid coating, in this study, a coating layer that is composed of Li3PO4 

and carbon has been investigated, with this type of coating, conductivity and surface 

stability can be enhanced simultaneously. Therefore the performance of the sample with 

hybrid coating was significantly improved. 
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Figure 1.11 (a) Porous Graphite coating of LiMn2O4; (b) Discharge capacity of porous 

graphite coated LiMn2O4 with a voltage range of 2.4-4.3 V (Reproduced from ref. 

[182], copyright 2014 Wiley-VCH) (c) Rate capability test and (d) Stability test of the 

LNCMO, Li3PO4 coated LNCMO and Li3PO4/C coated LNCMO; (e) Mechanism of 

the hybrid coating (Reproduced from ref. [183] with permission, copyright Royal 

Society of Chemistry 2015) 

Another category is the deposition of lithium conductive coatings, compounds that are 

often considered as candidates for solid state electrolyte such as LiAlO2, Li2ZrO3, Li3PO4, 

LaPO4, LiPON, lithium boron oxide glass, LiTaO3 et al. have been utilized in order to 

facilitate the transfer of lithium ions on cathode material surfaces.[184-192] 
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1.3.5.2 Deposition of Conductivity Accelerators via Post Treatment 

The pyrolysis of carbon containing organics via either solid state method or chemical vapor 

deposition has been a proven strategy to improve the performance of cathode materials, 

particularly on those with poor intrinsic electronic conductivity and are resistant to 

reduction, such as LiFePO4 and LiMnPO4, this has been comprehensively reviewed by our 

group.[193] The carbon coating on LiMeOx (Me = Ni, Mn, Co etc.), however, remains hard 

to realize because of their oxidation nature, which will be reduced by carbon under high 

temperature and lead to poor performance. Despite many researchers are attempting to 

achieve the pyrolysis of organic under temperatures as low as 350 oC in air without burning 

up the carbon in short time, the feasibility of this method is under debate.[182, 194-198] 

The surface doping design is another reported way that can possibly generate surface 

conductivity facilitator. For example, Manthiram et al.[199] coated the 5V class cathode 

material LiMn1.42Ni0.42Co0.16O4 with Al2O3 followed by heating at 400-600 oC for 3h, 

despite the insulating nature of Al2O3, they found that the Al2O3 reacted with the cathode 

surface during annealing and formed LiAlO2, which is a good lithium conductor. Similar 

behavior was also observed by Zhang et al.[200], in their attempt of coating 

Li(Ni1/3Co1/3Mn1/3)O2 with ZrO2 via post annealing of ZrO(NO3)2, the near surface Zr was 

found to exist in the form of Li2ZrO3, which is also a good lithium conductor. In a more 

complicated case, Yang et al.[201] found that when a AlPO4 layer was coated onto LiCoO2 

followed by heat treatment, the surface Li2CO3 resulted from lithium over-stoichiometry 

will react with the AlPO4 and turn into a dual phase of LiCo1-yAlyO2 at the ~10 nm region 

and Li3PO4 at ~ 100 nm region near the surface, the former was found to be effective in 

suppressing metal dissolution and the latter one is a proven good lithium conductor. The 

presence of Li3PO4 was the reason why AlPO4 was more effective than Al2O3 in improving 

the capacity retention of LiCoO2 especially at extended voltage ranges. 
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Figure 1.12 XPS spectra of (a) Al 2p and (b) P 2p of AlPO4 coated LiCoO2; (c) 

schematic illustration of the AlPO4 surface modification mechanism (Reproduced 

from ref.[201] Copyright 2007 American Chemical Society) 

1.3.5.3 Formation of Conductivity Accelerators during Lithiation/ 
delithiation 

When the surface coating material can accommodate the reversible insertion/desertion of 

lithium ions, they tend to turn into a good lithium accelerator. For example, Ta2O5 has been 

reported to undergo following reaction when cycled:[202] 

Ta2O5 + 10 Li+ + 10e → 2 Ta5+ + 5 Li2O 

Li2O + Ta2O5 → 2 LiTaO3 

The product LiTaO3 is a well-known solid-state electrolyte at reduced dimensions, Heitjans 

et al.[203] proved that the LiTaO3 with a particles size of 20 nm demonstrates a lithium 

ions conductivity of about 3 × 10-6 S cm-1. Our group has successfully synthesized 

conformal LiTaO3 film via atomic layered deposition by the combination of Li2O and 

Ta2O5, and the LiTaO3 was also employed to protect the cathode material 
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LiNi1/3Mn1/3Co1/3O2 by precisely adjusting the coating thickness.[161] Similarly, Al2O3, 

which is a well-known insulator, also experiences lithiation into LiAlO2, turning into a 

good lithium conductor. 

TiO2 is another widely studied coating material that can be reversibly lithiated/delithiated 

under proper voltage ranges, the resulted LiTiO2 is a good electron conductor, which has 

been theoretically proven by Wagemaker et al.[204]  

In an attempt to theoretically predict the criteria of coating materials screening, Wolverton 

and co-workers have calculated the thermodynamic principles of cathode coating materials, 

such as metal oxides and metal fluorides.[205] By assuming the overall conversion reaction 

of metal oxides and metal fluorides as: 

MxO1/2 + Li → xM + 1/2Li2O; MxF + Li → xM + LiF 

respectively, they calculated the density function theory (DFT) voltages of oxides and 

fluorides compared to the experimental voltages, as shown in Figure 1.13. The higher the 

lithiation voltage, the more likely the coating gets lithiated during electrochemical cycling. 

It can be seen that fluorides generally have much higher lithiation voltage than oxides, due 

to the higher electronegativity of fluorine than oxygen. This chart is an important support 

for the selection of coating materials in terms of coating lithiation manipulation. 

 

Figure 1.13 Calculated average voltages for oxides and fluorides versus voltages 

estimated from experimental formation enthalpies (Reproduced from ref. [205] with 

permission, copyright 2014 Wiley-VCH) 
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1.4 Methods of Cathode Materials Surface Modifications  

Possible surface modification scenarios have been illustrated in Figure 1.14. The various 

designs of surface modification methods have been repeatedly attested in aforementioned 

reports, it still remains a question that what is an ideal modification method? Conclusively, 

it depends on the problem that one attempts to address when applying surface modification. 

Regular coating might work moderately in suppressing metal dissolution, electrolyte 

decomposition and improving conductivity, but is of less use when the intrinsic phase 

change is the issue. The surface coating might be very rough, though electrical and ionic 

transportation can be less affected, full coverage against acid attacking is however not 

guaranteed. Surface doping design could help mitigate surface phase transition, improve 

conductivity and decrease the possibility of metal dissolution, but is restricted by the 

doping element and controlled doping level, moreover, the doping process is often 

undergoing an unpredictable scenario. Conformal coatings can protect the electrode at very 

well controlled manner, but the hermetic nature prohibits electron and lithium diffusion 

seriously if the coating material is insulating.  

 

Figure 1.14 Possible ways of surface modification 
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1.4.1 Atomic Layer Deposition and Its Derivative Methods 

Atomic layer deposition (ALD) is a technique used to fabricate conformal coatings with 

controlled thickness, a representative schematic is shown in Fig. 1.15a using the most 

widely used Al2O3 as an example. In a typical ALD process, the surface of the substrate is 

initially functionalized with hydroxyl groups, in a following step, trimethylaluminum 

(TMA) and H2O are purged into the reacting chamber in sequence and allow the following 

reactions to take place: 

AlOH + Al(CH3)3 → Al-O-Al(CH3)2 + CH4 (a) 

Al-O-Al(CH3)2 + 2H2O → Al-O-Al(OH)2 + 2CH4 (b) 

Each of these reactions is a half reaction and this particular advantage enables the self-

limiting growth, i. e. deposition at a controllable manner. In addition, the bottom-up growth 

from atomic level allows ultra-uniform and conformal deposition.[206-210] 

Molecular layer deposition (MLD) is another technique analogous to ALD, in which all-

organic coating can be deposited, when combining with an ALD process, MLD can 

generate a hybrid organic-inorganic coating. The process of a typical MLD coating of 

alucone (aluminum organic) is shown in Fig. 1.15b, in which the only difference from ALD 

is the replacement of water with ethyl glycol.[211, 212] Though no references can be 

indexed about the application of MLD in cathode materials surface modifications, its 

versatile design will certainly find great potential in this area. With the fast development 

of conductive polymer coatings using MLD,[213, 214] and the pyrolysis of a polymer 

coating into conductive carbon,[215] it is rationally predicable that MLD will be an 

extremely powerful technique targeting at cathode materials surface modifications. 
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Figure 1.15 Schematic illustration of (a) ALD process of Al2O3 synthesis and (b) MLD 

process of Alucone synthesis 

1.5 Surface Properties of Graphene-based Anode Materials 

Because of its extraordinary specific surface area and electrical conductivity, graphene has 

been extensively employed as both pure anode material and as an additive to tailor material 

properties. [216-219] 

Although these results have proven that graphene can be an outstanding candidate for 

lithium-ion batteries, graphene microstructure and morphology can nevertheless exert 

significant effects on the cyclic performance and rate capability of lithium-ion batteries, as 

demonstrated by recent studies of Sun et al. [217, 220] Hence, developing novel-structured 

graphene is imperative. 

While much research focuses on decreasing the layers of graphene, very few of them 

provide insight on decreasing the dimension, i.e. creating quasi-one-dimensional graphene 

nanoribbons (GNRs). 

1.5.1 Theoretical Prediction 

One of the most notable changes of GNRs is the presence of edge structures in comparison 

with graphene. The configuration of edges can be either zigzag or armchair. Lithium 

adsorption at GNRs has been studied by Barone et al. [221] Based on spin-polarized Kohn-
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Sham approach within both the local spin density approximation and the generalized 

gradient approximation, they found that the binding energy of lithium at zigzag edges can 

be 50% stronger than that of graphene and armchair edges. The Li interaction with center 

adsorption positions weakens sharply, indicating the confined width of GNRs is very ideal 

to attain larger ion concentrations. 

On the other hand, Barone et al. have also studied the diffusion of Li atoms within GNRs. 

[222] They concluded that the diffusion of Li atoms along the edge is remarkably faster 

than the channels along the axis, and two orders of magnitude higher than graphene. In the 

case of zigzag GNR, the edge effect can be even more profound. While the edges of GNRs 

display extraordinary Li conductivity, the inner graphene structures, typically within 

several nano-meters, will show 2D graphene limit. 

1.5.2 Graphene Nanoribbons as Anode Material for Lithium-ion 
Batteries 

Upon intensive charge and discharge, some electrode materials may undergo fracture and 

pulverization, resulting in fading capacity. [223] Although CNTs are well known to have 

very high Young’s modulus, they still suffer from this deficiency during lithiation and de-

lithiation. [224] Huang et al. [225] used in situ transmission electron microscopy to study 

the electrochemical behavior of GNRs and found that the GNRs are mechanically robust 

upon tension and compression test. 

MWCNTs are circumferentially closed cylinders, which is the main reason of the brittle 

nature during lithiation since there is little space to accommodate the volume change. On 

the contrary, GNRs are unconfined layers of graphene with weak interlayer coupling and 

can tolerate even harsher electrochemical reactions. This unique characteristic enables very 

stable cyclic performance. The initial use of GNRs for lithium-ion batteries anode material 

was reported by Fahlman et al. [226] They found that the reduced GNRs derived from 

unzipped CNTs demonstrated slightly higher reversible capacity than conventional MCMB 

graphite but lower Coulombic efficiency. They also evaluated graphene oxide nanoribbons 

(GONRs), which is GNRs containing a lot of oxygen-containing functional groups. 
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1.6 Thesis Objectives 

As has been thoroughly reviewed, the existing obstacles in the electrode materials for 

lithium-ion batteries are mainly divided into 3 categories: 1) the synthesis of high purity 

material; 2) the modification of the materials surface to enable optimized electrochemical 

performance and 3) the understanding of how surface modifications benefit the 

performance of battery materials. The content will be mainly focused on 3 types of 

electrode materials. In the cathode part, spinel LiNi0.5Mn1.5O4 and layered Li-rich 

Li1.2Mn0.54Co0.13Mn0.13O2 that have high energy density will be investigated in detail. In 

the anode part, graphene-based materials will be investigated as an alternative of graphite. 

As such, the thesis objectives are divided into 5 topics. 

(1) To synthesize high purity cathode materials. The synthesis of LiNi0.5Mn1.5O4 and 

Li1.2Mn0.54Co0.13Mn0.13O2 will be carried out via various methods for high purity. These 

cathode materials are known to be prone to forming rock salt impurity phases such as NiO 

during synthesis. The materials will be used as base materials for ALD coating effect study. 

(2) To study the effect of ALD coating. Previous researches on surface coating of cathode 

materials have indicated that in order to achieve high stability without significantly 

sacrificing the capacity of a cathode material, electrochemically active coatings are desired. 

In addition, there is a lack of report on using metal phosphates as surface coating material 

by ALD, even though coating by regular methods has been reported a lot. 

(3) To explore surface modification methods on the basis of ALD. ALD is an outstanding 

method to form uniform coatings, but using ALD coatings followed by annealing to tailor 

the surface structure has not been reported thus far.  

(4) To understand the structural evolution of HENMC based on in-situ XAS of fresh 

electrode and heavily cycled electrode. 

(5) To unveil the surface properties of graphene based anode materials and the effects of 

these factors on the performance. 
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1.7 Thesis Organizations 

This thesis include seven chapters and satisfies the requirements on Integrated-Article form 

as outlined in the Thesis Regulation Guide by the School of Graduate and Postdoctoral 

Studies (SGPS) of the University of Western Ontario. Specifically, it consists of the 

following sequence: 

Chapter 1 presents a comprehensive introduction to the current status of research on 

cathode materials, the problems that pertain to this field of study, the possible explanations 

to these problems and the methods that researchers have adopted to address these problems. 

Also, thesis objectives have been listed in this chapter. 

Chapter 2 describes the experimental methods and analytical apparatus used in the work 

of this thesis.  

Chapter 3 presents the study of using an electrochemically active amorphous iron 

phosphate material as coating on spinel LiNi0.5Mn1.5O4 via ALD. The presence of the 

amorphous iron phosphate suppressed the reduction of Mn upon cycling significantly and 

helped create a lithium conductive layer through the lithiation of FePO4.  

Chapter 4 explores the possibility of using Ti to modify the surface structure of spinel 

LiNi0.5Mn1.5O4 using ALD. Specifically, TiO2 was deposited onto LNMO powders by 

ALD, the samples were subject to post annealing. Systematic studies have been carried out 

in order to understand the surface structure change. A significant performance 

improvement was observed in the samples with appropriate coating thickness. This is a 

first study on tailoring the surface structure of cathode materials via ALD. 

Chapter 5 studies the utilization of aluminum phosphate as coating material on Li-rich 

Li1.2Mn0.54Co0.13Mn0.13O2 via ALD. The oxygen release problem in this material may lead 

to thermal runaway problems, AlPOy coating was found to be able to increase the thermal 

stability more than regular Al2O3 coating. In addition, the surface change in the ALD 

process has been systematically studied.  
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Chapter 6 investigates the behaviors of transition metals in HENMC during the initial 

cycle and the 450th cycle through in-situ XAS measurements. It was found that the Ni and 

Co lose their electrochemical activity in the long term cycles whereas Mn can still undergo 

redox reaction, participation of oxygen in the charge compensation during the 450th cycle 

was proposed. 

Chapter 7 systematically studies the effects of surface functional groups, surface area and 

defects on the LIBs performance of graphene nanoribbons derived from carbon nanotubes. 

Chapter 8 summarizes the results and contributions of this work and provide outlook and 

future work. 

The structure of the work in this thesis has also been illustrated in the following figure. 

 

Figure 1.16 Flow chart of the thesis organization 
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Chapter 2  

2 Experimental Methods and Characterization Techniques 

2.1 Experimental methods 

2.1.1 Synthesis of LiNi0.5Mn1.5O4 Nanoparticles via Hydrothermal 
Route 

LiNi0.5Mn1.5O4 was synthesized via a two-step hydrothermal-assisted carbonate 

precipitation method followed by thermal treatment. The oven for hydrothermal process is 

shown in Figure 2.1. Ni(NO3)2 ·6H2O (99%, Aldrich, 0.005 mol) and Mn(NO3)2 ·4H2O 

(99%, Aldrich, 0.015 mol) were dissolved in de-ionized water (5 mL). Na2CO3 (99%, 

Aldrich, 1mol/ L, 20 mL) solution was subsequently added to the above mixture of nickel 

nitrate and manganese nitrate under vigorous stirring at a rate of 0.25 mL/min, then the 

green precipitation was transferred to a 40 mL Teflon-lined autoclave and kept at 140 oC 

for 10 h. After cooling down to room temperature (RT), the precipitation was filtered and 

washed with water several times and dried at 80 oC overnight. The carbonate powders were 

annealed at 450 oC for 4 h in air so as to obtain corresponding oxides. Thereafter, the oxide 

powders were mixed with Li2CO3 (99%, Sigma-Aldrich, 0.00503 mol) in 1:1 water and 

ethanol mixture (10 mL) and left to dry under stirring at 60 oC. The mixed precursor was 

subsequently sintered in O2 at 800 oC for 6 h and then cooled to 600 oC in 3 h. After keeping 

at 600 oC for another 6 h, the furnace was cooled to RT at a cooling rate of 1 oC min-1 to 

obtain the final LNMO. 



66 

 

 

Figure 2.1 (a) Oven used for hydrothermal synthesis; (b) Teflon-lined autoclaves for 

hydrothermal synthesis 

2.1.2 Atomic Layer Deposition of Amorphous FePO4 onto 
LiNi0.5Mn1.5O4 Nanoparticles  

Amorphous FePO4 was deposited at 300 oC by using ferrocene (FeCp2, FeC10H10, 98% 

Sigma Aldrich), ozone (O3, 9.8 wt.%), trimethyl phosphate (TMPO, (CH3)3PO4, 97% 

STREM Chemicals) and distilled water (H2O) as precursors in a Savannah 100 ALD 

system (Cambridge Nanotech, USA) shown in Figure 2.2. The source temperature for 

FeCp2 and TMPO was 130 and 75 °C respectively. O3 and H2O were fed into the reactor 

chamber at RT. The deposition of FePO4 was achieved by following a sequence of FeCp2 

pulse (1 s) – purge (10 s) – O3 pulse (1 s) – purge (10 s) – TMPO pulse (2 s) – purge (10 s) 

– purge (10 s) – H2O pulse (1 s) – purge (10 s). Nitrogen gas (99.999 %) was used as a 

carrying and purging gas at a flow rate of 20 sccm. The above processes were repeated for 

several (n) times to grow n cycles of FePO4 onto LNMO powders, denoted as LNMO-n 

(bare LNMO when n=0). 
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Figure 2.2 Savannah 100 ALD system (Cambridge Nanotech, USA) 

2.1.3 Atomic Layer Deposition of TiO2 onto LiNi0.5Mn1.5O4 Followed 
by Heat-treatment  

The LNMO powders were purchased from Daejung Energy Materials Co. Ltd., South 

Korea. Atomic layer deposition (ALD) of TiO2 was performed at 150 °C in a Savannah 

100 ALD system (Ultratech/Cambridge Nanotech) by using titanium(IV) isopropoxide 

(TTIP, Ti[OCH(CH3)2]4, Sigma Aldrich, 97%), and distilled water (H2O) as precursors. 

The source temperature for TTIP was 85 °C, while H2O was kept at room temperature 

(RT). N2 gas was used as the carrying and purging gas, at a flow rate of 20 sccm. Each 

ALD cycle of TiO2 was executed with the following steps: (1) 1s pulse of TTIP; (2) 3s 

extended exposure of TTIP in the reaction chamber; (3) 20s purge of residual TTIP and 

any by-products; (4) 1s pulse of H2O; (5) 3s extended exposure of H2O in the reaction 

chamber; (6) 20s purge of residual H2O and any by-products. LNMO powders were 

dispersed on a stainless steel tray, and then put at the center of the ALD reaction chamber. 

TiO2 was deposited on LNMO powders by repeating the above ALD cycles, the 

corresponding samples are denoted as LNMO/nTiO2 where n stands for the ALD cycle 
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number. 5, 25 and 50 cycle numbers were chosen as the performance study parameter. In 

order to better characterize the consequence of the TiO2 reaction with LNMO upon post-

treatment, 250 ALD cycle number was used for Ti related structural studies. In the post-

treatment process, the LNMO/nTiO2 samples were annealed in air under 810 oC for 6h 

followed by slow cooling to RT within 10h. The treated samples were named as 

LNMO/nTiO2A. All of the bare LNMO samples studied were treated under the same 

conditions as well to make the results comparable.  

2.1.4 Synthesis of Li1.2Mn0.54Co0.13Ni0.13O2 Nano-particles via A 
Modified Pechini Method 

HENMC was synthesized using a modified Pechini’s method. CH3COOLi, 

Mn(CH3COO)2, Ni(CH3COO)2 and Co(CH3COO)2 (Sigma Aldrich, 99%) were mixed 

with a stoichiometric ratio of 1.25:0.54:0.13:0.13 in 50 mL deionized water under strong 

stirring. 5.72 g citric acid was dissolved in 25 mL ethanol (Sigma Aldrich, 99.99%). 2.5 g 

polyethylene glycol (PEG) (Alfa Aesar, 25,000, 99%) was dissolved in 25 mL ethanol 

separately. The citric acid solution was initially added into the metal acetates solution 

slowly under stirring for 10 min. Then, the mixture was subsequently added into the PEG 

solution slowly, pink precipitations were observed during the reaction. Subsequently, 2 mL 

ethylene glycol (Sigma Aldrich, 99%) and 2 mL HNO3 (Sigma Aldrich, 70%) were added 

dropwise until the pink precipitate is dissolved. The final clear solution was dried at 120 

oC to obtain a colloidal gel. This gel was pre-calcined at 400oC for 4 h in air to remove the 

organic components. After cooling down, the final product was collected and ground to 

obtain fine particles. The final HENMC was obtained by calcining the fine particles under 

850 oC for 20 h in air.  



69 

 

 

Figure 2.3 Process of the modified Pechini’s method synthesis of 

Li1.2Mn0.54Co0.13Ni0.13O2 

2.1.5 Atomic Layer Deposition of AlPO4 onto 
Li1.2Mn0.54Co0.13Ni0.13O2 Nano-particles 

AlPO4 was deposited on HENMC powders at 250 °C in a Savannah 100 ALD system 

(Ultratech/Cambridge Nanotech, USA) using trimethylaluminum (TMA, (CH3)3Al, 98% 

STREM Chemicals), trimethyl phosphate (TMPO, (CH3)3PO4, 97% STREM Chemicals), 

and distilled water (H2O) as precursors. The source temperature for TMPO was 75 °C, 

while TMA and H2O was kept at RT. AlPOy was deposited in an exposure model by the 

sequence of TMA pulse (0.5 s) – exposure (1 s) - purge (10 s) – H2O pulse (1 s) – exposure 

(1 s) – purge (15 s) – TMPO pulse (2 s) – exposure (1 s) – purge (10 s) – H2O pulse (1 s) 

– exposure (1s) – purge (10 s). Nitrogen gas (99.999 %) was used as a carrying gas at a 
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flow rate of 20 sccm. AlPO4 films were directly deposited on HENMC powders by 

repeating the above ALD cycles. In this study, 5, 10 and 20 ALD cycles were selected to 

control the coating thickness, each of the sample was denoted as HENMC-n AP, where n 

stands for the ALD cycle number and AP stands for AlPO4. Al2O3 coating with 20 ALD 

cycles on the HENMC was carried out under 150 oC with TMA and water as the precursors 

in the same ALD system. 

2.1.6 Synthesis of Graphene Nanoribbons via the Chemical 
Unzipping of Carbon Nanotubes  

In a typical unzipping process, 100mg of MWCNTs (Shenzhen Nanotech., China) were 

dispersed in 3.4mL of sulfuric acid (H2SO4)(98%, Aldrich) via strong ultrasonic agitation 

for 30min. The viscous solution was then placed in an ice bath under vigorous stirring and 

75mg sodium nitrate (NaNO3) (99.9%, Aldrich) was subsequently added. After dissolving, 

450mg potassium permanganate (KMnO4) (99.9%, Aldrich) was slowly and carefully 

added into the viscous mixture. After a desired reaction time(specifically 5min, 30min, 1h, 

2.5h, 5h, 10h and 20h), 20mL of 5% sulfuric acid solution was poured into the liquid and 

left to cool down. Next, 2mL hydrogen peroxide (H2O2) (30%, Aldrich) was added into the 

solution in a drop-wide manner until no more bubbles were released. After half an hour, 

the dark solution was centrifuged and thoroughly washed with 5% nitric acid three times 

and de-ionized water five times, then filtered and dried in an oven at 90 oC for 12h under 

vacuum. The as prepared GNRs contained high amounts of oxygen-containing functional 

groups (denoted as GONRs-oxidizing time) and are therefore annealed at 900oC in Ar for 

reduction (denoted as GNRs-oxidizing time). To make the results more reliable, a reference 

was created with pristine CNTs which were treated in 30% nitric acid solution for 6 hours 

to remove the catalysts. 

2.2 Characterization Techniques 

2.2.1 Physical Characterization Methods  

The structure, chemical environment, functional groups and morphology information of 

the materials are characterized using a variety of methods including SEM, EDX, 
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(HR)TEM, STEM-HAADF, EELS, XAS, RAMAN, FTIR, BET, XPS and XRD. This 

section briefly reviews these techniques.  

The morphology of the materials was observed using SEM (Hitachi S-4800) shown in 

Figure 2.4. The SEM was operated at 5 kV in order to observe morphologies of samples. 

