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Abstract

Long Fiber Thermoplastics (LFT) are promising new materials with high physical

properties and low density. These high properties are obtained by embedding very long

fibers (∼100 mm) into a thermoplastic matrix. Such a high fiber length dictates the use

of a compression molding process for manufacturing as the length of discontinuous fibers

in injection molding is limited by pellet length.

LFT composites are of great interest for the automotive industry. These materials

are already used in some interior and exterior car parts such as bumpers, seat structures,

door module etc. This research is inspired by the desire to manufacture load carrying

parts for vehicles such as wheel rims which would dramatically reduce vehicle weight and

subsequently save fuel. This, however, requires a much better understanding of long fiber

orientation and distribution during compression molding.

Current orientation models were developed for short fibers (< 1mm). Initially these

models were extended to cases that were considered long fibers (several millimetres).

Recently these models are being extended even for the LFT-D case fibers which can

reach up to 80 mm. Since several of the governing assumptions for short fiber models are

not suitable for long fibers, the models can not provide accurate results for long fibers.

Due to this limitation long fibers require independent treatments.

This thesis presents a new model which is specifically designed for long flexible fibers.

This model is confirmed by comparing results obtained for simple shear flow to results

found in the literature. The model was implemented in a rheometric squeeze flow, which

is defined as flow between two approaching to each other parallel plates, and provided

results previously not seen in the literature. Interactions were implemented into the

model and tested for rheometric squeeze flow and simple shear flow cases. In addition to

providing insight into fiber orientation and deformation in rheometric squeeze flow, which

was not previously studied in the literature, the proposed model shows more predictive

results than previously found in the literature.

Keywords: Long fibers, Composite materials, Automotive industry, Fiber orienta-

tion, Compression molding, Injection molding.
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Chapter 1

Introduction

1.1 Composites History

A composite is defined as a: ”thing made up of several parts or elements” [1]. The reason

behind creating composites is making a material whose combined physical properties are

superior to the physical properties of its components.

Composites were known to mankind for thousands of years. The first recorded case of

composite use was around 3200 B.C. in Mesopotamia when they combined wood stripes

at different angles to create a material with better properties. Structures found in Egypt

and Mesopotamia dated 1500 B.C were built of mud bricks, which contained straw for

reinforcement [2].

Using composites presents a great opportunity to reduce structure weight while at the

same time not compromising reliability. For example, plastic reinforced by 50% volume

of high modulus continuous graphite fibers has five times greater modulus of elasticity

and tensile strength per weight than steel [3].

1.2 Long Fiber Thermoplastic Composites

Thermoplastic composites saw a great increase in production in the 1960s, due to the

development of carbon fibers, which significantly increased the stiffness of the composite

compared to traditionally used glass fibers [4]. Later it was found that an increase in fiber

1



2 Chapter 1. Introduction

length provides enhanced properties to the resulting compound [5–10]. That discovery

opened the door for a new process: Long Fiber Thermoplastic (LFT).

LFT process was commercialized in the mid to late 90s [11]. The fibers were embed-

ded into the polymer, which was then cut to produce pellets of needed length. These

pellets were then injected or compressed into a mold. As a result, the fibers embedded in

the final product were longer than previous composites produced, but still relatively short

Figure 1.1: LFT-D brick.

Figure 1.2: Fibers after a burn test from LFT-D charge.
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Figure 1.3: Composite properties as a function of fiber length [5-7].

due to limitations on the pellet size. Fibers longer than 1 mm are considered long [12]

by injection molding standards. Recently a new process Long Fiber Thermoplastic- Di-

rect (LFT-D) started to gain momentum. LFT-D process consists of two continuously

operated twin screw extruders and a press. The first extruder mixes the polymer with

additives (antioxidants, color etc.) and feeds the melt into the second extruder, which

pulls and mixes continuous fibers, that may be broken during the mixing process, with

the melt. The second extruder has a rectangular die which produces a brick shaped

compound (Figure 1.1) of polymer and long fibers (up to 80 mm) as seen in Figure 1.2.

