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Abstract

Mobile robots extend the reach of exploration in environments unsuitable, or unreachable, by

humans. Far-reaching environments, such as the south lunar pole, exhibit lighting conditions

that are challenging for optical imagery required for mobile robot navigation. Terrain condi-

tions also impact the operation of mobile robots; distinguishing terrain types prior to physical

contact can improve hazard avoidance.

This thesis presents the conclusions of a trade-off that uses the results from two studies

related to operating mobile robots at the lunar south pole. The lunar south pole presents en-

gineering design challenges for both tele-operation and lidar-based autonomous navigation in

the context of a near-term, low-cost, short-duration lunar prospecting mission. The conclusion

is that direct-drive tele-operation may result in improved science data return.

The first study is on demonstrating lidar reflectance intensity, and near-infrared spectroscopy,

can improve terrain classification over optical imagery alone. Two classification techniques,

Naive Bayes and multi-class SVM, were compared for classification errors. Eight terrain types,

including aggregate, loose sand and compacted sand, are classified using wavelet-transformed

optical images, and statistical values of lidar reflectance intensity. The addition of lidar re-

flectance intensity was shown to reduce classification errors for both classifiers. Four types of

aggregate material are classified using statistical values of spectral reflectance. The addition of

spectral reflectance was shown to reduce classification errors for both classifiers.

The second study is on human performance in tele-operating a mobile robot over time-

delay and in lighting conditions analogous to the south lunar pole. Round-trip time delay

between operator and mobile robot leads to an increase in time to turn the mobile robot around
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obstacles or corners as operators tend to implement a ‘wait and see’ approach. A study on

completion time for a cornering task through varying corridor widths shows that time-delayed

performance fits a previously established cornering law, and that varying lighting conditions

did not adversely affect human performance. The results of the cornering law are interpreted to

quantify the additional time required to negotiate a corner under differing conditions, and this

increase in time can be interpreted to be predictive when operating a mobile robot through a

driving circuit.

Keywords: Mobile Robots, Tele-Operation, Fitts’ Law, Terrain Classification
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Chapter 1

Introduction

This thesis presents two studies on mobile robotic operations with an intended focus on lunar

south pole exploration. A mobile robot is considered to be an off-road vehicle operating either

autonomously or under human tele-operative control. The terms ‘rover’, vehicle, and mobile

robot are used interchangeably. The first study is on the application of non-contact, proximal

lidar reflectance and near infrared spectroscopic measurements to improve classification of ter-

rain over optical imagery alone. Lidar is an active sensor that is invariant to lighting conditions,

and near infrared spectroscopy can aid in distinguishing mineral composition between materi-

als. The second study is on human performance in tele-operating a mobile robot in non-ideal

lighting conditions over a time delay. Non-ideal conditions, such as bright low-angled lighting,

provide challenges to the human operator that become exacerbated with the introduction of

video transmission delay. The remainder of this chapter presents the overall research theme

and questions, the motivation and problem statement for this research, and an outline for the

remaining chapters.

1.1 Research Question

The theme for this thesis is an engineering design trade-off study to consider:

Which operating mode, direct-drive tele-operation or supervisory controlled

1
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lidar-based autonomy, leads to improved scientific return in the context of a near-

term, low-cost, short-duration lunar prospecting mission?

This thesis provides evidence to support the following research questions:

Can lidar reflectance intensity and non-contact spectroscopic measurements im-

prove classification of terrain for rover traverse performance prediction

and

Can the degradation in human performance for tele-operating a rover in non-ideal

lighting conditions over time delay fit into Cornering Law?

1.2 Motivation and Problem Statement

The rationale for these two studies is based on a system engineering trade-off study for oper-

ating a lunar south pole prospecting rover. Proposals for lunar prospecting, which is further

described in Chapter 2, have focused on a near-term, low-cost, short-duration mission utiliz-

ing either direct-drive tele-operation from Earth or autonomous navigation. The implied con-

straints of near-term and low-cost are to reuse existing technologies. The implied constraint for

short-duration is to maximize the amount of science data return without needing the complex-

ity of lunar night survival. Therefore, a proposed solution involving autonomy must utilize the

existing low-computational speed radiation hardened computers. Lidar has been proposed to

be used for autonomous navigation, but has yet to be used on a planetary rover and is compu-

tationally intensive. A proposed solution with tele-operation must tolerate limited bandwidth

data transfer and a 4 second round trip time delay. Furthermore, the lunar south pole will

exhibit low-angled lighting that will result in extreme contrasts between light and dark.

Lunar and planetary exploration rovers operate, regardless of level of autonomy, in un-

structured environments of uneven terrain, varying soils, and dynamically changing conditions.
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Safe and effective operations requires knowledge of the terrain over which the rover traverses.

Detecting geometric obstacles, which are defined by their geometric properties, such large

boulders or steep cliffs can be readily achieved using sensing techniques such as vision and li-

dar. Non-geometric obstacles, which are defined by their mechanical properties such as terrain

type, require different instruments or analysis to sense [1]. The mechanical properties of loose

and compact sand dictate the tractive performance of an off-road vehicle, and loose sand may

result in insufficient traction and immobilization, such as what was experienced by the Mars

Exploration Rovers Opportunity and Spirit.

Tele-operated exploration rovers also operate in unstructured environments. The remote

human must have sufficient spatial awareness in order to safely and effectively operate the

vehicle. A vehicle tele-operated on the moon, such as the early Lunakhod rovers, introduces

restrictions on data transmission and time-of-light transmission delays that lead to degradation

of human performance. A vehicle operated at the lunar poles introduces new challenges from

the low-angle lighting. Recent interest in prospecting at the south Lunar pole has renewed

interests in the design and operation of Lunar rovers [2, 3].

1.2.1 Abstraction of Problem Statement

Let us first consider a abstraction of mobility prediction for an off-road vehicle with an objec-

tive to travel an unfamiliar path from point A to C. In this abstraction it is assumed that a path

has already been generated to avoid geometric obstacles. The off-road vehicle travelling from

point A to C risks immobilization through non-traversable terrain. Immobilization may be re-

coverable from external assistance in some cases, or may result in objective failure if assistance

is not available.

The vehicle could simply traverse the path to assess whether or not the path was traversable.

The vehicle may reach point C and its path AC is a posteriori determined to be traversable.

Alternatively, the vehicle may be immobilized at point B that is then a posteriori determined to

be non-traversable. This approach does not provide any context to the terrain at any point along

the path other than that fact it was traversable or not. However, this binary response does not
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lend itself to future paths. The vehicle may then have a path to point D and would be required

to make a similar attempt that could result in immobilization.

A deterministic approach for assessing the traversability would be to measure the terrame-

chanical properties of the terrain at all points along the path between points A and C. This

a priori knowledge of the terrain along the path provides a high degree of confidence of its

traversability. However, this approach has obvious setbacks. It is resource and time intensive

to measure the terramechanical properties at all points along the path. There is also the risk

that, given the terrain properties are unknown before they are measured, the measuring equip-

ment may become immobilized at a location along the path before knowing the results. It is

thus considered impractical to fully characterize through direct measurements the traversability

of the path.

A frequentist approach would be to traverse the path several times and record the number

of times the traverse was successful or not. The success rate represents the frequency at which

successful traverses over that path occur, and that frequency can then be used to assess the

probability the traverse will be successful. A Bayesian approach would consider prior experi-

ence and knowledge of traversing known paths and use present data to assess the probability

of traversing an unknown path.

Let us now consider the case where a human is operating the off-road vehicle from point

A to C. A human operator relies on past experience with the vehicle traversing over familiar

terrain and terrain conditions such as visual appearance. The operator can then assess the

probability that a region is traversable or not, and determine how much tractive effort will

be required. In this case the human is using proximal visual appearance of the terrain a few

metres in front of the vehicle, and can then feel the response of the vehicle as it traverses

it. The human operator can use that experience for future driving events to make probable

assessments of traversability. In the event the operator was incorrect in their prediction and the

vehicle becomes immobilized, external assistant can free the vehicle.

Finally, let us consider the case where the human is tele-operating the off-road vehicle

from A to C. The human relies upon the data transmitted from the vehicle in order to operate it.
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When the data transmitted is of lesser quality, or the transmission is delayed, the task becomes

more difficult. The human compensates for the increase in task difficulty by reducing the speed

at which the vehicle will travel from A to C. The presence of transmission delay or low quality

data may also increase the risk of the human immobilizing the vehicle.

1.3 Outline

This thesis is presented in an additional 7 chapters. Chapter 2 provides a review of planetary

exploration rovers, and their terrestrial analogues. Chapter 3 provides a review of terramechan-

ical theory, which is the study of wheel-terrain interaction, and terrain classification. Related

work in traversability prediction, non-geometric obstacle detection, and proximal soil sensing

is also included in Chapter 3. Chapter 4 provides a brief background review of the wavelength

transforms and classification techniques in the chapters 6 and 7. Chapter 5 reviews Fitts’ Law

and its application to tele-operating a mobile robot. Chapter 6 presents the experimental de-

scription, results and analysis for the terrain traversability testing, and a discussion of how they

can be applied to planetary exploration and terrestrial off-road vehicles. Chapter 7 presents the

experimental description, results and analysis for the tele-operation testing, and a discussion

of how they can be applied to planetary exploration and terrestrial off-road vehicles. Chapter 8

presents the conclusions and recommendations for future work.



Chapter 2

A Short History of Planetary Exploration

Rovers

An objective of this thesis is to demonstrate technological and operational concepts relevant

to the extent of the Canadian Space Agency (CSA)’s potential involvement in future planetary

exploration missions. This chapter provides a review of planetary exploration rovers and ter-

restrial analogues developed for testing rover technology, and also provides context for CSA’s

activities.

The first remotely operated rover was the Soviet Lunokhod 1 in 1970. Technology de-

velopment in communications, robotics, and autonomy has advanced since then, and landers

and rovers have successfully operated on Venus, Titan, and Mars. Future missions have been

planned or proposed to further explore these planetary locations. Prototypes for robotic explor-

ers have been developed to support both the technology development, and simulated mission

operations are conducted in terrestrial analogue environments to feed back into the mission

technology development and mission architecture. CSA has increased its involvement in both

technology development and analogue operations to support Lunar and Mars exploration.

There are two dominant control architectures when discussing rovers in this thesis: direct-

drive (DD) and supervisory control (SC). A third, shared control, is not discussed in this thesis

however is included for completeness. These terms are used throughout this report and are

6
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summarized here:

Direct drive The operator directly controls the output of the robot; the robot only responds

to the user input. There are no autonomous actions taken on the part of the robot. For

a rover, the operator would provide all acceleration and steering commands based on

feedback.

Shared Control The operator provides gross commands which are finely tuned autonomously

by the robot. For a rover, the operator would assign way-points to an end-point and allow

the rover to drive itself along the path whilst avoiding detected obstacles. The operator

could also provide all acceleration and steering commands, with the rover reacting to

local obstacles.

Supervisory Control The operator assigns high-level tasks to the robot; the robot can then

autonomously complete those tasks without intervention. For a rover, the operator would

assign an endpoint allow the rover to autonomously plan its own path to that endpoint.

This chapter is divided into five sections: Canada’s recent development work in robotic

exploration, lunar exploration rovers with their associated operation concepts, Mars exploration

rovers and their operation concepts, and concepts for exploration vehicles on other planetary

bodies.

2.1 Canadian Space Agency Activity

The Canadian Space Agency, through their Exploration Surface Mobility (ESM) program, de-

veloped a number of prototypes to further Canada’s planetary exploration capabilities. The tar-

gets for these prototypes are both lunar and Mars exploration. These prototype developments

include rover systems, science instrumentation, data analysis, and operations. The following

section highlights those activities as they pertain to this thesis.
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2.1.1 Mars Vehicles and CanMars

Kapvik, as shown in Figure 2.1, is a micro-rover prototype was designed with a view to achiev-

ing flight qualification and to help assess potential exploration missions to which Canada may

contribute, such as a planetary scout rover. Kapvik has a mass of approximately 30 kg. It has an

instrumented six-wheeled rocker-bogie system with differential drive similar to NASA’s fleet

of exploration rovers: Sojourner [4], Spirit [5], Opportunity [6] and Curiosity [7]. The rocker-

bogie allows all six wheels to maintain ground contact to enhance mobility while allowing the

rover to climb over rocks [8, 9].

Figure 2.1: Kapvik in its final configuration during final testing at CSA’s Mars Yard.
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An instrumented chassis with individually throttleable wheel motors was an early design

objective for Kapvik’s mobility system. The instrumented chassis allows for the mobility sys-

tem to adapt to changing terrain conditions. Each motor can be individually throttled to pro-

vide traction control on Mars micro-rovers. Each of the six wheels is driven by a Maxon

Motor RE25 motor with planetary gearing and harmonic drive. The wheel motor assemblies

include planetary gearing and a harmonic drive for a gear ratio of 1400:1, and are contained

at the wheel base inside an enclosure to protect against weathering and dust. Each of the mo-

tor assemblies is powered and driven by a Maxon Motor EPOS 24/1 motor controller. Wheel

odometry is provided by incremental encoders attached to each motor. Single axis load cells

are mounted on top of each wheel to measure the vertical force. Potentiometers provide the

rotational angles of the differential drive and the rockers. When calibrated, the potentiome-

ters provide an orientation of each of the wheels relative to the body frame of the rover. The

potentiometers, load cells and incremental encoders all connect to the motor controller; all of

the motor controllers are connected via a controller area network (CAN) bus to a central com-

puter on a Xiphos Q6 card, which is located within an avionics enclosure on the rover. Kapvik

was used to demonstrate on-line terramechanical parameter estimation using the instrumented

chassis and a trained neural network [10].

Kapvik was envisioned to accompany a larger rover as a scout. One such large rover is the

Mars Exploration Science Rover (MESR) developed by MacDonald, Dettwiler and Associates

Ltd. (MDA) for CSA. MESR is a 250 kg six-wheeled rover equipped with a robotic arm to

characterize and acquire samples in situ. Characterizing, acquiring, and caching samples for

a potential return to Earth is stated mission concept for the Mars 2020 mission [11]. MESR

was used in two analogue operations campaigns to test the daily science activity and operations

planning required for remote science exploration.

The 2015 CanMars MSR Analogue Mission [12] was a high-fidelity, 11 command-cycle

Mars Sample Return (MSR) analogue mission carried out in partnership between CSA, MDA,

and the Centre for Planetary Science and Exploration (CPSX) at Western University, as part

of the NSERC CREATE project “Technologies and Techniques for Earth and Space Explo-
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Figure 2.2: MESR at CSA’s Mars Yard. Image credit: CSA.

ration”. MESR, ‘landed’ in mid-November 2015 in a remote location in Utah, USA unknown

to the science operations team. The daily science activity planning took place at a mission

control centre [13, 14, 15, 16] located at Western University. This analogue campaign included

the proximal sensors to incorporate into the decision making process, as an analogue to the

SuperCam instrument to be flown on the Mars 2020. A hand-held Raman spectrometer and

XRF were modelled as proximal sensors for the purposes of the analogue operations [14].

2.1.2 Lunar Vehicles and RESOLVE

In addition to Mars rovers, CSA developed lunar prototypes with a view to participating in

a south lunar pole lunar prospecting mission. Prospecting for, and eventually harvesting, lu-

nar resources is required for establishing bases on the moon and possibly required for sending

humans to Mars. Sending humans to Mars will require vast amounts of water and oxygen.

Sending those humans back to Earth will require fuel to propel the ascent vehicle from the

surface. Being able to produce fuel, water, and oxygen from the resources available on those

surfaces saves the equivalent mass needed to be launched from Earth. In-situ resource utiliza-

tion (ISRU) is therefore a key technology development needed to reduce overall mission costs

and expand space and planetary exploration.



2.2. Lunar Exploration Rovers 11

The lunar regolith must first be studied in greater detail in order to characterize the re-

sources available for lunar ISRU. Results from data analysis of Clementine and Lunar Prospec-

tor showed the south polar regions contains 1700 ± 900 ppm of hydrogen. Depending on the

source of that hydrogen, it could be accompanied by other volatiles such as methane; also, the

hydrogen could be in the form of ice. Oxygen is also present in lunar regolith in the form

of minerals. However, the composition and concentration of these materials is still only an

estimate [17].

Knowing the characterization of lunar regolith at the south pole is only the first problem

to solve. The next is processing the regolith to extract useful products. The Regolith and

Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) mission has been

proposed to study the resources available at the lunar south pole and the technologies needed to

process the regolith. For such a mission, a rover would carry the RESOLVE payload suite that

consists of hardware to excavate regolith, characterize bulk regolith and physical properties,

characterize the volatiles, and extract oxygen and water resources from regolith [17, 18]. A

current baseline reference mission [2] relies on operating the prospecting rover during one

lunar sol of about 10-14 Earth days.

2.2 Lunar Exploration Rovers

The Soviet space program landed several probes onto the lunar surface in the 1960s and 70s,

including the first two planetary rovers Lunokhod 1 and 2. Both Lunokhod 1 and 2 were tele-

operated by direct-drive from Earth. Two teams of five took turns operating the rovers: a

commander, a driver, a navigator, an engineer, and the radio controller. The operators reported

high levels of fatigue after short operating periods due to the low-quality imagery and time

delay. Lunokhod 1 operators were reported to have heart rates of up to 130-140 beats/min

during early manoeuvres [19, 20]. Images were sent back from Lunokhod 1 at 1 frame per 20

seconds requiring the drivers to memorize features ahead of the rover while still driving and

waiting for the next update. For Lunokhod 2 this was improved to 1 frame per 3.2 seconds.
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The drivers also had to cope with extreme light contrasts, from shadows to glare. After 11

months and 10.54 km of traverse, Lunokhod 1’s mission ended. One year later the same teams

of operators controlled Lunokhod 2. By the end of Lunokhod 2, the operators had a 47 km

worth of time-delayed tele-operations experience [19].

The 1973 Lunokhod 2 was the most recent mobile robotic mission to the moon until the

Chinese National Space Agency landed its Chang’e 3 Yutu rover in 2013 [21]. Yutu traversed

approximately 110 m from the Chang’e 3 lander [22]. NASA had also landed several probes

onto the lunar surface, including the manned Apollo missions. Later Apollo missions included

a lunar roving system, however this vehicle was remotely operated. NASA has never operated

a rover on the moon, however the recent interest in lunar prospecting has resulted in a several

studies and terrestrial prototypes.

2.2.1 Prototypes and Mission Concepts for Lunar Exploration Rovers

The Scarab rover, shown in Figure 2.3, was developed at Carnegie Melon University (CMU)

to carry a RESOLVE payload in simulated lunar environments. It was designed for repeated

coring over several kilometres of traverse, and for navigating in darkness. The simulated

environments include Glenn Research Centre (GRC) Simulated Lunar Operations (SLOPE),

Moses Lake Dunes, Washington, and Pacific International Space Center for Exploration Sys-

tems (PISCES) at Mauna Kea, Hawaii. The deployment at Mauna Kea in November 2008

included the RESOLVE drilling system development by the Northern Centre for Advanced

Technology (NORCAT).

The Scarab operator specified a target, or multiple targets, within a 3 or 10 m radius and

the rover autonomously navigated to those targets. Scarab used Neptec’s TriDAR1 laser range

scanners for obstacle detection and terrain modelling in the dark; stationary laser scans were

taken after 3 m of traverse, after 10 degrees of rotation, or after 100 s of elapsed time. The

resulting point cloud data was merged into the world terrain model. An underside optical

velocimetre provides estimates of the rover velocity. The rationale for using active sensing was

1Neptec’s TriDAR system combines a laser camera (based on triangulation) with lidar
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Figure 2.3: Scarab rover in dark lighting condition illumination the surface below itself.

© Field Robotics Centre, Carnegie Melon University.

to facilitate operations in the harsh lighting conditions of the south lunar polar environment.

The field tests were conducted for 8 hours overnight, during which the rover was operated for

more a kilometre worth of traverses. These distances were reached despite minor systemic,

though remotely recoverable, errors with the rover that occurred during the 8 hour operations

window [23, 24].

The University of Oklahoma designed the Copernicus rover [25, 26], shown in Figure 2.4

to test a lunar rover mobility system concept and conducted field trials in the lava fields of

the Mojave desert under lunar-like operating conditions. Their concept was based on a goal

to traverse several kilometres per day on the lunar surface with a direct-drive tele-operator, a
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Figure 2.4: Copernicus was tele-operated by direct drive over 4 second time delay. © IRL,

University of Oklahoma.

distance greater than the sub-kilometre traverses of similarly operated Lunokhod. The mobility

system was designed to be robust to occasional shocks due to falls from 30 cm off of a rock

due to occasional operator error.

During six days of field tests, the driving conditions were adjusted to be closer to be lunar-

like: a 4 s time delay over a 100 kbit/s communication link and low resolution video streamed

back at 1.5 - 2 FPS. The operator drove the rover with a joystick using the video feedback from

the rover. By the sixth day the rover operated its full traverse speed of 35.5 cm/s. The total

drive, including stops for panoramic imaging and driver rest, was 1.9 km over 170 min, for an

average speed of 18.6 cm/s. At that speed the rover could traverse 16 km per day with several
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operators in rotation.

Figure 2.5: Ames Research Center K10. Image credit: NASA/Ames Research Center.

NASA has tested a fleet of lunar rover test platforms and prototypes: the Lunar Elec-

tric Rover (LER), now called Space Exploration Vehicle [27] (SEV), the NASA/ARC K10

rover [27] (shown in Figure 2.5), NASA/JSC Centaur2 rover [28] and NASA/ARC KRex [28].

Each of these rovers were driven in analogue environments to assess lidar-based navigation.

The on-board computing power of these rovers is greater than what would be seen on a

typical planetary rover. K10 and LER were provided with dual core 2.33 GHz processors

and 2 GB of RAM [27]. Similarly, Centaur2’s navigation computer ran an Intel i7-620M at

2.66 GHz with 4GB DDR3 RAM [28]. The current computational effort available on flight

hardware make autonomous navigation impractical for a short duration mission.

Table 2.1 provides a comparison of the lunar rover systems. It is worth noting that the semi-

autonomous systems navigating using Lidar systems had either low operational speeds (Scarab,
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2.9 cm/s) or high CPU rate (KRex, 2.66 GHz). The tele-operated Copernicus rover had a speed

of 35.5 cm/s while using an Apple G3 (233−500 MHz), which is similar to the 200 MHz RAD

750 Rover Compute Element (RCE) of the Mars Science Laboratory Curiosity [29].
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Table 2.1: Lunar Rovers and Prototypes [23, 24, 25, 26, 27, 28]. The operation scenarios

are listed as either direct drive (DD) or supervisory control (SC). The average speed takes

into account time that the rover was stationary; the average speed can be used to determine

total distance covered over an operational period accounting for pauses, troubleshooting, and

sampling.

Lunokhod Lunokhod Centaur2 LER /

Specification 1 2 Scarab & KRex K10 SEV Copernicus
Mass (kg) 756 840 280 - - - 60

Design Speed 55 55 3-6 - 60 300 35.5
(cm/s)

Avg Speed 0.13 0.43 2.9 15-25 - - 18.6
(cm/s)

Number of 8 8 4 4 4 4 4
Wheels - - - - - -
Wheel 51 51 71 - - - 74

Dia (cm)
Power - - 120 W - - - Solar

Sensors
Lidar No No TriDAR 10 Hz 40 Hz 75 Hz No

Cameras Yes Yes No Stereo Stereo Stereo Stereo
Frame Rate 0.05 0.3 - - - - 1.5 - 2

(FPS)
IMU No No Yes Yes Yes Yes Yes
GPS No No Yes Yes Yes Yes Yes

Velocimeter - - Yes - - - -
Computing

CPU - - 800 MHz 2.66 GHz - - Apple G3
RAM - - 256 MB 4 GB - - -

Operations DD DD SC SC SC SC DD
Time > 4 > 4 - - 10 - 4

Delay (s)
Date Rate low low - 1 Mbps - - 100 kbit/s
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2.3 Mars Exploration Rovers

High-latency, low-bandwidth, non-persistent communication between Earth and Mars requires

robotic activity to be supervisory controlled. Operators on Earth utilize data sent back from

the rover to formulate an activity plan that is uploaded via the Deep Space Network (DSN).