The SEM was coupled with an EDX which gives important information of elemental 

distribution. 

 

Figure 2.4 Field emission scanning electron microscope (Hitachi S-4800) 

TEM is another important tool to study the detailed morphological information, in 

comparison with SEM, TEM obtains much higher magnifications through the transmission 

of electrons. A JEOL 2010F high-resolution TEM located at the Canadian Centre for 

Electron Microscopy (CCEM) at McMaster University was used to observe the fine 

structures of the samples. The study of atomic level structure of materials by HAADF-

STEM was conducted on an aberration-corrcted FEI Titan Cubed 80-300 kV microscope 

equipped with a Gatan Image Filter Quantum-965 spectrometer operated at 200 kV. The 
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photos of these equipment are shown in Figure 2.5. The sample particles were cut into 

slices using a Zeiss NVision 40 dual beam focused ion beam. EELS spectra were recorded 

with a 0.25 eV/channel dispersion of the spectrometer in order to understand the chemical 

environment of the elements.  

 

Figure 2.5 (a) JEOL 2010F high-resolution TEM and (b) FEI Titan Cubed 80-300 kV 

microscope equipped with a Gatan Image Filter Quantum-965 spectrometer 

XRD is an exceptionally important tool in studying the structure of materials, especially 

crystalline ones. The XRD pattern of the samples were collected on a Bruker D8 Advance 

Diffractometer using Cu Kα radiation at 40 kV and 40 mA. The photo of the XRD is shown 

in Figure 2.6. 

XPS is a tool to understand the chemical information of elements through detecting the 

number of escaped electrons from the surface of samples at certain binding energies. In 

this thesis, a PHI Quantera XPS Scanning Microprobe (Physical Electronics, Chanhassen, 

MN) with a monochromated Al Ka (1486.6 eV) source located at the Global R&D Center 

of General Motors was used for the XPS analysis. The device is shown in Figure 2.7.  
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Figure 2.6 Bruker D8 Advance Diffractometer XRD 

 

Figure 2.7 A PHI Quantera XPS Scanning Microprobe 
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Surface area of the graphene-based studies was collected on a Micromeritics Brunaner-

Emmett-Teller (BET) surface area analyzer (Figure 2.8). The BET surface area is analyzed 

based on the adsorption and de-sorption of gas molecules onto the specimen, in this study, 

helium gas was used. 

 

Figure 2.8 A Micromeritics Brunauer-Emmett-Teller surface area analyzer 

The thermal properties of the materials were determined by a Thermo Instruments SDT 

Q600 Thermogravimetric (TGA)/Differential Scanning Calorimetry (DSC) analyzer as 

shown in Figure 2.9. 
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Figure 2.9 A Thermo Instruments SDT Q600 Thermogravimetric/Differential 

Scanning Calorimetry analyzer 

Raman spectroscopy is a technique to understand the vibration of chemical bonds through 

detecting the inelastic scattering of incident monochromatic light. The interaction of the 

light and the molecular vibrations results in light energy shift and provides fingerprint 

information of the molecules. In this thesis, a HORIBA Scientific LabRAM HR Raman 

spectrometer system with a 532.4 nm laser and optical microscope at room temperature 

was used for the Raman analysis, it is shown in Figure 2.10. 

 

Figure 2.10 HORIBA Scientific LabRAM HR Raman spectrometer system 

Another essential characterization technique used in this thesis is the synchrotron radiation 

technique. Synchrotron radiation is highly collimated X-ray, owing to the broad spectrum, 

high flux, high brilliance and high stability, it has been widely used in the analysis of 

material structural properties. The main method involving synchrotron technique in this 

thesis is the X-ray absorption spectroscopy (XAS). The XAS is a technique used to study 

the local structure of materials through the absorption of X-ray by atoms, where the core-

level electrons are ejected and a core-hole was left. The energy of this absorption is 

determined by the electronic structures of atoms in the samples studied, therefore it 
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provides very detailed information of the local structures of materials. Figure 2.11 shows 

the beamlines available at the Canadian Light Source and a photo of it. 

 

Figure 2.11 (a) Beamlines at the Canadian Light Source; (b) a photo of the Canadian 

Light Source 

2.2.2 Electrochemical Measurements  

The electrochemical performance of the electrode materials are tested using CR2032 coin 

cells. The cathode materials are mixed with acetylene black and polyvinylidene fluoride 

(PVDF) in a ratio of 80:10:10 using N-methyl-2-pyrrolidone (NMP) as the solvent. The as-

prepared slurry was casted on Al foil and dried overnight. For graphene nanoribbons study, 

the material was mixed with PVDF only with a mass ratio of 90:10, the slurry was casted 

on Cu foil. The electrodes were thereafter cut into round shapes with a diameter of 13 mm. 

The electrolyte used in this thesis depends on the materials studied. For high-voltage 

LiNi0.5Mn1.5O4, the electrolyte used was 1M LiPF6 dissolved in ethylene carbonate (EC) 

and dimethyl carbonate (DMC) with a volume ratio of 1:1 and a polyethylene Celgard 

K2045 as the separator. For other materials, the electrolyte used was 1M LiPF6 dissolved 

in ethylene carbonate (EC) and diethyl carbonate (DEC) a volume ratio of 1:1 and a 

polypropylene Celgard 2400 as the separator. Lithium metal chips are used as the counter 

electrode in the coin cells. The coin cells are assembled in a highly pure argon-filled glove 

box with the oxygen and water level being controlled below 1 ppm. The photo of the glove 

box is shown in Figure 2.12. The coin cells are electrochemically cycled on an Arbin 

BT2000 Battery Testing Station according to required protocols. A photo of the Arbin 

BT2000 is shown in Figure 2.13. 
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Figure 2.12 Photo of the glovebox used for cell assembly 

 

Figure 2.13 Arbin BT2000 battery testing station 
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Cyclic voltammetry (CV) is an important method to study the electrochemical properties 

of batteries. The CV curves reflect the potentials where certain reactions such as the lithium 

insertion/desertion or the redox reactions take place. AC electrochemical impedance 

spectroscopy (EIS) is another important tool to understand the impedance within a cell. 

Figure 2.14 shows a multichannel potentiostat 3/Z (VMP3), on which both the CV and EIS 

measurements are conducted. The CV tests are conducted at a scan rate of 0.1 mVs-1 over 

a voltage range of 0.1 V-3.0 V for graphene nanoribbons studies, 3.5 V-5.0 V for 

LiNi0.5Mn1.5O4 studies and 2.0 V-4.6 V for high energy NMC studies.  

 

Figure 2.14 A multichannel potentiostat 3/Z (VMP3) 
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Chapter 3  

3 Unravelling the Role of Electrochemically Active FePO4 
Coating by Atomic Layer Deposition for Increased High-
voltage Stability of LiNi0.5Mn1.5O4 Cathode Material 

Coating is an essential technique to increase the performance of high voltage cathode 

materials. Atomic layer deposition (ALD) is an emerging technique which allows for ultra-

thin and conformal coating. The seamless coating help combat the electrolyte attack to the 

cathode materials, but prohibits the electrons and lithium ions from fast transportation. 

Electrochemically active coating is a possible solution to this problem, since the 

transportation of lithium ions within electrochemically active material matrix can be 

significantly increased due to abundant diffusion sites. 

For the first time, we have adopted ultra-thin layer of electrochemically active FePO4 

synthesized by atomic layer deposition (ALD) to coat the surface of LNMO. The precisely 

controlled growth and uniformity contributed to over 20% higher capacity retention. This 

advancement can be applied to other electrode materials for LIBs and broadens the 

application of ALD in energy storage devices. 

 

 

 

 

 

Note: This work has been published. 

B. Xiao, J. Liu, Q. Sun, B. Wang, M. Banis, D. Zhao, Z. Wang, R. Li, X. Cui, T.-K Sham  

and X. Sun, Adv. Sci., 2015, 1 
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3.1 Introduction 

LiNi0.5Mn1.5O4  (LNMO) is a derivative of the commercialized spinel LiMn2O4 with Ni2+ 

and Mn4+ occupying two octahedral sites of 4a and 16d respectively, aimed at suppressing 

the intrinsic deficiencies such as the Jahn-Teller distortion of Mn3+ with the same 

theoretical capacity as LiMn2O4 (148 mAh/g).[1] In addition, since the working mechanism 

of LiNi0.5Mn1.5O4 is mainly the redox couple of Ni2+/ Ni4+, the theoretical operating voltage 

reaches 4.7 V (vs Li/Li+) compared with 4.0 V for LiMn2O4 (vs Li/Li+).[1, 2] Such a high 

voltage inevitably involves the aggressive oxidation of the electrolyte and the dissolution 

of transition metals, which cause the capacity fading.[3-5] In order to overcome these 

drawbacks, various strategies such as surface modifications using metal oxides and 

phosphates like Al2O3,[6] ZnO,[7] MgO,[8] ZrO2,[9] Li3PO4[10] and AlPO4[11, 12] et al. 

have been studied. Most of these coatings are, however, still restricted to the poor 

conductivity and/or non-uniformity, the former deficiency results in poor kinetics during 

charging/discharging, while the latter does not provide full protection of electrode from HF 

attacking.[13] Atomic layer deposition (ALD) is a novel coating technique capable of 

depositing highly conformal and uniform layers with well controlled thickness onto 

substrates.[14, 15] ALD derived ultrathin Al2O3 and LiAlO2 coatings have been used as 

protection layers on LNMO recently,[16-18] it was found that the coating layer containing 

lithium favours faster lithium ion diffusion. Most of the non-lithium-containing coating 

materials, however, increase the cycling stability at the expense of sacrificing capacity.[19, 

20] For example, in their attempt to protect the surface of LNMO by ALD derived Al2O3, 

Jung et al.[17] used only 2 ALD cycles of Al2O3 growth on LNMO powders, the capacity 

dropped by 10 mAhg-1 immediately, when the ALD cycle number was increased to 10, 

almost no capacity was delivered. In regard of this, the majority of previous studies 

deposited ALD layer onto the surface of electrode sheet instead of material powders so as 

to avoid the insulation between binder, conductive carbon and cathode materials since the 

coating did not break the contact between them.[21-23] This will certainly restrict the 

application of ALD because some ALD materials require high deposition temperature, 

under which the binder may be unstable. Therefore, searching for a coating material with 

good electron and lithium diffusion, whilst protecting the cathode material uniformly under 

high voltage is exceptionally important. Despite the versatile design of ALD, coating 
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materials that are electrochemically active, i.e. capable of accommodating Li+ within the 

voltage range of cathode materials are scarcely reported. With the electrochemically active 

advantage, direct coating onto powders becomes realistic.   

Amorphous FePO4 has been widely studied as cathode materials for both lithium-ion 

batteries (LIBs) and sodium ion batteries (SIBs).[24-26] Its highly amorphous structure 

does not generate any lattice stress and therefore provides continuous lithium insertion 

channels and considerable electronic conductivity.[27-29] In our recent work, we 

successfully synthesized FePO4 via ALD process,[30],[31] which has also been 

demonstrated by Fjellvåg et al. to deliver a discharge capacity of above 140 mAh/g.[32]  

In this study, we propose the novel ALD derived ultrathin amorphous FePO4 coating as a 

lithium ions reservoir during cycling, which may act as both a lithium diffusion facilitator 

and an electrochemical buffer layer between the electrolyte and LNMO by keeping the 

interface electrochemical potential above the electrolyte’s highest occupied molecular 

orbital (HOMO), at which the electrolyte starts to get oxidized.[33, 34] Further, we provide 

detailed discussion about the role of electrochemically active FePO4 coating based on X-

ray absorption spectroscopy analysis. 

3.2 Experimental 

3.2.1 Materials Synthesis 

LiNi0.5Mn1.5O4 was synthesized via a two-step hydrothermal-assisted carbonate 

precipitation method followed by thermal treatment. Ni(NO3)2 ·6H2O (99%, Aldrich, 0.005 

mol) and Mn(NO3)2 ·4H2O (99%, Aldrich, 0.015 mol) were dissolved in de-ionized water 

(5 mL). Na2CO3 (99%, Aldrich, 1mol/ L, 20 mL) solution was subsequently added to the 

above mixture of nickel nitrate and manganese nitrate under vigorous stirring at a rate of 

0.25 mL/min, then the green precipitation was transferred to a 40 mL Teflon-lined 

autoclave and kept at 140 oC for 10 h. After cooling down to room temperature (RT), the 

precipitation was filtered and washed with water several times and dried at 80 oC 

overnight. The carbonate powders were annealed at 450 oC for 4 h in air so as to obtain 

corresponding oxides. Thereafter, the oxide powders were mixed with Li2CO3 (99%, 

Sigma-Aldrich, 0.00503 mol) in 1:1 water and ethanol mixture (10 mL) and left to dry 
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under stirring at 60 oC. The mixed precursor was subsequently sintered in O2 at 800 oC for 

6 h and then cooled to 600 oC in 3 h. After keeping at 600 oC for another 6 h, the furnace 

was cooled to RT at a cooling rate of 1 oC min-1 to obtain the final LNMO. 

3.2.2 Atomic Layer Deposition of Amorphous FePO4 

Amorphous FePO4 was deposited at 300 oC by using ferrocene (FeCp2, FeC10H10, 98% 

Sigma Aldrich), ozone (O3, 9.8 wt.%), trimethyl phosphate (TMPO, (CH3)3PO4, 97% 

STREM Chemicals) and distilled water (H2O) as precursors in a Savannah 100 ALD 

system (Cambridge Nanotech, USA). The source temperature for FeCp2 and TMPO was 

130 and 75 °C respectively. O3 and H2O were fed into the reactor chamber at RT. The 

deposition of FePO4 was achieved by following a sequence of FeCp2 pulse (1 s) – purge 

(10 s) – O3 pulse (1 s) – purge (10 s) – TMPO pulse (2 s) – purge (10 s) – purge (10 s) – 

H2O pulse (1 s) – purge (10 s). Nitrogen gas (99.999 %) was used as a carrying and purging 

gas at a flow rate of 20 sccm. The above processes were repeated for several (n) times to 

grow n cycles of FePO4 onto LNMO powders, denoted as LNMO-n (bare LNMO when 

n=0). 

3.2.3 Characterization Methods 

The morphology of LNMO-n was characterized by a Hitachi S-4800 field emission 

scanning electronic microscopy (FESEM) equipped with an energy dispersive X-ray 

spectroscope (EDS), Hitachi H-7000 transmission electron microscope (TEM), and a high-

resolution transmission electron microscope (HRTEM, JEOL 2010F). Raman scattering 

(RS) spectra was collected from a HORIBA Scientific LabRAM HR Raman spectrometer 

system with a 532.4 nm laser and optical microscope at RT. X-ray diffraction (XRD) 

patterns were collected on a Bruker D8 Advance Diffractometer using Cu Kα radiation at 

40 kV and 40 mA. The X-ray absorption near edge structure (XANES) measurements at 

total electron yield (TEY) and fluorescence yield (FYI) modes of Mn L2,3-edge and Fe L3-

edge were performed at the Canadian Light Source (CLS) on the high resolution Spherical 

Grating Monochrometer (SGM) beamline using a 45 mm planar undulator and three 

gratings with a photon energy range of 250 to 2000 eV, LNMO-20 was chosen as the target 

sample. The P 2p X-ray photoemission spectroscopy (XPS) was performed at the variable 
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line spacing plane grating monochromator (VLS PGM) beamline at 200 eV photon energy 

with a total resolution of 100 meV. 

3.2.4 Electrochemical Measurements 

The LNMO-n powders were mixed with poly(vinylidene fluoride) binder and acetylene 

black in a ratio of 8:1:1 in N-methyl-pyrrolidione (NMP) solvent to form slurries. The 

slurries were subsequently casted onto aluminum foils as the current collector and dried at 

80 °C under vacuum overnight. The electrode was assembled in an Ar-filled glovebox with 

moisture and oxygen concentrations below 1 ppm. A CR-2032 type coin cell using a 

lithium metal as the counter electrode and Celgard K2045 as the separator was utilized. 

The electrolyte was composed of 1 M LiPF6 salt dissolved in ethylene carbonate (EC) and 

dimethyl carbonate (DMC) in a 1:1 volume ratio (BASF Corp.). Cyclic voltammetry (CV) 

was performed on a multichannel potentiostat 3/Z (VMP3), with a scanning rate of 0.1 

mVS-1 and a potential range of 3.5−5.0 V (vs Li/Li+) at RT. Electrochemical impedance 

spectroscopy (EIS) was also performed on the versatile multichannel potentiostat 3/Z 

(VMP3) by holding the cells at 5.0 V. Galvanostatical charge/discharge was performed on 

Arbin BT2000 at various current densities between 3.5 V and 5.0 V (vs Li/Li+), the stability 

performance test was done under 0.5 C, which is 73.5 mA/g. 

3.3 Results and Discussion 

3.3.1 Morphology and Structural Characterization 

The preparation process of LNMO powders is described in the supporting information. The 

phases of LNMO were identified via XRD as shown in Figure SI 3.1. The peaks can be 

well indexed to the cubic spinel phase of LNMO (JCPDS No. 35-0782). ALD processes 

did not change the structures of the spinel LNMO. Due to the ultrathin and amorphous 

nature of the FePO4, no peaks of FePO4 can be observed in the XRD pattern. Figure 3.1a 

shows the Raman spectra of the samples, the sharp peak at 160 cm-1 indicates that the 

LNMO is ordered P4332 phase, with subtle oxygen deficiencies. The peaks at 400 and 490 

cm-1 are related to the Ni2+-O stretching and the peak at 630 cm-1 corresponds to the Mn-

O stretching of MnO6 octahedra.[35] It can be seen that with higher ALD FePO4 cycles, 

both the Ni-O and Mn-O vibrations show blue shifts, this is due to the strains induced by 
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the surface coating, which was also observed in TiO2 coating.[36] In order to observe the 

P content evolution with ALD cycles, the P 2p spectra were collected based on synchrotron 

XPS technique. It can be observed that these P atoms on the LNMO surface show 

increasing concentration when the ALD cycle increases, indicating that the amount of 

surface coating layer correlates to the number of ALD cycles. It is worthwhile to note that 

the P 2p XPS spectra of LNMO-40 did not show linear intensity increase, this is probably 

due to the surface saturation in synchrotron XPS. 

 

Figure 3.1  (a) Raman spectra and (b) P 2p XPS spectra of LNMO-n 
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The morphologies of the LNMO-n samples were characterized by FESEM (Figure 3.2a 

and b show LNMO-0 and LNMO-20 the rest are shown in Figure SI 3.3) and HRTEM 

(Figure 3.2c). It can be seen that the pristine LNMO shows sharp crystallized edges, the 

surface becomes rougher when the ALD cycle number increases, Fig. SI 3.2 shows the 

EDX mapping of Fe, P, Mn, Ni, O, it can be seen that the Fe and P are uniformly coated 

onto the surface of LNMO. The HRTEM images in Fig. 3.2c reveal that the ultrathin 

surface coating is about 2 nm in thickness, the growth rate is consistent with our previous 

findings when depositing FePO4 onto Si wafer.[31] The lattice fringe with basal distance 

of 0.24 nm is consistent with the (222) spacing of cubic phase LNMO. The inset electron 

diffraction pattern of LNMO-20 indexes a typical spinel lattice structure. 
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Figure 3.2 FESEM images of (a) LNMO-0 and (b) LNMO-20; (c) HRTEM images of 

LNMO-20 (inset: Electron diffraction patterns of the LNMO-20 along the [110] zone 

axis) 
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3.3.2 Electrochemical Characterization 

Figure 3.3a shows the first charge/discharge curves of LNMO-n samples, the plateaus at 

around 4.7 V correspond to the reduction of Ni4+ to Ni3+ and Ni2+, another small plateau at 

around 4.0 V corresponds to the reduction of Mn4+ to Mn3+. The bare LNMO delivers 

highest first discharge capacity of 113 mAhg-1 among all the samples. Nevertheless, the 

LNMO-0 sample decays rapidly during cycling, and the capacity retention of LNMO-0 is 

only 79.89% after 100 cycles, as shown in Figure SI 3.5, Figure 3.3b and Table 1. In 

contrast, the ALD FePO4 coated samples display increasing capacity retention with more 

ALD cycle numbers, indicating the protective nature of the FePO4 layer.[37] It is 

worthwhile to mention that despite the LNMO-40 sample shows greatly enhanced stability, 

the capacity is lower, possibly due to the relatively lower electrical conductivity of FePO4. 

Rate capability test (Fig. 3.3c) also reveals that LNMO-10 presents the highest capacity 

under high current densities, e.g. more than 80 mAhg-1 at 5C, while the LNMO-0 sample 

drops to approximately 0 mAhg-1. The Coulombic efficiencies of the samples are shown in 

Figure SI 3.5, it can be seen that the Coulombic efficiency increases with the ALD cycle 

number, reavealing that the presence of FePO4 has helped to suppress the electrolyte 

decomposition. 

Cyclic voltammetry (CV) measurements were carried out on the LNMO-n samples with 

normalized active material loading and electrolyte amount (Fig. 3.3d). Three redox couples 

can be observed in the CV profiles. The weak and broad pair at around 4.0 V corresponds 

to the Mn3+/ Mn4+, indicating that the LNMO is mostly in the phase of P4332,[35] in 

accordance with the Raman spectra. Two pairs of intense redox couples at 4.6-4.9 V are 

related to the Ni2+/ Ni3+/ Ni4+, which are the main sources of capacity. CV curves enlarged 

at 4.9 V- 5.0 V (Fig. SI 3.7) show that the bare LNMO has much higher resident current 

value at the cutting voltage of 5.0 V than other samples, implying that the electrolyte 

oxidation in bare sample is more severe than coated samples. The lower area of the 

LNMO/40 FePO4 sample is also in accordance with the lower capacity. Table 1 

summarizes the potential positions of the redox peaks. The redox peak potentials varied 

from 0.140 and 0.143 V for LNMO-0 to 0.082 and 0.084 V for LNMO-40 FePO4, 

suggesting that FePO4 coatings alleviates the polarization of the LNMO materials.
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Table 3.1 Potentials of the oxidation/reduction peaks of the first CV scan, the capacity retentions and Rs after 100 

charge/discharge cycles 
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Figure 3.3 (a) First charge/discharge curves; (b) Cycling stability under 0.5C; (c) Rate 

capabilities; (d) Cyclic voltammetry of the LNMO-n samples 

In the effort to understand the formation of solid electrolyte interphase (SEI) on the surface 

of the electrodes, AC electrochemical impedance spectra (EIS) were conducted on each 

LNMO-n sample after cycling for 100 times and subsequently charged to 5.0 V as shown 

in Fig. 3.4a. It can be seen that the LNMO-0 sample shows only one semi-circle whereas 

those with FePO4 coatings show two semi-circles in the range of high and medium 

frequencies. A possible equivalent circuit is proposed to illustrate the impedance 

behaviours on the surface as shown in Fig. 3.4b. RΩ stands for the Ohmic electrolyte 

resistance. The semicircle at high frequency is suggested to be a resistor Rs and a constant 

phase element CPEs, which are related to the migration of Li+ through the surface film, in 

this case, it reflects the resistance of SEI. Another semicircle at medium frequency is 
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related to the charge transfer reaction composed of Rct and another CPE, together with the 

finite length Warburg impedance.[38]  The values of the Rs are presented in Table 3.1, it 

can be found that without any FePO4 coating, the Rs for LNMO-0 is 173.1 Ω, however, the 

existence of FePO4 coating layer helped to decrease the Rs values dramatically, which vary 

monotonically with the number of ALD cycles, to only 57.9 Ω for the LNMO-40 sample. 

The drop of Rs clearly reveals the less formation of insulating SEI, which is a result of 

electrolyte decomposition, therefore FePO4 is effective towards suppressing the electrolyte 

decomposition. 

 

Figure 3.4 (a) Electrochemical impedance spectra (EIS) of the LNMO-n samples 

(Solid lines: Fitted spectra); (b) A possible equivalent circuit. 