The sample was obtained by a burn test which was made by burning part of the brick

thus removing the polymeric matrix and exposing the fibers. This brick is then placed

into a press and pressed into the final product. The main advantages of this new process

are due to improved composite properties by increasing the fiber length, and improv-

ing manufacturing logistics [13]. The improvement in composite properties versus fiber

length could be observed in Figure 1.3. Fiber orientation is a highly influential factor

on composite properties. Composites are particularly strong in the direction in which

the fibers are aligned. It has also been found that increasing waviness of fibers in the

composite reduces its Young’s modulus [14]. Thus bending and flexing of a fiber could
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affect both the material micro-structure and properties [15]. Hence it is highly important

to study the dynamics of fiber orientation in composite manufacturing process. Current

fiber orientation models which will be described in the next sections of this chapter are

designed for short fibers and hence can not accurately predict long fiber orientation. Due

to that it is required to develop a new model which is specifically designed for long fibers.

1.3 Orientation Models

1.3.1 Single Short Rigid Fiber

Jeffery [16] analytically solved the equations of motion for short ellipsoid particle in

low Reynolds number flow, thus predicting its orientation under the influence of a flow

field [16], and predicts an ellipsoid’s response to Stokes drag [17]. Jeffery’s model is

limited by a number of assumptions [16]:

i. The particle is of ellipsoid shape.

ii. The flow is considered non-inertial, which implies a low Reynolds (Re) number

(Re� 1).

iii. Particle dimensions are small compared to dimensions of the system.

iv. The center mass of the fiber is at rest with respect to the flow, i.e. the particle is

moving with the velocity of the flow.

v. The particle is rigid.

vi. The model is developed for a particle placed in a Newtonian fluid.

Jeffery [16] derived his model for a general flow, then simplified it for a simple shear

flow case, and obtained the following equation for a three dimensional ellipsoid under the

influence of a simple shear flow:

dϕ

dt
=

γ̇

(A.R2 + 1)

(
A.R2cos2ϕ+ sin2ϕ

)
,
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(1.1)

dβ

dt
=
γ̇ (A.R2 − 1)

4 (A.R2 + 1)
sin (2β) sin (2ϕ) , (1.2)

where β and ϕ (Figure 1.4) are angles between the ellipsoid and the axes (as shown

in Figure 1.4), A.R is the axis ratio defined as length divided by diameter, γ̇ is the local

shear rate which in a simple shear flow could be defined as a derivetive of velocity in the

direction in which the velocity is changing. It could be seen that for the case where the

axis ratio is equal to infinity, meaning the ellipsoid is infinitely long or infinitely thin,

the ellipsoid will orient itself with the flow while for the case of a finite axis ratio, the

ellipsoid will rotate. For the case of a simple shear flow (eqs. (1.1)-(1.2)) Jeffery’s model

could be analytically solved and the solution for angles (β,ϕ) and period of rotation T

are presented in eqs.(1.3)-(1.5) [16]:

tan(ϕ) = A.R · tan
(2πt

T

)
(1.3)

Figure 1.4: Representation of fiber on axes
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tan(β) =
C · A.R

(A.R2 cos2(ϕ) + sin2(ϕ))0.5
(1.4)

T =

(
2π

γ̇

)(
A.R +

1

A.R

)
(1.5)

Sometimes it is enough to solve the two dimensional case; for example, a simple

shear case where the ellipsoid is lying in the x − y plane (essentially 2-D case). For

these simplified cases, Jeffery’s model in its general form could be presented through

eq. (1.6) [18]:

dθ

dt
=

(
A.R2

A.R2 + 1

)(
− sin (θ) cos (θ)

∂vx
∂x
− sin2 (θ)

∂vx
∂y

+ cos2 (θ)
∂vy
∂x

+ sin (θ) cos (θ)
∂vy
∂y

)
−
(

1

A.R2 + 1

)(
− sin (θ) cos (θ)

∂vx
∂x

+ cos2 (θ)
∂vx
∂y
− sin2 (θ)

∂vy
∂x

+ sin (θ) cos(θ)
∂vy
∂y

)
(1.6)

Angle θ is represented in Figure 1.5 and the solutions of this equation for ellipsoids

with axis ratio of infinity and five (5) placed in a simple shear flow field with shear rate

of 4s−1 are presented in Figure 1.6 in both cases ellipsoid is initially oriented in the y

direction:

In the mid-80s an orientation vector form of Jeffery’s model started to appear in the

scientific literature [19,20].

