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Abstract 

The capabilities and potential of Model Predictive Control (MPC) strategies for 

steam generator level (SGL) controls in nuclear power plants (NPPs) have been 

investigated. The performance has been evaluated for the full operating power 

range (0% to 100%). The specific operating conditions include: normal operations, 

start-ups, low power operations, load-up and load rejections. These evaluations 

have been carried out using a linearized steam generator dynamic model. The MPC 

controllers used are based on existing methodologies. Furthermore, any potential 

performance improvement through fine-tuning of some of the control parameters 

based on the dynamic characteristics of the SGL has also been investigated.  

 

In this regard, two versions of MPC strategies have been designed and simulated. 

The Standard MPC (SMPC) is applied to the SGL problem first to establish the 

performance baseline. An Improved MPC (IMPC), by selecting appropriate values 

in the weight matrix of the objective function, has also been examined. 

 

Both MPC strategies have been implemented in a Matlab Simulink environment. 

Their performance has been evaluated against an optimized PI controller in terms 

of i) set point tracking, ii) load-following in step and ramp commands, iii) figures 

of merits of transient responses, iv) effectiveness in rejecting disturbance from the 

steam and feed-water flow, and v) sensitivities to the noise in the feed-water flow 

measurements. The performance evaluation has been done through extensive 

computer simulation, and also through a set of real-time experiments on a physical 

mock-up steam generator level process. The results have demonstrated potential of 

the MPC based strategies; in particular, the IMPC strategy; for improving the 

performance of the steam generator level control loop.  

 

KEYWORDS: Level Control, Non-minimum-phase, Nonlinear Model Predictive 

Control, Steam Generator. 
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1 Introduction 

 

Steam Generators (SGs) in a Nuclear Power Plant (NPP) play an important role in 

transferring heat from a fission process to steam in order to drive a steam turbine 

for generating power. The SG in a NPP provides an important heat sink for the 

reactor and for the Heat Transport System (HTS) which operates with the reactor 

coolant on the primary side, and the feed-water in the secondary side. It can also be 

used as heat removal systems in the event of an accident. From a safety point of 

view, the SG is a major element which isolates the primary loop (containing 

radioactive coolant) from the secondary loop (containing non-radioactive water and 

steam) to prevent water in the two systems from intermixing. The SG also prevents 

radioactive substances from leaking into the atmosphere in a NPP. 

 

Other roles of a steam generator in a nuclear power plant can be summarized as 

follows [1]: 

 Continuous cooling of the reactor core 

 Mass balancing between feed-water and steam flow rate 

 Preventing the carryover of impurities inside the turbine 

 Generating steam for the turbine to produce electricity  

A schematic diagram of a typical SG is shown in Fig.1 [2]. The hot pressurized 

coolant enters the inlet and passes through what is referred to as the “hot leg” of the 

tube bundle. The feed-water enters the secondary side of the tube bundle at the 

upper right of the SG through the feed-water inlet nozzle. The coolant passes 

through an inverted U-tube heat exchanger, where thermal energy is transferred 

from the primary side to the secondary side at the saturation temperature (e.g, 250o 

C at 4 MPa pressure in certain NPPs) to generate steam. The primary coolant loses 

thermal energy all along the U-tube. The steam passes through separators, which 

ensure that the exiting steam is completely dry to protect the turbine blades from 
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damage. The water inventory in the SG can be directly measured via SG water level 

gauges at the secondary side. 

 

Fig.  1 Schematic diagram of a typical SG in a NPP [2] 

1.1 Steam Generator Level (SGL) control  

1.1.1 Importance 

The Steam Generator Level (SGL) must be controlled within a certain range and a 

desired value during both transient and steady-state operations to create a safe and 

reliable environment in a NPP. Poor control of the SGL may lead to serious 

consequences. If the level in the SG is too high, it may lead to the following 

problems: [1], [3] 
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 Increased moisture in the steam and carryover, and humidity to the turbine 

side. This increases the risk of damages to the turbine blades 

 Increased potential for water hammer and water induction hazards in the 

piping system 

 Reduced margin between the SGL and the SGL upper limit, which increases 

the risk of a turbine trip 

If the level is too low, it may lead to the following problems: [1], [3]  

 Decreased heat sink capability of the SG, which may lead to increased HTS 

pressure and temperature 

 Jeopardized reactor cooling system due to the exposed tubes 

 Reduced heat transfer capability of removing heat from the reactor, leading 

to reactor overheating 

 SG drying-out, raising the risk of damages in SG tubes 

 

If the control system for the SG water level is inappropriately tuned, oscillations in 

the water level may occur. Such oscillations can induce subsequent oscillations in: 

 instantaneous turbine output power,  

 feed-water and steam flow rates, and 

 HTS pressure and temperature. 

 

It has been documented [1,3,4,5] that nearly 25% of emergency reactor and turbine 

trips at existing NPPs are caused by poor performance in SGL control. Nearly 90% 

of incidents associated with SGL occur either at low operating power levels (less 

than 25% of full power), or during transient periods. This is mainly because of the 

dynamic characteristics of the SGL and the relatively higher degree of steam and 

feed-water flow measurement inaccuracy. 

1.1.2 Unique dynamic characteristics 

The dynamics of a SGL vary considerably with changes in reactor power levels. A 

unique phenomenon exists particularly at low power operations, because of the 

dominant reverse thermal dynamic effects known as shrink and swell. A sudden 
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increase in load will draw more steam from the SG. Naturally, one expects that the 

water level will decrease. However, as more steam is drawn, the bubbles in the 

water actually expand, and make the water level higher, which is counter-intuitive, 

and it makes the control system more difficult to design. This phenomenon is 

known as ̀ swell`. A sudden decrease in load produces exactly the opposite response 

in the water level, which is called `shrink`. In the control system community, this 

behavior can be characterized by non-minimal phase dynamics in the transfer 

functions.  

 

To leave sufficient operating range, it is not desirable to operate the SG at a high 

water level during low power operations since the SG could be subjected to an 

unexpectedly large step increase in the steam demand causing a large swell effect. 

By maintaining the SGL relatively low under a low power condition, one may 

accommodate a relatively large swell effect in the level without causing any risk of 

possible turbine trip due to inventory carryover to the turbine. Similarly, it is not 

desirable to operate the SG at a low water level during high power operations since 

the SG may be subjected to an unexpectedly large step decrease in the steam 

demand, causing a large shrink to uncover the HTS U-tubes in the heat exchanger. 

Consequently, by maintaining the SG water level relatively high at high power, one 

can accommodate a relatively large shrink in level without increasing the risk of 

exposing the U-tube heat exchanger. Hence, the above guidelines should be 

followed in selecting swell based set points, i.e., the desirable set point values for 

the steam generator levels.  

 

The swell and shrink effects decrease as the operating power level increases. This 

is one of the main reasons that the conventional Steam Generator Level Control 

(SGLC) schemes (single-element/three-element control) cannot possibly cover the 

entire operating power range (from 0% to 100%). Other characteristics of the SGL 

that may affect controller design include [1]: 

• highly nonlinear behavior, especially during low power operations, 
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• tight constraints on the SG input (feed-water flow rate) and the SG output 

(SGL), and  

• inaccurate and noisy measurements for feed-water flow rate and steam flow 

rate during low power operations. 

 

It may be noted that due to the lack of an effective control system that can cover 

the entire operating power range, manual control is often applied to the SGL system 

during the start-up and the low power operations in many existing NPPs. 

1.2 Motivations for the current work 
 

The SGL control system designs have been extensively investigated and substantial 

efforts have been made to prevent costly reactor shutdowns caused by the SGL 

control system. Over the last thirty years, a great deal of research has been done 

with the SGLC, and many advanced model-based SGL controller design have been 

proposed in the literature that include  

 Model predictive control (MPC) 

 Model reference adaptive PID 

 Linear quadratic regulator method 

 Fuzzy and neuro-fuzzy control  

 Artificial neural network based controller  

 H∞ control techniques 

 Gain-scheduling controller  

 Extension of MPC principle  

 Auto-tuned PID  

 Auto adaptive predictive controller  

 

Model based control strategies for the SGL control presented in the existing 

literature often investigate the performance of the given scheme on a limited 

number of SGL control scenarios. Much of the literature does not evaluate the 

performance of the control scheme during the start-up and the low power 
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operations. Extensive evaluation for the SGLC performance under tight constraints, 

and under steam and feed-water flow disturbances are often not done. Furthermore, 

the capability of the SGL control for load following in steps and in ramps, as well 

as for load rejections are also not properly investigated and evaluated in most of the 

existing literature. It is noted that, despite many advanced control techniques 

developed for SGL, they have rarely been used in NPPs, as their ability to handle 

the entire range of operating modes (including start-up, low power operations, and 

emergency shut-downs) has not yet been extensively evaluated and demonstrated.  

 

For a proper evaluation, a control scheme must be investigated with respect to all 

operating and transient conditions of a SG. Therefore, it is reasonable to perform 

an in-depth study in order to understand the capability of a given control scheme to 

deal with the challenges in the SGL control in NPPs. One model based advanced 

control strategy that has been used in many other industrial control applications is 

the Model Predictive Control (MPC). The MPC based approaches make use of the 

“best knowledge” of the process dynamic in order to deliver an effective 

performance by the control system. Due to the capabilities of the MPC based 

approaches to handle challenging control problems, the MPC has been selected for 

an in-depth evaluation, while applying it in the SGL control systems in NPPs. 

Furthermore, in addition to the detailed performance evaluation of existing 

advanced MPC controllers, it would be interesting to investigate if a MPC 

controller performance can be improved by applying customized fine-tuning of the 

control parameters by taking into account the specific characteristics of the SGL in 

NPPs at different power levels.  

1.3 Objectives, approaches, and scope  
 

The objective of this study is to perform a detailed evaluation of the MPC based 

strategies for the SGL control in NPPs. Performance has been evaluated for a MPC 

controller based on existing advanced methodologies. Furthermore, any 

performance improvements that can be achieved by the fine-tuning of the control 

parameters (based on the characteristics of the SGL) of the existing MPC 
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approaches has also been investigated. The investigation have been performed to 

cover all operating conditions of a SG in a NPP that include normal operations, as 

well as start-ups, low power operations, load-up and load rejections. 