3.3.3 XANES Studies 

To investigate the change of Mn valence state in the LNMO-n samples, XANES was 

collected on the Mn L3,2-edges. Mn L3,2-edges illustrate the electronic transition from Mn 

2p3/2 and 2p1/2 to an unoccupied 3d state.[39-41] Fig. 5a depicts the total electron yields 

(TEY) of LNMO-0 and LNMO-20, which is surface sensitive with a probing depth of 5-

10 nm. The L2-edge often appears to be broader due to the core hole lifetime as explained 

by Coster-Kronig Auger decay.[42] It can be seen that both the LNMO-0 and the LNMO-

20 show predominantly Mn4+ features that fit well with standard MnO2, the small peak at 

646 eV corresponds to Mn3+, and this is also consistent with the Raman spectra, the 

unchanged spectra reveal that the coating process did not generate changes to the surface 

phase of LNMO. However, after charge/discharge cycling, Mn4+ at the surface was 
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partially reduced to Mn2+, and the LNMO-0 shows much higher intensity ratio of 

Mn2+/Mn4+ than the coated LNMO sample. The bulk-sensitive fluorescence yield (FYI) 

spectra of LNMO-20, LNMO-20 after battery cycling and LNMO-0 after battery cycling 

are shown in Fig. SI 3.8. It can be seen that the bulk Mn exhibits subtle changes after 

cycling. The less reduced Mn valence on coated LNMO surface also reveals weaker 

reduction by the electrolyte, which can be attributed by the inhibitive role of FePO4 against 

the electrolyte oxidation.[43] It is also generally accepted that the presence of Mn3+ triggers 

the Jahn-Teller distortion because of its (𝑡2𝑔
3 𝑒𝑔

1 ) configuration, resulting in its charge 

disproportionation into non Jahn-Teller active Mn2+ and Mn4+, described as 2Mn3+ → Mn2+ 

+ Mn4+.[3, 44] In the presence of  HF from the LiPF6 salt, Mn2+ ions dissolve in the 

electrolyte and migrate through the separator followed by depositing on the anode as Mn 

metal, with a secondary phase formed on the surface of cathode materials.[45, 46] The 

suppression of Jahn-Teller distortion by FePO4 coating prevents the formation of Mn2+, 

thereby decreases the chance of Mn2+ dissolution in HF, hence improves the stability.[47] 
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Figure 3.5 (a) XANES Mn L3,2-edges of LNMO-20, LNMO-20 cycled, LNMO-0, 

LNMO-0 cycled, and standard MnO, Mn2O3, MnO2; (b) Fe L3-edges of standard 

FePO4, LNMO-20 and LNMO-20 after 100 battery cycles collected in TEY mode 

Fe L3-edges XANES of standard FePO4, LNMO-20 and LNMO-20 after battery cycling 

were performed to determine the chemical states of the FePO4 coatings before and after 
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charge/discharge cycling. As shown in Fig. 3.5b, the spectrum of LNMO-20 fits well with 

the standard FePO4 spectrum, the intense peak at 713.5 eV (can be ascribed to the dominant 

spectral feature of Fe3+) and the weaker peak at 712.2 eV are related to the spin-orbit, 

interplay of crystal-filed and electronic interactions. Their intensity ratio reveals the 

Fe3+/Fe2+ ratio.[37] Nevertheless, upon battery cycling, there is an obvious drop in the 

Fe3+/Fe2+ ratio, indicating that part of the Fe3+ has been reduced, and the position of the 

right peak is, interestingly, shifting to higher energy value close to the peak feature in 

standard LiFePO4. Such shift was also observed in our previous study on the soft XANES 

spectroscopies of LiFePO4-related various phases.[48] In this regard, we believe that the 

insertion of lithium ions into the matrix of amorphous FePO4 has resulted in the partially 

lithiated FePO4 domains, which acts as a lithium ion reservoir and exhibited improved 

performance at high current densities by providing abundant Li+ diffusion pathways. 

Based on the aforementioned results, the schematic illustration of the protecting role of 

FePO4 is presented in Fig. 3.6. The LNMO-0 exposed to electrolyte suffers from fierce 

transitional metal dissolution and continuous electrolyte decomposition. On the contrary, 

LNMO with FePO4 coating is resistant to the metal dissolution. This is because it was 

found that the non-coated sample displayed Mn at reduced state on the surface after 

cycling, which is much more prone to dissolution compared to Mn3+ and/or Mn4+. 

Additionally, the amorphous FePO4 layer accommodates lithium ions rapidly during 

cycling, thus provides fast lithium diffusion coefficient. More specific role of FePO4 is 

shown in Fig. 6b with the electrolyte highest occupied molecular orbital (HOMO) and work 

functions of FePO4 and LiNi0.5Mn1.5O4. The electrolyte gets readily oxidized when the 

electrochemical potentials of cathode materials are below the HOMO of it.[33, 34] Unlike 

other conventional insulating ALD coating materials such as Al2O3 or ZrO2, FePO4 is 

electrochemically active with an open circuit voltage of ~ 3V,[24] the FePO4 ultrathin layer 

on the surface prevents the direct contact of LNMO with the electrolyte, helping to avoid 

the oxidation of electrolyte that results in the reduction and dissolution of Mn ions. 
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Figure 3.6 Schematic illustrations of (a) LNMO; (b) bare LNMO upon cycling; (c) 

LNMO-n; (d) LNMO-n upon cycling; (e) illustration of the electrolyte highest 

occupied molecular orbital (HOMO) and work functions of FePO4 and LiNi0.5Mn1.5O4 

3.4 Conclusion 

We have proposed a new FePO4 coating on high voltage LNMO cathode material enabled 

by ALD. Different thicknesses of FePO4 have been deposited onto LNMO powders with 

5, 10, 20 and 40 ALD cycles. The LNMO coated with 10 ALD cycles of FePO4 showed 

the best performance including the highest capacity and stabilized capacity retention under 

all the current rates. When the LNMO was coated with 40 ALD cycles of FePO4, the 

capacity retention increased up to 100%. XANES study showed that the ultrathin FePO4 

suppressed the surface Mn4+ from being heavily reduced to Mn2+ by the reduction from the 

electrolyte and the Jahn-Teller distortion, less amount of Mn2+ helped to retain the surface 

consistency without dissolution into the electrolyte. The FePO4 coating layer was slightly 

reduced due to remaining Li+ in the structure after charge/discharge cycling. Compared 

with the most widely used insulating Al2O3, amorphous FePO4 presents many advantages 

on the electron/ion diffusion on the surface. Our work provides an alternative option of 

depositing materials onto powders instead of electrode sheets directly using ALD, which 

expands the deposition temperature, owing to the electrochemically active nature of FePO4. 
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Supporting Information 

 

Figure SI 3.1 X-ray diffraction patterns of LNMO/ n FePO4
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Figure SI 3.2 Energy-dispersive x-ray (EDX) mapping of LNMO-20 

 

Figure SI 3.3 SEM images of (a) LNMO/5 FePO4; (b) LNMO/10 FePO4; (c) LNMO/40 

FePO4 

 

Figure SI 3.4 SEM images of (a) bare LNMO and (b) LNMO-20 after 100 times 

battery cycling 

The surface of bare LNMO is obviously covered by another layer of SEI, also, cracking 

can be observed due to the lattice volume expansion. Instead, the LNMO-20 FePO4 sample 

does not show other depositions, indicating the less SEI formation. 
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Figure SI 3.5 Discharge curves of the 100th electrochemical cycle of the LNMO-n 

samples 

The 100th discharge curves of the samples show the same trend with the stability test, in 

which LNMO-10 shows the highest capacity, the voltage plateau is also higher than the 

others, indicating its superior performance.   
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Figure SI 3.6 Coulombic efficiency of the samples 

It can be observed that the initial Coulombic efficiency (ICE) decreases with the increase 

of ALD cycles, this is because some of the lithium were trapped in the matrix of FePO4 

during the first charge from an open circuit voltage (OCV) of about 3.0 V. They were not 

reversible because the discharge cutoff voltage was 3.5 V, which is at the end of the FePO4 

electrochemically active window. This loss of lithium was responsible for the decreased 

ICE. 
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Figure SI 3.7 Enlarged CV curves within 4.9 to 5.0 V 

 

 

 

 

 

 

 



106 

 

 

Figure SI 3.8 Mn L3,2-edge fluorescence yield (FYI) spectra of LNMO-20, LNMO-20 

after battery cycling and bare LNMO after battery cycling 

FYI is a bulk-sensitive technique, Fig. SI3.8 indicates that the bulk Mn will be slightly 

reduced to lower valence without coating. Similar with the surface Mn, coating helps to 

retain Mn at higher oxidation level in the bulk, thus preventing the vigorous Mn3+ Jahn-

Teller distortion and Mn2+ dissolution. The FYI reveals that the reduction of Mn in LNMO 

mainly takes place at the outer surface, where the cathode material is exposed to either the 

coated FePO4 or the liquid electrolyte. 

 



107 

 

Chapter 4  

4 Atomic-scale Manipulation of Spinel Lithium Nickel 
Manganese Oxide Surface by Tetrahedrally-coordinated 
Ti as High Performance Cathode Material 

The modification of the cathode materials surfaces has been reported by many researchers, 

it has been speculated that the surface of the material may undergo certain changes 

depending on the modification method. One of the possible route is to anneal coated 

cathode materials to allow for transition metal or oxygen substitution by the elements in 

the coating material. The stress generated by the incorporation of hetero-elements into the 

lattice may help increase the structural stability against cation migration upon cycling. 

In the previous chapter, we have mentioned the importance of sufficient lithium diffusion 

sites. A novel two-step surface modification method that includes atomic layer deposition 

(ALD) of TiO2 followed by post-annealing treatment on spinel LiNi0.5Mn1.5O4 (LNMO) 

cathode material was developed to optimize the cathode material performance. The post-

annealing treatment significantly improves the electrochemical performance of the LNMO, 

which can be attributed to the formation of a TiMn2O4 (TMO) – like inverse spinel phase 

resulting from the reaction of TiO2 and the LNMO at surface region. The Ti incorporation 

into the tetrahedral sites helps combatting the impedance growth upon initial charge 

process that stems from continuous irreversible structural transition and strengthening the 

Ni-O bond. The TMO–like phase also alleviates the electrolyte oxidation decomposition 

during electrochemical cycling and could possibly assist Li diffusion through the vacancies 

existed at the cation sites.  
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4.1 Introduction 

The growing demand for renewable energy has stimulated the development of lithium-

ion batteries (LIBs), which are deemed as the key component for the next generation 

electric and hybrid electric vehicles. LIBs with high energy density are therefore extremely 

desirable in these high power devices.[1] Cathode materials that operate over 4.5 V (vs Li/ 

Li+) with high energy density are considered as the superlative candidates to replace the 

currently commercialized LiCoO2, which is restricted to portable devices such as cell 

phones and laptops. Among these high-voltage cathode materials, LiNi0.5Mn1.5O4 (LNMO) 

with a spinel structure holds great potential in terms of natural elemental abundance, high 

operating voltage (4.7 V) and theoretical capacity (147 mAhg-1).[2, 3] Nevertheless, such 

high operating voltage of LNMO involves surface chemistry issues such as irreversible 

surface phase transition, transition metal dissolution, Jahn-Teller distortion of Mn3+ and 

electrolyte oxidation etc.[4-10] Considerable efforts have been devoted to alleviating these 

deficiencies by coating the LNMO surface using metal oxides, [11-13] phosphates,[14-17] 

fluorides[18, 19] and so forth. These coating materials can tackle the metal dissolution, 

electrolyte decomposition and Mn3+ Jahn-Teller distortion problems by simply shielding 

the cathode material from direct exposure to the electrolyte. Bulk doping during materials 

preparation is another strategy aimed at suppressing the phase transition in LNMO,[20-26] 

but the excessive and uncontrollable doping will block the Li ions transportation channels 

in its bulk structure, leading to active capacity loss.[27-29]   

Considering the fact that side reactions predominantly happen on the surface of LNMO 

due to the unbalanced Li ions mobility on the boundary especially at high current 

densities,[30] restricting the controllable doping modification within the surface turns out 

to be a feasible and promising approach. In previous studies, metal oxides or phosphates 

were often deposited onto the surface of cathode materials by a sol-gel method followed 

by annealing. During the post-annealing process, the metal ions (Mg2+, Al3+ etc.) diffuse 

into the surface lattices and help improve the performance of the electrode materials by: 

(1) eliminating the onset of Jahn-Teller distortion of transition metals such as Mn3+; (2) 

suppressing the transition metals dissolution; (3) preventing severe electrolyte oxidative 

decomposition; (4) combating second phase formation; (5) strengthening the metal-oxygen 
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bonds on the surface; and (6) changing the surface bascity.[30-36] However, manipulating 

the doping amount and uniformity by these methods has yet remained to be unresolved due 

to the difficulty in realizing uniform and thin coating by conventional methods, also, there 

is a lack of solid evidence on the doping mechanisms and the structure change upon such 

treatment. ALD is an emerging technique that is capable of depositing conformal and 

uniform thin films, and has been extensively used to coat the surface of cathode materials 

with ultrathin layers for the purpose of improving their electrochemical performance in 

LIBs.[37-39] Therefore, ALD provides a feasible approach to tailoring the uniformity and 

amount of surface doping on the cathode materials by easily controlling the thickness of 

the uniform coating layers. However, the adoption of the combination of ALD and post-

treatment to design the surface composition of cathode materials is scarcely reported.   

In this work, we successfully modified the surface structures of LNMO particles by post-

annealing ALD derived TiO2 with different thicknesses. Part of the Ti was found to diffuse 

into the 8a tetrahedral sites which were previously occupied by lithium atoms, creating a 

uniform layer of TiMn2O4 (TMO) – like cation deficient inverse spinel phase. Besides, 

more Ti atoms were found to have diffused into the bulk of the LNMO and resulted in 

octahedral site doping. The Ti incorporation suppresses the surface phase transformation 

that could result in impedance build-up as observed during the first charge process, thereby 

benefiting the discharge capacity from the initial cycle. These synergetic effects help build 

a surface layer with desired thickness comprising both moderate electrical and ionic 

conductivity and contributing to increased capacity and stability. Moreover, it was also 

found that the thickness of the TiO2 coating layer should be carefully adjusted in order to 

minimize the formation of impurities such as the LixNi1-xO in the rock salt phase, which 

could jeopardize the battery performance. It was found that TiO2 coating deposited with 25 

ALD cycles (~ 2 nm in thickness) was optimal, whereas thinner or thicker TiO2 coatings 

were either inadequate to make desirable difference or excessive that leads to noticeable 

drop in performance. The comparison between the pure TiO2 coated LNMO and annealed 

TiO2 coated LNMO samples revealed that the post-annealing process is crucial for 

achieving an optimal battery performance.   
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4.2 Experimental 

4.2.1 Materials Preparation 

The LNMO powders were purchased from Daejung Energy Materials Co. Ltd., South 

Korea. Atomic layer deposition (ALD) of TiO2 was performed at 150 °C in a Savannah 

100 ALD system (Ultratech/Cambridge Nanotech) by using titanium(IV) isopropoxide 

(TTIP, Ti[OCH(CH3)2]4, Sigma Aldrich, 97%), and distilled water (H2O) as precursors. 

The source temperature for TTIP was 85 °C, while H2O was kept at room temperature 

(RT). N2 gas was used as the carrying and purging gas, at a flow rate of 20 sccm. Each 

ALD cycle of TiO2 was executed with the following steps: (1) 1s pulse of TTIP; (2) 3s 

extended exposure of TTIP in the reaction chamber; (3) 20s purge of residual TTIP and 

any by-products; (4) 1s pulse of H2O; (5) 3s extended exposure of H2O in the reaction 

chamber; (6) 20s purge of residual H2O and any by-products. LNMO powders were 

dispersed on a stainless steel tray, and then put at the center of the ALD reaction chamber. 

TiO2 was deposited on LNMO powders by repeating the above ALD cycles, the 

corresponding samples are denoted as LNMO/nTiO2 where n stands for the ALD cycle 

number. 5, 25 and 50 cycle numbers were chosen as the performance study parameter. In 

order to better characterize the consequence of the TiO2 reaction with LNMO upon post-

treatment, 250 ALD cycle number was used for Ti related structural studies. 

In the post-treatment process, the LNMO/nTiO2 samples were annealed in air under 810 

oC for 6h followed by slow cooling to RT within 10h. The treated samples were named as 

LNMO/nTiO2A. All of the bare LNMO samples studied were treated under the same 

conditions as well to make the results comparable.  

4.2.2 Characterization Methods 

The morphology of the samples was characterized by a Hitachi S-4800 field emission 

scanning electronic microscopy (FESEM) and a JEOL 2010F field emission transmission 

electron microscope (TEM). The X-ray diffraction (XRD) patterns were collected on a 

Bruker D8 Advance Diffractometer using Cu Kα radiation at 40 kV and 40 mA. The soft 

X-ray absorption near-edge structure (XANES) measurements with both total electron 

yield (TEY) and fluorescence yield (FYI) modes at the Mn L3,2-edges, Ni L3,2-edges and 
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O K-edge were collected at the Spherical Grating Monochrometer (SGM) beamline with a 

photon energy of 250-2000 eV at the Canadian Light Source. The Ti K-edge XANES was 

collected at the Soft X-ray Microcharacterization Beamline (SXRMB) beamline at the 

Canadian Light Source.  

For the electron microscope (EM) specimen preparation, the pristine and LNMO/250TiO2 

powder samples were suspended on the copper grids for EM characterization. The 

LNMO/250TiO2A specimen was prepared using a Zeiss NVision 40 dual beam focused 

ion beam/scanning electron microscope (FIB/SEM) for a detailed structural analysis. 

Electron energy-loss spectroscopy (EELS) and the scanning transmission electron 

microscopy (STEM) characterization were carried out on an aberration-corrected (probe 

and image-forming lenses) FEI Titan Cubed 80-300 kV microscope equipped with a Gatan 

Image Filter Quantum-965 spectrometer operated at 200 kV. EELS spectra were recorded 

with a 0.25 eV/channel dispersion of the spectrometer. The high-angle annular dark field 

(HAADF)-STEM image acquired with a HAADF detector is also called a “Z-contrast” 

image, whereby the image intensity is proportional to the atomic number (Z1.7) of the 

elements present in the material. 

4.2.3 Electrochemical Measurements 

The LNMO powders were uniformly mixed with acetylene black (AB) and poly(vinylidene 

fluoride) in a ratio of 8:1:1 in N-methyl-pyrrolidione (NMP) as solvent. The slurry was 

then pasted onto aluminum foils and dried at 80 oC overnight under vacuum. The electrode 

was subsequently cut into round shape with a diameter of 12 cm and assembled into a CR-

2032 coin cell in a glove box with moisture and oxygen being controlled below 1.0 ppm. 

Lithium metal was used as the counter electrode in the coin cells. The electrolyte was 

composed of 1M LiPF6 dissolved into ethylene carbonate (EC) and dimethyl carbonate 

(DMC) in a 1:1 volume ratio (BASF corp.). Celgard K2045 was used as the separator. 

Cyclic voltammetry (CV) was performed on a Bio-Logic multichannel potentiostat 3/Z 

(VMP3) with a scanning rate of 0.1 mV s-1 and a potential range of 3.5-5.0 V (vs Li/Li+) 

at RT. Galvanostatic charge/discharge test was carried out on an Arbin BT 2000 at various 

current densities between 3.5 and 5.0 V (vs Li/Li+). The cyclic stability test was done at a 

current density of 0.5 C (1C = 147 mAg-1) under both room temperature (RT) and 55 oC. 
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The tested cells were dissembled in the glove box and the cathode sheets were collected 

and thoroughly washed with DMC for several times and kept in a hermetic box for XANES 

study.  

4.3 Results and Discussions 

4.3.1 Structure Investigation 

 

Figure 4.1 SEM images of (a) bare LNMO; (b) LNMO/25TiO2; (c) LNMO/25TiO2A; 

(d) LNMO/250TiO2A 

The morphologies of the LNMO/nTiO2 samples were characterized using SEM and the 

typical images are shown in Figure1. The bare LNMO particles show very smooth surfaces 

with well-defined edges (Figure 4.1a). Each primary LNMO particle has a spherical shape 

with a diameter of around 10-20 µm and is composed of many secondary particles of 

around 500 nm (Figure SI4.1). Comparing with the bare LNMO, the LNMO/25TiO2 

particles shown in Figure 1b present slightly rougher surfaces, due to the presence of TiO2 
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layer. The TiO2 coated particles show a noticeable morphology change after post-annealing 

treatment. Smaller particles (around 50 nm) appear on the surface, and their density is very 

high on the LNMO/250TiO2A sample. The occurrence of such particles suggests that the 

TiO2 layer underwent some changes during post-annealing process, which will be 

discussed in following sections. 

 

Figure 4.2 EELS map taken from a LNMO/250TiO2 particle. (a) HAADF-STEM 

image of the LNMO/250TiO2 particle. (b) EELS map for the LNMO/250TiO2 particle 

(Ti: green; Mn: red). (c, d) EELS spectra integrated from the corresponding areas 

shown in (b).  

The TiO2 deposition via ALD has been characterized by EELS mapping of the 

LNMO/250TiO2 sample. As can be seen from the EELS spectra in Figure 4.2b, only Ti 

and O are observed at the outermost layer suggesting that a TiO2 layer has been deposited 

onto the LNMO particle. The Ti L-edge is still visible when approaching into the bulk of 

the particle, where Mn and Ni L-edges show up. Since the data collected from each region 

of interest (ROI) is a 3D projection of that region from the sphere (particle), the EELS 

spectrum acquired from those bulk ROI windows (shown in Figure 4.2b) is actually a 

projection of the whole particle, therefore, the observation of Ti from the bulk ROIs 

indicates that the whole LNMO surface is well covered by the TiO2 coating. This is further 
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confirmed by looking into different particles, as shown in Figure S2. The sample with 250 

ALD cycles shows a surface TiO2 layer with the thickness of about 5-10 nm among 

different particles. In addition, the O K-edge in the metal oxide mainly corresponds to the 

transition of the O 1s state to the O 2p state which is hybridized with the transition metal 

3d and 4sp orbitals.[40] The peak shape does not show significant change from the surface 

to the bulk, indicating that the O atoms are simply present in the forms of TM-O octahedra 

in TiO2 and LNMO. 

 

Figure 4.3 XRD patterns of (a) bare LNMO, LNMO/250TiO2 and LNMO/250TiO2A  

The structures of the samples were investigated by XRD, as shown in Figure 4.3. The bare 

LNMO can be well indexed to the cubic spinel structure with an Fd3̅m space group, in 

which Mn and Ni randomly occupy the octahedral 16d sites, O occupies the 32e sites and 

Li occupies the tetrahedral 8a sites.[2] The presence of oxygen vacancies leads to the 

existence of Jahn-Teller active Mn3+.[41] No TiO2 peaks can be found in the 

LNMO/250TiO2 sample, most likely due to the thin and amorphous nature of the TiO2 

layer. However, significant difference can be observed on the LNMO/250TiO2A sample. 

Some new peaks emerged in the XRD pattern of LNMO/250TiO2A. Impurity rock salt 

phase LixNi1-xO peaks at 2θ ≈ 37o, 43o and 64o marked with “+” symbol appeared on the 

XRD patterns.[42, 43] Peaks marked with “↓” are indexed to the TMO – like inverse spinel 
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phase, more details regarding this phase will be discussed below. The figure on the right 

shows an enlarged degree range between 43.5 and 45o, in which the LNMO/250TiO2A 

sample clearly shows a shift to lower angles. This shift suggests that part of the Ti has 

doped into the LNMO lattice and resulted in slight lattice parameter change.  

 

Figure 4.4 (a) HAADF-STEM image of LNMO/250TiO2A particle acquired near the 

surface, the corresponding region is shown in the inset image. (b, c) Atomic-resolution 

HAADF-STEM images showing the lattice structure of the outermost layer and the 

inner region of the particle, respectively. (d, e) Processed images corresponding to the 

HAADF-STEM images shown in (b, c) with a band-pass filter applied. (f, g) Simulated 

HAADF images of LiMn2O4 and TiMn2O4. 

A structural change is observed near the surface of the TiO2 coated LNMO particle after 

post heat-treatment. Figure 4.4a shows the HADDF-STEM image of a LNMO/250TiO2A 

particle from the surface to the bulk. The bulk of the particle maintains the LiM2O4 type 

Fd3̅m spinel structure (M = Mn and Ni), as shown in the corresponding HAADF-STEM 

image (Figure 4c) viewing along the [010] zone axis, with Li occupying the 8a tetrahedral 

sites and transition metal atoms occupying the 16d octahedral  sites. Note that the bright 

atomic columns seen in the HAADF image are the transition metal atom, while the light 

elements are not visible from the image. Figure 4.4g shows a simulated HADDF image in 

the [101] zone projection of the LiMn2O4 phase which is consistent with the experimental 
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data. Interestingly, a noticeable change in the intensity of Li sites is observed near the 

particle surface from Figure 4.4g, which becomes brighter and visible, indicating that the 

Li tetrahedral sites are occupied by heavier transition metal atoms. A high-resolution 

HAADF-STEM image representing the surface structure is shown in Figure 4.4b with the 

corresponding filtered image shown in Figure 4.4d that enables a clearer view of the 

transition metal atoms. This near-surface lattice can be indexed to the [010] zone axis of a 

TMO-like inverse spinel phase with transition metal occupying both the octahedral and 

tetrahedral sites. The simulated HAADF image of the TMO phase is in good agreement 

with the experimental data, as shown in Figure 4.4f. 

 

Figure 4.5 (a) XANES spectra of Ti K edges of LNMO/250TiO2 and LNMO/250TiO2A 

collected at FLY mode (inset: enlarged pre-edge regions; schematics showing 

tetrahedral and octahedral Ti); (b) EELS spectra of the Mn M-edge and Li K-edge 
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on the surface and bulk; (c) EELS depth profile of the LNMO/250TiO2A particle from 

the surface to the bulk. 

The coordination environment of Ti before and after annealing is further evaluated by the 

Ti K-edge XANES collected from LNMO/250TiO2 and LNMO/250TiO2A samples. Figure 

4.5a shows the XANES collected at fluorescence yield (FLY) mode, which has a detection 

depth of up to 100 nm, so that one can obtain the information from the sub-surfaces of the 

material.[44, 45] The as-deposited LNMO/250TiO2 shows a typical amorphous TiO2 

spectra with a broad feature.[46] However, upon post-annealing, the main edge became 

well-resolved and two clearly identifiable peaks, namely A1 and A2 arose in the pre-edge 

region. Pre-edge features in Ti K-edge XANES are always employed as an indication of 

the Ti coordination numbers since these 1s-3d quadruple transitions are very sensitive to 

the local environment in terms of symmetry and coordination number.[46] A1 is normally 

assigned to the octahedral Ti4+, which has a dipole-forbidden 1s-3d t2g transition, while 

peak A2 is generally attributed to the transition of the 1s electron into hybridized Ti 3d/4p 

states, which has an eg symmetry. As has been suggested by Miller et al., the intensity of 

the A2 peak is correlated to the coordination number since it originates from the Ti 3d/4p 

coordination.[47] A higher A2 peak gives lower coordination number, i.e. more tetrahedral 

Ti4+.[46] A scrutiny of the spectra features also reveals that the Ti K-edge XANES in the 

LNMO/250TiO2A sample differs from the Ti K-edge XANES of either rutile or anatase 

TiO2 as shown in Figure S9a. The extra pre-edge peak appearing at higher energy than the 

A2 peak in TiO2 XANES is attributed to the transition of 1s electron into 3d states of 

adjacent Ti4+ cations and its intensity is proportional to the coordination number.[47] The 

disappearance of this peak in the Ti K-edge XANES of LNMO/250TiO2A indicates that 

some of the Ti4+ occupy the tetrahedral sites where Li ions resided previously. Generally, 

Ti4+ is hardly found to occupy the tetrahedral sites, but exceptions have been observed 

when there is Ni2+ in the spinel, since Ni2+ has high octahedral site preference because it 

has high crystal field stabilization energy whereas Ti4+ has no preference because it has an 

empty 3d orbital (see Figure SI4.5 for details).[48] The presence of Ni2+ in LiNi0.5Mn1.5O4 

might also explain why only octahedrally coordinated Ti was found in the case of surface 

doping of LiMn2O4 by Ti as reported by Amine et al.[49] Besides, a small portion of the 

Ti4+ are octahedrally coordinated, indicating that the Ti has replaced part of the bulk Mn/Ni 
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and formed a LiTixNi0.5Mn1.5-xO4 phase, this complies well with the XRD results, where 

peak shift was observed. Partial occupation of Ti in octahedral sites of TMO-like phase is 

also a possible explanation to the A1 peak. 