Three dimensional ellipsoidal particle orientation could be described through the ori-

entation vector p = [px, py, pz] (shown in Figure 1.4). The general vector form of Jeffery’s

Figure 1.5: Graphical θ representation.
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Figure 1.6: Ellipsoid’s reaction to simple shear flow with shear rate γ̇ = 4s−1. Upper
case is for ellipsoid of infinite axis ratio and the bottom case is for axis ratio of 5.

model could be expressed through eq. (1.7) [21]:

dp

dt
= σ·p+ λ

(
D·p−

(
pT ·D·p

)
p
)
, (1.7)

where σ is a vorticity tensor, D is the deformation tensor and λ is a function of axis ratio

A.R.

σ = 0.5
(
L− LT

)
(1.8)

D = 0.5
(
L+ LT

)
(1.9)

L =


dvx
dx

dvy
dy

dvz
dz

dvx
dy

dvy
dy

dvz
dy

dvx
dz

dvy
dz

dvz
dz

 (1.10)

λ =
A.R2 − 1

A.R2 + 1
(1.11)
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Multiple experimental works confirmed Jeffery’s results [22–27]. It was found that

Jeffery’s model could be applied not only for ellipsoids, but also to cylinders, as long as

equivalent axis ratio A.Re is used to describe the geometry of the cylinder. Equivalent

axis ratio of a cylinder A.Re is smaller than its real axis ratio A.R and it is essentially the

axis ratio of a corresponding ellipsoid that will exhibit the same response to a flow field

as the cylinder with the corresponding axis ratio A.R. Thus Jeffery’s model could be

used to simulate rod-like fiber behaviour under the influence of a flow field [23,24,28–30].

Experimental data for these measurements is found in several works [23,25,31–34]. Cox

[35] developed an analytical expression for forces acting on a slender body by the fluid

and compared the results for a cylinder and ellipsoid.

F1 =
2πµlU

ln (2l/d) +OI

, (1.12)

OI =
−1

2
+

1

4

+1∫
−1

ln

(
1− s2

Λ2

)
ds, (1.13)

where µ is viscosity of the fluid, l is particle’s length, d is particle’s diameter, U is fluid

velocity, s is dimensionless distance between the center and the ends of the particle and Λ

is a dimensionless function of cross-sectional radius of an arbitrary geometric at any point

along its major axis. Thus for a cylinder, Λ = 1, while for an ellipsoid Λ = (1 − s2)0.5

where s is a dimensionless coordinate on the major axis defined as −1 < s < 1. For a

cylinder, OI = −1.5 + ln2 while for the ellipsoid OI = −0.5.

Cox [36] noticed that for the ratio of cases of θ = π
2

and θ = 0, the expression (1.14)

for equivalent axis ratio will be generated:

ωθ=0

ωθπ2
= A.R2

e, (1.14)

where ωθ=0 is radial velocity of rod in a position of θ = 0 and ωθπ2 is radial velocity of

rod in a position of θ = π
2
, for the case of an ellipsoid A.Re = A.R.

Hence by measuring the radial velocity of a cylinder at a vertical and horizontal position,

one could calculate its equivalent axis ratio. Since it is not very convenient to look at
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radial velocity, Cox took it one step further and assumed that since radial velocity is

proportional to torque it could be said that:

A.Re =

√
ωθ=0

ωθπ2
=

√
Pθ=0

Pθπ2
(1.15)

where Pθ=0 is torque acting on a rod oriented in the direction of θ = 0 and Pθπ2 is the

torque acting on a rod oriented in the direction of θ = π
2
. Cox then uses the derivation

of forces acting on a slender body [35] to calculate Pθ=0 and derives the expression of

Pθπ2 [36]. By dividing these two expressions, Cox [36] found an expression for equivalent

axis ratio:

A.Re

A.R
=

(
8π

3L

)0.5

ln(A.R)−0.5, (1.16)

where L is a constant fitted to be 5.45 from the experimental data of cylinder axis ratio

compared to equivalent axis ratio [25].

Harris and Pittman [37] fitted a model to match the experimental results. Eq. (1.17)

provides a good fit in the range of 50 < A.R < 450 (error is within ±5% )

A.Re = 1.14A.R0.844 (1.17)

Zhang et. al. [38] developed a finite element method (FEM) to simulate the movement

of a single fiber in a general flow field and compared it to Jeffery’s model solution as well

as computationally finding equivalent axis ratio for several axis ratio cylinders.

