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Abstract 

Background: The current procedures and guidelines for testing medical devices require that 

conservative testing be carried-out using the “worst-case” device or device configuration for 

each interaction (force, torque, heating, et cetera) of importance, and the results of those tests be 

used to inform regulatory labeling for that device. One of the most difficult elements of carrying 

out the above procedure is the determination of what represents a “worst-case” device or device 

configuration. A simulation “pipeline” would enable a systematic procedure for identification of 

the worst-case device or device configuration for magnetic force from an otherwise impossibly 

large set of options. 

Methods: Using a combination of computational and analytic methods, a comprehensive 

capacity to simulate and predict the static magnetic field interactions, specifically magnetic 

force, experienced by any medical device in any MRI-relevant environment is developed. This 

computational model is validated through comparison to derived analytic solutions and 

experimental testing performed in accordance to ASTM F2052-15.   

Results: Through analytic validation, it is found that the computational model of magnetic force 

is ideal for use on materials with magnetic susceptibility less than 104 ppm, such as medical 

implant-grade metals.  Experimentally, the computational model of force correctly predicted the 

force on two steels of magnetic susceptibility <104 ppm within less than 1% difference than the 

current testing procedure.  

Conclusion: The computational model of force is recommended for use in medical device 

testing applications as a way to identify what represents a “worst-case” device or device 

configuration. 
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Magnetic Resonance Imaging, Device Safety, Magnetic Force, Magnetic Susceptibility, 

COMSOL 
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Chapter 1: Introduction 

 

This chapter introduces the problem posed by the presence of implanted medical devices in 

patients who would need a Magnetic Resonance Imaging (MRI) procedure at some point in their 

lives. The basic interactions that implanted devices can have with a MRI system are reviewed. 

Although there are multiple interactions between devices and MRI systems, this thesis is focused 

on the interactions between a device and the static magnetic field of the MRI magnet, and more 

specifically, the magnetically-induced forces experienced by devices in the vicinity of an MRI 

system. Some fundamentals of electromagnetism and magnetic material properties in the 

presence of static electromagnetic fields will be reviewed as they largely govern the interactions 

of interest. A brief overview of very simple models of MRI magnet systems is included, and a 

short description of the computer simulation tools used in thesis provided. This chapter 

concludes with a statement of the research objectives of this thesis and explanation of the thesis 

structure and format.  

1.1 Motivation 

Magnetic Resonance Imaging (MRI) is a widely used imaging modality with millions of MR 

exams conducted globally every year. Canadians received over 1.7 million MR exams in 2012 

alone [1]. The effects of cumulative exposure to strong, static, magnetic fields present in MRI 

have been studied extensively and have been shown not to have hazardous effects in the absence 

of foreign materials [2].  

It is, however, increasingly common for patients to have permanently implanted medical devices, 

and there are millions of individuals receiving permanently or semi-permanently implanted 

medical devices each year [3]. This represents a particular challenge if and when those patients 

ever require an MRI. Just as one classic example of this, there were over 370,000 implants of 

cardiac systems (i.e. pacemakers and implantable cardioverter defibrillators, ICDs) in the United 

States in 2003, and over 135,000 implants of cardiac systems in Canada in 2006 [3], [4]. With 50 

to 75% of these individuals expected to be referred to an MRI over the lifetime of the device, 

patients with medical devices who require an MR exam must rely on the judgement of local MR 

technical staff and the labeling provided by device manufacturers [3], [5], [6]. Because only a 
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fraction of medical devices have been officially tested to determine the conditions under which 

they can be safely used within an MRI, the presence of any medical device creates a potential 

barrier to patients in need of an MRI [7]. This effectively results in a lower standard of care for 

subjects with implanted medical devices. In fact, in the United States in 2004 alone, it is 

estimated that 200,000 patients were denied an MRI due to the presence of implanted cardiac 

systems [3].  

The basic reason that implanted medical devices represent a barrier to receiving MRI is 

fundamentally very simple: many devices when within the MR environment can present a danger 

to the subject, and/or interfere with the normal operation of the MR scanner [8], [9]. Devices can 

experience forces, torques, heating, vibration, and (for devices with active function) operational 

failure [9], [10]. The presence of devices can interfere with the MR scanner by causing image 

artefacts or noise in the images [11], [12]. The increased need for implantable medical devices, 

coupled with the increased use of MRI, creates a major need to understand and systematically 

investigate the safety of devices in the MRI environment. 

The current procedures and guidelines for testing medical devices generally require that 

conservative testing be carried-out using the “worst-case” device or device configuration for 

each interaction (force, torque, heating, et cetera) of importance, and the results of those tests be 

used to inform regulatory labeling for that device [13]. One of the most difficult elements of 

carrying out the above procedure is the determination of what represents a “worst-case” device 

or device configuration. If the device is very simple, it may be trivial to identify which device to 

test. For example, if the device is available in only two materials, once of which is plastic and the 

other a highly-magnetic material, it is a simple matter of testing the “magnetic version” for the 

related interactions [14]. However, in most cases “devices” are in fact a family of multiple 

configurations, materials, and components, and there may be literally thousands (or more) of 

possible scenarios to test [15]. It is not practical to physically test all the scenarios, or even a 

large fraction of them. In these circumstances, one approach is to use an efficient, systematic, 

validated computer simulation to model a large fraction (if not all) of the configurations for a 

device for the interaction of interest, and through that process identify a small number or 

possibly a single configuration as the “worst-case”, and have only those configurations proceed 

to physical testing. It is the primary goal of this thesis to develop such a computer simulation 
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capability or “pipeline” for modeling the magnetic force experienced by any medical device, and 

thereby enable more comprehensive, and at the same time more practical, evaluation of devices 

for this interaction. This simulation capacity must have the ability to include an arbitrary MR 

magnet system, arbitrary device/material/configurations, and arbitrary positioning of the device 

within the MR magnet. 

 

1.2 Medical Devices in the MR Environment  

This thesis discusses the safety of medical devices in the MR environment. This section will 

provide some background on medical devices, their interactions in the MR environment, and 

their current testing standards and procedures.  

1.2.1  Medical Devices 

There are many possible definitions of a “medical device”, so it is important to be clear what is 

meant in the context of the thesis. In this thesis we are interested in the consideration of any 

device or system within the MRI environment that is not part of the “normal” MR system. The 

major groups of technology that fall under this broad definition would include:  

 permanently or semi-permanently implanted medical devices (e.g. orthopedic implants, 

trauma fixation devices, cardiac pacemakers, drug pumps, neurostimulators, dental 

implants, vascular stents, cochlear implants); 

 physiological monitoring devices (EEG, ECG, blood-pressure monitoring, laparoscopes);  

 non-MR-based imaging or therapy modalities (PET, SPECT, x-ray, ultrasound, 

radiotherapy); 

 MR-guided interventional systems (surgical robotics, biopsy guidance systems, HIFU); 

 stimulus presentation and monitoring systems (visual goggles, optical and infrared 

cameras)[16]. 

At first glance, this appears impossibly broad. But the unifying factor in the evaluation and 

testing of this huge range of technology is the MRI exposure environment itself. In terms of 

magnetic force in particular, it is the consideration of the underlying material composition and 
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geometry of the devices in combination with the main magnetic field of the scanner that 

determines the interaction [17]. 

1.2.2  Dangers in MRI 

When compared to other imaging modalities, the dangers of MRI are quite low. Since the 

introduction of MRI as a clinical modality, more than 100,000,000 diagnostic procedures have 

been completed with few major incidents, and many of those incidents were the apparent result 

of failure to follow safety guidelines or of the use of inappropriate or outdated information 

related to the safety aspects of medical devices [18], [15]. These major incidents include seven 

deaths [2], [19]–[21]. One death occurring when an oxygen tank became a projectile due to the 

magnetic force the tank experienced, fatally striking a boy in the head [19]; one patient 

experienced an acute intracerebral hemorrhage in the MR unit, with a fatal outcome due to the 

presence of a ferromagnetic aneurysm clip [20], [21]; and five additional deaths occurring, 

possibly due to inadvertently scanning patients with cardiac pacemakers [2]. In addition to these 

fatal accidents, several patients have experienced heating burns due to medical device heating, 

and in one case, the presence of a foreign body has caused unilateral blindness after an MR exam 

[22]–[24]. Beyond these major incidents however, 52% of MRI facilities responding to a survey 

in 1999 reported the occurrence of a MRI-related accident [19]. Although the effects of 

cumulative exposure to strong, static, magnetic fields present in MRI have been studied 

extensively and have shown no hazardous effects in the absence of foreign materials, medical 

devices, which fall into this category of foreign materials, pose an associated safety risk [2]. This 

risk is mitigated with medical device testing and the classification of medical devices. 

1.2.3  Medical Device Interactions  

As noted above, medical devices within the MR environment can present a danger to the subject, 

and/or interfere with the normal operation of the MR scanner due to several interactions between 

the device and the MR system [8], [9]. The interactions between a device and the MR system are 

complicated, and extensive testing and analysis is required in order to determine the conditions 

for which the device can be safely used [25]. When a passive medical device is within the MR 

system environment it can: experience heating from the radiofrequency (RF) electromagnetic 

fields [10], [26]–[30]; experience force and torque due to the strong static magnetic fields of the 
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main magnet and quickly varying magnet fields of the temporally and spatially varying gradients 

[10], [26], [29]–[33], [11]; and can cause distortions in images due to field inhomogeneities 

around the device [10], [26], [29], [30], [11]. 

Device heating is caused primarily by the RF field, a rapidly varying (10’s to 100’s of MHz) 

electromagnetic field with a magnetic field component applied perpendicularly to the static 

magnetic field for imaging purposes. The RF field deposits power in the human body even under 

normal circumstances (no device present), quantified by the specific absorption rate (SAR), 

measured in W/kg [16]. When a conducting medical device is present, the interactions are much 

stronger and the RF field can induce significant current flow in the device which can cause 

device heating [10], [26]–[30]. Medical devices can also cause increased electric fields around 

the device, leading to higher levels of SAR; causing heating in patient tissue in the vicinity of the 

device [30]. Heating is also caused by the gradient magnetic fields, which are spatially and 

temporally varying (kHz frequency range) magnetic fields used in imaging, applied along (alone 

or in combination) x-, y- and z-axes. These time varying gradient fields can also induce currents 

within medical devices, which also causes device heating [10], [29], [34]. RF heating is most 

prominent in long, extended devices which are of a resonant length for the RF frequency used. 

Gradient heating is more significant in devices with significant cross-sectional area, and there is 

no significant resonant effect [10]. 

Magnetic force and torque are interactions caused by the static field of the MR systems, although 

gradient fields can also cause torque and vibration via forces on induced eddy currents [10], [26], 

[29]–[33], [11], [35]. Torque will tend to align the long axis of a medical device along the 

direction of the static magnetic field and force will tend to pull magnetic materials present in the 

MR environment towards the scanner [10], [36]. Since this thesis focuses on static magnetic field 

interactions, specifically magnetic force, magnetic force is described in detail in section 1.3.4.  

Medical devices can also cause image distortions due to field inhomogeneities around the device 

[10], [26], [29], [30], [11]. Medical devices composed of materials with non-zero magnetic 

susceptibility (see 1.3.2) can distort the local magnetic field surrounding the device [11], [17]. 

These field inhomogeneities then cause image distortions due to various processes of MR 

imaging that are beyond the scope of this thesis [37], [38]. The extent and nature of the image 

distortions are highly dependent on the specific imaging sequence employed. 
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The interactions itemized in the above paragraphs are in practice very complicated. Interactions 

between a device and an MR system depend on magnetic environment which is unique and 

dependent on the scanner, field strength, field uniformity; the pulse sequence, sequence type 

(gradient echo versus spin echo, et cetera), sequence parameters (bandwidth, flip angle, et cetera) 

and the device [10]. When considering a device, the composition, geometry, and orientation all 

play a large role in the resulting interactions. Medical device composition affects the interactions 

as different materials will have different magnetic, electrical, mechanical, and thermal properties 

that cause unique heating, magnetic force, torque and image distortion [12]. Device geometry is 

important as certain geometries can cause increases in heating and torques. Additionally, 

orientation within the magnetic environment is important as exposure to RF and gradient fields 

as well as the magnitude of the static field are all spatially dependent and thus depend on 

orientation. This thesis will focus on examining the static magnetic field interactions, specifically 

magnetic force, experienced by medical devices in the MRI environment. Some consideration is 

made of purely field-uniformity effects caused by magnetic materials, and these are presented in 

Appendices E and F because they are not complete and they are tangential to the primary theme 

and objectives of the thesis. 

 

1.2.4  Classification of Medical Devices 

The safety of a medical device in the MR environment must be determined, and afterwards 

marked as MR Safe, MR Conditional, or MR Unsafe. These classifications are defined as: 

 MR Safe - an item that poses no known hazards resulting from exposure to any MR 

environment. MR Safe items are composed of materials that are electrically 

nonconductive, nonmetallic, and nonmagnetic. 

 MR Conditional - an item with demonstrated safety in the MR environment within 

defined conditions. At a minimum, address the conditions of the static magnetic field, the 

switched gradient magnetic field and the radiofrequency fields. Additional conditions, 

including specific configurations of the item, may be required. 

 MR Unsafe - an item which poses unacceptable risks to the patient, medical staff or other 

persons within the MR environment [13]. 
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In the context of the above terminology, this thesis is primarily related to MR Conditional 

devices. Physical testing of worst-case devices (which would be identified using the simulation 

procedures described in the following chapters) for magnetic force would allow for 

determination of the conditions (if any) under which a given device or group of devices could be 

safely used within a MRI system or scanner. 

1.2.5  Current Medical Device Testing   

Presently, the Food and Drug Administration (FDA) and the International Electrotechnical 

Commission (IEC) recommends medical device testing be performed in accordance to test 

standards developed and published by ASTM International (ASTM) [25]. ASTM was formally 

an acronym for “American Society for Testing and Materials”, but is now simply “ASTM”. 

These documents can be found on the ASTM website [39]. Force and torque measurements are 

to be conducted according to ASTM F2052-15 (“Measurement of Magnetically Induced 

Displacement Force on Medical Devices in the Magnetic Resonance Environment”) and ASTM 

F2213-06 (“Measurement of Magnetically Induced Torque on Medical Devices in the Magnetic 

Resonance Environment”), respectively [40], [41]. All testing of image artifacts caused by the 

presence of medical devices is conducted according to F2119-07 (“Evaluation of MR Image 

Artifacts from Passive Implants”) [42]. Heating of medical devices is tested in accordance to 

ASTM F2128-11a (“Measurement of Radio Frequency Induced Heating On or Near Passive 

Implants During Magnetic Resonance Imaging”) [43]. Since this thesis seeks to evaluate the 

static magnetic field interactions, specifically magnetic force, the most important of the above 

test standards is ASTM F2052-15. For this reason, the device testing procedure for ASTM 

F2052-15 has been summarized and included as Appendix A.  

 

1.3 Physics of Electromagnetism 

This sub-chapter will provide the necessary fundamentals of electromagnetics required for an 

understanding of magnetic fields, magnetic materials, and magnetic forces. Concepts and 

equations discussed in this sub-chapter can be found in more detail in David J. Griffiths 

‘Introduction to Electrodynamics’ third edition [44]. 
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1.3.1  Fundamental Electromagnetic Concepts 

When discussing magnetic fields, it is important to distinguish between 𝑩 and 𝑯. 𝑩, the 

magnetic induction - or more commonly referred to as the magnetic flux density - is given in 

units of Tesla. 𝑯, the magnetic field strength, is the strength of the magnetic field given in 𝐴/𝑚. 