 

The control performance of the MPC based methodologies have been evaluated 

through computer simulation and through a set of tests on a physical mock-up steam 

generator level process that uses a metal plate and pressurized air to simulate the 

effect of a SGL in a NPP. This mock-up steam generator has been referred to as the 

Plate Level System (PLS) in this thesis. The PLS closely simulates the 

characteristics of an actual SGL (based on Irving model) at different power levels.  

 

The scope of this work has been limited to an in-depth performance evaluation of 

existing advanced MPC based methodologies for SGLC in NPPs. It is well known 

that the MPC based approaches rely heavily on the model of the underlying process. 

Although there are a few models for the SGL exists in the literature; however, this 

study has limited its scope to the Irving model for the SGL. Therefore, the results 

reported in this study are all based on the Irving model. Furthermore, the Irving 

model specifies the SGL model parameters only at five different power levels (5%, 

15%, 30%, 50%, and 100%). The MPC based strategies implemented for evaluation 

in this study are centered around these power levels only. 

1.4 Thesis contributions 

 

To investigate the performance of the MPC based approaches, two versions of the 

MPC controllers have been designed and implemented in Matlab Simulink 

environments. The first implementation has been done by using existing advanced 

MPC methodologies. This implementation has been referred to as ‘Standard MPC 

(SMPC)” in this thesis. The second implementation make use of proper feedbacks 

from states to further improve the control performance by i) first optimizing a cost 

function, and ii) then by selecting proper values for the manipulated control signal
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( )u k . This control signal is then applied to the Feed-water Control Valve (FWCV). 

The second MPC has been referred to as “Improved MPC (IMPC)”.  

 

Both computer simulation, and the Plate Level System (PLS) physical tests have 

been performed to include all operating conditions of a real NPP. The performance 

has been evaluated in terms of several performance measures that include set point 

tracking, overshoot, undershoot, settling time subject to set point change, transient 

response and load following. 

 

During the process of implementation, the following contributions are made: 

 Linearization of the SGL model and design of power level dependent 

parameters for SMPC/IMPC schemes 

 Selection of an appropriate cost function J  that can be used to minimize 

the prediction of the error signal over the future horizon of 𝑝, and also 

minimizes the usage of the controller outputs in the least-square sense 

 Application of “Laguerre functions” as an efficient tool for approximating 

stable dynamic systems for the SMPC and the IMPC controller structures.  

 Presented a simple approach to define the weight matrix IMPCQ  for IMPC. 

1.5 Organization of the thesis 
 

The organization of the thesis is as follows: Chapter 1 introduces the importance of 

the SGL control in nuclear power plants, and has outlined the work done in this 

thesis. In Chapter 2, an overview of the steam generator level control, and a brief 

literature review are presented. In Chapter 3, the details of SMPC and IMPC 

methodologies, along with the mathematical model of the SGL are discussed. 

Model linearization is also presented in Chapter 3. Performance of the SMPC and 

the IMPC methodologies have been investigated through computer simulation in 

Chapter 4. The results of the experiment on the PLS are presented in Chapter 5. 

And finally, conclusions are drawn in Chapter 6 with a brief discussion. 
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2 Literature Review 

2.1 Steam generator level control 

To maintain a constant water mass inventory in the SG at different power levels, 

and to reduce the SGL fluctuations (due to, e.g., swell or shrink in transient modes 

load following, reactor set-back, and step-back), the SGL set-point needs to be 

calculated in a dynamic manner and adjusted according to the operational power 

level. A dynamic SGL set-point allows the SGL control system to react in the same 

direction as the power change. In a fixed SGL set-point, the SGL would rise when 

the power is increased suddenly (due to the swell effect). In a fixed set-point 

system, this level rise would be opposed by the feed-water supply decrease in an 

attempt to lower the SGL back to the fixed set-point. Now, when the temporary 

swell effect subsides, the collapse of the steam bubbles and the decrease in the 

inventory supply would have to be reversed in order to supply more feed-water at 

the increased load in an attempt to maintain the desired inventory. If the set-point 

of the SGL is made dynamic, the above scenario can be effectively reduced. The 

original steam demand increase will cause a swell effect but, at the same time, the 

increase in power level would be recognized to request a high SGL set-point. As a 

result, the swell effect (level increase) can be matched by the level set-point 

increase so that little-to-no change in the control signal would be initiated at the 

onset of such disturbances. More specifically, the difficulties in designing an 

effective level control system for a SG can be summarized as follows: 

 Nonlinear plant characteristics 

The dynamic behaviors of a SG are highly nonlinear. A set of linearized dynamic 

models can be obtained at different reactor power levels. However, the parameters 

in these linearized models vary significantly as the reactor power changes. The 

nonlinear process dynamics complicate the design of an effective SGL control 

system. A possible solution is to design a set of controllers for different power 

levels and then to apply “gain-scheduling” techniques in order to select an 

appropriate controller based on the operating power level. 
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 Non-minimum-phase plant characteristics 

A SG exhibits inverse response behavior, which is represented by a non-minimum 

phase dynamic process. This is particularly predominant at the low operating power 

range. This non-minimum phase characteristic limits the achievable system 

performance, and can significantly complicate the design process of an effective 

SGL control system. 

 Flow measurement errors 

It is well known that at low power operations (0-25% of the full power, FP), the 

measurements of the main steam-flow and the feed-water flow are noisy and 

unreliable. The SGL is more sensitive to disturbances at low power levels. As a 

result, the SGL control at low power levels is even more challenging. 

 

 Tight performance constraints 

The water level in a SG has to be maintained within specific limits in order to avoid 

turbine and reactor trips. Moreover, transients or oscillations in the level must be 

minimized to prevent turbine and reactor power oscillation. This problem is 

compounded by a lack of accurate information on the feed-water flow rate and the 

steam flow rate for the control system to use. In practice, there are explicit limits 

due to physical constraints on the magnitude of change in the feed-water flow rate. 

 

It is noted that conventional three-element controllers may not be able to handle the 

SGL effectively at low power level operations. This is because, in addition to the 

nonlinearity and non-minimum phases, at low power, both steam and feed-water 

flow rate signals become noisy and un-reliable. This prevents the three-element 

controller from stabilizing the system. The controller, with only proportional and 

integral water level measurement terms, lacks the predictive capability to anticipate 

the reverse dynamics of the water level, and therefore results in instabilities. 
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2.2  SGL control strategies in the literature 
 

The SGL control designs literature has spread over the last thirty years. Many 

advanced design approaches have been proposed in the literature in order to solve 

the SGL control problems. For example, the design of a suboptimal controller using 

linear output feedback control [5]. A PID control strategy is proposed in [7] which 

uses an observer to estimate the water inventory. A more general gain-scheduled 

linear quadratic Gaussian with loop transfer recovery (LQG/LTR) controller is 

proposed in [3]. A SGL control system based on fuzzy logic principles has also 

been investigated. In fact, a fuzzy logic based SGL controller has been installed at 

the Fugen NPP [8]. A neuro-fuzzy controller is proposed in [9], which uses a 

multilayer artificial neural network with special types of fuzzifier, inference engine, 

and defuzzifier. A robust fuzzy logic gain-scheduler is designed in [10] based on 

the synthesis of fuzzy inference and H∞ control techniques. A fuzzy logic controller 

which is tuned off-line with genetic algorithms using SGL, feed-water and steam 

flow rate signals is proposed in [11].  

 

A gain-scheduling controller has been proposed in [12]. A novel architecture for 

integrating artificial neural networks with industrial controllers is proposed for use 

in predictive control of a SG [13]. In this method, a PID controller is used to control 

the process and a recurrent neural network is used to model the process as a multi-

step-ahead predictor. An adaptive predictive controller is proposed in [14], where 

a recursive least-squares parameter estimation algorithm is used to estimate the 

unknown parameters of the SG model. The obtained model is then used to design a 

generalized predictive controller.  

 

MPC based controls for the SGL has also been presented in the literature. Irving et 

al. developed a linearized model with power-dependent parameters in order to 

describe the U-tube SG dynamics over the entire operating power range. Many 

model based controllers proposed in the literature has used the Irving model as the 

SGL model in order to evaluate the performance of the proposed controller. A 
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controller based on an extension of the MPC principle is developed in [15]. An 

auto-tuned PID controller using a MPC method is also investigated in [16]. 

In the following, details of the literature survey that establishes concepts and 

techniques related to advanced control system design for SGL are discussed. 

2.2.1 Auto-tuned PID controller using a MPC  

In an auto-tuned PID controller, PID control gains are automatically tuned to 

overcome the drawbacks of the conventional PID controller with fixed control 

gains. This is done by changing the input-weighting factor according to the power 

level using a MPC method. This approach has been investigated for the SGL by 

Man Gyun Na [17]. An MPC-based PID controller has been derived from the 

second order linear model of a process. The SG has been described by the well-

known 4th order linear model which consists of the mass capacity, reverse dynamics 

and mechanical oscillations terms. But the important terms in this linear model are 

the mass capacity and reverse dynamics terms, both of which can be described by 

a 2nd order linear system. The proposed controller was applied to a linear model of 

the SG. The parameters of a linear model for the SG can be changed according to 

the operation power level. 

2.2.2 Linear Quadratic Regulator (LQR)  

The Linear Quadratic Regulator (LQR) controller is developed using local 

linearization of the SG model and then scheduling gain to cover the entire range 

[16]. Le Wei  and Fang Fang have proposed a H∞-based LQR control for the SGL 

[18]. A continuous time model of the SGL is used, and LQR and H∞-based control 

scheme technique is applied to design an optimum controller that forces the SGL 

to follow a desired set point. The Irving Model is used for the SGL. It has been 

shown in [6] that the proposed approach can provide set point tracking ability of 

the SGL at different loads.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Le%20Wei.QT.
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Fang%20Fang.QT.
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2.2.3 Fuzzy and Neuro-Fuzzy based controllers 

An adaptive neuro-fuzzy logic controller (NFLC) can also be used for SGL control. 