Although Jeffery’s model was developed in 1922 and has many limiting assumptions

it is still widely used [21,39,40]

1.3.2 Short Rigid Fiber Suspensions

Rod like fiber suspension behaviour and properties are highly dependent on fiber concen-

tration and was widely investigated [41–44]. It is common to divide the volume fraction,

c, into regions of dilute, semi concentrated and concentrated based on rod geometry:

i. Dilute: c <
(
d
l

)2
-the distance between two neighboring fibers is greater than l.
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ii. Semi-concentrated:
(
d
l

)2
< c < d

l
-the distance between the neighboring fibers is less

than l but greater than d.

iii. Concentrated: d
l
< c -the distance between the neighbouring fibers is less than d.

Where d is the fiber diameter and l is the fiber length. As the distance between the

fibers becomes less than l, they can no longer rotate freely and start to interact with each

other thus contradicting Jeffery’s assumptions. These interactions have to be accounted

for in order to accurately predict the orientation.

In order to account for interactions, Folgar and Tucker [18] added a rotational diffusion

term to Jeffery’s model and assumed infinite aspect ratio A.R thus creating the following

model:

dθ

dt
= − sin (θ) cos (θ)

∂vx
∂x
− sin2 (θ)

∂vx
∂y

+ cos2 (θ)
∂vy
∂x

+ sin (θ) cos (θ)
∂vy
∂y
− CI γ̇

ψθ

∂ψθ
∂θ

,

(1.18)

where vx is the fluid velocity in the direction of x, vy is the fluid velocity in the y

direction, CI is the interaction coefficient, ψθ is the density distribution function of fiber

orientation and γ̇ is scalar value of a shear rate. Advani and Tucker [45] defined a second

order orientation tensor a through the orientation distribution density function:

a =

∫
p⊗pψ(p)dp (1.19)

The trace of a second order orientation tensor is always one, which sometimes makes it

sufficient to track only one of the tensor diagonal values. A two dimensional orientation

tensor meaning is shown in Figure 1.7. The Folgar-Tucker model in its orientation tensor

form is given as:

da

dt
= (σ·a− a·σ) + λ (D·a+ a·D − 2a4 : D) + 2qCI γ̇(

I

q
− a), (1.20)

where a4 is 4th order orientation tensor, I is identity matrix and q is the problem di-

mension such that for the two dimensional case q = 2. Fourth order orientation tensor

a4 is complicated to calculate and thus it should be approximated through the second
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Figure 1.7: Two dimensional orientation tensor representation.

order orientation tensor a, the simplest of these approximations is called the “quadratic

approximation” [46,47]:

a⊗a = a4 (1.21)

Other more complicated approximations can be found in the literature [46,48,49]. Advani

and Tucker [45] solved the Folgar-Tucker model eq. (1.20) for different a4 approximations.

Bay [50] proposed a correlation for the interaction parameter CI as a function of fiber

volume fraction c and ellipsoid axis ratio A.R:

CI = 0.0184·e−0.714·c·A.R (1.22)

Phan-Thien et al. [51] suggested another correlation for CI :

CI = M
(
1− e−B·c·A.R

)
, (1.23)

where M and B are constants, which were found by comparison to experimental data to

be 0.03 and 0.224 respectively.

Ferec et. al. [52] modified the Folgar-Tucker model by replacing the constant inter-

actions coefficient CI with a function that depends on the fiber orientation probability
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function.

The Folgar-Tucker model is widely used for injection molding simulation of short fiber

composites [53–55].

It was found that systems simulated by the Folgar-Tucker model orient with the

flow faster than what could be seen from experimental results. Huynh [56] found that

experimentally tested injection molded parts were at an orientation level, which required

five to ten times less shear rate than what the Folgar-Tucker model would predict to

require in order to achieve similar orientation level for the same flow time. Huynh added

a parameter H to the Folgar-Tucker model in order to slow the orientation predicted by

Folgar-Tucker:

da

dt
= H

(
(σ·a− a·σ) + λ (D·a+ a·D − 2a4 : D) + 2qCI γ̇(

I

q
− a)

)
, (1.24)

1/H is the strain reduction factor and is defined between infinity and 1, where the H = 1

corresponds to the Folgar-Tucker model.

Sepehr et al. [57–59] tried to predict the stress in the compression experiment using

the orientation calculated by the Folgar-Tucker model, and like Huynh [56] they found

that the calculated stress diverges from the experimental value. In order to achieve a

match between computational and experimental results they had to use a reduced shear

rate in Folgar-Tucker model calculations.

Although Huynh’s [56] SFR (Strain Factor Reduction) model gives good results in simple

flows, it fails in a general case flow since the results depend on the coordinate system [60].