In addition, the new phase is further confirmed by the EELS spectrum acquired from the 

surface region of the LNMO/250TiO2A particle, as shown in Figure 4.5c. Both Ti and Mn 

are observed from the surface region with a small amount of co-existing Ni, which is 

consistent with the surface structural indexation of the TMO-like inverse spinel phase with 

Ti substituting into the 8a tetrahedral sites. Furthermore, a significant change in the Li K-

edge is observed from the bulk to the surface of the annealed particle. The intensive Li K-

edge presents in the bulk is not detected in the surface layer, as shown in Figure 4.5b, 

indicating that the surface TMO-like inverse spinel phase formed after annealing does not 

contain Li. According to the EELS quantification, the ratio between Mn:Ni:Ti:O is 

28:5:6:61, we may conclude that the tetrahedral sites are cation deficient. The Ti 

concentration decreases dramatically when approaching from the outermost surface to the 

bulk, whereas a weak Ti L-edge signal is still observed beyond 40nm depth, suggesting 

that the diffusion of Ti is rather vigorous under such post-annealing conditions. Besides, 

the Mn L-edge acquired from the bulk to the surface exhibits a clear chemical shift of ~3 

eV towards lower energy and the L3/L2 ratio of the Mn L-edge decreases dramatically. It 

is generally accepted that the energy shift and the relative intensity of the two peaks in Mn 

L-edge are correlated with the oxidation level of the Mn ions.[50, 51]  Therefore, it can be 

concluded from the spectra that the oxidation level of the Mn from the bulk to the surface 

varies, with predominantly Mn2+ near the surface and Mn3+/Mn4+ in the bulk. The reduction 

of Mn ions can be ascribed to the charge balance with the incorporation of Ti4+. It was 

reported from a previous study that the end member of Ti doping into LiMn2O4 was 

LiMn0.5Ti1.5O4, in which Mn was reduced to  divalent state.[50] The O K-edge EELS 

spectra is also shown in Figure 4.5c. It is noticed that the peak features of the O K-edge 

vary greatly when approaching the surface. It has been reported that the reduction of 

transition metals will result in an intensity decrease of the O pre-edge since the O 2p state 

is highly hybridized with the transition metal 3d states,[40] thus the significant drop of the 

O pre-peak is consistent with the Mn reduction observed from the Mn L-edge. The O K-
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edge feature resembles a TiM2O4 (M = metals) O K-edge as has been reported by Fleet et 

al.[52] 

The above observations clearly indicate that TiO2 was deposited onto the surface of LNMO 

particle with controlled thickness and that upon post-annealing treatment, part of the Ti 

substituted the surface Li in the 8a tetrahedral sites and formed a layer with TMO – like 

inverse spinel structure. The Li, together with part of the Ni, formed a rock salt LixNi1-xO 

phase. Some Ti atoms were found to have diffused into deeper regions of the LNMO 

particle and occupied the 16d octahedral sites, leading to a slight lattice distortion. An EDX 

map of the surface tiny particle has been presented in Figure SI4.6, the particle was rich in 

Ti and Mn, indicating that with longer treatment time, the surface TMO-like phase tend to 

agglomerate into tiny particles. A schematic illustration of the process is demonstrated in 

Figure SI4.7. 
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4.3.2 Electrochemical Performance Study 

 

Figure 4.6 (a) Stability test at 0.5C under room temperature; (b) Stability test at 0.5C 

under 55oC; (c) 1st and 350th charge/discharge curves under RT; (d) Rate capability 

test at 0.1, 0.5, 1, 2, 5 and 0.1C under RT; (e) CV curves of the first cycle normalized 

by active materials weight; (f) Plots of the polarization potentials of the Mn3+/Mn4+, 

Ni2+/Ni3+ and Ni3+/Ni4+ redox couples calculated based on the CV curves; All of the 

spectra are based on sample: Bare LNMO, LNMO/5TiO2A, LNMO/25TiO2A and 

LNMO/50TiO2A;  
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To reveal the impact of the TMO–like phase and surface Ti doping on the electrochemical 

performance of LNMO samples, charge/discharge measurements were carried out at both 

RT and 55oC. Figure 4.6a shows the cyclic stability of the samples at a current density of 

0.5C under RT. Bare LNMO shows an initial discharge capacity of 116 mAhg-1. The 

plateau at 4.0 V corresponds to the redox couple of Mn3+/Mn4+ and it provides 

approximately 25% of the capacity, indicating that there exists a large amount of oxygen 

deficiencies in the lattice and the LNMO is in the phase of nonstoichiometric Fd3̅m 

crystallographic structure, which will lead to severe Jahn-Teller distortion that has an onset 

voltage of 4 V. However, after 350 charge/discharge cycles, its capacity retention was only 

74.1%. Besides, the performance of LNMO/25TiO2 without post-annealing treatment has 

been studied and shown in Figure SI4.8. An initial discharge of only 80 mAhg-1 was 

observed in the LNMO/25TiO2 sample even though the stability also reached 85.2 %. The 

inferior performance of LNMO/25TiO2 is probably due the insulating nature of TiO2, 

which could hamper the Li ions and electron transportation, as schematically shown in 

Figure SI4.8d.[53] In contrast, the LNMO/25TiO2A sample shows apparent improvement. 

The sample demonstrates increased discharge capacity as well as good stability with 85.2% 

capacity retention after 350 cycles, 10% higher than that of the bare LNMO. The improved 

capacity of LNMO/25TiO2A compared with LNMO/25TiO2 also suggests that the new 

surface formed after annealing has a better conductivity than amorphous TiO2. Such 

improved kinetics can be presumably ascribed to the 8a tetrahedral vacancies in the TMO-

like inverse spinel phase, which can significantly improve the Li ion diffusion rate 

compared to pure amorphous TiO2 coating.[54, 55] Coulombic efficiencies shown in 

Figure SI4.10 also reveal that the electrolyte decomposition of the LNMO/25TiO2A is 

much less severe than the bare LNMO. These results indicate that surface modification 

helps to suppress the side reactions between the LNMO particles and the electrolyte. 

Despite that the TMO–like phase is also possibly dissolvable in the electrolyte, the stronger 

Ti-O bond should enable much higher resistivity against the electrolyte than bare 

LNMO.[56, 57] The LNMO/5TiO2A sample shows slightly improved capacity, but higher 

capacity retention than the bare LNMO after 350 cycles. In contrast, when the TiO2 cycle 

number was increased to 50, the capacity in the LNMO/50TiO2A sample dropped 

immediately with only 87 mAhg-1 initial discharge capacity, the stability is lower than the 
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bare LNMO or the samples with 5 and 25 ALD cycles either. This capacity drop reveals 

that the surface structure of the excessive TiO2 coating on LNMO followed by annealing 

does not benefit the performance at all and could be ascribed to (1) the lattice distortion 

caused by overwhelming Ti substitution, as has been observed in bulk doping studies;[28] 

(2) increasing amount of the impurity LixNi1-xOy rock salt phase; (3) overwhelming number 

of Ti4+ that replace Li+ on 8a sites.[56] and (4) too much soluble Mn2+. Moreover, the same 

test carried out under 55 oC is shown in Figure 4.6b, it can be seen that all of the capacity 

fading rates are rather close, this may be due to the fierce side reactions under such high 

operating temperature. Nevertheless, the discharge capacity follows the same trend as the 

test under RT, the LNMO/25TiO2A sample shows even more remarkable improvement 

with an initial discharge capacity of over 130 mAhg-1. The reason for this capacity 

improvement will be discussed below. It is reasonable that the overall capacity obtained 

under 55 oC is higher than that of the room temperature because the kinetics of the lithium 

ions is much more vigorous. The 1st and 350th charge/discharge curves displayed in Figure 

6e reveal that the capacity mainly originates from three redox couples, Mn3+/Mn4+ at 4V, 

Ni2+/Ni3+ at 4.6V and Ni3+/Ni4+ at 4.7V. Rate capability of the samples are shown in Figure 

4.6d, it can be seen that the LNMO/25TiO2A sample shows the best performance as well. 

More than 90 mAhg-1 discharge capacity can still be maintained under 5 C, whereas 

LNMO/50TiO2A shows no capacity at all under this current density. In addition, 

LNMO/25TiO2 shows a worse rate capability compared with the LNMO/25TiO2A sample 

as shown in Figure SI4.8.  

In order to further elucidate the redox couples, CV tests were also conducted under RT on 

these samples. The CV redox peaks support the charge/discharge curves observed in Figure 

4.6c, redox couples of Mn3+/Mn4+ at 4V, Ni2+/Ni3+ at 4.6V and Ni3+/Ni4+ at 4.7V are clearly 

shown. Also, the normalized intensity of the redox peaks fits well with the trend of the 

discharge capacities in Figure 4.6a. The potential polarizations of the redox couples are 

plotted in Figure 6f, the LNMO/25TiO2A sample shows the lowest polarization in all of 

the three redox couples, revealing the optimized kinetics of the surface. The 

abovementioned electrochemical studies reveal that the controlled growth of the TMO – 

like phase is essential to the performance of LNMO, 25 ALD cycle number has 

demonstrated the most promising performance. 
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Figure 4.7 (a) EIS of bare LNMO and LNMO/25TiO2A after initial charge to 5V; 

inset: an equivalent-circuit simulation model; (b) Structure of LNMO showing the 

lithium ions diffusion path 

In an effort to understand the improved discharge capacity of the LNMO/25TiO2A sample, 

electrochemical impedance spectra (EIS) were collected on both the bare LNMO and the 

LNMO/25TiO2A samples after charging to 5V and holding for 3h. The EIS of the two 

charged cells of bare LNMO/Li and LNMO/25TiO2A/Li samples are shown in Figure 4.7a, 

two semicircles from high to medium frequency and one inclined line at low frequency can 

be observed. The simulated equivalent circuit is presented as an inset. The RΩ stands for 

the Ohmic resistance arose from the electrolyte, separator and other components. The semi-

circle in the high frequency range represents the lithium diffusion across the surface film, 

simulated as a resistor Rs and a constant phase element (CPE), the semi-circle in the 

medium frequency range shows the charge transfer reaction composed of a resistor Rct and 

another CPE, the inclined line is interpreted as the finite length Warburg impedance. In 

this case, the value of Rs stands for the SEI resistance and Rct epitomizes the likely phase 

transformation on the surface of LNMO after initial charging. It can be seen that the bare 

LNMO shows a Rct value of 58.9 Ω, whereas the LNMO/25TiO2A sample shows only 9.0 

Ω. Lithium diffusion paths in the spinel structured LNMO is illustrated in Figure 4.7b, the 

lithium ions hop into adjacent empty 16c octahedral sites and then migrate into the next 8a 

tetrahedral site. Huang et al. reported that the surface of LNMO will transform into a 
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Mn3O4-like structure during the first charge due to cation (Ni/Mn) migration to the 8a 

tetrahedral sites, subsequent cation migration from 16d sites into the empty 16c octahedral 

sites leads to the formation of rocksalt-like structure that extends to the interior part of the 

particles, therefore the occupation of the empty 16c sites by transition metals will result in 

severe impedance buildup. They also suggested that pre-occupation of the lithium 

tetrahedral sites with a small amount of insoluble ions can stabilize the structure,[58] in 

this study, we have validated this assumption by using Ti to occupy the tetrahedral sites. 

Therefore, the formation of the TMO-like phase at the surface region after annealing with 

Ti substituting into the 8a tetrahedral site should play a key role in inhibiting the structural 

evolution of the LNMO cathode material during cycling. 

The significant impedance difference between the abovementioned samples reveals that 

the presence of Ti in tetrahedral sites helps to prevent the LNMO cathode material from 

the surface structural transformation into a Mn3O4-like phase and subsequent formation of 

a rocksalt structure, such modification mitigates the impedance build-up that happens at 

the initial charge process, this explains why the LNMO/25TiO2A sample shows higher 

capacity than bare LNMO under both RT and 55 oC. 
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Figure 4.8 XANES spectra of the bare LNMO, LNMO/25TiO2A, bare LNMO after 

350 charge/discharge cycles and LNMO/25TiO2A after 350 charge/discharge cycles 
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in (a) Mn L3,2-edges collected at TEY mode; (b) Ni L3,2-edges collected at TEY mode; 

(c) O K-edges collected at TEY mode; (d) O K-edges collected at FLY mode; (e) 

Schematic illustration of the bare LNMO and LNMO/25TiO2A after 350 

charge/discharge cycles. 

In order to further unveil the phase transformation mechanism and the change of surface 

chemical states upon charging/discharging, the bare LNMO and LNMO-25TiO2A samples 

were characterized using soft XANES and the results are shown in Figure 4.8a-d. Mn, Ni 

L3,2-edges and O K-edges of the bare LNMO, LNMO/25TiO2A, and electrochemically 

cycled bare LNMO and LNMO/25TiO2A were recorded. Standard MnO, Mn2O3 and MnO2 

were also studied and their Mn L3,2 XANES spectra are shown in Figure S9b, it can be seen 

that the relative intensity of the peaks correlates well with the oxidation state of the 

corresponding Mn oxides, which is in accordance with the EELS results shown above. 

Figure 4.8a shows the Mn L3,2 edge XANES spectra of the referred samples. It can be seen 

that the samples before electrochemical cycling, whether bare or modified, show 

predominantly Mn4+ feature, with the presence of a small amount of Mn3+, this is in 

correspondence with the electrochemically tests, where extra plateau at around 4.0 V was 

observed. A closer scrutiny reveals that the LNMO/25TiO2A sample has extra shoulders 

at lower photon energy, this also proves the presence of Mn2+ and this is in agreement with 

the EELS results. Since this sample has a thin layer of TiO2 with only 25 ALD cycles, the 

change in the peak feature is not as obvious as what was observed in the EELS results. 

Nevertheless, the Mn L3,2 edge XANES shows a significant change after electrochemical 

cycling, the majority of the Mn ions are in the state of 2+ and, strikingly, the 

LNMO/25TiO2A sample shows much more Mn4+ feature than the bare LNMO. A similar 

phenomenon has also been found in our previous work using FePO4 as coating material to 

protect the LNMO surface.[59] We can therefore conclude that the presence of the TMO–

like phase prevents the Mn in the LNMO from being heavily reduced so that more stable 

performance can be retained after the electrochemical cycling process.[60, 61] Mn L3,2 

edge XANES spectra collected at FLY mode shown in Figure S9c indicate that such 

reduction does not occur in the bulk. The Ni L3,2 edge XANES spectra are shown in Figure 

8b, it is apparent that the Ni does not show any changes in any of the samples, this is 

because Ni2+ is already in low valence state.[62] The F K edges of the cycled bare LNMO 
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and cycled LNMO/25TiO2-A have also been shown in Figure SI4.9d, peaks other than the 

PVdF have emerged in the cycled bare LNMO. In addition, the sharp peaks at around 710-

730 eV assigned to the L3,2 edges of Fe in the cycled bare LNMO indicate that the HF 

amount was very high that even the coin cell cans were corroded. As has been mentioned 

before, TEY mode has a detection depth of ~5 nm, and this range falls into the thickness 

of the SEI, so the Mn, Ni L3,2 edge XANES spectra of the cycled samples obtained in TEY 

mode also contain information from the solid electrolyte interphase (SEI).  

Kostecki et al. proved that the transition metals mainly exist as fluorides and/or organic 

salts such as oxalate in the SEI layer,[63] indicating the absence of Me-O (Me = Mn, Ni) 

bonds. Therefore, the O K-edge XANES was collected to understand the composition of 

the SEI, as shown in Figure 4.8c where O K edge XANES spectra before electrochemical 

cycling show 5 features, labelled C, E, F, G and H. Features C and E in the pre-edge regions 

represent the excitation of O 1s electron to the hybridization of the O 2p with the transition 

metals 3d orbitals, and are believed to be related to t2g and eg symmetry respectively. The 

broader peaks G and H are due to the hybridization of the O 2p with the transition metals 

4sp orbitals.[64, 65] It is noticed that feature F appears only in the LNMO/25TiO2A 

sample. Actually the O K-edge threshold of Ti-O bonds appears at higher photon energy 

than Mn-O as has been discussed by F. de Groot,[64] therefore, the feature F corresponds 

to the eg symmetry of Ti-O and its t2g symmetry overlaps with the Mn-O and Ni-O eg 

symmetry, that is the reason why the intensity of feature E appears to be much higher than 

feature C after post annealing.  The feature F can be seen in the FLY spectra as well, 

implying that the Ti-O hybridization exists in rather high depth, which is consistent with 

the EELS result discussed above. The samples were electrochemically cycled and 

dissembled so as to understand the oxygen species in the SEI layer.  

The TEY spectra of the electrode samples show drastic difference after electrochemical 

cycling. The bare LNMO shows mostly weak peaks like B and D, they are assigned to the 

organic compounds in the SEI, whereas in the LNMO/25TiO2A sample, features E, G and 

H still exist. These features are assigned to the hybridization of O 2p and Ni 3d orbitals, 

the 3d electron configuration of Ni2+ is 𝑡2𝑔
6 𝑒𝑔

2, where the 3 t2g orbitals have been fully filled 

by electrons, therefore, no t2g peak is expected in Ni2+, that is why only peak E is observed 
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in the pre-edge regions. Ni-O bonds are extremely weak when the LNMO is charged to 

high voltage since Ni4+ is highly electron-depleted, its catalytic effect facilitates the 

electrolyte decomposition.[35] We can therefore conclude that the transition metal 

dissolution in the electrochemically cycled bare LNMO sample is so intense that none of 

the surface Mn or Ni were in the form of oxides any more, whereas Ni-O bonds still exist 

in the LNMO/25TiO2A sample since the incorporation of Ti4+ can possibly strengthen the 

Ni-O bond, as has been observed in Cabana’s work of incorporating Mg2+ into the surface 

of LNMO.[35] Another possibility is that the rock salt LixNi1-xO phase remains on the 

surface, it acted as a protection agent against HF attack. Taking a look at the FLY spectra, 

one can find that the features C, E, F, G and H still exist, indicating that the loss of Me-O 

bonds mainly happens on the superficial surface. The area of peaks C and E is lower in the 

cycled LNMO/25TiO2A than the cycled bare LNMO, indicating the presence of less 

oxygen 2p hybridization with TM 3d orbitals in the bulk, which complies with the 

reduction of Mn. A new peak “I” appears in the electrochemically cycled LNMO/25TiO2A 

sample. This intensive peak has also been reported in many references where electrolyte 

additives were studied. It can be assigned to the π* orbital of the C=O bond in Li2CO3.[66] 

Li2CO3 is a well-known favorable SEI component since it helps create a more robust and 

dense SEI layer, this can be another reason of the improved stability.[67-69] The Li2CO3 

signal can be observed in FLY spectra but not TEY spectra, indicating that it mainly locates 

at the “inner” layer of the SEI which is closer to the surface of the electrode materials, 

probably because that Li2CO3 forms at the beginning of the electrochemical cycling.  

To summarize the results above, we depict a schematic illustration in Figure 4.8e. The 

presence of spinel TMO–like phase and Ti occupation of octahedral sites in LNMO help 

create an SEI with more Li2CO3, strengthen the Ni-O bonds and prevent severe Mn 

reduction and dissolution during electrochemical cycling. The Li2CO3 helps build more 

robust SEI. The suppression of the reduction of Mn and the stronger Ni-O interaction help 

retain better surface consistency upon electrochemical cycling.  

4.4 Conclusions 

We have carried out a systematic study of the post-annealing effect on the performance of 

ALD-TiO2 coated LNMO. It is found that the surface of the LNMO undergoes several 
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changes during the process: (1) partial Ti substitution of 8a Li tetrahedral sites, forming a 

TMO–like phase; (2) Li and Ni extrusion, forming rock salt LixNi1-xO phase; (3) 

Octahedrally coordinated Mn/Ni replacement by Ti in deeper region, resulting in slight 

doping of LNMO; (4) Aggregation of the TMO–like phase into tiny particles. 

Electrochemical studies reveal that the formation of the TMO-like inverse spinel phase on 

the surface through the substitution of Ti in the 8a tetrahedral sites will help undermine the 

impedance buildup resulting from the continuous phase change of the LNMO to rocksalt 

structure during electrochemical cycling. In addition, the presence of the substituted Ti 

strengthens the Ni-O bond. The TMO–like phase helps form an SEI with more desirable 

Li2CO3 and hampers the reduction of Mn after electrochemical cycling. More importantly, 

the effect of Ti substitution highly depends on the ALD cycle number, 25 ALD cycle 

appears to produce the optimal thickness that yields improved stability, Coulombic 

efficiency, discharge capacity and rate capability. Nevertheless, other factors such as 

annealing time and temperature are worthwhile to be further studied. This work has paved 

the path to controlled manipulation of surface structures on cathode materials, provided a 

novel explanation to the role of surface modification and extended the practice of ALD 

technique in LIBs and related research.  
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Supporting Information 

 

Figure SI 4.1 SEM image of bare LNMO under low magnification 

 

Figure SI 4.2 HRTEM images of (a) LNMO/25TiO2 and (b) LNMO/250TiO2 
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Figure SI 4.3 EELS spectra integrated from different location of a pristine LNMO 

particle. 

 

Figure SI 4.4 (a) HAADF-STEM images of a LNMO/250TiO2A particle, the top white 

region is the W protection layer. (b) Atomic-resolution HAADF-STEM image taken 

from the bulk of the LNMO/250TiO2A particle shown in (a). The corresponding 

Fourier transform diffractogram is displayed in the top inset. 
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Figure SI 4.5 Crystal field splitting of Ni2+ with (a) octahedral coordination and (b) 

tetrahedral coordination  

For octahedrally coordinated Ni2+, the ligand field stabilization energy (LFSE) is: 

LFSE = 0.4Δo × 6 – 0.6Δo × 2 = 1.2Δo  

For tetrahedrally coordinated Ni2+, the ligand field stabilization energy (LFSE) is: 

LFSE = 0.6Δt × 4 – 0.4Δt × 4 = 0.8Δt  

Since Δt is approximately 4/9 Δo, the LFSE for tetrahedrally coordinated Ni2+ is 0.356 Δo, 

which is much lower than the LFSE for octahedral coordination, therefore, tetrahedrally 

coordinated Ni2+ is hardly seen in solid materials. 

The electron configuration of Ti4+ is [Ar]4s03d0, it has no 3d electrons, so it does not have 

any preference on octahedral or tetrahedral coordination.  
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Figure SI 4.6 (a) TEM image of the tiny particle attached to the LNMO surface after 

annealing. (b-e) EDX mapping of Mn, Ni and Ti and corresponding STEM image. (f) 

EDX line scan across the surface  
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Figure SI 4.7  Schematic illustration of the process of post annealing treatment on 

LNMO/250TiO2 

 

Figure SI 4.8 (a) Cycling performance; (b) Rate capability; (c) CV curves of 

LNMO/25TiO2; and (d) Schematic illustration of the reason for the poor 

performance of amorphous TiO2 coated LNMO powder via ALD.
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Figure SI 4.9 (a) XANES spectra of anatase and rutile TiO2; (b) Standard XANES 

spectra of MnO, Mn2O3 and MnO2; (c) Mn L3,2 edges XANES of bare LNMO, 

LNMO/25TiO2A, cycled bare LNMO and cycled LNMO/25TiO2-A collected at FLY 

mode; (d) F K edge of cycled bare LNMO and cycled LNMO/25TiO2-A; (e) Ti L3,2 

edges of LNMO/25TiO2 and LNMO/25TiO2A; (f) O K-edge XANES of Li2CO3; 

Figure SI4.9e reveals that the concentration of the Ti in LNMO/25TiO2A sample is much 

lower than the LNMO/25TiO2 sample, indicating that the distribution of Ti has been 

diluted, which confirms the diffusion of Ti. 
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Figure SI 4.10 Coulombic efficiencies of bare LNMO and LNMO/25TiO2A 

The LNMO/25TiO2A sample shows constantly higher Coulombic efficiency than the bare 

LNMO, indicating that the surface layer is helpful in preventing the electrolyte 

decomposition. The initial Coulombic efficiency explains the suppression of phase 

transformation as described in Figure 4.7.  
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Chapter 5  

5 Highly Stable Li1.2Mn0.54Co0.13Ni0.13O2 Enabled by Novel 
Atomic Layer Deposited AlPO4 Coating 

Lithium-rich layered material is one of the most promising candidates of cathode materials 

for next-generation electric vehicles. However, one of the major issues that pertains to this 

material is the oxygen release during initial charge, which results in low initial coulombic 

efficiency (ICE), intense electrolyte oxidation and thermal instability. In order to improve 

the safety of this cathode material, metal phosphates deposition using regular chemical 

method has been reported, but there is a lack of using ALD to create such coatings. In 

addition, the change of this material under ALD process remains unvisited.  