B.H. Cho and H.C. No have proposed a design of stability–investigated neuro-fuzzy 

logic controllers for nuclear steam generators [9]. A neuro-fuzzy algorithm, which 

is implemented by using a multilayer neural network with special types of fuzzifier, 

inference engine and defuzzifier, is applied to the SGL. This type of controllers has 

the structural advantage that arbitrary two-input, single-output linear controllers 

can be adequately mapped into a set of specific control rules. In order to design a 

stability-investigated NFLC, the stable sector of the given linear gain is obtained 

from Lyapunov's stability criteria. Then this sector is mapped into two linear rule 

tables that are used as the limits of NFLC control rules. The automatic generation 

of NFLC rule tables is accomplished by using the back-error-propagation (BEP) 

algorithm. There are two separate paths for the error back propagation in the SGL. 

One path considers the level dynamics depending on the SG capacity, and the other 

takes into account the reverse dynamics of the SG. The amounts of error back 

propagated through these paths show opposite effects in the BEP algorithm from 

each other for the swell-shrink phenomenon.  

2.2.4 Gain scheduled controller 

In a gain scheduled controller, the controller parameters may vary according to 

system operations. The control law is in the form of a parameter-dependent 

nonlinear state-feedback control. Kim et al. have proposed a gain–scheduled L2 

control strategy for nuclear steam generator SGL [12], and have designed a 

nonlinear gain-scheduled controller for the SGL which covers the entire operating 

envelope. Numerically linearized models of the SGL have been developed using a 

validated nonlinear model that covers its entire operating envelope. The linear 

quadratic Gaussian with loop transfer recovery (LQG/LTR) method is used to 

design dynamic compensators for each of the linearized models. The various 

compensator matrices are fitted to a scheduling variable, namely, the temperature 

difference between the primary side hot- and cold-leg temperatures, resulting in a 

gain-scheduled nonlinear compensator. The performance of the gain-scheduled 
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compensator (GSC) is systematically investigated via transient response simulation 

using the nonlinear SGL model.  

2.2.5 H∞ control techniques 

J. J. Sohn and P. H. Seong have presented a robust H∞ controller for the feed-water 

system of the Korean Standard Nuclear Power Plant (KSNP) [19]. A series of 

experiments has been performed using the developed thermal–hydraulic model in 

order to acquire the input–output data sets, which represent steam generator 

characteristics. These data sets are utilized to build simplified steam generator 

models for control via a system identification algorithm. The representative robust 

controllers for the selected models are designed utilizing the loop-

shaping H∞ design technique and, the robustness and performance of the proposed 

controllers are validated and compared against those of PI (proportional–integral) 

controller.  

2.2.6 Extension of the MPC principle 

MPC is a control strategy in which the current control action is obtained at each 

sampling time and a finite horizon open-loop optimal control problem, by using the 

current state of the plant as the initial state. The optimization algorithm uses the 

predicted process outputs in order to find the sequence of process inputs values 

(over a future interval known as the “control move horizon”) that solves a 

predefined constrained optimization problem. Then the optimization yields an 

optimal control sequence. Kothare et al. have proposed “Level control in the steam 

generator of a nuclear power plant,” [6], and have presented a framework for 

addressing this problem based on an extension of the standard linear model 

predictive control algorithm to linear parameter varying systems. 

2.3 Summary 

The characteristics of the SGL, and the factors that may affect the performance of 

a SGL control system have been reviewed in this chapter. A number of advanced 

methodologies for the SGL control proposed in the literature has also been 

reviewed.  
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3 MPC for SGL Control 

3.1 Overview 

The Model predictive control (MPC) has been widely investigated and used in the 

process industry as an advanced control methodology. The MPC methodology has 

received significant attention for optimizing the performance of control systems, 

such as the SGL control due to several advantages that include  

 the ability of the MPC design to yield high performance control systems capable 

of operating without operator interventions, and 

 the ability to allow constraints to be imposed on inputs, states and outputs.  

The MPC uses predictions of future behavior of the process to make anticipated 

control decisions. This prediction capability allows for optimally solving a control 

problem on line, where the difference between the predicted output and the desired 

reference is minimized over a future horizon. The control problem can be subjected 

to constraints, on the manipulated inputs and outputs. The MPC utilizes a process 

model to make a prediction of future plant behavior, and to compute the appropriate 

corrective control action required to drive the predicted output as close as possible 

to the desired target value (set-point). The objective is to find the future trend for 

the input (control actions) that moves the future trend of the output so that it 

approaches the desired reference trajectory. 

In a MPC scheme, the current control action is obtained by solving a finite horizon 

open-loop optimal control problem at each sampling instant, by using the current 

state of the plant as the initial state. The optimization algorithm uses the predicted 

process outputs in order to find the sequence of process input values (over a future 

interval known as control move horizon) that solves a predefined constrained 

optimization problem. Then the optimization yields an optimal control sequence and 

the first control in this sequence is applied to the plant. Such a principle, 

characterizing the basic philosophy of MPC for SGL is illustrated in Fig. 2 [20]. 
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Fig.  2 Basic feed-back structure of MPC 

The MPC based methodologies require a model of the process. More accurate 

models lead to more enhanced control performance of the MPC. In the following, 

the SG model used in this work is discussed. 

3.2 Mathematical model of a steam generator 

The design of an effective controller depends on the availability of accurate 

mathematical models describing the plant dynamics. The model should be accurate 

enough, and be sufficiently simple but still be able to capture the essential SG 

dynamics. In this research, the Irving model [1], [3] is used because it has met the 

above criteria and has widely been used in the design and evaluation of SG control 

systems. The Irving model captures the non-minimum phase behavior of the SG 

level.  

The Irving model is a linear fourth-order dynamic model whose parameters depend 

on the reactor/turbine power level. The transfer function relating the feed-water 

flow rate, ( )wq s  and the steam flow rate, ( )vq s  to the SG water level, ( )Y s  can be 

expressed as [1]: 
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where ( )Y s represents the SG level, 1 , 2  and T are the damping time constants 

and the period of the mechanical oscillation, respectively. The first term in Eqn. (1) 

represents the effect of any mass imbalance (feed-water vs steam flow) in the SG 

level. It takes into account the level change due to the mass difference from the 

feed-water inlet to the steam outlet. 1G is a positive constant independent of the 

power level. 2G  is the magnitude of the swell or shrink due to the feed-water or 

steam flow rates, and is a positive parameter which is also dependent on the power 

level. 3G is the magnitude of the mechanical oscillation, and is a function of the 

power level. The parameter 3G  is positive and is also a function of the power level.  

 

Irving model specified the parameters at five different power levels, 5%, 15%, 30%, 

50% and 100%. These parameters are listed in Table 1. [1]. 

Table 1 The parameters of Irving SG model over five power levels 

  5% 15% 30% 50% 100% 

1G  0.058 0.058 0.058 0.058 0.058 

2G  9.63 4.46 1.83 1.05 0.47 

3G  0.181 0.226 0.310 0.215 0.105 

1  (sec) 41.9 26.3 43.4 34.8 28.6 

2  (sec) 48.4 21.5 4.5 3.6 3.4 

T (sec) 119.6 60.5 17.7 14.2 11.7 

( / sec)vq kg  57.4 180.8 381.8 660.0 1434.7 
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Fig.  3 SGL to (a) step changes in the feed-water flow, (b) step changes in the 

steam flow based on the Irving model [1] 

The responses of the SGL to step changes in the feed-water flow rate and the steam 

flow rate at different power levels, based on the Irving model, are shown in Fig. 3 

[1]. The inverse response behavior, and the nonlinear characteristics of the SGL are 

clearly observed in the figure, especially at the low power levels. For example, at 

5% FP, when the feed-water flow rate is increased, the level response first 

undergoes undershoot, before rising up (Fig. 3(a)). Similar responses, but in the 

reverse direction, are seen in Fig. 3(b) when the steam flow rate is increased. 

3.3 SGL model linearization 

To design a control algorithm for the SGL, the SG model needs to be linearized. 

The dynamics of the SGL under different power levels are different, and hence, 

different sets of parameters have to be used. 

In this investigation, five different power levels, based on the Irving model, are 

considered. The corresponding parameters under these power levels are determined 

through system estimation and model-matching techniques. The Irving model 

linearized in this study may be viewed as five piecewise Linear Parameter Varying 

(LPV) models, to cover five power regions shown in Table 2. 
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Table 2 SGL model linearization regions 

Region # Power level covered 

Region 1                            0% 8%   

Region 2  8% 20%    

Region 3 20% 40%   

Region 4 40% 75%   

Region 5 75% 100%   

 

From Eqn. (1), one can represent the system as: 
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(2) 

where ( )uG s  and ( )vG s are the transfer functions. By using the linearization 

method to identify the SGL model within a power region, the model is assumed to 

be linear and time-invariant. The state equations of the Irving's SG model are as 

follows: 
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 (3) 
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Denoting the feed-water and the steam flow rates by ( ) ( )wu t q t  and ( ) ( )vd t q t  

Eqn. (1) can be converted into the following state space form in continuous 

domain: 

( ) '( ) ( ) '( ) ( ) ' ( ) ( )

( ) ' ( )

dx t A x t B u t B d t

y t C x t

    


                     (4) 
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2 2 2

34 1

1 1 2 2 2 3 3

22 2

1

33 1

( ) 4 ( )

( ), / ( ), ( )

1 / ( )

2 / ( )

a T

b G b G b G

a

a

   

   

 

 

 



  

   

 

 

          (6) 

3.4 The MPC for SGL control 

The MPC controller for the SGL computes the manipulated control signal at each 

sampling time by solving a finite horizon open-loop optimal control problem, using 

the states of the plant. A sequence of optimal control signals is computed. The basic 

feedback control structure of MPC for SGL in shown in Fig. 4. 