Robotic instrument deployment requires lower-level instructions for precise implementation,

whereas rover traverses are typically provided as high-level way-points. The rover’s on-board

autonomy then provides for hazard avoidance. Rover autonomy has improved with each suc-

cessive mission. However, it is important to note that the speed with which the rovers could

execute autonomous navigation is limited by the on-board computation. Space qualified radia-

tion hardened computers are slower than their terrestrial contemporaries. A summary of Mars

rover computational capabilities is provided here:

Table 2.2: Computational capabilities of Mars rovers [29].
Year Mission / Rover CPU Speed RAM Rover Speed
1997 Sojourner 0.1 MHz 512 KB 0.6 cm/s
2004 MER 20 MHz 128 MB 3.6 cm/s
2012 Curiosity 200 MHz 256 MB 4 cm/s
2021 ExoMars - - 0.78 cm/s

The first attempt to land a rover on Mars was the Soviet Mars2 mission, which reached orbit

in 1971. However, its PROP-M rover was never deployed after the descent module failed on

entry [30]. The first successful landing of a rover was NASA’s 1997 Mars Pathfinder mission

and its Sojourner rover. Sojourner operated on a reactive system and did not maintain a per-

manent terrain map [29]. Sojourner operated with a top speed of approximately 0.6 cm/s [4]

for 30 sols [31].

Following the success of Pathfinder was the Mars Exploration Rover (MER) mission. The

twin MER rovers Spirit and Opportunity landed in January 2004. They utilized stereo cameras

to identify terrain features for navigation. The operator would select way-points and the rovers

would then identify paths absent of geometric obstacles to reach subsequent way-points. The

MER rovers had a top travel speed of 5 cm/s. Under autonomous driving conditions, the
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rovers could achieve an averaged speed of 3.6 cm/s without obstacle avoidance, or 1 cm/s with

obstacle detection in benign conditions [32], or as low as 0.1 cm/s with full AutoNav [33].

However, as stated in Chapter 1, Spirit’s mission ended due to permanent immobilization

in loose terrain. Spirit wasn’t the only MER to be impeded by loose terrain. Opportunity

encountered 30 cm of loose aeolian deposits at Meridiani Plains in which all six wheels be-

came embedded. The rover required 23 Sols and 150 m of commanded wheel movements to

move 26 cm and free itself from the “Purgatory Ripple” [6]. Spirit and Opportunity became

immobilized due to the presence of a non-geometric obstacle not identified by their on-board

hazard avoidance autonomy: loose terrain. The loose terrain that trapped Spirit was believed to

be a weakly cohesive mixture of sulfate and basaltic sands that caused the rover to experience

greater wheel slip and wheel sinkage. The tractive force generated by the wheel-terrain interac-

tion was not enough to overcome the terrain resistance. Classical terramechanics theory, with

previously estimated terrain parameters, validated this conclusion [5]. Opportunity continues

to operate at time of writing.

The Mars Science Laboratory (MSL) Curiosity rover landed in Gale Crater in August 2012.

Its original mission life was one Mars year (687 Earth days), which has since been exceeded

and continues to operate at time of writing. Curiosity has a drive speed of 4 cm/s that reduces

to 1.5 cm/s under autonomous control [34].

Following Curiosity is the joint ESA-Roscosmos mission ExoMars that includes both a

lander and a rover in addition to the trace-gas orbiter [35]. The ExoMars rover will carry

scientific payload to perform exobiology and geology studies of samples collected from up to

2 m below the surface. The rover will operate for a baseline of 220 sols, and can travel at

0.39 cm/s in full autonomy mode, or up to 0.78 cm/s with reduced safeguards [36].

NASA’s yet-to-be-named Mars 2020 mission, which would launch in 2020 and land on

Mars in 2021, is planned to feature a rover largely similar to Curiosity to reduce mission de-

velopment costs. The planned objective for Mars 2020 is to acquire a diverse collection of re-

turnable samples including those that may contain bio-signatures [11]. Mars 2020 will contain

a new suite of instruments to meet those objectives, including the SuperCam remote micro-
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Figure 2.6: Opportunity’s hazard identification camera image of embedded left-front wheel.

Image credit: NASA/JPL-Caltech.

imager. SuperCam will comprise of a Laser Induced Breakdown Spectrometer (LIBS), Raman

Spectrometer, time-resolved fluorescence (TRF) spectrometer, visible and infrared (VISIR) re-

flectance spectrometer, and colour remote micro-imager (RMI) [37].

2.4 Other Planetary Exploration Vehicles

Planetary exploration missions with mobile robotic vehicles are under conceptual development.

Proposed targets for new exploration missions outside the Moon and Mars include Venus [38,

39], Titan [40] and Europa, although a lander was not included in the most recent Europa

Clipper mission concept [41, 42].
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Venus, which has surface temperatures of 454°C and pressures of 92 bars, has not seen a

landed mission since 1985. The Soviet Venera program landed several probes on the surface,

though surface operations were limited by the environment; Venera 13, the longest lived lander,

operated for 127 minutes. Significant technology development is required for designing a rover

that can operate on Venus for longer duration. NASA has studied Venus rover concepts and

technology development for a 2040 reference mission [38, 39], and Roscosmos has conceived

a new mission called Venera-D that would include a robotic lander[43].

The Saturnian moon of Titan was first visited by the Cassini-Hyugens probe in 2005 [44].

Titan is the only other object in the solar system that exhibits evidence of surface-level liquid

lakes. Mission concepts to Titan have included robotic platforms such as a short-lived lake lan-

der, a lake boat, and a submarine. The submarine is proposed to have a baseline mission of 90

days, with extension to 300 days, in 2047 to ensure adequate communication with Earth [40].



Chapter 3

Mobile Robot Terrain Traversability

This chapter provides a review of terrain traversability prediction, and its relation to mobile

robot performance. The underlying wheel-terrain interaction theory, terramechanics, is first

presented. The terramechanical properties of terrain determine the tractive force that can be

developed by the mobile robot’s wheels. Different types of terrain have differing terrame-

chanical properties and resultant wheel-terrain interaction conditions. Therefore, the traction

developed by the wheels will vary by terrain type. The remainder of this chapter presents

past studies on terrain estimation and classification, soil science and geographic techniques for

identifying terrain, and the terramechanical properties of planetary terrain.

The Mars Exploration Rover (MER) Spirit, shown in Figure 3.1, landed on the plains of

Gusev Crater on 4 January 2004. Its original mission life was 90 Martian solar days, other-

wise known as sols. Spirit continued to operate until sol 2210 when communication with Earth

ended. Its right front wheel drive actuator failed during its extended mission. This failure

caused the front right wheel to be pushed through the terrain instead of being actively driven.

Spirit continued its extended exploration mission with five active wheels until it became em-

bedded in loose terrain on sol 1871. Several attempts were made to extract Spirit from the

loose soil. However, on sol 2104 the right rear wheel also failed which furthered impeded

Spirit’s mobility. With only four functioning wheels, Spirit was unable to overcome the terrain

resistance and continued to function merely as a stationary research base [5].

22
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Figure 3.1: The Mars Exploration Rover Spirit became a stationary research base after becom-

ing immobilized by a non-geometric obstacle: loose terrain. Image credit: NASA/JPL-Caltech.

3.1 Terramechanics

Terramechanics is the study of vehicle-terrain interaction mechanics. Vehicle-terrain interac-

tion models developed by Bekker [45] and Wong [46, 47] use parameters specific to particular

soils. The objective of these models is to predict with reasonable certainty how the vehicle will

perform on a given terrain. Previous work by Bekker and Wong studied vehicle-terrain inter-

action using a variety of terrains: mineral terrains, organic terrains and snow. Mineral terrains

include sand, sandy loam, clayey loam, and loam. Organic terrain and snow exhibit greater

compressibility and do not conform to the plastic material model presented later. Bekker and

Wong also studied vehicle-terrain interaction using a variety of vehicle running gears: rigid

wheels, flexible wheels, rigid tracks and flexible tracks, amongst others. Rigid wheels have

been used on past, current and planned Mars exploration rovers (Sojourner, Spirit, Opportu-

nity and Curiosity); rigid wheels were included on the LunaTron micro rover.
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Classical terramechanics theory developed by Bekker [45] has been applied to planetary

vehicles since the Apollo program [48, 49]. Much of the recent research on applying terrame-

chanics to planetary rovers has been led by the Massachusetts Institute for Technology (MIT)

Field and Space Robotics Laboratory and MIT Robotic Mobility Group [50, 51, 52].

Vehicle-terrain interaction models require knowledge of how the terrain responds to forces

applied by the vehicle. Terrain can be modelled as either an elastic or plastic material; both

models have their advantages and disadvantages. Modelling terrain as an elastic material allows

for classical elasticity theory to be applied to analysis: the strain, or deformation, of the material

is proportional to the stress applied. The wheel weight is modelled to be a point mass acting

on the terrain. The stresses within the terrain are a function of the distance from the point

mass. The elastic model estimates the stress distribution pattern that radiates from the point

load through the terrain. Usage of the elastic model is limited to vehicle loads within the elastic

behaviour region of dense terrain. When the vehicle load reaches the limit of elastic behaviour,

the terrain is at the critical state between elastic and plastic behaviour; the terrain is in plastic

equilibrium. The terrain material transitions from plastic equilibrium to a plastic flow state

when the load continues to increase. Wong states that the terrain has failed at this point. The

Mohr-Coulomb failure criterion is widely used to define the failure of soil:

τ = c + σ tan φ (3.1)

where τ and σ are the shear stress and radial stress, respectively, at the wheel-terrain interface;

the terrain cohesion c and shearing resistance angle φ are the two terrain parameters to be

estimated. The Mohr-Coulomb criterion is limited to static loads on terrain as it does not take

into account the shear deformation at the wheel-terrain interface. The plastic terrain model can

only be accurately applied to dense terrains, such as sand, subjected to high vehicle loads. The

model does not apply well to highly compressible terrains such as snow and organic terrain.

The mechanics of wheel-terrain interaction can be determined with knowledge of the ter-

rain. Bekker [45] and Wong [46, 47] developed rigid wheel-terrain interaction models for

wheels that are stationary, driven, towed, pushed, and breaking. The wheels on planetary rovers

are individually powered and controllable to allow for throttling and enhanced traction control.
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Therefore, the LunaTron rover, described in Chapter 6, uses individually powered motors.

Figure 3.2: Diagram of rigid wheel in contact with terrain. W is the weight on the wheels; T

is the torque driving the wheel; ω is the rotational velocity of the wheel; and θC is the wheel-

terrain contact angle

The mechanics of a rigid wheel in motion can be studied by examining the free body dia-

gram in Figure 3.2 and the following equation for the shear stress distribution along the wheel-

terrain interface [47]:

τ = (c + σ tan φ)
(
1 − e

−J
K
)

(3.2)

where

• The shear deformation parameter K is experimentally derived for a particular terrain;
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• c is the terrain cohesion and one of the parameters to be estimated;

• φ is angle of shearing resistance and is the other parameter to be estimated;

• The amount of slippage J = f (i, θC) is determined by the slip ratio i = 1 − V/rW ω from

the measurable rover velocity V and the motor shaft rotational speed ω;

• The shear stress τ = f (I, θC) over the contact area A = rW wW θC is determined from the

torque T applied by the motor, which draws a measurable current I;

• The normal stress σ = f (W, θC) is determined by the measurable wheel load W acting

over the contact area A = rW wW θC; and

• The wheel radius rW and width wW are known values.

The shear stress τ in Equation 3.2 determines the maximum allowable thrust available to propel

the wheel. The terrain cohesion and shearing resistance angle therefore influence a rover’s

thrust F = f (τ). A decrease in either cohesion or shearing resistance angle will result in a

decrease in the maximum thrust available at the wheel. When the thrust available is less than

the resisting force of the terrain, the wheel becomes immobilized.

3.2 Traversability Prediction and Terrain Classification

This section provides a review of traversability prediction for mobile robots (unmanned ground

vehicles). The general approach to traversability prediction is to compare exteroceptive and

proprioceptive data to classify robot traversal performance against terrain features. Further

approaches estimate wheel-terrain interaction parameters such as wheel slip, wheel sinkage,

and terrain cohesion c and shearing angle φ.

3.2.1 Terramechanical Parameter Estimation

Previous work has focused on estimating the terramechanical terrain properties, c and φ as

those parameters are used to determine traction. Tan [53] and Yousefi Moghaddam [54] each
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proposed a method for estimating terrain parameters online; however their application was for

excavation and not based on wheel-terrain interaction. Iagnemma used a simplified wheel-

terrain interaction model [50, 51, 52] for estimating the two terrain parameters online for an

exploration rover. He solved for c and φ using linear least squares with a set of sensor data

(V, ω, z, I) and assumed values (K). His laboratory experiments, using an instrumented testbed,

showed that the least squares estimates for the c and φ values of the sand were within range

of the bevameter measurements. An a priori value for the shear deformation parameter was

needed to solve the least squares estimate. He also estimated the terrain parameters for a six-

wheeled rover in a Matlab simulation using simulated noisy sensor data. His simulation results

showed that the least squares estimates of sand were within error. Iagnemma’s simulation

did not describe how the wheel sinkage, or wheel-terrain contact area, was measured; only a

simulated value was used for the estimation of the terrain parameters. Cross [10] trained an

artificial neural network to map sensed rover parameters to terrain parameters as a means of

estimating instantaneous changes in terrain conditions.

3.2.2 Wheel Sinkage Estimation

Wilcox [1] describes a method to detect sinkage on a six-wheeled articulated rover. The rover

with which this was tested was functionally equivalent to the Mars Pathfinder rover Sojourner.

The rover’s rocker-bogie linkages allowed all six wheels to remain in contact with the ter-

rain. These linkages were passive but instrumented to sense the pitch and articulation. Wilcox

presents a simple model of a rover driving over undisturbed terrain. The elevation differences

between the front and rear wheels are calculated based on the pitch and articulation values.

Forward looking lasers sense the elevation of terrain ahead of the rover. The elevation differ-

ence from the rear wheel to the points ahead of the rover are also computed. He assumes that

the front wheels will sink into the undisturbed terrain. He further assumes that the rear wheels

will not sink further into the soil when driven over the same terrain. Wilcox notes that if this

assumption is not approximately correct it will lead to a general failure of the entire method.

The elevation difference between the front wheel and rear wheel, as estimated with the rocker-
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bogie pitch and articulation angles, is the basis of the sinkage estimate; the forward elevation

difference is the basis for the future sinkage prediction. Wilcox’s results with the rover showed

that his method worked well to indicate sinkage; however due to large sensor noise it was not

able to provide a good estimate of the sinkage. He also noted that the computer resources were

already burdened with navigation and mobility calculations and this sinkage estimate could

only be performed once per wheel radius of traverse.

Reina [55] proposed a visual sinkage estimation (VSE) algorithm to estimate the wheel-

terrain contact angle and the wheel sinkage. Their proposal required a pattern of concentric

black circles on a white background be attached to the inside of the wheel. This proposal

also assumes a camera will be in visual contact with the wheel-terrain interface. They tested

their VSE algorithm on a 16 cm diameter wheel in a variety of lighting and terrain conditions.

Images were captured and processed at 5 Hz. The average estimation error was 8% and did

not exceed 15%. The estimation error could be reduced with better cameras and finer wheel

patterns. The advantage to VSE is its simple implementation: a patterned wheel cover, a

camera, and an image processor. Its disadvantage is the mass, power and computation required

to implement. Estimating sinkage on more than one wheel would require more cameras, more

wheel covers and more image processing.

3.2.3 Slip Estimating

Reina [55] proposed combining three indicators to detect linear slip or skid: comparing en-

coder readings with each other; comparing encoder readings with z-axis gyro readings; and

monitoring the motor currents. The encoder indicator uses fuzzy logic to compare the differ-

ences in longitudinal velocity between wheel pairs. The gyro indicator determines if there is

any z-axis rotation compared to the wheel commands. The current indicator uses measured

motor current and classical terramechanics theory. The torque applied to the wheel is a func-

tion of the current drawn by the motor. An estimation of the current required to overcome

rolling resistance can be made for known terrain conditions. Slip is detected when the actual

current drawn differs from the required current by a predefined percentage. They tested their
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slip detection indicators in a laboratory setting. Their rover was driven over both a sandy slope

and two sand mounds. When logically OR-ed the indicators correctly detected slippage 94% of

the time on the sandy slope and 61% of the time on the two sand mounds. The slip indicators

are useful to indicate if the wheels are slipping beyond a specific threshold. These indicators

are not able to quantify slip, however the current indicator does present a simple metric to flag

loose soil or drift material.

3.2.4 Proprioceptive and Exteroceptive Terrain Classification

Angelova [56] used stereo imaging, IMUs, and wheel encoders of a mobile robot to measure

and predict slip over a variety of terrain types: sand, soil, grass, gravel, asphalt, and wood-

chips. The acquired images only considered the image plane corresponding to where there

mobile robot would traverse, and the images were subdivided into image patches. Each im-

age patch formed a 75-dimension feature vector of a local pixel neighbourhood. The features

are clustered with a k-means algorithm with cluster centres belonging to defined ‘textons’. A

texton represents a textural feature, such as spots, grooves, or ridges [57]. histogram of texton

occurrence forms the basis of classification: two image patches with similar texton histograms

are interpreted to be of similar terrain. The terrain classifier had overall success rate of 76.4%.

The classifier degraded in performance the further the image was taken from the mobile robot.

Vehicle data, namely wheel slip and orientation, was collected as mobile robot drove over the

terrain. A receptive field regression algorithm was used to learn slip from terrain geometry

obtain from stereo imagery.

Brooks [58] classified three terrain types, sand, dirt, and gravel, using vehicle vibrations.

The power spectral density of the vibration signal was classified using linear discriminate anal-

ysis and voting system. The results showed that the three terrain types could be classified with

greater than 90% success.

Brooks [59] and Halatci [60] present vision- and vibration-based methods for classifying

between rock, sand and beach grass. Vision-based classification compared features derived

from RGB colour values, wavelet transform texture features, and stereo-image based surface



30 3. Mobile Robot Terrain Traversability

geometry. Vehicle vibrations were measured as the mobile robot drove over the three terrain

types. These features were trained on mixture of Gaussians (MoG) modelling and support vec-

tor machines. The geometry-based features performed poorly due to the resolution of the stereo

camera. The RGB colour based MoG classifier performed better than the texture-based MoG

classifier. A fusion of vehicle vibrations and image features resulted in an overall accuracy of

84%.

Kleiner [61] furthered this classification method by incorporating laser-range data. Statis-

tics of the height information of reflected points of laser scans are used to derived feature

vectors for each terrain class. A trained SVM with laser-based information achieved 85% ac-

curacy when classifying grass, asphalt, gravel, pavement, and indoor flooring. A Bayesian

classifier incorporating both image features and laser features resulted in accuracy greater than

90%.

Brooks [62] later used vehicle vibrations and traction in combination with imaging to clas-

sify terrain classified bentonite, clay, orange sand, topsoil and wet topsoil using support vector

machine (SVM) classification. A traction coefficient was derived from terramechanical theory

and Iagnemma’s [52] simplified wheel-terrain interaction model for each of the terrain types.

Vibrations were shown to be suitable for trained classification, while traction coefficients were

suitable for self-supervised classification.

Libby [63] used acoustics from vehicle-terrain interaction to classify grass, pavement,

gravel, water, hard objects, and loss of traction with SVM. Acoustic features were compared

for classification accuracy. A 9-dimensional vector combined temporal and spectral charac-

teristic, and spectral moments. The overall accuracy of the SVM classifier was shown to be

92%.

Michel [64] used an artificial neural network to classify gravel, crusty soil, and sand with

images. Each image was transformed using 2-level Daubechies wavelets for a resultant 24-

dimensional feature vector. The ANN was trained with 1050 samples, and the classifier resulted

in 84% accuracy.
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3.3 Soil Inferencing and Proximal Soil Science

This section provides a review of proximal soil science with a focus on proximal sensing tech-

niques and applications.

Proximal soil sensing (PSS) differs from remote sensing in that remote sensing instruments

are typically deployed on airborne vehicles or low-Earth orbiting satellites. PSS is the act

of taking local soil measurements with instruments deployed within approximately 2 m from

the soil [65], and instruments may be rover-mounted for mobile applications [66]. Proximal

soil sensing (PSS) differs from remote sensing in that remote sensing instruments are typically

deployed on airborne vehicles or low-Earth orbiting satellites. PSS instruments are deployed

within 2 m of the soil surface and may be rover-mounted for mobile applications [66]. PSS

also differs from contact sensing in which instruments directly interact with the soil. Adam-

chuck [66] notes that conventional soil science uses time and resource intensive soil sampling

and laboratory analysis to measure soil properties, and McBratney [67] has demonstrated that

proximal soil sensing techniques can produce results with only mild loss of accuracy.

Adamchuck [66] provides a summary of research and development of proximal soil sensors

to be used on-the-go in situ. Optical and radiometric sensors cover a wide range of instrument

types and soil properties that can be measured. Subsurface soil reflectance / absorption sensors

use the visual and infrared electromagnetic spectrum to detect energy levels reflected / absorbed

by soil particles. These sensors can be used to measure the following: carbon content, soil

texture, cation exchange capacity, soil water content, soil pH, and some mineral content. Other

radiometric sensors include microwave sensors can measure water content, gamma radiometers

can measure mineralogy, and ground penetrating radar can measure water content and the

geophysical soil structure [66].

Laser-induced breakdown spectroscopy (LIBS) uses an optically focused solid-state laser

to generate a high-temperature plasma from a target surface. The constituent material in the

plasma then emits radiation upon cooling. The emitted radiation is delivered to a spectrometer

via an optical collector such as fibre optic cable. [68]. LIBS is being used as a proximal soil
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Table 3.1: Summary of proximal soil sensing techniques.
Sensing Method Measured values
Electromagnetic Organic matter content, soil texture, cation exchange capac-

ity, soil water content, soil pH, mineral nitrogen, carbon and

phosphorus
Radiometric Water content, mineralogy, geophysical structure

Electric Soil type, texture, water content, organic matter content,

depth variability, soil pH
Electrochemical Soil pH, potassium nitrogen, and sodium content

Acoustic Soil structure, soil compaction
Pneumatic Soil structure, water content, soil type.

Table 3.2: Summary of electromagnetic proximal soil sensing techniques.
Sensing Method Measured values

VNIR < 1000 nm Iron minerals
SWIR 1000 - 2500 nm Clays, some carbonates, micas, sulfates

LWIR 8000 - 14,000 nm Silicates, some carbonates

sensor because of its rapid and dense collection of soil data [69], its lack of sample prepara-

tion [68], and its potential for use at a distance up to 90 m distance [70].

A number of other sensors types have been deployed to measure other soil properties.

These types include electrical and electromagnetic, acoustic, pneumatic, electrochemical and

mechanical [66]. Cunningham [71] used a continuous-wave laser to estimate the thermal diffu-

sivity of terrain; the thermal diffusivity was then used to estimate the bulk density of the terrain.