A more general model (RSC – Reduced Strain Closure) was developed by Wang et. al. [61].

In this model, the growth rate of eigenvalues of the orientation tensor is modified by an

empirical factor k while the rotation rate eigenvectors remain unchanged.

da

dt
= (σ·a− a·σ) + λ (D·a+ a·D − 2[a4 + (1− k)(L4 −M4 : a4)] : D) + 2qCI γ̇(

I

q
− a),

(1.25)

where L4 and M4 – the fourth order tensors are calculated from eigenvalues λi and
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eigenvectors ei calculated from the orientation tensor a:

L4 =
3∑
i=1

λieieieiei (1.26)

M4 =
3∑
i=1

eieieiei (1.27)

k- empirical constant ≤ 1, For k = 1 RSC is the Folgar-Tucker model.

The RSC model gives a good prediction for short fiber composites (0.2−0.4mm fibers);

however, it fails for longer fibers. Anisotropic Rotary Diffusion (ARD) model [62] was

developed for long fiber injection molding (10− 13mm fibers) prediction.

da

dt
= (σ·a− a·σ) + λ (D·a+ a·D − 2[a4 + (1− k)(L4 −M4 : a4)] : D)

+2k (trC) a− 5 (Ca+ aC) + 10 (a4 + (1− k) (L−M : a4)) : C) (1.28)

C- Rotary diffusion tensor

C = b1I + b2a+ b3a
2 + b4

D

γ̇
+ b5

D2

γ̇2
, (1.29)

where bi are empirical constants that have to be fitted experimentally.

ARD provides similar results to RSC for short fiber and better prediction for long

fibers. Although the long fiber referred to in regards with ARD are still much shorter

than fibers in the LFT-D process.

Although the fibers described in this section are much shorter than the fibers that are

targeted for this research, the results obtained by the methods described above are still

important. Long fibers could be broken down in to smaller components whose average

orientation would influence the rheology.
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Figure 1.8: Different groups of fiber deformations in simple shear flow [63]; a)axial spin,
b)flexible spin, c)springy rotation, d)snake turn, e)S-turn.
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1.4 Flexible Fibers

As previously mentioned fiber length in LFT-D material can reach up to 80 mm, which

violate the assumption of short rigid fibers used in Jeffery’s model [16], hence models

that use Jeffery’s model as their base shouldn’t be used to simulate this process. Long

fibers will exhibit bending during the flow. It is important to predict fiber bending in

the composite since the fiber’s shape affects composite properties [14].

Forgacs and Mason [31, 32] and Arlov et. al. [63] experimentally investigated flexible

fiber dynamics under the influence of simple shear flow. They classified the results into

three groups:

i. Fiber is performing an axial spin during which it bends into an arch and straightens

(Figure 1.8a).

ii. Fiber is performing a “flexible spin rotation” which is basically the bending described

in group i superimposed on a spherical elliptical orbit (Figure 1.8b).

iii. Third group behaviour is preferred by flexible fibers and it could be further subdi-

vided into three more groups:

1. “Springy” rotation, in this group the fiber initially is aligned with x axis after

which the fiber starts to bend like a leaf spring. Eventually the fiber straightens

and aligns again with x axis (Figure 1.8c).

2. “Snake Turn”, this group behaviour is similar to group ”springy” rotation but

with bigger bending due to higher flexibility (Figure 1.8d).

3. “S-turn”, this behaviour is observed for highly symmetrical fiber. Initially the

fiber is aligned with x axis and subsequently bends into “S” shape while rotating.

Eventually the fiber is straightens and aligns again with x axis (Figure 1.8e).

1.4.1 Orientation Models - Flexible Fiber

There are several models in the literature that describe the behaviour of a flexible fiber in

a flow field, the first of which was made by Hinch [64]. Hinch simplified the problem by
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neglecting the fiber’s width and assuming infinite elasticity (infinite Young’s modulus),

thus preventing the fiber from rotating in simple shear flow and stretching.

Yamamoto and Matsuoka [65] created a model referred to in the literature as the

”bead-chain” model. In this model, fibers are represented as a collection of beads con-

nected to each other through elastic springs. Each bead experiences hydrodynamic force

and torque as well as interactions with its neighbours, which include: bending torque,

twisting torque, elastic force and friction force. This model was used by Joung et. al. [66]

to predict the dependence of viscosity of a Newtonian flexible fiber suspension with ori-

entation.