 

 

Fig.  4 Basic feedback control structure of MPC for SGL 
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The MPC uses the SGL model to predict the future response of the SGL. The basic 

philosophy of MPC is shown in Fig. 5. The SGL model is used to predict the future 

states and output ( ), ( ), 1,...x k i k y k i k i p    of the system over the time-

horizon p , as shown in Fig. 5. When the manipulated variable (feed water flow 

rate) ( ), 0,1,... 1u k i k i m  
 
is changed over some future time-horizon, i.e., the 

control horizon m , using these predictions, m  control signals 

( ), 0,1,... 1u k i k i m    are computed to minimize the performance index over the 

prediction horizon .p  The first control signal (action) in the sequence, i.e., ( | )u k k

, is then applied to the Feed-water Control Valve (FWCV). The remaining optimal 

inputs are discarded, and a new optimal control problem is solved at each sampling 

time.  

 

Fig.  5 Basic philosophy of a MPC  

 

The cost function can be defined as the quadratic error between the future reference 

variable and the future controlled variable within the chosen discrete time horizon 

m as follows: 
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where ( )r k
 
is the SGL set-point, ( )y k  is the SGL measurement (controlled 

variable), u  is feed-water flow rate (manipulated variable) and , , 0y u uQ R R   are 

the weighting matrix. The performance-index or cost-function ( )pJ k in Eqn. (7) 

reflects the tracking error between the reference and the measured SGL. It also 

includes the control effort in terms of signals going to the FWCV. Subject to the 

following constraints on the control input, ( ), 0,1,... 1u k i k i m   , states and 

output ( ), ( ), 1,...x k i k y k i k i p   :  

,min ,max( ) 1,2, , , 0,1,....., 1j j j uu u k i k u j n i m     
 

(8) 

 

,max( ) 1,2, , , 0,1,....., 1j j uu k i k u j n i m      
 

(9) 

where ,minju and ,maxju are minimum and maximum limits of control signal, and 

 

( ) ( ) ( 1 )u k i k u k i k u k i k        

 

Constraints on the output of the SGL and the states: 

,min ,max( ) 1,2, , , 0,1,.....,j j j yy y k i k y j n i p    
 

(10) 

,min ,max( ) 1,2, , , 0,1,.....,j j j xx x k i k x j n i p      (11) 
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3.5 The Standard Model Predictive Control (SMPC) 

The Standard Model Predictive Control (SMPC) is formulated based on the discrete 

state space model. Let the discrete state-space description of the uncertain SGL 

model in discrete time be given by [21]: 

( 1) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

m m m w v

m m

x k A x k B u k B d k

y k C x k

  
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where ( ) xN

mx k   ( ) uN
u k   and ( ) ,yN

y k k   are the state, the input (feed-

water flow rate) and output (SGL) respectively, ( ) dN
d k   is the external 

disturbance (steam flow rate),   is some pre-specified set and  denotes the 

percentage of the power level (%FP) which determines the values of the SGL model 

parameters. ( ), ( ), ( ),m w v mA B B C    are power level dependent matrices in discrete 

time. 

The SMPC changes its internal model, parameters and control settings according 

to the power level operations in order to stabilize the SGL by manipulating the feed-

water flow rate while all the constraints are satisfied. The SMPC methodology is 

composed of three steps:  

i) future state/output prediction,  

ii) minimization of the desired cost function over the prediction horizon, and 

iii) implementation of the obtained optimal control input signal until the next 

sampling instant.  

The control scheme uses the SGL model to predict the future response of the SGL. 

An optimization problem is solved to compute a sequence of m  manipulated 

control signals      , 1  1u k k u k k u k m k       for the SGL control. This is 
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done by minimizing an appropriate cost function such that the p  predicted outputs 

     1 , 2  y k k y k k y k p k       follow the predefined trajectory.  

The state-space description of the SGL model in discrete time is given by: 
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 (13) 

The state-space discrete model in Eq. (13) is formulated into an augmented model 

by choosing a new state variable vector, [ ( ) ( )]T

mx k y k . The augmented model 

is given as follows [21]: 
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m m w v

C

m

A B Bx k x k
u k d k

C A CB CBy k y k

x k
y k

y k



        
         

      

 
  

 
 

(14) 

In the above definition of the SMPC methodology, the following can be noted: 

1. The mass flow is balanced using feedback from state 

1 1( ) ( ( ) ( ))w vx k G q k q k   

2. Swell/ shrink effects are minimized during different operation modes by 

using feedback from state
2

2

2

( ) ( ( ) ( ))w v

G
x k q k q k


    

3. Transient response is improved by using feedback from states 

 2 2 2

3 3 4 1 3( ) ( ), ( ) 4 ( )wx k G q k x k T x k        

4. The SGL Model parameters vary as a function of the power level, and 

the SMPC uses power level dependent SGL model  
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5. Steady-state errors are minimized over the future horizon of 𝑝, and the 

size of the control move is minimized over the control horizon, m, by 

minimizing the cost function for augmented model J in Eqn. (21). 

The SMPC uses a set of discrete Laguerre functions. The Laguerre function is used 

for its known ability to speed up the convergence of the control signal, ( )u k , 

which enables the set point error e(k) to converge to zero. The core technique is to 

use additional tunable parameters   (scaling factor for discrete-time Laguerre 

functions) and N  (number of terms used in Laguerre function expansion), while 

optimizing the difference of ( )u k . 

Laguerre functions are expressed in a vector form as: 

1 2( ) [ ( ) ( ) . . . ( )]T

NL k l k l k l k  

The set of discrete-time Laguerre functions satisfies the following difference 

equation: 

( 1) ( ),lL k H L k   (15) 

where matrix lH  is N N and is a function of parameters a  and 
2(1 )a   . 

Initial condition is given by: 

2 3 1 1(0) [1 . . . ( 1) ]T N NL a a a a       (16) 

  

2 3

2

0 0 0

 0 0
, (0) 1

-  0

-

T
T

lH L



 
   

  

    

 
 
        
 
 

 (17) 

 

Laguerre functions used in the SMPC methodology to compute a series of control 

signals: 
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1

( ) ( ) ( ) ( )

( ) ( )

N
T

i j i j i

j

T

i

u k k c k l k L k

u k k L k







   

  


 (18) 

where   consists of N Laguerre coefficients: 

1 1[ . . . ] ,T

Nc c c   

With initial state variable ( )x k , the prediction of the future state variable, ( )x k m k  

at sampling instant m, becomes: 

1
1

1

( ) ( ) ( )
m

m m i T

i

x k m k A x k A BL i 


 



    (19) 

1
1

1

1
1

1

( ) ( ) ( ) , ( ) ( )

( ) ( ) ( )

m
m T T m i T

i

m
m m i T

i

x k m k A x k m m A BL i

y k m k CA x k CA BL i

  




 




 



   

  




 (20) 

The cost function of the SMPC plays an important role in the optimization phase. 

The cost function can be set out in various forms, but in general, the cost function 

is composed of the quadratic error between the future reference variable and the 

future controlled variable. 

In this investigation, optimal control action by combining the constraints is found 

by minimizing the cost function for the augmented model J  within the 

optimization window: 

( ) ( ) ,T T

s sJ R Y R Y U R U      (21) 

which equivalent to: 

1 1

( ) ( ) ( ) ( )
p m

T T

SMPC

i i

J x k i k Q x k i k u k i R u k i
 

          (22) 
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where: 

1 2

[ ( 1 ) ( 2 ) ( 3 )............ ( )]

[ ( ) ( 1) ( 2)................ ( 1)]

[ . . . ]

T

i i i i i i i i

T

i i i i

T

s p

Y y k k y k k y k k y k p k

U u k u k u k u k m

R r r r

    

         



 (23) 

where u is sequence of control movement (manipulated signal), Y is predicted 

outputs (SGL) and R  is the sequence of SGL set-point.  

By substituting ( ) ( ) ( )m Tx k m k A x k m     into cost function (22),   

1 1

1

( ) ( ) 2 ( ) ( )

( ) ( ) ( )

p p
T T T i

SMPC SMPC i

i i

p
T T i i

i SMPC i

i

J i Q i R i Q A x k

x k A Q A x k

     
 



   
     

   



 


 

(24) 

By minimizing cost function: 

0
J




 

  

1 1

1 1

( ( ) ( ) ) ( ) ( ), ( )
p p

T m

SMPC SMPC i i

i i

i Q i R i Q A x k x k      

 

       (25) 

 

min

1

1

( ) ( ) ( )
p

T T i i T

i SMPC i

i

J x k A Q A x k 



 
   

 
  (26) 

Minimized control signal is in the form of state feedback: 

( ) ( )SMPCU k K x k    (27) 

  

1 1

1 1

(0) (( ( ) ( ) ) ( ) ) (0)
p p

T T m T

SMPC SMPC SMPC

i i

K L i Q i R i Q A L    

 

      (28) 
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where SMPCQ  and R  are weighting matrices. Both SMPCQ  and R  are diagonal 

matrices with positive diagonal elements. By choosing the weight matrix 

T

SMPCQ C C  , the error between the SGL set-point signal and the SGL output is 

minimized [21]. R  is a diagonal matrix with smaller components corresponding to 

faster response. The choice of SMPCQ  and R  may affect the location of the 

eigenvalues of the closed-loop system of the SGL, and may lead to the improved 

closed loop performance when using the augmented state-space model [21]. Once 

SMPCQ  and R are selected, the underlying optimal control trajectories are fixed. In 

general,  is selected as an estimate of the real part (absolute value) of the closed-

loop dominant eigenvalue, dictated by SMPCQ , R and N, is increased until the control 

trajectory no longer changes with the increase of N (N is the number of terms used 

in Laguerre function expansion). Therefore, these parameters affect the location of 

the eigenvalues of the closed-loop system, and in turn, affect the closed-loop 

control performance.  