The difference between 𝑩 and 𝑯 is subtle, but important when discussing electromagnetics. 𝑩 is 

the total magnetic field contribution from the magnetic field, plus induced magnetization. A 

constitutive relation, the relation between two physical quantities that is specific to a material, is 

used to relate the 𝑯 and 𝑩 fields. The constitutive relation between 𝑯 and 𝑩 is given by equation 

(1) where 𝜇0 is the permeability of free space and 𝑴 is the magnetization, which is defined in 

equation (10).  

 𝑩 = 𝜇0(𝑯 + 𝑴) (1) 

 

Maxwell’s Equations 

Maxwell's equations are the foundation of classical electrodynamics, and thus are included, in 

differential form, for completeness.  

 ∇ ∙ 𝑬 =
𝜌

𝜖0
  

 

(2) 

 ∇ ∙ 𝑩 = 0 

 

(3) 

 
∇ × 𝑬 = −

𝜕𝑩

𝜕𝑡
 

(4) 

   

 
∇ × 𝑩 = 𝜇0 (𝑱 + 𝜖0

𝜕𝑬

𝜕𝑡
) 

 

(5) 

𝑬 is the electric field, 𝜌 is the electric charge density, 𝜖0 is the permittivity of free space, and 𝑱 is 

the electric current density.  

Biot-Savart law and Ampère’s Law 
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A steady line current will produce a static magnetic field. The magnetic flux density produced by 

a steady current, 𝐼, is given by the Biot-Savart law: 

 
𝑩(𝒓) =

𝜇0𝐼

4𝜋
∫

𝑑𝒍 × 𝒓′

|𝑟′|3
 

(6) 

 

where ∂𝒍 is an infinitesimal length of current, 𝒓′ is the displacement vector from ∂𝒍 to the point 

at which the field is calculated, 𝒓, and the integration is along the closed current path in the 

direction of flow. As an extension of the Biot-Savart law, for problems with sufficient symmetry, 

the magnetic flux density can also be solved for using Ampère’s law. 

 ∇ × 𝑩 = 𝜇0𝑱 (7) 

   

 
∮𝑩 ∙ 𝑑𝒍 = 𝜇0𝐼𝑒𝑛𝑐 

(8) 

   

In equation (8), 𝐼𝑒𝑛𝑐 is the total current enclosed by the integration path. This integration path is 

any loop that encloses the current, 𝐼𝑒𝑛𝑐, exactly once.  

Magnetic Moment and Magnetization  

A current not only produces a magnetic field, it induces a magnetic dipole moment, 𝒎.  

 
𝒎 = 𝐼 ∫𝑑𝒂 = 𝐼𝒂 

(9) 

In equation (9), 𝒂 is the vector area. For a flat loop, 𝒂 is the ordinary area enclosed, with the 

direction assigned by the right hand rule where the fingers point in the direction of the current. 

The integration is over the enclosed area with the normal in the direction of 𝒂. [44] 

The sum of all the magnetic moments, ∑𝒎, in a given homogeneous volume, V, allows the 

definition of magnetization as the volume density of magnetic moments, per equation (10) 

below.  

 
𝑴 =

∑𝒎

𝑉
 

(10) 
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1.3.2  Magnetic Susceptibility and Permeability  

Magnetic susceptibility, 𝜒, is the dimensionless proportionality constant that indicates the degree 

to which a material will become magnetized in response to an applied magnetic field.  

 𝑴 = 𝜒𝑯 (11) 

 

The magnetic susceptibility defined above is more specifically the volume magnetic 

susceptibility. Magnetic susceptibility can also be specified in terms of mass magnetic 

susceptibility, measured in 𝑚
3

𝑘𝑔⁄ , and molar magnetic susceptibility, measured in 𝑚
3

𝑚𝑜𝑙⁄ . 

Within this thesis, unless specifically noted otherwise, magnetic susceptibility will refer to 

volume magnetic susceptibility.  

Magnetic susceptibility can also be discussed in terms of magnetic permeability, 𝜇,  

 𝜇 = 𝜇0(1 + 𝜒) (12) 

   

or relative magnetic permeability, 𝜇𝑟. 

 𝜇𝑟 =
𝜇

𝜇0
 (13) 

 

Magnetic permeability is discussed as the measure of the ability of a material to support the 

formation of a magnetic field within itself. The use of magnetic susceptibility is favoured when 

discussing magnetization, 𝑴, and magnetic field strength, 𝑯, as seen in equation (11).  The use 

of magnetic permeability is preferred when relating magnetic flux density to magnetic field 

strength, as shown in equation (15).  

 𝑩 = 𝜇𝑯 (15) 

 

Magnetic susceptibility is also useful when discussing the classification of magnetic materials.  
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1.3.3  Magnetic Materials  

All materials can be classified as diamagnetic, paramagnetic or ferromagnetic. For example, 

water is diamagnetic, titanium and non-magnetic stainless steels are paramagnetic, and pure iron 

is ferromagnetic [38], [44], [45]. This classification is based on a material’s magnetic 

susceptibility, see Figure 1. For example, medical implant-grade metals such as stainless steel 

316, cobalt-chromium alloys and titanium alloys all approximately have χ <104 ppm [17], [38], 

[12], [45], [46], which classifies them as paramagnetic.  

There are several ways to measure magnetic susceptibility including measuring the magnetic 

force on a material [47]–[49]; measuring the change in nuclear magnetic resonance signal of a 

reference sample in the presence of the material [47], [50], [51]; and measuring changes in 

magnetic field due to the presence of a material using superconducting quantum interference 

devices (SQUIDs) [47], [52]. Details of the multiple techniques for determining magnetic 

susceptibility are outside the scope of the work but can be found in references [12], [47]–[52].  

 

 

 

 

 

 

 

 

 

 

 

 

104 

Pure Iron 

Ferromagnetic Diamagnetic Paramagnetic 

-105 
~1011  ~ -10 ~102 

Water 

χ (ppm) 

~103 

Titanium 

Stainless 

Steel 304 

Figure 1- Magnetic susceptibility (χ) spectrum. Magnetic susceptibilities range from -105 ppm to χ> 1011 

ppm. Materials are classified as diamagnetic, paramagnetic or ferromagnetic based on where the magnetic 

susceptibility of the material lies on this spectrum. Approximate spectrum locations for water, titanium, 

stainless steel 304, and pure iron are shown. Materials are ferromagnetic if their susceptibility is greater 

than 104 ppm. Medical implant-grade metals such as stainless steel 316, cobalt-chromium alloys and 

titanium alloys all have χ <104 [17], [38], [12], [44]–[46]. 



12 
 

Materials that are diamagnetic form no permanent magnet dipoles in the absence of an externally 

applied magnetic field. Any induced magnetic dipole moments are anti-parallel to the initial 

applied magnetic flux density, 𝑩0, where 𝑩0 is applied along the z direction of Cartesian 

coordinates for the purposes of this thesis. Since 𝑩𝒎, the magnetic flux density produced by the 

magnetic dipole moments, is anti-parallel to 𝑩0, overall magnetic flux density, 𝑩, within the 

material is reduced. A simple classical model for diamagnetism can be obtained by considering 

electrons as “revolving” around the nucleus in a way that can be viewed as steady state current  

 𝐼 =
−𝑒𝑣

2𝜋𝑅
 

(16) 

 

where -𝑒 is the charge of an electron, 𝑣 is the angular velocity, and 𝑅 is the radius of electron 

orbit; see Figure 2.  

 

 

 

 

 

 

 

 

The dipole moment is then given by equation (17).  

 
𝒎 = −

1

2
𝑒𝑣𝑅�̂� 

(17) 

 

−𝒎 

�̂� 

−𝑒, 𝑣 

𝑅 

Figure 2 – An electron, -e, revolving around the nucleus at a radius R, with angular velocity v, 

can be viewed as steady state current, 𝑰 =
−𝑒𝑣

2𝜋𝑅
 which produces a magnetic moment 𝒎 =

−
1

2
𝑒𝑣𝑅�̂�. 
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When placed in a magnetic field, 𝑩0, the dipole moment experiences a torque, and the speed at 

which the electron revolves changes - thus its dipole moment changes. This change is opposite to 

the direction of 𝑩0. This change is shown in equation (18), where 𝑚𝑒 is the mass of the electron. 

 
∆𝒎 = −

𝑒2𝑅2

4𝑚𝑒
 𝑩0 

(18) 

 

Diamagnetism is mostly observed in materials with an even number of electrons, since this effect 

is much weaker than the mechanism for paramagnetism. 

Materials that are paramagnetic form weak permanent magnet dipoles such that 𝒎 = 0, 𝑩𝒎 = 0. 

However, when placed in an external magnetic field, 𝒎 align such that 𝑩𝒎 > 0, and enhances 

𝑩0 such that magnetization is linear to 𝑩0 , and 𝐁 =  𝑩𝟎 + 𝑩𝒎. 

Paramagnetism is the result an odd number of electrons. From a simplistic classical perspective, 

the unpaired electron is subject to magnetic torque. The spin of the unpaired electron creates a 

magnetic dipole, given by equation (19), where ħ is Planck’s constant.  

 
𝒎𝑠 =

𝑒ħ

2𝑚𝑒
 �̂� 

(19) 

 

If placed in an external magnetic field this magnetic dipole moment will experience a torque, 𝑵. 

 𝑵 = 𝒎 × 𝑩 (20) 

 

The torque is such that the dipole is aligned parallel with the field. Paramagnetism is only 

observed in atoms with an odd number of electrons as the Pauli Exclusion Principle dictates that 

the electrons within an atom pair together with opposing spins - neutralizing the torque on the 

combination. It is also important to note that the alignment is not complete due to random 

thermal collisions which tend to disrupt the alignment.  

Like paramagnetism, materials that are ferromagnetic form permanent magnet dipoles. However, 

there is a much stronger alignment of magnetic dipoles such that the field inside ferromagnetic 
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materials can be on the order of 104 times stronger than 𝑩0 and the magnetization remains when 

the applied field is removed.  

Ferromagnetism is also the result of the spin of unpaired electrons. However, unlike 

paramagnetism, each dipole tends to point in the same direction as its neighbor and results in a 

near 100% alignment. This occurs in domains, relatively small patches in the material containing 

billions of dipoles, and although dipoles line up within domains, domains themselves are 

randomly oriented. The longer a ferromagnetic is left in an applied field, the larger the domains 

parallel to the applied field grow as these domains expand and ‘take over’ less favorable domains 

which are unaligned. If the field is strong enough, one domain takes over entirely. Because of 

this behavior, ferromagnetic materials follow a hysteresis, that is, the relationship between 

𝑩0 and 𝑴 depends on the material’s magnetic history. This is due to the fact that the magnetic 

dipoles will remain aligned even after 𝑩0 is reduced to 0. 

A B-H curve, see Figure 3, is a plot used to show the relationship between magnetic flux density 

and magnetic field strength for a given material.  A linear magnetic material will have a linear 

relationship between 𝑩 and 𝑯, whereas a non-linear magnetic material will not. It is important to 

note that ferromagnetic materials do not have a linear relationship between 𝑩 and 𝑯, and thus the 

magnetic susceptibility of a ferromagnetic material is a function of the applied magnetic field. 

Additionally, all materials will have a ‘saturation’ point where further increase of the applied 

field will not result in a change in the magnetic flux density.   
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1.3.4  Magnetic Force  

When a magnetic material is exposed to a spatial gradient of a magnetic field it will experience a 

force. In the context of this thesis, this is the force experienced by a medical device when 

exposed to the spatial gradient of the main magnetic field of a superconducting MRI magnet. For 

paramagnetic materials, this force is proportional to both the magnitude of the local magnetic 

field and the local spatial gradient of that field, equation (21) [53], [54]. In MRI systems, force is 

typically greatest within the highly inhomogeneous field region at the entrance of the bore of the 

scanner [36]. 

 𝑭 = (𝒎 ∙ ∇) (21) 

 

 

In general the force on a magnetic dipole moment is described in Chapter 6 of [44], p.258, 

equation (6.3), as 

 𝑭 = ∇(𝒎 ∙ 𝑩) (22) 

 

Figure 3 – An example B-H curve, showing the magnetic flux density, B, as a function of 

magnetic field strength, H, for a hypothetical material. In this case the magnetic flux density is 

a non-linear function of applied magnetic field and ‘saturates’ at 2 T. This is the point where 

further increase of the applied field will not result in a change in the magnetic flux density. 
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which has been cited to be the same as equation (21) when 𝑱 =
𝜕𝑬

𝜕𝑡
= 0 [55]. This equivalence 

does not apply when the magnet moment is spatially dependent, as it is in the case of magnetized 

materials. This is included in Appendix B with a full derivation of equation (21). In the case 

where the magnet moment is spatially dependent, as it will be for the entirety of this thesis, 

equation (21) should be used.  

 

1.4 Magnetic Resonance Imaging 

This sub-chapter will provide a very brief overview of MRI. Since this thesis does not directly 

pertain to imaging, but rather focuses on the magnetic environment, detailed discussions of MRI 

including imaging acquisition, spin relaxation, pulse sequences, etc., will be omitted and can be 

found in detail in E. Mark Haacke, et al. ‘Magnetic Resonance Imaging: Physical Principles and 

Sequence Design’ [56]. 

1.4.1  Magnetic Resonance Imaging  

Magnetic Resonance Imaging is a non-invasive, high-resolution imaging modality used for its 

lack of ionizing radiation, excellent soft tissue contrast, and multi-planar imaging capabilities 

[57]. MRI is capable of capturing both anatomical and functional information from intact 

biological systems. Images in MRI are possible due to signal acquired from nuclear 

magnetization when in the presence of a strong, static, spatially-uniform, external magnetic field 

[56]. The signal acquired, 𝑆(𝑡), is proportional to the initial magnetization 𝑀0 produced by the 

sum of these magnetic moments, and proportional to the rate at which that net magnetization 

precesses after being exposed to a radiofrequency pulse of magnetic field [56]. Because the rate 

of precession is itself proportional to the main magnetic field, and the net magnetization is also 

proportional to the main magnetic field strength, the signal magnitude is proportional to the main 

field strength squared; equation (23) [56].    

 𝑆(𝑡) ∝ 𝑩2 (23) 
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The noise associated with the MR signal also increases with increasing magnetic field, and for 

clinical MRI systems the noise is approximately proportional to the field; therefore, the signal-to-

noise-ratio (SNR) is approximately proportional to the field strength [57]. In order to achieve 

more SNR, MR systems are naturally driven to implement the use of stronger static magnetic 

fields. Clinical MR systems vary in magnetic field strength from low field 0.2 T to high field 3 T 

systems. Research MR systems can achieve fields of 7.0 T and higher. Higher field strength 

magnets have the primary advantage of increased SNR, but this does generally come at the cost 

of increased power deposition in tissues, higher absolute (not relative) field inhomogeneity, 

higher radiofrequency (RF) field inhomogeneity, and higher equipment costs [55]. In the context 

of this thesis, the larger field strengths generally result in higher magnetic forces on magnetic 

materials, which is of particular concern for implanted medical devices [32], [53], [55]. 

Field inhomogeneity is of concern because image formation in MRI relies on the assumption that 

the main magnetic field is spatially uniform and temporally stable, and that the only source of 

additional field during signal acquisition is due to the gradient field system [37]. The details of 

this assumption, as well as all other details that concern image formation in MRI (e.g. spin 

relaxation, signal detection, k-space, pulse sequences, etc.) are outside the scope of this thesis 

and can be found in [56].     

 

1.5 MRI systems  

MRI systems are complicated multi-component entities. A MR scanner contains several 

magnetic field systems: the main magnet, radiofrequency (RF) coils, gradient coils, and shim 

coils [57]. This thesis discusses the interactions of medical devices composed of magnetic 

materials within the MR environment, focusing exclusively on interactions that relate to the 

static magnetic field of the main superconducting magnet. A brief overview of the main magnet 

is given in Section 1.5.1. In this thesis magnet design itself is not under consideration; therefore, 

the treatment of magnets is correspondingly brief. 
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1.5.1  Main Magnet  

The main magnet of an MR scanner is responsible for providing the main magnetic field of a 

given scanner [57]. The operation of the main magnet is simple in principle. A flow of electric 

current will produce a magnetic field, and a loop of current will produce (along the axis of the 

loop) a net magnetic field perpendicular to that loop [44]. For a loop of current I, and radius R, 

centered upon the z-axis in Cartesian coordinates (see Figure 4) the magnetic flux density at the 

center of that loop is given by equation (24).  