Skjetne et. al. [67] created an alternative model where spheres were connected through

rigid hinges, which insured the continuity of the fiber without the need of iterations

on locations of the spheres. Although Skjetne et. al. [67] found a way to reduce the

calculation time required by Yamamoto and Matsuoka [65] it was still significant due to

the need for an enormous number of spheres for long fiber representation.

Ross and Klingenberg [68] proposed a similar model to Skjetne et. al. [67] with the

difference that they connected prolate spheroids through rigid hinges, which reduces the

number of elements needed to be calculated. The downside of this approach is that it

requires the use of complicated rotational friction coefficients for ellipsoids [69].

Strautins and Latz [70] developed a semi-flexible model for dilute solutions. In this

model a fiber can bend in one place creating two equal size rods connected in the mid-

dle. The model equations calculate the moments of orientation for these rod segments.

Ortman et. al. [71] modified this model by adding an interaction term to the equations

in a similar way to that of Folgar and Tucker [18] who modified Jeffery’s model [16] in

order to account for interactions and to be fit to use for concentrated suspensions.

1.5 Interactions

Simulation of a single fiber behavior presents an interesting physical problem, but it

is not very practical. Composite materials consist of many fibers and thus interactions

between them must be accounted for. Mason and Manley contributed to early interaction
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theory [24,72,73] .

1.5.1 Interaction Between Spheres

Two spheres in a simple shear flow would collide and form a “doublet” particle. This

particle would then rotate until the aggregate is broken into the two initial spheres [72].

For the case of collision of spheres with different diameters [73] similar results are obtained

for spheres with diameter ratio of two or less, while for a larger diameter ratio the

relations between two spheres is more complex, which is attributed to the the difference

in sedimentation velocity due to the difference between sphere and fluid density. Mason

and Manley [72, 73] found that after collision and the “doublet” rotation, the spheres

separate at the mirror image point to the point of impact, which suggests that the system

has a “memory”. This is possible only if the system has both repulsive and attraction

forces.

The attraction force between the spheres could include a lubrication force. Yamamoto

and Matsuoka [74] assumed that lubrication forces come into effect when the distance

between the edges of two spheres is less than the radius of the spheres, Ferec et. al. [52]

activated lubrication forces when the distance was less than the particle’s diameter. Kim

and Karilla [69] expressed lubrication forces for two spheres of the same radius through

eq. (1.30)

Flub = −
(

3πµr

ζ
+

27πµr

20
log

(
1

ζ

))
nij· (ui − uj)nij, (1.30)

where r is sphere’s radius, ζ is dimensionless distance between the edges of the spheres,

nij is unity vector between two spheres, ui and uj is spheres velocity.

Ladd [75] simplified the expression by neglecting the logarithmic term in the equation

as it is much smaller than the other term due to the fact that lubrication forces are active

only in close proximity of both objects to each other.

Flub = −
(

3πµr

ζ

)
nij· (ui − uj)nij (1.31)

Eq. (1.31) suggests that the spheres will be attracted to each other when they are
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Figure 1.9: Lubrication forces.

moving away from each other while when the spheres are moving toward each other

the force will become repulsive, shown in Figure 1.9. At the point of contact ( ζ = 0)

expression in eq. (1.31) becomes singular thus lubrication force denies the possibility of

contact.

1.5.2 Interactions Between Fibers

While interactions between equal diameter spheres cause always a symmetric response

due to spheres symmetry in fibers this is not the case, as the contact point is rarely

symmetric on both fibers. In addition the contact point is very small compared to the

size of the fiber.

Yamamoto and Matsuoka [74] implemented lubrication force into their “bead-chain”

model [65] in order to simulate interactions between rigid fibers. Joung et. al. [66] used

the Yamamoto and Matsuoka [74] model to simulate interactions between flexible fibers.

In a simple shear flow interacting rigid fibers would approach one another and get

associated for a time, followed by separation and rotation in orbits different from before

the interactions [24]. Mason and Manley [24] showed that the period of rotation T is

influenced by interactions.

Russel et. al. [76] showed that lubrication forces are strong between spheres, but are

weak between fibers, which can lead to mechanical contacts between them. Sandarara-

jakumar and Koch [77] assumed direct contacts between fibers and used them as main

interaction mechanism neglecting lubrication force in their 3D simulation but used it in
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case of 2D. Harlen et. al. [78] used the Sandararajakumar and Koch model [77] while also

implementing friction forces between fibers.

