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Abstract 

Membrane Type-1 Matrix Metalloproteinase (MT1-MMP) is a multifunctional protease that 

affects cell function via proteolytic and non-proteolytic mechanisms such as promoting 

degradation of the extracellular matrix (ECM) or augmentation of cell migration and viability, 

respectively. MT1-MMP has been implicated in metastatic progression ostensibly due to its 

ability to degrade ECM components and to allow migration of cells through the basement 

membrane. Despite in vitro studies demonstrating this principle, this knowledge has not 

translated into the use of MMP inhibitors (MMPi) that inhibit substrate catalysis as effective 

cancer therapeutics, or been corroborated by evidence of in vivo ECM degradation mediated by 

MT1-MMP, suggesting that our understanding of the role of MT1-MMP in cancer progression is 

incomplete. To further our understanding of MT1-MMP function, MCF-7 and MDA-MB 231 

breast cancer cell lines were created that stably overexpress different levels of MT1-MMP. Using 

2D culture, I analyzed proMMP-2 activation (gelatin zymography), ECM degradation 

(fluorescent gelatin), ERK signaling (immunoblot), cell migration (transwell/scratch 

closure/time-lapse imaging), and viability (colorimetric substrate) to assess how different MT1-

MMP levels affect these cellular parameters. Matrigel 3D cell culture and avian embryos were 

also utilized to examine how different levels of MT1-MMP expression affect morphological 

changes in 3D culture, and tumourigenicity and extravasation efficiency in vivo. In 2D culture, 

breast cancer cells expressing high levels of MT1-MMP were capable of widespread ECM 

degradation and TIMP-2-mediated proMMP-2 activation, but were not the most migratory. 

Instead, cells expressing low levels of MT1-MMP were the most migratory, and demonstrated 

increased viability and ERK activation. In 3D culture, MCF-7 breast cancer cells expressing low 
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levels of MT1-MMP demonstrated an invasive protrusive phenotype, whereas cells expressing 

high levels of MT1-MMP demonstrated loss of colony structure and cell fragment release. 

Similarly, in vivo analysis demonstrated increased tumourigenicity and metastatic capability for 

cells expressing low levels of MT1-MMP, whereas cells expressing high levels were devoid of 

these qualities despite the production of functional MT1-MMP protein. This study demonstrates 

that excessive ECM degradation mediated by high levels of MT1-MMP is not associated with 

cell migration and tumourigenesis, while low levels of MT1-MMP promote invasion and 

vascularization in vivo. 

Keywords 

Matrix Metalloproteinases, MMP-14, Cell migration, 3D culture, Breast cancer, Intravital 
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Chapter 1 

1 Introduction  

1.1 Cancer Metastasis  

Cancer, the collection of related diseases involving uncontrollable cell growth and spread 

of abnormal cells in the body, is still a major health problem worldwide despite the progress 

made towards reducing its incidence and improving the survival rates of patients [1]. Almost half 

of all Canadians will develop cancer in their lifetime, and as such it is the leading cause of death 

in Canada followed by cardiovascular disease and respiratory illness [2]. There were about 

100,000 new cancer cases for both genders in 2015, with prostate cancer having the highest 

incidence in males (23.9%), and breast cancer in females (25.9%) [3]. Beyond the personal costs 

afforded by those directly and indirectly affected, cancer also poses a major economic burden on 

the Canadian healthcare system, by one estimate costing $3.8 billion in direct healthcare costs in 

2008 [4].  

Metastasis formation, which is defined as the ability of cancer cells to spread to distant 

organs, is responsible for more than 90% of cancer-associated deaths [5]. Metastasis progression 

is an extremely complex and multifunctional process whereby cancer cells separate from the 

primary tumours and disseminate to distant anatomical sites, via the vascular or lymphatic 

system, where they proliferate and form secondary tumours [6]. The progression to metastatic 

disease occurs in stages characterized by differential regulation of adhesive interactions and 

migratory events, and interactions with non-cancerous cells of the stroma and chemotactic 

factors [7]. The stages of metastasis include: development of new blood vessels (angiogenesis); 
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the ‘dissemination’ of cancer cells from the primary tumour; migration through the extracellular 

matrix (ECM) surrounding the epithelium; invasion of the basement membrane (BM) underlying 

the endothelium of local blood and/or lymphatic vessels (intravasation); transit in the 

blood/lymphatic system; arrest and adhesion of the circulating tumour cells to the endothelium of 

capillaries at the target organ site; invasion through the endothelial cell layer and surrounding 

BM (extravasation); and adaption and growth of secondary tumours at the target organ site (fig 

1a) [8-10].  

1.2 Traversing the ECM and the Role of Matrix Metalloproteinases 

During the multiple stages of metastasis progression, particularly during intravasation 

and extravasation, tumour cells must physically traverse the impeding ECM to enter/exit the 

circulatory system [11]. The ECM is the heterogeneous non-cellular components of tissues 

composed of a network of proteins, glycoproteins, and proteoglycans that includes collagen, 

elastin, and fibronectin, amongst others [12]. The role of the ECM is to provide structural 

support and modulate cell-signaling cascades via cell surface receptors, predominantly the 

integrins [13], to properly compartmentalize tissues while regulating cell fate and function [14-

17]. Structurally, the ECM can be separated into two types: the interstitial ECM found in 

connective tissue, and the basement membrane (BM) underlying tissue epithelia and endothelia 

of vessels [18]. The BM is a thin, dense and highly cross-linked ECM composed of an 

interwoven mixture of type IV collagen, laminins, nidogen and sulfated proteoglycans beneath 

the epithelia and endothelia that surrounds muscles, nerves, adipocytes and smooth muscle cells 

(fig 1a, Pre-Cancer) [19]. The ECM in animals can be a highly dynamic structure depending on 

developmental stage and tissue location, and as such requires active remodeling of ECM 

components by proteolytic degradation or deposition by local epithelial and stromal cells.  
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Figure 1. The Matrix Metalloproteinases (MMPs) are thought to function as ECM 

remodelers during metastasis formation.  

a) Shown is a schematic depicting the process of metastasis of tumour cells derived from an 

epithelial cancer. During Pre-cancer (1) there is an organized layer of epithelial cells that are 

polarized due to their interaction with the underlying extracellular matrix (ECM). The ECM can 

be categorized into two types: the basement membrane (BM) that is a thin dense layer underlying 

epithelia/endothelia, and the interstitial ECM that can be found in connective tissue. During 

cancer initiation, a carcinogenic mutation occurs that leads to loss of cell cycle control, excessive 

proliferation and formation of a primary tumour (2) with accompanying tissue disorganization. 

Due to increasing energetic requirements of the tumour, angiogenesis occurs (3) that allows for 

vascularization of the tumour and connection to the circulatory system. A subpopulation of 

tumour cells will gain the ability to transverse the local ECM and BM to enter the vascular or 

lymphatic circulation (intravasation, 4) where they can travel to distant anatomical sites (5). 

Cells that survive transit in the circulation can then arrest at the capillary beds of target organs 

and exit the circulation (extravasation, 6), transverse the local ECM and BM, and adapt at the 

secondary site to eventually form a metastases (7). b) The Matrix Metalloproteinases (MMPs) 

are a family of secreted and membrane-type (MT-MMP) proteases that can collectively cleave 

all components of the ECM. The predominant role of MMPs during metastasis formation is 

thought to be as ECM remodelers, which is shown in the diagram during the process of 

extravasation. Excessive MMP activity of cancer cells is thought to allow them to traverse the 

BM of circulatory vessels and local tissue prior to metastasis formation at the secondary site.  
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The degradation of ECM components is predominantly mediated by the Matrix 

MetalloProteinases (MMPs), which are a family of zinc-dependent endopeptidases that can 

collectively cleave all components of the ECM [20]. Originally, the MMPs were divided into 

collagenases, gelatinases, stromelysins and matrilysins based on their substrate specificity for 

components of the ECM [21]. However, it is now known that the MMPs can cleave much more 

than ECM components including cell surface receptors, latent ligands, cell adhesion molecules, 

and intracellular proteins [22-24]. Due to the continually growing list of MMP substrates, the 

current classification for MMPs is rather a sequential numbering system that reflects common 

structural features (fig 2). There are six distinct structural classes of MMPs: three are secreted 

(typical, gelatin binding, and minimal) and three are membrane-type MMPs (MT-MMPs – type 

I, type II, and GPI anchored) [25]. Structurally, the ‘typical’ secreted MMPs (MMP-1, -3, -8, -

10, -11, -12, -13, -18, -19, -20 -22, -27, -28) are composed of: an N-terminal signal sequence that 

directs them for secretion; a pro-domain that inhibits catalytic activity until it is proteolytically 

removed (MMP activation); a catalytic domain with zinc-dependent endopeptidase activity; a 

flexible hinge region; and a hemopexin domain that is responsible for substrate specificity, 

dimerization, and protein-protein interactions. The ‘minimal’ type of secreted MMPs (MMP-7, -

26) are distinct in that they lack a hinge and hemopexin domain, whereas the ‘gelatin binding’ 

type (MMP-2, -9) have fibronectin and collagen-like protein domain between the catalytic and 

hemopexin domains. In addition to the aforementioned domains, type-I MT-MMPs (MMP-14, -

15, -16, -24), the most common of the MT-MMPs, contains a transmembrane and short 

cytoplasmic domain. Type II MT-MMPs (MMP-23) contains a cysteine array and IgG-like 

domain in place of the hemopexin and transmembrane domains, and GPI-anchored MT-MMPs 
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Figure 2. Matrix Metalloproteinases can be categorized based on domain structure. 

The mammalian Matrix Metalloproteinases (MMPs) are grouped into two main classifications 

based on domain structure: Secreted and Membrane –type MMPs. Of the secreted MMPs, the 

‘minimal’ types are composed of a signal peptide (SP) that directs them for secretion, a pro-

domain that requires removal for proteolysis, and a catalytic domain with endopeptidase activity. 

In addition to the aforementioned domains, ‘typical’ MMPs also contain a flexible hinge region, 

and a hemopexin-like domain that dictates binding and substrate specificity. ‘Gelatin binding’ 

secreted MMPs also contain fibronectin-like repeats, and a collagen-like domain. ‘Type I’ 

membrane-type MMPs are directed to the cell membrane by the N-terminal signal peptide, and 

contain a transmembrane and short cytoplasmic domain in addition to the domains of the 

‘typical’ MMPs. ‘Type II’ membrane-type MMPs possess a cysteine array and IgG-like domain 

in place of the hemopexin-like, and transmembrane and cytoplasmic domains. GPI anchored 

membrane-type MMPs are anchored into the membrane by a GPI anchor and lack a cytoplasmic 

domain .   
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(MMP-17, -25) contain a GPI-anchor, in place of the hemopexin, transmembrane and 

cytoplasmic domains.  

Since MMPs represent a large family of potent proteolytic enzymes, their activity must 

be tightly regulated to properly mediate ECM remodeling and maintain homeostasis. The 

expression of MMPs is temporally and spatially regulated at the level of transcription by various 

growth factors, cytokines and chemokines [21], and also regulated at the post-translational level 

via multiple mechanisms. All MMPs are synthesized as zymogens with an inhibitory pro-domain 

that inserts into the catalytic site thus preventing access to substrates and ECM degradation. The 

proteolytic removal of this domain is necessary to activate MMPs and allow for substrate 

degradation, and thus represents the primary mechanism of post-translational regulation [26]. 

The secreted MMPs are activated by removal of the pro-peptide domain by other active 

proteases, including serine proteinases such as chymase and trypsin, or other already active 

MMPs [25, 27]. The MT-MMPs are reported to be activated intracellularly prior to membrane 

placement by the proprotein convertase, or furin, as they contain the conserved furin target 

sequences RXKR or RRKR between the pro- and catalytic domains [28, 29]. However, the 

mechanism of MMP activation in general is a contentious point in the literature, as the mode of 

activation of most MMPs is more presumed than proved, and the in vivo mechanism for 

activation of most proMMPs is unknown [30]. Evidence of our incomplete understanding of 

MMP activation is the proof that complete deletion of the furin target sites from MT1-MMP does 

not affect its activation [31], indicating the possible role of yet unknown MMP activation 

mechanisms.  

Once the prodomain has been removed and MMPs are active, their proteolytic activity 

can be regulated by the secreted Tissue Inhibitors of MetalloProteinases (TIMPs) [32]. The 
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mammalian TIMP family contains four members (TIMPs 1-4) that are composed of an N-

terminal MMP inhibitory domain, and a C-terminal domain that has distinct functions depending 

on the TIMP [33]. The TIMPs share the common feature that they are the endogenous inhibitors 

of MMPs and inhibit their proteolytic activity by forming noncovalent 1:1 stoichiometric 

complexes that are resistant to heat denaturation and proteolytic degradation. Although all 

TIMPs inhibit MMP activity, TIMPs differ in their expression pattern, solubility, and binding 

affinities with the different MMPs. TIMP-1, TIMP-2 and TIMP-4 can be found in soluble forms 

in the extracellular milieu, whereas TIMP-3 is strictly found tightly bound to ECM components 

[34, 35]. The expression patterns of the TIMPs is regulated at the level of transcription by 

various factors for the controlled inducible expression of TIMPs that results in differential 

temporal and spatial expression patterns, with the exception of TIMP-2 which demonstrates a 

constitutive expression pattern in all tissues [21]. Although TIMPs were originally characterized 

as MMP inhibitors, it is now known that TIMPs are multifunctional proteins that can affect 

different cellular processes by using their C-terminal domain to interact with cell surface 

receptors to induce intracellular signaling cascades that have been shown to promote cell cycle 

arrest and affect cell migration [36-38].  

Although it has become increasingly clear that MMPs and TIMPs have other biological 

functions in addition to ECM homeostasis, the presumed role of these two protein families 

during metastasis progression continues to be as ECM remodelers (fig 1b). This presumption 

emerges from the fact that during metastasis progression there is a requirement for tumour cells 

to traverse the interstitial ECM and BM during the processes of intravasation and extravasation 

[11], and given the fact that MMPs can degrade all ECM components, created a longstanding 

idea that the role of MMPs in carcinogenesis is to clear a path through the ECM so tumour cells 
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can spread to distant organs [30, 39]. This claim is supported by numerous studies conducted in 

the past two decades that demonstrate two key concepts unequivocally: there is increased 

expression of MMPs in primary tumour tissues [40-48], and interfering with the functions of 

certain MMPs results in reduced tumourigenicity [49-62]. Additionally, MMP research in the 

cancer field has yielded valuable insight into the cellular molecular mechanisms regarding 

MMPs synthesis, transport, function and dynamics [24, 28, 53, 63-77], but has generated few 

solid mechanisms, especially using in vivo models and clinical samples [19, 30, 78], regarding 

the true role of MMPs in tumourigenicity, and whether they actually play an important role in 

this process. The presumed role of MMPs in cancer progression is best exemplified by the 

research regarding the complex multifaceted contribution to tumourigenesis of MT1-MMP, 

MMP-2 and MMP-9 [23, 79].  

1.3 MT1-MMP is a Multifunctional Protease Involved in 

Tumourigenesis  

 Historically, research on MMPs has predominantly focused on the gelatinases, MMP-2 

(gelatinase A or GelA) and MMP-9 (GelB), as the number of studies reporting MMP-2 and -9 

function are log-fold higher in number than for other MMPs [30]. However, this leads to the 

misconception that MMP-2 and -9 are the most biologically important MMPs, which is not the 

case, and rather these two MMPs are the most reported because they are measured the most 

frequently due to gelatin zymography. Gelatin zymography is an SDS-PAGE based technique 

that uses a gel copolymerized with gelatin which allows for the detection and visualization of 

MMP-2 and -9 protein in situ by virtue of their ability to degrade gelatin [80]. This became the 

preferred approach to detect these MMPs before the availability of antibodies that detect both 
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pro- and active forms of MMP-2/-9 [81]. Therefore, the sheer amount of studies of MMP-2/-9 

function stems from the ease and inexpensiveness of detecting these MMPs using gelatin 

zymography.  