 
𝑩 =

𝜇0𝐼

2𝑅
 �̂� 

 

  (24) 

 

 

 

 

 

 

 

The magnetic flux density as a function of z, through the center of the loop along the z-axis, is 

then given by equation (25).    

 
𝑩(𝑧) =

𝜇0𝐼𝑅
2

2(𝑅2 + 𝑧2)3 2⁄
�̂� 

(25) 

 

Using this concept, a pair of current carrying loops of radius 𝑅 can be placed a distance of 𝑅 

apart in order to produce a nearly homogeneous magnetic field in the center of the loops, see 

Figures 5 and 6.  

 𝑩 

 

𝐼 

𝐼 

�̂� 

𝐼 

𝑅 

Figure 4 – A loop of current I, and radius R, centered upon the z-axis in Cartesian coordinates 

will produce a magnetic flux density 𝑩 =
𝜇0𝐼

2𝑅
 �̂� at the center of the loop, and 𝑩(𝒛) =

𝜇0𝐼𝑅2

2(𝑅2+𝑧2)3 2⁄ �̂� along the z axis. 
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Figure 5 – A pair of current carrying loops of current I, and radius R, placed a distance R apart 

will produce a nearly homogeneous magnetic field in the center of the loops. With the current 

loops centered upon the z-axis in Cartesian coordinates, they will produce a magnetic flux 

density 𝑩 = (
4

5
)

3

2 𝜇0𝐼

𝑅
 �̂� at the center of the loops and 𝑩(𝒛) =

𝜇0𝐼𝑅2

2(𝑅2+(𝑧−𝑙)2)3 2⁄  �̂� +

 
𝜇0𝐼𝑅2

2(𝑅2+(𝑧+𝑙)2)3 2⁄  �̂� along the z-axis, where l is the distance between the coil and the z = 0, x-y 

plane.  

 

𝑅 

𝑅 

𝑅 

 𝑩 

 

𝐼 

𝐼 

𝐼 

�̂� 

𝐼 
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Figure 6 – 𝑩(𝒛) as a function of z for a pair of current carrying loops. Two coils of current 

carrying wire placed a distance R apart, centered upon the z-axis in Cartesian coordinates, will 

produce the above magnetic flux density profile along the z axis.  Contributions to the total 

𝑩(𝒛) from each coil are shown. The total resulting 𝑩(𝒛) is nearly homogenous in the center of 

the coils. X-axis normalized to radius size and y-axis normalized to the maximum value of 

𝑩(𝒛) to generalize to any coil pair. 

 

In the case that multiple turns of non-spatially extending wire are used, the magnetic flux density 

at the center location between the loops along the z-axis is given by equation (26), where 𝑛 is the 

number of turns of wire. 

 

𝑩 = (
4

5
)

3
2 𝜇0𝑛𝐼

𝑅
 �̂� 

(26) 

 

The magnetic flux density along the z-axis, down the center of the coil, is now given by  

 
𝑩(𝑧) =

𝜇0𝐼𝑅
2𝑛

2(𝑅2 + (𝑧 − 𝑙)2)3 2⁄  
�̂� +  

𝜇0𝐼𝑅
2𝑛

2(𝑅2 + (𝑧 + 𝑙)2)3 2⁄
 �̂� 

(27) 
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where 𝑙 is the distance between the coil and the 𝑥-𝑦 plane. For a coil pair centered around the 

𝑧 = 0, 𝑥𝑦 plane, 𝑙 = 𝑅/2. This is known as a Helmholtz pair, or Helmholtz coil.  

The Helmholtz pair is designed to optimize the field homogeneity along the z-axis at the very 

center of the system (z=0). In principal, an MR scanner main magnet is simply an extension of 

this concept, but with the region over which the field homogeneity is to be optimized defined 

over a larger region. Several coils of current carrying wire (typically 6) are placed along the bore 

at optimized locations and radii in order to produce a more homogenous magnetic field over a 

larger region [57]. Actively-shielded magnets will contain additional loops (typically 2) of 

oppositely wound coils in order to reduce or cancel the magnetic field outside of the system [57].   

  

1.6 Computational Methods  

This thesis seeks to develop and validate a comprehensive capacity to simulate the static 

magnetic field interactions, specifically magnetic force, experienced by medical devices in the 

MRI environment. Computational methods, such as COMSOL and other finite element method 

simulation packages are frequently described as a tool for investigating and determining medical 

device heating due to radiofrequency and gradient field interactions [34], [58]–[61]; references to 

such methods are sparse, if not unavailable, for magnetic force. This thesis seeks to develop a 

novel capacity to simulate the static magnetic field interactions, specifically magnetic force, and 

thus the finite element method and COMSOL Multiphysics, both used in this thesis to compute 

the aforementioned simulations, are introduced below.  

The finite element method (FEM) is a method used to solve partial differential equations (PDE) 

that otherwise cannot be solved by analytical methods. FEM uses approximations of the PDEs 

which are based upon discretization. These approximations are made using numerical model 

equations, which then can be solved using numerical methods. The solution is thus an 

approximation of the real solution to the PDEs. The finite element method is used to compute 

such approximations [62]. 

COMSOL Multiphysics (COMSOL, Sweden) [63] is a software package, based on finite element 

methods, for modeling and simulating physics-based problems. Although the use of MATLAB 
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(MathWorks, United states) [64] and Python (Python Software Foundation, Netherlands) [65] is 

implemented within this thesis, all simulations are performed within COMSOL Multiphysics. The 

AC/DC Module is employed for simulating all the included electromagnetic interactions.  

 

1.7 Research Objectives and Thesis Organization 

The goal of this thesis is to address one current limitation to practical yet comprehensive testing 

of medical devices for use within the MRI system environment: the problem of worst-case 

device identification for magnetically induced force. As described earlier in this chapter, in most 

cases “devices” are in fact a family of multiple configurations, materials, and components, and 

there are far too many possible scenarios to physically test. Current regulatory standards require 

physical testing to be conducted in a conservative manner using a “worst-case” device or device 

configuration.  

The primary objective of this thesis is to develop and validate a computer simulation capability 

for predicting the magnetic force experienced by any medical device in any MRI-relevant 

environment. This simulation capacity must have the ability to include an arbitrary MR magnet 

system, arbitrary device/material/configurations, and arbitrary positioning and orientation of the 

device within the MR magnet. If this objective is met, the simulation “pipeline” would enable a 

systematic procedure for identification of the worst-case device or device configuration for 

magnetic force from an otherwise impossibly large set of options. The simulation capacity is not 

intended to replace physical testing, but rather allow for physical testing to be focused on the 

most important devices within a device group or family. 

The simulation capacity developed and described in this thesis is focused on the evaluation of 

magnetically induced force. Similar simulation capacity would need to be implemented for the 

other device interactions outlined earlier in this chapter. This capacity already exists for the 

evaluation and ranking of devices for RF heating. For torque and image-distortion, additional 

simulation work is necessary. However, much of the underlying simulation required for both 

torque and image-distortion would be common to the simulations described in this thesis, since 

both are fundamentally a static magnetic field interaction with a magnetic material. In particular, 
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preliminary work on the use of the simulations for predicting magnetic field inhomogeneity, 

which is the first step in predicting image distortion, was conducted. This work is tangential yet 

separate from the main objective described above. The results of these investigations are 

presented in Appendices E and F. They are included because, although incomplete, they provide 

additional means of validating the magnetic field simulations which underlie the magnetic force 

modeling as presented in Chapters 2 through 4. 

The thesis is organized as follows. Chapter 2 presents all methods used, including simulation, 

derivation of analytic models for simulation validation, and experimental validation of the 

simulation. Appendix A is directly related to Chapter 2 as it overviews the specific experimental 

methods used as specified in ASTM F2052-15. Appendix B provides the details of the analytic 

derivation of the force model as required in Chapter 2. Chapter 3 summarizes all results obtained 

and Chapter 4 provides a discussion as well as summary of future work. Appendix C provides 

copies of the material certificates for the devices used in the experimental validation. Appendix 

D provides the raw data for the magnetic field mapping conducted on the 3.0 T MR scanner used 

in the experimental validation. As noted above, Appendices E and F describe two self-contained 

projects related to but tangential to the main content of this thesis. 
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Chapter 2: Methodology  

 

To utilize a computational method for the analysis of magnetic force on devices, such a model 

needs to be validated. As such, the following methods are described: development of a 

computational model of magnetic force; analytic validation of the computational model of 

magnetic force for a simple medical device in an idealized magnetic field; analytic and 

experimental validation of the computational model of magnetic force for a simple medical 

device in a 3T MR environment.   

2.1 Computational Model of Magnetic Force  
 

The computational model of magnetic force was developed using COMSOL and MATLAB. All 

design, modeling and simulations were performed in COMSOL Multiphysics using the ‘Magnetic 

Fields, No Current (mfnc)’ package and performed in a cubic simulation domain. Within the 

cubic simulation domain, a magnetic environment was implemented with the ‘Magnetic flux 

Density’ function of the ‘Magnetic Fields, No Current (mfnc)’ package. Once a magnetic 

environment is implemented in the simulation, devices can be added to the simulation as 

required. Device geometry, material composition, and spatial orientation can all be defined as 

required. All domains were meshed with free tetrahedrals.   

Magnetic flux density, magnetization, mesh element volume, and spatial gradient of the B field, 

∇ B, data -- all as a function of position -- is exported from the simulations. Magnetic force is 

given by equation (21). 

 𝑭 = (𝒎 ∙ ∇)𝐁 (21) 

   

As the magnetic moment is unknown, element volume scale factor and mesh element type are 

exported to determine the mesh element volume, 𝑑𝑉, of each computational node.  

 Element volume scale factor

mesh element type
=  𝑑𝑉 

(32) 
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The product of this volume and the magnetization, 𝑴, is thus the magnetic moment, m, of each 

node.  

 𝒎 = 𝑴𝑑𝑉 (33) 

 

Within MATLAB a series of scripts import, define, and analyze the data to determine the total 

magnetic force. The developed computational model of magnetic force is therefore a “pipeline” 

where the force on a device can be directly calculated for a given magnetic environment.  

2.2 Analytic Validation of a Computational Model of Magnetic 

Force  
 

In order to validate the computational model, a test case was developed such that an analytic 

model could be produced to compare the simulation results. A background magnetic flux density 

in units Tesla, 𝐵𝑥 = −0.5𝑥 𝑇, 𝐵𝑦 = 0, 𝐵𝑧  = 0.5𝑧 𝑇, was implemented at all boundaries of the 

computational model. This field was chosen due to its divergence of 0, which satisfies Maxwell’s 

equations, specifically, equation (3). Within this magnetic environment a cylinder of radius 1.27 

cm, length L, and magnetic susceptibility 𝜒, was centered along the z-axis with the base of the 

cylinder at isocenter. Figure 7 depicts this geometry. This positioning allowed sufficient 

symmetry such that Fx=Fy=0, simplifying the analytic solution. 

 

 

 

 

 

 

 

 

Results of magnetic force were produced for two simulation sets. First, the length of the cylinder 

was kept constant at 2.54 cm and simulations were run varying the magnetic susceptibility of the 

Figure 7 – Geometry of a cylinder position within a COMSOL simulation. A cylinder of radius 

r=1.27 cm and length L was centered along the z-axis. The base of the cylinder is positioned at 

isocenter. The integration over the volume of this cylinder is thus 𝜋𝑟2 ∫ 𝑑𝑧
𝐿

0
.  

-x 

y 

z 

L 
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cylinder from 1 to 106 ppm. Next, the magnetic susceptibility was kept constant at 100 ppm and 

simulations were run varying the length of the cylinder from 1.27 to 25.4 cm.  

In order to validate the results of the simulations, an analytic model of magnetic force was 

produced and this model was solved for all cases between simulation sets. The results of the 

analytic solution are compared to the simulation results in section Chapter 3, Figures 10-13.   

The magnetic force on a material was given by equation (21), reproduced below.  

 𝑭 = (𝒎 ∙ ∇)𝑩 (21) 

   

In the case of an analytic model, a magnetic flux density can easily be defined, however the 

magnetic moment is unknown. The magnetic moment is given by re-arranging equation (10), 

such that the magnetic moment of an infinitesimal volume within a magnetic material, 𝑑𝑉, is 

given by the product of that volume and the total magnetization, 𝑴, of the material.   

 𝒎 = 𝑴𝑑𝑉 (33) 

   

The total magnetization of the material is also unknown, however using equations (11), (12) and 

(15) from 1.3.2, magnetization can be described by the magnetic flux density.  

 
𝑴 = 𝜒

𝑩

𝜇0(1 + 𝜒)
 

(34) 

 

Combining equations (34), (33) and (21), magnetic force is given by equation (35), where ∇𝑩 is 

the spatial gradient of the magnetic flux density.  

 
𝑭 = ( 𝜒

𝑩

𝜇0(1 + 𝜒)
𝑑𝑉 ∙ ∇)𝑩 

(35) 

 

For example, for a cylinder of radius r and length L centered along the z-axis, the base of the 

cylinder at isocenter in a magnetic flux density, 𝐵𝑥 = −0.5𝑥 𝑇, 𝐵𝑦 = 0 , 𝐵𝑧  = 0.5𝑧 𝑇, the 

magnetic force is given by equation (36).  
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𝐹𝑧 =  𝜒
𝜋𝑟2 ∫ 0.5𝑧 𝑑𝑧

𝐿

0

2𝜇0(1 + 𝜒)
  , 𝐹𝑥 = 𝐹𝑦 = 0 

(36) 

 

This equation however, only accounts for first order magnetization. As discussed in 1.3.2, and as 

evident from equation (34), a material placed in a field 𝑩 acquires an induced magnetization 𝑴. 

This magnetization will itself also produce a B field.  Removing the magnetic field strength, H, 

from equation (1), it is possible to only observe the effective B field due to the magnetization; 

𝑩𝑴. 

 𝑩𝑴 = 𝜇0𝑴 (37) 

 

This cycle of initial magnetic flux density, 𝑩𝟎, causing magnetization, 𝑴𝟏, which in turn causes 

an additional component of magnetic flux density, 𝑩𝑴𝟏
, continues ad infinitum; 

 
𝑴𝟏 = 𝜒

𝑩𝟎

𝜇0(1 + 𝜒)
 

(38) 

 

 𝑩𝑴𝟏
= 𝜇0𝑴𝟏 (39) 

 

 
𝑴𝟐 = 𝜒

𝑩𝑴𝟏

𝜇0(1 + 𝜒)
 

(40) 

 

 𝑩𝑴𝟐
= 𝜇0𝑴𝟐 (41) 

 

and so on.  

This results in a series,  
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𝑭 = ((∑
𝜒𝑖

𝜇0(1 + 𝜒)𝑖

𝑁

𝑖=1

)𝑩0 𝑑𝑉 ∙ ∇)(∑
𝜒𝑗

𝜇0(1 + 𝜒)𝑗

𝑁

𝑗=0

)𝑩0 

(42) 

 

which when lim
𝑁→∞

𝑭 is solved, gives the magnetic force, equation (43).   

 
𝑭 = (

𝜒(1 + 𝜒)𝑩0

𝜇0
𝑑𝑉 ∙ ∇)𝑩0 

(43) 

 

Given a known initial magnetic flux density, 𝑩0, the magnetic susceptibility 𝜒, and the position 

and geometry of a material in Cartesian coordinates, the magnetic force can be calculated 

analytically by integrating over the volume of the material. For a cylinder of radius r, length L, 

positioned along the z-axis field, Figure 8, in a magnetic flux density, 𝐵𝑥 = −0.5𝑥 𝑇, 𝐵𝑦 =

0 , 𝐵𝑧  = 0.5𝑧 𝑇, the magnetic force is given by equation (44). 