 In this study, we have conducted aluminum phosphate (AlPO4) coating via atomic layer 

deposition (ALD) approach to protect the surface of this cathode material powders. It was 

found that part of the C2/m Li2MnO3 phase turned into a spinel-like phase during the ALD 

process. The oxygen release has been effectively suppressed by such transformation, the 

initial CE increased from 75.2 % for the bare electrode to 86.2 % for the electrode with 

only 5 ALD cycles of AlPO4 coating. Furthermore, AlPO4 was also found to be more 

effective in improving the thermal stability of the cathode material comparing to bare or 

Al2O3 coated samples. Our study has provided a new possible solution towards cathode 

materials with high thermal resistance via conformal coating.  
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5.1 Introduction 

Lithium-rich layered oxides x Li2MnO3 • (1-x) LiMO2 (M = Mn, Ni, Co), or otherwise 

termed as high energy NMC (HENMC) are a class of cathode materials that deliver a 

discharge capacity higher than 250 mAh/g within the voltage window of 2.0-4.8 V (vs. 

Li/Li+), making it a very promising cathode material for the next-generation high energy 

lithium-ion batteries (LIBs) used in electric vehicles (EV).[1, 2] The crystalline structure 

of HENMC is composed of a phase of Li2MnO3 with a space group of C2/m and a phase 

of conventional layered LiMO2 (M = Ni, Mn, Co) with a space group of R3̅m. Li2MnO3 is 

electrochemically inert since Mn4+ cannot be oxidized any more under the normal 

operating voltage range of conventional LIBs. It can, however, be activated from the initial 

charging process by the simultaneous leaching of Li+ from the transition metal layer and 

O2 from the lattice, with an irreversible net loss of Li2O.[3, 4] The initial activation process 

of HENMC results in its significantly increased capacity compared to other layered 

structure cathode materials, but also leads to several disadvantages. Firstly, the transition 

metal ions move into the Li layer vacancies and cause subsequent cation disordering, 

forming a spinel phase continuously to the interior of the material that will lead to sluggish 

lithium ions transportation and severe voltage fade.[5, 6] Secondly, O2 release results in 

low initial CE and internal pressure increase in the cell, furthermore, O2 facilitates the 

oxidation of the electrolyte under high voltage, forming a thick and insulating solid 

electrolyte interphase (SEI) on the surface.[7] Thirdly, O2 release always gives rise to the 

safety harassment of thermal instability of the cathode materials.[8, 9] Fourthly, severe 

transition metal dissolution into the electrolyte also leads to capacity fade. To address these 

problems, surface modification of HENMC has been studied widely. Surface coating with 

metal oxides, phosphates and fluorides from chemical methods have been widely reported 

aimed at solving the abovementioned problems.[10-12] The coating layer can shield the 

direct contact between the cathode material and the electrolyte and thus preventing the 

transition metals from dissolving and electrolyte decomposition.[13] But these coating 

methods lack of full protection of the cathode materials since the coating layer tends to 

form isolated islands.[12, 14, 15] Atomic layer deposition (ALD) is a powerful technique 

to create a uniform and conformal coating layer on the surface of substrates.16 This 
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advantage makes ALD outperform other chemical methods in terms of full protection on 

electrodes against the attack from the electrolytes, and it has been vastly used in the surface 

modification of battery materials.[17-19] Aluminum phosphate (AP) is widely known for 

its higher capability of enhancing the high temperature stability of cathode materials than 

metal oxides when used as a coating material,[20] but its controlled coating via ALD has 

not been reported as far. 

Herein, for the first time, we have demonstrated the use of ALD to coat cathode materials 

with different thicknesses of AlPO4. Benefiting from the uniform coating layer and the 

partial transformation of Li2MnO3 to a spinel-like phase, the oxygen release from the 

HENMC has been successfully controlled and the electrolyte decomposition was 

suppressed. The CE of the HENMC coated by AlPO4 was significantly improved. More 

surprisingly, the AlPOy coated HENMC has demonstrated much higher thermal resistivity 

than samples coated by Al2O3, which is a most common ALD coating material. These 

results have demonstrated that atomic layer deposited AlPO4 is a promising coating 

material on HENMC in order to achieve better performance and that ALD process can 

exert non-negligible effect on the structure of cathode materials.  

5.2 Experimental 

5.2.1 Materials Synthesis 

HENMC was synthesized using a modified Pechini’s method. CH3COOLi, 

Mn(CH3COO)2, Ni(CH3COO)2 and Co(CH3COO)2 (Sigma Aldrich, 99%) were mixed 

with a stoichiometric ratio of 1.25:0.54:0.13:0.13 in 50 mL deionized water under strong 

stirring. 5.72 g citric acid was dissolved in 25 mL ethanol (Sigma Aldrich, 99.99%). 2.5 g 

polyethylene glycol (PEG) (Alfa Aesar, 25,000, 99%) was dissolved in 25 mL ethanol 

separately. The citric acid solution was initially added into the metal acetates solution 

slowly under stirring for 10 min. Then, the mixture was subsequently added into the PEG 

solution slowly, pink precipitations were observed during the reaction. Subsequently, 2 mL 

ethylene glycol (Sigma Aldrich, 99%) and 2 mL HNO3 (Sigma Aldrich, 70%) were added 

dropwise until the pink precipitate is dissolved. The final clear solution was dried at 120 

oC to obtain a colloidal gel. This gel was pre-calcined at 400 oC for 4 h in air to remove the 
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organic components. After cooling down, the final product was collected and ground to 

obtain fine particles. The final HENMC was obtained by calcining the fine particles under 

850 oC for 20 h in air.  

AlPO4 was deposited on HENMC powders at 250 °C in a Savannah 100 ALD system 

(Ultratech/Cambridge Nanotech, USA) using trimethylaluminum (TMA, (CH3)3Al, 98% 

STREM Chemicals), trimethyl phosphate (TMPO, (CH3)3PO4, 97% STREM Chemicals), 

and distilled water (H2O) as precursors. The source temperature for TMPO was 75 °C, 

while TMA and H2O was kept at RT. AlPO4 was deposited in an exposure model by the 

sequence of TMA pulse (0.5 s) – exposure (1 s) - purge (10 s) – H2O pulse (1 s) – exposure 

(1 s) – purge (15 s) – TMPO pulse (2 s) – exposure (1 s) – purge (10 s) – H2O pulse (1 s) 

– exposure (1s) – purge (10 s). Nitrogen gas (99.999 %) was used as a carrying gas at a 

flow rate of 20 sccm. AlPO4 films were directly deposited on HENMC powders by 

repeating the above ALD cycles. In this study, 5, 10 and 20 ALD cycles were selected to 

control the coating thickness, each of the sample was denoted as HENMC-n AP, where n 

stands for the ALD cycle number and AP stands for AlPO4. Al2O3 coating with 20 ALD 

cycles on the HENMC was carried out under 150 oC with TMA and water as the precursors 

in the same ALD system. 

5.2.2 Characterization Methods 

The morphology of the samples was characterized by a Hitachi S-4800 field emission 

scanning electron microscopy (FESEM) and a JEOL 2010F high-resolution transmission 

electron microscope (HRTEM). The X-ray diffraction (XRD) patterns were collected on a 

Bruker D8 Advance Diffractometer using Cu Kα radiation at 40 kV and 40 mA. The soft 

X-ray absorption spectroscopy (XAS) measurements of P L3,2 edges were collected at the 

Variable Line Spacing Plane Grating Monochromator (VLS PGM) beamline with a photon 

energy of 5.5 - 250 eV at the Canadian Light Source. The soft X-ray absorption 

spectroscopy (XAS) measurements at both total electron yield (TEY) and fluorescence 

yield (FYI) modes of Mn L3,2 edges, Ni L3,2 edges, Co L3,2 edges and O K edge were 

collected at the Spherical Grating Monochrometer (SGM) beamline with a photon energy 

of 250-2000 eV at the Canadian Light Source. A PHI Quantera XPS Scanning Microprobe 

(Physical Electronics, Chanhassen, MN) with a monochromated Al Ka (1486.6 eV) source 
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was used for the XPS analysis. Differential scanning calorimetry (DSC) measurements 

were carried out on a TA Instrument SDT Q600. The cells were cycled for 5 times and 

stopped at fully charged state and opened in the glovebox to collect the fully de-lithiated 

cathode powders. The powders were then soaked in certain amount of electrolyte as 

mentioned below and heated to 400oC under N2 atmosphere at a ramp rate of 1 oC/min.  

5.2.3 Electrochemical Measurements 

To prepare the electrodes for coin cell fabrication, the HENMC powders were uniformly 

mixed with acetylene black (AB) and poly(vinylidene fluoride) (PVDF) in a ratio of 

70:20:10 in an N-methyl-pyrrolidione (NMP) solvent. Then, the slurry was pasted on 

aluminum foils and dried at 80 oC under vacuum overnight. The electrode was 

subsequently cut into round shape and assembled into a CR-2032 coin cell in an argon-

filled glove box with the moisture and oxygen being controlled below 0.1 ppm. Lithium 

metal was used as the counter electrode in the coin cells. 1M LiPF6 dissolved into ethylene 

carbonate (EC) and diethyl carbonate (DEC) in a 1:1 volume ratio (BASF corp., US) was 

used as the electrolyte. Celgard 2400 was used as the separator. Cyclic voltammetry (CV) 

was performed on a Bio-Logic multichannel potentiostat 3/Z (VMP3) with a scanning rate 

of 0.1 mV s-1 and a potential range of 2.0 – 4.6 V (vs Li/Li+). Galvanostatical 

charge/discharge test was carried out on Maccor 4000 between 2.0 V and 4.6 V (vs Li/Li+), 

the initial cycle was conducted under 1/20 C (12.5 mAg-1) for activation, and the following 

cycles were tested under 1/10 C (25 mAg-1). The tested cells were dissembled in a glove 

box and the cathode sheets were collected and thoroughly washed with DMC several times 

for XPS study.  

5.3 Results and Discussions 

The SEM image of the HENMC particles is shown in Figure 1a, the uniform nanoparticles 

have sizes of around 300 nm. The smooth face and sharp edges indicate that the HENMC 

was well-crystalline and highly interconnect, which is essential for faster ionic 

transportation. The XRD pattern of the HENMC (Figure 5.1b) was well indexed to the 

hexagonal α-NaFeO2 phase with a space group of R3̅m. The weak peaks located between 
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20-25o are assigned to the diffraction of the monoclinic Li2MnO3 phase with a space group 

of C2/m. 

 

Figure 5.1 (a) SEM image and (b) XRD pattern of the pristine Li1.2Mn0.54Co0.13Ni0.13O2 

particles prepared using the modified Pechini’s method 

The elemental distribution of the HENMC-20AP sample was studied using EDS under the 

STEM mode. Figure 5.2a-f present the distribution of Co, Mn, Ni, Al, P elements and the 

overlapping mapping of Al and P. It can be seen that the Al and P are uniformly distributed 

on the surface of the HENMC particles. The inset P L3,2 edges X-ray absorption 

spectroscopy (XAS) in Figure 5.2g reveals that the ALD derived AlPO4 has very close 

chemical environment with standard AlPO4. The HRTEM image reveals that the thickness 

of the 20 AP sample is around 4 nm and the AlPO4 is structurally amorphous and uniformly 

distributed on the surface of the powders. 
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Figure 5.2 (a-f) EDS mapping of Co, Mn, Ni, Al, P and Al-P overlapping of HENMC-

20AP (g) STEM image of the EDS mapping region (inset: XAS spectra of P L3,2 edges 

of HENMC-AP (Black) and standard AlPO4 (Red)) and (h) HRTEM image of the 

HENMC-20AP showing the coating layer 

The Ni, Mn and Co L3,2 edges and O K edge XAS data of the pristine HENMC and 20AP 

coated HENMC was collected in order to study the local material compositional change 

upon ALD process. Figure 5.3a-e illustrate the total electron yield (TEY) mode results, 

which have a detection depth of 5-10 nm. Transition meal L3,2 edges reveal the electron 

transition of 2p3/2 and 2p1/2 states to an unoccupied 3d state, and thus can provide 

information of spin configuration, ligand field and metal valence.[21] The Co L3,2 edges of 

these two samples were fitted using a linear fitting method with standard CoO (divalent 

Co) and LiCoO2 (trivalent Co) respectively in order to understand the Co valence states. 

Figure 4.3a shows the fitted result of the pristine HENMC, it can be seen that the Co ions 

in the pristine HENMC are composed of 15.4% divalent Co and 85.6% trivalent Co. After 

ALD treatment, however, an increase in the ratio of Co2+ occurred, with the trivalent Co 

dropped to only 62%. The decrease of Co3+ amount in the HENMC-20AP sample reveals 

that the surface of the HENMC was reduced upon ALD treatment. The reduction was also 

observed in the Mn L3,2 edges. Since Mn L3,2 edges of the HENMC sample were very hard 

to fit using MnO2, Mn2O3 and MnO, we used the Mn L3,2 edges of the HENMC directly as 
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standards to fit the HENMC-20AP sample. The results clearly show that the surface of the 

HENMC-20AP sample had 17.8% Mn existing in divalent state and only 82.2% in the 

original form of Mn in HENMC. In contrast to the Mn and Co, Ni did not show any change 

in the coated sample. O K edge show several identical peaks, the peaks in yellow and purple 

regions are due to electron transition from the O 1s core level to the hybridization of the O 

2p with the transition metal 3d and 4sp orbitals, respectively.[22] An intensity drop 

happened on the sample after ALD process in the yellow region, this complies with the 

finding of transition metal reduction.[22] On the other hand, the new peak marked with “*” 

indicates that a TM-O ligand with different environment has evolved, which also supports 

that a different phase formed on the surface. Results measured under fluorescence yield 

(FYI) mode with a depth of up to 100 nm [23] are shown in Figure SI5.1, the two samples 

don’t show any difference, indicating that the effect of ALD process only happens on the 

surface. In fact, the surface reduction of Li-rich material when exposed to hydrazine and 

carbon has been reported by other groups, they found that a spinel phase formed as a result 

of this reduction. Such spinel phase differs from the spinel-like phase formed after oxygen 

removal, where Li vacancy was the reason and it caused continuous growth to the interior 

particle.[24, 25] Cho et al. investigated the formation of a Fd3̅m Li1+x[CoNiMn2-x]2O4 

spinel phase on a R3-m Li[Ni0.54Co0.12Mn0.34] layered phase and found that such transition 

was accompanied with oxygen loss, which is reflected as transition metal reduction in order 

to keep charge balance.[26] To better understand the possible phase change in our samples, 

HRTEM images on the surface region of a HENMC-20AP sample particle were collected. 

As shown in Figure 5.3g, two distinctive phases are observed. The one in the deeper region 

has a spacing of 0.238 nm, and can be indexed to the (113) crystalline plane of a typical 

layered R3̅m phase. Interestingly, a spinel phase with a spacing of 0.284 nm on the surface 

can be observed. Combined with the XAS data, we conclude that the surface spinel phase 

formed upon ALD treatment. In this case, it is believed that the HENMC particles reacted 

with the ALD precursors and formed such spinel structure, in the meantime, AlPO4 was 

deposited. This transformation was also observed in AlF3 coating reported by Scrosati et. 

al, it was attributed to the Li+ leaching from the Li2MnO3 phase.[27] In previous ALD-

related surface modification studies, none of them provide any insight into the structural 

change upon the ALD process. In fact, ALD process happens in vacuum with gaseous 
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precursors that are highly reactive, the cathode materials, especially those in nanometer 

size, are prone to experiencing structural change. Therefore, the effect of ALD coating on 

the performance of cathode materials is worthwhile to be revisited, though the coating layer 

also plays a pivotal role. 

 

Figure 5.3 Soft XAS data of (a) HENMC Co L3,2 edges and (b) HENMC-20AP Co L3,2 

edges fitted to standard CoO and LiCoO2 (c) Mn L3,2 edges (the HENMC-20AP 

sample is fitted to the HENMC sample and standard MnO) (d) Ni L3,2 edges (L3 edges 

are marked with yellow color and L2 edges are marked with purple color) (e) O K 

edge (all of the XAS results in this figure are collected at total electron yield (TEY) 

mode) and (f) HRTEM image showing the different phases in the HENMC-20AP 

sample (inset: Fast Fourier Transform patterns) 

Initially, the CV curves of the pristine HENMC and the HENMC coated with various ALD 

cycles of AP were recorded at 0.1 mVs-1 scan rate within 2.0-4.6 V and the results are 

illustrated in Figure 5.4. In a typical HENMC CV profile, the anodic peak at around 4.1 V 

corresponds to the oxidation of Ni2+ to Ni4+. Another sharp anodic peak at 4.5 V is 

attributed to the leaching of oxygen from the crystal structure and formation of O2
2- or O2, 
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which are distinctive resultants of the activation of the Li2MnO3 phase.[4] In the following 

cathodic process, the peak at around 3.8 V corresponds to the reduction of Ni4+ to Ni2+.[5, 

28] In general, it is believed that the Li2MnO3, after the Li2O net leaching, turns into layer-

structured MnO2,[5] which is capable of accommodating lithium ions at the potential of ~ 

3.5 V. This is consistent with what was observed from the pristine HENMC CV curve, that 

a peak increases gradually at ~ 3.25 V with continuous cycle numbers. Interestingly, the 

AP coated samples show significant difference compared to the pristine sample. The 

oxygen formation peak intensity has dropped gradually with more ALD cycles, indicating 

that the amount of the Li2MnO3 phase has dropped with ALD treatment and, interestingly, 

the coating thickness of AP correlates with the degree of oxygen removal from the 

HENMC. This observation complies with the XAS study, that the surface Li2MnO3 phase 

has been changed upon ALD process. The decreasing cathodic current peak of lithium 

insertion into layered MnO2 also confirms the controlled oxygen removal since they form 

simultaneously.  
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Figure 5.4 Cyclic voltammetry of (a) pristine HENMC (b) HENMC-5AP (c) HENMC-

10AP (d) HENMC-20AP 

In order to evaluate the electrochemical performance of the samples, charge/discharge 

measurements were conducted with one activation cycle at 1/20 C and another 39 cycles 

at 1/10 C rate, the result is shown in Figure 5.5a. The initial charge capacity, discharge 

capacity and CE are listed in Table 5.1. The pristine HENMC delivers an initial charge 

capacity of 327 mAh/g, which decreases with thicker coating. The initial discharge 

capacity of the pristine HENMC is only 249 mAh/g, which is lower than those of the coated 

samples. Interestingly, the capacity of the HENMC drops rapidly after 40 cycles, whereas 

those of the coated samples remain rather stable, and an increase of capacity can even be 

observed in the first several cycles.  

The CE is plotted in Figure 5.5b. The pristine HENMC has an initial CE of only 76.1%, 

whereas the coated HENMC samples demonstrate initial CEs of 85.2 %, 84.1 % and 83.2 

% for 5 AP, 10 AP and 20 AP, respectively. Due to the lower electrical conductivity of the 



159 

 

AP coating layer, the discharge capacities of the HENMC-10AP and HENMC-20AP 

samples are lower than that of the HENMC-5AP sample. This explains why the initial CE 

drops with increasing coating thickness and 5 ALD cycles demonstrates the highest CE. 

The CE of the HENMC-20AP sample even exceeds 100 % in the 3rd and 4th cycle, which 

is also an evidence of extra discharge capacity. Furthermore, the low initial CE normally 

results from the electrolyte decomposition and the oxygen release in the class of lithium-

rich cathode materials.[2] As observed and discussed in the CV curves (Figure 5.4), the 

suppression of oxygen release has been well controlled by process of ALD treatment. This 

would account for the increase of initial CE as well. On the other hand, the release of 

oxygen will certainly facilitate the decomposition of the electrolyte under high voltage, it 

inevitably brings another consideration, that the solid electrolyte interphase (SEI) on the 

HENMC surface becomes very thick and results in the build-up of impedance, which 

explains why the pristine HENMC shows decreasing stability within following several 

cycles. 

Table 5.1 Initial charge/discharge capacity and the Coulombic efficiencies of the 

samples 

As has been introduced, the voltage fade issue is an important concern in lithium-rich 

cathodes since it causes energy density drop, and the reason for the voltage fade is still 

under debate. One possible explanation is that the removal of Li+ from the transition metal 

layer will lead to Ni migration into these Li vacancies, resulting in the formation of a spinel 

phase on the surface. The average voltage for this spinel phase is lower than that of the 

Sample name Initial charge 

capacity (mAhg-1) 

Initial discharge 

capacity (mAhg-1) 

Initial 

CE (%) 

HENMC 327.4 249.4 76.2  

5 AP 307.3 261.9 85.2  

10 AP 304.0 255.8 84.1  

20 AP 300.3 249.9 83.2  
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layered NMC, therefore the overall voltage drops.[6, 29, 30] In order to analyze the effect 

of AP coating on the voltage fade of HENMC materials, the charge/discharge curves of the 

first and 40th cycles are plotted and illustrated in Figure 5.4c-d. Another figure showing the 

1st to 15th charge/discharge curves of all the samples are plotted in Figure SI5.4. In a typical 

HENMC charge curve, the slope in the voltage range of 3.7 V to 4.5 V corresponds to the 

lithium de-lithiation from the NMC phase, and the long plateau at 4.5 V to 4.6 V can be 

assigned to the oxygen release from the lattice. The charge capacity of the pristine 

HENMC, however, still shows much more oxygen release. For a pristine HENMC, the 

discharge capacity, in theory, mostly originates from the voltage above 3.0 V, considering 

the voltage window of Ni4+ to Ni2+ (4.0 V) and lithium insertion into MnO2 (3.5 V). 

Therefore, in the pristine HENMC, very limited discharge capacity is expected to originate 

from the voltage below 3.0 V, as shown in Figure 5.4c. However, we can also observe that 

the higher initial discharge capacities of coated samples mainly come from the voltage 

below 3.0 V. The 20AP sample shows highest capacity below 3.0 V but obviously dropped 

capacity in the voltage range of 3.0 V-3.5 V. This phenomenon is in consistent with the 

CV curves, and indicates that the formation of MnO2 has been suppressed and there was 

much less Li insertion into MnO2. This difference becomes more apparent in the 

charge/discharge curves of the 40th cycle. Voltage drop can be observed in all of the 

samples, and it is likely that such treatment is not effective towards the voltage drop 

suppression. Nevertheless, the discharge capacities of 5 AP and 10 AP below 3.0 V are 

much higher than that of the pristine HENMC. The above observations indicate that the 

presence of AP coating can help exploit the electrochemical reactions that take place below 

3.0 V. In theory, capacities below 3.0 V in HENMC system stem from several sources: 1) 

polarization of the electrochemical processes that are supposed to take place above 3.0 V; 

2) lithium insertion into the spinel phase on the surface [29] and 3) oxygen reduction 

reaction.[31, 32] A tiny plateau at ~2.7 V can be observed in coated samples, this agrees 

well with previous findings that a new spinel phase has formed upon ALD treatment. Aside 

from this plateau, extra capacity has been obtained below 3.0 V. Oxygen reduction reaction 

in HENMC normally happens as the O2 gas that was released during initial charging 

process is reduced to lower valence during discharge.[4, 31, 32] The final product of the 
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oxygen reduction reaction is Li2CO3, which is electrochemically inert and enables stable 

SEI.[33-35]  

 

Figure 5.5 (a) Cyclic stability performance; (b) Coulombic efficiencies; (c) First cycle 

charge/discharge curves; (d) 40th cycle charge/discharge curves of the samples 

In order to evaluate the effect of the oxygen release on the formation of the SEI layer, EIS 

measurements were conducted on the pristine HENMC and coated HENMC samples after 

initial charge and 6th charge. The simulated equivalent circuit is presented as an inset. The 

RΩ stands for the Ohmic resistance arose from the electrolyte, separator and other 

components. The semi-circle in the high frequency range represents the lithium diffusion 

across the surface film, simulated as a resistor Rs and a constant phase element (CPE), the 

semi-circle in the medium frequency range shows the charge transfer reaction composed 

of a resistor Rct and another CPE, the inclined line is interpreted as the finite length 

Warburg impedance. In this case, the value of Rs stands for the SEI resistance and the Rct 

stands for the charge transfer resistance across the material surface. The Rs for each of the 
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sample after initial charge and 6th charge has been listed in Table SI5.1. It can be seen that 

the pristine HENMC has an Rs of 432.9 Ω, whereas AP coating has demonstrated 

effectiveness in decreasing this resistivity. The drop of SEI impedance reveals that the 

electrolyte decomposition is much less intense in coated samples. This can be explained as 

that the AlPO4 shields the HENMC particles from direct contact with the electrolyte. On 

the other hand, it could be due to the suppressed oxygen release, since oxygen will facilitate 

the electrolyte decomposition and hydrolysis under very high voltage. The Rs values of 

these samples after the 6th charge show an apparent drop, as can be seen from the right 

column of Table SI5.1. For pristine HENMC, the Rs has a slight decrease of about 20 Ω. 

However, this drop becomes much more obvious in the coated samples, in the 20 AP 

sample, the Rs value has dropped by 85%. The reason for the impedance drop in these 

samples can be presumably ascribed to a more stable and thin SEI and/or the transformation 

of AP into lithium conductive Li3PO4 and LiAlO2.[12, 37] The 20 AP sample shows the 

lowest Rs, but its capacity is lower than the 5 AP and 10 AP sample. Furthermore, voltage 

fade was not effectively alleviated even though the charge transfer impedance was much 

lower. This has also been observed in the work of Wang et al.,[37] where they reported the 

suppression of layered to spinel change through ALD-derived Al2O3 coating, but voltage 

decay was still observed. These phenomena can be tentatively ascribed to the lack of MnO2 

phase due to the missing of the Li2MnO3 phase. The lithiation voltage window of layered 

MnO2 falls into the window where voltage fade happens. 