Burton [72] demonstrated that lidar reflectance intensity correlated to weight percent clay, and

weight percent combined quartz, feldspar and plagioclase. The wheel-terrain interaction of an

instrumented vehicle has been used to estimate soil mechanical resistance, or rolling resistance

from a terramechanics perspective [73, 74].

Soil inference systems (SINFERS) have been demonstrated to infer soil properties from

existing or sensed data, specifically spectral data [75, 67]. Pedotransfer functions (PTFs) are

qualitative soil properties expressions to “translate data we have into what we need” [76].
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McBratney [67] used PTFs to infer clay, sand, and organic carbon content from MIR spec-

tral data. McBratney notes that inferred values are not as accurate as laboratory values, with

R2 values for inferred values using partial least squares regression shown in Table 3.3. From

these inferred values further soil properties were inferred using additional PTFs. The available

water capacity of soil was inferred from MIR spectra and PTFs to within 10%. The accuracy of

Table 3.3: Inferred soil values from MIR spectra
Inferred Value R2

Clay Content 0.79
Sand Content 0.82

Organic Carbon Content 0.77

inferred values is less than laboratory values. However, the efficiency of deriving many values

from a single measurement is useful for rapid in-situ analysis, so long as the error values are

understood. In McBratney’s example, a single MIR data set can infer numerous soil properties.

An example of SINFERS adapted from McBratney [67] is presented in Figure 3.3.

SINFERS, when combined with on-the-go PSS, offer the potential to predict the desired

soil properties from the available sensor data [77].

3.3.1 GIS and Mobile Robotics

Geographic information systems (GIS) are databases that spatially register a wide variety of

data products. Airborne and spaceborne remote sensing instruments feed data products, such

as high-resolution imagery, digital elevation models, and spectral data into maps registered to

GPS locations. GIS outputs allow users to extract that data for specific locations.

Digital soil mapping and modelling (DSMM) is the combination two practices: digital soil

mapping (DSMa) and digital soil modelling (DSMo). DSMa is the collection of spatial and

temporal soil data compiled into a map [77]. DSMo takes the spatial and temporal data to

formulate a soil model that can be used for both prediction and simulations [78].

Hyperspectral imaging provide data for input into surface mineralogy maps at spatial res-

olutions of 2-4 m for low-altitude aircraft, 20 m for high-altitude aircraft, and 30 m for low-
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Figure 3.3: An example of SINFERS in which water retention is inferred from MIR spectra.

The MIR spectra is the sensed soil values from which clay, sand, silt, and organic carbon

content are derived through partial least squares regression. A trained artificial neural network

takes in those contents and infers the mineral bulk density. A second ANN then takes the five

intermediate values to infer water retention.

Earth-orbiting spacecraft [79]. The spectral resolution for these imagers is 10 nm over the

400-2500 nm spectral range, which corresponds to visible-near infrared (VNIR) and short-

wave infrared (SWIR) ranges. The spectral reflectance within these ranges correspond to iron

minerals (Fe+2 and Fe+3) such as hematite, goethite, jarosite, and minerals containing anion

groups Al-OH, Mg-OH, Fe-OH, SI-OH, CO3, NH4 and SO4, such as clays, carbonates, micas,

and sulfates. Quartz, and other silicates, appear in the 8000-14,000 nm long-wave infrared

(LWIR) spectral range [79].

Suvinen [80] applied a priori GIS data to a terramechanics model to simulate mobility

maps for manned forestry vehicles. The GIS data included digital road maps, topographic and

elevation maps, land cover and forest classification maps, land use maps, soil type data, and

tree data. The resolution of the maps varied from 10 × 10 m for the land use maps up to the

2 ha for the soil type maps. Suvinen [73] also used vehicle data, along with GPS data, to create

an on-the-go estimates of vehicle mobility. He suggests that mobility mapping can thus be



3.4. Traversability on Other Planetary Surfaces 35

improved by linking the a priori digital maps with on-the-go mobility estimates.

Hohmann [81] estimated the performance of manned ground vehicles using GIS data such

as soil and vegetation maps, geographic maps, and digital elevation maps, as well as meteo-

rological data, which would influence the soil moisture over time. The GIS data fed into a

vehicle mobility estimator to create a speed map for various vehicles. The speed map provided

the maximum likely speeds attainable for the vehicle across the mapped region.

Park [82] used a priori GIS data for path planning of autonomous ground vehicles (UGV).

The data contains a set of features, such as roads, vegetation, and topography, which were

assigned costs. These costs did not explicitly consider the vehicle’s terramechanics model,

other than that ‘paved roads’ were preferred to ‘grass land’, which was itself preferred to ‘marsh

swamp area’.

Lichtenberg compared spectral data obtained in orbit from Mars Express to surface data

collected locally from Spirit to conclude that the data sets are self-consistent [83]. The locally

collected data thus improves the confidence of the a priori GIS data. Lichtenberg later states

in regards to Spirit’s immobilization “... that despite careful analysis of orbital data over future

landing sites, the surface below the top few centimetres must be treated as an unknown quantity

when attempting to forecast a rover’s drive performance [84]”. This statement implies that

rover mobility cannot rely solely on remote sensing. Proximal terrain assessment may be

considered.

3.4 Traversability on Other Planetary Surfaces

The motivation of this thesis is derived from planetary exploration. Wong [85] showed that

the tractive performance of a rigid wheeled rover on extraterrestrial terrain could be predicted

from analysis of the same rover on terrestrial terrain. Past landed missions to both the moon and

Mars have made efforts to characterize the local terrain in terms of terramechanical properties.

Results from the Mars Pathfinder Sojourner in-situ regolith tests characterized Martian regolith

to be similar to clayey silt with embedded sands, granules, and pebbles [86, 87]. Lunar regolith
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is characterized as a mixture of rock fragments, mineral fragments, breccias, agglutinates, and

glass. The proportion of each varies across the surface.

3.4.1 Mars Terrain Parameter Estimation

Past Mars exploration missions have conducted experiments to estimate the cohesion and shear-

ing resistance angle. However, those experiments were conducted while the rover was station-

ary. Results from the Mars Pathfinder Sojourner in-situ regolith tests characterized Martian

regolith to be similar to clayey silt with embedded sands, granules, and pebbles [86, 87]. So-

journer was used as a test platform to conduct in-situ experiments to determine the cohesion

and friction angle of the regolith. The tractive force for a single wheel was determined from

the wheel torque that was taken as a function of drawn motor current and no-load current. The

rover team took the currents to be a function of temperature. The shearing resistance angle φ

was assumed to be the same as the angle of repose Ψ that was estimated from camera images.

They estimated the cohesion c from the Mohr-Coulomb criteria using the least squares method;

wheel slip was not taken into account.

The MER team conducted in-situ experiments to estimate the local cohesion and shearing

angle with both Spirit, at Gusev Crater, and Opportunity at Meridiani Plains. The engineering

data used for the estimation included temperature, motor voltages, motor currents, vehicle

orientation, and the rocker-bogie positions. Data was recorded at 8 Hz during the wheel’s

commanded rotation of 0.3 rad/s. The collected data was used to solve the Mohr-Coulomb

criteria τ = c + σ tan φ. The friction angle was estimated from wheel-digs into the tailings; the

tailings are loose terrain that has its cohesiveness destroyed from prior wheel action.

In addition to rovers, Mars regolith parameters have been estimated in-situ by the Viking

and Phoenix landers using narrow blades [88] and robotic scoops [89] for digging trenches.

For both landers, camera images and motor feedback were required for estimating the param-

eters [88, 89].

Mars terrain was given labels for different conditions that were encountered. Viking [88]

measured different terrain values that were labelled ‘Drift material’, ‘Crusty to Cloddy Ma-
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terial’, and ‘Blocky Material’. Spirit and Opportunity encountered terrain during traverses

that were labelled ‘Fine-grained’, ‘Sandy’, ‘Rocky’, ‘Smooth Plains’, ‘Plains’, and ‘Aerolian

Ripples’ [90].

3.4.2 Lunar Regolith Parameters

Both NASA and Soviet Lunar programs, including Luna, Surveyor, and Apollo, studied the

physical properties of Lunar regolith in-situ. Additional returned samples were studied on

Earth however those samples had limitations due to the manner in which they were transported

back to Earth. The geotechnical properties studied were particle size and shapes, density,

porosity, compressibility, permeability and diffusivity, bearing capacity, shear strength slope

stability and traversability [91].

Traversability over lunar regolith was studied from the eight-wheeled Lunokhod rover and

the four-wheeled Apollo Lunar Roving Vehicle (LRV). The LRV cruised at an average speed

of 6-7 km/hr with a total load of over 700 kg. Wheel-slip was estimated to be 2-3%. The soil

compaction resistance was estimated by comparing the actual and estimated energy consump-

tion of the LRV [91]. Costes [48] studied lunar regolith simulants to estimate pressure-sinkage

and shear parameters. The parameters of the simulants are in the same range as terrestrial sand.

The surface the LRV and Lunokhod traversed was classified as medium - dense a few cen-

timetres below the surface. The Lunokhod wheels were observed to sink only a few centimetres

in these conditions. However, both the LRV and Lunokhod encountered patches of loose, soft

regolith. Lunokhod was observed to sink 20 cm in this regolith [91].



Chapter 4

Data Analysis and Classification

This chapter provides a brief background on the data analysis and classification methods that

are used in Chapter 6. These methods are used for creating feature vectors from acquired data

that are used by the classifiers. The background includes wavelet image analysis, Bayesian

probability and Naive Bayes classification, and Support Vector Machine (SVM) classification.

4.1 Wavelet Image Analysis

This section provides a brief review of discrete wavelet analysis used for creating feature vec-

tors. The general approach is to decompose signals into subcomponents by means of math-

ematical transforms. The basis of these transforms are wavelets, which consist of fluctuating

non-zero values that sum to zero. This thesis uses discrete Daubechies wavelet transforms to

decompose 2-D signals into both running average and running difference signals which are

then used as feature vectors for classification. The Haar wavelet is the simplest waveform to

introduce, and the Daubechies wavelets are similarly formulated.

4.1.1 Haar Wavelet

The Haar wavelet decomposes a discrete signal into two sub-signals: trend and fluctuations.

The trend signal represents the running average of successive pairs of values within the sig-

38
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nal, and is also a low-pass filter. The fluctuation signal represents the running difference of

successive pairs, and is also a high-pass filter. A discrete signal f of N values is given as

f = f1, f2, ..., fN (4.1)

where N is an even number. The trend signal a is the mean of successive pairs multiplied by
√

2:

a =
f1 + f2
√

2
,

f3 + f4
√

2
, ...,

fN−1 + fN
√

2
, (4.2)

and the fluctuation signal d is the half difference of successive pairs multiplied by
√

2:

d =
f1 − f2
√

2
,

f3 − f4
√

2
, ...,

fN−1 − fN
√

2
, (4.3)

A first level Haar transform maps a discrete input signal into output first trend and first

fluctuation sub-signals through the mapping

f
H1
7−−→ (a1|d1) (4.4)

and an inverse transform reconstructs the original signal.

The Haar transform conserves the energy ε f of the signal f , where the energy is sum of the

squared values

ε f = f 2
1 + f 2

2 + ... + f 2
N (4.5)

εa = a2
1 + a2

2 + ... + a2
M (4.6)

εd = d2
1 + d2

2 + ... + d2
M (4.7)

where M is the length of the sub-signal, and ε f = ε(a1 |d1). Energy is the trend εa can be dominant

when compared to the energy in the fluctuations εd.

Successive levels of transforms can be performed on the trend values. The first trend is

decomposed into the second trend and second fluctuation sub-signals.
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f
H2
7−−→ (a2|d2|d1) (4.8)

The first trend can be reconstructed through an inverse transform of the second trend and

fluctuation, and then the original signal f can be reconstructed from the first trend first fluctu-

ation.

The Haar wavelets
(
±1/
√

2
)

are the operators that decompose the signal into fluctuations,

with the first level wavelets shown as:

W1
1 =

(
1
√

2
,
−1
√

2
, 0, 0, ..., 0, 0

)
W1

2 =

(
0, 0,

1
√

2
,
−1
√

2
, ..., 0, 0

)
W1

3 =

(
0, 0, 0, 0,

1
√

2
,
−1
√

2
, ..., 0, 0

)
...

W1
N/2 =

(
0, 0, ...,

1
√

2
,
−1
√

2

)
and the compact expression for the fluctuations is given as

dm = f ·W1
m (4.9)

The Haar scaling signals are the operators that decompose the signal into trends, with the

first level operation shown as:

V1
1 =

(
1
√

2
,

1
√

2
, 0, 0, ..., 0, 0

)
V1

2 =

(
0, 0,

1
√

2
,

1
√

2
, ..., 0, 0

)
V1

3 =

(
0, 0, 0, 0,

1
√

2
,

1
√

2
, ..., 0, 0

)
...

V1
N/2 =

(
0, 0, ...,

1
√

2
,

1
√

2

)
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and the compact expression for the trend is given as

am = f · V1
m (4.10)

4.1.2 Daubechies Wavelets

Daubechies transforms are similarly formulated to the Haar transforms with differing scaling

signals and wavelets. They provide mapping from signal to trend and fluctuation sub-signals,

and the transform can be repeated over successive levels. Energy is also conserved following

transformation.

D1
7−−→ (a1|d1) (4.11)

The family of Daubechies transforms vary with the number of coefficients within the scal-

ing signal and wavelet. The db1 wavelet is the same as the Haar wavelet
(
±1/
√

2
)
. The db2

wavelets have 4 fluctuating non-zero coefficients that sum to zero, given as

W1
1 = (β1, β2, β3, β4, 0, 0, ..., 0, 0)

W1
2 = (0, 0, β1, β2, β3, β4, ..., 0, 0)

W1
3 = (0, 0, 0, 0, β1, β2, β3, β4, ..., 0, 0)

...

W1
N/2−1 = (0, 0, ..., β1, β2, β3, β4)

W1
N/2 = (β3, β4, 0, 0, ..., β1, β2)

where

β1 =
1 −
√

3

4
√

2
, β2 =

√
3 − 3

4
√

2
, β3 =

3 +
√

3

4
√

2
, β4 =

−1 −
√

3

4
√

2
(4.12)

and the compact expression for the fluctuations is given as
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dm = f ·W1
m (4.13)

Similarly, the db2 scaling signal has 4 coefficients given as

V1
1 = (α1, α2, α3, α4, 0, 0, ..., 0, 0)

V1
2 = (0, 0, α1, α2, α3, α4, ..., 0, 0)

V1
3 = (0, 0, 0, 0, α1, α2, α3, α4, ..., 0, 0)

...

V1
N/2−1 = (0, 0, ..., α1, α2, α3, α4)

V1
N/2 = (α3, α4, 0, 0, ..., α1, α2)

where

α1 =
1 +
√

3

4
√

2
, α2 =

3 +
√

3

4
√

2
, α3 =

3 −
√

3

4
√

2
, α4 =

1 −
√

3

4
√

2
(4.14)

and the compact expression for the trend is given as

am = f · V1
m (4.15)

Higher-order Daubechies wavelets have increasing number of coefficients, however the

structure remains similar to the db1 and db2 formulations.

4.1.3 Two Dimensional Wavelet Transforms

The preceding sections showed wavelet transform on a 1-D signal. Wavelet transforms can be

extended to perform analysis on 2-D signals, such as an M × N image:

f =


f1,M f2,M . . . fN,M
...

...
. . .

...

f1,2 f2,2 . . . fN,2

f1,1 f2,1 . . . fN,1

 (4.16)
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A transform on a 2-D signal is performed by a series of 1-D transforms. A 1-D transform

is performed on each row of f that results in an intermediate 2-D signal. Then 1-D transforms

are performed on each column of the intermediate signal. The result is four 2-D sub-signals;

in the case of an image the result is four sub-images:

f 7→
 h1 d1

a1 v1

 (4.17)

where a1 represents the trend of the image, which is a lower resolution version of the original;

v1 represents the vertical fluctuations of the image; h1 represents the horizontal fluctuations of

the image; and d1 represents the diagonal fluctuations.

As in the 1-D case, a 2-D trend signal can undergo a transformation to successive levels.

The first trend transforms to the second trend and fluctuations:

a1 7→

 h2 d2

a2 v2

 (4.18)

As in the 1-D case, a 2-D signal has energy equal to the sum of the square of the values,

and that energy is conserved following transformation.

4.2 Bayesian Probability

For this thesis probability is separated into relative frequency and Bayesian approaches. Prob-

ability theory is concerned with the outcomes of events within a sample space. This section

provides are brief review of probability theory with a focus on Bayesian probability.

Let us take a set of sixty numbered and coloured tiles. The colours are red (R), orange (O),

yellow (Y), green (G), blue (B), and purple (P). There are ten tiles for each of the six colours.

Within each set the tiles are numbered from one to ten. There are sixty unique tiles in total, six

different coloured tiles for each number, and ten different numbered tiles for each colour.

The set of tiles represents a sample space Ω, with each tile representing an element e in that

sample space. Here,
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Ω = {e1, e2, ..., en} (4.19)

where in the case of the set of tiles n = 60. Selecting a tile at random represents a single event.

The probability of a specific outcome to that event is denoted as P(ei) where:

0 ≤ P(ei) ≤ 1 f or 1 ≤ i ≤ n (4.20)

Selecting a tile at random has 60 possible outcomes as there are 60 distinct tiles. The

probability of selecting a specific tile is 1 outcome out of a possible 60, given as:

P(e = B5) =
1

60
(4.21)

where B5 is the Blue-5 tile, which is 1 specific outcome within a set of 60 possible outcomes

for a single event. The probability of selecting any tile is the sum of the individual probabilities

of each outcome:

P(E) = P(e1) + P(e2) + ... + P(en) = 1 (4.22)

In other words, there will always be some outcome given this event. The probability of

other outcomes follow a similar relation. The probability that the selected tile will be blue is

P(e = B) = 1
6 , and the probability that the selected tile will be any ‘5’ is P(e = 5) = 1

10 for

this set of tiles. The probability of selecting either the Blue-5 or Red-5 is the sum of the two

probabilities:

P(e = B5 ∪ R5) = P(e = B5) + P(e = R5) =
1

30
(4.23)

where B5∩R5 = ∅, as there is no 5 tile that is both a red and blue. However, the probability of

selecting either a blue or a 5 tile:

P(e = B ∪ 5) = P(e = B) + P(e = 5) − P(e = B5) =
1
6

+
1

10
−

1
60

=
1
4

(4.24)

as P(e = B5) is already contained in P(e = B) and P(e = 5).
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In this set of 60 tiles there are 30 odd-numbered titles. The probability of selecting an

odd-numbered title O is then P(e = O) = 30
60 = 1

2 . The 5-tiles are contained within the odd-

numbered set, and P(e = 5∩O) = 1
10 . If the selected tile is an odd number, then the probability

of that tile being a 5 conditioned on that tile being an odd number is given as:

P(e = 5|O) =
P(e = 5 ∩ O)

P(e = O)
=

1
10
1
2

=
1
5

(4.25)

which is the probability that a 5 is selected from a set of odd-numbered tiles. If the selected

title is blue, then the probability of that card being a 5 conditioned on that tile being blue is

given as:

P(e = 5|B) =
P(e = 5 ∩ B)

P(e = B)
=

1
60
1
6

=
1

10
(4.26)

which is the same probability that a 5 is selected independent of that tile being blue. The

knowledge that the tile is odd-numbered increases the probability that the tile is a 5, however

the knowledge that the tile is blue does not, which means 5 and blue are independent events.

Selecting any one from a subset of tiles, E = {R5, B5,R2} has probability P(E) = 3
60 and

another subset of tiles, F = {R5, P5,R2} has probability P(F) = 3
60 . E and F share two of the

sixty tiles: P(E ∩ F) = 2
60 . The probability of selecting one of the tiles in the subset E after

knowing that the tiles of F have been selected is given as:

P(E|F) =
P(E ∩ F)

P(F)
=

2
60
3

60

=
2
3

(4.27)

Here, knowing that the tiles of F have been selected increases the probability that a tile

from E is selected, which means that E and F are not independent. Another subset of tiles

G = {R5, B5, P5,Y5} had probability P(G) = 4
60 that any one that subset is selected. If the tiles

of G are selected, then the probability that a tile from E is selected is given as:

P(E|G) =
P(E ∩G)

P(G)
=

2
60
4
60

=
1
2

(4.28)
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Similarly, E and G are not independent. Taking the common tiles from both F and G gives

(F ∩ G) = {R5, P5} with P(F ∩ G) = 2
60 . If have selected the common tiles from E and G,

(F ∩G), then the probability of selecting a tile from E knowing (F ∩G) is given as:

P(E|F ∩G) =
P(E ∩ F ∩G)

P(F ∩G)
=

1
60
2
60

=
1
2

(4.29)

where there is only 1 common tile amongst E, F and G. Thus, knowing F and G does not

improve the probability from just knowing G, which means that E and F are independent

conditioned on G.

4.2.1 Frequentist Approach

In the set of numbered coloured tiles, the probability of a specific tile R5 being selected was

given as P(e − R5) = 1
60 which is based on the knowledge that there were 60 distinct tiles

in the sample space Ω. If Ω was not known, a random tile selection test could be repeated

many times to find the frequency at which R5 was selected. In other words, the frequentist

approach to finding the probability of a specific outcome to an event is to repeat an event many

times. If the tile selection event is performed 10,000 times, and the outcome R5 occurs 160

times, then the frequency at which R5 occurs on the unknown sample space Ω is 0.016. The

probability that the outcome R5 occurs on the next event is then 0.016, which is similar to

P(e − R5) = 1
60 when the size of the sample space is known. Furthermore, the frequency of all

possible outcomes, and thus sets of outcomes, can also be determined through repetition.

This approach is useful when it is possible to repeat an event to come up with the frequency

at which a specific outcome occurs. However, this approach is not useful when repeating an

event many times, or at all, is not possible.

4.2.2 Bayesian Approach

The Bayesian approach is to assign the probability of an outcome given some knowledge that

is based on the probability of that knowledge for a given outcome. The basic Bayesian formu-
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lation is given as:

P(E|F) =
P(F|E)P(E)

P(F)
(4.30)

Using the coloured tile analogy, if F is a blue tile, and E is a five tile, then P(E|F) is

the probability of getting a 5 conditioned on knowing that the tile is blue. P(F|E) is then the

probability of a blue tile conditioned on knowing that it is a 5. There are six different 5 tiles,

so P(F|E) = 1
6 . The probability of a 5 P(E) is the prior belief in the probability that a 5 tile is

selected.

Here, finding P(F) is the sum of possible conditional outcomes:

P(F = B) = P(F = B|E = 1)P(E = 1)+P(F = B|E = 2)P(E = 2)+...+P(F = B|E = 10)P(E = 10)

(4.31)

If the prior beliefs are P(E = 1, 2, ..., 10) = 1
10 , then:

P(F = B) =
1
6

1
10

+
1
6

1
10

+ ... +
1
6

1
10

=
1
6

(4.32)

which is the probability that a tile is blue. Then the Bayesian formulation becomes:

P(E|F) =
P(F|E)P(E)

P(F)
=

1
6

1
10
1
6

=
1

10
(4.33)

which is the probability of a tile being 5 if blue is selected. This is a trivial solution as there

are exact prior beliefs.

The basic Bayesian approach in Equation 4.30 is useful when considering sensed data.