 
𝐹𝑧 = 

𝜒(1 + 𝜒)𝜋𝑟2 ∫ 𝑧 𝑑𝑧
𝐿

0

4𝜇0
  , 𝐹𝑥 = 𝐹𝑦 = 0 

(44) 

 

In order to validate the computational model of magnetic force equation (44) was solved for a 

radius of 1.27 cm and for all values of 𝜒, and L used in simulation. Varying 𝜒 from 1 to 106 ppm 

while L was kept constant at 2.54 cm and then 𝜒 was kept constant at 100 ppm and L was varied 

from 1.27 to 25.4 cm.  

2.3 Experimental Validation of a Computational Model of 

Magnetic Force 

 
To further validate the computational model of magnetic force an experimental investigation of 

force was performed. In accordance to FDA and IEC guidelines, testing of force on medical 

devices is performed in agreement with ASTM F2052-15 “Standard Test Method for 

Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic 

Resonance Environment” [25][40]. The test for magnetic force, a deflection test, is performed 
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where a medical device is suspended within the region of the bore of the scanner and the angle 

the device deflects within the magnetic environment is measured. From this measured deflection 

angle, force is calculated. Full description of test methods, which were performed in accordance 

of ASTM F2052-15, are included in Appendix A.  

Deflection tests were conducted for four steel rods of radius 0.00635 m, length, L, and mass, m, 

as listed in Table 1, at a 3T MRI system (Siemens Prisma). Data sheets for the steels are included 

in Appendix C. Exact magnetic susceptibility of the rods was not included in the data sheets and 

thus was unknown. Literature cites magnetic susceptibility values on the order of 103 ppm for 

316 steel and for 304 steel [17], [38]. Rod lengths were machined to the values listed in Table 1. 

Magnetic properties of the steel are assumed to be unchanged as the steel is assumed to be non-

ferromagnetic. [66]    

Material Length, L [m] 

±0.01mm 

Mass, m [kg] 

±0.1g 

316 Steel 

 

0.0254 0.0255 

0.1000 0.1002 

304 Steel 0.0254 0.0256 

0.1000 0.1001 

Table 1 – Specifications of the rods used in experimental tests of magnetic force as conducted 

with methods outlines in Appendix A. All rods have radius, r=0.635 cm. Data sheets for the 

steels are included in Appendix C. Magnetic susceptibility of the steels was not included in the 

data sheets and thus was unknown. Rod lengths were machined to the values listed in the table.  

The magnitude of the magnetic force on the device is given by,  

 

 𝐹 = 𝑚𝑔 tan𝛼 (45) 

 

where m, is the mass of the device, 𝛼 is the deflection angle and 𝑔 is the acceleration due to 

gravity [40]. Using equation (45) and the results of the deflection test, magnetic force was 

calculated for all four rods. The results are shown in Chapter 3, Table 2. 
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To compare the computational model to the experimental results, the computational model had to 

be set up. To set up the computational model, the magnetic susceptibility of the materials needed 

to be known. The rods were shipped with calibration certificates, but they did not contain 

magnetic susceptibility values. In order to determine magnetic susceptibility, the measured 

deflection angle of each respective device was used. From ASTM F2052-15,  𝜒 can be calculated 

using equation (46) [40]. 

 
𝜒 =

𝜌𝜇0𝑔 tan𝛼

|𝐵0
⃑⃑⃑⃑ | |∇|𝐵0

⃑⃑⃑⃑ ||
 

(46) 

 

Alternatively, by combining equations (43) and (45), 

 
𝜒(1 + 𝜒) =

𝑚𝑔 tan𝛼

(
𝑩0

𝜇0
𝑑𝑉 ∙ ∇)𝑩0

 
(47) 

 

and solving for 𝜒, equation (48) can be used.   

 

𝜒 =
1

2 |
|

(

 
 

±
√

𝑚𝑔 tan𝛼

(
𝑩0

𝜇0
𝑑𝑉 ∙ ∇)𝑩0

+ 1 − 1

)

 
 

|
| 

(48) 

 

In order to solve for 𝜒 from equation (48), and additionally to set up the simulation, the magnetic 

environment also needs to be known. As such, Bz field data was acquired from a 3T MRI system 

(Siemens Prisma) using a Hall-effect magnetic field probe at a sample spacing of 10 mm along 

the z-axis of the bore, Appendix D. Measurement was conducted along the z-axis of the bore 

using the laser landmark of the MR system to verify position within a +/-0.5 mm uncertainty. As 

described in ASTM F2052-15, along the scanner axis the magnetic field is known to only 

possess a z-component of magnetic flux density. This is the reason that the force tests are 

conducted along this axis of the scanner.  
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To model the magnetic environment a linear approximation, 𝐵𝑧,𝑙𝑖𝑛𝑒𝑎𝑟(𝑧),  of the field over the 

region in which the devices were placed was formed. 

 𝐵𝑧,𝑙𝑖𝑛𝑒𝑎𝑟(𝑧) = (∇𝐵𝑧,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)𝑧 + 𝐵𝑧,𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙(0) (49) 

 

The magnetic flux density as a function of z position was imported into MATLAB. The spatial 

gradient at every data point acquired was calculated and the slope of the line, equation (49), was 

taken as the average of the spatial gradients over the region in which the device was placed. The 

y-intercept of the linear approximation was determined by taking the average of three solutions 

of the y-intercept; using the equation of a line and the measured Bz value at the two edges of the 

device, and the center of the device. This provided the linear approximation shown in equation 

(50). 

 𝐵𝑧,𝑙𝑖𝑛𝑒𝑎𝑟(𝑧) = (4.2 𝑇 𝑚⁄ )𝑧 + 5.6 𝑇  (50) 

 

For the computational model, this linear approximation was used to model the magnetic 

environment. The linear approximation was used, rather than importing the measured field data 

directly, since the field data only contained information of Bz. This would violate equation (3) 

since the divergence is not zero, equation (51).  

 ∇ ∙ 𝐵𝑧  ≠ 0 (51) 

 

As such, a negative x component of magnetic flux density with the same profile as 𝐵𝑧,𝑙𝑖𝑛𝑒𝑎𝑟 was 

also added to the magnetic environment. The total magnetic environment was 𝐵𝑥 =

−𝐵𝑧,𝑙𝑖𝑛𝑒𝑎𝑟(𝑥), 𝐵𝑦 = 0, 𝐵𝑧 = 𝐵𝑧,𝑙𝑖𝑛𝑒𝑎𝑟(𝑧), more specifically 𝐵𝑥 = −(4.2 𝑇 𝑚⁄ )𝑥 + 5.6 𝑇, 𝐵𝑦 =

0, 𝐵𝑧 = (4.2 𝑇 𝑚⁄ )𝑥 + 5.6 𝑇,  which satisfies equation (3). The symmetry of the simulation 

cancels out the x component of the field within the device such that 𝐵𝑥 does not affect the 

simulation other than providing sufficient magnetic environment to satisfy the divergence 

requirement of Maxwell’s equations.  

Again using the linear approximation, magnetic susceptibility of each rod was determined. From 

equation (48), the linear approximation of the field can be used to integrate the magnetic flux 
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density over each specific device, and plugging in the measured deflection angle, mass of each 

specific device, 𝜒 can be determined for each rod.  

Within the simulation, a cylinder of radius 0.00635 m, length L, and magnetic susceptibility 𝜒 

was added at a location of -0.8 m from the isocenter. This simulation was computed for all four 

rods from Table 1. The results of the simulation as well as a comparison to the experimental 

results can be found in Chapter 3; Figure 17 and Table 3. 

Additionally, as the device was again a cylinder, using the same derivation as equation (44), an 

analytic solution could be derived for this experimental case; (52). The geometry of equation 

(52) is visualized in Figure 8.  

𝐹𝑧 = 

 𝜒(1 + 𝜒)𝜋𝑟2 ∫ (4.2 𝑇 𝑚⁄ )𝑧 + 5.6 𝑇 𝑑𝑧(4.2𝑇 𝑚⁄ )
−0.8+(

𝐿
2
)

−0.8−(
𝐿
2
)

𝜇0
  , 𝐹𝑥 = 𝐹𝑦 = 0 

(52) 

  

 

 

 

 

 

 

 

 

  

x 
z = -0.8 m 

y 

-z 

Figure 8 – Geometry of a rod position within a COMSOL simulation. A rod of radius r = 0.635 

cm and length L was centered along the z axis with the midpoint of the rod at a position of z = -

0.8 m. The integration over the volume of this cylinder is thus 𝜋𝑟2 ∫ 𝑑𝑧
−0.8+(

𝐿

2
)

−0.8−(
𝐿

2
)

.  

 

L/2 L/2 
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Chapter 3: Results 

 

In order to validate a computational model of magnetic force, an analytic model was derived. 

With a simple device and idealized magnetic environment, both models were computed for 

identical cases. The results from varying the magnetic susceptibility of a cylinder with a constant 

length are shown in Figure 9. Results from varying the length of the cylinder at a constant 

magnetic susceptibility are shown in Figure 11. Using the analytic model as truth, the percent 

error between the simulated result and the analytic solution was calculated. Percent error when 

varying the magnetic susceptibility of a cylinder with a constant length is shown in Figure 10. 

Percent error when the length of the cylinder is varied at a constant magnetic susceptibility is 

shown in Figure 12. 

 

Figure 9 - Magnetic force as a function of magnetic susceptibility, χ, for a cylinder of radius 

1.27 cm, and length 2.54 cm in a magnetic environment 𝐵𝑥 = −0.5𝑥 𝑇, 𝐵𝑦 = 0 , 𝐵𝑧  =

0.5𝑧 𝑇.   Cylinder is positioned about the z-axis. Simulated results and analytic solution are 

shown. Analytic solution is given by 𝐹𝑧 = 
𝜒(1+𝜒)𝜋𝑟2 ∫ 𝑧 𝑑𝑧

𝐿
0

4𝜇0
  , 𝐹𝑥 = 𝐹𝑦 = 0 where L is 2.54 cm.  
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Figure 10 – (Top) Percent error when simulated results are compared to an analytic solution 

for the magnetic force of a cylinder of radius 1.27 cm, and length 2.54 cm in a magnetic 

environment 𝐵𝑥 = −0.5𝑥 𝑇, 𝐵𝑦 = 0 , 𝐵𝑧  = 0.5𝑧 𝑇 as a function of magnetic susceptibility, χ. 

Cylinder is positioned about the z-axis. Analytic solution is given by 𝐹𝑧 = 
𝜒(1+𝜒)𝜋𝑟2 ∫ 𝑧 𝑑𝑧

𝐿
0

4𝜇0
  ,

𝐹𝑥 = 𝐹𝑦 = 0 where L is 2.54 cm. (Bottom) Axis limit of above plot is restricted to 𝜒 < 104 ppm 

as implant-grade metals have values of susceptibility < 104 ppm.  
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Figure 11 - Magnetic force as a function of cylinder length, L for a cylinder of radius 1.27 cm, 

and magnetic susceptibility 100 ppm in a magnetic environment 𝐵𝑥 = −0.5𝑥 𝑇, 𝐵𝑦 = 0 , 𝐵𝑧  =

0.5𝑧 𝑇.   Cylinder is positioned about the z-axis. Simulated results and analytic solution are 

shown. Analytic solution is given by 𝐹𝑧 = 
𝜒(1+𝜒)𝜋𝑟2 ∫ 𝑧 𝑑𝑧

𝐿
0

4𝜇0
  , 𝐹𝑥 = 𝐹𝑦 = 0 where 𝜒 is 100 

ppm. 
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Figure 12 - Percent error when simulated results are compared to an analytic solution for the 

magnetic force of a cylinder of radius 1.27 cm and magnetic susceptibility 100 ppm in a 

magnetic environment 𝐵𝑥 = −0.5𝑥 𝑇, 𝐵𝑦 = 0 , 𝐵𝑧  = 0.5𝑧 𝑇 as a function of cylinder length, 

L. Cylinder is positioned about the z-axis. Analytic solution is given by 𝐹𝑧 = 
𝜒(1+𝜒)𝜋𝑟2 ∫ 𝑧𝑑𝑧

𝐿
0

4𝜇0
  ,

𝐹𝑥 = 𝐹𝑦 = 0 where 𝜒 is 100 ppm. 

 

In order to experimentally validate a computational model of magnetic force, a magnetic force 

deflection test was performed for several rods. Table 2 shows the results of these tests and gives 

the average deflection angle measured over three trials of each test. The magnetic force as 

calculated by equation (45) is also provided.  
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Material Length, L 

[m] 

±0.01mm 

Mass, m 

[kg] 

±0.1g 

Average 

Deflection, α [deg] 

±0.3° 

Force [N] 

F=mgtanα 

 

316 Steel 0.0254 0.0255 15.3 0.069 ± 0.007  

0.1000 0.1002 14.3 0.25 ± 0.03  

304 Steel 0.0254 0.0256 23.0 0.11 ± 0.01  

0.1000 0.1001 21.1 0.38 ± 0.04 

Table 2 – Experimental results of deflection test conducted for each of the four rods specified in 

the table, as conducted to methods outlines in Appendix A. All rods have radius, r=0.635 cm. 

Data sheets for the steels are included in Appendix C. Rod lengths were machined to the values 

listed in the table. Deflection test conducted at a 3T (Siemens Prisma) MRI system. Deflection 

angle was average over three trials of measurement. Magnetic susceptibility of the steels was not 

included in the data sheets and thus was unknown.  

In order to determine the magnetic susceptibility of each device, and to define a magnetic 

environment within the computational model the z component of the magnetic flux density of the 

3T (Siemens Prisma) system was measured. Figure 13 plots this data. From this data a linear 

approximation to the measured field was derived. This linear approximation is shown in Figure 

14 and the difference between the linear approximation and the measured field data is presented 

in Figure 15.  
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Figure 13 – (Top) Bz field as a function of z down the center on axis line of a 3T MRI 

(Siemens Prisma) as measured by a Hall-effect magnetic field probe. Z position is measured as 

the distance from the isocenter where the isocenter is defined as z = 0. Data points were 

measured with sample spacing of 10 mm. Measured data table included in Appendix D. 

(Bottom) The region along z over which 10-cm rods are placed shown with vertical black 

lines. The region along z over which 2.54-cm rods are placed shown with vertical cyan lines. 

Error bars are too small to be seen.  
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Figure 14 – Linear approximation, as calculated in 2.2.3, 𝐵𝑧,𝑙𝑖𝑛𝑒𝑎𝑟(𝑧) = (4.2 𝑇 𝑚⁄ )𝑧 + 5.6 𝑇, 

of the experimentally measured Bz field data. Bz field as a function of z down the center on axis 

line of a 3T MRI (Siemens Prisma) as measured by a Hall-effect magnetic field probe. Axis 

limited to highlight approximate region over which the rods are placed. Z position is measured 

as the distance from the isocenter where the isocenter is defined as z = 0. Data points were 

measured with sample spacing of 10 mm. Measured data table included in Appendix D. Error 

bars are too small to be seen. 
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Figure 15 – Difference when comparing the linear approximation, 𝐵𝑧,𝑙𝑖𝑛𝑒𝑎𝑟(𝑧) =

(4.2 𝑇 𝑚⁄ )𝑧 + 5.6 𝑇, to the experimentally measured Bz field data over the approximate 

region over which the rods are placed. The region along z over which 10 cm rods are placed 

shown with vertical black lines. The region along z over which 2.54 cm rods are placed shown 

with vertical cyan lines. Bz field as a function of z down the center on axis line of a 3T MRI 

(Siemens Prisma) as measured by a Hall-effect magnetic field probe. Z position is measured as 

the distance from the isocenter where the isocenter is defined as z = 0. Data points were 

measured with sample spacing of 10 mm. Measured data table included in Appendix D. Error 

bars are too small to be seen. 