 

Figure 5.6 EIS profiles of the samples (a) after initial charge and (b) after 6th charge 

(inset: A simulated equivalent circuit) 
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Figure 5.7 XPS results of F 1s of (a) Pristine HENMC electrode (b) HENMC-20AP 

electrode (c) Cycled pristine HENMC electrode (d) Cycled HENMC-20AP electrode 

and XPS results of C 1s of (e) Pristine HENMC electrode (f) HENMC-20AP electrode 

(g) Cycled pristine HENMC electrode (h) Cycled HENMC-20AP electrode 
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The surface compositions of the pristine HENMC, HENMC-20AP, cycled pristine 

HENMC and cycled HENMC-20AP electrodes are analyzed using XPS. Figure 5.7a-d 

illustrate the F 1s XPS spectra. It can be seen that in fresh samples, two types of fluorine, 

PVdF at 687.1 eV and metal fluorides (LiF and transition metal fluorides) at 684 eV are 

observed. In general, LiF is not expected in fresh samples, but due to the 

dehydrofluorination of PVdF according to reaction [1], HF is produced.  

–CH2 – CF2– → –CH = CF– + HF              [1] 

The surface of HENMC, after exposure to HF, generates LiF.[38] Apparently, the coated 

sample shows much less LiF even in fresh samples, indicating that the presence of AlPOy 

is capable of protecting the material surface. Furthermore, after intensive cycling, the 

surface F 1s XPS spectrum of pristine HENMC can be deconvoluted into three 

components, with an extra peak at 685.1 eV, this peak is generally assigned to 

LixPFy/LixPFyOz, which are the main products of the hydrolysis of LiPF6 when exposed to 

O2 and water.[39, 40] The  LixPFy/LixPFyOz peak cannot be observed in the coated cycled 

sample and the LiF in cycled pristine HENMC is also much more than that of the coated 

HENMC, indicating that the coating can effectively prevent the decomposition of the 

electrolyte upon cycling, especially when there is excessive oxygen generated in HENMC 

material.  

The C 1s XPS spectra of the same samples were also studied. In the C 1s XPS, several 

peaks corresponding to the C-F and C-H bonds in PVdF, the C-C bonds in super P 

conductive agent and a small amount of Li2CO3 can be observed in the fresh electrodes.[41] 

However, after cycling, the pristine HENMC electrode shows a sharp peak of C-O single 

bond at the binding energy of 285.1 eV. In addition, the contribution from the super P 

conductive agent has dropped significantly in this sample, indicating that the surface has 

been covered by a very thick layer of electrolyte decomposition compounds. Since C-O 

bonds are normally assigned to species such as ether that are unfavorable SEI components 

due to their instability and insulating nature,[42, 43] we can conclude that the capacity fade 

of pristine HENMC is also closely related to the build-up of surface impedance. On the 

other hand, the coated HENMC, after cycling, shows much less C-O single bond, but the 
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Li2CO3 peak turns out to be much higher than that of the pristine HENMC, this observation 

confirms our previous assumption that the decreasing impedance upon cycling in coated 

samples is because of that Li2CO3 helps create a more stable and robust SEI.[36]  

As has been reported by our previous work, AlPO4 coating is capable of enhancing the 

thermal resistivity of carbon nanotubes,[44] therefore the DSC of overcharged pristine 

HENMC and AP coated HENMC was also conducted. Since Al2O3 is the most widely used 

ALD derived coating, a sample with Al2O3 coating was studied as a reference. It can be 

seen from Figure 5.8, the pristine HENMC shows two exothermal peaks, indicating that 

the dissociation of the HENMC was a two-step process. The first peak is normally assigned 

to the solvent decomposition and the second peak is supposed to originate from the cathode 

material phase change and the electrolyte oxidation.[45] The onset decomposing 

temperature was about 219 oC, whereas the Al2O3 coated sample shows a slightly higher 

onset temperature was 223 oC. However, AP coated sample shows significant improvement 

and the onset temperature was 237 oC, which is much higher than those of the pristine 

HENMC and Al2O3 coated HENMC. The thermal stability improvement of AlPO4 coating 

can be ascribed to the high thermal stability of phosphate, thus proving that ALD-derived 

AlPO4 is also a superior coating material in retaining the thermal stability of overcharged 

HENMC, especially when there is excessive oxygen release. 
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Figure 5.8 DSC curves of pristine HENMC, HENMC-Al2O3 and HENMC-AP 

To better clarify the mechanism of the performance improvement by AP coating, we have 

shown a schematic diagram in Figure 5.9. ALD process generates a spinel phase on the 

outer part of the material that enables fast Li+ ion transportation, this differs from the cation 

migration caused phase which is due to lithium vacancies. The AP coating protects the 

surface of HENMC from metal dissolution by shielding the particles from direct contact 

with the electrolyte. More importantly, the continuous oxygen release was suppressed so 

that the oxidation decomposition of the electrolyte under high voltage can be suppressed. 

By limiting the oxygen release, the surface cation migration has been restrained and thus 

the charge transfer impedance has significantly dropped. Furthermore, the oxygen 

reduction reaction that happens below 3.0 V has helped create a robust SEI with more 

Li2CO3, it also demonstrates increasing performance and over 100 % CE within the first 

several cycles.    
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Figure 5.9 Schematic illustration of the mechanisms of performance improvement by 

AP coating 

5.4 Conclusions 

We have successfully used ALD to coat the HENMC cathode material with aluminum 

phosphate. This coating layer has demonstrated effective protection of the cathode material 

against the attack from the electrolyte. ALD process can slightly reduce the material 

surface and convert the Li2MnO3 to a spinel-like phase, and the oxygen release during 

initial charge can be effectively controlled. The initial coulombic efficiency can be 

significantly improved with the presence of the coating. Oxygen reduction reaction was 

more intense in the coated samples, it helped create a more robust SEI layer, so that the 

performance of the coated samples show significant improvement. Besides, AP coated 

HENMC has demonstrated much better thermal stability than Al2O3 coated HENMC and 

pristine HENMC, making it an outstanding candidate for the surface coating modification 

of HENMC since oxygen release may lead to severe thermal instability issues.  
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Supporting Information 

Table SI 5.1 Rs values of the samples after initial charge and 6th charge 
 

Rs (After initial charge) Rs (After 6th charge) 

HENMC 432.9 Ω 412.9 Ω 

5 AP 212.9 Ω 97.0 Ω 

10 AP 157.2 Ω 79.0 Ω 

20 AP 143.1 Ω 32.3 Ω 

 

Figure SI 5.1 XAS of (a) Co, (b) Mn, (c) Ni and (d) O collected at fluorescence yield 

mode (FYI) 

The XAS of Co, Mn, Ni and O are the same for the HENMC and HENMC-20AP sample 

under FYI mode, indicating that the effect of ALD process only happens on the surface, 

and the bulk of these two materials remain the same. 
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Figure SI 5.2 XAS of standard MnO2, Mn2O3 and MnO 
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Figure SI 5.3 Raman spectra of HENMC and HENMC-20AP 

The extra peak at around 660 cm-1 can be assigned to the Raman signal of the extra spinel 

phase after ALD treatment. 
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Figure SI 5.4 (a) SEM image of pristine HENMC after first charge; (b) SEM image 

of HENMC-20AP after initial charge; (c) TEM image of pristine HENMC after 40 

cycles; (d) HRTEM image of pristine HENMC after 40 cycles 

The surface of the pristine HENMC shows lots of deposits after initial charge, but the 20 

AP sample does not show such deposits, indicating that the formation of SEI has been 

effectively suppressed by the coating layer. 

The cycled pristine HENMC shows sponge-like surface, indicating that the attack from the 

HF has been very intense and resulted in the formation of pits on the surface. Also, HETEM 

image has clearly revealed that there is a new column of atoms forming on the surface with 

a depth of about 3 nm. This proves that the spinel phase formation due to cation migration 

into Li layer has happened during cycling. 
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Chapter 6  

6 Insight into the Structure Evolution of Li-rich NMC via 
In-situ X-ray Absorption Spectroscopy 

The irreversible structural change of lithium-ion battery cathode materials is a major 

hindrance to the longevity of it. Previous studies have thoroughly investigated the role of 

surface modification methods in enhancing the cathode materials performance. In this 

chapter, we focus on unveiling the consequences of the cathode materials phase changes. 

Such change initiates from the surface where defects exist widely and are close to the 

electrolyte, therefore, understanding the mechanism will provide strong supports for the 

design of surface modification methods. 

We used in-situ XAS measurement to track the change of the transition metals in Li-rich 

NMC during the initial cycle and the 450th cycle. The initial cycle was found to involve 

major redox reactions of Ni and Co, which are the main charge compensation mechanism, 

Mn was slightly reduced from tetravalent state during discharge. On the contrary, the 

sample cycled for 450 times showed almost no electrochemical activity in Co and Ni, it 

was found that Mn was the only transition metal that participated in the charge 

compensation process. Such discoveries will help understand how Li-rich NMC loses the 

capacity and achieve high-performance LIBs. 

 

 

 

 

Note: This work is under preparation for submission. 

B. Xiao, M. Banis, Q. Sun, Y. Liu, M. Cai, T.-K. Sham, R. Li and X. Sun, to be submitted 
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6.1 Introduction 

Li-rich transition metal oxides, with a net chemical formula of xLi2MnO3•(1-x)LiMeO2 

(Me = Mn, Ni, Co etc.), have been regarded as one of the most promising cathode materials 

for the next generation high energy density lithium-ion batteries (LIBs).[1] Different from 

conventional layered LiMeO2, excessive lithium ions reside in the transition metal layers, 

forming an inter-grown Li2MnO3 phase with LiMn6 units in the parent LiMeO2 

structure.[2] The combination of the C2/m Li2MnO3 and the R3m LiMeO2 phases has 

allowed this material to deliver a capacity of over 250 mAhg-1 within a voltage window of 

2.0 – 4.6 V (vs Li/Li+), thus it is also named high energy NMC (HENMC). The activation 

of the electrochemically inactive Li2MnO3 during initial charge results in simultaneous 

oxygen release and delithiation, with a net loss of Li2O. The remaining MnO2 phase is 

electrochemically active and therefore can accept excessive lithium ions during 

discharge.[3] Within current understanding, the benefit of extra capacity is, however, a 

tradeoff of irreversible structural change, which is a result of cation migration into the 

lithium vacancies in the lithium layers after oxygen release, forming a spinel structure that 

continuously grows into the bulk of the material and severely blocks the lithium diffusion 

pathways, ending up with very poor rate capability.[4, 5] On the other hand, the 

agglomeration of the spinel phase leads to the decay of average voltage and results in the 

loss of energy density of the whole cell, as has been proposed by numerous studies.[3, 6-

8] The migration of the transition metals has also been studied by many researchers through 

microscopic devices, most of them found that the Ni tend to segregate from the layered 

phase, due to the low valence of Ni2+ and close radii with Li+.[9, 10] Despite the well-

accepted phase transition mechanism, there still remains many unresolved questions in the 

HENMC. First, are all the three transition metals transforming into spinel phases? Second, 

are all of them contributing to the capacity throughout the test? Last but not least, is the 

spinel phase the only charge compensation mechanism after long term cycling process?  

X-ray absorption spectroscopy (XAS) that allows for the acquisition of local structures of 

transition metals has been carried out by many researchers. Transition metals K edges 

provide abundant information of electronic configuration and the oxidation level, therefore 

are extensively used for the understanding of structural changes of cathode materials. In 



180 

 

this study, an in-situ XAS measurement was carried out to track the change of transition 

metals in the first and 450th cycle, which allows for the understanding of charging 

compensation and structural evolution mechanisms of HENMC. It was found that in the 

first charge process, Mn does not change its valence, only MnO6 octahedra distortion was 

observed, on the other hand, Ni and Co are oxidized. The initial discharge showed slight 

reduction of Mn and reversible reduction of Ni and Co to the original state. The most 

striking discovery was that in the 450th cycle, the Ni and Co showed almost no valence 

change at all throughout the test, which has not been observed before. The loss of 

electrochemical activity of Ni and Co demonstrates that the phase segregation of Co and 

Ni into inactive phases is the main reason of capacity loss.   

6.2 Experimental 

6.2.1 Materials Synthesis 

The Li-rich NMC was synthesized via following steps: stoichiometric MnSO4●H2O, 

NiSO4●6H2O and CoSO4●7H2O were mixed to form solution A with a concentration of 1 

mole/L. Na2CO3 and ammonia were mixed to form solution B with NaCO3 concentration 

of 1 mole/L and ammonia concentration of 0.15 mol/L. Solutions A and B were fed into 

the reactor by a peristatic pump in a speed of 1 mL/min, the temperature was controlled to 

be 60 oC, the mixed solution was strongly agitated under a speed of 400 rmp, pH was 

controlled to be 7-8. After 6 hours, the precipitates were washed by de-ionized water and 

dried in vacuum under 120 oC for 12 hours to obtain the Ni-Co-Mn carbonate precursors. 

Afterwards, the precursor was mixed with certain amount of LiOH thoroughly and sintered 

under 500 oC for 5 hours and 900 oC for 20 hours to obtain the final material. 

6.2.2 Characterization Methods 

The morphology of the samples was characterized by a Hitachi S-4800 field emission 

scanning electron microscopy (FESEM) and a JEOL 2010F high-resolution transmission 

electron microscope (HRTEM). The X-ray diffraction (XRD) patterns were collected on a 

Bruker D8 Advance Diffractometer using Cu Kα radiation at 40 kV and 40 mA. Raman 

results were collected on a HORIBA Scientific LabRAM HR Raman spectrometer system 



181 

 

with a 532.4 nm laser and optical microscope. In-situ hard X-ray absorption spectroscopy 

was collected on the HXMA beamline in CLS under fluorescence mode. The energy was 

calibrated to Co metal so as to collect the K edge XAS of Mn, Co and Ni in a row. 

6.2.3 Electrochemical Measurement 

To prepare the electrodes for coin cell fabrication, the Li-rich NMC powders were 

uniformly mixed with acetylene black (AB) and poly(vinylidene fluoride) (PVDF) in a 

ratio of 80:10:10 in an N-methyl-pyrrolidione (NMP) solvent. Then, the slurry was pasted 

on aluminum foils and dried at 80 oC under vacuum overnight. The electrode was 

subsequently cut into round shape and assembled into a CR-2032 coin cell in an argon-

filled glove box with the moisture and oxygen being controlled below 0.1 ppm. Lithium 

metal was used as the counter electrode in the coin cells. 1M LiPF6 dissolved into ethylene 

carbonate (EC) and diethyl carbonate (DEC) in a 1:1 volume ratio (BASF corp., US) was 

used as the electrolyte. Celgard 2400 was used as the separator. Galvanostatical 

charge/discharge test was carried out on Maccor 4000 between 2.0 V and 4.6 V (vs Li/Li+), 

the initial cycle was conducted under 1/20 C (12.5 mA/g) for activation, and the following 

cycles were tested under 1/2 C (125 mA/g). The tested cells were dissembled in a glove 

box and assembled into an in-situ cell for in-situ XAS study. The in-situ cells were tested 

on a portable Neware BTS 3000 battery charging station at the beamline. 
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6.3 Results and Discussions 

 

Figure 6.1 Cycling performance of the HENMC; (b) Charge/discharge curves of the 

1st, 2nd, 50th, 100th, 200th, and 449th cycle; (c) dQ/dV curves of the initial cycle and (d) 

dQ/dV curves of the 449th cycle 

The HENMC cathode material was cycled under C/2 rate after an initial activation cycle at 

C/20, the initial charge capacity was 303 mAhg-1 and the initial discharge capacity was 253 

mAhg-1, as has been shown in Figure 6.1a. The large irreversible capacity in this material 

leads to the loss of active Li+ and remains one of the most critical problems of it. The 

capacity shows dramatic decay after long-term cycling, only 123 mAhg-1 discharge 

capacity was obtained in the 449th cycle. Figure 6.1b shows the charge/discharge curves of 

the 1st, 2nd, 50th, 100th, 200th and 449th cycles, the average voltage has dropped significantly. 

SEM images of the fresh electrode and the electrode after 449 cycles are presented in 

Figure SI6.1, the original HENMC particles are around 100 nm. After cycling, the size of 

the particles remains almost unchanged, the particles are covered by a dense film, which is 

possibly the solid electrolyte interphase (SEI) that was formed from the oxidation 

decomposition of the electrolyte. dQ/dV curves show typical redox reactions in the Li-rich 
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NMC, the peak during discharge shifts from 3.25 V to 2.75 V, indicating obvious voltage 

drop. 

 

Figure 6.2 Schematic illustration of the in-situ cell 
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Figure 6.3 Charge/discharge voltage versus time of the in-situ first cycle under 1/10 

C and 450th cycle under 1/20 C 

The in-situ XAS measurements were taken on a fresh electrode and an electrode that has 

been previously cycled for 449 times. The configuration of the in-situ cell is shown in 

Figure 6.2, a hole was drilled on the cathode case and covered by a transparent Kapton tape 

to allow for the collection of fluorescence signals from the cathode electrode during 

operation. Since the heavily cycled cell had only about 50% capacity retention, the C-rate 

for it was decreased to C/20 in order to allow for sufficient data collection time on the 

beamline. The collected points are shown in Figure 6.3. In the fresh cycle, 7 points were 

collected during charging and 6 were collected during discharging. In the 450th cycle, 10 

points were collected during charging and 11 points were collected during discharging. 
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6.3.1 In-situ XAS Measurement of the Initial Cycle 

 

Figure 6.4 In-situ XANES measurement of initial cycle Mn K-edges during (a) 

charging and (b) discharging; Co K-edges during (c) charging and (d) discharging 

and Ni K-edges during (e) charging and (f) discharging; 
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The in-situ XAS measurement of the Mn K-edges of the fresh electrode are shown in Figure 

6.4a-b. Each of the spectra shows significant difference throughout the whole process. 

Figure 6.4a displays the Mn K-edge XANES of the charging process. At the open circuit 

voltage (OCV) point, the Mn K-edge has a threshold energy (E0) of 6548.25 eV. A plot of 

the E0 values against the formal valences of various manganese oxides is shown in Figure 

SI6.3, it can be seen that the E0 values of these manganese compounds are linearly 

correlated to the valences, the slight deviation of LiMn2O4 and Mn2O4 might be due to the 

presence of Mn3+ in these compounds, which is Jahn-Teller active and may change the 

shape of the XANES.[11] The OCV Mn K-edge XANES reveals that the Mn in the fresh 

HENMC sample is at tetravalent state with a 3d configuration of high spin 𝑡2𝑔
3 𝑒𝑔

0.[12] The 

intensity of the Mn pre-edges increases continuously during charging process. Mn pre-

edges are assigned to the dipole forbidden transition of 1s to 3d states, it appears to be very 

weak in octahedral coordination. Due to the mixing of the 4p and 3d state, an electric 

quadrupole-allowed transition has contributed to the pre-edge peak as well, therefore the 

pre-edge peaks are discernable and can be found to have splitted into two peaks.[12] The 

presence of the two pre-edge peaks also confirms that the Mn ions are in tetravalent state 

since trivalent Mn only show one pre-edge peak due to the Jahn-Teller distortion 

modification of low spin 𝑡2𝑔
3 𝑒𝑔

1.[13] The peak at lower energy can be assigned to the 3d eg 

energy level and the one at higher energy can be assigned to the 3d t2g energy level. The 

continuous growth of these two peaks in the charge process reveals that the MnO6 

octahedral sites are distorted by the removal of Li+ from the lattice. Figure SI6.5a depicts 

the first derivative of the XANES of the Mn K-edge, generally the first inflection peak after 

the pre-edge peaks corresponds to the threshold energy (E0), which is indicative of the 

oxidation level. During the charging process, the threshold energy of the Mn appears to be 

unchanged, such observation confirms that the Mn does not participate in the charge 

compensation due to the removal of Li+, which agrees well with other studies.[12, 14] 

During discharge, the Mn K-edges show reversing trend, the intensities of the pre-edges 

gradually return to the original level, confirming that part of the insertion of Li+ is 

reversible. The main difference of the Mn K-edge during discharge is that slight reduction 

has been observed in Figure SI6.5b. However, due to the complexity of the Mn K edges 

affected by the ligand field splitting of Mn-O bonds, it is hard to quantitatively measure 
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the level of reduction simply by looking at the shift of E0. The reduction of Mn was also 

reported by Ito et al., they found that the Mn was reduced to 3.6+ based on the linear 

calculation of the position of the half height of the pre-edge.[14] It has been reported that 

the activation of the Li2MnO3 during the charging process leads to the formation of layered 

MnO2 and O2 with the extraction of Li+. The MnO2 is electrochemically active and thus 

can accommodate Li+ and form LiMnO2, this process is accompanied with the reduction 

of Mn4+.  

The Co K-edge XANES were recorded and shown in Figure 6.4c-d. The Co K-edge at the 

OCV has an E0 of 7718.21 eV, which is close to that of LiCoO2, indicating that the Co is 

in 3+ in the HENMC. The charging/discharging process of Co shows essentially different 

behaviors to that of Mn. Besides the shift of the white line to a higher energy, the E0 also 

changes, indicating that the Co has participated in the redox reaction to compensate the Li+ 

removal. The inset figure in Figure 6.3c shows that the oxidation of Co started from the 

very beginning of the charging process and ceased to change at the 4th point, which 

corresponds to the voltage value of 4.43 V. It has been reported that the reaction of the 

HENMC below 4.4 V during initial charging is mainly the Li+ extraction from the LiMeO2 

(Me = Mn, Co, Ni). No reactions related to Co are expected above 4.4 V since the long 

plateau in this voltage range is attributed to the loss of oxygen and Li+ from the lattice of 

Li2MnO3. The above observation complies with literatures and confirms the effectiveness 

of in-situ XAS on the study of transition metal valence changes. The E0 at OCV and fully 

charged state of Co are plotted in Figure SI6.5c, the E0 at fully charged state shows an E0 

of 7719.92 eV, which is 1.71 eV higher than that of the OCV. Due to the difficulty of 

obtaining naturally stable Co4+ compounds, we drew an extension line according to the E0 

values of CoO, Co2O3 and LiCoO2 against their formal valences as shown in Figure SI6.4. 

Assuming that the valence of Co is linear with the values of E0 in these cobalt oxides, it 

can be found that the fully charged state displays a Co at 4.02+ oxidation level, which also 

agrees with previous literatures. The reversible change of Co can be observed in the Co K-

edges in the discharge process. The E0 values, as shown in the inset of Figure 6.3d, show 

continuous decrease from point 8 to point 10 and remain almost unchanged from point 10 

to point 13. Point 10 corresponds to the voltage of 3.57 V, indicating that the reduction of 

Co happens predominantly above 3.57 V, this is consistent with other reports that the 
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layered R 3̅m LiMeO2 phase mainly delivers its capacity above 3.50 V. The fully 

discharged point shows a Co K-edge E0 of about 7718.12eV, which can be assigned to 

trivalent Co according to Figure SI6.4. The results indicate that the redox reaction of Co is 

between Co3+ and Co4+, similar with other layered cathode materials such as LiCoO2 and 

LiNi1/3Co1/3Mn1/3O2.  

The redox reactions of Ni have also been observed. Similar with the Co K-edges, the 

oxidation of Ni predominately happens before point 6, as can be observed from Figure 

6.4e, point 6 and 7 almost overlap. The E0 position of Ni turns out to change much more 

significantly compared to Mn and Co, indicating that the valence of Ni underwent more 

profound change, which agrees with previous reports that Ni was oxidized from 2+ to 

4+.[12,14] 

Aside from the reduction of Mn, Co and Ni, there are numerous studies reporting that 

oxygen has participated in the charge compensation process during the initial charge.[15] 

Ito et al. calculated the capacity based on the valence change of Mn, Ni and Co using 

Faraday’s law and found that the discharge capacity is lower than actual capacity, 

indicating that the oxygen has participated in the charge compensation.[14] Bruce et al. 

found that the localized electron holes on O coordinated by Mn4+ and Li+ ions instead of 

the formation of true O2
2- species was the main source of charge compensation.[16] In both 

cases, O participation is found to be a profound reason of the high capacity of HENMC.    