As stated before, the basic formulation is to assign the probability of an outcome given some

knowledge that is based on the probability of that knowledge for a given outcome. For example,

the probability of an obstacle existing given lidar data is based on the probability that the lidar

would show a obstacle if it indeed existed. It also requires prior belief that an obstacle would

exist in the first place. The Bayesian formulation therefore relies on the quality of the collected

data and any prior beliefs.
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Let us say we have a mobile robot equipped with a lidar for detecting geometric obstacles

at a distance. The mobile robot is operating in the desert and the prior belief that there will be

such obstacles in this location is 0.05. The lidar data provides a binary response of ‘obstacle’

or ‘no obstacle’. This particular lidar has a false negative rate of 0.1, and a false positive rate

of 0.01. The probabilities for obstacle detection are given as:

P(L = pos|O = pres) = 0.9 (4.34)

P(L = pos|O = abs) = 0.01 (4.35)

P(L = neg|O = pres) = 0.1 (4.36)

P(L = neg|O = abs) = 0.99 (4.37)

If the lidar indicates that an obstacle is detected, the Bayesian formulation allows for the

probability that the obstacle is actually there:

P(O = pres|L = pos) =

P(L = pos|O = pres)P(O = pres)
P(L = pos|O = pres)P(O = pres) + P(L = pos|O = abs)P(O = abs)

(4.38)

P(O = pres|L = pos) =
0.9 × 0.05

0.9 × 0.05 + 0.01 × 0.95
(4.39)

P(O = pres|L = pos) =
0.045

0.045 + 0.0095
= 0.83 (4.40)

Based on the single lidar data point and prior beliefs, the probability that the obstacle is

really there is 0.83. If a new lidar measurement from the same distance obstacle comes back

positive again, the prior probability of 0.83 becomes the new belief that an obstacle is present,

and the update to the probability is given as:

P(O = pres|L = pos) =

P(L = pos|O = pres)P(O = pres)
P(L = pos|O = pres)P(O = pres) + P(L = pos|O = abs)P(O = abs)

(4.41)
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P(O = pres|L = pos) =
0.9 × 0.83

0.9 × 0.83 + 0.01 × 0.17
(4.42)

P(O = pres|L = pos) =
0.747
0.749

= 0.997 (4.43)

and the probability of there being an obstacle given another positive lidar measurement has

now increased to 0.997. Conversely, if the second measurement came back as there being no

obstacle, the probability can be updated:

P(O = pres|L = neg) =

P(L = neg|O = pres)P(O = pres)
P(L = neg|O = pres)P(O = pres) + P(L = neg|O = abs)P(O = abs)

(4.44)

P(O = pres|L = neg) =
0.1 × 0.83

0.1 × 0.83 + 0.99 × 0.17
(4.45)

P(O = pres|L = pos) =
0.083
0.251

= 0.33 (4.46)

which reduces the belief that the obstacle exists.

4.3 Classification

Classification problems are often assigned one of two types: discrimination and clustering.

Discrimination seeks to assign a feature vector x to one of C classes. Clustering seeks to

group similar feature vectors x together without prior classes. For this thesis the objective is

to assess the addition of lidar reflectance and spectral features to optical image features when

classifying known terrain types. Two methods of discrimination, or supervised learning, are

presented here: Naive Bayes (NB) and Support Vector Machines (SVM). NB classifiers assume

an underlying probability density function of a feature vector for a given class. SVM classifiers

develop discriminant boundaries between given classes [92].
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4.3.1 Naive Bayes Classification

One application for Bayesian probability is supervised classification. The basis for the Naive

Bayes classifier is Equation 4.30, where E is a set of possible classes and F is a vector of

observed features. P(E|F) becomes the a posteriori probability of a class E = ec for a given

vector of feature F. The classifier finds the class that results in the maximum a posteriori

probability from a given vector of features. To find P(E|F), P(F|E) must first be estimated for

every class

P(F|ec) =

d∏
j=1

P( f j|ec) (4.47)

where the naive assumption is that a particular feature f j in vector f is independent of the

occurrence of other features f j for a particular class. P(E = ec) is the prior probability of a

given class. P(F) is typically ignored as it will be the same for all classes [93, 94].

4.4 Support Vector Machine classification

Support Vector Machines (SVM) are a type of discriminant function, which seek to separate

classes by a function g(x). For the two-class data problem, SVM classifiers construct a maximal

margin hyperplane to separate both classes of data. A simple example of SVM classification is

the two-class data problem, with n sets of training patterns xi, i = 1, ..., n. Each training pattern

or feature is assigned a class w1 or w2 with a corresponding value, yi = ±1. The discriminant

boundary between the two classes of data is:

g(x) = wT x + w0 (4.48)

where w is a weight vector and w0 is a threshold. The decision rule for this function is given

as:
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wT x + w0


> 0

< 0
⇒ x ∈


w1, yi = +1

w2, yi = −1
(4.49)

If yi(wT x + w0) > 0 for all i, then all training patterns are correctly classified as w1 (with

value yi = +1) or w2 (with value yi = −1).

Hyperplane function g(x) separates the two classes of patterns, and it is desired to have a

maximal margin between the two classes. The two canonical hyperplanes H1 : wT x + w0 = +1

and H2 : wT x + w0 = −1 are separated from the hyperplane function g(x) by 1/|w|, and the

margin between the two hyperplanes is 2/|w|. Maximizing the margin results in patterns xi that

lie on the canonical hyperplanes, which are called the support vectors (SV). To maximize the

margin between the two classes of patterns requires a minimization of |w|:

yi(wT x + w0) ≥ 1 (4.50)

which can be solved as an optimization problem. The primal form of the objective function Lp:

Lp =
1
2

wT w −
n∑

i=1

αi(yi(wT x + w0) − 1) (4.51)

where αi, i = 1, ..., n;αi ≥ 0 are Lagrange multipliers. Differentiating Lp with respect to w0 and

w

∂Lp

w0
= 0 (4.52)

∂Lp

w
= 0 (4.53)

LD =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy jxT
i x j (4.54)

which is the dual form of the Lagrangian. Support vectors have nonzero Lagrange multipliers.

When αi have been obtained, w0 can also be obtained using one of the nS V support vectors.

With w and w0, new patterns x can be assigned a class given by the sign of:
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wT x + w0 (4.55)

The above process works when the two classes of patterns can be linearly separated. Slack

variables ξ are introduced to relax the separation conditions when patterns are linearly non-

separable. Alternatively, nonlinear SVM can be used that introduce discriminant functions that

are nonlinear:

g(x) = wTφ(x) + w0 (4.56)

and new patterns x can be assigned a class given by the sign of:

g(x) =
∑
i∈S V

αiyiφ
T (xi)φ + w0 (4.57)

The transformed feature space φ(x) can be avoided using a kernel function K(x, y) =

φT (x)φ(y), which results in a discriminant function:

g(x) =
∑
i∈S V

αiyiK(xi, x) + w0 (4.58)

where the kernel may be one of many types depending on the non-linearity.

In many cases there are more than two classes to discriminate. Multi-class SVMs can be

constructed from one of the following frameworks:

• One-against-all where there are C binary classifiers for C classes, which can lead to

patterns belonging to more than 1, or 0, classes;

• One-against-one where there are C(C − 1)/2 binary classifiers, and each classifier dis-

criminates between two classes. A new pattern is passed through each classifier and

voting system determines the class, which can lead to no clear decision; and

• Define C discriminant functions g1(x), ..., gC(x) where x is assigned to a class whose

discriminant function is the largest value at x.



Chapter 5

Human Performance in Tele-Operation

This chapter provides a review of previous works in tele-operation, tele-operation over time

delay, and human performance in tele-operation. An objective of this thesis is to assess the

human performance in remotely operating a mobile robot in poor lighting conditions over time

delay. This chapter is divided into a general background on tele-operation over time-delay,

Fitts’ Law and its use in human performance studies, and past works in tele-operation of mobile

robots and tele-operation over time delay.

5.1 Tele-Operation

Tele-operation is broadly defined as ‘doing work at a distance’. The scope can encompass a

wide range of applications, from a remote controlled toy car to collecting interstellar science

data with Voyager 1. The former involves the human operator providing real-time commands

via radio signals that are received and implemented by the device. The later involves the hu-

man operator providing an instruction set, which is uploaded to the device via an interplanetary

communication network. The instruction sets are constructed off-line and sent when possible,

and the device is able to function autonomously in between instruction sets. These two ex-

amples are scenarios in which the operator is not dependent upon real-time feedback along

the communication path. The remote controlled car is typically in the visual range of the op-
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erator. Voyager 1’s operations are not real-time; after the instruction set is sent to Voyager 1

confirmation feedback takes at least 34 hours due to the round-trip time delay.

A closed system is one in which the control input to the system is dependent upon the feed-

back from the output of the system. The output signal is generally assumed to instantaneously

feed back to the controller, either a human operator or computer. For many applications this

can be an acceptable assumption when controllers, actuators and sensors are all connected to-

gether. When the actuators and sensors are separated from the controller and the signals are

transmitted over the separated distance, round-trip delays creep into the closed system. The

observed system state, as provided by sensors, when received by the controller no longer cor-

responds to the true system state. In other words, the controller receives system state x(t) when

it is now x(t+n). The controller develops an input u(t+n) based on this system state. The

actuator receives control input u(t+n), which is based on observed state x(t), for the system

that is now at x(t+n+m). In reality, this time delay always occurs though often does not result

in control issues; the system is stable enough to accept slight variations in control input rela-

tive to the system state. For this thesis, time-delayed tele-operation refers to the control of a

robotic or mechatronic system by a human operator who is physically and spatially separated

from that system, the operation is dependent upon feedback being received along the same

communication path, and the round-trip time delay is considered to be non-trivial.

For this thesis, time-delayed tele-operation refers to the control of a robotic or mechatronic

system by a human operator who is physically and spatially separated from that system, the

operation is dependent upon feedback being received along the same communication path,

and the round-trip time delay is considered to be non-trivial. Examples of this scenario, both

Earth-based and space-based, are provided in the following sections. Earth-based applications

include remotely operated robotic surgical tools and unmanned underwater vehicles (UUVs).

Space-based applications, discussed in Chapter 2, are focused on the operation of robotic sys-

tems on the moon including past lunar missions, and recent analogue operations concepts.
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5.1.1 Earth-Based Applications

The scope of this thesis has been narrowed to the control of a robotic or mechatronic system by

a human operator who is physically and spatially separated from that system. For Earth-based

application this is still a wide ranging field. Remote systems are typically operated in environ-

ments that pose risks to humans, such as underground mining [95], explosive disarmament [96],

and indoor search and rescue [97]. Remote systems are also deployed to environments that are

difficult for humans to operate in, such as underwater [98, 99, 100]. Remotely operated ma-

nipulators that require fine control, such as tele-operated surgical instruments, are examples

of systems that are particularly sensitive to, and require techniques to compensate for, time

delays [96].

Underwater vehicles experience time delays in their tele-operation due to acoustics under-

water and are thus an analogue to tele-operating a lunar rover. Underwater vehicles use acoustic

telemetry when towing long, heavy cables is impractical. The speed-of-sound through water

is 1700 m/s so a vehicle operating 2 km beneath the surface will experience more than 2 s of

round-trip time delay [20]. When additional communication relays are considered, this delay

increases. Acoustic modems have limited available bandwidth and thus restrict the amount of

telemetry sent back to the operator to 10 kbits/s [100], though that bandwidth decreases with

depth. At the depths to which underwater vehicles are deployed, the lighting and visibility is

poor and requires an active light source [98].

Lin [98] demonstrated that for underwater remotely operated vehicles (ROV) a virtual 3D

environment aided in the safe-guarded tele-operations. The virtual reality (VR) interface in-

terpreted feedback from the ROV and the 3D rendered environment was updated, based on

the known model of the ROV and prior data points. This interface scheme was also useful

for scenarios in which the communication link was a fixed cable instead; the 3D VR inter-

face would allow the operator to know the location of the tether to avoid entanglement. For

the time-delayed scenario, the VR model interface projected the predicted pose of the ROV

in the 3D rendered environment to assist the operator. The ROV itself could detect obstacles

to stop itself from crashing into them. Sayers [100] further studies the effect of time-delayed
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operations of a ROV with a manipulator arm. Similarly the tele-operator is provided with suffi-

cient representation of the environment to aid the operation, however the operations themselves

are safe-guarded. Although Lin [98] did not specify a bandwidth, Sayers [100] reported the

successful safe-guarded tele-operations of their ROV at 0.5 FPS to meet the 10 kbits/s limit.

Sayers [100] recommendations for undersea ROV tele-operations was to avoid the direct-drive

approach as time delays magnify the costs of errors, and that the system must be able to cope

with unexpected losses in transmission.

The remotely operated robotic arms mentioned above face latencies of 5 s or greater. More

common are robotic arms that require stable closed-loop control in a master-slave configuration

with lower latency [101]. The remote operator perceives the manipulator to be responding in

real-time as if they were physically present with it. However, the latency is great enough to

cause instability in the control, which is particularly hazardous in the case of tele-surgery.

Figure 5.1: Teleoperation control scheme for remote manipulator. The operator applies a force

(Fo) to a local master manipulator; the pose of the manipulator is determined through the

forward kinematics of the joint positions by the master controller (Fmc) and sent to the slave

controller. The slave controller applies forces (Fsc) to assign the joint positions the slave ma-

nipulator such that it can interact with its environment (Fe). State feedback (xs) of the slave ma-

nipulator is transmitted back to through the master manipulator (xm) to the operator. Adapted

from [101].
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5.1.2 Space-Based Applications

Space-based applications, discussed in Chapter 2, are focused on tele-operating a rover on

the moon from Earth in this thesis. It is imagined that at some time mobile robots, and any

robotic hardware, on planetary surfaces will be autonomous. In the near term, humans will

remain in the control loop and remain in direct control of the robotic hardware. The European

Space Agency has developed the multipurpose end-to-end robotic operations network (ME-

TERON) [102] as a means of remotely operating robotic hardware from orbit. It has been

tested from the International Space Agency, where a user remotely controlled a mobile robot

in a test yard. The intention is to use such a network in future missions where humans will

operate landed robotic hardware from an orbiting facility, such as remotely controlling oper-

ating robotic equipment on the Moon from lunar orbit. The METERON development can be

inferred to mean that when humans return to the moon or go to Mars, it is believed that humans

will remain in the control loop as autonomy will not yet overtake human control.

5.2 Human Performance and Fitts’ Law

This section reviews Fitts’ Law and its use in human performance evaluation. Fitts’ Law is

a human psycho-motion model based on Shannon’s communication theory [103], which has

since been applied to human-computer interaction (HCI) [104]. Fitts’ Law was first studied

in human-computer interaction with the evaluation of different text selection schemes on a

computer display [105]. It has since been applied to a wide range of HCI scenarios, including

tele-operation of remote manipulators under time-delayed target selection [106].

5.2.1 Fitts’ Law Formulation and HCI

Fitts’ Law is based on Shannon’s communication theory of information capacity [104]. An

information channel is a medium, subject to perturbation, through which a signal passes, and

the information capacity, C, is the rate at which that signal can pass. Shannon’s information
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capacity of a channel is a function of the strength of the signal S , the strength of the perturbing

noise N, and the channel’s bandwidth B:

C = B log2
S + N

N
(5.1)

where C has units of bits/s, and B has units of Hz.

Fitts’ work attempted to model human psycho-motion in terms of information capacity. The

model states that the information capacity, or index of performance IP, is the ratio of an index

of difficulty ID of a task to the movement time MT to complete the task. For a task of given

difficulty, the performance is better when completed in lesser time. For a given movement time,

the performance is worse when the difficulty of the task increases. ID is analogous to the log2

term with units of bits, MT has units of seconds, and IP is analogous to information capacity

with units of bits/s.

IP =
ID
MT

(5.2)

Fitts psycho-motor task had human subjects tapping between two targets of varying diffi-

culty indexes. For the tapping task ID was a function of target width W, and the target separa-

tion distance, or amplitude A. Here, target width is analogous to noise and target separation is

analogous to signal. Fitts formulated ID based on Shannon’s log2 term:

ID = log2
2A
W

(5.3)

where both A and W are both distances. For the tapping task, ID increases when the targets are

further separated, or the width of the target narrows. The greater the difficulty of the tapping

task, the more ‘information’, in bits, the psycho-motor system must transmit. The faster the

movement time MT , the greater the ‘information capacity’, in bits/s, the psycho-motor system

and the greater its performance.

Fitts recorded MT for various A and W values with a number of human subjects. Regressing

MT on ID, the expression for MT becomes:
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MT = a + b log2
2A
W

(5.4)

where a and b are regression coefficients and 1
b corresponds to IP.

The index of difficulty formulation has been reevaluated since Fitts’ original work. The

log2 term in Equation 5.3 is not directly analogous to Shannon’s log2 term. A direct analogy is

then to state ID a:

ID = log2
A + W

W
= log2

A
W

+ 1 (5.5)

The formulations for ID have all shown utility depending on the values of A and W. Equa-

tion 5.5 does not result in negative ID values as A→ 0. Equation 5.4 only shows high correla-

tion when the ratio of A to W is large.

Welford’s formulation, shown in Equation 5.6, has shown higher correlation between ID

and MT [104] and was used in the first HCI studies [105].

ID = log2

( A
W

+ 0.5
)

(5.6)

The study was able to formulate a Fitts’ Law relationship, using Welford’s ID, between

the movement time to selecting the text, to the distance from the starting position to the text

and the size of the text. This formulation applied to the rate-controlled devices, the mouse

and joystick, for the text selection task. For the keyboard methods, the movement time was a

function of the number of keystrokes. The study quantified, using Fitts’ Law, that the mouse

was superior to the joystick in the human performance of text selection on a display using

Fitts’ Law. The study also showed that the movement time for the mouse was superior to all

text selection devices. Mackenzie [107] later reexamined Card’s study [105] with the Shannon

Formulation to remove the negative index of difficulty values. The results of this reanalysis

shows the performance to be closer to current studies using a computer mouse.
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5.2.2 Tele-Operation with Time Delay

Sheridan and Ferrel [108, 109] studied remote manipulation with time delay. A single human

tester used a master controller to move a slave hand from an initial position to grip a block with

transmission delays of 0, 1, 2.1, and 3.2 seconds between the master and the slave [108]. An

index of difficulty for the task was established to be

ID = log2
2A

B −C
(5.7)

where B was the width of the gripper, C was the variable width of the target blocks, and A was

the movement distance between initial gripper position and the target block.

The results showed that the tester adopted a move and wait strategy to cope with the delay.

The results of this study showed that the time to complete a task of a given index of difficult

could be predicted for a given time delay td:

t(ID) = to(ID) + (tr + td)N(ID) + td (5.8)

where to(ID) was the task completion time without delay, tr was a reaction time taken to be

0.2 seconds, and N(ID) was the number of recorded corrective movements.

This experiment was performed again with seven human testers [109] who similarly per-

formed a move and wait strategy which confirmed the previous result. Four human testers

then completed a more difficult remote manipulation task over time delay: remotely grasping,

moving and manipulating tools. For this task, no index of difficulty was established, and the

time to complete the task was recorded for varying time delays. The results from this more

complex task showed that the more difficult task with delays could be completed accurately at

the expense of completion time.

5.2.3 Human Performance Studies and Mobile Robot Cornering

Fitts’ Law studies extended to assessing human performance with different input devices for

a text selection task on a computer monitor [105]. Five human subjects were provided four
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devices for the task of selecting text on a display. Two devices, a mouse and a joystick, were

rate-controlled in that the spatial movement of the device corresponded with the cursor motion

on the display. The other two devices, using keyboard keys, were a function of keyboard

strokes rather than eye-device coordination. A Fitts’ Law-like formulation for movement time

for each input method was based on the distance to the target text, and the size of the target

text. The mouse resulted in both the lowest movement time and lowest error rate.

Fitts’ Law predicts the movement time between two targets assuming a straightforward

trajectory. HCI tasks often require a trajectory to be followed, such as navigating through

nested menus on graphical user interfaces [110]. A generalized steering law was developed

to predict task completion through non-uniform trajectories. Human testers used a stylus on

a tablet as an input for drawing on a computer monitor to follow various trajectories: simple

goal passing (similar to Fitts’ tapping test), goal passing through a tunnel, goal passing through

a narrowing tunnel, goal passing through a spiralling tunnel. The generic expression for the

index of difficulty for a path C was established as

ID =

∫
C

ds
W(s)

(5.9)

where W(s) is the width of the tunnel as a function of position s along the path.

The study of negotiating a trajectory was extended to a negotiating a virtual hovercraft

around corners in a first-person-shooter gaming environment [111]. Nine human testers steered

the virtual hovercraft through corridors of varying widths over successive trial blocks to demon-

strate both task learning and to develop a task index of difficulty. In this study the hovercraft

passed through one corridor, around a 90°corner into a corridor of equal width to the first. The

human tester had a third-person trailing view of the vehicle as they controlled it through the

task. The index of difficult was established as a function of the vehicle width p and corridor

width w:

ID =
p

(w − p)
(5.10)

Examining the limiting cases of Equation 5.10, when the vehicle width is equal the the
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corridor width, the task is infinitely difficult, and when vehicle width approaches zero the

task becomes trivial. A second trial involving ten human testers and more corridor widths

showed that mean completion times increased with decreasing corridor widths, and task errors

decreased with increasing corridor width.

The index of difficulty was also derived considering information theory. Pastel [111] as-

sumed the task to be recognizing that the vehicle was sufficiently centred within the corridor

to avoid collision. The information gain was presented as a difference of logarithms of the un-

certainties before and after the vehicle was centred within the corridor, log2 (w) − log2 (w − p).

This index of difficulty was thus

ID = log2

(
p

w − p
+ 1

)
(5.11)

where Equation 5.11 above is closely analogous to the Shannon information theory formulation

of Fitts’ Law in Equation 5.5. The results from Pastel’s study showed the cornering times fit

the model through linear regression with R2 values greater than 0.85.

The virtual cornering task was replicated with a real world mobile robot using first-person

view [112]. Eighteen human testers tele-operated the mobile robot through a cornering task

with three corridor widths. The three corridor widths were repeated three times within a trial

block; each human tester performed 5 trial blocks. However, the fifth trial block was removed

from analysis. The results showed that the cornering time increased as the corridor width

decreased, and the task errors decreased over trial blocks as the human testers learnt the task.

A cornering law for UGVs, given in Equation 5.12 is a formulation similar to Fitts’ Law,

predicts the cornering time for tele-operated mobile robot based on the aperture width and the

mobile robot width.

CT = a + b log2

(
p

w − p
+ 1

)
(5.12)

Helton’s results showed that the mean cornering times for three difficulty values fit the

model given by Equation 5.11 with Pearson r values greater than 0.95.

A tele-operation under time-delay study with a mobile robot [113] showed that deviations
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from a fixed path increased with the increase in delay in a simulation environment. The delays

varied between 0 and 0.75 second. This increase in deviations was represented by a scoring

function given:

S i = max (0, 1 − |yi|) (5.13)

S i is the score based on lateral deviation from centreline yi at step i. Here, the width of the

track was 2 m, therefore the maximum lateral deviation without leaving the track is 1 m. The

average score over all steps n is then:

S =
1
n

n∑
i=1

S i (5.14)



Chapter 6

Terrain Classification

This chapter presents the experimental outcomes of the terrain traversal and classification test-

ing. The objective of this testing is to demonstrate a proof-of-concept in using proximal sensing

techniques to assess terrain traversability. The intention is to demonstrate that the combination

of visual images, spectral response and lidar reflectance intensity improves terrain classifica-

tion over just visual classification. The chapter describes the collection process for both the

proprioceptive mobile robot data and the proximal terrain data, results of data classification,

utilization of classifier for prediction, and an interpretation of the results.