 

Using the linear approximation, deflection and equation (48), magnetic susceptibility for each 

device was determined. These values of 𝜒 are listed in Table 3. Using these specific values for 

each length and material, the computational model was used to determine a simulated value of 

magnetic force, which also present in Table 3.  

Both experimental, and computational values of magnetic force are presented in Figure 16. 

Comparing the simulation results of magnetic force to the experimentally calculated values of 

magnetic force, the percent difference between these data sets is shown in Figure 17, and Table 

3. 
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Material Length, L [m] 

±0.01mm 

𝜒 [ppm] 

× 103 

Simulated 

Force [N] 

 

Force [N] 

F=mgtanα 

 

% Difference 

316 Steel 0.0254 2.8 ± 0.3 0.06842 0.069 ± 0.007  0.20 

 0.1000 2.6 ± 0.3 0.2508 0.25 ± 0.03  0.064 

304 Steel 0.0254 4.4 ± 0.5 0.1062 0.11 ± 0.01  0.35 

 0.1000 4.0 ± 0.5 0.3790 0.38 ± 0.04 0.31 

Table 3 – Experimentally calculated magnetic susceptibility, simulated value of magnetic force 

and percent difference between simulated value of magnetic force and experimental value of 

force for each of the four rods specified in the table. Magnetic susceptibility was calculated using 

the results of the deflection test listed in Table 2, the linear approximation to the magnetic flux 

density of the 3T calculated in 2.2.3 and equation (48). This value of χ was used in the 

computational model of force to produce the simulated magnetic force values presented in the 

table. The percent difference is the result of comparing these simulated values of force to the 

experimentally determined values of force in Table 2.  
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Figure 16 – Magnetic force as calculated by an experimental deflection test as conducted to 

methods outlines in Appendix A, and simulation for two steels, 316 and 304, at two lengths 

per steel, 2.54 cm and 10 cm. Specifications of the rods are found in Table 1 and magnetic 

susceptibilities are found in Table 3. Deflection test conducted at a 3T (Siemens Prisma) MRI 

system. Simulation performed within computational model developed in 2.2.1. Error bars are 

omitted as the experimental value of magnetic force is used to calculate the magnetic 

susceptibility value used in the simulation. Any error present in the experiment is 

automatically present in the simulation. Error bars would thus be redundant when looking to 

compare the data sets.   
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Figure 17 – Percent difference when comparing simulated value of magnetic force and 

experimental value of force two steels, 316 and 304, at two lengths per steel, 2.54 cm and 10 

cm. Experimental value of magnetic force as calculated by an experimental deflection test as 

conducted to methods outlines in Appendix A. Specifications of the rods are found in Table 1 

and magnetic susceptibilities are found in Table 3. Deflection test conducted at a 3T (Siemens 

Prisma) MRI system. Simulation performed within computational model developed in 2.2.1. 
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Chapter 4: Discussion and Conclusion   

 

This chapter reflects on the main results from Chapters 3. Future work involving additional 

validation of the computational model of magnetic force with extensions to measurements of 

torque are suggested. Two projects involving the extension of the methods described in this 

thesis are presented as appendixes. Conclusions are drawn on the basis of the findings in this 

thesis. In particular, the computational method of evaluating magnetic force is advocated for 

medical devices of materials of magnetic susceptibility less than 104 ppm.  

4.1 Analytic Validation  

The initial validation, an analytic validation, involved the calculation of the magnetic force on a 

simple medical device in an idealized magnetic field. Using both analytic and computational 

methods, a cylinder of radius 1.27 cm, length L and magnetic susceptibility 𝜒 was centered along 

the z-axis with the center of cylinder at isocenter in a magnetic environment 𝐵𝑥 = −0.5𝑥 𝑇, 𝐵𝑦 =

0 , 𝐵𝑧  = 0.5𝑧 𝑇.  Figure 9 shows a linear increase in both simulated and analytic values of 

magnetic force for values of magnetic susceptibility below 105 ppm. For larger susceptibilities, 

the simulation begins to underestimate force compared to the analytic solution. Using the 

analytic model as truth, the percent error between the simulated result and the analytic solution 

was calculated. Figure 10 shows the percent difference between the two data sets. Error is less 

than 1% for 𝜒 <104 ppm, and less than 10% for 𝜒 <105 ppm. Above 𝜒 = 105 ppm, percent error 

has a very large increase.  The increase in percent error is likely due to materials entering the 

regime of ferromagnetism. As magnetic susceptibility increases beyond 104 ppm they become 

ferromagnetic. As such it is likely the simulation does not account for the increasing effect of 

ferromagnetic magnetization. That is, the simulation under represents the non-linearity of the 

magnetic material. Additionally, it is likely that the simulation is underestimating the effect the 

magnetization has on the surrounding field as 𝜒 increases. As previously described, 

magnetization and magnetic flux density have a cyclic nature. The simulation likely begins to 

underestimate this nature at 𝜒 >104 – 105 ppm. Implant-grade metals (i.e. stainless steel 316, 

cobalt-chromium alloys, titanium alloys) however, all have 𝜒 less than or on the order of 104 

ppm, where error would be less than 1%.  
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Again, using both analytic and computational methods, a cylinder of radius 1.27 cm varied 

length, L, and magnetic susceptibility 100 ppm, centered along the z axis with the center of 

cylinder at isocenter in a magnetic environment 𝐵𝑥 = −0.5𝑥 𝑇, 𝐵𝑦 = 0 , 𝐵𝑧  = 0.5𝑧 𝑇. Figure 11 

shows both the analytic and simulated force due to a cylinder of varying length. Magnetic force 

in both simulated and analytic values of magnetic force increases as length increases. This is due 

to two factors. The rod is extending into regions of larger spatial gradient and thus is 

experiencing a larger force, and the device is increasing in mass. The larger the device the more 

magnetization it can develop and the larger the force it will experience. Simulation and analytic 

solutions appear to agree. The percent error between the two data sets, shown in Figure 12, 

increases slightly with length but is less than 0.6% for all lengths. Percent error is dominated by 

magnetic susceptibility rather than device size.  

The results give confidence that the computational model of magnetic force is sufficient to 

predict magnetic forces on materials with magnetic susceptibility less than 105 ppm, and is ideal 

for use on materials with magnetic susceptibility less than 104 ppm such as implant-grade metals. 

 

4.2 Experimental Validation 

To further validate the computational model of magnetic force, an experimental investigation of 

force was performed. A force deflection test was conducted for two alloys of steel, both at a 

radius of 0.635cm, and length of 2.54 cm and 10 cm. Table 2 shows the average angle of 

deflection measured over three trials of deflection and the associated force calculated for that rod 

based on the average angle of deflection. As previously seen in the analytic validation, force 

increases as length of material increases as expected. Additionally, force is always higher for the 

304 steel rod than the associated 316 steel rod. This is also to be expected since 304 steel has a 

higher magnetic susceptibility, and as seen with the analytic validation, higher susceptibilities 

lead to greater forces.   

To produce simulations of force the magnetic susceptibilities of the materials had to be deduced. 

Additionally, to define a magnetic environment within the computational model the magnetic 

environment of the 3T system had to be known. This required measuring the 3T (Siemens 

Prisma) system. The z component of the magnetic flux density was measured with a Hall-effect 
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field probe precise to 0.1 mT within 0.5 mm positioning certainty. Considering the field is 

spatially dependent, the positioning uncertainty would also produce uncertainty in the magnetic 

flux density. Using the approximate field gradient within the region of device testing, equation 

(50), this would lead to a total possible error in field measurement of approximately 25 mT due 

to positional uncertainty, roughly 1%. From this data, Figure 13, the magnetic flux density looks 

to be linear over the region in which the devices are placed. As such a linear approximation of 

the measured field data was derived, Figure 14. The difference between the linear approximation 

and the measured field data is presented in Figure 15 where the regions of z where the 2.54 cm 

and 10 cm lengths of rods would lie are denoted by corresponding vertical black and cyan lines. 

Within these regions the difference in linear approximation is approximately 10 mT, roughly 

0.5% error, at the mid-point position of z = -0.8 m; and 25 mT, roughly 1% error, at the point of 

largest difference. Combining this with the measurement uncertainty of the field itself, it is 

estimated that the linear approximation has at most 2 % error for any given point. This difference 

was considered acceptable and the linear approximation was applied.  

Using the linear approximation, deflection angle, and equation (48), the associated magnetic 

susceptibility was solved for each rod, shown in Table 3. The magnetic susceptibility of 316 steel 

is approximately 2700 ppm and magnetic susceptibility is approximately 4200 ppm for 304 steel, 

both within the region of susceptibilities for stainless steels [17], [38]. Of note is that the two 

calculated susceptibilities for the 316 steel have a 7.2% difference between each other and for the 

304 steel the susceptibilities have a 9.8% difference. It is expected that for each respective steel 

the two lengths have identical magnetic susceptibility as the different lengths of rods were 

machined from the same sample. This discrepancy in magnetic susceptibility between lengths of 

rods is due to experimental errors and uncertainties in the deflection test, and measurement 

uncertainties of the magnetic field measurements and resulting linear approximation to the field. 

When propagating the experimental uncertainties, the experimental measurement of force has an 

uncertainty within approximately 10-12% of the value of force. As previously discussed, the 

error of the linear approximation to the field could be as high as 2%. Since the magnetic 

susceptibility is calculated using the experimentally measured value of magnetic force and the 

linear approximation, using equation (48), these uncertainties carry into the value of χ. When 

considering this, and propagating these uncertainties, the values of χ for each material, 304 and 

316 stainless steel, agree within experimental uncertainty.  
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The goal however, is to compare the computational method of calculating magnetic force and the 

experimental method of calculating magnetic force. Since the computational method implements 

the linear approximation, the calculated values of χ can be taken as truth. Using the calculated 

values of χ, any error within the value of χ from the experimental measurement of force is then 

an input into the simulation. Thus when comparing the simulation to the experimental value of 

force, all sources of error in the value of χ from experiment are cancelled. Additionally, since the 

computational model implements the magnetic environment using the linear approximation, any 

error in χ from the use of this approximation are also already accounted for.  

Using the specific calculated values of χ for each length and material, the computational model 

of magnetic force was used to determine a simulated value of magnetic force, which is presented 

in Table 3. The magnetic force produced by simulation was less than the measured force in all 

cases, as illustrated in Figure 16 where both experimental and computational values of magnetic 

force are presented. Error bars are omitted as the experimental value of magnetic force is used to 

calculate the magnetic susceptibility value in the simulation. Any error present in the experiment 

is automatically present in the simulation. Error bars would thus be redundant when comparing 

the data sets. This result agrees with the findings of the analytic validation, which predicted that 

for susceptibilities over 1000 ppm the simulation would start to under estimate force. This under 

prediction is very small however, as the percent difference between these data sets is less than 

1%, shown in Figure 17, where the simulation results of magnetic force and the experimentally 

calculated values of magnetic force are compared, and Table 3. Again, this matches the results of 

the analytic validation as it predicted error less than 1% for 𝜒 <104 ppm. Figure 17 also shows a 

trend of increased percent difference in 304 steel over 316 steel which agrees with the trend of 

increased percent difference of the simulation as magnetic susceptibility increases. Additionally, 

percent difference seems to decrease for the longer device. This could be due to increased 

computational nodes, which gives a more accurate representation of magnetization.  
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4.3 Conclusion 

 

The objective of this thesis was to develop and validate a computational capacity to predict the 

magnetic force experienced by any medical device in any MRI-relevant environment. Using 

analytic techniques, it was shown that for materials with magnetic susceptibility <105 ppm, a 

computational model of magnetic force was correct within 10% error, which decreased to less 

than 1% for χ <104 ppm. The size of the device had little effect on error. Experimentally, two 

steels of magnetic susceptibility <104 ppm had error less than 1%. The computational model of 

magnetic force is ideal for use on materials with magnetic susceptibility less than 104 ppm such 

as implant-grade metals.  

Current regulatory standards require physical testing to be conducted in a conservative manner 

using a “worst-case” device or device configuration. One of the most difficult elements of 

carrying out this procedure is the determination of what represents a “worst-case” device or 

device configuration. Simulation offers the potential for a systematic procedure for identification 

of the worst-case device or device configuration for magnetic force from an otherwise 

impossibly large set of options. The work presented in this thesis gives support to the claim that 

force can be predicted within 1% of the current experimental methods of measuring magnetic 

force, for devices within magnetic susceptibility less than 104 ppm. However, patient safety is at 

the utmost concern, and testing method needs to be rigorously validated in order to not 

compromise patient safety. This thesis does give confidence in the use of simulation in the 

context of static magnetic field interactions of medical devices in the MRI environment and with 

further research, the computational model developed could be implemented to predict the 

magnetic force of medical devices in order to determine what represents a “worst-case” device or 

device configuration. 
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4.4 Future Work  

As an extension to the work presented in this thesis several future works are suggested. Future 

work involving additional validation of the computational model of magnetic force with more 

complex devices, extensions of the model to include measurements of torque, and testing of 

magnetic materials with known magnetic susceptibilities is suggested. Additionally, two projects 

extending the methods of this thesis to evaluate field inhomogeneities are presented. 

Further validation of the computational model of magnetic force with more complex devices 

would greatly improve confidence in the model. As larger, more complex geometries can 

generally be thought of the combination of multiple simple parts, the work in this thesis should 

extended very well to larger more complex devices. However, very small features and edges of 

more complex device geometries have the potential to produce larger differences between the 

computational model and experimental results as the computational could fail to accurately 

represent these geometries.  

To better understand the error within experimental and simulated measures of magnetic force, 

deflection tests with materials of known susceptibilities should be conducted. The experimental 

values of force were used as the gold standard to compare the computational model for 

validation. However, there is a relatively large uncertainty in the experimentally measured values 

of magnetic force which leads to an uncertainty in the value of magnetic susceptibility used in 

the computational model. The validity of the computational model could be better determined if 

simulations with materials of known magnetic susceptibility were to be conducted and 

experimentally validated.  

The computational model could also be extended to include interactions of torque. The added 

capacity to simulate torque would greatly improve the practicality of this model in a device 

testing application. This added capacity would also need to be experimentally validated.  

The methods described in this thesis can also be extended to evaluate field inhomogeneities. For 

evaluation of magnetic force, magnetic environments can be implemented and magnetic 

materials can be simulated in these environments. In order to calculate magnetic force, detailed 

information of the effect of these materials on the magnetic field is exported. Using similar 
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computational methods developed in this thesis, with different analysis scripts, the work in thesis 

can be expanded to evaluate field inhomogeneities. Appendixes E and F describe two projects 

that were undertaken together with an industry partner, Synaptive Medical (Toronto, Canada). In 

Appendixes E main field homogeneity of a MR main magnet is investigated in the presence of 

foreign materials. In Appendixes F systematic errors of nuclear magnetic resonance field probes 

are investigated as a guide to their construction. 
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Appendix A: ASTM F2052-15 Magnetic Force Deflection Test  

As per ASTM F2052-15, testing of magnetic force is conducted using the magnetic fields 

produced by an MR system. The device-under-test (DUT) is suspended by a string of negligible 

weight at a location near the entrance of the bore. The DUT must be positioned such that after 

any deflection, the DUT is on the axis of the bore at a location of known field and field gradient. 

Because the test location is along the axis of the scanner, the magnetic field is known to have a 

single component (parallel to the axis). The angular deflection of the device at this location is 

used to obtain a measurement of the magnetic force in relation to the force of gravity on that 

object. If the mass of the object is known, the magnetic force can be calculated from the 

deflection angle. Because the test is conducted at a location of well-characterized magnetic field, 

the expected magnetic force for other magnetic field environments (specifically, other 

combinations of magnetic field and magnetic field gradient) can be extrapolated from the results. 