Schmid et. al. [79] integrated repulsion forces which prevented fiber overlap and fric-

tion forces into the Ross and Klingenberg flexible fiber model [68] to simulate interaction

between flexible fibers. Klingenberg used repulsive force between fibers to prevent them

from overlapping [79] this force is presented in eq. (1.32)

F = −f (−20ζ)nij, (1.32)

where ζ is the distance between two cylinders at the point of interaction normalized to

the radius of the cylinders, nij is unity vector which points from cylinder i to rod j at

the interaction point and it is perpendicular to both cylinder surfaces, f = 120πµlrγ̇

is empirically found with l equal to cylinder’s length, r cylinder’s diameter, µ is fluid’s

viscosity and γ̇ is the shear rate.

Lee and Springer [80] used collisions to simulate interactions between rigid ellipsoids,

and they assumed that collisions affect only the radial velocity of the fiber while leaving

the linear velocity unchanged.

1.6 Rheology

1.6.1 Homogeneous Systems

Rheology is translated from Greek as ”study of flow”. Stress measures the internal body

resistance to applied force. This resistance is the result of intermolecular forces. Shear

stress is measured in Pascal (Pa) units, but it is different from pressure in the sense

that pressure is force acting perpendicular to the surface, while shear stress measures

the force which acts in parallel to the surface. Imagine two rectangular plates of area A

at a distance Y from each other with fluid between the two. The upper plate is moved

by force F at a velocity of U and the bottom plate is stationary. Assuming a no slip

condition on both plates will result in zero velocity of fluid touching the bottom plate

and velocity of U for the fluid touching the upper plate. Newton defined the force F
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as [81]:

F = µ·A(du/dy) (1.33)

µ is proportionality constant also called viscosity which is constant for Newtonian fluid

and could be simply defined as:

µ =
τ

γ̇
(1.34)

where τ is the shear stress and γ̇ is the shear rate. Examples for Newtonian fluids are:

water, air, kerosene etc. In a power-law fluid [82], viscosity is not constant, and depends

on shear rate:

µ = Kγ̇n−1 (1.35)

From eq (1.35) for the case n = 1 the material will have a constant viscosity or in

other words will behave like Newtonian fluid. In the case of n < 1 material will be called

shear thinning material meaning that its viscosity will decrease with shear rate. While

for the case n > 1 the material will be called shear thickening material meaning that

its viscosity will increase with shear rate. Examples for power-law fluids are: polymer

melts, polymer solutions, petroleum jelly etc.

A more complex model is Herschel-Bulkley. The general Herschel-Bulkley equation

is given by:

τ = τ0 +Kγ̇n (1.36)

where τ is the shear stress, γ̇ is the shear rate, τ0 is the yield stress, K the consistency

index, and n is the flow index. For τ < τ0, Herschel-Bulkley fluid behaves as a solid.

From eq (1.36), the general Herschel-Bulkley equation is reduced to the Newtonian case

where τ0 = 0 and n = 1. Viscosity of Herschel-Bulkley fluid could be expressed through

eq. (1.37):
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µ =

µ0, if |γ̇| ≤ γ̇0

K|γ̇|n−1 + τ0|γ̇|−1, if |γ̇| ≥ γ̇0

(1.37)

Examples for Herschel-Bulkley fluids are: margarine, mayonnaise, ketchup, etc. [83] In

order to predict material flow properties in processing it is essential to know the rheology

of the system.

1.6.2 Fiber Filled Systems

A common model used in the literature for dependence of rheology on fiber concentration

and orientation is given by [84,85]

τ = 2µm [D + f (A.R, c)D : a4] , (1.38)

where:

f (A.R, c) =
A.R2c (2− (c/G))

4 (ln (2A.R)− 1.5) (1− (c/G))2
, (1.39)

G = 0.53− 0.13A.R, (1.40)

5 < A.R < 50 (1.41)

where τ is stress, µm is matrix viscosity, D is the deformation tensor, a4 is the fourth order

orientation tensor, c is fiber volume fraction and A.R is the axis ratio (length/diameter).

More extended explanation of this model can be found in Ortman et. al. [71].

Hence rheological properties of the system are dependent on fiber orientation. Several

experimental techniques have been developed to study the rheology of thermoplastic fiber

composites. Capillary [86] and rotational [87] rheometers could be used to study short

fiber filled systems while for the long fiber systems sliding plate rheometer [71] and the

squeeze flow rheometer [88,89] are used.