6.1 Experimental Equipment

This section describes the equipment and setup for the terrain traversing testing. Most data

collection took place inside the Coudé room of the Elginfield Observatory, and the hyperspec-

tal images were taken off-site. Testing at the observatory included a small mobile robot test

platform traversing over various terrain types contained within a box, and lidar reflectance

measurements and images were take of the terrain types.

64
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6.1.1 Terrain Types and Terrain Box

For this thesis a set of terrain types was considered: sand, gravel, crushed clay pottery chips,

white quartz aggregate, and pink quartz aggregate. The sand and gravel were derived from the

same material. The terrain types were selected based on availability at a garden centre, and the

belief that the gravel, clay chips and quartz would spectrally appear different.

A terrain box, shown in Figure 6.1, was constructed in the Coudé room to a size of 122 cm

by 244 cm with a height of 10 cm. The various terrain types were filled to a depth of approxi-

mately 5 cm. The box itself rested upon jacks that could lift one end of the box to increase the

inclination of the terrain. The sand was added to the box, and the differing aggregate material

was added on top of and removed from the sand.

Figure 6.1: The terrain box contained a layer of sand and additional material was added and

removed from it. The box rested on two jacks (right side, not shown) to raise and lower the

box to create a 5°incline, shown in Figure 6.2. In this image, the gravel covered the bed with

the left side covered in wet sand.

The following list is the set of terrain conditions for which complete, and viable, data was

collected for classification purposes:

DLS Dry loose sand
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Figure 6.2: One side of the terrain box was raised to create an incline for the LunaTron to climb.

In this image, a small mound of gravel mixed into loose wet sand resulted in the LunaTron

becoming immobilized.

DCS Dry compact sand

WFS Wet flat sand

WMS Wet mixed sand

CLA Crushed clay chips on top of packed sand

GRA Gravel on top of packed sand

PQU Pink quartz rock on top of packed sand

WQU White quartz rock on top of packed sand

and these types were binned into the following bulk composition sets:

AGG Aggregates consisted of CLA, GRA, PQU, and WQU

COM Compacted sand consisted of DCS and WFS

LOO Loose sand consisted of DLS and WMS



6.1. Experimental Equipment 67

SAN Sand consisted of both COM and LOO

6.1.2 The LunaTron Rover

The LunaTron rover was initially assigned as a Capstone Design Project for the 2013-2014

Mechatronic Systems Engineering program at Western University. The initial requirements

were to design a 10 kg lunar scout micro-rover with an instrumented chassis. LunaTron con-

tinued as a development project and was later became a required platform for this research.

LunaTron has an instrumented rocker-bogie chassis to collect proprioceptive measurement

data. Load cells on each wheel provide the vertical loading on each wheel. Motor encoders

provide the rotational position of the motor shaft, which is used to estimate the commanded

rover speed. An optical mouse was used as an optic flow sensor to provide an estimate of

the true rover speed. Wheel slip is then derived from the true speed and commanded speed.

Current sensors measure the current draw of each motor, which provides an inferred measure

of the torque delivered by the wheel. LunaTron has an Intel NUC computer running Linux

Ubuntu 12.04 and ROS Hydro (described in Section 7.1.1). A websocket allows an external

connection to ROS over port 9090. An Internet browser Javascript-based user interface allowed

a user to control LunaTron over a WiFi connection to enable a wireless, mobile robot platform.

For testing purposes, LunaTron was powered by an external power supply.

6.1.3 Integrated Vision System

The Integrated Vision System (IVS), shown in Figure 6.3, was developed by Optech Inc as

part of CSA’s ESM program to be an advanced vision system for planetary rovers, and was

targeted for integration onto CSA’s MESR rover [114]. IVS contains a lidar, spectrometer and

visible camera for co-registration of spatial, RGB, and NIR data. The instrument parameters

are provided in Table 6.1.

IVS was setup on a table next to the terrain box such that it would approximately be near the

3 m optimized range of the spectrometer. Space limitations within the Coudé room prevented
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Figure 6.3: The Integrated Vision System (IVS) features a lidar head on a pan-tilt unit

Table 6.1: IVS instrument parameters.
Parameter Value Notes

Lidar Perseus fibre laser Class IV
Lidar wavelength 1541 nm
Lidar avg Power 1.2 W at 450 kHz

Lidar pulse 2.74 ns at 400 kHz
Spectrometer Ocean Optics NIRQuest 3 m optimized range
Spectral range 850 - 2500 nm
Visible camera Sony FCB-H11

the table from being placed any further away from the box. However, a further distance from

the would result in oblique lidar return.

IVS provided colour RGB images in .TIF file format. The lidar point cloud data included

the lidar reflectance intensity values in the resultant .LAS files. The IVS user software enabled

data fusion of the RGB values onto the point cloud. However, the fused data was saved as a

.LAS file that could not be read by LAS viewers, nor was the data structure in a recognizable

format. It was later decided that having coincident lidar and RGB images was ideal but not

required. Lidar point clouds containing reflectance intensity and RGB images were collected

for all terrain types.
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The intention was to use IVS as a singular instrument for data collection to demonstrate

its utility in terrain assessment. However, the spectrometer did not provide useful data. A

Spectralon® reference tile was required for calibration purposes before each target sample was

acquired. However, under both outdoor lighting and indoor quartz halogen lighting, IVS did not

measure consistent reference spectra from the reference tile. The reflectance values changed

based on the position of the quartz-halogen source, however overall the different configuration

of integration times and light positioning did not result in consistent reference spectra. After

several attempts to get meaning values from the spectrometer it was decided to not use IVS for

measuring spectral response.

6.1.4 INO Hyperspectral Imager

A hyperspectral imaging platform from INO was used for collecting spectra of five different

terrain types. Both visible and short wave infrared (SWIR) images were collected. The hyper-

spectral imaging took place separately from the terrain traversing testing at a different facility.

Hyperspectral images of sand were taken, however only at one condition of moisture content.

The terrain traversing testing included conditions of both wet and dry sand. The difference in

water content would be evident in the spectra, therefore the hyperspectral images were only

used for classification of the different aggregate types.

Table 6.2: INO Hyperspectral imaging platform parameters for both visible and SWIR ranges.
Parameter Visible Range SWIR Range
Detector CCD (1392 x 1040-λ pixels) HgCdTe (320 x 256-λ pixels)

Spectral Range 400 - 1000 nm 1000 - 2500 nm
Spectral Resolution 2.8 nm 6.8 nm
Spatial Resolution down to 0.3 mm down to 0.05 mm

Spatial Pixels 1392 320
Acquisition Rate 60 Hz 60 Hz

Sample dimensions Up to 60 cm (W) along FOV, Up to 60 cm (W) along FOV,
40 cm (H) 40 cm (H)
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6.2 Terrain Data Collection

This section describes the data collection process for obtaining the IVS and LunaTron measured

values of the terrain and terrain traversal. All data was collected over two days.

The terrain box was filled and configure to the desired terrain condition. A minimum of

three IVS images and lidar point clouds were obtained for each terrain condition. LunaTron

was then tele-operated to drive forward across the terrain box. The motors were driven with a

pulse width modulation of 50%, which was the default set by the user interface. The load cells,

current sensors and encoders were polled at 5 Hz and the data was sent to the tele-operator user

interface where the data was saved as as .CSV file. During the testing phase, only the right side

LunaTron sensors provided a complete data set and 1 load cell and 1 current sensor on the left

side had failed. It was assumed that left side data would have been similar to the right side as

LunaTron was only being driven forwards over homogeneous terrain, and therefore one side

of data was deemed acceptable. A failed motor gear prevented LunaTron from being driven

backwards, and thus it had to be physically resent after each traversal. Mid-way through the

traversal testing the right side load cells also failed. However the load cell data prior to failure

did not vary significantly between the terrain types that had been tested.

6.3 Data Processing and Feature Vector Construction

For this thesis, the objective was to process proximal data of terrain for classification against

terrain labels. The proximal data sets include the images and lidar point clouds collected from

IVS, and hyperspectral data cubes collected from the INO hyperspectal imager. LunaTron

proprioceptive data sets include wheel speed and motor current draw. This section describes

the steps to process the collected data and assembling feature vectors for training the classifiers.
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6.3.1 Image Processing

Images of the terrain were captured from the IVS imager, as shown in Figure 6.4. For each

terrain type, image strips of just the terrain were extracted from the IVS image, as shown in

Figure 6.5. The image strip was then sub-divided into 50×50 pixel images patches, as shown

in Figure 6.6 to be used for classification training. This process is repeated until there are 100

image patches for each of the terrain types. The size of the IVS image puts a limit on the

number of image patches available for training.

Figure 6.4: Example of an RGB image acquired from IVS. In this scene the terrain box has a

layer of crushed clay chips.

Figure 6.5: Example of a 550 x 60 pixel image strip used for creating training images for the

terrain class.

A level 2 db2 wavelet transform is performed on each of the image patches. The transform

results in a feature vector of 8436 coefficients, which includes the level 2 trend image and the

2-levels of fluctuations. The full image feature vector includes the trend, fluctuations, and the

energy terms for the trend and fluctuations for a total of 8446 coefficients. The number of coef-

ficients is greater than the number of available training sets, and requires greater computational
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Figure 6.6: Example of a 50 x 50 pixel image patch used for classifier training.

effort to train a classifier. The 7 energy terms approximately capture the texture of the terrain,

which is deemed to be appropriate for classifying the terrain types. The feature vector for the

images are then the 7 energy terms from the wavelet transform: energy of the level 2 trend, 2

energy terms for each level of the diagonal, horizontal and vertical fluctuations. Image feature

vectors containing the mean R, G, and B values for each image patch were also constructed for

comparison purposes.

6.3.2 Lidar Reflectance Intensity

Lidar point returns were captured and converted to point clouds with IVS. Figure 6.12 shows

an example of the reflectance intensity of the point cloud for a scene that contains the terrain

box shown in Figure 6.11. The scene consists of three strips of aggregate resting on dry sand

in the terrain box, and the surroundings of the Coudé room. In this example, the black walls
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of the Coudé room poorly reflect the laser beam, and the dry wooden crate stacked beyond the

terrain box reflects the laser beam well. Within the terrain box, the strips of aggregate reflect

laser better in comparison to the sand on which they lay.

Figure 6.7: Three strips of aggregate laying upon flattened wet sand in the terrain box.

Figure 6.8: Example of a visualization of the reflectance intensity value for the point cloud. The

point cloud corresponds to the greater scene shown in Figure 6.7. The colourization represents

the reflectance intensity:red indicates a low (0%) intensity and violet indicates a high (100%)

intensity.

The image and lidar reflectance can be compared to the that of flattened wet sand without

the aggregate, shown in Figures 6.10 and 6.9. Here, the reflectance intensity of the flattened

wet sand has low variability.
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Figure 6.9: Flattened wet sand in the terrain box without the aggregate.

Figure 6.10: Example of a visualization of the reflectance intensity value for the point cloud.

The point cloud corresponds to the scene in Figure 6.9. The colourization represents the re-

flectance intensity:red indicates a low (0%) intensity and violet indicates a high (100%) inten-

sity.

The image and lidar reflectance can be compared to the that of unprepared wet sand, shown

in Figures 6.12 and 6.11. Here, the reflectance intensity of the unprepared wet sand has a

higher variability when compared to the flattened wet sand.

Point clouds containing reflectance intensity were obtained for each of the terrain types.

The reflectance value of points within a 10 cm3 cube were extracted from the lidar point cloud

within the region corresponding to the terrain box. The reflectance values of 100 cubes centred
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Figure 6.11: Unprepared wet sand in the terrain box.

Figure 6.12: Example of a visualization of the reflectance intensity value for the point cloud.

The point cloud corresponds to the scene in Figure 6.11. The colourization represents the

reflectance intensity:red indicates a low (0%) intensity and violet indicates a high (100%) in-

tensity.

approximately 5 cm apart from each other were obtained. The mean, and standard deviation,

of the reflectance intensity within the cube were paired to form a feature vector to represent the

average reflectance value and the variability within a region.
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6.3.3 Spectral Reflectance Features

The hyperspectral imager produces a data-cube containing the spectral reflectance at 256 dis-

crete wavelengths. A single point on an image contains the line spectra over those 256 wave-

lengths. Each hyperspectral image scene contains two terrain samples; 100 points within each

terrain sample provide 100 spectral responses. The spectral responses were smoothed and pro-

cessed to extract the number of peaks and the maximum peak value. These two parameters

formed the spectral feature vector. The spectral feature vectors are only available for four of

the aggregates: crushed clay chips, gravel, white quartz, and pink quartz.

6.3.4 Ensemble Feature Vectors

For each of the 8 terrain types there are 100 training samples of feature vectors of wavelet

transformed images, and lidar reflectance intensities; for 4 of the terrain types there is also 100

training samples of feature vectors of the line spectra. For the 8 terrain types, sets of training

feature vectors were created for comparison:

• Wavelet transformed images

• Image RGB values

• Lidar reflectance

• Transformed images concatenated with lidar reflectance

• RGB values concatenated with lidar reflectance

For the 4 aggregate types, the spectral features were also included for the following addi-

tional sets:

• Spectral features

• Transformed images concatenated with spectral features

• Lidar reflectance concatenated with spectral features
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• Transformed images concatenated with lidar reflectance and spectral features

The sets of feature vectors were then used for training classifiers for performance compari-

son. All eight terrain types were used for comparison between the feature sets involving images

and lidar; four aggregate types were used for comparison between feature sets involving im-

ages, lidar and line spectra. The bulk terrain compositions, aggregates, loose, and compacted

sands were also compared for classification.

6.3.5 Data Comparison of Classifiers

The size of the classifiers is an important consideration in the context of planetary exploration

rovers with limited storage memory and computational effort. Table 6.3 provides a comparison

of the size of the trained classifiers, noting that the reduction in size by reducing the feature

vector length. Table 6.4 provides a comparison of classification time, noting that training would

likely be performed on higher performance computing than a planetary rover. However, in the

case that a new classifier must be trained in situ, it is therefore worth noting the reduction in

training time with the reduced feature vector length, and the reduced training time for Naive

Bayes compared to SVM.

Table 6.3: Comparison of Matlab-trained classifier size for Naive Bayes and SVM classifiers

using different feature vector lengths
Feature Vector Combination NB Class. Size (KB) SVM Class. Size (KB)

Images (reduced FV) 62 82
Lidar Intensity 13 32

Images (reduced FV) and Lidar Intensity 72 92
Images (full FV) and Lidar Intensity 45033 45700

It is also worth noting the time to run test data through the classifier. The test sets in

Section 6.5 consisted of 40 feature vectors. The Naive Bayes classifier processed this test set

in 0.5 s, whereas the SVM processed the set in 1.2 s.
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Table 6.4: Comparison of Matlab-trained classification time for Naive Bayes and SVM classi-

fiers using different feature vector lengths
Feature Vector Combination NB Class. Time (s) SVM Class. Time (s)

Images (reduced FV) and Lidar Intensity 1 260
Images (full FV) and Lidar Intensity 264 725

6.3.6 LunaTron Data Feature Vectors

A feature vector of LunaTron data for each terrain type were also constructed for classification

purposes. Each feature vector consisted of mean and standard deviation of wheel speed for

each wheel, and the mean and standard deviation of motor current draw for each wheel.

6.4 Results of Classification

This section describes the process of training and assessing the terrain classifiers. Appendix A

contains the complete set of classification results and confusion matrices. Two classification

methods, Naive Bayes and multi-class SVM, are compared. The following conditions were

assessed and compared:

• 8 terrain types

• 4 aggregates including spectral features

• Bulk composition of aggregate, loose and compacted sand

and within each condition the performance of the classifiers were compared between the en-

semble feature vectors.

6.4.1 Classifier Training with Matlab

All classification was performed using that Matlab Statistic and Machine Learning toolbox.

The toolbox provides functions for training Naive Bayes and multi-class SVM classifiers, per-

forming k-fold cross-validation of the trained classifiers, and producing confusion matrices.
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Furthermore, the trained classifiers can be fed new test data for class prediction. The following

results show the cross-validation classification errors for the set of classification conditions.

Classification of 8 Terrain Types

Table 6.5 shows the classification error following cross-validation of the two classifiers and

three sets of feature vectors. The results show that transformed images alone are misclassified

at a rate of 29% for Naive Bayes, and 36% for SVM, and lidar intensity alone is misclassified at

a rate of 38% for both. The confusion matrices show that Naive Bayes poorly classifies PQU,

WQU and WFS with just transformed images, whereas DCS is well-classified. These results

are compared to the lidar reflectance, which poorly classifies DCS and DLS and correctly

classifies WFS. The combination of the two feature vectors results in an error rate of 10%,

with improvements to classification of the poorly classified types. Similar improvements to

classification are shown with SVM.

Table 6.5: Comparison of classification errors feature vectors with Naive Bayes and SVM

classifiers for all 8 terrain types.
Feature Vector Combination NB Class. Error (%) SVM Class. Error (%)

Images 29 36
Lidar Intensity 38 38

Images and Lidar Intensity 10 14

Classification Between 4 Sand Types

Table 6.6 shows the classification error following cross-validation of the two classifiers and

three sets of feature vectors. The Naive Bayes classifier poorly classifies WFS with just trans-

formed images, and poorly classifies DCS with just lidar intensity. The combination of features

significantly improves classification, with only 1 misclassification in 400. The SVM classifier

also poorly classifies WFS with just transformed images, and the addition of lidar intensity

improves classification.
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Table 6.6: Comparison of classification errors feature vectors with Naive Bayes and SVM

classifiers for the 4 sand types.
Feature Vector Combination NB Class. Error (%) SVM Class. Error (%)

Images 15 24
Lidar Intensity 20 20

Images and Lidar Intensity 3 9

Classification Between 4 Aggregate Types

Table 6.7 shows the classification error following cross-validation of the two classifiers and

three sets of feature vectors. Here, the addition of the spectral features improves the classifi-

cation of the 4 types of aggregate material. Both the Naive Bayes and SVM classifiers poorly

classify PQU with images alone, and classification improves for all classes with the addition

of both lidar and spectral features.

Table 6.7: Comparison of classification errors feature vectors with Naive Bayes and SVM

classifiers for the 4 aggregate types.
Feature Vector Combination NB Class. Error (%) SVM Class. Error (%)

Images 37 45
Lidar Intensity 23 24

Spectral Features 23 47
Images and Lidar Intensity 14 15

Images and Spectral Features 13 42
Lidar Intensity, and Spectral Features 9 18

Images, Lidar Intensity, and Spectral Features 6 13

Classification Between 3 Bulk Compositions

Tables 6.8 and 6.9 show the classification error following cross-validation of the two classifiers

and three sets of feature vectors. For comparison, the transformed image energy terms provide

an improved classification compared to using colour terms. The multi-class SVM performs

better than the Naive Bayes when classifying the 3 bulk compositions, whereas the Naive

Bayes classifier performed better when classifying the individual types. The Naive Bayes
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poorly classifies loose sand regardless of feature vector, however there is an improvement with

the combination of transformed images and lidar intensity. The SVM similarly poorly classifies

loose sand with either transformed images or lidar intensity, however the combination of the

two features significantly improves the classification.

Table 6.8: Comparison of classification errors feature vectors with Naive Bayes and SVM

classifiers for the 3 bulk compositions with transformed images.
Feature Vector Combination NB Class. Error (%) SVM Class. Error (%)

Images 15 15
Lidar Intensity 43 42

Images and Lidar Intensity 15 7

Table 6.9: Comparison of classification errors feature vectors with Naive Bayes and SVM

classifiers for the 3 bulk compositions with image colour terms.
Feature Vector Combination NB Class. Error (%) SVM Class. Error (%)

Images 48 35
Lidar Intensity 43 42

Images and Lidar Intensity 22 19

6.4.2 LunaTron Traversal Testing

Tables 6.10 and 6.11 provide a summary of the LunaTron traversal data for each of the 8

terrain types and the binned 3 bulk composition types. The summary shows the current draw

and wheel speed to be similar within all types. From the perspective of vehicle performance

and prediction, there is a greater distinction in current draw and wheel speed when comparing

the bulk compositions. Loose sand, whether it is wet or not, will require greater current draw

and has a lower speed compared to aggregate materials. Similarly, compacted sand, whether it

is wet or not, results in the lowest current draw.

Table 6.12 shows the classification error following cross-validation of the two classifiers for

the LunaTron data sets. The SVM miss-classifies all of the compacted sand sets as aggregates,
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Table 6.10: Mean current draw per wheel over terrain types.

Right Front Wheel Right Middle Wheel Right Rear Wheel
Terrain Type Mean (A) Std (A) Mean (A) Std (A) Mean (A) Std (A)

CLA 0.571 0.131 0.666 0.182 0.479 0.102
DCS 0.565 0.066 0.642 0.102 0.475 0.067
DLS 0.606 0.081 0.713 0.113 0.546 0.080
GRA 0.598 0.158 0.693 0.182 0.456 0.101
PQU 0.609 0.141 0.629 0.163 0.467 0.079
WFS 0.573 0.093 0.672 0.099 0.476 0.067
WMS 0.692 0.097 0.815 0.134 0.622 0.078
WQU 0.604 0.205 0.708 0.170 0.490 0.096
AGG 0.597 0.051 0.671 0.067 0.472 0.043
COM 0.565 0.021 0.661 0.030 0.473 0.027
LOO 0.648 0.057 0.762 0.062 0.587 0.047

whereas the Naive Bayes correctly classifies most of the compacted and loose sand sets, and

miss-classifies some aggregate as compacted sand.

6.5 Prediction Step

This section presents the results of providing the classifiers with previously untrained data to

assess their performance. There are three cases that are examined in which the terrain tran-

sitions from one type to another. The classifiers predict a terrain class, and that class has an

associated vehicle performance as given in Section 6.4.2 which is compared to the measured

vehicle performance. For this stage, the bulk composition of terrain is considered.

6.5.1 Aggragate to Loose Sand

The first prediction is for a transition from GRA to WMS, as shown in Figure 6.13, with an

image strip shown in Figure 6.14. For terrain and vehicle purposes this is considered to be

AGG to LOO. As LunaTron is accelerating for most of the first section, the prediction step is



6.5. Prediction Step 83

Table 6.11: Mean wheel speed wheel over terrain types.

Right Front Wheel Right Middle Wheel Right Rear Wheel
Terrain Type Mean (m/s) Std (m/s) Mean (m/s) Std (m/s) Mean (m/s) Std (m/s)

CLA 0.267 0.041 0.270 0.048 0.272 0.049
DCS 0.270 0.047 0.276 0.051 0.273 0.051
DLS 0.225 0.063 0.235 0.064 0.233 0.065
GRA 0.264 0.063 0.267 0.061 0.262 0.060
PQU 0.275 0.039 0.281 0.047 0.274 0.050
WFS 0.269 0.052 0.275 0.052 0.269 0.054
WMS 0.219 0.038 0.226 0.040 0.223 0.038
WQU 0.254 0.060 0.260 0.057 0.259 0.057
AGG 0.267 0.017 0.270 0.019 0.266 0.018
COM 0.268 0.015 0.278 0.017 0.272 0.014
LOO 0.222 0.014 0.233 0.017 0.230 0.014

Table 6.12: Comparison of classification errors for LunaTron data with Naive Bayes and SVM

classifiers for the 8 terrain types and 3 bulk compositions.
Feature Vector Combination NB Class. Error (%) SVM Class. Error (%)

Wheel Speed and Current, 8 Terrain Types 21 39
Wheel Speed and Current, 3 Bulk Compositions 14 36

only taken on the second terrain type.