Because the magnetic force is generally larger for higher magnetic fields, a 3 T system is used. 

For the 3 T system, the angular deflection of the string is measured at a distance of 0.8 m from 

the isocenter of the system, and at a height of 0.3 m from the top of the bore.  

 

Figure 18 - Force deflection test conducted for a 10 cm rod of 316 stainless steel in a 60-cm bore 

3 T MRI system (Siemens Prisma). In this case, the 10 cm rod is suspended by a string at a 

location of 0.8 m from the isocenter of the system, and at a height of 0.3 m from the top of the 

bore (i.e. along the central axis of the system). The string is fixed to a protractor which is rigidly 

mounted to the test fixture with the 0° mark of the protractor oriented vertically. Magnetic force 

on the object is calculated based on the angle of deflection measured [40]. 
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The test fixture consists of a sturdy nonmagnetic structure which holds the test device in position 

and contains a protractor accurate to 1° rigidly mounted to the structure. The 0° mark of the 

protractor is oriented vertically. The medical device is suspended from a thin string, whose 

weight is less than 1% of the weight of the device, that is attached to the 0° mark of the 

protractor. The test location is at the entrance of the MR system bore and on the axis of the bore.  

The test device is suspended from the string and is positioned such that the device’s center of 

mass is located at a distant of 0.8 m from the isocenter of the system and at a height of 0.3 m 

from the top of the bore, Figure 18. The deflection angle, α, is recorded alongside the magnitude 

of the B field and spatial gradient of the B field. The test process is repeated a minimum of three 

times per device.   
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Appendix B: Derivation of Magnetic Force Equation  

This appendix will demonstrate that when the magnetic moment is spatially dependent, equations 

(B.1) and (B.2) are not equal. A derivation of the magnetic force equation introduced in 1.3.4 

and used throughout this thesis, equation (B.2), is presented.  

The force on a magnetic dipole moment is described in [44] as  

 𝑭 = ∇(𝒎 ∙ 𝑩) (B.1) 

 

which has been cited to be the same as equation (B.2) 

 𝑭 = (𝒎 ∙ ∇)𝑩 (B.2) 

 

when 𝑱 =
𝜕𝑬

𝜕𝑡
= 0 [55]. 

This is in fact not the case, and can be demonstrated by using the identity: 

 ∇(𝑨 ∙ 𝑪) =  (𝑨 ∙ ∇)𝑪 + (𝑪 ∙ ∇)𝑨 + 𝑨 × (∇ × 𝑪) + 𝑪 × (∇ × 𝑨)  (B.3) 

 

such that equation (B.2) can be expressed as equation (B.3).  

 ∇(𝒎 ∙ 𝑩) =  (𝒎 ∙ ∇)𝑩 + (𝑩 ∙ ∇)𝒎 + 𝒎 × (∇ × 𝑩) + 𝑩 × (∇ × 𝒎)  (B.4) 

 

From equation (B.5),  

 
∇ × 𝑩 = 𝜇0 (𝑱 + 𝜖0

𝜕𝑬

𝜕𝑡
) 

(B.5) 

 

in the case where 𝑱 =
𝜕𝑬

𝜕𝑡
= 0, ∇ × 𝑩 = 0. This eliminates the third term of equation (B.4). 

Additionally, since the magnetic moment can be written in terms of B, equation (B.12), the 

fourth term also becomes 0. Equation (B.4) then simplifies to equation (B.6).  



61 
 

 ∇(𝒎 ∙ 𝑩) =  (𝒎 ∙ ∇)𝑩 + (𝑩 ∙ ∇)𝒎 (B.6) 

 

Using equations (B.7), (B.8), (B.9) and (B.10),  

 𝑩 = 𝜇0(𝑯 + 𝑴) (B.7) 

 

 𝒎 = 𝑴𝑑𝑉 (B.8) 

 

 𝑴 = 𝜒𝑯 (B.9) 

  

 𝑩 = 𝜇𝑯 (B.10) 

 

B can be written as 

 
𝑩 = 𝜇0𝒎

1 + 𝜒

𝜒𝑑𝑉
 

(B.11) 

 

or 

 𝑩 = 𝑘𝒎 (B.12) 

 

where k is a constant.  

 
𝑘 = 𝜇0

1 + 𝜒

𝜒𝑑𝑉
 

(B.13) 

 

Substituting 𝑩 for 𝑘𝒎 in equation (B.6), 

 ∇(𝒎 ∙ 𝑩) =  (𝒎 ∙ ∇)𝑘𝐦 + (𝑘𝐦 ∙ ∇)𝒎 (B.14) 
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collecting terms,  

 ∇(𝒎 ∙ 𝑩) =  2(𝑘𝒎 ∙ ∇)𝒎 (B.15) 

 

and substituting k, equation (B.2) does not in fact equal equation (B.1) in the case where the 

magnetic moment is spatially dependent.  

 ∇(𝒎 ∙ 𝑩) =  2(𝒎 ∙ ∇)𝑩 (B.16) 

 

In the case where the magnetic moment is spatially independent, then the second term of 

equation (B.4) would also be 0 since ∇𝒎 = 0, and ∇(𝒎 ∙ 𝑩) would in fact equal (𝒎 ∙ ∇)𝑩. The 

factor of two discrepancy in equation (B.16) comes from the dependence the magnet moment has 

on the magnetic flux density. A full derivation of equation (B.2) will make this clear.  

From the Lorentz force, 

 
𝑭 = 𝐼 ∮𝑑𝒍 × (𝒓 ∙ ∇)𝑩 

(B.17) 

 

where the integration path is any closed loop that encloses the current 𝐼 exactly once. Using 

Levi-Civita notation to represent the dot and cross product, this can be expressed as equation 

(B.18) [67].   

 
𝐹𝑖 = 𝐼 ∑ 𝜖𝑖𝑗𝑘

𝑗,𝑘,𝑙

∮𝑟𝑙𝑑𝑙𝑗∇𝑙𝐵𝑘 
(B.18) 

 

If we assume ∇𝐵𝑘 is constant then, 

 
∮∇𝑙𝐵𝑘𝑟𝑙𝑑𝑙𝑗 =𝒂 × ∇𝐵𝑘 

(B.19) 

 

where 𝒂 is the vector area previously defined in 1.3. Again using Levi-Civita notation, 
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∑∮𝑟𝑙∇𝐵𝑘𝑑𝑙𝑗 = ∑𝜖𝑗𝑚𝑛𝑎𝑚

𝑚,𝑛𝑙

(∇𝐵𝑘)𝑛 
(B.20) 

 

and plugging this back into equation (B.18) 

 𝐹𝑖 = 𝐼 ∑ 𝜖𝑖𝑗𝑘𝜖𝑗𝑚𝑛𝑎𝑚

𝑗,𝑘,𝑚,𝑛

(∇𝐵𝑘)𝑛 
(B.21) 

 

force can be expressed as equation (B.22).  

 𝐹𝑖 = 𝐼 ∑𝑎𝑘(∇𝐵𝑘)𝑖 

𝑘

− 𝐼 ∑𝑎𝑖(∇𝐵𝑘)𝑘 

𝑘

  (B.22) 

Where the magnetic moment is given by equation (B.23), 

 𝒎 = 𝐼𝒂 (B.23) 

 

and the second term of equation (B.22) becomes 0 since ∇ ∙ 𝐵 = 0, then 

 

 𝐹𝑖 = ∑𝑚𝑘∇(𝐵𝑘)𝑖 

𝑘

 
(B.24) 

 

which gives equation (B.2).  

 𝑭 = (𝒎 ∙ ∇)𝑩 (B.2) 

 

Where 𝒎 is spatially independent, 𝑚𝑘 can be brought into the gradient operation of equation 

(B.24),  
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 𝐹𝑖 = ∑∇(𝑚𝑘𝐵𝑘)𝑖 

𝑘

 
(B.25) 

 

which is equivalent to equation (B.1), and actually how equation (B.1) is derived [44]. However, 

for magnetic materials, where 𝒎 is spatially dependent, bringing in 𝑚𝑘 would be invalid. In this 

case, 𝒎 has the same spatial dependence as B and therefore would result in an extra factor of two 

if it were brought into the gradient operation of equation (B.24), as seen in equation (B.16).   

For magnetic materials, where 𝒎 is dependent on the magnetic flux density, and therefore 

spatially dependent, equation (B.2) should be used. As this thesis focuses on examining the static 

magnetic field interactions experienced by medical devices, which are magnetic materials, it uses 

equation (B.2).  
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 Appendix C: Certificates of Tests for Stainless Steel Rods 
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Appendix D: Measured Magnetic Field Data for 3T MRI 

System  

Distance from 

isocentre, z [m] 

± 0.5 mm 

Bz [T]      

± 0.1 mT 
 

Distance from 

isocentre, z [m]  

± 0.5 mm  

Bz [T]      

± 0.1 mT 

1000.00 1.478  810.00 2.268 

990.00 1.521  800.00 2.305 

980.00 1.559  790.00 2.341 

970.00 1.604  780.00 2.378 

960.00 1.644  770.00 2.412 

950.00 1.687  760.00 2.448 

940.00 1.729  750.00 2.480 

930.00 1.775  740.00 2.510 

920.00 1.815  730.00 2.541 

910.00 1.859  720.00 2.571 

900.00 1.901  710.00 2.600 

890.00 1.941  700.00 2.626 

880.00 1.986   

860.00 2.069   

850.00 2.112   

840.00 2.150   

830.00 2.191    

820.00 2.230    

 

Table 4 – Bz field as a function of z down the center on axis line of a 3T MRI (Siemens Prisma) 

as measured by a Hall-effect magnetic field probe. Z position is measured as the distance from 

the isocenter where the isocenter is defined as z=0. Data points were measured with sample 

spacing of 10 mm. All uncertainties are estimated.  
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Appendix E: Investigation of the Effects of Foreign Magnetic 

Materials Positioned Outside an MRI System on the Main 

Field Homogeneity of that System 

 

This Appendix describes a project related to, but separate from the primary thesis work described 

in Chapters 2 through 4. The objective of this project was to simulate the effects that relatively 

large amounts of magnetic material, placed outside a realistic model of an MRI magnet, would 

have on the homogeneity of that magnet. This project was conducted as part of an industry-

sponsored internship. The objective of the industry partner was to develop a systematic method 

for analyzing the potential effects that magnetic materials in MRI installations would have on 

their system performance. 

The reason this Appendix is included in this thesis is that this project leveraged many of the 

same simulation tools as those developed to model magnetic forces on medical devices. To the 

extent that these tools become validated for the application described in this appendix, this 

project would serve to support the validity of the tools for use in the medical device application 

described in Chapters 2 through 4. Furthermore, this project required the additional step of 

producing a simulation of a full 3D model of a realistic MRI system, and as such represented an 

additional challenge to the methods developed in the primary thesis. 

MRI relies on the assumption that the main field is stable and homogeneous, and deviations from 

homogeneity will result in image artifacts to varying degrees depending on the specific MR 

imaging methods employed [37]. When planning and evaluating facilities in which an MR 

system will be placed, one must often consider the effects of surrounding magnetic materials on 

the homogeneity of the main field. As one example, in the construction and planning of a MR 

installation, the addition of a steel plate in the floor may considered with the objective of 

reducing the stray fields beyond the plate. This is a form of passive magnetic shielding employed 

in various ways in some MRI system installations.  

In this work the objective was to investigate the effect a non-linear magnetic steel plate placed 

below a MR scanner would have on the homogeneity of the magnetic field within the imaging 
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region of that realistic scanner model. A secondary objective was to provide a systematic means 

of evaluating site-planning choices on MR system performance prior to installation.  

 

E.1 Magnet Design 

A simple Helmholtz coil was selected in order to in some way validate the use of COMSOL 

Multiphysics in this application. In principle an MR scanner main magnet can be simplified as a 

Helmholtz coil. The reason for considering this is that there is a known analytic solution for the 

magnetic field produced down the axis of a Helmholtz coil. By simulating the field produced by 

a Helmholtz coil to the corresponding analytic solution, the use of COMSOL can be partially 

validated. With this partial validation of COMSOL complete, a more realistic actively shielded 

magnet may be modeled with much more confidence.  

All design, modeling, and simulations were performed in COMSOL Multiphysics using the 

‘Magnetic Fields, mf’ package. For each simulation, all coil geometries were placed in a 

spherical infinite element domain of air. Simulation data was exported from all the simulations 

and the data was imported into MATLAB in order to enable visualization and further analysis.  

E.1.1 Methods for Modeling of Helmholtz Coil 
The coils of the Helmholtz pair were designed using circular regions formed in the geometry, 

using ‘work plane - plane geometry – circle’. The ‘edge current’ function within the ‘Magnetic 

Fields, mf’ package of COMSOL was used to assign 10 turns of 100 A of current to the coils. 

The details of the coils are found in Table 5.  

Coil Position in (x,y) plane, 𝒛 [m] Radius, 𝑹 [m] Turns,𝒏 Current, 𝑰 [A] 

1 -0.25 0.5 10 100 

2 0.25 0.5 10 100 

Table 5 - Specifications of the current carrying coils used to define a Helmholtz pair in a 

COMSOL simulation. The radius, number of turns, and current were arbitrarily chosen. Coil 

position was constrained such that the distance between the coils was equal to R.  

Meshing of the coils was performed with free tetrahedrals, while the outer domains of the 

spherical infinite element domain employed a swept mesh.  
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As shown in the introduction, 1.5.1, the field at the isocenter of a Helmholtz coil is given by: 

 

𝑩 = (
4

5
)

3
2 𝜇0𝑛𝐼

𝑅
�̂� 

(26) 

  

and the field down the center of the coil, is now given by  

 
𝑩(𝑧) =

𝜇0𝐼𝑅
2𝑛

2(𝑅2 + (𝑧 − 𝑙)2)3 2⁄  
�̂� +  

𝜇0𝐼𝑅
2𝑛

2(𝑅2 + (𝑧 + 𝑙)2)3 2⁄
 �̂� 

(27) 

 

where 𝑙 is the distance between the coil and the 𝑥𝑦-plane; for a Helmholtz coil centered around 

the 𝑧 = 0, 𝑥𝑦-plane, 𝑙 = 𝑅/2.  

Equations (26) and (27) were solved using the same coil position, radius, current and number of 

windings as listed in Table 5.  

E.1.2 Methods for Modeling Actively Shielded MRI Magnet  
 

A representative actively shielded magnet was modeled in COMSOL. The magnet consisted of 

seven inner coils and an additional two outer shielding coils. The example magnet design 

parameters were provided by Synaptive Medical Inc. 

The coil geometries were each designed using a combination of the ‘work plane’ and ‘revolve’ 

functions in COMSOL. The coils were then defined using the ‘Coil’ function within the 

‘Magnetic Fields, mf’ package of COMSOL with ‘Homogenized Multi-Turn Coils’ to include the 

effect of finite spatial windings. The current in all windings was adjusted to 137.75 A, such that 

the main field had a value of 0.5 T within 0.3 mT. All geometries were meshed using a free 

tetrahedral mesh.  

E.1.3 Results for Modeling of Helmholtz Coil 

The magnetic flux density produced by the COMSOL model of a Helmholtz coil is shown in 

Figure 19, in the x = 0, y-z plane. The field is close to uniform in what would be the imaging 
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region of the modeled scanner, is at its greatest intensity near the windings, and falls off quickly 

outside the windings. 

 

  

Figure 19 – Magnetic flux density along the x = 0, y-z plane for a simulation of a Helmholtz 

coil of radius 0.5 m, current 100 A, and 10 wire turns within COMSOL. Simulation computed 

using the ‘Magnetic Fields, mf’ package of COMSOL within a spherical infinite element 

domain. Arrows indicate direction of field.  