 As mentioned, all MMPs are synthesized as inactive zymogens that require activation via 

removal of the pro-domain. Since gelatin zymography allowed for accurate and inexpensive 

detection of the isoforms (pro- and active) of MMP-2 and -9, the mechanisms responsible for the 

activation of these gelatinases could be investigated. This lead to the discovery of the only bona 

fide, well-characterized and replicable activation mechanism for any MMP: the TIMP-2-assisted 

activation of proMMP-2 by MT1-MMP at the cell membrane [82]. MT1-MMP is a type-I MT-

MMP that is anchored at the cell membrane by a hydrophobic transmembrane domain and also 

contains a short intracellular cytoplasmic domain [70]. TIMP-2 is the only constitutively 

expressed TIMP that also demonstrates the highest affinity towards MT1-MMP and MMP-2, and 

thus is essential to control the proteolytic activity of these two MMPs [83]. However, TIMP-2 

also shares an interesting relationship with MT1-MMP and MMP-2, as instead of inhibiting these 

proteases, it can also act as an adapter protein critical for the activation of proMMP-2 when 

TIMP-2 is present at low levels. In this activation process, extracellular TIMP-2 binds the 

hemopexin domain of secreted proMMP-2 using the non-inhibitory C-terminal domain, thereby 

creating a molecular complex where the inhibited catalytic site of proMMP-2 is physically 

separated from the free N-terminal domain of TIMP-2 [84]. This molecular complex composed 

of TIMP-2:proMMP-2 can then insert itself between dimerized active MT1-MMP molecules at 

the cell surface due to the free N-terminal domain of TIMP-2 being able to bind to the catalytic 

site one of the dimerized MT1-MMP molecules thereby inhibiting it. As a result of this binding 

mode, the proMMP-2:TIMP-2 complex is oriented in a way that exposes the pro-domain of 
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proMMP-2 to the catalytic site of the uninhibited dimerized MT1-MMP that can then 

proteolytically cleave the pro-domain of MMP-2 releasing the active gelatinase [85]. The 

activation of proMMP-2 by the cooperation of TIMP-2 and MT1-MMP is the perfect example 

regarding the pleiotropy of MMPs and TIMPs, as it demonstrates that MMPs can cleave non-

ECM components, and that TIMPs can act as promoters, as well as inhibitors, of MMP activity.  

 The discovery that MT1-MMP is necessary for proMMP-2 activation, and thus can 

exacerbate ECM degradation, along with the aforementioned presumption that the role of MMPs 

during cancer progression was to facilitate a path through the ECM, lead to the development of 

chemical agents that inhibit the catalytic activity of MMPs (MMP inhibitors – MMPi) as anti-

cancer therapeutics. These therapeutic agents demonstrated value in vitro and in animal models 

but were ineffective in human clinical trials, in some cases causing serious adverse effects, and 

have continued to be a persistent failure as a cancer therapy for the past two decades [86-93]. 

The failure of these MMPis generated a call to action to appreciate and elaborate on the non-

proteolytic functions of MMPs, as the immediate explanations as to why MMPis were ineffective 

was the functional redundancy amongst the MMPs (which to date has not been resolved), and/or 

that they exerted their biological function through mechanisms that do not involve proteolysis of 

ECM components or that are completely non-proteolytic in nature. Similar to the situation 

regarding MMP-2 and -9 studies, the discovery of MT1-MMP mediated proMMP-2 activation, 

along with the failure of MMPis, created the necessary momentum for the research community 

to turn its attention to the ECM independent functions of MT1-MMP [94], and as such the 

amount of publications devoted to MT1-MMP are disproportionate in number compared to the 

other MT-MMPs [95], and may not reflect the biological importance of MT1-MMP [30]. Due to 

research conducted in the past decade, it is now known that MT1-MMP is indeed a 
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multifunctional membrane protease capable of functions independent of ECM remodeling or 

catalytic activity, affecting varied biological processes including migration, viability, 

metabolism, and induction of intracellular signaling [96].  

 MT1-MMP has been shown to increase the migratory ability of different types of cancer 

cells, in some cases due to MT1-MMP overexpression alone [31, 49, 97]. Reports have shown 

that MT1-MMP overexpression increases the migration potential of MCF-7 breast cancer [31], 

MG-63 osteosarcoma [98], COS-1 [49], and COS-7 cells [97]. Currently, there is limited 

evidence regarding the mechanism behind MT1-MMP mediated migration augmentation, with 

some reports showing that co-localization and processing of the cell adhesion molecule CD-44 

[98], or increased MAPK signaling via ERK1/2 [97, 99], is responsible for increased migration 

of MT1-MMP positive cells. In one of the latter reports, the authors showed that increased 

migration as a result of MAPK activation does not depend on proteolytic activity, as high levels 

of TIMP-2 or a proteolytically-inactive mutant of MT1-MMP can still induce ERK1/2 

phosphorylation and increase migration of MCF-7 breast cancer cells [99]. In addition to 

migration promotion, MT1-MMP can also mediate viability of cancer cells, particularly during 

serum-free incubation without pro-survival signals. It has been demonstrated that overexpression 

of MT1-MMP in MT1-MMP deficient breast cancer cells maintains a proliferative phenotype 

when cultured in low-serum conditions [99], and also protects cancer cells from apoptosis via the 

AKT pathway when cultured in serum-free conditions [100]. Similar to migration promotion, 

apoptosis protection mediated by MT1-MMP did not require its proteolytic activity, as treatment 

with TIMP-2 was optimal to promote survivability, which could also be mediated by a 

catalytically inactive MT1-MMP.  
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A novel and unanticipated function of MT1-MMP was recently reported whereby MT1-

MMP can initiate and maintain the “Warburg effect” in both macrophages and cancer cells. The 

“Warburg effect” or “glycolytic switch” is a hallmark of malignant tumours that is characterized 

by increased aerobic glycolysis during normoxia (normal oxygen tension) [101]. This effect is 

mediated by the transcription factor hypoxia inducible factor-1 (HIF-1), which is regulated by 

post-translational modifications that make this protein liable to degradation in normoxic 

conditions and stable in hypoxic conditions [102]. Therefore, when cells sense hypoxic 

conditions, HIF-1 is stable and translocates to the nucleus to increase the expression of 

glycolytic-related genes to meet with cellular energy requirements in low oxygen conditions. The 

distinction between functional HIF-1 in normal physiology and the “Warburg effect” during 

tumour progression is that in the Warburg effect HIF-1 is stable and functioning despite normal 

oxygen tension, and as such it is still incompletely understood how HIF-1 is stabilized in 

normoxic conditions [103]. To further understand HIF-1 function, a research group used 

macrophages as their cell model since these cells are an important component of the immune 

system and rely predominantly on aerobic glycolysis to produce ATP [104]. This group found, 

unexpectedly, that macrophages lacking MT1-MMP produced considerably lower levels of ATP 

than wild-type cells. The authors go on to demonstrate that the cytoplasmic domain of MT1-

MMP can bind to FIH-1 (factor inhibiting HIF-1), which leads to its inhibition (and thus 

stabilization of HIF-1) by its recently identified inhibitor, Mint3/APBA3. In follow-up work, the 

authors used a variety of cancer cells to show that tumour cell lines that endogenously express 

MT1-MMP exhibited increased glycolytic activity, and that overexpression of MT1-MMP in 

MT1-MMP deficient cells is sufficient to induce the Warburg effect [50]. Importantly, using 

cancer cells, these authors demonstrated that HIF-1 stabilization by MT1-MMP is not dependent 
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on the its proteolytic activity, and this effect could be mediated solely by transfection with the 

cytoplasmic domain of MT1-MMP, again demonstrating that MT1-MMP is multifunctional and 

does not need proteolytic activity to exert its biological function (fig 3). Additionally, the 

aforementioned report also demonstrated in vivo that treating MT1-MMP positive tumours with a 

MT1-MMP cytoplasmic domain (CD) peptide suppresses aerobic glycolysis and tumour growth 

in a dominant-negative fashion, which strongly suggests a substantial non-proteolytic role for 

MT1-MMP in tumourigenesis.  

Although originally characterized as a potent initiator of ECM remodeling, it is now 

accepted that MT1-MMP has many functions beyond degradation of ECM components, for 

which the proteolytic activity does not seem to be necessary. However, with this mind, the role 

of MT1-MMP in mediating cell function and cancer progression remains unclear, and potentially 

more cofounding than ever since the known varied functions of MT1-MMP make it difficult to 

delineate the relative contributions of these functions to tumourigenicity. Recently, efforts have 

been made to understand the individual functions of MT1-MMP and their relation to cell 

invasion and tumorigenic potential. Strongin et al (2013) isolated an antibody that binds MT1-

MMP in such a way that it does not sterically inhibit the catalytic site of MT1-MMP, but does 

interfere with TIMP-2 binding, and thus can completely inhibit TIMP-2-assisted proMMP-2 

activation [105]. Although this antibody is effective at inhibiting proMMP-2 activation, it is not 

effective at decreasing migratory potential of MT1-MMP positive breast cancer cells, and to date 

has not been applied to in vivo models or used in clinical trials.   
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Figure 3. MT1-MMP is a multifunctional protease that can affect different processes in 

distinct cellular compartments.  

MT1-MMP is synthesized in the nucleus, translated in the cytoplasm, and presumably activated 

intracellularly at the golgi by the proprotein convertase Furin that removes the pro-domain of 

MT1-MMP. During intracellular processing, MT1-MMP can induce stabilization of transcription 

factor HIF-1 (a) thereby increasing expression of glycolytic genes and mediating the Warburg 

effect. Active MT1-MMP is then anchored in the plasma membrane where it can degrade its 

respective substrates, and where it can be inhibited by the TIMPs, particularly TIMP-2 which can 

binds its catalytic domain and block access to substrates (b). In addition to MT1-MMP 

inhibition, TIMP-2 can also act as an adapter protein to proMMP-2, which aids in its activation 

at the cell surface by dimerized MT1-MMP (c), and exacerbates ECM remodeling. TIMP-2 has 

also been shown to interact with MT1-MMP at the hemopexin domain where it can induce ERK 

and AKT intracellular signaling cascades that have been shown mediate increased migration and 

apoptosis protection, respectively. MT1-MMP has also been shown to affect cell motility by 

localizing to cellular structures marked by cytoskeletal protrusions, such as lamellopodia or 

filopodia that are crucial for lateral cell migration (e), or invadopodia which are necessary for 

ventral cell invasion through an impeding ECM barrier (f). 
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1.4 Research Project 

Despite what is known about the individual functions of MT1-MMP, how these different 

functions integrate to mediate cell behavior and tumourigenesis remains poorly understood. The 

goal of my PhD research project was to understand the role of MT1-MMP in tumourigenicity by 

overexpressing MT1-MMP and analyzing appropriate cellular parameters to determine their 

contribution to a metastatic phenotype. To accomplish this goal I used three different 

experimental platforms: 2D culture, 3D Matrigel culture, and in vivo ex-ovo avian embryos, and 

two cell models: MCF-7 and MDA-MB 231 breast cancer cells. 

MCF-7 cells are breast cancer cells that are MT1-MMP deficient, non-migratory and 

non-tumorigenic [40, 106]. In contrast, MDA-MB 231 breast cancer cells endogenously produce 

MT1-MMP, and are migratory and tumorigenic [41, 66]. Using these two different cell lines, I 

created three different clonal cell lines of each that express different levels of MT1-MMP. In 2D 

culture, I examined how different levels of MT1-MMP expression alter proMMP-2 activation, 

ECM degradation, ERK signaling, cell migration and viability. Using 3D Matrigel culture [107], 

I analyzed how different levels of MT1-MMP affected morphological changes associated with an 

invasive phenotype. Lastly, I conducted in vivo assays using avian embryos to examine the 

potential of the MT1-MMP expressing cell lines to form vascularized tumours [108] and 

extravasate out of the vasculature [109], two parameters related to tumourigenicity and 

metastasis, respectively. 

1.5 Hypothesis 

 I hypothesize that in 2D culture, the different functions of MT1-MMP will correlate with 

the expression level of MT1-MMP in breast cancer cells. Therefore, I expect cells that express 
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the highest level of MT1-MMP to demonstrate the highest increase in proMMP-2 activation, 

ECM degradation, ERK signaling, cell migration, and viability, in contrast to MT1-MMP 

deficient cells that will demonstrate baseline activation of these cellular activities. Furthermore, I 

hypothesize that breast cancer cells demonstrating excessive ECM degradation, and increased 

migration and viability will display an invasive metastatic phenotype in 3D culture and in vivo. I 

expect breast cancer cells expressing the highest levels of MT1-MMP to demonstrate a 

protrusive phenotype in 3D culture, indicative of an invasive phenotype, and increased ability to 

form vascularized tumours and extravasate out of the vasculature in vivo. 
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Chapter 2 

2 Materials and Methods 

2.1 Cell culture 

 MCF-7, MDA-MB 231 and HS578t human breast cancer cell lines were obtained from 

the American Type Culture Collection (Manassas, VA). Cells were maintained in DMEM/F-12 

media (Thermo Fisher) supplemented with 10% FBS, 100 IU/ml penicillin, 100 μg/ml 

streptomycin, and incubated at 37
o
C and 5 % CO2.  

2.2 cDNA clones and reagents 

 Human MT1-MMP (sc116990), TIMP-2 (sc118083) and MMP-2 (sc321560) cDNA 

clones were purchased from Origene and subcloned into the vector pcDNA 3.3 (Thermo Fisher). 

The generation of the ALA+TIMP-2 cDNA construct in pcDNA 3.3 is described in Walsh et al., 

2012 [110]. The following reagents were used: Recombinant human TIMP-2 and 4-

aminophenylmercuric acetate (APMA) (Sigma-Aldrich), BB-94 (Batimastat), U-0126, and AKT 

inhibitor IV (Santa Cruz), and Furin inhibitor II (Millipore).  

2.3 Antibodies 

 For immunoblot analysis, the following primary antibodies were used: MT1-MMP 

(1:1000, AB6004, Millipore); MT1-MMP (1:1000, AB51074, Abcam); Phospho-ERK1/2 

(1:2000, D13.14.4E), ERK1/2 (1:2000, 137F5) (Cell Signaling Technology); TIMP-2 (1:1000, 

3A4), β-Actin (1:1000, C4), and phospho-histone-3 (PH3) (1:5000, C1513) (Santa Cruz). Goat 

anti-mouse IgG (H+L) (Bio-Rad) and goat anti-rabbit IgG (H+L) (Thermo Fisher) HRP 
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conjugates were used as secondary antibodies (1:10000). For immunofluorescence analysis, the 

anti-MT1-MMP antibody AB6004 (1:200) was used, along with anti-rabbit-IgG-Alexa488 or 

Alexa594 (Thermo Fisher) as secondary antibodies (1:400).  

2.4 Transfection and generation of stable cell lines 

 MCF-7 and MDA-MB 231 cells were seeded at a density of 5x10
5
 cells/ml and incubated 

for 24 hours in DMEM/F-12 with 10% FBS. Following incubation, cells were transfected with 

Lipofectamine 2000 (Thermo Fisher) according to the manufacturers instructions. For transient 

transfection experiments, cells were incubated for 24 hours after transfection and then utilized 

for experiments.  

Stable cell lines were generated by transfection of cells with the respective cDNAs in the 

vector pcDNA 3.3, which contains a neomycin mammalian selection marker. Following 

transfection, cells were split 1:1000 and incubated in media containing 1 mg/ml G-418 (VWR). 

Individual colonies were selected after four weeks of incubation in selection media and expanded 

to assay for the levels of MT1-MMP by qPCR and immunoblotting. Stable cells lines expressing 

an shRNA sequence targeting MT1-MMP in the vector pRS (TR311445, Origene) were 

generated in the same manner except using puromycin (2 μg/ml) as the selection antibiotic. 

For zsGreen infection, cells were seeded at ~ 40% density in a 6-well cell culture dish in 

3 ml of media with a final concentration of 8 μg/ml polybrene and infected with 250 μL of virus. 

For virus production, the pLVX-ZsGreen1-N1 lentiviral plasmid was used. Twenty-four hours 

post-infection, the media containing virus was removed and replaced with puromycin selection 

media (2 μg/ml) for three days of incubation to select for infected cells.  
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2.5 Generation of MMP-2, TIMP-2 and ALA+TIMP-2 conditioned 

media (CM) 

 Conditioned media (CM) containing high levels of MMP-2, TIMP-2, and ALA+TIMP-2 

protein were created by transfecting MCF-7 cells with cDNA constructs coding for the 

respective proteins. Following a 24-hour incubation post-transfection, transfected cells were 

washed with phosphate buffered saline (PBS) and incubated in DMEM/F12 media without FBS 

for 24 hours. The serum-free CM were then collected, aliquoted and stored for later use. 

Conditioned media from mock-transfected cells were used as a control. 

2.6 Quantitative Real-Time PCR 

 RNA was collected from cells using the RNeasy Kit (Qiagen) and cDNA was synthesized 

from 1 μg of RNA using qScript cDNA supermix (Quanta). MT1-MMP mRNA levels were 

assayed by qPCR using PerfeCta SYBR Green Supermix (Quanta) and a CXF connect real time 

system with CFX manager software (Bio-Rad). mRNA levels were quantified by the ΔΔCT 

method and are displayed as fold change relative to parental MCF-7 or MDA-MB 231 cells in 

control conditions as indicated in the figure legends. The level of GAPDH mRNA was used as 

the internal control. Primers (5’-3’) are as follows: MT1-MMP; F: gcagaagttttacggcttgca, R: 

tcgaacattggccttgatctc, MMP-2; F: agctcccggaaaagattgatg, R: cagggtgctggctgagtagat, MMP-9; F: 

cctggagacctgagaaccaatc, R: gatttcgactctccacgcatct, GAPDH; F: acccactcctccacctttga, R: 

ctgttgctgtagccaaattcgt [40]. 
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2.7 Immunoblotting 

 Post-incubation cells were washed 3X with PBS (pH=7.2) and disrupted using lysis 

buffer (150 mM NaCl, 1% NP-40, 0.5% NaDC, 0.1% SDS, 50 mM Tris pH 8.0) supplemented 

with protease/phosphate inhibitor (Thermo Scientific). Cell lysates were homogenized by 

sonication and 15 μg aliquots were analyzed by immunoblotting with MT1-MMP, TIMP-2, pH-

3, β-actin, pERK1/2 or ERK1/2 primary antibodies, followed by incubation with the appropriate 

secondary HRP-conjugated antibody and detection using SuperSignal West Pico 

chemiluminescent substrate (Thermo Fisher). Protein lysate from human 21T cell lines was 

acquired as previously described [111].  