Asymptotic stability is established for the SMPC by using feedback control gains 

to compute parameter vector for the control sequence ( )U k  from states: 

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( )U k u k u k u k u k u k      
 (29) 

where  

 𝛥𝑢1(𝑘) = −
1XK . 𝛥𝑥1: minimizing mass balance   

 𝛥𝑢2(𝑘) = −
2XK . 𝛥𝑥2: minimizing swell and shrink effect 

 𝛥𝑢3(𝑘) = −
3XK . 𝛥𝑥3 ∶ minimizing FW flow effect 

  𝛥𝑢4(𝑘) = −
4XK . 𝛥𝑥4: minimizing FW flow effect 

  𝛥𝑢5(𝑘) = −
5XK . 𝛥𝑥5: minimizing SGL error. 
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3.6 An Improved Model Predictive Control (IMPC)  

The Improved Model Predictive Control (IMPC) method has been formulated to 

investigate the potential performance improvement over SMPC by fine tuning the 

control sequence through assigning appropriate values in the weight matrix. The 

IMPC is essentially the SMPC, except that the matrix SMPCQ  is replaced by weight 

matrix IMPCQ , where the elements of may have assigned with different values than 

the SMPCQ .  

The matrix IMPCQ  is used to define the fine tuning parameter

1 2 3 4 5[ ]      , which modifies the manipulated control signal ( )U k  

in IMPC as follows:  

 𝛥𝑢1(𝑘) = −
11 XK . 𝛥𝑥1: mass balance effect 

 𝛥𝑢2(𝑘) = −
22 XK . 𝛥𝑥2: swell and shrink effect 

 𝛥𝑢3(𝑘) = −
33 XK . 𝛥𝑥3: transient response during FW flow change 

  𝛥𝑢4(𝑘) = −
44 XK . 𝛥𝑥4: transient response during FW flow change 

  𝛥𝑢5(𝑘) = −
55 XK . 𝛥𝑥5: SGL error 

The idea of IMPC is to assign larger weights to aggressively encounter the effect 

of some of the salient characteristics of the SGL at different power levels. To 

illustrate, if mass balancing is important at certain power level, the value of the first 

element i.e., (1,1)Q  can be set to a larger value as a result 
11 XK  increases so that 

higher weights can be given to 𝛥𝑢1(𝑘) .  Larger weights can also be assigned to 

Q(2,2) for the swell-shrink effects. 

For the simulation results presents in Section 4 and Section 5, the elements of
IMPCQ  

at 5% power level are determined as follows: 

The process starts by assigning an initial value of 0 to each of the diagonal element 

of IMPCQ . Based on the characteristics of the SGL at 5%, the swell-shrink effect and 
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the transient response have been identified as prominent factors affecting the 

control performance. To address these effects more aggressively, the values of 

Q(2,2) and Q(3,3) are set to 1.0. Note that these values are selected arbitrarily. The 

idea has been to investigate the potential performance improvement of SMPC 

through fine-tuning, not to optimize the IMPCQ (which can be further explored). The 

value of Q(5,5) is set to 0.0001, as determined in the SMPC. 

Using these assignment of values for IMPCQ , the value of 
min

J  is computed by first 

computing  , and then 
min

J  as follows (note that any change in IMPCQ  affects 

, ,  , which in turn may affect the value of 
min

J ): 

0
J




 

  

1 1

1 1

( ( ) ( ) ) ( ) ( ), ( )
p p

T m

IMPC IMPC i i

i i

i Q i R i Q A x k x k      

 

       (30) 

 

min

1

1

( ) ( ) ( )
p

T T i i T

i IMPC i

i

J x k A Q A x k 



 
   

 
  (31) 

 

This value of 
min

J is recorded. This process is then repeated and the 
min

J values are 

computed and recorded by changing the value of Q(1,1), Q(4,4) and Q(5,5), one at 

a time, while keeping the values of Q(2,2) and Q(3,3) fixed. The values of Q(1,1), 

Q(4,4) and Q(5,5) are changed as follows: 

 Q(1,1): from 0.0 to 1.0 with an step increment of 0.1. 

 Q(4,4): from 0.0 to 0.01 with an step increment of 0.001 

 Q(5,5): from 0.0001 to 0.01 with an step increment of 0.0001 
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Finally, the combination of the element values that gives the lowest 
min

J  from all 

these runs has been taken as the initial 
IMPCQ . The 

min
J with some sample value 

assignments for the elements of initial 
IMPCQ  at 5% PL is shown in Table 3.  

In the table, the combination of values in the 5th row gives the smallest
min

J , and 

hence, selected as the initial
IMPCQ . Finally, using this

IMPCQ , a number of test cases 

are simulated, and the different element values are manually adjusted (if required) 

to determine the final
IMPCQ . The performance of the IMPC has been evaluated on 

the basis of the performance measures, presented in Section 4, for this purpose.  

Table 3 An example of computing 
IMPCQ  at 5% PL 

IMPCQ  diagonal elements 
minJ  Remark 

(1,1) (2,2) (3,3) (4,4) (5,5) 

0.2 1 1 0.001 0.001 8.40375E-05  

0 1 1 0.006 0.001 5.06493E-05  

0.3 1 1 0.001 0.008 0.014166174  

0.2 1 1 0.01 0.006 0.007655725  

0.1 1 1 0.005 0.001 3.98695E-05 Smallest minJ  

0.3 1 1 0.002 0.001 0.000110967  

0.4 1 1 0 0.001 0.000192181  
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Once the 
IMPCQ  is determined, the IMPC feed-back gain is computed as follows: 

1 1

1 1

(0) (( ( ) ( ) ) ( ) ) (0)
p p

T T m T

SMPC IMPC IMPC

i i

K L i Q i R i Q A L    

 

                (32) 

As mentioned above, the IMPC has been formulated and evaluated only to study 

the effect of assigning certain weights to different states, represented in the five 

elements of the 
IMPCQ  matrix. Clearly, the values selected for 

IMPCQ  in this study 

may not be optimal. Other 
IMPCQ values (based on the power level) may lead to 

greater demonstrations of the effects of these parameters on the MPC based SGLC 

systems. However, this has been left as a future work. 

3.7 Summary 

In this section, the fundamentals of the MPC, and the model linearization have been 

discussed, and the formulations of the SMPC and the IMPC methodologies have 

been presented. The SMPC has been formulated using existing advanced MPC 

methodologies. The IMPC has been developed to investigate the performance of a 

MPC based approach for the SGL control systems that takes into account the effect 

of mass balance, transient response and swell and shrink effects, in addition to 

steady-state errors by manipulating the values of the weight matrix
IMPCQ  A heuristic 

approach used in this study to compute 
IMPCQ for simulation has also been discussed. 
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4 Simulation Studies 

4.1 Background and objectives 

The performance of the SMPC and the IMPC have been evaluated under the 

different operating conditions through computer simulation. In this section, the 

results are presented and discussed. 

Simulation results are analyzed for several performance measures that include i) 

set-point tracking, ii) load following subject to reactor power change in steps and 

in ramps, iii) load rejection, and iv) performance under flow disturbances and signal 

noise.  

To compare the SMPC and the IMPC performance with conventional PI controls, 

a fine-tuned PI controller is also implemented in Matlab-Simulink environment.  

The parameters pK  and iK  of the PI controller are fine-tuned at each of the five 

power level regions, given in Table 2. Matlab-Simulink tool has been used for fine-

tuning the PI parameters by measuring and observing major performance for step 

responses such as overshoot, undershoot, settling time and steady-state errors.  

4.2 Simulation set up 

The Irving model, discussed in Section 3.2, has been used for the computer 

simulation. The simulation has been carried out a Matlab-Simulink environment. 

The linear parameter varying model, discussed in Section 3.3, has been used for the 

SGL. The power level dependent parameters (given in Table 1) have been used over 

the five power level regions, given in Table 2. Sampling time has been set to 1 sec 

[22].  

 

For all the computer simulation (also for physical experiments presented in Chapter 

5), constraints have been applied to the allowable FWF rates. The values of the 

FWF rate have been constrained within the range 0 2500wq  kg/s. These 

constraints enforce that the FWF rate cannot be negative, and cannot be over 2,500 
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kg/s. This has been done to account for the capacity of the FWCV in existing NPPs. 

Furthermore, the SGL upper and lower limit constraints have also been imposed. 

The specific values for these limits have been set in the formulation based on the 

power level. The values for   and N for Laguerre functions have been selected as 

 =0.95 and N  = 4, based on the location of the desired eigenvalues.  

4.2.1 Simulation of the SGL 

The simulation set up for the control schemes is shown in a block diagram in Fig. 

6, where PL indicates the reactor power level. 

In Fig. 6, the control signals are indicated as UPI, USMPC and UIMPC for PI, 

SMPC and IMPC control strategies, respectively. The figure also shows that the 

UIMPC control signals are sent to the feed-water control valve (indicated as 

FWCV) of the SG. The feed-water flow and the steam flow have been indicated as 

U and SF, respectively. The point where steam flow disturbance is introduced in 

the simulation is indicated as SFd, and the point where both feed-water flow 

disturbance and signal noise are introduced is indicated as Ud in the figure.  

Identical FWCVs and SGs have been used for the PI and the SMPC schemes (not 

shown in the figure). The details of the IMPC simulation setup is shown in the block 

diagram at the lower part of Fig. 6. 

4.2.2 State observer 

The SMPC and the IMPC schemes have used an observer for state estimation. The 

observer has been constructed using the equation: 

( 1) ( ) ( ) ( ( ) ( ))obx k A x k Bu k L y k C x k
  

                         (33) 

        ( ) . ( ) . ( )y xU k K e k K x k


        (34) 

        ( ) ( ) ( )e k r k y k   

      



35 

 

Observer eigenvalue placement is similar to the controller eigenvalue. Observer 

gain vector obL  is computed based on the desired closed-loop characteristics. For 

example, the observer gain vector obL  used for the IMPC and the SMPC schemes 

at 5% power level have been computed as follows:  

 

 SMPC: obL =[0.8511 -0.1998 -0.2081 -5.0706]; eigenvalue [.85  .75  .90  .95] 

 IMPC: obL =[2.0427 -0.5985 -0.8510 -3.0111]; eigenvalue  [.80   .70  .85  .95] 
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Fig.  6 Block diagram for PI, SMPC and IMPC 

4.2.3 Selection of simulation scenarios 

The simulation scenarios are specifically designed to investigate/study the 

performance of the MPC based approaches, and to compare with conventional PI 
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control strategies. Simulation are carried out to investigate the performance of the 

control strategies under the following input and disturbances conditions: 

 Step response under different operating conditions 

 Set point tracking 

 Load following subject to power level change in steps 

 Load following subject to power level change in ramp 

 Load rejection 

 Performance subject to FWF disturbance in steps 

 Performance subject to SF disturbance in steps 

 Performance subject to random noise in FWF signal 

All simulation studies are focused on the response of the control strategies in 

transient and steady state conditions. In the following, the simulation results are 

discussed. 