 

Figure 20 is a plot comparing the simulation data of a Helmholtz coil to the analytic solution of 

that same coil for the line through the coil axis. Figure 21 is a plot of the percent difference 

between the analytic solution and the simulation data.  
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Figure 20 – Magnetic flux density as a function of z for a Helmholtz coil of radius 0.5 m, 

current 100 A, and 10 wire turns. Analytic solution and COMSOL simulation results shown. 

The simulation data falls off as the data extends into the infinite element domain which begins 

at 1.8 z/R. As the data moves into the infinite element domain it will exponentially decrease to 

0. The horizontal axis is normalized to the coil radius and the vertical axis is normalized to the 

maximum value of 𝑩(𝒛).   
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Figure 21 – Percent difference when comparing the magnetic flux density as a function of z 

for a simulated Helmholtz coil to an analytic solution of the same Helmholtz coil of radius 0.5 

m, current 100 A, and 10 wire turns. The horizontal axis limits are truncated to 1.5 z/R in order 

to remove data points within the infinite element region. As the data moves into the infinite 

element domain it will exponentially decrease to 0. Percent difference in this region gives no 

information. The horizontal axis is normalized to the coil radius and the vertical axis is 

normalized to the maximum value of 𝑩(𝒛).  

 

E.1.4 Results for Modeling Actively Shielded MRI Magnet 

The resultant magnetic flux density profile from the modeled MR magnet is shown in Figure 22. 

Figure 23 is a plot of the magnetic flux density as a function of z position down the center line of 

the scanner.    
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Figure 22 – Magnet flux density profile produced by a COMSOL model of a standard actively 

shielded MR main magnet. The magnet consisted of seven inner coils and an additional two 

outer shielding coils. The current was adjusted such that the main field had a value of 0.5T 

within 0.3 mT. Simulation computed using the ‘Magnetic Fields, mf’ package of COMSOL 

within a spherical infinite element domain.  (Left) Magnetic flux density shown along the y = 

0, x-z plane. (Right) Zoomed in to better visualize the magnet flux density profile within the 

‘bore’ and coils.  

 

 

 

Figure 23 – Magnet flux density along the z-axis for a COMSOL model of a the example 

actively shielded MR main magnet. The magnet consisted of seven inner coils and an 

additional two outer shielding coils of finitely winded coil. The current was adjusted such that 

the main field had a value of 0.5 T within 0.3 mT. 
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E.2 Investigation of Main Field Homogeneity in Presence of 

Foreign Materials  

In this section the magnetic modeling methods presented above are used to model the additional 

effects of externally located magnetic materials could have on the field produced within the 

imaging region of the simple magnet model. Specifically, the effect of a large plate is considered. 

The materials of the plate were varied, and the effect the plate had on the uniformity of the main 

magnetic field profile were investigated. To begin with the plate was assumed to be a linear 

magnetic material (a material whose susceptibility is constant and independent of magnetic field 

strength). Following that a more complex non-linear magnetic material was modeled.  

E.2.1 Methods 

All design, modeling and simulations were performed in COMSOL Multiphysics using the 

‘Magnetic Fields, mf’ package. Magnet design and model from E.1.2 was employed. A plate of 

thickness 4 mm, and dimensions 3.0 m by 2.5 m was added to the model at a position of 𝑦 =

 −1.0 m as shown in Figure 24. Simulation data was exported from the simulations and all data 

analysis was performed in MATLAB. In order to investigate the effect of the addition of the plate, 

the background field (i.e. the field in the case that no plate is present) was subtracted from all 

data sets. Data from each simulation was interpolated onto a 1-mm isotropic grid using 

MATLAB. From this grid the background field was subtracted from the data.   
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Figure 24 - Geometry of a plate of thickness 4mm, and dimensions 3 m by 2.5 m added to the 

model of a seven coil actively shield MR scanner at a position of 𝑦 =  −1.0 m within 

COMSOL.  

 

A simulation-data analysis pipeline was generated to aid with the volume of simulations and data 

analysis in the investigation of linear magnetic materials. The pipeline contains elements of 

COMSOL, MATLAB, Python and COMSOL LiveLink with MATLAB. The pipeline is designed 

such that a user can run multiple iterations of a simulation all from a single script. This pipeline 

allows for simulations to be run in succession while iterating parameters within COMSOL.  

In order to investigate the presence of a linear magnetic material the plate domain was set to a 

blank material in COMSOL and using this pipeline the magnetic susceptibility of this material 

was iterated over values of 108 ppm, 107 ppm, 105 ppm and 10 ppm. These values were chosen to 

represent materials that are extremely ferromagnetic, slightly ferromagnetic, and paramagnetic.  

In order to investigate the presence of a non-linear magnetic material, the material of the plate 

was defined as iron and the constitutive relationship was interpolated from an assumed BH curve 

as shown in Figure 25. In COMSOL, a second ‘Ampere’s Law’ from the ‘Magnetic Fields, mf’ 

package is required in order to define the constitutive relation of the material to come from the 

BH curve.  
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Figure 25  - An example B-H curve, showing the magnetic flux density, B, as a function of 

magnetic field strength, H, for a hypothetical material. In this case the magnetic flux density is 

a non-linear function of applied magnetic field and ‘saturates’ at 2 T. This is the point where 

further increase of the applied field will not result in a change in the magnetic flux density.  

 

E.2.2 Results  

Figure 26 shows the field experienced by the plate due to the magnet. Figure 27 shows an 

example of how that field changes due to the presence of magnetic material. In this figure the 

plate has a susceptibility of 108 ppm and the color axis has a maximum of 0.2 Tesla to observe 

magnetic flux density as the location of the plate.  
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Figure 26 –  Magnet flux density profile at the location of a steel plate placed 1 m below the 

isocenter of a standard actively shielded MR main magnet as produced by a COMSOL model. 

The magnet consisted of seven inner coils and an additional two outer shielding coils. The 

current was adjusted such that the main field had a value of 0.5 T within 0.3 mT. 
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] 
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Figure 27 – Magnet flux density profile at the location of a steel plate of magnetic 

susceptibility 108 ppm placed 1 m below the isocenter of a standard actively shielded MR 

main magnet as produced by a COMSOL model. The magnet consisted of seven inner coils 

and an additional two outer shielding coils. The current was adjusted such that the main field 

had a value of 0.5T within 0.3 mT. Color axis has been limited to 0.2 T to observe magnetic 

flux density as the location of the plate.   

 

Figures 28-30 show the resulting change in field in the imaging region for plates of differing 

linear magnetic material.  
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Figure 28 – Change in magnetic flux density in the x = 0, Y-Z plane due to the presence of a 

linear magnetic plate of susceptibility: (top, left) 108 ppm, (top, right) 107 ppm, (bottom, left) 

105, (bottom, right) 10 ppm; at a distance of y = - 1 m to a standard actively shielded MR main 

magnet of field strength 0.5 T. Change in magnetic flux density calculated by subtracting the 

magnetic flux density results of the simulation without a plate from the simulation with a plate. 
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Figure 29 - Change in magnetic flux density in the z = 0, X-Y plane due to the presence of a 

linear magnetic plate of susceptibility: (top, left) 108 ppm, (top, right) 107 ppm, (bottom, left) 

105, (bottom, right) 10 ppm; at a distance of y= - 1 m to a standard actively shielded MR main 

magnet of field strength 0.5 T. Change in magnetic flux density calculated by subtracting the 

magnetic flux density results of the simulation without a plate from the simulation with a 

plate. 
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Figure 30 - Change in magnetic flux density in the y = 0, X-Z plane due to the presence of a 

linear magnetic plate of susceptibility: (top, left) 108 ppm, (top, right) 107 ppm, (bottom, left) 

105, (bottom, right) 10 ppm; at a distance of y = - 1 m to a standard actively shielded MR main 

magnet of field strength 0.5 T. Change in magnetic flux density calculated by subtracting the 

magnetic flux density results of the simulation without a plate from the simulation with a plate. 

 

Figure 31 shows the resulting change in field in the imaging region for a plate of non-linear 

magnetic material.  
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Figure 31 - Change in magnetic flux density due the presence of a non-linear magnetic plate. 

(top, left) z = 0, X-Y plane (top, right) x = 0, Y-Z plane (bottom) y = 0, X-Z plane; at a distance 

of y = - 1 m to a standard actively shielded MR main magnet of field strength 0.5 T. Change in 

magnetic flux density calculated by subtracting the magnetic flux density results of the 

simulation without a plate from the simulation with a plate. 

 

 

E.3 Discussion 

The percent difference between simulation results and an analytic solution for a Helmholtz coil 

that was simulated in COMSOL was less than 0.4%. A small difference was expected as the 

analytic solution is the solution for a perfect theoretical Helmholtz coil with infinitely small 

current loops. The physical properties of the simulation - ie. current applied to a physical loop in 

space, positional uncertainty in the simulation nodes along the z axis, etc – are the cause for this 

difference between the simulation data and analytic solution. As a small percent difference was 

expected, any simulation producing percent difference up to 1% difference would have been 

accepted. This pilot test produced sufficiently small differences in analytic and simulated results, 

and justified the use of COMSOL for modeling of a more realistic MR magnet.  
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The resulting magnetic flux density profile of the modeled MR main magnet produces a small 

region of homogeneity at the isocenter and that the individual coils produce local regions of 

increased magnetic flux density as expected. The magnetic flux density along the z axis of the 

magnet is symmetric about the isocenter and quickly drops as it extends to the region outside the 

bore, again as it should.  

With a model of a MR main magnet in place, a steel plate was added to the simulation of the MR 

magnet to investigate the effect of different magnetic materials on the homogeneity of the field. 

Even a distance of 1 m, the steel plate experiences magnetic flux density from the MR magnet. 

The magnetic flux density profile at the location of the plate is highest at the center of the plate 

since it is located directly below the coils of the magnet. This magnetic flux density will induce a 

magnetization in the steel plate. This magnetization will induce an additional component of 

magnetic flux density which is the source of the field inhomogeneities presented in Figures 28-

31. This effect increases as magnetic susceptibility increases and changes the magnetic flux 

density profile at the location of the plate. Figure 27 shows how the field profile changes, shown 

with a linear magnetic plate with magnetic susceptibility 108 ppm. The magnetic flux density is 

still highest at the center of the plate, but it is more concentrated and has a higher value then the 

magnetic flux density at the same location without the presence of the steel. This increased 

magnetic flux density will cause greater field inhomogeneities.  

Four linear magnetic material plates were modeled with magnetic susceptibilities 10 ppm, 

105ppm, 107 ppm and 108 ppm. The resulting field inhomogeneity in the y-z and x-y plane show 

the magnetic flux density decrease along a gradient of +𝑦, with a higher field inhomogeneity 

towards the steel plate, −𝑦. This is consistent with the magnetization of the steel plate creating 

magnetic flux density as the source of the field inhomogeneities, since less inhomogeneity would 

be expected at location further away from the plate. The magnitude of this field inhomogeneity is 

proportional to magnetic susceptibility and ranges from  10−11 to 10−5 T, or 20-5 to 200 ppm. 

This is also expected as increased magnetic susceptibility causes increased magnetization. The 

increased magnetization causes higher magnetic flux density which results in larger field 

inhomogeneities.  Despite being unnecessary to shim for inhomogeneities in the 20-5 ppm range, 

these plots allow for an appropriate shim to be modeled to account for the profile of the 

inhomogeneity, most relevant to cases where inhomogeneity reaches the 0.01 ppm or higher. In 
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Y-Z plates with magnetic susceptibilities 107 ppm and 10 ppm, and in X-Y, the plate with 

magnetic susceptibility 105 ppm, all have slight asymmetries to the field inhomogeneity profile. 

This is not expected. Since the magnetic is symmetric about the isocenter, and the plate is also 

symmetric about the isocenter, it is expected that the field inhomogeneity would be symmetric 

about the isocenter; as is the case with all other profiles. This asymmetry could potentially be the 

result of unique magnetization profiles of the plate due to slight variance in the spatial windings 

of the coils of the magnet, and could thus accurately be representing the real life inhomogeneities 

of these specific cases. However, it is also a possibility that these small asymmetries are due to 

errors in the simulation or the result of gridding and plotting parameters.  

In the x-z plane, for a magnetic susceptibility of 108 ppm, the field inhomogeneity is highest in 

the center and decreases radially. Looking at the 𝑩 field at the plate in Figure 27, the magnetic 

flux density is also highest in the center of the plate and radially decreasing. The field 

inhomogeneity seen for the plate of magnetic susceptibility of 108 ppm in the x-z plane in 

consistent with this result. The resulting field inhomogeneity for a magnetic susceptibility of 107 

ppm follows this trend with a slight distortion in the right half of the imaging region This 

asymmetry could again be the result of unique magnetization profiles of the plate due to slight 

variance in the spatial windings of the coils of the magnet, or due to errors in the simulation or 

the result of gridding and plotting parameters. For magnetic susceptibilities 105 ppm and 10 ppm, 

the trend seen for the case of the plate of magnetic susceptibility 108 ppm is completely lost. It is 

not obvious if this is due to a computational error or if the field inhomogeneity caused by the 

plate is not sufficient in this plane to be observed for susceptibilities this low.  

For the case of a platform of non-linear magnetic material, the field inhomogeneity along y-x and 

y-z is a gradient with higher field inhomogeneity as you move towards the steel plate, with a 

maximum field inhomogeneity of 0.1 mT. This is the approximately the same magnitude of field 

inhomogeneity as per the plate of 108 ppm as expected since a non-linear magnetic material 

would have similar properties to a plate of extremely high magnetic susceptibility. The field 

inhomogeneity in x-z is highest at isocenter, with a maximum inhomogeneity of 1 mT, 

decreasing radially, again matching the results of the plate of susceptibility 108 ppm.  
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E.4 Conclusion  

 
The objective of this project was to simulate the effects that relatively large amounts of magnetic 

material, placed outside a realistic model of an MRI magnet, would have on the homogeneity of 

that magnet. The field inhomogeneity due to the steel plate within the imaging region was shown 

to be a linear gradient along x-y and y-z with a maximum field inhomogeneity of 0.1 mT, 200 

ppm, in the case of a non-linear magnetic steel. In x-z, the inhomogeneity was radially decreasing 

with a maximum inhomogeneity of 1 mT, 2000 ppm, at the isocenter in the case of a non-linear 

magnetic steel. The inhomogeneities caused by this plate are far too large for proper magnetic 

resonance imaging and must be corrected with passive shimming if such a shielding method is 

used. 
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Appendix F:  Investigation of Systematic Errors in NMR Field 

Probes  

 

Similar to Appendix E, this Appendix describes a project related to, but separate from the 

primary thesis work described in Chapters 2 through 4. The objective of this project was to 

simulate the effects that different construction materials would have on the field uniformity 

within specialized nuclear magnetic resonance (NMR) magnetic field probes. This project was 

conducted as part of an industry-sponsored internship with the same industry partner as for the 

work in Appendix E. The objective of the industry partner was to understand the effect that 

different construction parameters could have on a magnetic field measurement system they were 

developing, and to optimize the fabrication of that system. 

The reason this Appendix is included in this thesis is that this project also leveraged many of the 

same simulation tools as those developed to model magnetic forces on medical devices. To the 

extent that these tools become validated for the application described in this appendix, this 

project would serve to further support the validity of the tools for use in the medical device 

application described in Chapters 2 through 4. It was anticipated that much more experimental 

data would be acquired through the process of the construction and testing of this field 

measurement system, and thereby provide much stronger validation data for the simulation 

methods than what could have been obtained in the work described in Appendix E. 