2.8 Gelatin zymography and reverse zymography 

 Gelatin zymography and reverse zymography were done using samples of serum-free 

media (15 μl) as described previously [80]. To assess the proMMP-2 activation ability of MCF-7 

cells, which endogenously express very low levels of MMP-2 [41], proMMP-2 CM was added to 

cells at a dilution of 30 μl proMMP-2 CM/mL SF media. For reverse zymography, serum-free 

medium conditioned for 24 hours by HS578t cells was used as the source of active MMP-2 

within the gel, as these cells naturally express high levels of MMP-2 [40]. 

2.9 Immunofluorescence  

 Samples for fluorescent gelatin degradation and 3D culture experiments were fixed and 

prepared for immunofluorescence according to their respective protocols (see below). MT1-

MMP primary antibody (AB6004) was detected using anti-rabbit IgG Alexa594 or Alexa488 for 

Oregon green-488 gelatin degradation or 3D culture experiments respectively. F-actin was 

stained with Alexa633 phalloidin (1:100, Thermo Fisher) and nuclei with 4',6-diamidino-2-
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phenylindole (1 μg/ml, BioShop Canada). Samples were imaged using a Nikon A1R+ confocal 

microscope (1.2 au) with a 20x dry or 60x oil-immersion lens and presented using NIS Elements 

software.  

2.10 Transwell assays 

 The migratory potential of cells was measured using 24-well 8 μm pore transwell inserts 

(Corning Costar). Cells (2x10
4
) were seeded on the upper chamber of the transwell in serum-free 

medium and allowed to migrate towards the bottom chamber which was placed in DMEM/F-12 

medium supplemented with 10% FBS. Migration assays were done with uncoated transwell 

inserts, whereas invasion assays were done with inserts coated with 20% Matrigel. Cells that 

migrated to the lower chamber of the transwell insert were quantified as described previously 

[112]. Migrated cells were normalized to MCF-7/MDA-MB 231 parental cells in control 

conditions and are presented as a mean percentage ± SEM.  

2.11 Scratch closure migration assay 

 Cells were seeded at a density of 5x10
5
/mL cells in a 35 mm cell culture dish and allowed 

to form a monolayer for 24 hours. Following incubation, medium was removed and a scratch (an 

area clear of cells) was made down the middle of the cell culture dish with a 100 μl pipette tip. 

Cells were washed 3x with PBS (pH 7.2) to remove cell debris and then incubated with fresh 

medium. After 2 hours, 10 images were captured down the length of the scratch that represent 

the ‘initial’ size of the scratch for that sample. Every 24 hours for 3 days, the same area of the 

scratch was imaged to examine how cells migrated to close the scratch. Scratch closure was 

quantified using ImageJ 2.0.0 software by measuring the width of the scratch each day and 
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normalizing it to the initial size of the scratch. Scratch closure is presented as a mean percentage 

of the initial scratch size ± SEM.  

2.12 Celltiter96® proliferation assay 

 Cell viability was inferred by measuring metabolically active cells using Celltiter96® 

AQueous One Solution (Promega). Cells were seeded in triplicate (5000 cells/well) onto a 96-

well cell culture dish in medium supplemented with 10% FBS or serum-free medium. 

Immediately after seeding, 20 uL of Celltiter96® AQueous One Solution was added in triplicate 

to each sample to obtain an initial reading and ensure that the different cell lines were seeded 

equally. The OD at 490 nm was measured using a Bio-Rad model 3550-UV microplate reader 

after incubating the cells with the substrate for 2 hours. The substrate was added at the indicated 

day intervals and measured in the same way as the initial measurement to create a growth curve 

over that span, or to compare the effect of chemical inhibitors on cell viability during prolonged 

serum-free incubation.  

2.13 Fluorescent gelatin degradation assay 

 Coverslips were coated with either Oregon Green-488 gelatin (for immunofluorescence 

analysis) or gelatin labeled using an Alexa594 protein labeling kit (for live imaging analysis) 

(Thermo Fisher) and used to analyze ECM degradation as per Martin et al., 2012 [113]. 

Immunofluorescence conditions are as described above.  

2.14 Three-dimensional (3D) cell culture 

 Cells (2.5x10
4
) were embedded in 50% Matrigel (Corning Costar) and processed for 

immunofluorescence as per Cvetkovic et al., 2014 [107]. To quantify colony morphologies 
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observed in 3D culture, five random 50 μm Z-stacks (2 μm step size) were acquired using DIC 

microscopy at 10x magnification every day for 5 days post-embedding. For each individual Z-

stack, invasive features (disseminations and protrusions, see text) were blindly counted and 

normalized to the number of circular colonies per field of view. Immunofluorescence procedure 

was done as described above using 3% BSA/PBS as the blocking buffer. Single cells (marked by 

DAPI), F-actin disseminations, F-actin protrusions and zsGreen protrusions were blindly counted 

from 20x 3D volumes and normalized to the number of circular colonies per field of view.  

2.15 Live-imaging and timelapse movies 

 Cells were embedded in Matrigel or seeded on Alexa594 gelatin coverslips as described 

above and placed in a live imaging chamber mounted on the stage of a Leica DM16000 B 

fluorescent microscope. To analyze the relationship between ECM degradation and migration, 

cells stably expressing zsGreen were incubated on Alexa594 gelatin coverslips and imaged at the 

same stage position at 10x magnification every 10 minutes for 20 hours. These images were then 

compiled into timelapse movies using ImageJ. The zsGreen channel timelapse movies were used 

to quantify the migration of individual cells in an automated manner using the ADAPT plugin 

for ImageJ [114]. The ADAPT plugin (v1.146) was used with default conditions and the 

trajectory visualization output was used to group cells according to the distance migrated. The 

Alexa594 gelatin channel was used to manually quantify the percentage of cells that had 

degraded the underlying gelatin at different time points. To visualize the dynamics of cells in 3D 

culture, cells were embedded in Matrigel and z-stacks (100 μm, 5 μm step size) were acquired at 

20x magnification every 30 minutes for 72 hours. Focal panels showing colony features with the 

greatest clarity were isolated and compiled into timelapse movies using ImageJ.  
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2.16 Avian embryo CAM implantation and extravasation efficiency 

assay 

 For implantation experiments, the superficial layer of the CAM of day 9 chicken embryos 

was removed to expose the underlying capillaries [115]. MDA-MB 231, MCF-7 or MCF-7 MT1-

MMP cell lines stably expressing zsGreen were then resuspended in Matrigel and pipetted onto 

the exposed capillaries (5x10
5
 cells in 10 μl Matrigel/embryo). Eight days post-implantation the 

resulting tumour was imaged using a fluorescent stereoscope to examine vascularization of the 

tumour shown by the presence of non-fluorescent CAM vessels within the zsGreen tumour.  

MCF-7 and MCF-7 MT1-MMP cell lines stably expressing zsGreen were used for 

intravenous injection into the CAM vasculature of day 14 chicken embryos and extravasation 

efficiency was quantified 24 hours post-injection as per Kim et al., 2016 [109].  

2.17 Densitometry analysis  

 Quantitative analysis of immunoblots was done using QuantityOne software (Bio-Rad). 

Band intensity was obtained for the pERK and total ERK signal of each sample from three 

independent experiments. ERK activation is presented as a ratio between the pERK and the total 

ERK band intensity within each sample normalized to MCF-7 cells under control conditions.  

2.18 Statistics 

 Experimental data consists of three biological replicates and is presented as mean ± SEM. 

Statistical analysis and graphing was performed using GraphPad Prism version 6.0 (GraphPad 

software, La Jolla, CA, USA). One-way ANOVA followed by Tukey’s post-hoc test was used 

unless otherwise indicated in the figure legend. Significant differences denoted by asterisks are 
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shown versus MCF-7 or MDA-MB 231 parental cells in control conditions unless otherwise 

shown in figure. Different levels of statistical significance are denoted by a different number of 

asterisks and are as follows: ****p ≤ 0.0001, ***p ≤ 0.001, **p ≤ 0.01, *p ≤ 0.05.  
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Chapter 3 

3 Results 

3.1 Transient Overexpression of Functional MT1-MMP did not Result in 

Increased Motility 

To begin assessing how MT1-MMP affects the motility of breast cancer cells, I 

transiently overexpressed wild-type MT1-MMP in MT1-MMP-deficient MCF-7 breast cancer 

cells. Twenty-four hours following transient transfection, MT1-MMP mRNA and protein levels 

were analyzed via qPCR and immunoblot, respectively, and proMMP-2 activation ability of 

transfected cells via gelatin zymography (fig 4). qPCR and immunoblot analysis showed that 

MT1-MMP transfected cells synthesized very high levels of MT1-MMP mRNA (~17,000 fold 

relative to mock transfected cells) and produced predominantly the pro- (63 kDa) but also active 

isoform (60 kDa), along with degradation forms (44 kDa), of MT1-MMP protein. Gelatin 

zymography analysis demonstrated that MT1-MMP transfected cells were capable of proMMP-2 

activation, shown by transition from the pro- (72 kDa) to the intermediate (68 kDa) and active 

forms (62 kDa) of MMP-2 after transfection. In contrast, mock transfected MCF-7 cells did not 

produce any MT1-MMP protein and concurrently were not able to activate proMMP-2, shown 

by the presence of only proMMP-2 (control) in the gelatin zymography analysis. To further 

verify the functionality of transiently produced MT1-MMP protein, I performed an additional 

gelatin zymography analysis after treating transfected cells with of low levels (100 ng/ml) of 

recombinant TIMP-2 which was expected to enhance activation of proMMP-2 mediated by 

MT1-MMP (fig 5a). Parental MCF-7 cells, which do not secrete endogenous proMMP-2, did not   
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Figure 4. Transient transfection of MT1-MMP in MCF-7 breast cancer cells resulted in 

high levels of functional MT1-MMP protein.  

qPCR, immunoblot, and gelatin zymography (zymo) analysis of MT1-MMP mRNA, protein 

levels, and proMMP-2 activation ability, respectively, of MCF-7 breast cancer cells transiently 

transfected with MT1-MMP compared to mock transfected cells (control). Immunoblot analysis 

(AB6004) showed pro- (63 kDa), active (60 kDa), and degradation forms (44 kDa) of MT1-

MMP protein in MT1-MMP transfected MCF-7 cells. β-actin was used as a loading control. 

Gelatin zymography analysis showed that MCF-7 cells transiently transfected with MT1-MMP 

were capable of activating proMMP-2 after 24 hours of incubation as shown by intermediate and 

active forms of MMP-2. 
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Figure 5. Transient transfection of MT1-MMP in MCF-7 cells resulted in TIMP-2-mediated 

proMMP-2 activation, but not increased ERK signaling or cell motility. 

(a) Gelatin zymography analysis of MCF-7 cells transiently transfected with MT1-MMP and 

incubated for 12 hours with serum-free media (SF, top gel) or MMP-2 conditioned media (CM, 

bottom gel). Lanes 1 and 2: Controls showing proMMP-2 chemically activated by APMA. Lanes 

4 and 6: Recombinant TIMP-2 (rTIMP-2) was added at 100 ng/ml to enhance MT1-MMP-

mediated proMMP-2 activation. (b) Immunoblot analysis of MT1-MMP transfected cells 

showing pERK1/2 levels. Total ERK1/2 was used as a loading control. (c) Transwell migration 

and invasion assays of MCF-7 cells transiently transfected with MT1-MMP. Number of 

migrated/invaded cells were normalized to control MCF-7 cells and expressed as a mean 

percentage ± SEM (ns, p > 0.05 by student’s t-test). 

  



 
34 

increase MMP-2 production after transfection with MT1-MMP, as determined by gelatin 

zymography (fig5a, top gel).  

To analyze the ability of MCF-7 cells to activate proMMP-2, diluted proMMP-2 

conditioned medium (CM) was added that was generated by transfection of MCF-7 cells with a 

construct coding for constitutively expressed MMP-2. Since MCF-7 cells are MT1-MMP 

deficient, they are not capable of activating proMMP-2 and thus MMP-2 protein in this CM is 

predominantly present in the pro- form (fig 5, lane 1), which was confirmed by chemical 

activation with 4-aminophenylmercuric acetate (APMA) that completely activates proMMP-2 in 

the CM, as shown by the presence of only the active form after treatment (fig 5, lane 2). 

Addition of proMMP-2 conditioned media to transfected cells demonstrated that MT1-MMP 

overexpression activated proMMP-2 after 12 hours of incubation, shown by the presence of an 

intermediate band, and this activation was enhanced by the addition of low levels of recombinant 

TIMP-2 that resulted in the presence of more active MMP-2 isoform (fig 5a, bottom gel). 

Following confirmation of the functionality of transfected MT1-MMP protein, it was then 

examined if MCF-7 cells transiently transfected with functional MT1-MMP demonstrated 

increased ERK activation and a corresponding increased in motility. To examine ERK activation, 

ERK1/2 phosphorylation was analyzed by immunoblot, whereas migration and invasion were 

measured using transwell assays where the transwell insert was uncoated (migration) or coated 

with 20% Matrigel which acts as an impeding ECM barrier (invasion). Differing from published 

reports [31, 49, 99] there was no difference in ERK activation, (fig 5b) or migration and invasion 

(fig 5c, ns > 0.05) in MCF-7 cells that produced functional MT1-MMP protein after transient 

transfection. 
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To test whether the very high (~17000 fold) levels of MT1-MMP expression achieved 

using transient transfection was a factor behind the discrepancies between my observation and 

other reports, I created clonal MCF-7 cell lines that stably express significantly different levels 

of MT1-MMP by neomycin selection and expansion of resistant colonies after transfection (fig 

6). These cell lines, MCF-7 MT1-MMP C1, C2, and C3 cells (hereby referred to as C1, C2 or C3 

cells), significantly differ in their stable expression of MT1-MMP transcript from high (C1, 

~2,500 fold compared to MCF-7 parental cells), medium (C2, ~1,100 fold) to low (C3, ~11 

fold) as determined by qPCR analysis (fig 6a). Immunoblot analysis of these MCF-7 MT1-MMP 

cell lines showed that both pro- and active- isoforms of MT1-MMP protein were detected in C1 

cells, whereas the active isoform was predominantly detected in C2 cells and no MT1-MMP 

protein could be detected by immunoblot in C3 cells (fig 6b). To confirm the functionality of 

MT1-MMP protein produced by MCF-7 stable cell lines, I incubated these cells with proMMP-2 

CM alone, or in combination with recombinant TIMP-2 (rTIMP-2, 100 ng/ml), or rTIMP-2 and 

the panMMP inhibitor BB94 (10 μM), and assessed proMMP-2 activation via gelatin 

zymography after 6 or 12 hours of incubation (fig 6c). Cell lines where active MT1-MMP was 

detected via immunoblot (C1 and C2 cells) were capable of activating proMMP-2 in a time-

dependent manner, as there were higher levels of intermediate and active MMP-2 after 12 hours 

of incubation compared to 6 hours for these cell lines. As expected, proMMP-2 activation was 

enhanced by low levels of recombinant TIMP-2, shown by higher levels of intermediate and 

active MMP-2 when TIMP-2 was added. Additionally, proMMP-2 activation was completely 

inhibited by addition of BB94, which taken together, confirms production of functional MT1-

MMP protein in MCF-7 MT1-MMP cell lines.  
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Figure 6. Three MCF-7 cell lines, C1, C2 and C3, stably produce different levels of MT1-

MMP.  