A set transformed image features and lidar intensity are created to be supplied to the Naive

Bayes and SVM classifiers. Both classifiers correctly identify the first section as aggregate and

the second section as loose sand. The difference between classifiers occurred at the transition

between sections, where images contained portions of both types. For the second section of

loose sand, the predicted LunaTron wheel speed and current draw is compared to the measured

values as given in Table 6.13. In this case the measured values were greater than 1 standard

deviation from the predicted value. This is attributed to the likelihood that the sand was not as

loosely mixed as it was during the homogeneous terrain testing.



84 6. Terrain Classification

Figure 6.13: In this scene the terrain box has a section of gravel and a section of wet mixed

sand, with the LunaTron traversing from left to right.

Figure 6.14: Image strip featuring a transition from gravel to wet mixed sand.

6.5.2 Covered Aggregate to Flat Wet Sand

The second prediction is for a transition from gravel dusted with loose sand to the flat wet sand,

as shown in Figure 6.15. This set is to assess how the classifiers predict a set of features from

a hybrid terrain type not previously seen. For terrain and vehicle purposes this is considered to

be transitioning to COM.

The Naive Bayes misclassified most of the second section as LOO when using both trans-

formed image and lidar features, whereas the SVM is correct in classifying most of the second

section as COM. Both the Naive Bayes and SVM classify the first section of hybrid terrain as

loose terrain using the combine feature vector. Using only the lidar intensity, both the Naive

Bayes and SVM correctly classify the second section as COM. Both the Naive Bayes and SVM

classify the first section of hybrid terrain as AGG using only the lidar features.

For the second section of compact sand, the predicted LunaTron wheel speed and current

draw is compared to the measured values as given in Table 6.14. In this case the measured
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Table 6.13: Mean wheel speed wheel and current draw over LOO predicted terrain.

Right Front Wheel Right Middle Wheel Right Rear Wheel
Mean (m/s) Std (m/s) Mean (m/s) Std (m/s) Mean (m/s) Std (m/s)

Predicted 0.222 0.014 0.233 0.017 0.230 0.014
Measured 0.291 0.302 0.301

Mean (A) Std (A) Mean (A) Std (A) Mean (A) Std (A)
Predicted 0.648 0.057 0.762 0.062 0.587 0.047
Measured 0.615 0.656 0.521

Figure 6.15: In this scene the terrain box has a section of covered gravel and a section of wet

flat sand, with the Lunatron traversing from left to right.

current values were within 1 standard deviation from the predicted value, whereas for the wheel

speed the measured values were greater than 1 standard deviation from the predicted value.

6.5.3 Gravel to Covered Aggregate

The final prediction is for a transition from gravel to gravel dusted with loose sand, as shown

in Figure 6.16. This set is to assess how the classifiers predict a set of features from a hybrid

terrain not previously seen.

Both Naive Bayes and SVM correctly identify the first section as AGG when using both

transformed image and lidar features. Both Naive Bayes and SVM classify the second section
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Table 6.14: Mean wheel speed wheel and current draw over COM predicted terrain.

Right Front Wheel Right Middle Wheel Right Rear Wheel
Mean (m/s) Std (m/s) Mean (m/s) Std (m/s) Mean (m/s) Std (m/s)

Predicted 0.268 0.015 0.278 0.017 0.272 0.014
Measured 0.301 0.309 0.307

Mean (A) Std (A) Mean (A) Std (A) Mean (A) Std (A)
Predicted 0.565 0.021 0.661 0.030 0.473 0.027
Measured 0.586 0.653 0.475

Figure 6.16: In this scene the terrain box has a section of covered gravel and a section of gravel,

with the Lunatron traversing from right to left.

of hybrid terrain as LOO using both transformed image and lidar features. However, both

classify the hybrid terrain as AGG when using only lidar features.

For the second section of covered aggregate, the predicted LunaTron wheel speed and cur-

rent draw is compared to the measured values as given in Table 6.15. In this case the measured

current values were within 1 standard deviation of both the LOO and AGG terrain types. The

measured wheel speeds are greater than 1 standard deviation from both, however they are closer

to the AGG values. The measured current draw is likely greater than for clean aggregate due

the wheels slipping on the dusted sand, and is likely less than for loose sand as the underlying

gravel provides improved traction.
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Table 6.15: Mean wheel speed wheel and current draw over COM predicted terrain.

Right Front Wheel Right Middle Wheel Right Rear Wheel
Mean (m/s) Std (m/s) Mean (m/s) Std (m/s) Mean (m/s) Std (m/s)

LOO 0.222 0.014 0.233 0.017 0.230 0.014
AGG 0.267 0.017 0.270 0.019 0.266 0.018

Measured 0.291 0.297 0.294
Mean (A) Std (A) Mean (A) Std (A) Mean (A) Std (A)

LOO 0.648 0.057 0.762 0.062 0.587 0.047
AGG 0.597 0.051 0.671 0.067 0.472 0.043

Measured 0.635 0.728 0.536

6.6 Discussion, Limitations, and Recommendations

Terrain classification was compared using two classifiers: Naive Bayes and multi-class support

vector machines. Many other classification techniques, such artificial neural networks, exist

and could have been examined. However the intent of this research was not to find the optimal

classification method; the intent was to demonstrate that lidar reflectance intensity and spectral

features improve classification over images alone. For this thesis, both Naive Bayes and SVM

classifiers demonstrated reduced classification errors when provided feature vectors including

lidar and spectral features.

Classification was compared between Naive Bayes and SVM classifiers. Both classifiers

had similar performances, with Naive Bayes generally showing improved classification. In the

context of a low-cost lunar prospecting rover with limited computational capacity, the Naive

Bayes was shown to require less time to classify test data compared to SVM. Additionally, the

reduced feature vector greatly reduced the size the resultant classifiers compared to using the

full feature vector length.

The experimental work was conducted on 8 different terrain types that are not an exhaustive

list of soils or terrain conditions. Soil with organic content, such as topsoil, or clay-rich soil are

found in off-road unstructured environments in which mobile robots may be deployed, such as

agricultural lands and forests. To deploy a mobile robot with a trained classifier would require
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training data from many more terrain types. Alternatively, unsupervised classifiers could be

utilized to classify terrain as the mobile robot is deployed in the field. However, it may not be

possible to classify a hazardous terrain until the mobile robot has encountered it.

The experimental work did not involve a full set of hazardous terrain conditions that re-

sulted in immobilization, such as loose terrain on an incline. A full set of immobilization

conditions would be required to train the classifier to for such prediction. The terrain box was

lifted on jacks twice, and the LunaTron was driven up the incline in both dry loose sand and wet

mixed sand. It was able to traverse the incline in loose dry sand, with a measurable increase

in current draw. It became immobilized in the wet mixed sand on the incline. The jacks failed

after the second set and were not able to be raised again.

Proximal soil sensing combined with soil inference systems has been shown to predict soil

mechanical properties using single spectral measurements. These techniques similarly require

a prior set of measured soil data, and the soil inferencing is limited to soil specific to a region.

In other words, training with Southern Ontario soil may not work for inferring soil in New

Zealand.

It should be noted that spectroscopy alone is not better than standard RGB images in the

sense that the interpreted spectra only applies to the top few microns of the surface. Spirit was

trapped by loose drift material that visually looked similar to the more solid material it had

been driving on. Howard et al [115] note that “sensing only terrain geometry fails to reveal

mechanical properties of terrain that are critical to assessing its traversability, such as potential

for slippage, sinkage, and the degree of compliance with potential obstacles”. The reflectance

intensity can be interpreted to indicate the dryness of the soil. A dry sand can be interpreted

to be more likely to be weakly cohesive, whereas a dry clayey soil may have improved shear-

ing. Lidar reflectance intensity has been used to interpret duricrusts with underlying weakly

cohesive soils. However, the same reflectance intensity may also indicate solid rock. A high-

powered laser could heat the terrain and the thermal inertia could be measured to infer soil

density. However, the IVS laser was not sufficiently powerful to heat the sand, nor did the user

interface for IVS allow for the laser to be operated in such a setting. Furthermore, the thermal
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inertia would require IR sensors to measure.

The lidar and spectroscopic data collected were not vehicle-centric. IVS was designed to

be mounted on a vehicle similar in scope to MESR, whereas LunaTron was used for collecting

vehicle data. The mass of IVS is beyond what LunaTron could carry, and IVS required a

dedicated power supply. Furthermore, the mass and power requirements of IVS are beyond

what the Husky rover could meet. More importantly IVS is not suited to field operations on a

mobile platform at its currently technology readiness level. Therefore, a complete integrated

mobility test involving an instrumented mounted on a vehicle was not performed. It is worth

noting that even though IVS was designed to integrate with a rover such as MESR, the user

interface for MESR did not facilitate access to lidar intensity data, which would have been

required for this work had IVS been mounted to it. Similarly, the hyperspectral images of

the samples were collected at a different facility. The hyperspectral imager was fixed to a

platform and the samples placed underneath for imaging. This set up was also not conducive

to integrated testing with a rover.

One goal for classifying terrain is to predict mobile robot performance before coming in

contact with terrain to avoid immobilization scenarios. Instead of trying to avoid immobiliza-

tion, the vehicle could be sized with more powerful motors to overcome such terrain. However,

off-road vehicles with powerful engines to drive wheels are not able to overcome any obstacle

or terrain condition and occasionally become stuck. For battery powered mobile robots, more

powerful motors require greater power which leads to increased mass or reduced operational

life. None-wheeled options, such as tank treads, provide improved traction but require more

power to operate.



Chapter 7

Tele-Operation Over Time Delay

This chapter presents the experimental outcomes of the tele-operation testing. The objective

of this testing is to assess human performance in remotely operating a mobile robot in poor

lighting conditions over time delay. The intention is to demonstrate that human-in-the-loop

direct-drive tele-operation remains, in the near term, a more viable option to autonomy for a

low-cost short-duration south lunar pole prospecting mission.

Human performance experimentation inherently requires a set of human testers. A tan-

gential development project, REALM, sought to enable web-browser based access to robotic

equipment which would facilitate remote participation. A collaboration with the Italian Mars

Society had the potential to provide approximately 30 volunteers to remotely drive a mobile

robot through an circuit at Western University in daylight and in the dark with time delay and

harsh lighting. The primary objective for the Italian Mars Society’s study was to evaluate the

human operator experience, and to serve as a basis for developing future studies. While some

initial results were achieved [116], a number of complicating factors prevented this collabora-

tion from being fulfilled. The outdoor driving circuit at Western University needed to be close

enough to an Internet access point to facilitate the wireless connection to the mobile robot.

The wireless connection also needed to be strong enough over the extent of the circuit to fa-

cilitate streaming video to the remote user. These access restrictions limited the circuit to be

the garden pathway outside of the Spencer Engineering Building. However, this area is traf-

90
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ficked throughout weekdays, which limited testing time to the weekend. Additionally, the dark

condition could be performed overnight with the remote participants 6 hours ahead in Europe,

instead of requiring local participants to devote a night. However, the Internet connection be-

tween Europe and the local server proved to be too unstable to facilitate this remote access and

driving tests. The experience from this attempt demonstrated the need to have a strong stable

wireless connection between the human tester and the mobile robot, and the need to conduct

the testing at an off-campus location.

The remainder of this chapter describes the experimental setup for two sets of tele-operation

testing, the results of the testing, and an interpretation of the results.

7.1 Experimental Equipment

This section describes the equipment and setup for the tele-operation experiments. Data collec-

tion took place at the Elginfield Observatory, shown in Figure 7.1. The observatory, which is no

longer used for astronomical research, is located north of London, Ontario. The initial testing

took place outdoors with a course set up on the grounds in front of the building. Following the

initial remote driving tests, cornering tests were conducted inside the building in the telescope

dome where lighting could be controlled. For both sets of testing the human tele-operators was

located in a windowless room within the observatory such that they could not see either the

outdoor course or the indoor cornering setup.

7.1.1 The Robot Operating System

The Robot Operating System (ROS) is a middleware framework that facilitates data messaging

between sensing devices, actuators, algorithms, and users. ROS provides the communication

layer between nodes. Nodes are the sources and sinks for data within a ROS network, and they

communicate to each other via the ROS Master node. Messages contain data that are published

or read by nodes on specific topics. Topics are asynchronous many-to-many communication

streams. A node can publish messages to a topic regardless of whether or not another node
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Figure 7.1: Both the outdoor and indoor tele-operation testing took place at the Elginfield

Observatory.

is reading those messages. A node that is subscribed to a topic will try to read any message

that gets published to that topic regardless of whether or not another node is publishing to that

topic. In addition to messages are services and actions. Services are synchronous one-to-many

functions for short requests. Actions are similar to services but are longer running processes.

Additional ROS packages are required for interfacing with hardware. The rosbridge suite

package facilitates external connections to a local ROS network. A WebSocket connection

becomes a node on the ROS network and enables messaging into and out of the network. The

rosbridge server converts JSON-formatted data strings sent by an external user interface to ROS

topic messages; these topic messages are read by other nodes. Conversely, topic messages sent

to the WebSocket are converted to JSON strings to be read by the remote UI. The usb camera

package reads in the video captured from a USB web camera, and the web video server package
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provides streaming video to an external user.

The tele-operation testing used ROS Hydro operating on Linux Ubuntu 12.04 machines.

Table 7.1: List of commonly used ROS Hydro packages.
ROS Package Function

husky Husky kinematics
rosbridge suite Facilitates external connections

usb cam Capture video from web cam
web video server Streams video to external viewer

7.1.2 Husky A200 Mobile Robot

The Clearpath Robotics Husky A200 mobile robot platform was used as the rover for tele-

operation. The Husky platform is 99 cm long, 67 cm wide (wheel to wheel), and 39 cm tall.

Its nominal mass is 50 kg without additional hardware, and is capable of handling a maximum

payload of 75 kg. It has a maximum speed of 100 cm/s, and can turn-in-place.

The Husky was controlled with a laptop computer running Linux Ubuntu 12.04. Con-

nected to the laptop was an external WiFi adapter, and a monocular camera. The peripherals

and Husky serial interface were all connected via USB hub to the laptop. The external 9 dbi

Wireless N adapter provided improved connectively at greater distance compared to the inter-

nal laptop adapter Two forward-facing LED headlights were powered off of the internal Husky

battery to provide lighting in dark conditions.

ROS Hydro facilitated data messaging between sensing devices, the Husky, and the remote

user. The Logitech QuickCam Pro 9000 monocular camera was mounted near the rear of the

Husky to allow the front two wheels to be visible in the field of view. ROS captured video

from the camera nominally at 15 FPS and provided the video for streaming using the Web

Video Server package.

The remote user connected to the Husky via a WiFi connection. A rosbridge server on

the Husky laptop provided a WebSocket connection to allow for the remote user to connect

to the Husky. The rosbridge server converted JSON-formatted data strings sent by the user
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Figure 7.2: The Husky A200 mobile robot shown outdoors for the tele-operation testing.

interface to ROS topic messages; these topic messages were then read by the Husky packages

and converted to motion commands. The outbound video was provided by the Web Video

Server. This video server allowed the video quality, in terms of video compression, to be

controlled by the remote user.

7.1.3 Tele-Operation User Interface

The remote user controlled the Husky from an Internet browser Javascript-based user interface

(UI). The UI read in inputs from a Logitech F310 gamepad and sent the corresponding JSON

formatted data strings to the IP address of the Huskys laptop. The UI provided the video stream,

input to adjust the video quality and time delay, and a gamepad input indicator.

A Javascript-based internet browser provided the interface to the Husky. The laptop on

board the Husky ran the Robot Operating System (ROS), and provided a Websocket connec-

tion using the rosbridge server package. The game pad inputs were sent to the Websocket

connection and were then converted to translational and rotational motion by the Husky ROS
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Figure 7.3: The user tele-operates the rover through an interface using a gamepad.

packages. Steaming video was nominally captured through ROS at 15 FPS and delivered using

the web video server package; the frame rate was adjusted on the Husky webcam end while the

video quality and resolution were adjustable on the Javascript interface end. The time delay

was enabled by buffering video frames for the designated duration.

7.2 Outdoor Driving Course

This section describes the results of the initial tele-operating tests through outdoor driving

courses. The testing focused on the human performance of tele-operating a rover in lighting

conditions that may be experienced at the South Lunar pole over limited band-width and time-

delay. Two sets of three time trials were performed; each set involved five test drivers. Each

set of time trials was performed on different test circuits. The time trials were of increasing

operational difficulty: daylight conditions without time delay, daylight conditions with time 4 s

delay, and harsh lighting with 4 s time delay. The harsh lighting was after nautical dusk with a

1000 W spotlight shining over the circuit. Obstacles were placed in the path of the light to cast
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Figure 7.4: The tele-operated rover provides streaming video for the user.

long shadows.

The first circuit was a simple double figure-8, shown in Figure 7.5 toward the spotlight.

From the operator’s perspective the Husky was driving into the low-angle light around obsta-

cles, and the driving away from the light into long shadows. The circuit was approximately

90 m in displacement and two circuits were completed for a total displacement of 180 m. A

more complicated circuit, shown in Figure 7.6 with a total displacement of 150 m, with more

turns and greater distances between waypoints, was completed by a different set of drivers.

This complex circuit featured similar situations of driving into the low light and into shadows.

7.2.1 Results

The results of the simpler circuit, given in Table 7.2, show that the drivers had consistent times

for the ideal daylight conditions. The addition of the time delay caused an expected increase in

completion time. However, by the final run in harsh lighting conditions, the drivers had learnt

the circuit and 4 out of 5 improved their performance. The average speed over circuit in ideal
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Figure 7.5: The first test circuit was a double figure 8; when repeated once the total drive

distance is approximately 180 m.

conditions was 41 cm/s and 31 cm/s for harsh lighting conditions compared to a set speed

of 50 cm/s for the Husky. The results of the more complex circuit are shown in Table 7.3.
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Figure 7.6: The more complicated driving circuit had the driver tele-operate the rover through

a number of turns and straight-aways for a distance of approximately 150 m.

The average speed for the ideal conditions was 41 cm/s which is consistent with the previous

trial. When the time delay was introduced, the average speed reduced to 29 cm/s, and further

reduced to 21 cm/s in harsh lighting. In both cases, the standard deviation on completion time

increased with the difficultly of the task.

The times listed in Tables 7.2 and 7.3 are the times from when the vehicle first began to

move until the time the rover returned to the starting area. The three trials are denoted as

T1 for ideal conditions, T2 for daylight and time-delay, and T3 for harsh lighting. Minor

penalties, denoted by lower-case ‘m’, are noted for instances where the rover ran into or grazed

an obstacle, but did not require human intervention. Major penalties, denoted by capital ‘M’,

required human intervention to rescue or prevent damage to the rover. A major penalty on an
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actual mission would likely result in failure.

Table 7.2: Times for 180 m figure 8 circuit: Set 1.
T1 (s) Pen. T2 (s) Pen. T3 (s) Pen.

Driver 1 434 699 855 1m
Driver 2 435 636 490
Driver 3 434 705 496
Driver 4 424 577 480 2m
Driver 5 444 1001 1M 777 1m

Mean 434 724 620
Std. Dev 6.3 146 162

The general experience for tele-operators for the first circuit was that the addition of time-

delay increased the difficultly of the circuit. On straight-aways there was a momentary lapse

in recalling the time-delay; the user would be pressing the directional joystick on the gamepad

and observing the forward motion on the video feed which, after 4 seconds, would appear to

be occurring without delay. The greatest challenge under time delay was cornering around

obstacles; it would only be when attempting to drive around or avoid an obstacle that the user

would recall the delay. This lapse is noted in the major penalty of Driver 5. For the harsh-

lighting condition the users had essentially learnt the simple route and were able to navigate

it despite the reduction in visibility. This ‘blind driving’, while on average resulted in faster

times, did have a greater number of minor penalties from the rover grazing into obstacles from

tight turns.

The second trial, with new drivers, introduced a circuit that was not as easy to navigate

from memory. For the two trials under ideal conditions the average driving speed was the same,

however for the more complex circuit that standard deviation on time to completion was greater.

The introduction of time-delay resulted in similar experiences as the first group: momentarily

forgetting about the time-delay while on straight-aways and difficultly turning. The driver was

not able to learn and memorize the circuit as easily as the first circuit; with the introduction

of the harsh lighting conditions the time to completion increased further. As expected, turning

was an even greater challenge in this lighting condition. In shadow, and despite the headlights
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Table 7.3: Times for 150 m complex circuit: Set 2.
T1 (s) Pen. T2 (s) Pen. T3 (s) Pen.

Driver 6 415 483 588 1M1m
Driver 7 370 1m 528 975
Driver 8 364 1m 542 706
Driver 9 336 592 788

Driver 10 336 435 1m 675
Mean 364 516 746

Std. Dev 29 53 131

on the rover, it was difficult to assess the amount the rover had turned. Driving into the low-

angle light was itself not a challenge, however it made identifying potential hazards on the

ground more difficult.

Comparison of the two circuits showed consistent operator speed regardless of circuit con-

figuration in ideal conditions. The difference in maximum permissible speed and operated

speed is attributed to reduced speed while turning corners. Table 7.4 provides a summary of

the the average speeds and Table 7.5 provides a summary of the errors. The average speed

under time delay was similar to Copernicus testing (35.5 cm/s), while noting that Copernicus

testing was for a far greater distance.

Table 7.4: Summary of averaged speeds (cm/s) for all 6 trials.
T1 T2 T3

Set 1 41 25 31
Ratio 82 % 50 % 62 %
Set 2 41 29 21
Ratio 82% 58% 42 %

Table 7.5: Summary of errors for all 6 trials.
T1 T2 T3

Set 1 0 1M 4m
Set 2 2m 1m 1M1m
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7.2.2 Interpretations of Results

The results showed that a human operator could tele-operate a mobile robot in harsh lighting

conditions under time-delay. The average drive speed was 21-31 cm/s under these conditions,

compared to 41 cm/s under ideal conditions for a mobile robot with a set speed of 50 cm/s.

This speed compares favourably to autonomous mobile robots using lidar-based navigation (3-

6 cm/s), and to current planetary robots utilizing space qualified flight computers (1.5 cm/s).

The results from this initial testing informed the need for a more focused study on the human

performance specific to the steering the mobile robot around corners.

This performance in the south lunar polar analogous lighting conditions suggests that a

near-future lunar prospecting mission be conducted in a direct-drive tele-operated manner to

minimize complexity and cost to ensure the mission proceeds. By minimizing the use of au-

tonomy and active sensing, then overall power and computational requirements are lowered

which leads to a reduction in program cost. Over the duration of a longer mission, off-loading

navigation to autonomy makes far more sense, however the short duration nature of a proposed

prospecting mission may benefit from have direct human operators. It is proposed that demon-

strating the prospecting technology over the short-duration mission is the near-term objective;

robust autonomy is better suited for a mission of greater duration, scope and budget.

7.3 Cornering Law Testing

The cornering law testing was set up inside the Elginfield Observatory telescope dome. The

human tester tele-operated the Husky through a cornering task. The task consisted of driving

the Husky forward through one corridor and out the aperture and turn left into an orthogonal

aperture with a corridor of equal width, as shown in Figures 7.7 and 7.8. The conditions of the

task randomly varied. The corridor widths varied between 85, 95, 105, 115 cm; the lighting

varied between ambient dome lighting, dome lighting off with a 250 W light directed toward

the initial Husky placement and forward facing LED headlights on, and dome lighting off and

forward facing LED headlights on; and the time-delay on the returned video varied between
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0, 2, and 4 seconds. These combinations totalled a block of 36 different task conditions. Each

block was repeated for a total of 4 blocks.

Figure 7.7: The corridor walls were higher than the field of view of the monocular camera.