Nuclear magnetic resonance (NMR) field probes are small devices used together with a NMR 

detection system to measure magnetic field strength at specific points in space [68]–[70]. They 

allow the detection of a NMR free induction decay (FID) signal from a small sample within the 

detector, and the instantaneous change in frequency of that FID is related to the instantaneous 

magnetic field over the small sample [70]. The detectors are typically copper wire-wound 

solenoids around a small glass vial filled with water [69,70]. Chemical compounds, such as 

copper sulphate, are added to the water to decrease T1 (the longitudinal relaxation time constant 

of magnetization [70]). Decreased T1 allows for more rapid recovery of the system following 

each measurement, thereby allowing faster sampling and more signal averaging over time. 
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Accurate to the order of ppm for magnetic fields above 0.05 T, NMR probes can practically 

measure with a spatial resolution on the order of a millimeter [68]–[71].  

One challenge in NMR field probe design is to maximize the field uniformity over the water 

sample within the probe. With increasing field variation over the sample there is a more rapid 

loss of signal within each measurement, due to decay of the net transverse magnetization by 

dephasing. Minor susceptibility differences between the air, the glass, the copper, and the water 

can cause small but significant field variations over the sample, thereby decreasing the 

effectiveness of the probe. Susceptibility matching an encapsulating material formed around the 

entire sample and probe has been shown in literature to reduce this field variation [72], but this 

procedure has not been systematically investigated. Additionally, the presence of materials with 

nonzero magnetic susceptibility, such as the encapsulating epoxy, will cause a net field offset 

and shift in the NMR signal which must be understood and taken into account when interpreting 

the measured fields.  

In addition to the effect of overall susceptibility matching with the epoxy, there is an additional 

potential for field broadening due to magnetic susceptibility boundaries caused by the presence 

of air bubbles or voids within the epoxy. These small air bubbles or voids, which occur 

commonly in epoxy during the encapsulation process, can be thought of as inhomogeneous 

regions of zero magnetic susceptibility. These voids become a source of both field broadening 

and field offset over the sample. The effect of air bubble or void formation during the 

encapsulation process of NMR probe construction has yet to be systematically analyzed and 

discussed in the literature.  

This Appendix seeks to investigate and quantify the above effects with the objective of 

optimizing NMR field probe design and construction. As part of an industry-sponsored 

internship project (MITACS Accelerate program, partnered with Synaptive Medical Inc., 

Toronto, Ontario, Canada), the systematic uncertainties involved in the construction and use of a 

spatial array of NMR field probes for magnetic field measurements at 0.5 T were studied. A 

prototype probe array was constructed in collaboration with the industry sponsor; however, 

physical testing with the system was delayed and therefore experimental validation of the system 

could not be included in this thesis. 
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F.1 Methods 

All design, modeling and simulations were performed in COMSOL Multiphysics using the 

‘Magnetic Fields, No Current (mfnc)’ package.  

Three NMR field probe constructions were modeled for the purposes of this investigation. One 

contained a glass vial containing a sample of copper sulphate doped water, the next a 4-turn 

copper solenoid with wire thickness 0.225 mm, and the last contained both the glass vial 

complete with sample and the copper solenoid. Figure 33 below shows an example of a probe 

construction that is the basis of the modeling variations investigated and described in the 

following paragraphs. 

 

Figure 32 - Nuclear magnetic resonance (NMR) field probe. Field probe contains copper 

solenoids that wrap around glass vials filled with copper sulphate doped water samples. The 

sample and solenoid are held in place in an epoxy filled ellipsoid. (Left) Field probe shown 

with the copper solenoid leads exiting the epoxy ellipsoid that contains the solenoid and 

sample vial. (Right) NMR field probe cut in cross section showing the epoxy-filled region. 

 

The glass vial was modeled to be a hollow cylinder of outer radius 1.4 mm, wall thickness 0.2 

mm and height 15 mm. The hollow cylinder was constructed in the geometry by a combination 

of two cylinder domains and the ‘Difference’ function, and material was set to glass (quartz). 

The copper sulphate doped water sample was modeled with another cylinder geometry - radius 

1.2 mm, height 15 mm - which filled the hollow glass cylinder and this domain was set to water. 

The magnetic susceptibility of this material was changed to -9.04 ppm to represent the magnetic 

susceptibility of the doped sample [38], [44]. The 4-turn copper solenoid was modeled using the 
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‘Helix’ geometry with major radius 1.626 mm, minor radius 0.225 mm, axial pitch 0.9 mm and 

no radial pitch. A 0.001 mm gap was left between the copper solenoid domain and the vial 

domain in order to avoid meshing errors. The center of the solenoid was positioned to align with 

the center of the glass vial. The material of the solenoid domain was set to copper, and the 

magnetic susceptibility was changed to -9.57 ppm as COMSOL initially defined copper as having 

a magnetic susceptibility of 0 [38], [44], [45]. 

All probe variations had their respective elements encapsulated by an epoxy ellipsoid. The 

ellipsoid was created in the geometry with major and minor radii of 15 and 10 mm, respectively. 

This geometry was fixed on the existing probe prototypes already fixed by the industry partner.  

A blank material was added to this domain and the relative permeability of this domain was 

varied as described in F.1.1.  

All simulations were performed in a static magnetic field of 0.5 T which was employed using 

‘Background Magnetic Field – Reduce field –  𝐻𝑥 = 0.5 /𝑚𝑢0_𝑐𝑜𝑛𝑠𝑡, 𝐻𝑦= 𝐻𝑧=0’ within 

‘Magnetic Fields, No Current (mfnc)’. The field strength was chosen to match the magnet with 

which the field array was to be ultimately tested and used. The entire simulation was constructed 

within a spherical infinite element domain of air. Meshing of the probe elements was performed 

with free tetrahedrals, while the outer domains of the spherical infinite element domain 

employed a swept mesh. 

Simulation data was exported from the simulations and all data analysis was performed in 

MATLAB.  

F.1.1 Methods for Investigation of Effects due to the Susceptibility 

of Epoxy 

In order to investigate the effects due to variations in epoxy susceptibility, and thus determine an 

optimal magnetic susceptibility of epoxy, three NMR probes were modeled (see Figure 33).  

 Probe i) was modeled containing the glass vial, complete with sample, surrounded by the 

copper solenoid.  

 Probe ii) was modeled containing the glass vial, complete with sample, but was lacking 

the copper solenoid.  
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 Probe iii) was modeled containing only the copper solenoid.  

 

Figure 33 – COMSOL geometry of three NMR probe designs. Within an epoxy ellipsoid: 

(from left to right) probe i) was modeled with a glass vial containing a sample of copper 

sulphate doped water, surrounded by a 4 turn copper solenoid of wire thickness 0.225 mm; 

probe ii) was modeled with only a glass vial containing a sample of copper sulphate doped 

water; probe iii) was modeled containing only a 4 turn copper solenoid with wire thickness 

0.225 mm. 

 

For each probe model, a simulation was run with the epoxy material defined with a specific 

value of relative permeability. Within MATLAB, the magnitude of the 𝑩 field within the water 

domain was isolated.  The weighted variance, 𝑠𝑤
2 , of this data was calculated using the sensitivity 

profile of the solenoid, Figure 34, as a weighting factor. The sensitivity profile of the solenoid is 

defined as the sensitivity of the solenoid to the measurement of magnetic flux density at any 

given point within the sample vial. By the Principle of Reciprocity, the detection sensitivity 

profile of the solenoid has the same form as the field produced by that solenoid at any point in 

space were the solenoid to be carrying 1 Ampere of current. This sensitivity profile was 

produced in MATLAB using an elements array and Biot-Savart law to model the field due to a 

solenoid of the same dimensions of the solenoid modeled in COMSOL. The magnetic flux 

density was found at every point within the isolated data set. Normalizing to the maximum 

magnetic flux density creates the sensitivity profile. This sensitivity profile was used to produce 

a weight, 𝑤𝑖 , for each value of B in the data set, 𝑥𝑖. The weighted average, �̅�𝑤, of the data was 

then computed using equation (F.1). The weighted average along with the weights is then used to 

calculate the weighted variance, equation (F.2).  
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Figure 34 – Sensitivity profile of a solenoid modeled within COMSOL along the z-axis. 

Sensitivity profile produced by solving for the magnetic flux density using Biot-Savart law at 

every data point with an elements array in MATLAB. Normalizing to the maximum magnetic 

flux density gives the sensitivity profile. This sensitivity profile was used to produce a weight, 

𝒘𝒊 , for each value of B in the data set, 𝒙𝒊. 

 

 

 

�̅�𝑤 = ∑
𝑤𝑖𝑥𝑖

∑ 𝑤𝑖
𝑁
𝑖=1

𝑁

𝑖=1
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(F.2) 

 

 

The field broadening, σ, is then defined as the square root of the weighted variance. 

 𝑓𝑖𝑒𝑙𝑑 𝑏𝑟𝑜𝑎𝑑𝑒𝑛𝑖𝑛𝑔 (σ) =  √𝑠𝑤
2  (F.3) 

 

For each probe model, simulations were performed using susceptibilities of epoxy from -20 to 

1.2 ppm. Optimal susceptibility for epoxy was chosen as that which minimized field variation 

over the sample volume.  
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Although the main concern for field probe performance is field broadening, the epoxy will also 

in general create a net field offset over the sample. This effect does not need to be minimized in 

probe design, but it does need to be accounted for in interpreting the results when using a probe. 

To investigate and characterize the field offset due to the epoxy encapsulation, the data from the 

simulations for probe i) was taken and the field offset was calculated by subtracting the weighted 

mean of the B field data from the applied field of 𝐵 = 0.5 𝑇; equation (F.4). 

 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓𝑓𝑠𝑒𝑡 = 0.5 𝑇 − �̅�𝑤 (F.4) 

 

F.1.2 Methods for Investigation of Effects Due to Voids Within the 

Epoxy 

In order to investigate the effect of a void within the epoxy, probe i) from F.1. was used.  A 

single 1-mm spherical void geometry (“air bubble”) was investigated and added to the model 

with the material of that domain was set to air. 

Numerical simulations were evaluated varying the positions of the air bubble and the field 

variation was calculated using the same method as F.1.1 for each position.  First, the void was 

placed at multiple positions in the z=0 plane at a constant radial distance of 5 mm with respect to 

the center of the sample (x,y=0), at angles of 0°, 45°, 90°, 135°, 180°, 225°, and 270° (Figure 

35). 

 

 

 

 

 

 

 

 

 

 

Figure 35 – Path of an air bubble of spherical radius 1 mm moving along a circle of radius of 5 

mm fixed in the z = 0, X-Y plane at an angle, θ, within an NMR probe. COMSOL simulation 

computed for angles of 0°, 45°, 90°, 135°, 180°, 225°, and 270°. 

z 

θ 

R = 5 mm 
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Next, the void was placed along 21 positions in z, from 𝑧 = −10 to 10 mm, at a fixed location of 

x = 5 mm, y = 0 mm in the X-Y plane. All simulations were computed with a value of -9.5658 

ppm for the magnetic susceptibility of epoxy.  

 

F.2 Results 

Figure 36 and Figure 37 show the resulting field variation and field offset as a function of 

varying epoxy magnetic susceptibility, respectively. The field variation is observed to be 

minimized for a susceptibility of approximately -9 ppm. For the optimal susceptibility range of 

approximately -9 ppm, the field offset within the sample is approximately 5.7 ppm. 

Figure 38 shows the resulting field broadening due the void at the various locations within the 

probe.  
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Figure 36 - Field broadening as a function of magnetic susceptibility of epoxy for the three 

NMR probe models modelled. Within an epoxy ellipsoid: Probe i) was modeled with a glass 

vial containing a sample of copper sulphate doped water, surrounded by a 4 turn copper 

solenoid; Probe ii) was modeled with only a glass vial containing a sample of copper sulphate 

doped water; Probe iii) was modeled containing only a 4 turn copper solenoid. The value of 

magnetic susceptibility that resulted in a minimum field broadening is represented by a 

vertical black, blue and red line for probes i), ii) and iii) respectively.  
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Figure 37 - Field offset as a function of magnetic susceptibility of epoxy for NMR Probe i). 

Within an epoxy ellipsoid, Probe i) was modeled with a glass vial containing a sample of 

copper sulphate doped water, surrounded by a 4 turn copper solenoid.  
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Figure 38 – Resulting field broadening due to a void at various locations within a NMR probe. 

The NMR probe was modeled with a glass vial containing a sample of copper sulphate doped 

water, surrounded by a 4 turn copper solenoid, all encapsulated in epoxy ellipsoid (i.e. “Probe 

i”). (Top) Resulting field broadening due to spherical void of radius 1 mm moving along a 

circle of radius of 5 mm fixed in the z = 0, X-Y plane at an angle of 0°, 45°, 90°, 135°, 180°, 

225°, and 270°. (Bottom) Resulting field broadening due to the spherical void of radius 1 mm 

at different z positions while remaining fixed at a position of x = 5 mm, y = 0 mm in the X-Y 

plane. 
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F.3 Discussion  

 

It was found that the optimal susceptibility for the epoxy encapsulation (approximately -9 ppm) 

lies between the susceptibility of the doped water sample and copper. This result is perhaps not 

surprisingly in that it is consistent with the hypothesis that minimum field broadening will occur 

in a uniform magnetic environment. When the epoxy susceptibility is optimized, there is a ten-

fold improvement in field broadening compared to having the probe in air alone (i.e. no 

encapsulation). This basic effect is well-known and is the reason probe encapsulation is 

commonly used and reported in the literature [72]. The results presented here go further, 

specifically demonstrating that field broadening is doubled when susceptibility varies from the 

optimal value by as little as 2 ppm. The small variation in the susceptibility of the epoxy 

significantly affects probe performance of the probe and must be considered when optimizing the 

construction of the probe. This work allows one to rationally choose the tolerance in the 

susceptibility of the encapsulation material for a probe. 

In addition to a field broadening, a field offset was expected to be present due to the epoxy and 

this was represented in the simulation results. The absolute field offset was observed to decrease 

as susceptibility increases. A field offset does not degrade probe performance as long as it is 

taken into account when interpreting the field results. It is therefore effectively a straight-forward 

matter of calibration. Broadening cannot be calibrated for; therefore, the main concern in the 

construction of the probes should be to susceptibility match the epoxy to the optimal value 

regardless of the field offset incurred. 

Introducing an air bubble at a constant (x,y) value but at varying positions in z shows that the 

broadening is not surprisingly most severe when the bubble is closest to the solenoid. The effect 

of a single void or “air bubble” was shown to result in field variations that at worst were more 

than approximately twice the largest field variations caused by poor susceptibility matching of 

the epoxy. Even in the best situation examined, a single void will cause a field variation of 5 

times that of optimally matched epoxy. This indicates that avoiding voids in the encapsulation 

process is of paramount importance. Methods currently used to eliminate voids during 

construction such as vacuum potting are critical and additional efforts to systematically ensure 

the successful elimination of voids are warranted. Without void elimination measures, the 
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effectiveness of susceptibility-matched epoxy is severely compromised. The effect of multiple 

voids within a probe has not yet been investigated. 

 

 

Figure 39- Computer design of an array of nuclear magnetic resonance (NMR) field probes 

that make up an effective ‘field camera’ which is used to acquire accurate spatial variation of 

time varying fields in MR systems at discrete points in space. Seven probes can be seen here 

(6 around the circumference of the circle and one at the centre). 

 

In the process of conducting this work, several NMR probes were constructed and sent to the 

industry partner (Synaptive Medical Inc.). The epoxy ellipsoids were 3D-printed and vacuum 

potted with epoxy 3150, and catalyst 150 from Epoxy Etc. (http://www.epoxies.com/).  Epoxy 

was mixed and susceptibility matched using titanium powder as specified by the industry partner. 

The field camera (see Figure 39 above) constructed from the probes has been constructed and 

tested; however, at the time of writing these data were not yet available. 

F.4 Conclusion  

 
The systematic errors within NMR probes were investigated and it was shown that: (1) epoxy 

susceptibility should be matched to the other construction materials used, and (2) every effort 

should be expended to minimize the presence of voids or “air bubbles” during encapsulation. 

  

http://www.epoxies.com/
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