6.3.2 In-situ XAS Measurement of the 450th Cycle 

The capacity fade of cathode materials has been systematically investigated by many 

researchers. Transition metal dissolution into the electrolyte, electrolyte decomposition and 

phase segregation have been proposed to be the chief reasons of capacity loss in 

HENMC.[17] ICP measurements were carried out to estimate the amount of transition 

metal dissolved into the electrolyte. The ratio of Mn:Co:Ni was found to be 67:16:17 in the 

fresh sample, which is close to the theoretical ratio of 68:16:16 according to the chemical 

formula of Li1.2Mn0.54Co0.13Ni0.13O2. However, in the heavily cycled electrode, the ratio 

changed to 65:17:18. The obvious drop of Mn reveals that the dissolution of Mn is the most 

intense among the three transition metals, which agrees well with previous reports.[18] 
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Aside from the transition metal dissolution, intense phase transformation has also been 

found in the XRD and Raman results shown in Figure SI6.3. Though it is very hard to index 

the composition of each element simply by looking at these results, we can still find that 

the original layered structure has turned into multiple phases including rock-salt like phases 

and spinel phases. Wang et al. studied the distribution of transition metals in fresh sample 

surfaces and found that, thermodynamically, Ni tends to aggregate on the surface and form 

a spinel-like structure, whereas the formation of Co-rich rock phase is favorable.[19] The 

advantage of in-situ XAS is that it can isolate each of the element and study individually, 

making it an ideal technique to track the behaviors of the transition metals in the cells after 

prolonged cycling. The in-situ XAS measurements results of the 450th cycle are therefore 

presented in Figure 6.5.  
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Figure 6.5 In-situ XANES measurement of the 450th cycle Mn K-edges during (a) 

charging and (b) discharging; Co K-edges during (c) charging and (d) discharging 

and Ni K-edges during (e) charging and (f) discharging; 

In the Mn K-edges, the pre-edge becomes much less discernable, the two peaks observed 

in the initial cycle have merged into one, as has been mentioned before, it is a result of 
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Jahn-Teller modifications to the Mn3+ with a configuration of low spin 𝑡2𝑔
3 𝑒𝑔

1. Therefore, 

after extensive cycling, the Mn was reduced in the whole material. Compared with the 

initial cycle, it shows much less intense shape change, though the edges can be found to 

shift reversibly slightly during charging and discharging. The change of Mn reveals that it 

still participates in the charge compensation process in the heavily cycled sample. Though 

it is very hard to quantify the exact change of valence, such change is not as profound, 

since the pre-edges did not show significant change of intensity or position, as opposed to 

the initial cycle. The insertion of Li+ in the surrounding environment of MnO6 octahedra 

changes the white-line position.    

The evolution of Co differs significantly from the initial cycle, as shown in Figure 6.5c, 

after long term cycling, the Co shows an E0 of 7718.36 eV, which corresponds to a valence 

of about 3.1+, however, the absorption edges of the Co do not show any obvious shift, 

which is also observed in the first inflection peak in Figure SI6.7c. On the other hand, the 

shape of the Co XANES results changes continuously, indicating that the CoO6 octahedra 

were distorted even though Co did not participate in the charge compensation process. 

Nevertheless, the change of the shape is still not as profound as the fresh sample. The loss 

of Co activity should be directly responsible for the capacity loss of HENMC.  

Similar results can be found in the Ni K-edge XANES as well. In the initial cycle, the 

change of Ni is very significant, since the valence changed from 2+ to 4+ during charging. 

However, in the heavily cycled electrode, the edge positions of the Ni K-edges were almost 

overlapping without any changes. The unchanged edge positions of Ni indicate that the 

same as Co, Ni has lost its electrochemical activity.  

The simultaneous loss of electrochemical activities of Co and Ni, together with the trivial 

Mn K-edge change, brings about the speculation that there might remain other charge 

compensation mechanisms so as to obtain a discharge capacity of as high as 125 mAhg-1 

in the 450th cycle. It is possible that oxygen participation as observed in the first discharge 

process might have remained in the heavily cycled sample, which needs to be further 

confirmed. 
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6.4 Conclusions 

In-situ XAS measurements have been carried out to investigate the behaviors of the 

transition metals in HENMC during both the initial cycle and the 450th cycle. Through 

comparison of these two sets of in-situ XAS studies, it was found that the initial cycle 

involves the structural distortion of Mn-related phases without oxidation of Mn, instead, 

Ni and Co were oxidized to compensate the charge, together with the oxidization of 

crystalline O2-. The initial charge involves reduction of all of the three transition metals. In 

sharp contrast to the initial cycle, Ni and Co were found to be unable to be oxidized/reduced 

in the 450th cycle, only Mn was slightly oxidized/reduced. The loss of electrochemical 

activity of both Ni and Co is the main reason of capacity fade after prolonged cycling. The 

charge compensation simply by the slight change of Mn cannot exclude the possibility of 

the participation of anionic redox reaction in the heavily cycled samples. The results in this 

paper will help researchers design high-energy cathode materials through the manipulation 

of transition metals and the exploitation of oxygen. 
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Supporting Information 

 

Figure SI 6.1 SEM images of (a) fresh electrode and (b) electrode after 450 cycles 

 

Figure SI 6.2 (a) XRD results of the HENMC particle, fresh electrode and electrode 

cycled for 450 times; (b) Raman results of the fresh electrode and the electrode cycled 

for 450 times 
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Figure SI 6.3 Plot of the E0 values of various standard manganese oxides vs their 

formal valence 

 

Figure SI 6.4 Plot of the E0 values of various standard manganese oxides vs their 

formal valence 
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Figure SI 6.5 First derivative plots of the first cycle XANES with Mn (a) open circuit 

voltage (OCV) and fully charged state; (b) Fully charged state and fully discharged 

state; Co (c) open circuit voltage (OCV) and fully charged state; (d) Fully charged 

state and fully discharged state; Ni (e) open circuit voltage (OCV) and fully charged 

state; (f) Fully charged state and fully discharged state; 
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Figure SI 6.6 First derivative plots of the 450th cycle XANES with Mn (a) open circuit 

voltage (OCV) and fully charged state; (b) Fully charged state and fully discharged 

state; Co (c) open circuit voltage (OCV) and fully charged state; (d) Fully charged 

state and fully discharged state; Ni (e) open circuit voltage (OCV) and fully charged 

state; (f) Fully charged state and fully discharged state; 
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Chapter 7  

7 Graphene Nanoribbons Derived from the Unzipping of 
Carbon Nanotubes: Controlled Synthesis and Superior 
Lithium Storage Performance 

Graphene nanoribbons (GNRs) from chemical unzipping of carbon nanotubes (CNTs) have 

been reported to be a suitable candidate for lithium-ion battery materials, but very few of 

them focused on controlling GNRs with different unzipping levels. Here we present a study 

of GNRs with controlled unzipping level and the prevailing factors that affect the lithium 

storage performance at early and final unzipping level, besides, the effect of thermal 

reduction has been investigated. Based on Raman and BET surface area tests, we found 

that the unzipping of CNTs starts with surface etching, then proceeds to partial and full 

unzipping, finally fragmentation and aggregation. Galvanostatic charge-discharge reveals 

that defect increase is mainly responsible for the capacity enhancement at the early 

unzipping level, surface area drop is associated with the capacity fade at final unzipping 

level. Surface functional groups can result in low electrical conductivity, therefore causes 

capacity drop within several cycles. The GNRs with controlled unzipping level display 

different electrochemical behaviors, thus can provide rational choices for researchers who 

are searching for desired functions using GNRs as additives in lithium-ion batteries. 

 

 

 

 

Note: This work has been published. 

B. Xiao, X. Li, X. Li, B. Wang, C. Langford, R. Li and X. Sun, J. Phys. Chem. C, 2014, 

118, 881 
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7.1 Introduction 

Graphene is a two-dimensional monolayer of sp2 hybridized carbon atoms with a 

honeycomb lattice structure. It has attracted extensive investigations due to its unusual 

mechanical strength, excellent electrical and thermal stability.[1] Carbon nanotubes(CNTs) 

are layers of graphene rolled up into seamless tubes,[2] as a result, by unzipping carbon 

nanotubes, it is possible to obtain graphene nanoribbons (GNRs)[3-6]. Pioneered work was 

reported by Tour et al.,[7, 8] By exposing the multi-walled CNTs in highly oxidizing 

solutions, they successfully achieved longitudinal cutting and unraveling of MWCNTs. 

Since then, many other strategies such as plasma etching,[9, 10] insertion and 

exfoliation,[11] metal nanoparticles-catalyzed cutting[12, 13] and mechanical 

sonication[14] have been reported. The success of unzipping CNTs to GNRs has thereafter 

inspired the unzipping of other species of nanotubes such as boron nitride. [15, 16]  

In the past few decades, Lithium-ion batteries have become an emerging technology for 

high performance energy storage systems.[17-19] Graphite is the currently commercialized 

anode material, but its inherent capacity is relatively low.[20] CNTs and graphene have 

been recognized as promising anode materials due to their unique high electrical 

conductivity and mechanical strength.[21] The performance of CNTs and graphene 

strongly relies on their structural configuration such as surface area[22, 23] and 

defects.[24-27] Therefore, much effort has been made to modify their pristine structures. 

Peralta et al.[28] have calculated the lithium storage capability of graphene 

nanosheet(GNS), fullerenes and GNRs based on density functional theory and revealed 

that the interaction between lithium and zigzag GNRs is 50% stronger than that of GNS. 

This advantage contributes to the performance of lithium-ion batteries both as anode 

materials and additives for electrode material composites. Besides the enhanced lithium 

storage property, the lithium diffusion coefficient has also been calculated in GNRs and 

was found to be elevated for up to two orders of magnitude compared with GNS.[29] In 

addition, the robust mechanical property and enormous surface area of GNRs during 

lithiation have shown that GNRs can be an outstanding anode of MWCNTs in terms of 

durability and capacity.[30] Despite this, the lithium storage capability of GNRs based on 
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the unzipping level has not yet been studied and the key factors that affect the performance 

are not clear. 

In this study, we used modified Hummer’s method [31] to synthesize GNRs. By controlling 

the treatment time, we obtained GNRs with controlled unzipping level with changed 

surface areas, defect amounts and functionalized surfaces. Moreover, we present a 

comprehensive study of the prevailing factor that influences the lithium storage capability 

of GNRs at different unzipping level. To the best of our knowledge, it is the first time 

systematically studying the morphology evolution of GNRs derived from CNTs and the 

lithium-ion battery performance based on the GNRs series. It has been demonstrated that 

number of defects increases right after exposure to oxidants, surface area changes gradually 

with the aggregation of GNRs under longer time due to the fragmentation of GNRs. The 

lithium storage capability of unzipped CNTs relies on different factors at different 

unzipping level. Defects are mainly responsible for the enhanced capacity at the early stage 

whereas surface area is associated with the capacity at high unzipping levels. Surface 

functional groups are found to enhance the discharge capacity, however the increased 

impedance will lead to fading performance. 

7.2 Experimental 

7.2.1 Materials Synthesis 

In a typical unzipping process, 100mg of MWCNTs(Shenzhen Nanotech., China) were 

dispersed in 3.4mL of sulfuric acid (H2SO4)(98%, Aldrich) via strong ultrasonic agitation 

for 30min. The viscous solution was then placed in an ice bath under vigorous stirring and 

75mg sodium nitrate (NaNO3) (99.9%, Aldrich) was subsequently added. After dissolving, 

450mg potassium permanganate (KMnO4) (99.9%, Aldrich) was slowly and carefully 

added into the viscous mixture. After a desired reaction time(specifically 5min, 30min, 1h, 

2.5h, 5h, 10h and 20h), 20mL of 5% sulfuric acid solution was poured into the liquid and 

left to cool down. Next, 2mL hydrogen peroxide (H2O2) (30%, Aldrich) was added into the 

solution in a drop-wide manner until no more bubbles were released. After half an hour, 

the dark solution was centrifuged and thoroughly washed with 5% nitric acid three times 

and de-ionized water five times, then filtered and dried in an oven at 90oC for 12h under 
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vacuum. The as prepared GNRs contained high amounts of oxygen-containing functional 

groups (denoted as GONRs-oxidizing time) and are therefore annealed at 900oC in Ar for 

reduction (denoted as GNRs-oxidizing time). To make the results more reliable, a reference 

was created with pristine CNTs which were treated in 30% nitric acid solution for 6 hours 

to remove the catalysts. 

7.2.2 Characterization Methods 

The morphologies and structures of CNTs and GNRs were characterized by a Hitachi S-

4800 field emission scanning electronic microscopy (FESEM) equipped with energy 

dispersive X-ray spectroscopy (EDS), a Hitachi H-7000 transmission electron microscopy 

(TEM) and high-resolution transmission electron microscope (HRTEM, JEOL 2010F). 

Raman scattering (RS) spectra was obtained by a HORIBA Scientific LabRAM HR Raman 

spectrometer system with a 532.4 nm laser and optical microscope at room temperature, 

the intensity ratio of D and G band was calculated by integrating the areas after subtracting 

the baseline and applying Lorenzian fit. N2 adsorption/desorption isotherms were obtained 

by a Folio Micromeritics Tristar II Surface Area Analyser. Fourier transform infrared 

spectroscopy (FTIR) was obtained by a Nicolet 6700 FTIR spectrometer. 

Thermogravimetric analysis (TGA) was carried out on a TA SDT Q600 in an air 

atmosphere from room temperature to 700 oC at a rate of 10 oC/min. 

7.2.3 Electrochemical Measurements 

Pristine CNTs and GNRs were dispersed homogeneously in slurry with 10% 

polyvinylidene fluoride binder in N-methylpyrrolidione (NMP) solvents. The slurry was 

subsequently casted onto a Cu foil as current collector and dried at 100 oC under vacuum 

overnight. The electrode was assembled in a glove box with moisture and oxygen 

concentrations below 1ppm. A CR-2325-type coin cell with lithium metal as the counter-

electrode and Celgard 2400 as the separator was utilized. The electrolyte was composed of 

1M LiPF6 salt dissolved in ethylene carbonate: diethyl carbonate: ethyl methyl carbonate 

in a 1:1:1 volume ratio.  

Both cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) were 

performed on a multichannel potentiostat 3/Z (VMP3), with a scanning rate of 0.1 mV/s 
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and a potential range of 0.1 V to 3.0 V (vs. Li/Li+) at room temperature. Galvanostatical 

charge-discharge was performed on Arbin BT2000 at a current density of 100mA/g 

between 0.01 and 3.0 V (vs. Li/Li+). 

7.3 Results and Discussions 

Fig. 7.1a shows the SEM image of pristine CNTs. Pristine CNTs have relatively uniform 

diameter distribution with an average value of 40 nm. Fig. 7.1b-h show time dependent 

GNRs. It can be clearly observed that upon oxidizing, the pristine CNTs present remarkable 

morphology evolution. CNTs have been successfully unzipped into U-shaped curved 

GNRs longitudinally. With increasing treatment time, the number of remaining CNTs 

become fewer and fewer. This is because CNTs with lower diameters are generally more 

stable in oxidizing conditions [7], therefore the ratio of remaining CNTs is a direct 

indication of the level of oxidizing. After a 1h treatment, about 50% of the CNTs were 

unzipped. In the case of a 5h treatment, the CNTs have been fully unzipped. Continuous 

treatments lead to stacking of GNRs in the 10h and 20h samples. 
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Figure 7.1 FE-SEM images of the pristine CNTs and GNRs series: Pristine CNTs; 

(b)GNRs-5min; (c)GNRs-30min; (d)GNRs-1h; (e)GNRs-2.5h; (f)GNRs-5h; (g)GNRs-

10h; (h)GNRs-20h 

TEM and HRTEM were carried out in order to investigate the morphology evolution at 

higher magnifications as shown in Fig. 7.2(a-e). It can be seen that the unzipping of CNTs 
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can be divided into four stages, namely surface etching, partially unzipping, fully unzipping 

and aggregation. To better illustrate the process, we have proposed a schematic diagram of 

different unzipping levels. Fig. 7.3a shows pristine CNTs. Fig. 7.3b is mostly observed in 

GNRs-5min, where the CNT has been etched with some cracks on the surface, however, 

the tubular structure still remains. HRTEM image Fig. 7.2b (inset) clearly displays the 

etched layer of CNTs. It can be predicted that the cracks are generated on defect sites and 

the unzipping starts from these structures. Partially unzipped CNTs displayed in Fig. 7.3c 

reveal that the CNT is unwrapped layer by layer. With increasing time, the CNTs are fully 

unzipped longitudinally. However, extra treatment would produce fragmentation. As 

shown in Fig. 7.2(d inset) and Fig. 7.3e, the GNRs have turned into flat structures, but the 

length decreases a lot in comparison with Fig. 7.2a-c. At this stage, other fragments are 

also formed besides the ribbon-like structure. Severe aggregations can be observed in Fig. 

7.2d. The defects generated by initial unzipping are highly active sites for further attack of 

potassium permanganate, thus forming fragments. The fragments of GNRs are mainly 

responsible for the stacking found in Fig. 7.1g-h. 
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Figure 7.2 TEM images of CNTs during different unzipping stages: (a) Etched CNTs; 

(b) Partially unzipped CNTs; (c) Fully unzipped CNTs; (d) Stacked GNRs 

 

Figure 7.3 Schematic diagrams of (a)Pristine CNTs; (b) Etched CNTs; (c) Partially 

unzipped CNTs; (d) Fully unzipped CNTs; (e) Stacked GNRs fragments 

Fig. 7.4a shows the RAMAN spectra of pristine CNTs and GNRs. It can be observed that 

the pristine CNTs feature three obvious peaks at 1340.4, 1572.1 and 2683.1 cm-1. The peaks 

correspond to the D band induced by disordered defect, the G band caused by sp2 carbon 

vibration and the 2D band of second-order Raman scattering process respectively.[32] The 

intensity ratio of the D and G bands of pristine CNTs is 0.56, indicating that the pristine 



208 

 

CNTs are mostly sp2 hybridized. Besides the small amount of defect, amorphous carbon 

which is sp3 hybridized is also responsible for the D band intensity. The unzipping of CNTs 

creates new peaks both for D and G band at 1461.8 and 1610.4cm-1 respectively, this can 

be ascribed to the vibration of graphite layers exfoliated from the CNTs.[32] The 2D peak 

becomes much weaker as the unzipping proceeds as its peak intensity strongly relies on the 

D band intensity because of the defect-induced renormalization of electron and phonon 

energies.[33, 34] Therefore, the increase of the D band intensity inevitably induces the drop 

of the 2D band intensity. 

Fig. 7.4b displays a plot of the ID/IG ratio calculated by the intensity of D and G bands. It 

can be seen that the defect amount increases significantly after the CNTs are exposed to 

oxidants. Further, longer treatment time does not cause severe change to the defect amount, 

and the values oscillate around 2.15 within the next 10h of treatment. This implies that the 

defects are mostly created by the initial attack of the oxidants. Unzipping of CNTs does 

not exert strong impact on the formation of defects. 

Fig. 7.4b also shows the plot of the Brunauer-Emmett-Teller specific surface area of GNRs 

as a function of treated time. It can be seen that the surface area of pristine CNTs is 

47.3m2/g. Within 5min of treatment, the surface area is slightly increased to 49.1m2/g, 

which is in contrast with the sudden increase of defect. This reveals that the CNTs are 

likely to be etched on the surface at the early steps without damage of the tubular structures. 

The surface area is highest when the treatment time is 5h with a value of 321.6m2/g, 

however, when the treatment time increased up to 10h, the surface area slightly decreased 

to 321.1m2/g. The balance of surface area at GNRs-5h and GNRs-10h implies that within 

this period of time, unzipping and fragmentation-induced stacking happen simultaneously. 

When further reaction occurs at 20h, the surface area dramatically drops to 126.6 m2/g, 

which indicates that unzipping has been mostly finished. But during this stage, the 

formation of GNRs fragments exceeds that of unzipping. The surface area change further 

shows that the fragmentation at 10h and 20h is the reason of the surface area drop. 

The thermal stability of the pristine CNTs and GONRs was confirmed by TGA shown in 

Fig. 7.4c. The initial weight loss below 100 oC is due to adsorbed moisture. Then, most of 
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the GONRs display a weight loss from 150-450 oC, which corresponds to the surface 

functional groups. The oxygen-containing groups are generally released as CO2. With 

higher oxidation level, the GONRs become less thermally stable, implying that the surface 

functional group magnitude increases with longer treatment. The final weight loss from 

450 oC to 600 oC is because of the release of CO2 due to the burning of carbon. 

The functional groups of GNRs-5h and GONRs-5h were confirmed via Fourier transform 

infrared spectroscopy (FTIR) as displayed in Fig. 7.4d. The strong peaks at 3343 cm-1 and 

1630cm-1 correspond to the hydroxyl stretching related to the -OH group and adsorbed 

water. It can be observed that before reduction, GONRs-5h contains a large amount of 

adsorbed water due to the hydrophilic nature.[35, 36] After reduction, the vibration of 

hydroxyl has been decreased a lot. The broad peak at 3343 cm-1 can be ascribed to the KBr 

humidity. [37] The doublet peaks at 2927 and 2872 cm-1 are due to the symmetric and 

antisymmetric stretching vibrations of –CH2.[38] The existence of –CH2 indicates that that 

the carbon basal planes are well maintained. Two intense peaks at 1714 and 1380 cm-1 are 

found at GONRs-5h, corresponding to the C=O and C-O stretching vibrations of COOH 

groups.[39] Another strong band at 1380 cm-1 can be assigned to the O-H deformations of 

the C-OH groups.[40] FTIR has clearly revealed that the majority of the functional groups 

in the GONRs-5h sample are oxygen-containing groups such as hydroxyl and carboxyl. 

Upon thermal reduction, the functional groups have been removed and released in the form 

of CO2.  

As has been shown in Fig. 7.4a and Fig. 7.4b, the defect of GNRs at 5 min is much higher 

than that of pristine CNTs while there is no surface area change. Therefore, it is good 

reference material to compare the performance of GNRs-5min with pristine CNTs to study 

the effect of defects. On the other hand, as both the defect and surface area keep increasing 

at GNRs-5min to GNRs-5h, it is difficult to ascribe the performance change to any of these 

two single factors. Therefore the samples of the GNRs-5h and GNRs-20h provide us to 

study the surface area effect while there is a drop in surface area whereas an increase in 

defect amount. Moreover, the comparison of the GONRs-5h and GNRs-5h could help 

investigate the impact of surface functional groups. 
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Figure 7.4 (a) Raman spectra of the pristine CNTs and GNRs; (b) Plot of the ID/IG 

ratio and surface area; (c) TGA curves of pristine CNTs and GONRs; (d)FTIR of 

GNRs-oxide-5h and GNRs-5h 

The electrochemical behavior of pristine CNTs, GNRs-5min, 5h, 20h and GONRs-5h were 

characterized by cyclic voltammetry(CV) and galvanostatic charge and discharge process. 

Fig. 7.5, 7.6a-b present the CV and charge/discharge curves of pristine CNTs and GNRs-

5min at the first three cycles. It can be observed that both CV curves display two typical 

peaks at the first cathodic scan. The peak at about 0.75 V corresponds to the irreversible 

formation of SEI due to the decomposition of electrolyte,[41] which is mainly responsible 

for the initial irreversible capacity.[42] This peak disappears in the second and third cycle, 

indicating that the SEI is very stable. Another peak at 0.1V reveals the insertion of Li+ into 

the graphite layers. During anodic scan, the sharp peak at 0.24 V for pristine CNTs and 

0.30 V for GNRs-5min are related to the de-intercalation if Li+ from the graphene 

layers.[43] A weak peak is observed in GNRs-5min at 1.85 V, which is consistent with the 
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previous results of ball-milled CNTs, chemically etched CNTs and nano-drilled CNTs as 

anodes[44-46] where small holes are created on the tube walls or the tube caps have been 

removed. This allows more Li+ extraction from the interior space of nanotubes. This shows 

a strong evidence that surface defects on CNTs provides more sites for lithium storage. The 

peak at 2.34 V is due to the absorption of the Li+ on remaining functional groups. [45] In 

the case of GNRs-5min, this peak only exists at the first cycle, implying that there is no 

consequent capacity contribution. The reversible discharge capacity has been increased 

from 232.5 mAh/g to 375.8 mAh/g, this significant increase is due to the sudden increase 

of defect, which allows to accommodate more lithium.[47]  

Fig. 7.5, 7.6c-d depict the CV and charge/discharge curves of GNRs-5h and GNRs-20h. 

Similar with that of GNRs-5min, a reversible peak at 1.85 V has been observed in GNRs-

5h whereas there is no such peak in GNRs-20h. This change reveals that the tubular 

structure has been totally destroyed in GNRs-20h, which is consistent with the SEM and 

TEM images that the GNRs have been turned into fragments. The oxidation peaks related 

to the extraction of Li+ from graphite layers are located at 0.35 V and 0.52 V for GNRs-5h 

and GNRs-20h respectively. The charge/discharge curves show that GNRs-5h delivers 

much higher capacity than GNRs-20h. In the case of pristine CNTs and GNRs-5min, 

defects are mainly responsible for the capacity increase, however, in the case of GNRs-5h 

and GNRs-20h, the discharge capacity decreases from 515.5 mAh/g to 391.5 mAh/g even 

if there is an increase of defect amount. Realizing that the defect amount increase can 

possibly induce lower electrical conductivity for carbon materials, we conducted studies of 

electrochemical impedance spectroscopy (EIS) on GNRs-5h and GNRs-20h. As shown in 

Figure 7.4f, GNRs-5h and GNRs-20h at open circuit voltage (inset) display one semicircle 

and one straight line. The impedance of GNRs-5h is similar to GNRs-20h at open circuit 

voltage. In contrast to the EIS at open circuit voltage, the EIS at 0.01 V displays to 

semicircles at high and medium frequency regions. To better illustrate the impedance 

behavior, we proposed a modified equivalent circuit in the insert of Figure 7.4f. Re stands 

for the electrolyte Ohmic resistance. The high-frequency semicircle can be ascribed to the 

resistance of SEI with the migration of Li+ and interfacial capacitance (Csl) related to Rsl. 

The semicircle in medium-frequency region can be assigned to the charge-transfer 

resistance (Rct) and the double-layer capacitance (Cdl). W denotes the finite length Warburg 
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impedance corresponding to the solid-state diffusion. Through the simulated equivalent 

circuit, we found that the charge transfer resistances of GNRs-5h and GNRs-20h are 21.9 

and 22.2 Ω, respectively, indicating that the electrical conductivity of GNRs-20h was not 

seriously affected by the presence of defects. Given the similar electrical conductivities of 

GNRs-5h and GNRs-20h, we therefore ascribe the capacity fade to the drop of surface area. 

High surface area allows for a high contact area between electrode and electrolyte to form 

SEI film by consuming a considerable amount of Li+. This leads to a high capacity at the 

first discharge.[48] Despite the consumption of Li+, the high surface area provides much 

more free sites for the storage of Li+,[49] therefore the reversible capacity of GNRs-5h is 

much higher than that of GNRs-20h. 