4.2.4 Step responses  

The step responses at 5%, 15%, 30%, 50% and 100% power levels are shown in 

Figs.7 to Figs. 16. For this set of simulation, the set point at each power level has 

been step up by 100 centimeters, which is 10% of the full range that has been 

assumed to be 1 meter. In all these figures, the unit of  SGL is given in 

centimeters, and the control signal, which is the FWF rate, is given in kg/s.  

 

The SGLs with SMPC, IMPC and PI controllers at 5% power level are shown in 

Fig. 7, and the respective control signals are shown in Fig. 8. The simulation time 

has been set to 10x 410  mSec (Fig. 7) for this simulation to demonstrate that the 

SGL with PI converges to zero. However, it has been observed for all simulation in 

this section that the SGL with the SMPC and the IMPC converge to zero much 

earlier than that. Furthermore, setting time (+/- 2%) for all control strategies is much 

less than 10x 410  mSec. Therefore, the rest of the figures presented in this section 

will show the simulation results up to 2x 410  mSec. It is further noted that all the 

steady-state errors reported in this study are the errors at 2x 410  mSec. 
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From Fig. 7, it can be seen that there is no overshoot with either the SMPC or the 

IMPC scheme, while there is 20% overshoot with the PI. The IMPC has the least 

undershoot (20%), followed by the PI (28%). The SMPC has the largest undershoot 

(45%). Both IMPC and SMPC have a settling time 5000 mSec, which is 1000 mSec 

less than the PI (6000 mSec).  

 

 

Fig.  7 SGL subject to a step change at PL=5% 
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Fig.  8 Control signal subject to a step change at PL=5% 

 

Eigenvalues of the IMPC and the SMPC control strategies at PL=5% are shown in 

Table 4, and the state feedback gains are shown in Table 5.  From Table 4, it can 

be observed that the locations of the eigenvalues for these control strategies are 

inside the unit circle, ensuring that all control systems are stable.  

Table 4 The Eigenvalues for IMPC and SMPC at PL=5% 

Control Closed-Loop Eigenvalues 

SMPCQ   0.8246 0.9468+j0.0508 0.9468- j 0.0508 0.9885+ j 0.0055 0.9885- j 0.0055 

IMPCQ   0.8113 0.9540+ j 0.0568 0.9540- j 0.0568 0.9880+ j 0.0049 0.9880- j 0.0049 
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Table 5 Feedback gains for IMPC and SMPC at PL=5% 

 

Control 

Feedback Gain ( mpcK ) 

1K  2K  3K  4K  5K  

SMPC 1.8685 0.1432 0.2863 0.0108 0.0080 

IMPC 2.0583 0.1571 0.2428 0.0053 0.0089 

 

The SGL and control signals with 15%, 30%, 50% and 100% power levels with 

respect to step response are shown in Fig. 9 to Fig. 16. The main observations from 

this set of simulation are summarized in Table 6 along with a discussion, presented 

later in this section.  

 

Fig.  9 SGL subject to a step change at PL=15% 
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Fig.  10 Control signal subject to a step change at PL=15% 

 

Fig.  11 SGL subject to a step change at PL=30% 
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Fig.  12 Control signal subject to a step change at PL=30% 

 

 

 

Fig.  13 SGL subject to a step change at PL=50% 
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Fig.  14 Control signal subject to a step change at PL=50% 

 

 

Fig.  15 SGL subject to a step change at PL=100% 
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Fig.  16 Control signal subject to a step change at PL=100% 

 

The performance of the IMPC, the SMPC and the PI algorithms in terms of four 

major performance measures (overshoot, undershoot, settling time and steady-state 

errors) are shown in Table 6. From the table, it can be seen that both SMPC and 

IMPC can achieve zero steady state errors for all power levels within the simulation 

time (2x10^4 mSec), whereas PI may have small errors in low power ranges. The 

IMPC has shown less undershoot than PI and SMPC. The SMPC and the IMPC can 

achieve zero overshoot, while relatively larger overshoot with PI can be observed, 

particularly at low power operations. These simulation results demonstrate the 

challenges of constant gain conventional PI controllers to control the SGL over full 

power ranges that include start-up and low power operations. This also indicates 

that the MPC based approaches may be a feasible methodology to control a SGL in 

all power levels. 
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Table 6 Performance of IMPC, SMPC and PI strategies 

%PL 

Over Shoot (%) 

 

Undershoot (%) Settling Time (mSec) 
Steady State Error at 

T= 2x10^4 (%) 

IMPC SMPC PI 
IMPC SMPC PI 

IMPC SMPC PI IMPC SMPC PI 

5 0 0 20 20 45 28 5000 5000 6000 0 0 2.70 

15 0 0 16 
20 60 22 

2000 1500 5000 0 0 2.5 

30 0 0 15 
10 80 50 

1000 1000 2000 0 0 1 

50 0 0 15 
5 50 30 

800 500 2000 0 0 0 

100 0 0 3 0 0 0 411 380 1200 0 0 1 

 

4.2.5 SGL subject to step changes in reactor power level 

This simulation has been carried out in order to study the performance of the control 

strategies when the reactor power level is changed from 5% to 22% in steps. The 

power level is increased as follows: i) from 5% to 10%, PL is increased by a step 

of 1%; ii) from 10% to 14%, PL increased by a step of 2%; and iii) from 14% to 

20%, PL increased by a step of 3%. Finally, the PL is increased by 2% to arrive at 

22%. The results are shown in Fig. 17 and Fig. 18 (SGL and control signal, 

respectively).  

Visual inspection of Fig. 17 will reveal that the settling time for the PI is much 

larger than both MPC based approaches for more than 8% PL. Both SMPC and 

IMPC have shown consistent ability for fast set point tracking, which is not 

necessarily the case for the PI. No overshoots have been observed for any of the 

MPC based strategies at any power level. Undershoots of the SMPC is a little higher 

than the PI for more than 17% PLs. Based on these observations, the IMPC can be 

seen as the best performing control strategy in terms of settling time, 

overshoot/undershoot, steady state error and the transient responses.  
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Fig.  17 SGL subject to multiple PL step-up changes from 5% to 22%  

 

 

Fig.  18 Control signal subject to multiple PL step-up changes from 5% to 

22% 
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4.2.6 SGL response subject to ramp change in reactor power  

This simulation has been carried out to investigate the performance of the control 

strategies under changes in power level, when the changes are made in ramp (which 

is usually the preferred method in real power plants while the power level is 

increased). 

For this simulation, the reactor is powered up continuously from 5% to 100% 

(ramped up), and then powered down to 5% (load rejection). The results are shown 

in Fig. 19 and Fig. 20 (the SGL and the control signal, respectively).  

For this simulation, an advance PI Simulink block with bump-less transfer 

capability has been used. Five different fine-tuned PI controllers for five different 

power level dependent SG Models have been employed. 

It can be seen from Fig. 19 that although IMPC and SMPC schemes have 

consistently slightly outperform the PI in terms of set-point tracking and transient 

responses; however, in general, the performance of all three control strategies are 

close and comparable when multiple PI controllers are used in bump-less output.  

 

Fig.  19 SGL subject to power level changes from 5 % to 100 %, followed by 

a load rejection to 5% 
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Fig.  20 Control signal subject to power level changes from 5 % to 100 % 

followed by a load rejection to 5% 

4.2.7 SGL response subject to steam flow disturbance 

Steam flow disturbance is one of the main disturbances for the SGL during different 

operating modes of a power plant. In this section, the performance of all three 

control strategies under steam flow disturbance are compared. For this set of 

simulation, 5% and 50% power levels are considered, to evaluate the performance 

in lower and higher power levels, respectively. In the simulation, disturbance (SFd 

in Fig. 6 was applied in the steam flow by introducing a step up, and a step down 

signal with the SF signal. 

 

The SGL control performance of SMPC, IMPC and PI controllers at 5% power 

level are shown in Fig. 21, and the respective control signals are shown in Fig. 22. 

From Fig. 21, it is clear that both IMPC and SMPC have been able to reject the 

effect of SF disturbance on the SGL effectively in about 3 secs after the step-up 

disturbance injection. The PI can be seen as unable to reject the disturbance effect 

even until 15 secs after the step-up disturbance injection. Furthermore, the SMPC 
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sends larger control signals (Fig. 22) as compared to the IMPC and the PI. This 

may indicate greater efforts by the control valve with SMPC. The magnitude of the 

control signals for the IMPC and the PI are comparable. Based on the above 

observations, it appears that the IMPC can provide better SF disturbance effect 

rejection capability.  

 

The SGL control performance of SMPC, IMPC and PI controllers at 50% power 

level are shown in Fig. 23, and the respective control signals are shown in Fig. 24. 

As shown in Fig. 23, the IMPC and the SMPC controls have again shown better 

performance for disturbance effect rejection much earlier than the PI. The PI has 

also been able to reject the disturbance effect at this power level, but not as quickly 

as the SMPC and the IMPC. It is noted that SMPC has even smaller 

overshoot/undershoot, and required less control action than IMPC in this particular 

case. However, it may also be noted that the IMPCQ  matrix used in all simulation is 

tuned for 5% power level. More appropriate selection of weights in IMPCQ , based 

on different power level, may lead to further improvement of its performance, and 

can be further investigated. 