(a) qPCR analysis of MT1-MMP mRNA from MCF-7 MT1-MMP cells lines (C1, C2, and C3) 

that stably express different levels of MT1-MMP. Different letters indicate significant 

differences at p ≤ 0.05 by one-way ANOVA, Tukey’s post-hoc test. (b) Immunoblot analysis 

(AB51074) showing pro- (63 kDa), active (60 kDa), and degradation forms (44 kDa) of MT1-

MMP protein in MCF-7 MT1-MMP cell lines. β-actin was used as a loading control. Lower half 

of blot is digitally transformed to clearly shown degradation bands. (c) Gelatin zymography 

analysis of MCF-7 MT1-MMP cell lines incubated for 6 or 12 hours with either MMP-2 CM 

alone, or in combination with rTIMP-2 at 100 ng/ml, or rTIMP-2 and BB94 (10 μm). 
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To confirm that C3 cells produced MT1-MMP protein (poorly detectable by immunoblot) 

I used an imaging approach whereby cells were seeded on poly-L-lysine (fig 7) or Oregon-green 

488 gelatin coated coverslips (fig 8) and examined using immunofluorescence for MT1-MMP 

protein presence, and degradation of the underlying ECM when plated on fluorescent gelatin 

[113]. Immunofluorescence analysis on poly-L-lysine coverslips demonstrated that MCF-7 cell 

lines overexpressing MT1-MMP contain cytoplasmic MT1-MMP protein, including C3 cells 

which show punctate MT1-MMP signal localized at the cell periphery (fig 7). MDA-MB 231 

breast cancer cells were also used in this analysis to compare MCF-7, C1, C2 and C3 cells to a 

cell line demonstrated to express naturally increased levels of MT1-MMP (fig 8). Quantification 

of fields of view acquired at 20x magnification demonstrated no detectable cytoplasmic MT1-

MMP immunological signal nor gelatin degradation in parental MCF-7 cells. In contrast, 84% 

and 60% of C1 and C2 cells displayed ECM degradation (gelatin -), respectively, with 

approximately 20% of these cells also displaying punctate cytoplasmic immunological signal for 

MT1-MMP protein (fig 8b). A low percentage of MT1-MMP C3 cells (~1.5%) showed ECM 

degradation, and a higher percentage (~3%) showed a cytoplasmic MT1-MMP signal, although 

these increases were non-significantly different than parental MCF-7 cells. MDA-MB 231 breast 

cancer cells (which endogenously produce MT1-MMP, see fig 12c below) were not capable of 

widespread cell-associated ECM degradation, and only ~6% of cells displayed cytoplasmic 

MT1-MMP signal. Analysis of these samples at 60x magnification clearly demonstrated cell 

associated ECM degradation mediated by MT1-MMP, as MT1-MMP protein can be detected 

overlaying degraded ECM, and co-localized with F-actin puncta (fig 9, orange arrows). This 

observation is consistent with the role of invadopodia in ECM degradation as invadopodia are 

defined as ventral structures where F-actin and MT1-MMP are concentrated to mediate substrate 



 
39 

 

 

 

 

 

 

 

 

 

 



 
40 

Figure 7. Cytoplasmic MT1-MMP protein is detectable in all MCF-7 MT1-MMP cell lines  

MCF-7 MT1-MMP cell lines were incubated on poly-L-lysine coverslips for 24 hours and 

processed for immunofluorescence to examine cytoplasmic MT1-MMP. Representative fields of 

view are shown at 60x magnification. Panels are composed of an overlay showing the nuclei 

(blue), F-actin (red), and MT1-MMP (green), and the MT1-MMP channel below. Inset shows C3 

cells that demonstrate punctate signal pertaining to MT1-MMP protein (white arrows). Scale 

bars = 100 μm. 
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Figure 8. MCF-7 cell lines that express high levels of MT1-MMP demonstrated widespread 

ECM degradation.  

(a) MCF-7, MT1-MMP cell lines, and MDA-MB 231 breast cancer cells were incubated on 

Alexa488 gelatin-coated coverslips for 24 hours and processed for immunofluorescence to 

examine cytoplasmic MT1-MMP protein and ECM degradation. Representative fields of view 

are shown at 20x magnification. Panels are composed of an overlay showing the nuclei (blue), F-

actin (red), MT1-MMP (violet), and Alexa488 gelatin (green) signal (top), and the respective 

individual channels below. Scale bars = 100 μm. (b) Cells in each sample positive for 

cytoplasmic MT1-MMP protein signal (MT1-MMP +) or that demonstrate gelatin degradation 

(Gelatin -) were quantified per 20x fields of view and are shown as mean percentage of total 

cells per field of view ± SEM.  
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Figure 9. MCF-7 cells producing high levels of MT1-MMP formed degradative structures 

marked by F-actin puncta.  

MCF-7 MT1-MMP cell lines were incubated on Alexa488 gelatin-coated coverslips for 24 hours 

and processed for immunofluorescence to examine cytoplasmic MT1-MMP protein and ECM 

degradation. Representative fields of view are shown at 60x magnification. Panels are composed 

of an overlay showing the nuclei (blue), F-actin (red), MT1-MMP (violet), and Alexa488 gelatin 

(green) signal (top), and the respective individual channels below. Orange arrows indicate cells 

that have formed cellular structures that have degraded the underlying fluorescent ECM and are 

marked by co-localized MT1-MMP/F-actin signal. White arrows indicate cells that have 

degraded the underlying gelatin but are devoid of MT1-MMP signal. Scale bars = 100 μm. 
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degradation [66]. Interestingly, in all experiments where MT1-MMP was overexpressed, there 

were cells that had degraded the underlying ECM that, paradoxically, were devoid of MT1-MMP 

protein signal (fig 9, white arrows). 

3.2 Low levels of MT1-MMP expression combined with high levels of 

TIMP-2 increased the migratory potential of MCF-7 cells via the ERK 

pathway 

As assays using transient transfection of MT1-MMP demonstrated no change in cell 

migration or invasion, I wanted to further examine this migratory effect as well as the potential 

role of ERK activation using the stable cell lines that express lower levels of MT1-MMP than 

transiently transfected cells. As others have previously shown that TIMP-2 can modulate rapid 

(within 15 minutes) ERK activation by MT1-MMP expressing breast cancer cells [99, 116], I 

utilized conditioned media (CM) that contained high levels of TIMP-2, or ALA+TIMP-2. These 

CMs were generated by transiently transfecting MCF-7 cells with constructs coding for these 

secreted proteins and then collecting the CM after incubating transfected cells in serum-free 

media. ALA+TIMP-2 is a TIMP-2 mutant that cannot inhibit the enzymatic activity of MMPs as 

it contains a non-functional N-terminal domain due to addition of a terminal alanine (hence 

ALA+), but which has been shown to still bind cell surface MT1-MMP with the C-terminal 

domain and upregulate ERK activation [99, 117]. ALA+TIMP-2 is a useful reagent to analyze 

ERK activation mediated by MT1-MMP/TIMP-2 as this mutant TIMP-2 cannot be sequestered 

by other active MMPs and thus strongly induces ERK activation by MT1-MMP positive cells. 

Analysis of TIMP-2 and ALA+ TIMP-2 protein levels in the CMs via immunoblot showed that 

high but equal levels of TIMP-2 and ALA+TIMP-2 are present in the media after transfection,  
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whereas reverse zymography analysis demonstrated that only TIMP-2 was capable of inhibiting 

MMPs as the TIMP-2 protein was able to inhibit MMPs within the gel (shown by dark bands), 

whereas ALA+TIMP-2 protein was not (white bands, indicative of MMP activity) (fig 10a). 

Using these CMs, the ability of MCF-7 MT1-MMP cell lines to sequester TIMP-2 protein 

from the media was examined by treating these cells with diluted CMs. TIMP-2 levels remained 

equal after 15 minutes, but after 12 hours of incubation TIMP-2 levels in the media decreased 

corresponding to the level of MT1-MMP expression of the cell line (fig 10b), further confirming 

that these cells produced differing levels of functional cell surface MT1-MMP that binds TIMP-

2. Quantification of TIMP-2 protein in the CMs was performed via immunoblot which 

demonstrated that undiluted TIMP-2 CM contains approximately 10 μg/ml TIMP-2 protein (fig 

10c). The proMMP-2 activation ability of MCF-7 MT1-MMP cells was also tested by gelatin 

zymography and reverse zymography in the presence of increasing levels of TIMP-2 or 

ALA+TIMP-2 CM (fig 10d). Only C1 and C2 cells were capable of activating proMMP-2, and 

this was enhanced by addition of low levels of TIMP-2 (~ 100 ng/ml, red arrows), but inhibited 

by high levels of TIMP-2 (> ~1 μg/ml, blue arrows) [83, 116, 118], consistent with the 

observations of others that TIMP-2 at 100 ng/ml is optimal for proMMP-2 activation by MT1-

MMP expressing cells [119]. ALA+TIMP-2 did not enhance proMMP-2 activation in these cells 

consistent with the requirement for both the N- and C-terminal domains of TIMP-2 to act as an 

adapter for proMMP-2 during its activation process [85]. Taken together, this analysis confirmed 

the functionality of TIMP-2/ALA+TIMP-2 CMs and demonstrated how MCF-7 cells producing 

high levels of MT1-MMP protein follow the well-defined mechanism described for MT1-

MMP/TIMP2 mediated activation of proMMP-2.  
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Figure 10. MCF-7 breast cancer cells expressing high levels of MT1-MMP displayed the 

well-characterized relationship of TIMP-2-mediated proMMP-2 activation. 

(a) To generate TIMP-2 conditioned media MCF-7 cells were transiently transfected with TIMP-

2 or ALA+TIMP-2 cDNA, and the protein lysate and media were subsequently collected for 

analysis using immunoblot (top) and reverse zymography (bottom) to examine TIMP-2 protein 

levels. β-actin was used as a loading control. Reverse zymography analysis shows that TIMP-2 

inhibits MMP activity (dark bands), whereas ALA+TIMP-2 is devoid of this function (light 

bands) due to the non-functional N-terminal domain. (b) Reverse zymography of MCF-7 and 

MT1-MMP cell lines incubated for 15 minutes or 12 hours with TIMP-2 or ALA+TIMP-2 CM 

diluted 1:100 to measure TIMP-2 levels remaining in the media post-incubation with MT1-MMP 

expressing MCF-7 cells. Serum free medium with CM diluted from mock-transfected cells was 

used as a control. (c) Immunoblot analysis of serially diluted recombinant TIMP-2 and TIMP-2 

CM. The image of the bottom blot is a visually transformed version of the top blot to enhance the 

banding pattern for the recombinant TIMP-2 samples. Based on densitometry analysis (not 

shown), the concentration of TIMP-2 protein in TIMP-2 CM is estimated to be approximately 10 

μg/ml. (d) MCF-7 and MT1-MMP cell lines, C1, C2, and C3, were incubated for 12 hours with 

proMMP-2 CM supplemented with increasing dilutions of TIMP-2 or ALA+TIMP-2 CM (1:100; 

1 part CM, 100 parts SF media) and then this medium was assayed using zymography and 

reverse zymography to assess proMMP-2 activation and TIMP-2 levels, respectively. Low levels 

(1:100) of TIMP-2 enhance activation of proMMP-2 by MCF-7 cells expressing high levels of 

MT1-MMP (red arrows), whereas high levels of TIMP-2 (Full CM; undiluted) inhibit this 

activation process (blue arrows). 
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 To then examine the level of ERK activation by MCF-7 MT1-MMP cell lines and the 

role of TIMP-2 in mediating this process, cells were incubated in media containing either 10% 

FBS or in serum-free (SF) media containing different dilutions of TIMP-2 or ALA+TIMP-2 CM. 

Phospho-ERK levels were then examined using immunoblotting (fig 9, left) and quantified via 

densitometry (fig 11, right). In media containing 10% FBS, only C2 cells had a significantly 

higher level of pERK (~8 fold) compared to parental MCF-7 cells. A 12-hour incubation with 

TIMP-2 or ALA+TIMP-2 CM demonstrated a significant decrease in ERK activation in C2 cells. 

In contrast, a short 15 minute incubation period with CMs demonstrated a significant increase in 

ERK activation of C2 and C3 cells, but not C1 cells, particularly with ALA+TIMP-2 treatment. 

Additionally, short incubation periods with dilutions of ALA+TIMP-2 CM showed that ERK 

activation in C2 and C3 cells, but not C1 cells, is significantly upregulated by high levels of 

ALA+TIMP-2 protein. Overall, analysis of pERK levels demonstrated that cells expressing 

medium (C2) and low (C3) levels of MT1-MMP demonstrate increased ERK activation that is 

upregulated by high levels of TIMP-2 (> ~ 200 ng/ml) and independent of MMP inhibition as 

shown by ALA+TIMP-2 treatment. 

Since phosphorylated ERK is an active transcription factor, I assayed for changes in gene 

expression in MCF-7 MT1-MMP stable cell lines that may correlate with activation of ERK. I 

analyzed the mRNA of TIMP-2, MMP-2, and MMP-9 to assess if ERK phosphorylation 

correlated with altered expression of these genes, and found that activation of ERK did correlate 

with increased expression of MMP-2 and -9. MCF-7 C2 cells, which demonstrated the highest 

level of ERK phosphorylation, also demonstrated significantly higher MMP-2 and -9 mRNA 

levels than parental MCF-7 cells as determined by qPCR (fig 12a). To better define the role of 

elevated pERK levels in C1, C2, and C3 cells, a MEK inhibitor was used (U0126) that inhibits  
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Figure 11. MCF-7 cells producing active MT1-MMP and exposed to high levels of TIMP-2 

showed rapid activation of the ERK pathway.  

Representative immunoblot analysis (left) of ERK1/2 activation after MCF-7 and MT1-MMP 

expressing cell lines, C1, C2, and C3, were seeded and incubated for 12 hours or 15 minutes with 

media containing 10% FBS or SF media supplemented with different dilutions of TIMP-2 or 

ALA+TIMP-2 CM (1:100=1 part CM:100 parts SF media). Total ERK1/2 was used as a loading 

control. ERK activation was measured (respective bar graphs on the right) by densitometry 

quantification of the pERK1/2 signal and normalization to the total ERK1/2 signal for each 

sample. ERK activation is displayed as mean arbitrary units (a.u.) ± SEM.  
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Figure 12. MT1-MMP-mediated ERK activation regulates an inverse transcriptional 

relationship between MMP-2 and MMP-9 in breast cancer cells. 

(a) (Top) Immunoblot analysis of pERK1/2 levels after MCF-7 and MT1-MMP cell lines were 

incubated for 24 hours in media containing 10% FBS and supplemented with a vehicle control 

(0.1% DMSO) or the MAPK inhibitor U0126 (10 μM). Total ERK1/2 was used as a loading 

control. (Bottom) Following incubation, MMP-2 and MMP-9 mRNA levels were quantified via 

qPCR and displayed as mean fold change relative to vehicle treated MCF-7 cells ± SEM. (b) 

MDA-MB 231 cells were incubated for 24 hours in media containing 10% FBS and 

supplemented with a vehicle control (0.1% DMSO) or the MAPK inhibitor U0126 (10 μM). 

Following incubation, pERK1/2 and MMP-2/9 protein levels were measured via immunoblot and 

gelatin zymography, respectively (left), and MMP-2 and MMP-9 mRNA levels were quantified 

via qPCR (right) and displayed as mean fold change relative to vehicle treated MDA-MB 231 

cells ± SEM. (c) Immunoblot (AB51074) and reverse zymography analysis comparing MT1-

MMP, pERK and TIMP-2 protein levels between MCF-7, MDA-MB 231, and HS578t breast 

cancer cells. β-actin and total ERK1/2 were used as loading controls. (d) qPCR analysis of 

endogenous MT1-MMP, MMP-2, and MMP-9 mRNA levels from MCF-7, MDA-MB 231 and 

HS578t breast cancer cells. mRNA levels are displayed as mean fold change relative to MCF-7 

cells ± SEM. (e) Gelatin zymography analysis of MCF-7, MDA-MB 231, and HS578t breast 

cancer cells incubated in SF media for 12 hours. Lane 1 shows proMMP-2 CM activated by 

MCF-7 C2 cells treated with TIMP-2 CM diluted 1:100 to show proMMP-2 activation as a result 

of TIMP-2/MT1-MMP. 
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phosphorylation of ERK1/2, with the expectation that expression of these genes would be 

decreased following treatment with U0126. Inhibition of ERK phosphorylation by U-0126 (10 

μM) demonstrated that ERK activation was indeed responsible for altered transcription of these 

genes; however only MMP-9 transcription was decreased to parental levels in C2 cells, whereas  

MMP-2 expression actually increased in C2 cells after U-0126 treatment. To confirm that this 

“transcriptional switch” of MMP-2/-9 mediated by ERK activation in MT1-MMP positive cells 

is not an anomaly related to MT1-MMP overexpression in MCF-7 cells, MDA-MB 231 cells 

were also used to perform a similar analysis whereby ERK activation was inhibited and MMP-2 

and -9 levels were then examined (fig 12b). MDA-MB 231 cells endogenously produce high 

levels of phosphorylated ERK that can be successfully inhibited by incubation with U-0126, as 

shown by immunoblot (fig 12b, top left). After incubating MDA-MB 231 cells with U-0126, 

MMP-2 and -9 levels were examined via gelatin zymography (fig 12b, bottom left) and qPCR 

(fig 12b, right), which demonstrated that ERK inhibition increased MMP-2 and decreased 

MMP-9 at the protein and mRNA level, respectively. To further establish this transcriptional 

relationship between MMP-2 and -9 in MT1-MMP positive breast cancer cells, the levels of 

endogenous MMP-2 and -9 mRNA were examined between MT1-MMP deficient MCF-7 cells 

and MT1-MMP positive MDA-MB 231 and HS578t cells. Immunoblot analysis demonstrated 

that MDA-MB 231 and HS578t cells produce active MT1-MMP protein in contrast to MCF-7 

cells, and that MDA-MB 231 cells produce significantly higher pERK than both MCF-7 and 

HS578t cells, although some pERK could be detected from HS578t cells (fig 12c). Reverse 

zymography analysis demonstrated that MDA-MB 231 and HS578t cells produce higher and 

relatively equal levels of TIMP-2 compared to MCF-7 cells. qPCR analysis confirmed that both 

MDA-MB 231 and HS578t cells express significantly higher levels of MT1-MMP than MCF-7 
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cells, with HS578t cells expressing significantly lower levels of MT1-MMP compared to MDA-

MB 231 cells (~100 vs ~170 fold, respectively) (fig 12d). Comparing the levels of MMP-2 and -

9 transcripts from MDA-MB 231 and HS578t cells demonstrated that MDA-MB 231 cells 

express higher levels of MMP-9, and lower levels of MMP-2, which correlated with the level of 

pERK between these cell lines and is consistent with the previous observations. Furthermore, 

MMP-2 and -9 protein levels were compared between the three breast cancer cell lines using 

gelatin zymography (fig 12e), which demonstrated that MDA-MB 231 cells produce high levels 

of MMP-9 protein, and HS578t produce high levels of MMP-2 protein. Importantly, endogenous 

MMP-2 and -9 protein secreted by these cells is predominantly found in the pro-form, indicating 

that activation of these secreted MMPs does not occur in these cell lines despite production of 

active MT1-MMP protein.  