The tele-operator had to navigate around the corner using the limited spatial cues visible in the

field of view, including placement of the walls. Shown with an aperture width of 95 cm

The human tester was provided an opportunity to practise operating the Husky outside of

the dome within visual proximity to assess how it moved, turned, and visually appeared in the

UI over the various time delays. The Husky was then moved back into the dome for the time

trials to begin. The timer began when the Husky began to move until it crossed a finish line.

Crossing the finish line resulted in a successful task attempt. The task attempt was halted and

counted as an error if the Husky collided with a wall. The task condition was reset in the event

of an error and the human tester was provided the opportunity to try repeat. Each task condition

was afforded three attempts before being recorded as ‘did not finish (DNF)’. After a completed

attempt, or DNF, the next random task condition was set up.
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Figure 7.8: Cornering through corridors, shown with an aperture width of 95 cm.

The parameters of the task conditions were first examined with an initial human tester.

Aperture widths of 125 and 135 cm were initially considered, however it was found that there

was little difference in performance between these and the 115 cm width. These two widths

were scrapped in favour of reducing the total number of tasks in a given block. The narrower

width of 85 cm was instead added to increase the task difficulty. A spot light was planned to

be placed facing out from the second corridor. However, the light cast by this setting differed

little from the ambient light condition, and the direct brightness of the light was not present

in the video until after the corner had been turned. This second spot light configuration was

eliminated in favour of having all lights aside from the LED headlights off. This lighting

condition was established as the most difficult.

Eight human testers volunteered to each spend time at the observatory performing the tele-

operating tasks. Each block took between 1 and 4 hours to complete, with the first block typi-

cally requiring the longest amount of time and the fourth requiring the least. For most testers,
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the first block was performed on one day and the remaining three blocks were performed on

a second day1. The first day included the introduction and initial practise, and during the first

block short breaks were taken after subsets of 12 tasks were completed. Additional time was

required to ensure the human tester was following along and on the correct task condition. The

introduction of the task to the human tester was conducted in the windowless operations room

next to the telescope dome. The dome remained closed off during the introduction. The corner-

ing task, including the variable parameters, was described to the human tester. The Husky was

brought outside of the dome to allow the tester to visualize the vehicle and practise operating it

with the UI. The Husky was then taken back to the dome to begin the first block. For blocks 2,

3, and 4 the full block of 36 tasks conditions were performed before taking a half-hour break.

Generally the success rate and times improved with each successive block.

7.3.1 Results

This section presents the results from the cornering tests. Times and errors were recorded for

each of the 36 task conditions over 4 trial blocks for 8 human testers. The data for one of the

human testers was discarded as the task completion times were in upwards of 10 times greater

than mean for the remaining 7 and adversely skewed the results. The results presented here are

for the remaining 7 human testers.

Out of all recorded tasks, the longest task completion time was 305.5 seconds, and the

shortest task completion time was 17.4 seconds. For tasks that resulted in DNFs, an adjusted

completion time tad j was assessed based on the successful times for that specific task condition:

tad j = tmin,c + ec × tmax,c (7.1)

where tmin,c is the minimum successful completion time for that task condition, fc is the failure

rate for task condition and tmax,c is the maximum successful completion time for that task

condition. Then, for each of the 36 task conditions, an averaged time was calculated over

1Tester number 7 required a third day to complete the fourth block; tester number 8 completed all four blocks

in one day due to time restrictions
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all trial blocks and human testers. The sum of all errors and attempts was also calculated to

assess a failure rate. A score for each task condition was also assessed to account for both the

time and error rate:

S c =
1
2

(
tmean,c

tmax,c
+

ec

ac

)
(7.2)

where tmean,c is the average completion time for a task condition, tmax is the global maximum

task completion time of 305.5 seconds, ec is the total number of errors for a given task condi-

tion, ac is the total number of attempts for a given task condition, and S c is the resultant score

out of 1. Scores approaching 1 indicate that the task was more difficult to complete. It is noted

that a score of 1, which would indicate the task was impossible, is not achievable using this

formulation as half of the score is given based on at least one successful time. A low score

indicates that the task was completed quickly with little error. A summary of these results are

provided in Appendix B. The score facilitates comparison between the lighting conditions.

Based on these scores, the most difficult task condition was tele-operating the mobile robot at

the narrowest corridor over 4 seconds of time delay in the dark. The easiest task condition was

tele-operating the mobile robot at the widest corridor without time delay in the dark. Times,

errors, and scores are also provided in Appendix B for the trial blocks. The general trend shows

a reduction in errors and completion times with successive trial blocks.

7.3.2 Cornering Law

Indexes of difficulty are derived using models outlined in Chapter 5 to fit the completion time

results into a cornering law formulation. Each index of difficulty, shown in Table 7.6 was

assessed in the linear regression for goodness of fit. The model proposed by Pastel [111] and

used by Helton [112], where ID = log2

(
p

w−p + 1
)
, resulted in the best fit as determined by

greatest R2 values and positive intercept values. This model is also analogous to the Shannon

formulation of Fitts’ Law based on information theory.
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Table 7.6: Indexes of Difficulty for corridor widths.
Widths (m) ID =

p
w−p ID = log2

(
p

w−p + 0.5
)

ID = log2

(
p

w−p + 1
)

0.85 3.72 2.08 2.24
0.95 2.39 1.53 1.76
1.05 1.76 1.18 1.47
1.15 1.40 0.92 1.26

Interpretation and Comparison of Lighting Conditions

The results are first examined to compare the three lighting conditions. Table 7.7 shows the

results of linear regression for the no time delay condition, and the mean times are plotted

against ID in Figure 7.9. The ambient lighting condition here is analogous to the cornering law

testing by Helton [112], and the results here fit well (R2 = 0.957) with the cornering law model

developed by Pastel [111]. The, in terms of intercept and slope, results show close agreement

between the ambient and the dark conditions. This is interpreted to mean that in darkness the

human user can tele-operated the mobile robot around a corner with similar performance as

ideal lighting conditions. With the inclusion of the bright spot light initially shining toward the

camera view, the completion times did not fit the model as well, and this particular lighting

and delay condition had the worst fit (R2 = 0.890). This result with the spot light provides an

indication that a bright light toward the camera view does have an effect on the tele-operation

performance.

Table 7.7: Linear Regression for 0 second time delay.
R2 b (s) m (s/bit) IP (bit/s)

Ambient lighting 0.957 12.8 10.4 0.096
Bright Spot light 0.890 18.6 6.7 0.149
Dark Condition 0.956 13.9 10.8 0.093

It is worth considering a condition when the corridor width is great enough such that from

an initial position the trajectory is nearly a straight line to the final position (the assumption

here is that the mobile robot starts positions at an angle, or that the finish line is within the
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Figure 7.9: Mean time to negotiate corner versus index of difficulty without time delay, where

ID = log2

(
p

w−p + 1
)
.

camera field of view). From the initial position, the human would simply drive straight (or

nearly straight with a long radius of curvature) past the inside corner toward the finish line.

Considering the simplified geometry puts this distance at approximately 3.5 m. At the set

speed of 0.25 m/s this would be completed in approximately 14 seconds, which is slightly

greater than the regression-derived values for the limiting cases of no difficulty. The limiting

case demonstrates the current results are at least sensible.

Table 7.8 shows the results of linear regression for 2 seconds of time delay, and the mean

times are plotted against ID in Figure 7.10. The results show close agreement, in terms of

intercept and slope, in between the ambient and the dark conditions. As with no time delay,

this is interpreted to mean that in darkness the human user can tele-operated the mobile robot
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around a corner with similar performance as ideal lighting conditions with the presence of a

2 second delay. With the inclusion of the bright spot light initially shining toward the camera

view, the results fit the model well (R2 = 0.992) however the regression parameters (slope

and intercept) were inconsistent with the other two conditions. This result with the spot light

provides further indication that a bright light toward the camera view does have an effect on

the tele-operation performance.

Table 7.8: Linear Regression for 2 second time delay.
R2 b (s) m (s/bit) IP (bit/s)

Ambient lighting 0.980 34.3 17.2 0.058
Bright Spot light 0.992 22.1 24.6 0.041
Dark Condition 0.974 37.7 14.2 0.070

Table 7.9 shows the results of linear regression for 4 seconds of time delay, and the mean

times are plotted against ID in Figure 7.11. Here the data fit the model well (R2 > 0.960 in each

case). However, unlike in the previous two time delay values, there is not a similar consistency

between the ambient and dark conditions. This lack of consistency is interpreted to mean that as

the delay increases, the lighting condition itself contributes less to tele-operation performance.

Table 7.9: Linear Regression for 4 second time delay.
R2 b (s) m (s/bit) IP (bit/s)

Ambient lighting 0.964 30.1 33.3 0.030
Bright Spot light 0.973 47.4 22.4 0.045
Dark Condition 0.961 19.0 43.3 0.023
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Figure 7.10: Mean time to negotiate corner versus index of difficulty with 2 second time delay,

where ID = log2

(
p

w−p + 1
)
.
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Figure 7.11: Mean time to negotiate corner versus index of difficulty with 4 second time delay,

where ID = log2

(
p

w−p + 1
)
.
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Interpretation and Comparison of Time Delay

Table 7.10 shows the results of linear regression for the ambient lighting condition, and the

mean times are plotted against ID in Figure 7.12. The data fit the model well (R2 > 0.950),

and as the time delay is increased the mean times also increased.

Figure 7.12: Mean time to negotiate corner versus index of difficulty in ambient lighting, where

ID = log2

(
p

w−p + 1
)
.

Table 7.11 shows the results of linear regression for the bright spot light condition, and

the mean times are plotted against ID in Figure 7.13. As previously noted, the data for no

time delay showed the worst fit, however with delay the data fit the model well (R2 > 0.970).

However, as the time delay is increased the mean times also increased.

Table 7.12 shows the results of linear regression for the dark condition, and the mean times

are plotted against ID in Figure 7.14. The data fit the model well (R2 > 0.950), however the
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Table 7.10: Linear Regression for Ambient Lighting Condition.
R2 b (s) m (s/bit) IP (bit/s)

0 sec delay 0.957 12.8 10.4 0.096
2 sec delay 0.980 34.3 17.2 0.058
4 sec delay 0.964 30.1 33.3 0.030

Figure 7.13: Mean time to negotiate corner versus index of difficulty with the bright spot light,

where ID = log2

(
p

w−p + 1
)
.

regression intercept for the 4 second delay is not consistent with the other lighting conditions,

which show an increase in time compared to no delay. Similar to the other lighting conditions,

as the time delay is increased the mean times also increased.
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Table 7.11: Linear Regression for Bright Spot Light Condition.
R2 b (s) m (s/bit) IP (bit/s)

0 sec delay 0.890 18.6 6.7 0.149
2 sec delay 0.992 22.1 24.6 0.041
4 sec delay 0.973 47.4 22.4 0.045

Figure 7.14: Mean time to negotiate corner versus index of difficulty in darkness, where ID =

log2

(
p

w−p + 1
)
.

Table 7.12: Linear Regression for Dark Condition.
R2 b (s) m (s/bit) IP (bit/s)

0 sec delay 0.956 13.9 10.8 0.093
2 sec delay 0.974 37.7 14.2 0.070
4 sec delay 0.961 19.0 43.3 0.023
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Discussion

Mackenzie [104] states that an increased positive intercept value “indicates the presence of

an additive factor unrelated to the index of difficulty”. For this thesis the additive factor is

considered to be the presence of time delay, as the intercept value is greater for conditions

with time delay compared to no delay (with the notable exception of the dark condition at

4 second delay). One observed, but not recorded, tendency for the human testers was to employ

a ‘wait and see’ approach for all time delay conditions. The mobile robot was moved either

through rotation or translation and then stopped until the video displayed the resultant pose.

The duration of movement before a pause varied by human, and increased as the task was

learned. The additive factor, and in particular its increase, could be interpreted to be a function

of the wait and see approach while negotiating corners.

The times to complete the driving course in Section 7.2 can be re-examined with the ad-

ditive factor, which is related to the time required to complete the task. The complex driving

course had 10 corners to negotiate, noting that all corners were greater or lesser than 90° and

both right and left turns. The mean completion time for the ambient condition was 364 s. The

cornering law results show that the increase in additive factor from no delay to 4 s delay to be

17.3 s. If this time is interpreted to be an increase in time to complete a corner, then for 10

corners the additional time will be 173 s for a total time of 537 s, which is within 5% of the

mean time to complete the course with 4 s delay. The increase in additive factor to 4 s delay

with the bright spot light is 34.6 s. For 10 corners the additional time will be 346 s for a total

time of 710 s, which is within 5 % of the mean time to complete the course with 4 s delay with

the bright spot light.

The same conclusions cannot be made about the change in lighting conditions. The bright

spot light had a greater ‘additive factor’ than the dark condition compared as to the ambient

condition for both no delay and 4 second delay, whereas it had the smallest intercept value for

2 second delay. Darkness had a greater additive factor compared to the ambient condition with

the notable exception at 4 seconds of delay where it had the smallest intercept value.

In Fitts’ Law formulations, and similar formulations modelled on information theory, the
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index of difficulty is in units of bits and is considered to the transmitted information, and IP

(the inverse of the slope from regression) is the information transmission rate. These two

parameters are less intuitive to interpret. Fitts sought to find a the information transmission

rate for the tapping test, whereas other studies have examined the role of larger limb group

movement [104] to find IP decreased. In other words, more complex human psycho-motor

movements to perform the same task reduced the information transmission rate. For this thesis,

the trends show that increasing the time delay for the same task results in a decrease in IP,

analogous to incorporating additional limbs in the tapping test.

The same conclusions cannot be made about the change in lighting conditions. The bright

light with no delay conditions shows the best overall information transmission rate (while not-

ing worst regression fit), and at 4 seconds delay has the best information transmission of the

three lighting conditions. At 2 second delay the bright light condition has the lowest transmis-

sion rate whereas the dark condition has the highest.

7.4 Limitations and Recommendations

This section describes the limitations to the testing results and interpretations, and recommen-

dations for future testing.

The Elginfield Observatory was ideal in that it afforded the space and isolation needed

to complete the data collection. However its remoteness limited access for volunteers and

required them to be present for long hours at a time. This overall required time commitment

limited the number of human testers available to volunteer for this testing. A greater number of

human testers may result in improved data, and improved data may provide a better fit (notably

for the bright spot light at no delay).

There is currently no Internet connection at the observatory, however there is a connection

to the house at the site, which is connected via VPN to Western University. If the network con-

nection were to be extended to the observatory, and if it were sufficiently stable, human testers

could participate remotely from Western campus. The overall time commitment may be the
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same, however the testing could be structured to better accommodate participant availability.

The basis for this thesis question is that current limits in computation and communication

bandwidth suggest that direct-drive tele-operation is preferred to autonomy for a short-duration

south lunar pole prospecting mission. While the bandwidth limitations do currently exist, high-

speed (622 Mbps downlink and 20 Mbps uplink) laser-based communication between Earth

and the moon was demonstrated on the LADEE mission [117]. The increase in bandwidth will

afford far greater spatial awareness data to be transferred to operators on Earth. Conversely, the

large volumes of data can be processed on Earth-based computers to enable rover autonomy.

The data will still suffer from the round trip time delay, however computationally intensive

predictive models can mitigate potential driving hazards.

The monocular camera for video capture was chosen for its availability rather than its util-

ity. The USB web cam is not suitable for the dynamic range of lighting, nor is it wide-angle,

which is more standard for mobile robotic applications. A higher quality, wide angle cam-

era with better dynamic range may provide improved video in any of the use cases, which in

turn may affect the human performance. Furthermore, planetary rovers current and planned

include a number of cameras at different orientations to provide the operator with as much

spatial awareness as possible. It is recommended that future tests on cornering law consider

including additional cameras to increase spatial awareness. The results of such testing may

show the minimum number of camera views required to enable the tele-operator to safely nav-

igate through the corner without collision. Since additional cameras require an increase in data

transmission there may be a trade-off between number of camera views and resolution within

a bandwidth restriction to limit the error rate while still maintaining vehicle speed.

During the cornering tests it was observed that addition of the bright light resulted in altered

depth perception compared to the ambient and dark conditions. Collisions were more likely to

occur on the inside corner in ambient and dark conditions, whereas with the bright spot light

the collisions occurred with the outer wall. Users reported that the bright light affected their

depth perception, and also obscured visual cues used for assessing the mobile robot spatial

position with respect to the outer wall. This effect was not predicted and thus data on collision
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located was not recorded. It it recommended that future tests on cornering law consider not

just the event but also the location of the collision.



Chapter 8

Conclusions and Recommendations

This chapter presents the contributions of the performed work, and recommendations for future

directions of research.

8.1 Contributions

The theme for this thesis was an engineering design trade-off study to consider:

Which operating mode, direct-drive tele-operation or supervisory controlled

lidar-based autonomy, leads to improved scientific return in the context of a near-

term, low-cost, short-duration lunar prospecting mission?

This trade-off study was supported by two research projects, which provide evidence to

support the research questions given in Chapter 1.1:

Can lidar reflectance intensity and non-contact spectroscopic measurements im-

prove classification of terrain for rover traverse performance prediction

and

Can the degradation in human performance for tele-operating a rover in non-ideal

lighting conditions over time delay fit into Cornering Law?

118
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The following sections outline the supporting evidence for these two questions.

8.1.1 Terrain Classification

The supportive evidence for terrain classification was provided using experimental data col-

lected from a mobile robot and a prototype integrated vision system, and established classifica-

tion techniques. Background literature on terrain classification for traversability prediction was

presented in Chapter 3, where previous studies focused on classifying disparate terrain types

with optical images, vehicle vibrations, and acoustics using trained classifiers. Background

literature on Naive Bayes and SVM classifiers was presented in Chapter 4, and both classifiers

were compared for classification errors. Data collection, processing, and classification were

presented in Chapter 6. The results of classification show that the inclusion lidar reflectance

intensity values improves both Naive Bayes and SVM classification in all but one case, which

was classification of the three bulk composition terrain types. The Naive Bayes resulted in

fewer classification errors compared to SVM in all but one case, which was classification of

the three bulk composition terrain types. Spectral reflectance features were added to feature

vectors to further improve Naive Bayes and SVM classification of four aggregate types.

8.1.2 Tele-Operation Over Time Delay

The supportive evidence for tele-operation performance degradation in non-ideal lighting con-

ditions over time delay was provided using experimental data collected from human testers

tele-operating a mobile robot around a corner. Background literature on cornering law, and its

origins in Fitts’ Law, was presented in Chapter 5. Data collection and analysis were presented

in Chapter 7. The results fit within the cornering law model, and time delay was shown to

decrease the index of performance and increase the ‘additive factor’. The affect of lighting on

performance was less conclusive. The additive factor was interpreted to be the increase in time

required to tele-operate through a turn.



120 8. Conclusions and Recommendations

8.1.3 Lunar South Pole Prospecting Operations Trade-Off

The two primary options for operating a lunar prospecting rover are direct-drive tele-operations,

and supervisory-controlled lidar-based autonomous navigation. This thesis examined operat-

ing conditions for both operational modes within the context of a low-cost, near-term, short-

duration lunar south pole prospecting mission. A near-term mission implies that high-speed

laser-based communication will not be available. A low-cost mission implies that existing tech-

nologies will be utilized; therefore existing space qualified computers, such as the 200 MHz

Curiosity RCE will be utilized. Short-duration implies that the prospecting must be performed

during the 10-14 day lunar day and therefore the speed of the rover should be prioritized in

order to maximize the science data return.

For the lidar-based autonomous navigation case, the navigation system must be capable

of identifying terrain conditions that may impede the rover’s traverse. Lidar can be used to

classify geometric obstacles, and utilizing lidar reflectance intensity was shown in this thesis

to aid in terrain classification. Lidar is lighting invariant which is beneficial given the harsh

lighting conditions anticipating at the lunar south pole. However, lidar-based navigation may

be slow, as seen in the Scarab terrestrial analogue.

For the direct-drive tele-operation case, the tele-operator must rely upon the delayed video-

feedback, which may exhibit harsh lighting. Time delayed video and harsh lighting was shown

in this thesis to degrade the drive performance compared to ideal conditions, particularly when

turning around obstacles. The results from the cornering studying may show predictive capa-

bilities when plotting out the time to complete complex traverses. Nonetheless, the degraded

conditions still resulted in fast traverse speeds compared to what might be expected from a

Scarab-like autonomous lunar prospecting rover.

8.1.4 Summary of Contributions

1. An engineering trade-off between tele-operation and autonomous navigation for a low-

cost, near-term, short-duration lunar south pole prospecting mission.
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2. The demonstration of using lidar reflectance intensity to improve terrain classification

over just visual images.

3. The demonstration of applying cornering law to time delayed and variable lighting con-

dition tele-operations.

8.2 Future Research Direction

Recommendations for improving the research in this thesis are provided in Chapters 7 and 6.

This concluding section provides recommendations and direction of future research.

The research theme for this thesis was a trade-off study between tele-operation and au-

tonomous navigation. A future research project may utilize the Husky in a complex driving

course in different lighting conditions and time delay to make a direct comparison to determine

which mode, tele-operation or autonomy, results in the fastest time to complete.

8.2.1 Terrain Classification

The original intent for this research was to use spectroscopy to improve classification; lidar was

included as it was integrated into the IVS instrument. However, the lidar reflectance was found

to be informative in distinguishing between wet and dry sands, and the variance of intensity

was found to be informative in distinguishing between densely packed sand and aggregates.

Further work with a wider range of soils and terrain types may show lidar reflectance to be

useful in identifying conditions such as duricrusts.

The basis for this work was a proposed lunar south pole prospecting mission. Lunar simu-

lant material and representative lunar terrain conditions should be examined with the lidar for

classification purposes. This work should also be extended to Martian simulant and represen-

tative Martian terrain conditions.

In this thesis the lidar reflectance intensity was shown to improve classification in combi-

nation with images taken in ideal lighting conditions. However, lidar features alone resulted in
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higher classification errors. Lidar, an active sensing instrument, is does not depend on an ex-

ternal light source, which is an argument for using it on south lunar pole prospecting missions

in permanently shadowed regions, or any operational setting with variant lighting. One future

research direction is to assess the limits of lighting condition on classifications, particularly

low-angled light analogous to the south lunar pole.

Low-angled or otherwise poor lighting may prove too challenging for terrain classification

incorporating optical images. Terrain classification, using lidar alone, would prove beneficial

in such operational conditions. Additional classification techniques may demonstrate reduced

errors when utilizing just the lidar reflectance data. Furthermore, the only statistics used for this

work were mean and standard deviation for a region within a point cloud. Future work may

include statistics on lidar point height information, which may prove to be aid in lidar-only

classification.

Proximal soil science techniques and soil inferencing systems may have previously demon-

strated the ability to infer soil properties, including mechanical properties, from single mea-

surements. Extending these techniques, with proper equipment, may demonstrate an ability

to use a combination of sensors, such as lidar, optical imagery and spectroscopy, to infer soil

mechanical and vehicle bearing properties.

8.2.2 Tele-Operation

The cornering law work showed that time-delay and lighting conditions affected the index of

performance and ‘additive factor’. This additive factor was interpreted to be an increase in time

to make a turn under different conditions. An outdoor course could be set up with well-defined

90 degree turns to test the predictive capability of this interpretation.

The cornering law work utilized a single forward-pointing monocular camera. The work

could be replicated replacing optical cameras with a lidar, or other active sensing, to compare

the performance. This type of testing may inform the preferred sensing method for a south

lunar pole prospecting mission.