 

From the simulation results at 5% and 50% PL, it can be seen that disturbance effect 

rejection by PI control at 5% PL is much worse than that at 50% PL. This again 

demonstrates that the SGL control is more challenging at low power operations. 

Note that PI controller parameters are fine-tuned using Matlab Simulink tuning 

tool. 
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Fig.  21 SGL subject to a SF disturbance at PL=5% 

 

 

Fig.  22 Control signal subject to a SF disturbance at PL=5% 
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Fig.  23 SGL subject to a SF disturbance at PL=50% 

 

 

Fig.  24 Control signal subject to a SF disturbance at PL=50% 
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4.2.8 SGL response subject to feed-water flow disturbance 

Feed-water flow disturbances in the process may be introduced in different forms 

such as transmitter failures and FWCV unintentional opening/closing. In this 

section, the performance of all three control strategies under feed-water flow 

disturbances are compared. For this set of simulation, 5% and 50% power levels 

are considered to represent the lower and the higher power levels, respectively. In 

these simulation, disturbance has been applied in the feed-water flow by 

introducing a step up, and a step down signal with the feed-water flow signal (Ud 

in Fig. 6).  

 

The SGL control performance and control signals of SMPC, IMPC and PI 

controllers at 5% power level are shown in Fig. 25 and Fig. 26, respectively, and 

those at 50% PL are shown in Fig. 27 and Fig. 28, respectively. The relative SGL 

control performance of the control strategies for FWF disturbance effect rejection 

at 5% and 50% PLs are similar to the results presented in Section 4.2.7, and hence, 

detail discussion is omitted for the shake of brevity.  

 

 

Fig.  25 SGL signal subject to FWF step-disturbances at PL=5% 
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Fig.  26 Control signal subject to FWF step-disturbances at PL=5% 

 

Fig.  27 SGL subject to FWF step-disturbances at PL=50% 
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Fig.  28 Control signal subject to FWF step-disturbances at PL=50% 

4.2.9 SGL response subject to random measurement noise in 

the FWF  

Random noise disturbance in feed-water flow signal can be caused by several 

factors such as poor grounding, bad connection, or Electro-Magnetic Interference 

(EMI) from a plant environment. In this section the performance of all three control 

strategies are compared under random noise-disturbance in the feed-water flow.  As 

for other simulation under disturbances, 5% and 50% power levels are considered. 

Random noise signal has been generated by using Simulink block. 

The amplitude for the random signal is selected as 0.3. The noise signal is 

introduced in feed-water flow signal (Ud in Fig. 6).  

 

The SGL control performance of SMPC, IMPC and PI controllers at 5% power 

levels are shown in Fig. 29, and the respective control signals are shown in Fig. 30. 

As shown Fig. 29, random noise has caused about +/- 4% oscillation on the SGL 

for the PI controller. The IMPC and the SMPC have been able to handle the noise 

effect more resiliently, with approximately +/- 0.4% oscillation on the SGL. The 



54 

 

SMPC needed relatively larger control action than the other two strategies, as 

shown in Fig 30. 

 

The SGL at the 50% power level is shown in Fig. 31, and the respective control 

signals are shown in Fig. 32. For the 50% PL, the random noise disturbance 

rejection performance (in terms of SGL oscillation) for all three control strategies 

are close to each other, and much better than their respective performance at the 

5% PL (Fig. 31). Once again, this outcome demonstrates that increasing the power 

level reduces the effect of the random noise disturbance on SGL. Note that at 50% 

PL, the SGL with the SMPC has been found to be noisier than both IMPC and PI. 

 

 

Fig.  29 SGL subject to FWF random noise disturbance at PL=5% 
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Fig.  30 Control signal subject to FWF random noise disturbance at PL=5% 

  

Fig.  31 SGL subject to FWF random noise disturbance at PL=50% 
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Fig.  32 Control signal subject to FWF random noise-disturbance at PL=50% 

 

4.3 Summary 

The performance of the SMPC and the IMPC based control strategies has been 

investigated, and compared with an optimized PI based controller through 

computer simulation. The control performance has been evaluated mainly in four 

performance measures: i) overshoot, ii) undershoot, iii) settling time, and iv) steady 

state errors. Simulation scenarios have been specifically selected in order to 

investigate the performance for set point tracking, load following (in step and 

programed ramp), load rejection, and to see how they would perform under 

disturbances and signal noises in the SF and the feed-water flow.  
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5 Physical Test Results on the PLS 

5.1 Background and objectives 

Testing control systems in a physical environment is important to verify and 

validate the performance and limitations of a control strategy. The quality and 

accuracy of the test is dependent on the physical system with respect to actual 

system dynamics. In this section, a physical test bench consisting of a mock-up SG 

system, referred to as the Plate-Level System (PLS), is used to study the 

performance of all three control strategies. The idea has been to investigate the 

effectiveness of the control strategies on a realistic system. A subset of the 

computer simulation studies has been selected for the PLS test. For the analysis of 

the PLS test results, emphasis has been put on the similarity and the differences of 

relative performance trends of the PLS test results to that of the corresponding 

computer simulation.  

5.2 Physical simulation set up 

The PLS used to mimic a realistic steam generator level in CIES lab is illustrated 

in Fig. 33, and a schematic diagram is shown in Fig. 34. As shown in Fig. 34, the 

PLS system consists of a cylindrical tank containing an aluminum plate which can 

be controlled vertically by manipulating the position of the valve. This valve 

position changes the air flow-rate, which in turn changes the plate level. The plate 

moves within an admissible range of 0-20 cm. Plate level “SGL” is measured by a 

laser level sensor installed at the top of the tank (Fig. 33), which passes this 

information in the form of 4-20 mA output signals to an I/V converter (Fig. 33). 

The voltage signal from the converter is then passed to a data acquisition (DAQ) 

system. A DT9812 Series DAQ module has been used that supports eight single-

ended analog input channels, two analog output channels (DAC0 and DAC1), eight 

fixed digital input lines, and eight fixed digital output lines. This DAQ interfaces 

with the MATLAB Data Acquisition (DAQ) subsystem. The FWF and SF signals, 

as determined by the control strategy, are passed from the MATLAB DAQ to 

DT9812 DAQ over the channels DAC0 and DAC1. These signals then go to the 
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converter V/I. The FWF signal is then fed to the control valve of the PLS (FIG. 34). 

The SF is used to set the power level of the PLS.  

      Laser level sensor 

 

Fig.  33 The Plate Level System (PLS) 

 

A schematic diagram of the plate-level system used for physical simulation is 

shown in Fig. 34. [23]  
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Fig.  34 A schematic diagram of the PLS with a digital filter for simulating 

non-minimum phase characteristics 

5.3 Selection of simulation scenarios 

The simulation scenarios for the PLS tests are kept similar to the computer 

simulation (discussed in Section 4.2), so that meaningful comparisons can be made. 

The results of the simulation are discussed in the following.  

Note that the PLS cannot be pulled-down by the feed-air valve during the set point 

step-up change, and hence, undershoot performance subject to set point step-up 

change cannot be measured for PLS test studies. Therefore, undershoot measure 

during set point step-up change has been disregarded for all test results presented 

in this section. Furthermore, the PLS tests with SF disturbance have not been 

performed, as the SF valve on the PLS is not physically integrated with the process. 

Furthermore, only random noise disturbance in the FWF has been considered for 

physical tests. 
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5.3.1 Step response  

The step responses of the control strategies on the PLS are investigated at 5%, 15%, 

and 100% power levels. These power levels are selected to reflect the performance 

evaluation of the control strategies at low power levels and a high power level. The 

results are shown in Fig. 35 to Fig. 40. As in the computer simulation, the unit of 

SGL (change in SGL) is given in centimeters, and the control signal, which is the 

FWF rate, is given in kg/s. The main observations from this set of simulation have 

been summarized in Table 7, along with a discussion, to be presented later in this 

section. The simulation time has been set to 3.5x10^4. The longer simulation time 

(than the respective computer simulation) has been used to ensure appropriate 

settling time (+/- 2% SGL) for all of the control strategies. The steady state errors 

reported in this section are the error at the end of the simulation times. 

The SGL performance of SMPC, IMPC and PI controllers at 5% power level are 

shown in Fig. 35, and the respective control signals are shown in Fig. 36. As shown 

in Fig. 35 (and Table 7), only a little overshoot has been observed for the IMPC 

and the SMPC schemes at this PL (1.7% and 4.56%, respectively). There were zero 

overshoots with these controllers in the computer simulation at 5% PL (Table 6). 

However, the overshoot with the PI on the PLS is about 33% (computer simulation 

for PI has been 19.1%). This may be due to the saturation of the PI control signals, 

as shown in Fig. 36. 

In summary, the relative SGL performance trend of the controllers on the PLS, in 

terms of overshoot, is reasonably close to that of the computer simulation. 

The steady state errors on the PLS for IMPC, SMPC and PI in Fig. 35 have been 

0.5%, 0.3%, and 3.25%, respectively (Table 7). IMPC and SMPC have zero steady 

state errors in computer simulation (Table 6). And therefore, relative SGL 

performance trend of the controllers on the PLS and the computer simulation, in 

terms of steady state error, is also fairly close. The PI needed relatively larger 

control action than the other two strategies, as shown in Fig 36. 
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At 5% power level, both SGL and control signals are found to be noisy as shown 

in Fig. 36. And hence, the settling time cannot be clearly identified. These noises 

are relatively more as compared to the corresponding computer simulation. 

However, this can be expected due to the physical nature of the test, and the 

characteristics of the PLS. Furthermore, although the PLS closely mimic the Irving 

model, some model mismatch can be expected, which may lead to a variation in the 

performance of the MPC based control strategies. It is noted that such noises in the 

SGL and the control signals have been observed in all test cases in low power levels 

due to the possible reasons discussed above. 