After demonstrating that MT1-MMP overexpression does result in activation of 

functional ERK in MCF-7 C2 and C3 cell lines, I then examined how TIMP-2-mediated ERK 

activation related to the migratory potential of these cell lines. A scratch closure assay was 

performed over a span of 3 days which demonstrated that only C3 cells closed the scratch 

significantly faster than parental MCF-7 cells, indicating increased migratory ability of C3 cells 

(fig 13). Migration was then examined using transwell assays where the cells were incubated in 

SF media containing TIMP-2 and ALA+TIMP-2 CMs in the upper compartment and allowed to 

migrate towards the lower compartment containing 10% FBS (fig 14a). TIMP-2 CM caused a 

significant increase in the number of migrated C2 and C3 cells, while ALA+TIMP-2 CM also 

caused a significant increase in the number migrated C3 cells (fig 14a, top). Higher dilutions of 

ALA+TIMP-2 CM showed a similar trend whereby only C2 and C3 cells demonstrated a 

significant increase in the number of migrated cells (fig 14a, bottom). C1 cells, which express   
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Figure 13. MCF-7 cells expressing low levels of MT1-MMP demonstrated increased 

migratory potential.  

Scratch closure migration assay of MCF-7 MT1-MMP cell lines, C1, C2, and C3, monitored for 

3 days. Shown are representative 10x fields of view. The white dotted lines indicate the initial 

scratch size; red dotted lines indicate the scratch size at the respective day. Scale bars = 100 μm. 

Line graph on the right shows scratch closure quantification that demonstrates significantly 

increased migratory potential of C3 cells. Scratch closure is shown as percent closure relative to 

initial scratch size ± SEM.  
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Figure 14. Low MT1-MMP/high TIMP-2 was optimal to promote migration of MCF-7 cells 

via ERK activation.  

(a) Transwell migration assays of MCF-7 MT1-MMP cell lines incubated for 48 hours in TIMP-

2, or ALA+TIMP-2 CM diluted 1:100 (top), or ALA+TIMP-2 CM in increasing dilutions 

(bottom). Migration is shown as the percentage of migrated cells relative to MCF-7 cells 

incubated in SF media ± SEM. (b) (top) qPCR analysis showing MT1-MMP mRNA from two 

cell lines derived from MT1-MMP C3 cells that stably express an shRNA construct targeting 

MT1-MMP, and one cell line stably expressing a control scrambled shRNA construct. Different 

letters indicate significant differences at p ≤ 0.05 by one-way ANOVA, Tukey’s post-hoc test. 

Individual student’s t-tests comparing MCF-7 cells against the C3 SH 1 cell line is also shown. 

MT1-MMP transcripts levels are shown as fold change relative to MCF-7 cells ± SEM. (bottom) 

Transwell migration assay of MT1-MMP C3 cell lines incubated for 48 hours in either TIMP-2 

or ALA+TIMP-2 CM diluted 1:10, or ALA+TIMP2 /U0126 (10 μm). Migration is shown as the 

percentage of migrated cells relative to MCF-7 cells incubated in SF media ± SEM. 
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the highest level of MT1-MMP, demonstrated an inability to increase migration potential when 

incubated with TIMP-2 CMs, and this was consistent with the lack of ERK activation upon 

TIMP-2 treatment in these cells. To determine if the enhanced migratory ability of C3 cells was a 

result of the relatively low (11 fold) increase in MT1-MMP expression, these cells were 

transfected with a construct expressing an shRNA targeting MT1-MMP, and two cell lines were 

selected: C3 SH 1, a partial knockdown which displayed a small but significant increase in MT1-

MMP mRNA level (1.8 fold change p ≤ 0.01) as compared to parental MCF-7 cells, and C3 SH 

2, a complete knockdown with 1.1 fold change (ns p=0.62) (fig 14b, top). A cell line was also 

derived from C3 cells stably expressing a scrambled control shRNA (C3 SH SCR). Migration of 

these C3 cell line variants were assayed during incubation in SF media containing TIMP-2 or 

ALA+TIMP-2 CM, or ALA+TIMP-2 CM along with the ERK inhibitor U0126 (10 μM). 

Consistent with the previous transwell assays, C3 and control C3 SH SCR cells were 

significantly more migratory than parental MCF-7 cells when exposed to high levels of TIMP-2 

(> ~1 μg/ml), and this correlated with ERK activation as ALA+TIMP-2/U0126 incubation 

attenuated this migration (fig 14b, bottom). This analysis also showed that complete knockdown 

of MT1-MMP expression (C3 SH 2) inhibited the TIMP-2-mediated increase in migration, 

indicating that MT1-MMP is needed for enhancement of migratory potential via TIMP-2. 

Surprisingly, C3 SH 1 cells, which express a small but significant (1.8 fold) increase in MT1-

MMP transcript levels, demonstrated a similar TIMP-2-mediated increase in migration via ERK 

activation. Additionally, I attempted to knockdown MT1-MMP expression in C1 and C2 cells to 

rescue migratory potential using the same approach, however, this was unsuccessful using 

transfection of shRNA (not shown) presumably because of the excessively high expression of 

MT1-MMP in these cells. Taken together, these data demonstrated that TIMP-2 enhancement of 
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migratory potential is indeed dependent on MT1-MMP and ERK activation, but low levels (1.8 -

11 fold) of MT1-MMP expression appear to be optimal to increase migratory ability, whereas 

high (> ~1000 fold) MT1-MMP expression does not result in augmented cell migration. 

3.3 Low levels of MT1-MMP expression and activity were optimal for 

cell viability in serum free conditions  

 To analyze how MT1-MMP overexpression mediated viability and how this might 

explain the different migratory potential of MCF-7 MT1-MMP cell lines, cell viability was 

inferred by measuring metabolically active cells using CellTiter 96® AQueous One Solution 

each day for 7 days during incubation in media containing 10% FBS or SF media (fig 15), which 

represents the two compartments in the transwell assay. In 10% FBS, C1 cells (high MT1-MMP 

level) showed a significantly lower viability throughout the 7 days. Conversely C3 cells (low 

MT1-MMP level) were significantly more viable from seeding until day 3 (fig 15, top). 

Similarly, in SF media C1 cells were less viable than parental MCF-7 cells from seeding until 

day 5, whereas C3 cells were significantly more viable during this time (fig 15, bottom). After 6 

days of incubation in SF media, all MT1-MMP expressing cells were significantly more viable 

than MCF-7 cells indicating that MT1- MMP has an essential role in mediating viability during 

prolonged absence of growth factors. To confirm that MT1-MMP was responsible for this 

increased viability during SF incubation, the previous analysis was repeated using the C3 

knockdown variants (fig 16). Consistent with the previous analysis, only C3 cells had 

significantly higher viability at day 3, but by day 6 and 9 all MT1-MMP expressing cell lines 

were significantly more viable than MCF-7 cells (fig 16a). Viability measurements of the C3 

knockdown variants demonstrated that MT1-MMP is responsible for enhanced viability during   
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Figure 15. MCF-7 cells expressing MT1-MMP demonstrated increased viability during 

incubation in serum-free conditions.  

MCF-7 cells and MT1-MMP cell lines were seeded in 96-well cell culture plates and their 

viability was measured every day for seven days using Celltiter96® during incubation in media 

containing 10% FBS (top) or serum-free media (bottom). Viability is displayed as mean optical 

density (O.D) at 490 nm ± SEM.  
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Figure 16. Low levels of MT1-MMP were necessary and optimal for increased survivability 

of MCF-7 breast cancer cells to serum-free stress. 

(a) Viability of MCF-7 MT1-MMP cell lines, C1, C2, and C2, and C3 SH cell line variants 

during incubation in SF media measured every 3 days for 9 days using Celltiter96®. Viability is 

displayed as mean optical density (O.D) at 490 nm ± SEM. (b) Immunoblot analysis showing 

PH3 protein levels collected from MCF-7 MT1-MMP cell lines and C3 cell line variants 

incubated in SF media for 6 days. β-actin was used as a loading control. Bar graph below shows 

densitometry analysis of PH3 levels relative to β-actin and normalized to MCF-7 cells ± SEM.  



 
66 

SF incubation as C3 SH 2 cells, which are MT1-MMP deficient similar to parental MCF-7 cells, 

are less viable than other cell lines at day 6, and show the same viability as MCF-7 cells at day 9. 

To corroborate these results, cell lysates from MCF-7 MT1-MMP cell lines that were incubated 

in SF media for 6 days were analyzed via immunoblot (fig 16b) for the cell proliferation marker 

phospho-histone 3 (PH3), and quantified using densitometry (fig 16b, bar graph). All MCF-7 

cell lines that expressed significantly higher levels of MT1-MMP than MCF-7 cells showed 

higher levels of PH3 after incubation in SF media, particularly C2 cells, which accumulated high 

levels of active MT1-MMP protein, and showed significantly higher levels of PH3 than MCF-7 

cells. 

 It was then examined how inhibition of select signaling pathways affected the viability of 

MCF-7 MT1-MMP cell lines during prolonged SF incubation to gain insight into the mechanism 

behind MT1-MMP-mediated survivability. The chemical inhibitors U0126, BB94, furin inhibitor 

II, and AKT inhibitor IV were used to examine their effect on the viability of MCF-7 MT1-MMP 

cell lines after 6 days of SF incubation (fig 17). ERK inhibition and AKT inhibition significantly 

decreased the viability of all MT1-MMP expressing cells consistent with the observations of 

others [99, 100]. Furin inhibitor (which would inhibit intracellular activation of MT1-MMP) 

showed a non-significant dose dependent decrease in the viability of cells expressing MT1-

MMP, a trend not seen in MCF-7 parental cells, indicating that high levels of pro-MT1-MMP 

likely negatively mediated viability. Unlike all the other inhibitors that generally decreased 

viability, low concentrations of BB94 trended to increase the viability of all MT1-MMP 

expressing cells, especially C1 cells which displayed a significant increase in viability after 6 

days of SF incubation with 2.5 μM BB94. Taken together, these data demonstrated that MT1-

MMP mediated survivability to serum-free stress, but that excessive MT1-MMP proteolytic   
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Figure 17. Low level of MMP activity was optimal for increased viability of MCF-7 breast 

cancer cells to serum-free stress. 

Viability of MCF-7 MT1-MMP cell lines was measured after incubation for 6 days in SF media 

containing increasing concentrations of U0126, BB94, a furin inhibitor or an AKT inhibitor. 

Black asterisks show statistically significant differences between the initial and day 6 viability 

within cell lines, and also differences between the day 6 viability of MCF-7 cells compared to 

MT1-MMP expressing cell lines. Red asterisks indicate significant differences (p ≤ 0.05) within 

cell lines between the day 6 viability in SF media compared to the viability after 6 days of 

incubation with the different concentrations of the inhibitors. Viability is displayed as mean 

optical density (O.D) at 490 nm ± SEM. 
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activity may be counterproductive to increased viability. Furthermore, this analysis also 

demonstrated that cell viability has to be considered as a component to the pattern of migration 

seen in transwell assays, as C3 cells which were the most migratory are also the most viable, 

whereas in contrast C1 cells were the least viable and migratory. Therefore, it is difficult to 

delineate the relative contribution of changes in cell proliferation or changes in migratory 

capability to the difference in the number of cells quantified in the bottom compartment of a 

transwell at the endpoint of the assay. 

3.4 MT1-MMP levels did not correlate with migratory potential of breast 

cancer cells  

 Here I present evidence that high MT1-MMP levels (transient transfectants, C1 and C2 

cells) did not correlate with the migration of MCF-7 breast cancer cells, as seen using the 

transwell migration assay, which I showed also included a substantial cell viability component. 

Increased MT1-MMP-mediated viability may have yielded a higher number of cells in the 

transwell compartments, which may have resulted in incorrect conclusions about migratory 

potential if viability were not considered. To confirm that high MT1-MMP overexpression (> 

1000 fold compared to MCF-7 cells) does not result in increased migration, a live imaging 

approach was used with automated migration quantification of MCF-7 MT1-MMP cells that 

were stably expressing fluorescent zsGreen protein and incubated on Alexa594 gelatin coated 

coverslips in control conditions (0.1% DMSO) (fig 18, videos 1-4) and with BB94 (10 μM) (data 

not shown). Automated quantification using the ADAPT plugin for ImageJ software [114] 

allowed me to track the migration of all individual cells in three independent experiments, which 

were then grouped according to their distance migrated (fig 18b, video 5). This analysis showed  
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Figure 18. MT1-MMP levels were inversely correlated to the migratory potential of breast 

cancer cells. 

(a) MCF-7 MT1-MMP cell lines stably expressing zsGreen were seeded on Alexa594-gelatin 

(red) coated coverlips in media containing 0.1% DMSO (control) or 10 μm BB94 and incubated 

in a live imaging chamber. Each sample was imaged at the same five stage positions every 10 

mins for 20 hours to visualize zsGreen cell movement and associated ECM degradation, shown 

as black holes devoid of Alexa594 signal (Videos 1-4). Shown are stills of the Alexa594 gelatin 

channel and an overlay including the zsGreen cells at time 0 and 20 hours post-seeding of the 

control sample (BB94 not shown). Scale bars = 100 μm. (b) Time-lapse videos from (a) were 

analyzed using the ADAPT plugin for ImageJ and all individual cells tracked from each cell line 

were examined and grouped according to their migration distance from initial point of tracking. 

(c) Percentage of cells per field of view from each cell line that degraded the underlying 

AlexaFluour594-gelatin at five different time points. MCF-7 and MT1-MMP C3 cells did not 

demonstrate degradation of the underlying fluorescent gelatin. (d) Transwell migration assay of 

MCF-7, MDA-MB 231, and HS578t breast cancer cells incubated in SF media for 24 hours. 

Migration is shown as the percentage of migrated cells relative to MCF-7 cells ± SEM.  
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that high MT1-MMP overexpression inhibited migration of MCF-7 cells as a higher proportion 

of C1 and C2 cells migrated a shorter distance from the initial point of tracking compared to 

parental MCF-7 cells, as 53% and 79% of C1 and C2 cells, respectively, migrated more than 25  

μm, compared to 86% of parental MCF-7 cells that migrated the same distance. In contrast, C3 

cells did have increased migration ability compared to MCF-7 cells, as 92% of C3 cells migrated 

more than 25 μm. Importantly, this 6% increase in migratory ability between MCF-7 and C3 

cells does not reflect the increase seen using the transwell assays (20-100% increase), confirming 

that there is a cell viability component underlying the number of cells that transgressed to the 

bottom transwell compartment. BB94 incubation did not affect the migration of MCF-7 cells or 

C2 cells, but did alter the migratory patterns of C1 and C3 cells. Inhibition of MMP activity by 

BB94 decreased the migratory ability of C3 cells as 92% of cells migrated more than 25 μm in 

control conditions compared to 66% during BB94 incubation. C1 cells, which express the 

highest level of MT1-MMP and are the least migratory under control conditions, markedly 

improved their migratory potential during BB94 incubation as 73% of cells migrated more than 

25 μm (compared to 53% in control conditions). This migration data is consistent with the cell 

viability assay during BB94 incubation, as C1 cells saw an augmentation rather than decrease in 

viability and migration when MMPs were inhibited, suggesting that excessive MMP activity is 

counterproductive to those cellular processes. Analysis of the percentage of cells that degraded 

the underlying ECM demonstrated a time-dependent increase in ECM degradation correlated to 

high MT1-MMP expression in C1 and C2 cells (fig 18c), confirming functional MT1-MMP 

protein production in these cells during the course of this assay. As expected, incubation with 

BB94 (10 μM) did not allow for degradation of the fluorescent gelatin by MT1-MMP expressing 

cells (not shown). Taken together, this analysis demonstrated that low levels of MT1-MMP 
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expression (11 fold compared to parental cells) are optimal for increased migratory ability of 

MCF-7 breast cancer cells, whereas high MT1-MMP overexpression (> 1000 fold) does not 

increase migration but allows for widespread ECM degradation. To further investigate the 

correlation between MT1-MMP expression levels and the migratory potential of cells, I extended 

my observations to MDA-MB 231 and HS578T breast cancer cells. Transwell migration assays 

demonstrated that MDA-MB 231 and HS578t were significantly more migratory than MCF-7 

cells (fig 18d). Importantly, HS578t cells were significantly more migratory than MDA-MB 231 

cells even though they express lower levels of MT1-MMP (fig 12).  