The cornering law was developed for ground-based mobile robots negotiating a 2-dimensional
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corner. Tele-operated underwater vehicles navigate in 3-dimensions, and the round trip time-

delay increases by 1 s per km depth. Manoeuvring an underwater vehicle at those depths would

be an extension of the 2-D cornering law for mobile robots in poor lighting and over time delay.
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Johnson, G. Klingelhöfer, R. Li, K. A. Lichtenberg, S. A. Maxwell, D. W. Ming, R. V.

Morris, M. S. Rice, S. W. Ruff, A. Shaw, K. L. Siebach, P. A. de Souza, A. W. Stroupe,

S. W. Squyres, R. J. Sullivan, K. P. Talley, J. A. Townsend, A. Wang, J. R. Wright, and

A. S. Yen. “Spirit Mars Rover Mission: Overview and selected results from the northern

Home Plate Winter Haven to the side of Scamander crater.” Journal of Geophysical

Research 115. ISSN 0148-0227 (2010).

124



BIBLIOGRAPHY 125

[6] S. W. Squyres, R. E. Arvidson, D. Bollen, J. F. Bell, J. Brückner, N. A. Cabrol, W. M.

Calvin, M. H. Carr, P. R. Christensen, B. C. Clark, L. Crumpler, D. J. Des Marais,

C. D’Uston, T. Economou, J. Farmer, W. H. Farrand, W. Folkner, R. Gellert, T. D.

Glotch, M. Golombek, S. Gorevan, J. A. Grant, R. Greeley, J. Grotzinger, K. E. Herken-

hoff, S. Hviid, J. R. Johnson, G. Klingelhöfer, A. H. Knoll, G. Landis, M. Lemmon,
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Appendix A

Comparison of Classification Confusion

Matrices

A.1 Vehicle Data Classification

A.1.1 Aggregate vs Loose Sand vs Compact Sand

Table A.1: Confusion matrix for Bayes classification of three bulk composition from vehicle

data
AGG COM LOO

AGG 90 26 4
COM 1 59 0
LOO 1 0 59

Table A.2: Confusion matrix for SVM classification of three bulk composition from vehicle

data
AGG COM LOO

AGG 120 0 0
COM 60 0 0
LOO 25 0 35
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A.1.2 All 8 Classes

Table A.3: Confusion matrix for Bayes classification of all 8 terrain types from vehicle data
CLA DCS DLS GRA PQU WFS WMS WQU

CLA 26 0 0 0 1 2 0 1
DCS 0 29 0 0 0 1 0 0
DLS 0 0 30 0 0 0 0 0
GRA 1 1 0 12 2 0 0 14
PQU 1 1 0 0 27 0 0 1
WFS 0 5 0 0 0 24 0 1
WMS 0 0 0 0 0 0 30 0
WQU 4 0 0 0 0 0 0 26

Table A.4: Confusion matrix for SVM classification of all 8 terrain types from vehicle data
CLA DCS DLS GRA PQU WFS WMS WQU

CLA 21 0 0 0 3 3 0 3
DCS 0 29 0 0 0 1 0 0
DLS 0 0 30 0 0 0 0 0
GRA 9 7 2 2 2 1 1 6
PQU 4 7 0 0 15 3 0 1
WFS 1 15 0 0 0 13 0 1
WMS 0 0 2 0 0 0 28 0
WQU 10 0 2 0 0 3 0 15
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A.2 Classification of Aggregate and Sand Using Wavelet Trans-

formed Images

A.2.1 Naive Bayes Classification

Table A.5: Confusion matrix for Bayes classification of sand and aggregate types using trans-

formed images
AGG SAN

AGG 395 5
SAN 31 369

Table A.6: Confusion matrix for Bayes classification of sand and aggregate types using lidar

reflectance
AGG SAN

AGG 305 95
SAN 132 268

Table A.7: Confusion matrix for Bayes classification of sand and aggregate types using trans-

formed images and lidar reflectance
AGG SAN

AGG 395 5
SAN 30 370
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A.2.2 SVM Classification

Table A.8: Confusion matrix for SVM classification of sand and aggregate types using trans-

formed images
AGG SAN

AGG 393 7
SAN 23 377

Table A.9: Confusion matrix for SVM classification of sand and aggregate types using lidar

reflectance
AGG SAN

AGG 297 103
SAN 135 265

Table A.10: Confusion matrix for SVM classification of sand and aggregate types using trans-

formed images and lidar reflectance
AGG SAN

AGG 393 7
SAN 6 394
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A.3 Classification of Aggregate and Sand Using Image RGB

Values

A.3.1 Naive Bayes Classification

Table A.11: Confusion matrix for Bayes classification of sand and aggregate types using trans-

formed images
AGG SAN

AGG 102 298
SAN 100 300

Table A.12: Confusion matrix for Bayes classification of sand and aggregate types using trans-

formed images and lidar reflectance
AGG SAN

AGG 320 80
SAN 76 324
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A.3.2 SVM

Table A.13: Confusion matrix for SVM classification of sand and aggregate types using trans-

formed images
AGG SAN

AGG 346 54
SAN 148 252

Table A.14: Confusion matrix for SVM classification of sand and aggregate types using trans-

formed images and lidar reflectance
AGG SAN

AGG 349 51
SAN 138 262
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A.4 Classification of Aggregate and Compact and Loose Sand

Using Wavelet Transformed Images

A.4.1 Naive Bayes Classification

Table A.15: Confusion matrix for Bayes classification of three bulk composition using trans-

formed images
AGG COM LOO

AGG 394 0 6
SAN 0 200 0
LOO 15 97 88

Table A.16: Confusion matrix for Bayes classification of three bulk composition using lidar

reflectance
AGG COM LOO

AGG 290 4 106
SAN 46 101 53
LOO 88 39 73

Table A.17: Confusion matrix for Bayes classification of three bulk composition using trans-

formed images and lidar reflectance
AGG COM LOO

AGG 394 0 6
SAN 0 200 0
LOO 14 96 90
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A.4.2 SVM Classification

Table A.18: Confusion matrix for SVM classification of three bulk composition using trans-

formed images
AGG COM LOO

AGG 394 0 6
SAN 0 200 0
LOO 15 100 85

Table A.19: Confusion matrix for SVM classification of three bulk composition using lidar

reflectance
AGG COM LOO

AGG 386 14 0
SAN 92 108 0
LOO 185 15 0

Table A.20: Confusion matrix for SVM classification of three bulk composition using trans-

formed images and lidar reflectance
AGG COM LOO

AGG 389 0 11
SAN 31 176 24
LOO 7 18 175
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A.5 Classification of Aggregate and Compact and Loose Sand

Using RGB

A.5.1 Naive Bayes Classification

Table A.21: Confusion matrix for Bayes classification of three bulk composition using RGB

values
AGG COM LOO

AGG 186 214 0
SAN 23 177 0
LOO 40 100 60

Table A.22: Confusion matrix for Bayes classification of three bulk composition using RGB

values and lidar reflectance
AGG COM LOO

AGG 333 49 18
SAN 9 182 9
LOO 69 20 111
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A.5.2 SVM Classification

Table A.23: Confusion Matrix Images
AGG COM LOO

AGG 392 8 0
SAN 71 129 0
LOO 111 89 0

Table A.24: Confusion Matrix Images + Lidar
AGG COM LOO

AGG 371 0 29
SAN 0 196 4
LOO 124 6 70
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A.6 Classification of Aggregates with Spectral Reflectance

A.6.1 Naive Bayes Classification

Table A.25: Confusion matrix for Bayes classification of aggregates using transformed images
CLA GRA PQU WQU

CLA 95 0 0 5
GRA 0 82 3 15
PQU 9 26 24 41
WQU 9 29 9 53

Table A.26: Confusion matrix for Bayes classification of aggregates using lidar reflectance
CLA GRA PQU WQU

CLA 74 4 16 6
GRA 8 81 3 8
PQU 7 2 91 0
WQU 13 24 1 62

Table A.27: Confusion matrix for Bayes classification of aggregates using spectral reflectance
CLA GRA PQU WQU

CLA 68 9 20 3
GRA 17 71 10 2
PQU 1 8 80 11
WQU 1 0 13 86
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Table A.28: Confusion matrix for Bayes classification of aggregates using transformed images

and lidar reflectance
CLA GRA PQU WQU

CLA 97 0 0 3
GRA 0 85 5 10
PQU 9 3 86 2
WQU 2 17 3 78

Table A.29: Confusion matrix for Bayes classification of aggregates using transformed images

and spectral reflectance
CLA GRA PQU WQU

CLA 96 0 3 1
GRA 0 93 6 1
PQU 6 8 75 11
WQU 0 3 9 88

Table A.30: CConfusion matrix for Bayes classification of aggregates using lidar reflectance

and spectral reflectance
CLA GRA PQU WQU

CLA 87 5 5 3
GRA 4 87 5 4
PQU 1 0 99 0
WQU 3 1 1 95

Table A.31: Confusion matrix for Bayes classification of aggregates using transformed images,

lidar reflectance, and spectral reflectance
CLA GRA PQU WQU

CLA 99 0 0 1
GRA 0 95 4 1
PQU 5 3 99 1
WQU 0 4 3 93
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A.6.2 SVM Classification

Table A.32: Confusion matrix for SVM classification of aggregates using transformed images
CLA GRA PQU WQU

CLA 83 0 0 17
GRA 0 72 3 25
PQU 8 49 11 32
WQU 5 34 3 58

Table A.33: Confusion matrix for SVM classification of aggregates using lidar reflectance
CLA GRA PQU WQU

CLA 79 4 13 4
GRA 8 72 3 17
PQU 10 4 86 0
WQU 12 15 1 72

Table A.34: Confusion matrix for SVM classification of aggregates using spectral reflectance
CLA GRA PQU WQU

CLA 13 14 26 47
GRA 25 37 19 19
PQU 7 8 80 13
WQU 3 0 18 79
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Table A.35: Confusion matrix for SVM classification of aggregates using transformed images

and lidar reflectance
CLA GRA PQU WQU

CLA 94 1 3 2
GRA 3 74 7 16
PQU 4 4 92 0
WQU 0 16 1 83

Table A.36: Confusion matrix for SVM classification of aggregates using transformed images

and spectral reflectance
CLA GRA PQU WQU

CLA 96 0 3 1
GRA 0 93 6 1
PQU 6 8 75 11
WQU 0 3 9 88

Table A.37: Confusion matrix for SVM classification of aggregates using lidar reflectance and

spectral reflectance
CLA GRA PQU WQU

CLA 73 15 10 2
GRA 8 86 2 4
PQU 2 2 96 0
WQU 1 1 0 98

Table A.38: Confusion matrix for SVM classification of aggregates using transformed images,

lidar reflectance, and spectral reflectance
CLA GRA PQU WQU

CLA 76 20 3 1
GRA 5 85 4 6
PQU 3 6 91 1
WQU 0 5 0 95
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A.7 Classification of Sands

A.7.1 Naive Bayes Classification

Table A.39: Confusion matrix for Bayes classification of sands using transformed images
DCS WFS DLS WMS

DCS 100 0 0 0
WFS 5 58 37 0
DLS 1 11 88 0

WMS 0 0 0 100

Table A.40: Confusion matrix for Bayes classification of aggregates using lidar reflectance
DCS WFS DLS WMS

DCS 57 0 15 28
WFS 0 100 0 0
DLS 17 0 77 6

WMS 12 0 0 88

Table A.41: Confusion matrix for Bayes classification of aggregates using transformed images

and lidar reflectance
DCS WFS DLS WMS

DCS 100 0 0 0
WFS 0 100 0 0
DLS 1 0 99 0

WMS 0 0 0 100
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A.7.2 SVM Classification

Table A.42: Confusion matrix for SVM classification of sands using transformed images
DCS WFS DLS WMS

DCS 91 9 0 0
WFS 0 23 77 0
DLS 0 8 92 0

WMS 0 0 0 100

Table A.43: Confusion matrix for SVM classification of aggregates using lidar reflectance
DCS WFS DLS WMS

DCS 70 0 15 15
WFS 0 100 0 0
DLS 20 0 78 2

WMS 24 0 0 76

Table A.44: Confusion matrix for SVM classification of aggregates using transformed images

and lidar reflectance
DCS WFS DLS WMS

DCS 85 0 15 0
WFS 0 100 0 0
DLS 22 0 78 0

WMS 0 0 0 100
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A.8 Classification all Eight Terrain Types

A.8.1 Naive Bayes Classification

Table A.45: Confusion matrix for Bayes classification of all 8 terrain types using transformed

images
CLA DCS DLS GRA PQU WFS WMS WQU

CLA 95 0 0 0 0 0 0 5
DCS 0 100 0 0 0 0 0 0
DLS 0 1 88 0 0 11 0 0
GRA 0 0 0 81 3 0 1 15
PQU 9 0 0 26 13 0 11 41
WFS 0 5 37 0 0 58 0 0
WMS 0 0 0 11 1 0 88 0
WQU 9 0 0 29 6 0 3 53

Table A.46: Confusion matrix for Bayes classification of all 8 terrain types using lidar re-

flectance
CLA DCS DLS GRA PQU WFS WMS WQU

CLA 72 0 5 1 10 0 6 6
DCS 8 26 7 7 37 0 15 0
DLS 16 10 27 35 8 0 2 2
GRA 8 0 6 75 3 0 0 8
PQU 5 10 4 0 64 0 17 0
WFS 0 0 0 0 0 100 0 0
WMS 5 0 0 0 18 0 77 0
WQU 10 0 4 23 0 0 0 62
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Table A.47: Confusion matrix for Bayes classification of all 8 terrain types using transformed

images and lidar reflectance
CLA DCS DLS GRA PQU WFS WMS WQU

CLA 97 0 0 0 0 0 0 3
DCS 0 100 0 0 0 0 0 0
DLS 0 1 99 0 0 1 0 0
GRA 0 0 0 85 5 0 0 10
PQU 9 0 0 3 75 0 11 2
WFS 0 0 0 0 0 100 0 0
WMS 0 0 0 0 10 0 90 0
WQU 2 0 0 17 3 0 0 78
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A.8.2 SVM

Table A.48: Confusion matrix for SVM classification of all 8 terrain types using transformed

images
CLA DCS DLS GRA PQU WFS WMS WQU

CLA 83 0 0 0 0 0 0 17
DCS 0 94 0 0 0 6 0 0
DLS 0 0 92 0 0 8 0 0
GRA 0 0 0 72 3 0 0 25
PQU 8 0 0 42 11 0 7 32
WFS 0 2 77 0 0 21 0 0
WMS 0 0 0 19 0 0 81 0
WQU 5 0 0 33 3 0 1 58

Table A.49: Confusion matrix for SVM classification of all 8 terrain types using lidar re-

flectance
CLA DCS DLS GRA PQU WFS WMS WQU

CLA 76 0 6 0 12 0 2 4
DCS 9 31 7 6 37 0 10 0
DLS 16 9 31 31 9 0 1 3
GRA 8 0 12 60 3 0 0 17
PQU 6 12 9 0 66 0 7 0
WFS 0 0 0 0 0 100 0 0
WMS 5 0 0 0 29 0 66 0
WQU 10 0 6 11 1 0 0 72



158 A. Comparison of Classification ConfusionMatrices

Table A.50: Confusion matrix for SVM classification of all 8 terrain types using transformed

images and lidar reflectance
CLA DCS DLS GRA PQU WFS WMS WQU

CLA 94 0 0 1 3 0 0 2
DCS 0 87 13 0 0 0 0 0
DLS 0 22 78 0 0 0 0 0
GRA 3 0 0 74 7 0 0 16
PQU 3 0 0 4 88 0 5 0
WFS 0 0 0 0 0 100 0 0
WMS 0 0 0 0 7 0 93 0
WQU 0 0 0 16 1 0 0 83



Appendix B

Results of Cornering

B.1 Lighting Conditions

Table B.1: Times, Errors and Scores for ambient lighting condition

0 s Delay 2 s Delay 4 s Delay
Width (m) Time (s) Error (%) Score Time (s) Error (%) Score Time (s) Error (%) Score

0.85 37.0 56 0.34 74.4 53 0.39 108.4 54 0.45
0.95 29.8 28 0.19 61.4 36 0.28 80.2 26 0.26
1.05 26.5 7 0.08 60.6 0 0.10 82.4 15 0.21
1.15 27.7 7 0.08 56.9 7 0.13 73.7 10 0.17

B.2 Time Delay

159
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Table B.2: Times, Errors and Scores for the spot light condition

0 s Delay 2 s Delay 4 s Delay
Width (m) Time (s) Error (%) Score Time (s) Error (%) Score Time (s) Error (%) Score

0.85 34.9 52 0.32 78.5 58 0.42 98.1 54 0.43
0.95 27.8 21 0.15 61.6 28 0.24 83.5 23 0.25
1.05 29.3 7 0.08 62.0 13 0.17 86.2 18 0.23
1.15 27.8 7 0.08 52.2 3 0.10 72.7 0 0.12

Table B.3: Times, Errors and Scores for the dark condition

0 s Delay 2 s Delay 4 s Delay
Width (m) Time (s) Error (%) Score Time (s) Error (%) Score Time (s) Error (%) Score

0.85 39.2 57 0.35 68.6 47 0.35 120.4 65 0.52
0.95 31.5 32 0.21 64.9 24 0.22 88.3 39 0.34
1.05 28.2 10 0.09 57.6 0 0.09 77.8 10 0.18
1.15 29.5 3 0.07 55.3 0 0.09 80.6 13 0.19

Table B.4: Times, Errors and Scores for 0 s time delay

Ambient Spot Light Dark
Width (m) Time (s) Error (%) Score Time (s) Error (%) Score Time (s) Error (%) Score

0.85 37.0 56 0.34 35.0 52 0.32 39.2 57 0.35
0.95 29.8 28 0.18 27.8 21 0.15 31.5 32 0.21
1.05 26.5 7 0.08 29.3 7 0.08 28.2 10 0.09
1.15 27.7 7 0.08 27.8 7 0.08 29.5 3 0.07
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Table B.5: Times, Errors and Scores for 2 s time delay

Ambient Spot Light Dark
Width (m) Time (s) Error (%) Score Time (s) Error (%) Score Time (s) Error (%) Score

0.85 74.4 53 0.39 78.5 58 0.42 68.6 46 0.35
0.95 61.4 36 0.28 61.6 28 0.24 64.9 24 0.22
1.05 60.6 0 0.10 62.0 13 0.17 57.6 0 0.09
1.15 56.9 7 0.13 52.2 3 0.10 55.3 0 0.09

Table B.6: Times, Errors and Scores for 4 s time delay

Ambient Spot Light Dark
Width (m) Time (s) Error (%) Score Time (s) Error (%) Score Time (s) Error (%) Score

0.85 108.4 54 0.45 98.1 54 0.43 120.4 65 0.52
0.95 80.2 26 0.26 83.5 23 0.25 88.3 39 0.34
1.05 82.4 15 0.21 86.2 18 0.23 77.8 10 0.18
1.15 73.7 10 0.17 72.7 0 0.12 80.6 13 0.19
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B.3 Blocks

Table B.7: Block Scores for 0.85 cm at Ambient Lighting

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 48.2 80 0.48 34.6 30 0.21 31.2 40 0.25 29.3 62 0.36
2 s 142.5 81 0.64 59.4 55 0.37 60.4 22 0.21 53.5 36 0.27
4 s 109.2 67 0.51 129.9 45 0.44 100.0 54 0.43 70.4 45 0.34

Table B.8: Block Scores for 0.95 cm at Ambient Lighting

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 34.4 45 0.28 29.5 45 0.28 30.4 0 0.05 28.2 0 0.05
2 s 102.0 58 0.46 62.3 50 0.35 48.2 13 0.14 42.3 0 0.07
4 s 130.7 55 0.49 85.6 13 0.20 65.3 13 0.17 56.4 13 0.15
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Table B.9: Block Scores for 1.05 cm at Ambient Lighting

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 28.1 22 0.16 29.7 0 0.05 25.2 0 0.04 23.2 0 0.04
2 s 84.9 0 0.14 64.5 0 0.11 47.1 0 0.08 46.0 0 0.08
4 s 132.6 30 0.37 80.1 22 0.24 62.5 0 0.10 54.4 0 0.09

Table B.10: Block Scores for 1.15 cm at Ambient Lighting

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 29.1 22 0.16 27.9 0 0.05 25.9 0 0.04 28.0 0 0.05
2 s 71.7 22 0.23 58.2 0 0.10 50.1 0 0.08 47.6 0 0.08
4 s 105.0 14 0.24 77.8 13 0.19 55.9 0 0.09 56.0 13 0.15

Table B.11: Block Scores for 0.85 cm with Bright Spot Light

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 47.3 77 0.46 35.8 45 0.29 28.3 40 0.25 28.1 40 0.25
2 s 139.1 82 0.64 67.4 50 0.36 68.7 45 0.34 54.9 45 0.32
4 s 157.1 76 0.64 94.5 54 0.42 90.5 50 0.40 77.6 13 0.19
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Table B.12: Block Scores for 0.95 cm with Bright Spot Light

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 31.8 50 0.30 28.6 0 0.05 27.1 13 0.11 25.7 0 0.04
2 s 102.1 62 0.47 63.7 22 0.22 48.3 0 0.08 41.7 0 0.07
4 s 123.8 22 0.32 83.4 33 0.30 67.7 22 0.22 60.9 13 0.16

Table B.13: Block Scores for 1.05 cm with Bright Spot Light

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 34.1 13 0.12 30.3 13 0.11 26.1 0 0.04 26.9 0 0.04
2 s 94.0 33 0.32 64.1 13 0.17 47.4 0 0.08 42.6 0 0.07
4 s 119.0 22 0.31 105.7 40 0.37 69.8 0 0.11 57.2 0 0.09

Table B.14: Block Scores for 1.15 cm with Bright Spot Light

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 33.1 22 0.17 28.2 0 0.05 26.7 0 0.04 23.0 0 0.04
2 s 72.2 13 0.18 53.1 0 0.09 42.6 0 0.07 40.8 0 0.07
4 s 101.3 0 0.17 70.3 0 0.12 64.2 0 0.11 54.9 0 0.09
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Table B.15: Block Scores for 0.85 cm in Darkness

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 69.6 86 0.54 34.4 0 0.06 33.3 36 0.24 28.1 58 0.34
2 s 120.2 78 0.59 74.0 45 0.35 60.7 13 0.16 45.8 13 0.14
4 s 236.5 89 0.83 88.2 42 0.35 84.4 64 0.46 89.8 55 0.42

Table B.16: Block Scores for 0.95 cm in Darkness

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 38.5 62 0.37 37.9 33 0.23 26.8 0 0.04 26.2 13 0.11
2 s 93.7 40 0.35 60.1 33 0.27 60.6 13 0.16 46.2 0 0.08
4 s 161.0 71 0.62 93.6 36 0.33 87.0 13 0.20 54.8 13 0.15

Table B.17: Block Scores for 1.05 cm in Darkness

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 30.3 13 0.11 30.7 0 0.05 26.5 22 0.15 25.2 0 0.04
2 s 77.8 0 0.13 60.7 0 0.10 48.5 0 0.08 43.4 0 0.07
4 s 107.7 30 0.33 86.5 0 0.14 61.5 0 0.10 55.6 0 0.09
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Table B.18: Block Scores for 1.15 cm in Darkness

Block 1 Block 2 Block 3 Block 4
Delay Time Error Score Time Error Score Time Error Score Time Error Score

(s) (%) (s) (%) (s) (%) (s) (%)
0 s 34.1 13 0.12 31.2 0 0.05 27.8 0 0.05 25.0 0 0.04
2 s 78.4 0 0.13 57.1 0 0.09 44.3 0 0.07 41.5 0 0.07
4 s 133.7 13 0.28 80.9 13 0.19 54.6 13 0.15 53.0 13 0.15
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