 

Fig.  35 SGL of the PLS at PL=5% 
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Fig.  36 Control signal to the PLS at PL=5% 

 

The SGL performance of SMPC, IMPC and PI controllers at 15% power level in 

shown in Fig. 37, and the respective control signals are shown in Fig. 38. Visual 

inspection of Fig. 37 clearly reveals that SGL by the SMPC and the PI have suffered 

from oscillations. This is different from the corresponding computer simulation, as 

no oscillation has been observed (see Fig. 7). This may have occurred due to model 

mismatch. The IMPC has shown no SGL oscillation on PLS, possibly indicating 

that the IMPC is more robust in terms of model mismatch.   

 

The PI has shown a larger overshoot of 32.23% (see Table 7) than the computer 

simulation (11.08%, see Table 6). The SMPC has shown 13.33%% overshoot, 

whereas, the IMPC has only a little overshoot (3.33%). Both IMPC and SMPC 

overshoots were zero in the computer simulation. Therefore, the IMPC has again 

shown better capability in terms of overshoot. 

 

The steady state errors on the PLS, for all controllers, are comparable to that of the 

computer simulation (see Table 6 and Table 7). For the settling time, all control 
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strategies took longer (about 6000 mSec) on the PLS than corresponding computer 

simulation; however, the relative time difference among the control strategies 

between the PLS and the computer simulation is not significant (see Table 6 and 

Table 7).   

 

Fig.  37 SGL of the PLS at PL=15% 

 

Fig.  38 Control signal to the PLS at PL=15% 
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The SGL performance of SMPC, IMPC and PI controllers at 100% power level 

are shown in Fig. 39, and the respective control signals are shown in Fig. 40.  

From Fig. 39, the SGL performance at 100% power can be seen as similar to that 

of the PLS simulation at 15% (Fig. 37).  

 

Fig.  39 SGL of the PLS at PL=100% 

 

Fig.  40 Control signal to the PLS at PL=100% 
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The performance of the three control strategies for the physical simulation is 

summarized in Table 7. From this table, it can be seen that the relative performance 

trends of the control strategies are close to those in the computer simulation, except 

for the settling times, where the PLS tests have required larger settling times for all 

control strategies (see Tables 6 and 7). Furthermore, overshoots can be seen in both 

MPC based approaches for PLS tests, although the overshoot is minimal for the 

IMPC scheme. Steady state error for all three control strategies on the PLS are also 

close to that of the computer simulation.  

Table 7 Performance of IMPC, SMPC and PI strategies on the PLS 

 

%PL 

Over Shoot (%) Settling Time (mSec) 
Steady State Error (%) 

at simulation end time 

IMPC SMPC PI IMPC SMPC PI IMPC SMPC PI 

5 1.7 4.56 33.33 na na na 0 0 3.25 

15 3.33 13.33 32.23 6760 6600 7050 0 1.17 2 

100 1.3 10.66 31.02 7460 4000 5200 0 0 0 

 

5.3.2 SGL response subject to changes in reactor power level 

in step 

The same as in the computer simulation presented in Section 4.2.5, this PLS test 

has been done in order to study the performance of the control strategies when 

reactor power levels are changed from 5% to 22%. From 5% to 19%, PL has been 

increased by a step of 2%; and then, the PL is increased by 3% to arrive at 22%.  

The results are shown in Fig. 41 and Fig. 42 (the SGL and the control signals, 

respectively).  

It can be seen in Fig. 41 that the load following capability of the IMPC and the 

SMPC controllers are better than the PI, and close to each other. However, their 

performance is a little noisy compared to the corresponding computer simulation 

(Fig. 17), most likely due to the model mismatch. Comparing Fig. 41 and Fig. 17, 
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it is reasonable to conclude that the performance trends, shown in the PLS tests and 

the computer simulation in terms of load following are close to each other.   

 

Fig.  41 SGL of the PLS subject to PL step up changes from PL=5% to 22% 

followed by a load rejection to PL=5% 

 

Fig.  42 Control signal to the PLS subject to PL step up changes from 

PL=5% to 22% followed by a load rejection to PL=5% 
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5.3.3 SGL response subject to changes in reactor power level in ramp 

For this PLS test, the reactor power is increased continuously from 5% to 100% 

(ramp up), and then reduced to 22% (load rejection). The results are shown in Fig. 

43 and Fig. 44 (SGL and control signal, respectively). In this simulation, the set 

point tracking performance of all three control strategies have shown little 

degradation compared to their computer simulation counterparts (Fig. 19). One of 

the major reasons is the possible model mismatch. 

The SMPC has the best performance in terms of set point tracking and load 

following, with IMPC a close second. The IMPC, however, has the least 

undershoots, and also the least settling time (after load rejection). Relatively much 

larger overshoot/undershoot and settling time can be noted for PI.  

Note that the spikes in the control signal in PI are due to the switch of the controller 

to a different power level. This can be avoided by using bump less PI as shown in 

corresponding computer simulation (Fig. 20). 

 

Fig.  43 SGL of the PLS for PL ramp up changes from PL=5% to 80% 

followed by load rejection to PL=10% 
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Fig.  44 Control signal to the PLS for PL ramp up changes from PL=5% to 

80% followed by load rejection to PL=10% 

5.3.4 SGL response subject to random noise in the FWF 

measurements 

This section presents the performance of control strategies subject to random noise 

in the FWF measurements. For this set of the PLS tests, 5% and 50% power levels 

are considered, as in the computer simulation.  

 

The results at 5% PL are shown in Fig. 45 and Fig. 46 .. Little more noises and 

oscillations in the SGL can be seen for all control strategies in Fig. 45, as compared 

to the respective computer simulation, Fig. 29 (possibly, due to model mismatch). 

The performance in terms of noise effect rejection of all control strategies are 

comparable.   
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Fig.  45 SGL of the PLS subject to FWF random noise at PL 5% 

 

 

Fig.  46 Control signal to the PLS subject to FWF random noise at PL 5% 
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The results at 50% PL are shown in Fig. 47 and Fig. 48. At this power level, the 

noise effect rejection performance of all control strategies are comparable, and 

similar to that of the respective computer simulation (Fig. 31).  

 

Fig.  47 SGL of the PLS subject to FWF random noise at PL 50% 

 

Fig.  48 Control signal to the PLS subject to FWF random noise at PL 50% 
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5.4 Summary 

 

The performance of the MPC based controllers has been evaluated through a set of 

physical tests on the PLS. The performance measures of the control strategies are 

evaluated in terms of set point tracking, load following in steps and programed 

ramp, load rejection, and flow disturbance and signal noise rejection capabilities. 

The performance measures of the control strategies on the PLS are compared with 

the computer simulation results.  
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6 Conclusions and Future Work 

6.1 Contributions 

 

The performance of the MPC based strategies to control the SGL in NPPs have 

been evaluated.  In-depth studies have been performed to better understand the 

capability of the MPC based control schemes to deal with the challenges in the SGL 

control in NPPs over the full power range. Performance has been evaluated with 

respect to all operating and transient conditions of a SG in a NPP.  

 

These evaluations have been carried out using a linearized steam generator dynamic 

model. The MPC controllers used are based on existing methodologies. 

Furthermore, any potential performance improvement through fine-tuning of some 

of the control parameters (based on the dynamic characteristics of the SGL) has 

also been investigated.  

 

For performance evaluation, two versions of the MPC strategy, the SMPC and the 

IMPC, have been designed and simulated. The SMPC scheme is based on existing 

MPC methodologies. The IMPC has been examined for potential performance 

improvement over SMPC by selecting appropriate values in the weight matrix of 

the objective function. 

 

The Irving model has been used as the underlying dynamic model of the SG in this 

study. This model has been linearized over the entire power range. Since the Irving 

model changes with power levels, power level dependent SGL parameters of the 

SGL have been designed. Power level dependent control parameters have been 

designed through minimizing an appropriate cost function that has been selected. 

Furthermore, for the IMPC, a simple strategy has been presented to compute the 

weights in the IMPCQ  matrix. The IMPCQ  matrix has been used to manipulate the 

control signals in order to improve the SGL performance of the MPC based 

strategies. 
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Performance of the SMPC and the IMPC has been evaluated, and compared with 

an optimized PI controller. The performance has been evaluated through computer 

simulation, and also through a set of physical tests on the PLS (the mock-up steam 

generator level system). Performance evaluations have been done in terms of i) set 

point tracking, ii) load-following, transient responses, and iii) effectiveness under 

flow disturbances and signal noise.   

6.2 Discussions and conclusions 

In the computer simulation, the SMPC and the IMPC schemes have shown zero 

overshoot and steady-state errors over all power levels, for the SGL subject to the 

step response. In the PLS tests, the IMPC scheme has shown zero steady-state errors 

and close-to-zero overshoots, while the SMPC has shown a little more overshoots 

(others are close-to-zero). There are no significant differences between the settling 

times among the control strategies in most cases.  

 

With respect to the reactor power changes in steps and in ramps, as well as with 

respect to the load rejections, the computer simulation and the PLS test results have 

indicated similar relative performance trends for the control strategies. The IMPC 

method has consistently shown improved capability for set point tracking in all 

these simulation and tests, although the improvements on the PLS are marginal. 

Furthermore, both the SMPC and the IMPC have shown similar capabilities for 

rejecting the effect of flow disturbances in the computer simulation, as well as in 

the PLS tests.  

 

Based on all these observations, it can be concluded that the IMPC has a strong 

potential to become a feasible methodology for the SGL control in NPPs to cover 

all operating conditions over all power levels.   
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6.3 Future work 

 

The PLS simulation has provided some insights on the performance of the MPC 

based control strategies with real systems. However, it is not a real SG. More 

research needs to be done in order to evaluate the performance of the SMPC and 

the IMPC in a more realistic set up of a SG in a NPP.  

 

Furthermore, the IMPC scheme that has been evaluated in this study is based on 

certain values for the elements of the weight matrix IMPCQ . These values have been 

computed by using a simple heuristic method. Clearly, the IMPCQ  matrix selected in 

this study are not optimal. Therefore, more research needs to be done to develop 

effective algorithms and methodology that can compute optimal values for these 

elements for all power levels.  
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