 Having examined MT1-MMP overexpression in MT1-MMP deficient MCF-7 cells, I 

then tested how overexpression of MT1-MMP in MDA-MB 231 cells affects the migration of 

cells that natively express MT1-MMP and have endogenous migratory ability. MDA-MB 231 

MT1-MMP stable cell lines were created in the same manner as the MCF-7 cell lines, and three 

were selected which produce the isoforms of MT1-MMP shown via immunoblot (fig 19a). 

MDA-MB 231 C1 cells produce pro- and active- MT1-MMP, whereas MDA-MB 231 C2 and C3 

produce predominantly active MT1-MMP at higher levels than parental MDA-MB 231 cells. 

Transwell migration analysis of these MDA-MB 231 MT1-MMP cell lines showed that 

overexpression of MT1-MMP significantly decreased their migratory potential compared to 

parental MDA-MB 231 cells (fig 19b). Viability of these cell lines was analyzed in 10% FBS 

(top) and SF media (bottom) in the same manner as MCF-7 cell lines to show that MT1-MMP 

overexpression significantly inhibited viability, particularly of MDA-MB 231 C1 and C3 cells 

(fig 19c). Further, MDA-MB 231 C2 cells, which accumulate high levels of active MT1-MMP 

protein, exhibited increased viability in SF media and during prolonged incubation in 10% FBS, 

which was consistent with both the PH3 analysis of MCF-7 C2 cells that predominantly produce   
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Figure 19. Overexpression of MT1-MMP in MDA-MB 231 cells negatively affected 

migration and viability  

(a) Immunoblot analysis (AB6004) showing pro- (63 kDA), active (60 kDa), and degradation 

forms (44 kDa) of MT1-MMP in MDA-MB 231 breast cancer cells and three MDA-MB 231 cell 

lines expressing different levels of MT1-MMP. β-actin was used as a loading control. Lower half 

of blot is digitally transformed to clearly shown degradation bands. (b) Transwell migration 

assay of MDA-MB 231 MT1-MMP cells incubated in SF media for 12 hours. Migration is 

shown as the percentage of migrated cells relative to MDA-MB 231 cells ± SEM. (c) Viability of 

MDA-MB 231 MT1-MMP cell lines during incubation in media containing 10% FBS (top) or 

serum free media (bottom) measured daily for 7 days using Celltiter96®. Viability is displayed 

as mean optical density (O.D) at 490 nm ± SEM. 
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active MT1-MMP, and with their higher migration levels relative to the other MDA-MB 231 

MT1-MMP cell lines. Taken together these analyses show that naturally increased MT1-MMP 

expression in transformed cancer cells (MDAMB-231, HS578t cells) does result in enhanced 

migration, but this is not the case for experimental MT1-MMP overexpression (MCF-7 MT1-

MMP cell lines), as increasing overexpression of MT1-MMP decreases rather than enhances the 

migratory potential of breast cancer cells. 

  Furthermore, the levels of MMP-2 and -9 produced by MDA-MB 231 cells were 

analyzed via gelatin zymography and qPCR to determine if MT1-MMP overexpression affected 

the expression of these genes (fig 20). Gelatin zymography analysis was conducted to assay 

MMP-2 and -9 protein levels after MT1-MMP MDA-MB 231 cell lines were incubated with 

serum-free media or MMP-2 CM for 12 hours. This analysis demonstrated that MT1-MMP 

MDA-MB 231 cell lines were capable of activating proMMP-2, particularly C1 and C2 MDA-

MB 231 cells that facilitated the transition to the intermediate and active forms of proMMP-2 

(fig 20a). Interestingly, MDA-MB 231 C1 cells, which express the highest level of MT1-MMP 

and demonstrated the highest ability to activate proMMP-2, were completely devoid of MMP-9 

protein production (fig 20a, red asterisk). This observation was confirmed at the mRNA level 

using qPCR analysis, which demonstrated a significant change in MMP-2 and -9 levels in C1 

and C2 MDA-MB 231 cells, particularly C1 cells which demonstrated a significant decrease in 

MMP-9 expression and concurrent increase in MMP-2 expression (fig 20b), consistent with my 

previous observations regarding MMP-2/-9 levels and MT1-MMP-mediated ERK activation 

(figs 11,12).  
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Figure 20. Overexpression of MT1-MMP in MDA-MB 231 cells permitted proMMP-2 

activation and reciprocally affected MMP-2/-9 levels.  

(a) Gelatin zymography analysis of MDA-MB 231 MT1-MMP cell lines after being incubated 

for 24 hours in serum-free media (top) or serum-free media containing MMP-2 CM (bottom). 

Red asterisks show a clear deficiency in MMP-9 protein from MDA-MB 231 C1 cells that 

express the highest level of MT1-MMP. (b) qPCR analysis of MMP-2 and MMP-9 mRNA levels 

from MDA-MB 231 MT1-MMP cell lines. mRNA levels are displayed as mean fold change 

relative to MDA-MB 231 cells ± SEM. 
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3.5 Low level of MT1-MMP expression mediated a protrusive 

phenotype in 3D culture 

 As my work using in vitro 2D culture demonstrated that increased, but relatively low 

levels of MT1-MMP expression were optimal for enhanced viability and migration, I 

subsequently examined how these observations translated to ex vivo 3D culture. In this culture 

system breast cancer cells are embedded in Matrigel, whose composition resembles the 

components of a natural BM, and as such mimics a more physiologically relevant 3D 

environment [107]. MCF-7 MT1-MMP cell lines were embedded in Matrigel and cultured for 5 

days in media containing 10% FBS. During this time, cell morphology was monitored using DIC 

microscopy to examine how MT1-MMP expression affected cell behavior during 3D culture. 

Non-invasive MCF-7 cells have been shown to form and remain in circular colonies during 3D 

culture [120] (see fig 22, white arrow), which resemble the acini-like structures that normal 

breast cells form that are representative of the terminal ductal lobular unit (TDLU) in the human 

breast [121]. In contrast, invasive cells, such as MDA-MB 231 cells lose this circular 

morphology and develop into an interconnected network within the Matrigel (see fig 25, red 

arrow).  

 During 3D culture, C1, C2 and C3 cells do not form an interconnect network as seen with 

MDA-MB 231 cells. Instead, their colonies remained circular but displayed two distinct 

phenotypes; disseminations - distinct particles being released from circular colonies (fig 21, 

green arrow), and short dynamic protrusions emerging from colonies (fig 21, red arrows), 

which were confirmed using time-lapse microscopy (videos 6-9). Comparison of the 

morphological features between cell lines was performed by quantifying the number of 

disseminations and protrusions over a span of 5 days per 10x magnification fields of view and   
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Figure 21. MCF-7 MT1-MMP cell lines demonstrated two distinct morphologies during 

Matrigel 3D culture.  

MCF-7 and MT1-MMP cell lines were embedded in 50% Matrigel and incubated for 5 days in 

media containing 10% FBS. Between days 2 and 5, samples were placed in a live imaging 

chamber and imaged at 20x magnification at the same stage position every 30 minutes for 72 

hours to make timelapse movies showing cell dynamics in 3D culture (See videos 6-9). Shown 

are stills at three different time points for each sample that demonstrate two distinct 

morphologies of MT1-MMP expressing cells during 3D culture. White arrows show a non-

invasive circular morphology of MCF-7 cells, green arrows show a dissemination morphology 

whereby there is a release of cell fragments from circular colonies, and red arrows display 

dynamic protrusions emerging from colonies. Scale bars = 100 μm. 
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normalizing it to the number of circular colonies per field of view (fig 22). This quantification 

demonstrated that MCF-7 cells expressing high levels of MT1-MMP (C1 and C2) had 

significantly higher number of disseminations per colony than parental MCF-7 and C3 cells, 

particularly C1 cells which showed a time-dependent release of particles (video 7). In contrast, 

the number of protrusions per colony at day 5 was inversely proportional to MT1-MMP levels, 

as C2, and especially C3 cells had significantly more protrusions per colony, whereas C1 cells 

had a significantly lower number of protrusions than MCF-7 cells. Immunofluorescence analysis 

of these MCF-7 MT1-MMP cell lines (fig 23), confirmed that while MCF-7 colonies retained 

circularity during 3D culture (white arrows), C1 and C2 cells had clear disorganization of colony 

structure with released cell fragments (disseminations) containing MT1-MMP protein (green 

arrows). In contrast, C3 cells demonstrated long F-actin protrusions emerging from circular 

colonies (red arrows), consistent with the protrusive phenotype.  

 To further characterize this novel dissemination phenotype mediated by MT1-MMP, the 

cellular composition of released fragments was examined by repeating the immunofluorescence 

analysis with the MCF-7 zsGreen tagged cells (fig 24). The fluorescently tagged variants were 

used to provide information about the origin of morphological structures as zsGreen accumulated 

in the cytoplasm and could be used to better visualize the origins of disseminations or 

protrusions. The number of single cells (marked by DAPI), F-actin disseminations, F-actin 

protrusions, and zsGreen protrusions were quantified per colony from 20x magnification 3D 

volume views (fig 24a). This quantification demonstrated that the disseminations are likely 

enucleated cells, as C1 cells show significantly higher levels of single cells (0.18/colony) and F-

actin disseminations (0.67/colony) (fig 24b), which added together represented a density of 

~0.85/colony, similar to the ~1 dissemination/colony seen by day 5 in the DIC microscopy  
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Figure 22. MT1-MMP levels in MCF-7 cells correlated with a dissemination morphology 

and were inversely correlated with a protrusive morphology in 3D culture. 

(top) MCF-7 MT1-MMP cells were embedded in Matrigel and imaged every day for 5 days at 

10x magnification. Shown is a representative field of view of each cell line at days 1, 3 and 5, 

and indicated inset images at day 5 which show the cell features quantified: Circular colonies 

(white arrow), disseminations around colonies (green arrow), or protrusions emanating from 

colonies (red arrows). Scale bars = 100 μm. (Bottom line graphs) Five z-stacks per cell line were 

acquired every day for 5 days and disseminations and protrusions were quantified per colony for 

each cell line. Morphologies are displayed as mean dissemination/protrusion per colony ± SEM. 
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Figure 23. High level of MT1-MMP expression causes loss of colony organization and 

dissemination release in MCF-7 cells during 3D culture.  

Representative 3D volume views of immunofluorescence analysis after MCF-7 MT1-MMP cells 

were embedded in Matrigel for 5 days. Samples were imaged using confocal microscopy at 60x 

and are displayed as an overlay (top) showing nuclei (blue), F-actin (red), and MT1-MMP signal 

(green), and the respective individual channels below. Scale bars = 100 μm. White arrow show 

circular colonies. Green arrows identify single cells that disseminated from the nearby colonies 

and show MT1-MMP protein. Red arrow indicates an F-actin protrusion emanating from a 

circular colony of MCF-7 cells expressing low levels of MT1-MMP.  
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Figure 24. High levels of MT1-MMP correlated with a dissemination phenotype while low 

levels of MT1-MMP correlated with a protrusive morphology in zsGreen MCF-7 cells 

during 3D culture.  

(a) MCF-7 and MT1-MMP cell lines stably expressing zsGreen were embedded in 50% Matrigel 

for 5 days and processed for immunofluorescence to visualize nuclei, zsGreen protein, MT1-

MMP protein and F-actin distribution. Samples were imaged using confocal microscopy at 20x 

magnification and displayed as a 3D volume overlay and the individual channels. Green boxes 

indicate single cells adjacent to a colony, white boxes highlight the magnified insets on the right 

showing F-actin disseminations (green arrows) and F-actin protrusions (red arrows). Scale bars = 

100 μm. (b) Single cells, F-actin disseminations, F-actin protrusions, and zsGreen protrusions 

were quantified from 20x magnification 3D volumes acquired after MCF-7 MT1-MMP cell lines 

stably expressing zsGreen were embedded in Matrigel for 5 days. The representative 60x 

magnification 3D volume of MT1-MMP C3 cells on the right shows both F-actin (red arrow) and 

zsGreen (blue arrow) protrusions emerging from a colony. Scale bars = 100 μm. 
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analysis (fig 22). In contrast, C3 cells demonstrate higher density of F-actin (0.65/colony) and 

zsGreen protrusions (0.15/colony), which when added together represent a density of 

~0.8/colony similar to the ~1 protrusion/colony seen by day 5 in the DIC analysis, confirming 

that these cells demonstrate a protrusive morphology in 3D culture. Volume views at 60x 

magnification also showed C3 colonies (fig 24b, right) that demonstrated many zsGreen 

protrusions (blue arrow) that emerged distal to existing F-actin protrusions (red arrow). These 

protrusions are indicative of invadopodia, which are characterized by extension of the cell body 

due to F-actin polymerization, and subsequent F-actin retraction to result in a protrusion devoid 

of F-actin [66]. 

 To corroborate my 3D observations with the MCF-7, C1, C2 and C3 cell lines, I 

performed a similar analysis with MDA-MB 231 MT1-MMP cell lines (fig 25). Parental MDA-

MB 231 cells progressively lost circular morphology and developed into an interconnecting 

network of cells within the Matrigel (fig 25, red arrow), represented by a significantly higher 

number of protrusions per colony (~25) than MCF-7 cells. In contrast, all MDA-MB 231 cells 

with elevated levels of MT1-MMP showed a significant inhibition to form networks in 3D 

culture and instead retained a large proportion of circular colonies (fig 25, white arrows). As 

well, MDA-MB 231 MT1-MMP cells demonstrated a nonsignificant increase in the number of 

disseminations (~0.4 dissemination/colony), although it was comparatively lower than in MCF-7 

MT1-MMP cells. Immunofluorescence analysis of F-actin and nuclear structures in 3D culture 

confirmed these observations and showed that parental MDA-MB 231 cells formed an extensive 

cellular network, whereas MDA-MB 231 MT1-MMP cells retained circular colonies marked by 

MT1-MMP protein (fig 26). Taken together, this ex vivo analysis demonstrated that low MT1-

MMP expression mediated a protrusive phenotype in 3D culture, shown by MCF-7 C3 (fig 22)   
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Figure 25. MT1-MMP overexpression inhibited the protrusive morphology of MDA-MB 

231 breast cancer cells in 3D culture.  

(a) (top) MDA-MB 231 MT1-MMP cells were embedded in Matrigel and imaged every day for 

5 days at 10x magnification. Shown are representative fields of view of each cell line at days 1,3, 

and 5 and a respective inset at day 5. Red arrow shows a portion of the protrusive network 

MDA-MB 231 cells form in 3D culture. White arrows show MDA-MB 231 MT1-MMP cell 

colonies that have retained circularity after 5 days in 3D culture. Scale bars = 100 μm. (Bottom 

line graphs) Five z-stacks per cell line were acquired every day for 5 days and disseminations 

and protrusions were quantified per colony for each cell line. Morphologies are displayed as 

mean dissemination/protrusion per colony ± SEM. 
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Figure 26. High levels of MT1-MMP mediated retention of a circular morphology of MDA-

MB 231 cells during 3D culture.  

Representative 3D volume views of immunofluorescence analysis after MDA-MB 231 MT1-

MMP cells were embedded in Matrigel for 5 days. Samples were imaged using confocal 

microscopy at 60x and are displayed as an overlay (top) showing nuclei (blue), F-actin (red), and 

MT1-MMP signal (green), and the respective individual channels below. Scale bars = 100 μm. 

Red arrow shows irregular network of MDA-MB 231 cells, whereas green arrows show circular 

colonies in MDA-MB 231 MT1-MMP cell lines that are positive for MT1-MMP protein signal. 

Scale bars = 100 μm. 
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and MDA-MB 231 cells (fig 25), whereas high levels of MT1-MMP expression (C1, C2, and 

MDA-MB 231 MT1-MMP C1, C2, and C3 cells) inhibited the ability to form protrusive 

networks in 3D culture and instead resulted in abnormal release of cell fragments. 