Fig. 7.5, 7.6e display the CV and charge/discharge curves of GONRs-5h. By comparing 

with Fig. 7.5, 7.6c (GNRs-5h) one can find two obvious redox peaks. The cathodic peaks 

located at the potential of Li+ extraction from interior space (1.88 V) and functional groups 

(2.37 V) are reversible during cycling. The redox peaks at 1.88 V and 1.60 V correspond 

to the extraction of Li+ from interior space of nanotubes. This peak is reversible and much 

more intense than GNRs-5h, but this observation remains unclear which possibly results 

from the self-repair effect during annealing.[50] Another redox peaks at 2.37 V and 2.13 

V are assigned to the adsorption and extraction of Li+ onto surface functional groups. It 

can be clearly seen that the oxidizing peak is very intense at the first cycle and becomes 

gradually weaker at the second and third cycles. It indicates that the adsorption of Li+ on 

functional groups have a big contribution to the irreversible capacity. However, quite 

similar with the SEI film, the Li+ are consumed rather than stored. The charge/discharge 

curves display two extra voltage plateaus, corresponding to the redox peaks of the 

functional groups. The curves also confirm the high irreversible discharge capacity of 

GONRs at 1088.0 mAh/g compared with GNR-5h (910.4 mAh/g).  

Fig. 7.6f shows the cyclability of the performance and the Coulombic efficiencies of each 

sample. It is worthwhile to notify that the Coulombic efficiencies of GNRs-5h and GONRs-

5h exceed 100%, we believe this is caused by the double-layer capacitance enhanced by 

the high surface area. It can be seen that the GONRs-5h displays a higher reversible 

capacity in the first five cycles than other samples, but the stability is very poor, even lower 
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than pristine CNTs. Fahlman[51] also observed the similar performance of GONR. The 

high capacity of GONRs is ascribed to the stable Li-rich SEI which prevents the electrolyte 

from further degradation. However, the poor cyclability of GONRs-5h may result from the 

decrease of electrical conductivity. To confirm this, electrochemical impedance 

spectroscopy (EIS) of GNRs-5h and GONRs-5h was conducted. As shown in Fig. 7.5f, 

through the simulated equivalent circuit, we found that the charge transfer resistances of 

GNRs-5h and GONRs-5h are 21.9 Ω and 82.0 Ω respectively, revealing that the electrical 

conductivity of GONRs-5h is much lower than that of GNRs-5h. Therefore, we can 

conclude that the poor cyclability of GONRs-5h is because of the increased impedance due 

to the presence of surface functional groups. 
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Figure 7.5 Charge/discharge profiles of (a) Pristine CNTs;  (b) GNRs-5min; (c) GNRs-

5h; (d) GNRs-20h; (e) GONRs-5h with a current density of 100 mA/g; (f) Discharge 

capacity and coulombic efficiency versus cycle numbers of pristine CNTs and 

GNRs/GONRs at a current density of 100 mA/g 
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Figure 7.6 Charge/discharge profiles of (a) Pristine CNTs;  (b) GNRs-5min; (c) GNRs-

5h; (d) GNRs-20h; (e) GONRs-5h with a current density of 100 mA/g; (f) Discharge 

capacity and coulombic efficiency versus cycle numbers of pristine CNTs and 

GNRs/GONRs at a current density of 100 mA/g 

To sum up, we have proposed the mechanisms of the enhanced capacity of GONRs and 

GNRs at each stage. Fig. 7.7a depicts the mechanism of Li+ insertion into inter-layers of 
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MWCNTs at the early stage. Defects are created by oxidizing at the surface, thus allowing 

Li+ migrate through the vacancies into the inter-layers. This effect results in more sites for 

the accommodation of Li+, as the defect sites are generally highly active and, therefore can 

absorb Li+. The mechanism of enhanced lithium storage capability at the later stage is 

shown in Fig. 7.7b. The noticeably increased surface area exposed to electrolyte provides 

more free sites to accommodate Li+ while a thicker SEI film is formed. In the case of 

GONRs shown in Fig. 7.7c, the functional groups can absorb a remarkable amount of Li+, 

and along with the increased surface area, GONRs display very high irreversible capacity. 

[52]  

 

Figure 7.7 Schematic diagrams of insertion of lithium ions into (a) CNTs (b) GNRs 

(c) GONRs 

7.4 Conclusion 

In conclusion, the morphological evolution of GNRs derived from chemically unzipped 

CNTs has been divided into four steps according to the Raman spectra, TEM images, 

HRTEM images and surface area. Specifically, the unzipping begins with chemical etching 

at the tube walls without severe damage to the tubular structure. Following etching results 

in partially and fully unzipped CNTs, however, continuous etching will lead to 

fragmentation of GNRs which is reflected as a drop of surface area due to aggregation. 

We have studied the lithium storage performance of GNRs at different unzipping levels. 

The enhanced capacity at the early stage is mainly related to the obvious increase of defects. 

GNRs-5h, which has the highest surface area, delivers a reversible discharge capacity of 

over 500mAh/g. However, when the unzipping level comes to its final stage, the capacity 

drops noticeably due to the drop of surface area. Also, we have studied the functional 

groups effect on cycling performance of anodes, demonstrating that the functional groups 
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can absorb a considerable amount of Li+ which is mostly irreversible. The dropped 

cyclability of GONRs-5h is due to the decreased electrical conductivity. The systematic 

study on the lithium-ion battery performance of GNRs with controlled unzipping levels 

can provide a strong reference for future utilization of GNRs and GNR composites. 
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Ramírez-González, L. Ci, E. Muñoz-Sandoval, P. M. Ajayan, H. Terrones and M. 

Terrones, Longitudinal Cutting of Pure and Doped Carbon Nanotubes to Form Graphitic 

Nanoribbons Using Metal Clusters as Nanoscalpels, Nano Lett., 2010, 10, 366-372. 

[14] L. Jiao, X. Wang, G. Diankov, H. Wang and H. Dai, Facile Synthesis of High-Quality 

Graphene Nanoribbons, Nat. Nanotechnol., 2010, 5, 321-325. 



219 

 

[15] K. J. Erickson, A. L. Gibb, A. Sinitskii, M. Rousseas, N. Alem, J. M. Tour and A. K. 

Zettl, Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High 

Quality Boron Nitride Nanoribbons, Nano Lett., 2011, 11, 3221-3226. 

[16] H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando and D. Golberg, 

“White Graphenes”: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping, 

Nano Lett., 2010, 10, 5049-5055. 

[17] A. Yoshino, The Birth of the Lithium-Ion Battery, Angew. Chem. Int. Ed., 2012, 51, 

2-5. 

[18] J. M. Tarascon, Key Challenges in Future Li-Battery Research, Philos. T. Roy. Soc. 

A, 2010, 368, 3227-3241. 

[19] B. Scrosati, J. Hassoun and Y.-K. Sun, Lithium-Ion Batteries. A Look into the Future, 

Energy Environ. Sci., 2011, 4, 3287-3295. 

[20] B. Simon, S. Flandrois, K. Guerin, A. Fevrier-Bouvier, I. Teulat and P. Biensan, On 

the Choice of Graphite for Lithium Ion Batteries, J. Power Sources, 1999, 81, 312-316. 

[21] C. de las Casas and W. Li, A Review of Application of Carbon Nanotubes for Lithium 

Ion Battery Anode Material, J. Power Sources, 2012, 208, 74-85. 

[22] C. Liu, F. Li, L.-P. Ma and H.-M. Cheng, Advanced Materials for Energy Storage, 

Adv. Mater., 2010, 22, E28-E62. 

[23] Felipe Valencia, Aldo H. Romero, Francesco Acilotto and P. L. Silvestrelli, Lithium 

Adsorption on Graphite from Density Functional Theory Calculations, J. Phys. Chem. B, 

2006, 110, 14832-14841. 

[24] X. Li, J. Liu, Y. Zhang, Y. Li, H. Liu, X. Meng, J. Yang, D. Geng, D. Wang, R. Li 

and X. Sun, High Concentration Nitrogen Doped Carbon Nanotube Anodes with Superior 

Li+ Storage Performance for Lithium Rechargeable Battery Application, J. Power Sources, 

2012, 197, 238-245. 



220 

 

[25] Liu-Jiang Zhou, Z. F. Hou and L.-M. Wu, First-Principles Study of Lithium 

Adsorption and Diffusion on Graphene with Point Defects, J. Phys. Chem. C, 2012, 116, 

21780-21787. 

[26] J. Yang, J. Wang, X. Li, D. Wang, J. Liu, G. Liang, M. Gauthier, Y. Li, D. Geng, R. 

Li and X. Sun, Hierarchically Porous LiFePO4/Nitrogen-Doped Carbon Nanotubes 

Composite as a Cathode for Lithium Ion Batteries, J. Mater. Chem., 2012, 22, 7537-7543. 

[27] Z.-S. Wu, W. Ren, L. Xu, F. Li and H.-M. Cheng, Doped Graphene Sheets as Anode 

Materials with Super High Rate and Large Capacity for Lithium Ion Batteries, ACS Nano, 

2011, 5, 5463-5471. 

[28] C. Uthaisar, V. Barone and J. E. Peralta, Lithium Adsorption on Zigzag Graphene 

Nanoribbons, J. Appl. Phys., 2009, 106, 113715. 

[29] C. Uthaisar and V. Barone, Edge Effects on the Characteristics of Li Diffusion in 

Graphene, Nano Lett., 2010, 10, 2838-2842. 

[30] X. H. Liu, J. W. Wang, Y. Liu, H. Zheng, A. Kushima, S. Huang, T. Zhu, S. X. Mao, 

J. Li, S. Zhang, W. Lu, J. M. Tour and J. Y. Huang, In Situ Transmission Electron 

Microscopy of Electrochemical Lithiation, Delithiation and Deformation of Individual 

Graphene Nanoribbons, Carbon, 2012, 50, 3836-3844. 

[31] W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. 

Soc., 1958, 80, 1339-1339. 

[32] M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, Raman Spectroscopy of 

Carbon Nanotubes, Phys. Rep., 2005, 409, 47-99. 

[33] I. O. Maciel, N. Anderson, M. A. Pimenta, A. Hartshuh, H. Qian, M. Terrones, H. 

Terrones, J. Campos-Delgado, A. M. Rao, L. Novotny and A. Jorio, Electron and Phonon 

Renormalization near Charged Defects in Carbon Nanotubes, Nat. Mater., 2008, 7, 878-

883. 



221 

 

[34] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, Perspectives 

on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Lett., 2010, 10, 751-758. 

[35] A. Dimiev, D. V. Kosynkin, L. B. Alemany, P. Chaguine and J. M. Tour, Pristine 

Graphite Oxide, J. Am. Chem. Soc., 2012, 134, 2815-2822. 

[36] S. Pei and H.-M. Cheng, The Reduction of Graphene Oxide, Carbon, 2012, 50, 3210-

3228. 

[37] A. Kaniyoor, T. T. Baby and S. Ramaprabhu, Graphene Synthesis Via Hydrogen 

Induced Low Temperature Exfoliation of Graphite Oxide, J. Mater. Chem., 2010, 20, 8467-

8469. 

[38] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano-

Graphene Oxide for Cellular Imaging and Drug Delivery, Nano Res., 2008, 1, 203-212. 

[39] H.-K. Jeong, L. Colakerol, M. H. Jin, P.-A. Glans, K. E. Smith and Y. H. Lee, 

Unoccupied Electronic States in Graphite Oxides, Chem. Phys. Lett., 2008, 460, 499-502 

[40] A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri and I. Dekany, Graphite 

Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic 

Amines and Amino Acids, Langmuir, 2003, 19, 6050-6055. 

[41] Brian J. Landi, Matthew J. Ganter, Christopher M. Schauerman, Cory D. Cress and R. 

P. Raffaelle, Lithium Ion Capacity of Single Wall Carbon Nanotube Paper Electrodes, J. 

Phys. Chem. C, 2008, 112, 19, 7509-7515. 

[42] O. Y. Chusid, Y. E. Ely, M. Babai, Y. Carmeli and D. Aurbach, Electrochemical and 

Spectroscopic Studies of Carbon Electrodes in Lithium Battery Electrolyte Systems, J. 

Power Sources, 1993, 43, 47-64. 

[43] B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo and R. P. Raffaelle, Carbon 

Nanotubes for Lithium Ion Batteries, Energy Environ. Sci., 2009, 2, 638-654. 



222 

 

[44] H. Shimoda, B. Gao, X. Tang, A. Kleinhammes, L. Fleming, Y. Wu and O. Zhou, 

Lithium Intercalation into Opened Single-Wall Carbon Nanotubes: Storage Capacity and 

Electronic Properties, Phys. Rev. Lett., 2001, 88, 015502-015505. 

[45] H. S. Oktaviano, K. Yamada and K. Waki, Nano-Drilled Multiwalled Carbon 

Nanotubes: Characterizations and Application for LIB Anode Materials, J. Mater. Chem., 

2012, 22, 25167. 

[46] J. Y. Eom and H. Kwon, Improved Lithium Insertion/Extraction Properties of Single-

Walled Carbon Nanotubes by High-Energy Ball Milling, J. Mater. Res., 2008, 23, 2458-

2466. 

[47] F. Yao, F. Güneş, H. Q. Ta, S. M. Lee, S. J. Chae, K. Y. Sheem, C. S. Cojocaru, S. S. 

Xie and Y. H. Lee, Diffusion Mechanism of Lithium Ion through Basal Plane of Layered 

Graphene, J. Am. Chem. Soc., 2012, 134, 8646-8654. 

[48] F. Béguin, F. Chevallier, C. Vix-Guterl, S. Saadallah, V. Bertagna, J. N. Rouzaud and 

E. Frackowiak, Correlation of the Irreversible Lithium Capacity with the Active Surface 

Area of Modified Carbons, Carbon, 2005, 43, 2160-2167. 

[49] H. F. Xiang, Z. D. Li, K. Xie, J. Z. Jiang, J. J. Chen, P. C. Lian, J. S. Wu, Y. Yu and 

H. H. Wang, Graphene Sheets as Anode Materials for Li-Ion Batteries: Preparation, 

Structure, Electrochemical Properties and Mechanism for Lithium Storage, RSC Adv., 

2012, 2, 6792. 

[50] V. Lopez, R. S. Sundaram, C. Gomez-Navarro, D. Olea, M. Burghard, J. Gomez-

Herrero, F. Zamora and K. Kern, Chemical Vapor Deposition Repair of Graphene Oxide: 

A Route to Highly-Conductive Graphene Monolayers, Adv Mater., 2009, 21, 4683-4686 

[51] T. Bhardwaj, A. Antic, B. Pavan, V. Barone and B. D. Fahlman, Enhanced 

Electrochemical Lithium Storage by Graphene Nanoribbons, J. Am. Chem. Soc., 2010, 132, 

12556-12558. 



223 

 

[52] S. W. Lee, N. Yabuuchi, B. M. Gallant, S. Chen, B.-S. Kim, P. T. Hammond and Y. 

Shao-Horn, High-Power Lithium Batteries from Functionalized Carbon-Nanotube 

Electrodes, Nat. Nanotechnol., 2010, 5, 531-537. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



224 

 

Supporting Information 

 

 

Figure SI 7.1 Diameter distribution of the pristine CNTs 

 

Figure SI 7.2 EDS elemental mapping of (a) GONRs-5h and (b) GNRs-5h 

 



225 

 

Chapter 8  

8 Conclusions and Future Perspective 

This chapter summarizes the results and contribution of this thesis and proposes possible 

suggestions to the future directions in the realm of surface modification of electrode 

materials for LIBs. 
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8.1 Conclusions  

Lithium-ion batteries are the dominating energy storage device in the market nowadays 

due to the relatively high energy density, environmental benignity and low cost. However, 

in contrast to the burgeoning energy output demanded by electronics and electric vehicles 

(EVs), LIBs performance development has been under stagnation. The challenges that 

prohibit LIBs from powering enduring electronics and high mileage EVs include the 

energy density, rate capability, safety and cost.  

In order to increase the energy density of the LIBs, cathode materials with either high 

capacity and/or operating voltage are desired. This thesis focuses on two types of cathode 

materials, the high voltage spinel LiNi0.5Mn1.5O4 (LNMO) and high capacity layered Li-

rich NMC. These materials suffer from harsh side reactions such as transition metal 

dissolution, electrolyte decomposition and irreversible phase transition initiated from the 

surface under high voltage. In addition, delithiated cathode materials are highly oxidizing 

and are always accompanied with oxygen gas release, it can therefore increase the risk of 

explosion due to the flammability of the non-aqueous electrolyte used.  

The main objective of this thesis is to develop various surface modification methods to 

alleviate the side reactions on the surface of the electrode materials and understand how 

such modification works towards achieving better performance by combining with 

synchrotron radiation technique.  

First, an electrochemically active FePO4 coating was deposited onto LNMO particles via 

ALD. The thickness of the FePO4 coating was precisely controlled by the ALD cycle 

numbers, specifically, 5, 10, 20 and 40 ALD cycle numbers were used. The coating 

thickness of 20 ALD cycles was found to be about 2 nm. Cycling test showed that the 

stability of the LNMO increased continuously with more ALD cycles. The capacity 

retention increased from 79.9% to 100.0% from bare LNMO to LNMO with 40 ALD 

cycles coating. CV results revealed that the sample with 40 ALD cycles showed lowest 

polarization and electrolyte decomposition. XAS results showed that the presence of the 

ALD coating can prevent the LNMO surface from heavy Mn reduction, making Mn 

dissolution less likely to happen since Mn2+ is prone to dissolving into the electrolyte. 



227 

 

Investigation on the Fe L edge XAS revealed that the FePO4 derived by ALD is the same 

with that of the commercial FePO4. After cycling, the Fe was found to be slightly reduced 

and the features resemble amorphous LiFePO4, such finding demonstrated that the 

amorphous FePO4 coating was capable of accommodating Li+ ions to form nano-domains 

of amorphous LiFePO4. The electrochemically active nature of FePO4 layer allows for fast 

Li+ ions transportation and protects the LNMO material surface, in the meantime, it 

prevents the electrolyte from oxidation decomposition. Therefore, FePO4 appears to be a 

very promising coating material via ALD. 

The utilization of ALD in cathode materials has been focusing on surface coating in most 

cases, but the conformal nature of ALD coating layer can always deteriorate the 

performance significantly since the coating materials do not allow fast electron and Li ions 

transportation simultaneously. In the second part, we reported a method using post-

treatment of TiO2 coated LNMO to create a surface layer that prohibits surface phase 

change and allows for moderate electron/Lithium transportation. Different ALD cycles (5, 

25, 50) of TiO2 were deposited onto the surface of LNMO powders followed by annealing. 

It was found that 25 ALD cycles of TiO2 coating followed by annealing was able to increase 

the capacity, stability and rate capability of LNMO significantly compared to the one prior 

to annealing and the ones with other ALD cycle numbers. By using XAS and STEM-

HAADF, we found that the Ti atoms occupy both the tetrahedrally coordinated 8a sites 

which was previously occupied by Li atoms and the octahedrally coordinated 16d sites 

previously occupied by Ni and Mn. Such substitution resulted in a surface layer composed 

of spinel TiMn2O4 and a LiTixNi0.5Mn1.5-xO4 subsurface. The significantly improved 

performance of the LNMO with 25 ALD cycles of TiO2 coating followed by annealing can 

be attributed to several aspects. The TiMn2O4 can protect the material surface from 

electrolyte attack. Second, the pre-occupation of Ti on Li sites prevent continuous phase 

change to rock salt phase on the surface.  

Li-rich NMC with a composition of Li1.2Mn0.54Co0.13Ni0.13O2 is another cathode material 

studied in this thesis. The oxygen release and simultaneous irreversible phase change 

during the first charge process result in low initial coulombic efficiency, fading capacity 

and risk of heat runaway. To address these problems, we used ALD to deposit AlPO4 
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coating onto the surface of the Li-rich NMC powders. HRTEM image revealed that the 

thickness of 20 ALD cycled of AlPO4 coating was about 4 nm. Soft XAS studies on the 

transition metals L edges and the oxygen K edge reveal that the surface of the Li-rich NMC 

has been altered during the ALD process, reduction of Mn and Co has been observed. 

HRTEM images show that a spinel phase formed on the surface of the ALD coated sample, 

which is a result of the reduction. The oxygen release peak was retarded by the AlPO4 

coating in the CV results, which indicates that the Li2MnO3 has changed, likely into the 

spinel phase. XPS results of the fresh electrode and cycled electrode show the bare sample 

was covered by thick SEI, whereas the coated sample show a less thick SEI. Also, the 

presence of AlPO4 coating increased the thermal stability of the bare sample and Al2O3 

coated Li-rich NMC, making it a promising candidate of coating material to enhance the 

safety of Li-rich NMC cathode materials. 

To understand the structure development of Li-rich NMC, we conducted in-situ XAS study 

on a fresh electrode of Li-rich NMC and another one after 449 cycles. Transition metals K 

edges were tracked to investigate the valence and electronic configurations. It was found 

that the initial charge process involves the oxidation of Ni and Co, whereas Mn only 

underwent structural distortion, the first discharge process involves simultaneous reduction 

of Ni, Co and Mn as charge compensation. The most striking discovery was that the heavily 

cycled sample showed no evidence of redox reactions of Co and Ni, indicating that these 

two transition metals have lost their electrochemical activity. Mn was found to be able to 

be slightly oxidized and reduced, but the change is trivial and it is possible that anionic 

redox reaction remains in the heavily cycled cells. 

In order to increase the energy density of a LIB, both cathode and anode materials demand 

high specific capacity, in this thesis, efforts were also made to investigate the performance 

of carbon nanotubes as anode materials. Carbon nanotubes can be regarded as rolled-up 

graphene nanoribbons, therefore, we used a chemical oxidation method to unzip 

commercial carbon nanotubes so as to control the surface area, defect amount and 

functional groups on the surface. In the seventh chapter of this thesis, we carried out 

controlled unzipping of carbon nanotubes by tuning the oxidation time and obtained 

graphene nanoribbons with different unzipping level. It was found that even only 5 min of 



229 

 

treatment would result in an abrupt increase of the defect amount and longer treatment time 

does not change the defect amount significantly. On the other hand, the surface area 

increases continuously until 5 h treatment owing to the unzipping of carbon nanotubes, it 

starts to drop after 10 h treatment due to the fragmentation of the nanoribbons into small 

pieces and they tend to agglomerate. The performances of the samples with different 

unzipping level reveal that the enhancement of capacity in early unzipping stage is driven 

by the increase of defect which can accommodate more Li+ ions. In the final unzipping 

stage, the capacity drops due to less surface area. The different electrochemical behaviors 

of the unzipped carbon nanotubes demonstrate that the Li+ insertion into carbon layers can 

be adjusted by controlling defects, surface area and functional groups. 

8.2 Perspectives 

The thesis has developed a novel electrochemically active FePO4 coating via ALD. Such 

coating involves lithiation of the coating material during charging, but this mechanism was 

not fully understood. XAS results only provided information that the Fe was reduced, it 

would be interesting if one can track the change of the coating material via in-situ methods 

like in-situ XAS. Such measurement is not restricted to FePO4 only, other coating materials 

that involve lithiation are also great candidates, such as TiO2, Al2O3 and Ta2O5. The 

feasibility of such measurement depends on the energy threshold of the elements detected, 

which determines whether it should be carried out in soft X-ray beamlines or hard X-ray 

beamlines. The former one requires vacuum and makes the whole experiment hard to 

conduct, whereas the latter one can be conducted on ambient table easily. 

The thesis also exploited the possibility of surface composition engineering via ALD TiO2. 

Simple ALD coating has been widely reported, but using ALD to adjust the surface 

composition is less seen. The benefit of such modification method, as discussed in chapter 

4, is that it involves both coating and doping simultaneously, these two modification 

methods target at different problems. In this thesis, we only tried to use Ti as the 

modification element, but such treatment shall not be restricted to Ti only. Numerous 

doping elements in cathode materials such as Al and Mg can be potentially beneficial to 

the performance since the lower valence of these elements might allow for easier diffusion 

than Ti. Furthermore, how surface doping benefits the performance can be further studied. 
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In chapter 5, we used AlPO4 coating to modify the surface of Li-rich NMC. XAS results 

showed that the ALD process could alter the surface of the Li-rich NMC, therefore, it is 

very valuable to conduct studies of the interaction between ALD precursors and Li-rich 

NMC. In addition, the change was found to happen mainly in Li2MnO3 phase in the Li-

rich NMC, it is also of great importance to investigate how such reaction took place. Also, 

it is worthwhile to investigate the reactions between ALD precursors with other cathode 

materials so as to better understand ALD coating roles in LIBs. 

Chapter 6 describes our attempts of understanding the structural and valence change of Li-

rich NMC material in the first cycle and 450th cycle. The in-situ XAS measurements 

showed important information about the transition metal changes especially in the heavily 

cycled sample. We found that the Mn was the only element that shows redox reaction in 

the heavily cycled sample, therefore it is very interesting if we can track the change of Mn 

through either in-situ or ex-situ method to identify the voltage where redox reactions take 

place. Furthermore, XAS of the oxygen K edge should provide critical information of 

whether anionic reactions remain or not. HRTEM studies on how and why the Co and Ni 

lose their electrochemical activity is also very important. 

Carbon nanotubes derived graphene nanoribbons are another topic covered in this thesis. 

Chapter 7 thoroughly investigates the effects of surface area, defects and functional groups 

to the performance of graphene nanoribbons. Such controllable properties makes graphene 

nanoribbons promising candidate for other types of batteries such as lithium air batteries 

and sodium air batteries, which demand high surface area and controlled defects.  
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