3.6 Low levels of MT1-MMP expression mediated tumour 

vascularization and extravasation in vivo 

 Following 3D culture analysis, the in vivo implications of the in vitro observations were 

examined by using ex ovo chicken embryos [122] and zsGreen expressing MCF-7 C1, C2, and 

C3 cell lines. These cells, along with zsGreen MDA-MB 231 cells, were suspended in Matrigel 

and implanted into the ChorioAllantoic Membrane (CAM) of day 9 ex ovo chicken embryos 

[115]. Eight days post implantation the resulting xenograft was visualized using a fluorescent 

stereoscope to assess vascularization of the formed tumour. No MCF-7 or C1 tumours were 

scored as vascularized, and only a minority (2/14) of C2 tumours demonstrated vascularization 

by vessels of the chicken embryo (fig 27). In contrast, the majority of C3 (14/15) and MDA-MB 

231 (15/16) tumours were vascularized, shown by the presence of non-fluorescent vessels 

present within a dissected zsGreen tumour (fig 28, white arrow).  

 The metastatic potential of these cell lines was subsequently examined by direct 

intravenous injection of zsGreen MCF-7 C1, C2, and C3 cell lines into the vasculature of day 14 

chicken embryos, followed by assessment of extravasation efficiency 24 hours post-injection 

[109]. Extravasation is a necessary step that precedes metastatic colony formation and as such 

has been shown to directly correlate with metastatic potential [11]. MCF-7 and C1 cells, which 

express the highest level of MT1-MMP, demonstrate poor extravasation efficiency, as < 5% of 

cells were able to extravasate after 24 hours (fig 29). C2 cells showed a higher but non-   
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Figure 27. MCF-7 MT1-MMP C3 cells formed vascularized tumors when implanted onto 

the avian embryo CAM.  

MCF-7 MT1-MMP cell lines and MDA-MB 231 cells stably expressing zsGreen were implanted 

into the CAM of day 9 ex ovo chicken embryos and visualized 8 days post –implantation using a 

fluorescence stereoscope to analyze tumour vascularization. Displayed are representative bright 

field images showing the area of implantation on the embryo, and respective fluorescent images 

showing the zsGreen channel. The white boxes outline the magnified insets showing 

vascularization of the MT1-MMP C3 and MDA-MB 231 tumours. Bar graph shows percentage 

of tumours that were vascularized (N ≥ 11). Scale bars = 2 mm.  

  



 
97 

 

  



 
98 

Figure 28. Excision of vascularized tumours demonstrated internal blood vessels.  

A tumour from MDA-MB 231 cells expressing zsGreen was excised from a chicken embryo 8 

days post-implantation and imaged using brightfield and fluorescence microscopy. Vessels 

within the tumour (white arrows) can be seen by the presence of blood (brightfield) and absence 

of fluorescent signal (zsGreen), which indicate that these vessels originate from the chicken 

embryo. Cutting this tumour in half and rotating the pieces to reveal the inside of the tumour 

(black arrows) confirms internal vascularization. Scale bars= 2mm. 
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Figure 29. MT1-MMP levels were inversely correlated to the extravasation efficiency of 

MCF-7 breast cancer cells in vivo.  

Representative 3D volume views at 20x magnification of MCF-7 MT1-MMP cells stably 

expressing zsGreen 24 hours-post intravenous injection into the chicken embryo CAM 

vasculature. Shown is an overlay displaying the zsGreen cells (green) and CAM vasculature and 

underlying stromal vessels labeled using lectin-rhodamine (red), and the isolated zsGreen 

channel. Scale bars = 100 μm. Bar graph shows quantification of extravasation efficiency of 

MCF-7 MT1-MMP cell lines 24 hours post-injection ± SEM. 
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significant increase in percentage of extravasated cells (~8%), whereas C3 cells, which express 

low levels of MT1-MMP, displayed a significant increase in extravasation efficiency (~15%) 

compared to all other MCF-7 cell lines. Orthogonal sections of extravasated C1 and C3 cells 

acquired using confocal microscopy at 60x magnification showed that C1 cells are capable of 

extravasating out of the CAM vasculature (fig 30) but display membrane blebbing (white 

arrow) and cell fragment release (green arrow), reminiscent of the disseminations observed in 

3D culture (fig 22). In contrast, C3 cells exhibited a uniform morphology as they extravasated 

into the stromal space (blue arrows) and contained cell protrusions trailing from the CAM 

capillary bed into the stroma (red arrow, video 10), suggesting that these cells formed 

invadopodia in vivo.  

3.8 Metastatic 21T breast epithelial cell line produces undetectable 

levels of MT1-MMP protein 

 To extend and corroborate the observations that low levels of MT1-MMP are optimal to 

promote metastatic features in 3D culture and in vivo, the level of MT1-MMP protein in the 21T 

series cell lines was assayed via immunoblot (fig 31). These cells were isolated from a single 

patient and represent a mammary tumour progression series that mimic specific and progressive 

stages of breast cancer progression [111, 123], from atypical ductal hyperplasia (21PT-ADH), to 

ductal carcinoma in situ (21NT – DCIS) to an invasive mammary carcinoma (21MT-1- IMC). 

Assaying MT1-MMP protein levels in these cell lines demonstrated that ADH and DCIS variants 

produced active MT1-MMP, with the non-invasive DCIS cells producing higher levels of MT1-

MMP protein. Direct comparison to the MCF-7 MT1-MMP cell lines showed that C1 and C2 

cells produced more active MT1-MMP than 21T ADH or DCIS cells. In contrast, 21T MT-1   
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Figure 30. MCF-7 cells expressing low levels of MT1-MMP demonstrated a uniform 

protrusive morphology when extravasating in vivo.  

Orthogonal views of Z-stacks acquired using confocal microscopy at 60x of MT1-MMP C1 and 

C3 cells 24 hours post-injection showing the top of the CAM capillary bed (top) and the 

underlying stroma (bottom). Extravasated MT1-MMP C1 cells display cell fragmentation (green 

arrows) and membrane blebbing (white arrow), whereas MT1-MMP C3 cells extravasate to 

below the CAM with uniform morphology (blue arrows) and are capable of forming discrete 

invasive protrusions in the stroma (red arrow). Scale bars = 100 μm. 
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Figure 31. Metastatic human 21T breast cancer cells showed undetectable levels of MT1-

MMP protein similar to MCF-7 C3 cells.  

Protein lysate from human 21T breast cancer cell lines, which represent a progression series 

from atypical ductal hyperplasia (21PT-ADH), to ductal carcinoma in situ (21NT – DCIS), to 

invasive mammary carcinoma (21MT-1- IMC), were analyzed via immunoblot for MT1-MMP 

protein levels along with the MCF-7 MT1-MMP cell lines. The blots were probed with either 

AB6004 (top) or AB51074 (bottom) antibody and shown as the normal exposure and as 

transformed versions to clearly show banding pattern. Asterisks indicate MT1-MMP isoforms 

(green – pro- form, red- active form, orange – degradation forms). β-actin was used as a loading 

control. 
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cells, which represent an invasive mammary carcinoma, produced undetectable levels of MT1-

MMP protein as determined by immunoblot, similar to C3 cells. The 21MT-1 IMC cells have 

been show to possess metastatic qualities in 3D culture and in vivo when compared to the non- 

invasive variants [111], consistent with my observations that low levels of MT1-MMP are 

representative of metastatic breast cancer. 

Taken together, the observations in my study demonstrate that low levels of MT1-MMP 

expression are optimal for tumourigenicity and metastatic potential in vivo, and importantly, that 

abnormally high MT1-MMP overexpression correlated with a decrease, rather than enhancement 

of tumorigenic features (see schematic representation fig. 32). 
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Figure 32. Schematic overview of MT1-MMP expression levels and associated changes in 

substrate degradation and cell migration in 2D culture, phenotypes in 3D culture, and 

tumourigenesis in vivo. 

 Schematic representation of the findings of this study showing cell phenotypes across 2D and 

3D culture platforms and in vivo. Legend describing molecular components in diagrams is shown 

at the top, and fold change relative to MCF-7 parental cells is in the brackets to the right of the 

bolded titles. MT1-MMP deficient breast cancer cells, such as MCF-7 cells, are incapable of 

proMMP-2 activation or ECM degradation, and show low migration and viability during serum-

free incubation. These cells retain a circular morphology in 3D culture, and do not form 

vascularized tumours nor display high extravasation efficiency in vivo. Cells expressing high 

levels of MT1-MMP are capable of proMMP-2 activation and widespread ECM degradation, 

have increased survivability to serum-free stress, but do not demonstrate increased migration in 

2D experiments. In 3D culture, these cells demonstrate a dissemination morphology and cell 

fragment release mediated by MT1-MMP. Despite MT1-MMP protein production and associated 

substrate degradation, these cells are unable to form vascularized tumours or increase their 

extravasation efficiency in vivo. Cells expressing low levels of MT1-MMP do not demonstrate 

proMMP-2 activation or widespread ECM degradation, but do show increased migratory 

potential, and high viability during serum-free incubation. These cells demonstrate a protrusive 

morphology in 3D culture, form vascularized tumours in vivo, and have significantly increased 

extravasation efficiency, which are representative features of a metastatic phenotype. 
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Chapter 4 

4 Discussion 

4.1 Low levels of MT1-MMP are optimal to mediate a metastatic 

phenotype across various experimental platforms  

In this study, I utilized overexpression of functional MT1-MMP in MCF-7 and MDA-

MB 231 breast cancer cells and demonstrated how high overexpression corresponds to proMMP-

2 activation and ECM degradation, but inversely correlates to migration and viability in 2D 

culture, protrusive phenotype in 3D culture, and tumorigenic features in vivo. Instead I showed 

that high overexpression of MT1-MMP negatively affects cell viability, and causes an abnormal 

loss of colony structure and cell fragment release in 3D culture that translates to decreased 

tumorigenic potential in vivo. I also demonstrated using the human 21T cell lines mammary 

tumour progression series that breast cancer cells which mimic an invasive mammary carcinoma 

(IMC) are better represented by low, rather than high, levels of MT1-MMP protein. My data is at 

odds with the notion that high MT1-MMP expression is crucial for tumour progression, as 

numerous studies report that MT1-MMP overexpression is associated with enhanced migratory 

ability and tumourigenicity [40, 41, 49, 70, 95, 98], including increased cell migration [98], 

metastatic potential [40, 41], and tumor/metastasis volume [49]; although there is also evidence 

in agreement with my study which shows that high MT1-MMP overexpression is insufficient to 

increase metastasis of human cancer cells [124]. Here, using MCF-7 clonal cell lines stably 

expressing untagged MT1-MMP, I showed that migration, as shown by a scratch closure assay 

and by time-lapse microscopy of cells on fluorescent substrate, is dependent on levels of MT1-
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MMP, with high levels decreasing migratory ability and low levels promoting it. I also 

demonstrated that MT1-MMP-mediated migration changes seen using transwell assays involve a 

substantial cell viability component, where high MT1-MMP overexpression negatively affects 

viability and low levels enhances it. This viability difference likely contributed to the magnitude 

of migration augmentation between transwell and other assays. Studies that show an increase in 

cancer cell migration as a result of MT1-MMP overexpression demonstrate migration 

enhancement ranging from 50 -500% [31, 49, 98], whereas others show a requirement of TIMP-

2 for MT1-MMP mediated migration enhancement [99, 116]. These reports do not agree on a 

specific mechanism, except general ERK activation. In contrast, there are studies demonstrating 

that MT1-MMP overexpression does not increase migration of breast cancer cells [73], and also 

that MT1-MMP overexpression decreases ERK activation in cancer cells [96]. In the latter study, 

the authors demonstrated that MT1-MMP overexpression in various cancer cell lines, including 

MCF-7 cells, downregulates ERK activation and migration in response to FGF-2, which is 

consistent with my findings using cells that express high levels of MT1-MMP. Other studies 

have provided strong mechanistic evidence that MT1-MMP is involved in apoptosis protection 

[100] and viability enhancement via HIF1α stabilization [50, 104], which are in line with my 

observations that MT1-MMP enhances viability during serum-free incubation. 

In this study I also discovered a novel inverse transcriptional relationship between MMP-

2 and -9 mediated by the ERK pathway in MT1-MMP expressing cancer cells. Using the MCF-7 

and MDA-MB231 MT1-MMP stable cell lines, and MDA-MB 231 and HS578t parental cells, I 

showed that ERK phosphorylation in MT1-MMP positive breast cancer cells correlates with an 

increase in MMP-9 levels and concomitant decrease in MMP-2 levels. An important aspect of 

this relationship is that regardless of the level of ERK phosphorylation, one of these gelatinases 
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is elevated in breast cancer cells that produce MT1-MMP. Myself and recently graduated MSc 

Caitlin Evered used MDA-MB 231 cells to show that ERK inhibition causes changes in MMP-2 

and -9 transcription as shown by luciferase reporter assays, and also decreased the migration of 

these cells in 2D culture, and inhibited a protrusive phenotype in 3D culture, despite increased 

expression of MMP-2 [125]. These data are consistent with my study in that increased MMP 

expression, which is assumed to be accompanied by increased MMP activity, does not always 

correlate with the promotion of metastatic features.  

Despite the mounting evidence demonstrating that MMPs have a direct role in basement 

membrane degradation in vitro, there is no evidence to date that shows this is the case in vivo 

during cancer progression, or during development where MMPs are thought to be critical for 

ECM remodeling and embryo patterning [19]. During C. elegans larval development, the uterine 

and vulval tissues are initially separated by epidermal basement membranes, which needs to be 

breached by a specialized cell, the anchor cell, for development to progress normally [126]. A 

gene necessary for anchor cell invasion is the C. elegans Fos transcription factor orthologue, fos-

1a, for which mutations results in invadopodia that fail to breach the basement membrane [127]. 

One of the genes regulated by FOS-1A is zmp-1, a member of the MMP family in C. elegans, 

implying a role for MMPs in anchor cell invasion [128]. However, animals that contain a 

mutation in zmp-1 do not have defects in anchor cell invasion, which shows that ZMP-1 may not 

be necessary for this particular process during C. elegans development [127, 128]. Follow-up 

work demonstrated that during anchor cell invasion, the basement membrane was moved aside 

by the invasive protrusion of the anchor cells, rather than being dissolved [129]. During mouse 

development, the maternal uterus spatially restricts the growing embryo, causing an increase in 

mechanical stress at the distal tip of the forming embryo, where basement membrane breaching 
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occurs [130]. These breaches allow early epiblast cells to migrate through the gaps in the 

basement membrane and form the distal visceral endoderm, a group of cells that are necessary to 

establish the anterior-posterior axis during development [130, 131]. During this basement 

membrane breaching process, it has been shown that MMPs are not expressed at the distal tip of 

the embryo and fluorescent protease reporters were not active, demonstrating that MMPs are not 

required for basement membrane disruption during mouse embryo development, and instead 

suggests a predominant role for mechanical force in basement membrane breaching during this 

process [131]. 

The Drosophila developmental model is also a useful platform to study MMP function as 

it contains only two MMPs, Mmp1 and Mmp2, one which is secreted and the other is membrane 

bound, and that contain the canonical MMP structure but have no direct human MMP 

orthologues [132, 133]. During Drosophila development, cells of the outer squamous peripodial 

epithelium and stalk (PS) invade the underlying larval epidermis by breaking through the 

basement membrane [134]. This invasive process clears a path through the larval epidermis for 

disc eversion and formation of adult structures, such as the wing. Hypomorphic mutants in both 

Mmp1 and Mmp2 leads to maintenance of type IV collagen in the Drosophila embryo [135], 

indicating that MMPs promote basement membrane removal during eversion, thereby 

establishing a role for MMPs in basement membrane loss. However, whether the MMPs remove 

basement membrane through bulk dissolution, limited proteolysis, or other mechanisms, remains 

unclear. In disc eversion as in tumour development, where MMPS are thought to function as 

ECM remodelers, the interactions between cells and the matrix that lead to basement membrane 

removal have not yet been visualized, and recent observations suggest that the role of MMPs 
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during basement membrane traversion may be related to proteolysis of non-ECM components or 

induction of mechanical force, rather than solely the degradation of the ECM.  

Consistent with aforementioned observations that basement membrane traversion may 

not require ECM degradation mediated by MMPs are the observations seen in my 

physiologically relevant ex vivo and in vivo experiments. In these experimental platforms I 

showed that MCF-7 cells expressing low levels of MT1-MMP (C3) demonstrated metastatic 

qualities in Matrigel 3D culture and in vivo, despite not demonstrating ability for proMMP-2 

activation and widespread ECM degradation. C3 cells have increased protrusive morphology in 

3D culture and this is contrasted with MCF-7 cells overexpressing high levels of MT1-MMP 

which show reduced protrusive ability and increased cell fragmentation. Similarly, C3 cells were 

tumorigenic and showed metastatic potential in vivo, unlike C1 and C2 cells, which is consistent 

with studies that knock down MT1-MMP expression and show inhibited tumourigenesis and 

metastasis. Importantly, I demonstrated that C3 cells have high extravasation efficiency in vivo 

after direct injection into the CAM vessels of day 13 chicken embryos when the vasculature has 

developed a basement membrane [136]. During extravasation, cells need to traverse the 

basement membrane, and my results show that C3 cells (low MT1-MMP levels and activity), 

rather than C1 or C2 cells (high MT1-MMP levels and activity), demonstrated increased ability 

to extravasate, which shows that ECM degradation is not correlated to basement membrane 

traversion and instead may be inhibitory if excessive. Furthermore, high magnification confocal 

analysis (fig 30) and real time imaging (video 10) showed that C3 cells formed cellular 

protrusions when extravasating in vivo, consistent with the protrusive morphology in 3D culture, 

and suggesting that MT1-MMP may instead generate invasive protrusions that breach the 

basement membrane via mechanical force.  
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Analysis of MT1-MMP protein levels in the 21T cell lines mammary tumour progression 

series demonstrated that breast cancer cells which represent early stage ADH and DCIS 

mammary tumours produce high levels of active MT1-MMP protein, whereas invasive 21MT-1 

IMC cells produce undetectable levels of MT1-MMP, an observation that is consistent with my 

findings using MCF-7 C3 cells and my overall conclusion that low levels of MT1-MMP may 

better represent metastatic cancer. A similar study using the HMT-3522 epithelial cell series 

yielded results consistent with my analysis of MT1-MMP levels in 21T cells, as these authors 

analyzed microarray data to show that MMP-9, -13,-15 and -17, but not MT1-MMP, were 

functionally significant in the acquisition of invasiveness [137]. 

Interestingly, the observation that DCIS 21T cells produced high levels of active MT1-

MMP in comparison to their IMC counterparts is similar to the 3D culture phenotype of the 

MDA-MB 231 cells overexpressing MT1-MMP. In this study, parental MDA-MB 231 cells, 

which are naturally invasive, readily form irregular networks in 3D culture in contrast to non-

invasive cell lines that partially maintain polarity and form acini similar to the TDLU in the 

human breast (eg MCF-7 cells). It was surprising that overexpression of MT1-MMP in invasive 

MDA-MB 231 cells reverted their phenotype in 3D culture towards a DCIS-like morphology 

where the ability to form networks in matrigel 3D culture was restricted and a higher proportion 

of these cells retain acini-like colonies. The reversion of MDA-MB 231 cells to a DCIS-like 

phenotype in 3D culture as a result of MT1-MMP overexpression is consistent with the analysis 

of MT1-MMP protein levels in the 21T cell lines, whereby DCIS (21NT) cells produce more 

active MT1-MMP and predominantly form acini in 3D culture, and IMC (21MT-1) cells produce 

less MT1-MMP protein and display invasive 3D behavior [111], similar to MT1-MMP MDA-

MB 231 cells and parental MDA-MB 231 cells, respectively. 
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4.2 Inhibited MT1-MMP correlates with increased cell migration and 

viability in 2D culture 

A striking finding of my in vitro analysis regarding the relationship between MT1-MMP 

expression and migration was that the most migratory cells were the ones which had a low MT1-

MMP:high TIMP-2 ratio. Of the MCF-7 MT1-MMP cell lines used, C3 and C3 SH 1 cells 

displayed low MT1-MMP levels (11 and 1.8 fold change vs parental MCF-7 cells, respectively), 

and their migration ability was greatly enhanced when the levels of TIMP-2 increased, especially 

C3 SH 1 cells. MDA-MB 231 MT1-MMP cell lines displayed the same trend whereby MT1-

MMP overexpression with no change in TIMP-2 expression (data not shown) shifted the ratio in 

favor of excess MT1-MMP, leading to uncontrolled proMMP-2 activation and ECM 

degradation, and thereby causing a decrease in migratory potential and viability. Similarly, 

analysis of the natural migration potential of MCF-7, MDA-MB 231, and HS578t cells is 

consistent with this relationship to TIMP-2, as HS578t cells were the most migratory and 

displayed the highest level of TIMP-2 expression relative to MT1-MMP. Noteworthy in this 

analysis was also the observation that MDA-MB 231 cells displayed the highest ERK activation, 

but were not the most migratory. This was consistent with the comparison of MCF-7 C2 and C3 

cells, whereby C2 cells showed the highest ERK activation but were less migratory than C3 

cells, which displayed comparatively lower ERK activation even in the presence of high levels of 

TIMP-2.  

Although TIMP-2 is a natural MMP inhibitor and as such has attracted therapeutic 

interest along with synthetic MMP inhibitors [87-89, 94, 138, 139], neither have shown value in 

clinical trials [93]. Instead, some have suggested that high TIMP-2 levels may promote 

tumourigenicity [37, 99, 140], which has been strengthened by the association of high TIMP-2 
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levels with poor prognosis in various human cancers, including breast [44, 45, 47, 141-143]. 

Although this association between an MMP inhibitor and poor cancer prognosis may be 

paradoxical, I describe here that while TIMP-2 regulation of MT1-MMP activity is complex, as 

exemplified by MDA-MB 231 and HS578t cells, high TIMP-2:low MT1-MMP ratios in these 

cells correlate with their migratory potential, and also with their low proMMP activation ability 

and lack of gelatin degradation. Despite the fact that MDA-MB 231 and HS578t cells naturally 

express MT1-MMP, MMP-2, and -9, the extracellular gelatinases are predominantly found in 

their pro-forms yet to be activated. As MT1-MMP activity is pivotal in gelatinase activation [85], 

this indicates that MT1-MMP present in these cells is inhibited, likely by TIMP-2. This is 

consistent with lack of gelatinase activity of C3 cells, and in stark contrast to C1 and C2 cells, 

suggesting that cells with non-physiologically high MT1-MMP levels but low TIMP-2 levels 

(which is not typical of cancers) exhibit excessive proteolysis which may be counterproductive 

to migration and cell viability. This is corroborated both with the rescued serum free viability 

and migration of C1 cells as a result of BB94 treatment, and with the role of TIMP-2 in 

mediating survivability under serum free conditions as shown by others [100]. Since MT1-MMP 

is a proteolytic enzyme that can cleave and alter the function of many ECM and non-ECM 

proteins crucial for proper cell behavior [22], it is logical that such a potent protease with wide 

substrate specificity would be under tight control by TIMP-2 to appropriately mediate cell 

behaviour. 

4.3 Immunological detection of human MMPs is unreliable 

Recently Maden and Bugge (2015) analyzed the last two decades of literature to examine 

if there was a consensus regarding the cellular source of MMPs (including MT1-MMP) in human 

cancers and whether they were predominantly stromal or cancer cell derived [78]. These authors 



 
117 

noted that publications were widely inconsistent in regards to the cellular source of MMPs, 

particularly when immunodetection was involved. Only when in situ hybridization was used was 

there a consensus seen that MMPs were likely stromal cell derived. The authors proposed 

reasons for these difficulties, one being that there is likely inherently low expression of MMPs in 

cancer cells compared to stromal cells making immunodetection technically challenging.  

I believe that unreliable immunodetection reagents (discussed in [144]) is a major 

contributing reason as to why there is such inconsistency when assessing the abundance of 

MMPs in human cancers and their value as prognostic markers. In this study, I initially 

experienced difficulties assessing immunoblots for MT1-MMP, which could only be correctly 

interpreted after examining the immunological banding pattern for MT1-MMP expressing MCF-

7 and MDAMB-231 cell lines, and probing with two different primary antibodies against human 

MT1-MMP (fig 33). To strengthen the idea that improper immunodetection of MT1-MMP 

protein can lead to incorrect conclusions, I highlight my (lack of) immunodetection of MT1-

MMP in MCF-7 breast cancer cells. I strongly believe, as supported by my data, and as 

suggested by others, that MCF-7 cells are MT1-MMP deficient [40, 99], particularly because it 

has been shown that the MT1-MMP promoter in these cells is hypermethylated and thus 

transcriptionally repressed [106]. Yet despite this observation, published studies claim to detect 

both pro- and active MT1-MMP protein via immunoblot in MCF-7 cells [41, 145], which could 

be due to incorrect identification of the cell line used for experimentation, or lack of stringency 

when conducting immunodetection. As can be seen from my immunoblot data, usage of a 

polyclonal antibody against MT1-MMP resulted in a non-specific signal that could easily be 

misinterpreted as pro- and active MT1-MMP in MCF-7 cells (fig 33, AB6004). Furthermore, in   
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Figure 33. Immunological detection of MT1-MMP protein can be confounding depending 

on antibody utilized.  

(a) Immunoblot analysis of MCF-7 and MDA-MB 231 MT1-MMP cell lines (top), or MCF-7, 

MDA-MB 231 and HS578t breast cancer cell lines (bottom) using a polyclonal anti-MT1-MMP 

rabbit antibody (AB6004 – Millipore). (b) Immunoblot analysis of MCF-7, MDA-MB 231, and 

HS578t breast cancer cells, along with the MCF-7 MT1-MMP cell lines, using a monoclonal 

rabbit antibody (AB51075- Abcam). These blots were ran for 6 hours at 140 volts on a 15% 

acrylamide gel to ensure optimal band separation. On the left is a normal exposure of each blot 

and on the left is transformed version to clearly demonstrate banding pattern. Arrows indicate 

non-specific signal, whereas asterisks indicate specific signal pertaining to MT1-MMP isoforms 

(green – pro- form, red- active form, orange – degradation forms). Note the substantial amount of 

non-specific signal obtained when using AB6004 compared to AB51074, despite both antibodies 

being able to specifically detect multiple isoforms of MT1-MMP. Of particular interest are the 

red and green non-specific bands obtained using AB6004, which could be misinterpreted as pro- 

and active forms of MT1-MMP, respectively (see banding pattern for MT1-MMP deficient 

MCF-7 cells). 
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the study done by Köhrmann et al. (2009), although the authors reported MT1-MMP protein in 

MCF-7 cells, they were not able to detect MT1-MMP protein from tumour samples via 

immunoblot, despite showing increased MT1-MMP mRNA in these samples compared to 

normal breast tissue [41]. However, these authors were able to detect MT1-MMP protein using 

histology in tissue sections from tumour samples and not from normal tissues. Studies such as 

this that are internally inconsistent regarding MT1-MMP protein detection, and when containing 

clinical samples, can create confounding conclusions regarding the role of MMPs in cancer. This 

is in agreement with the observations of Madsen and Bugge regarding the discrepancies of the 

source of MMPs in human cancer, and the potential role of unreliable immunodetection when 

examining MMPs, including MT1-MMP, in different human cancer tissue. 

Additionally, visualizing MT1-MMP protein localization at a cellular level using 

immunofluorescence may also lead to similar immunodetection problems. Lodillinsky et al. 

(2016) recently implicated the p63/MT1-MMP axis in the transition from ductal carcinoma in 

situ to metastatic breast cancer, reporting that MT1-MMP protein is present during BM invasion 

of MCF10DCIS.com xenografts [59]. However, with the knowledge that MT1-MMP should be 

localized to distinct specialized regions of the cell membrane to initiate invasion (invadopodia), I 

question such immunofluorescence data that show MT1-MMP protein is present throughout the 

cell membrane of every cell in the xenograft, regardless of whether it is in physical proximity to 

invade the BM.  
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4.4 Modest increase in MT1-MMP expression is physiologically 

relevant in human cancer 

To assess the physiological relevance of observed levels of MT1-MMP expression in this 

study, I searched the literature for recently reported MT1-MMP mRNA levels in malignant 

human breast tissue compared to non-malignant tissue. The reported increase in MT1-MMP 

mRNA levels in malignant breast tissue compared to normal tissue ranged between ~1.7 to ~3.2 

fold [48, 59, 64]. Similarly, a pioneering study used MDA-MB 231 variants that produced 

constitutively active scr kinase, which is known to be upregulated during cancer progression 

[66]. These MDA-MB 231 variants generated significantly more MT1-MMP containing 

invadopodia. Analysis of MT1-MMP mRNA changes between control and constitutively active 

src kinase cells demonstrated a ~1.8 fold change increase in MT1-MMP mRNA, which the 

authors describe as a mechanistically meaningful increase in MT1-MMP expression level. 

Therefore, the physiological relevance of extreme changes in expression levels, such as ~17,000 

fold change in MT1-MMP mRNA seen in transient transfectants, or ~1500 fold change in stable 

cell lines, would be difficult to reconcile with primary human breast cancers which have a ~1.7 

to 3.2 fold change in MT1-MMP mRNA compared to normal tissue. Additionally, in line with 

the idea that immunological reagents of MT1-MMP may be unreliable, if normal non-malignant 

tissues do not contain detectable levels of MT1-MMP [41, 70] and cancerous tissues demonstrate 

only a ~1.7 to 3.2 fold increase in MT1-MMP mRNA, then is it reasonable that a transcriptional 

increase of that magnitude would be difficult to immunodetect at the protein level. 

Taken together, my study shows that a physiologically relevant increase in MT1-MMP 

levels during metastatic breast cancer is a best represented by a 1.8 to 11-fold change compared 

to normal tissue. Additionally, although abnormally high levels of MT1-MMP overexpression 
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may not reflect those seen in primary breast cancers, there is still mechanistic value in this 

approach, as utilized in this study to demonstrate the constancy of the TIMP-2 mediated 

activation of proMMP-2 by MT1-MMP. With this work I challenge the long-standing view that 

MMPs, particularly MT1-MMP, exert their role in cancer progression as proteases that 

predominantly degrade ECM components to allow cancer cell invasion, and instead suggest a 

subtle role for MT1-MMP in tumour progression as metastatic cancer appears to be better 

represented by low levels of TIMP-2-inhibited MT1-MMP protein. 
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Chapter 5 

Conclusions  

MT1-MMP is a multifunctional protease that can affect cell function via proteolytic and 

non-proteolytic mechanisms, and it was presumed that high levels of MT1-MMP mediate 

metastatic progression via ECM degradation. My findings that low levels of MT1-MMP are 

physiologically relevant and correlate with a metastatic phenotype suggest that very high levels 

MT1-MMP overexpression represents a non-relevant level of MT1-MMP expression during 

cancer progression. Excessive ECM degradation mediated by high levels of MT1-MMP is not 

permissive to cell migration and tumourigenesis, while low levels of MT1-MMP promote 

extravasation and vascularization in vivo via increased cell migration and viability. 

Future work could focus on the examination of the binding partners of MT1-MMP, and 

their role in mediating the phenotypes of the cells utilized in this study. As well, an in-depth 

analysis of changes in cell signaling cascades in cell overexpressing MT1-MMP should be 

conducted to determine the mechanisms responsible for the phenotype of these cells. 

Additionally, MT1-MMP expression should be knocked down in the cell lines overexpressing 

high levels of MT1-MMP to determine if an invasive phenotype is rescued when the level of 

MT1-MMP expression is reduced.  
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Video Legends 

Videos 1-4. Time-lapse analysis of ECM degradation and cell migration of MCF-7 MT1-

MMP cells. Parental MCF-7 (Video 1), and MT1-MMP C1, C2, and C3 (Videos 2, 3, 4, 

respectively) cells stably expressing zsGreen (green) were seeded on Alexa594 gelatin coated 

coverslips (red) and incubated in a live imaging chamber at 37
0
C, 5 % CO2. Images were 

acquired using a Leica DM16000 B fluorescent microscope. Frames were taken every 10 

minutes for 20 hours and compiled into time-lapse movies using ImageJ. Representative stills of 

each cell line at time 0 and 20 hours are shown in Figure 16a. Scale bars = 100 μm. 

 

Videos 5. ADAPT workflow for automated analysis of cell migration. Shown is an example 

of the ADAPT plugin and associated trajectory visualization of the MCF-7 MT1-MMP C2 video 

(Video 3). Video 3 is shown as the overlay of zsGreen cells (green) and Alexa594 gelatin coating 

(red), as well as the individual channels (top). The zsGreen channel was used for the ADAPT 

analysis (bottom, left) to yield a trajectory visualization of individual cells from initial point of 

tracking (bottom, right). Three videos from independent experiments were analyzed in this 

manner and the trajectory visualization from each was used to quantify individual cell migration 

after 20 hours. Cell migration data is compiled in Figure 16b. Scale bars = 100 μm. 

 

Videos 6-9. Time-lapse analysis of 3D culture dynamics of MCF-7 MT1-MMP cells. Parental 

MCF-7 (Video 6), and MT1-MMP C1, C2, and C3 (Videos 7, 8, 9, respectively) cells were 

embedded in 50% matrigel and incubated in a live imaging chamber at 37
0
C, 5 % CO2. Z-stacks 

(100 μm, 5 μm slices) were acquired using a Leica DM16000 B microscope. Frames were taken 

every 30 minutes for 72 hours and focal planes showing colony features with the greatest clarity 
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were compiled into time-lapse movies using ImageJ. Representative stills of each cell line at 

three different time points are shown in fig 19. Scale bars = 100 μm. 

 

Video 10. Real-time intravital imaging of extravasated MCF-7 MT1-MMP C3 cells. MCF-7 

MT1-MMP C3 cells stably expressing zsGreen (green) were injected intravenously into the 

CAM vasculature of day 13 chicken embryos and imaged 24 hours post-injection after labeling 

the vessels with lectin rhodamine (red). A movie in real-time was acquired using the resonant 

scanner of a Nikon A1R+ confocal microscope. The focus of the microscope was moved 

manually to show that a single C3 cells has extravasated from the CAM vasculature and shows a 

protrusion into the stroma (devoid of lectin-rhodamine signal). Scale bar = 100 μm 
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