In the sliding plate rheometer, the plate slides at a constant rate while measuring the

resistance of the material which is the shear stress. In the squeeze plate rheometer, the

material is squeezed at a constant rate while measuring the force applied on the material,
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which could be recalculated into stress.

It is hence needed to estimate fiber orientation in the material in order to calculate

material rheological properties. As the focus of this work is in compression molding, the

following section will examine squeeze flow.

1.7 Squeeze Flow

Squeeze flow modeling in the literature was done for various types of fluids: Newtonian

[90–94], Herschel-Bulkley [95, 96] and power-law [97–99]. These models neglect inertial

forces thus assuming quasi steady state flow resulting in all time derivatives equal to zero.

In addition, they assume that the samples are very thin making the velocity of flow in the

direction of squeezing (vertical) orders of magnitude lower than the horizontal direction

and thus negligible. The resulting model becomes a one dimensional Hele-Shaw solution

for thin gaps.

Squeeze flow can also be subdivided into two limiting cases. In the first case a no

slip condition is applied at the interface with the wall. In this case, the velocity profile

will be parabolic for a Newtonian fluid [90, 92, 94]. The second limiting case is a perfect

slip condition in which the velocity profile will be of a plug flow type [95] Mavridis

et. al. [94] and Lawal and Kalyon [95] simulated and compared solutions with different

slip coefficient value β, which was used to define slip velocity vs [100] as:

vs = βτω, (1.42)

where β is the slip coefficient, τω is the tangential stress at the wall and vs is the slip

velocity.

Barone [93] developed mathematical and experimental methods to investigate a fric-

tion mechanism at the mold-charge interface. Zhang [97] proposed a squeeze flow model

for thin films and then confirmed it with experiments. Lee et.al. [99] found that squeez-

ing thin film of a power law fluid resembles the behavior of a Newtonian fluid. Hence

the solution of a thin Newtonian case is of interest even for thermoplastic, power-law,

materials application.
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Rheometric two dimensional squeeze flow of an incompressible Newtonian fluid can

be expressed through the following equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
−1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (1.43)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=
−1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, (1.44)

∂u

∂x
+
∂v

∂y
= 0, (1.45)

Thorpe [101] accounted for inertia effects and provided a solution for a two dimen-

sional squeeze flow problem. Gupta and Gupta [102] have shown that there is a simi-

larity solution of two dimensional squeeze flow problem for Newtonian isothermal case

with boundary conditions eq. (1.46) if the distance between the plates is in the form of

eq. (1.47):

u (x, 1, t) = 0; v (x, 1, t) = vw, v (x, 0, t) = 0;
∂u

∂y
(x, 0, t) = 0, (1.46)

a(t) = (a2
o +Mt)0.5, (1.47)

where ao is the initial half distance between the plates and M = −2νR where ν is the

kinematic viscosity and R is a constant equal to avw/ν.

Velocity values as a function of time could be obtained by calculating the derivative

of eq. (1.47) with respect to time, the resulting expression is given in eq. (1.48).

Vw = 0.5M
(
a2
o +Mt

)−0.5
(1.48)

The two dimensional squeeze flow system can be divided into four quadrants, and

due to symmetry only one quarter has to be solved in order to obtain the solution of the

system, as shown in Figure 1.10. The axes on Figure 1.10 appear in dimensionless form

where the horizontal center line is located at y = 0, the center of the horizontal line is at
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x = 1 and the top plate is located at y = 1. The solution to the two dimensional squeeze

flow problem (solution of the upper left quarter in Figure 1.10) is given by eqs. (1.49)-

(1.50)

vx =
c− x
a(t)

vw(t)f ′(R)

(
y

a(t)

)
, (1.49)

vy = vw (t) f(R)

(
y

a(t)

)
, (1.50)

where c is the distance between the center and the edge of the system in the x direction,

f(R) is given by Gupta and Gupta [102].

f = f0(a) +Rf1(a) +R2f2(a) (1.51)

where:

f0(a) =
3a

2
− a3

2
(1.52)

Figure 1.10: Squeeze flow system.
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f1(a) =
a5

10
− a7

280
− 53a3

280
+

13a

140
(1.53)

f2(a) = E3a +
E1a

3

6
+

53a5

1400
− 579a7

58800
+

a9

2016
+

a11

92400
(1.54)

with E1 = −0.2892701 and E3 = 0.0196946.

1.8 Objectives

The single rigid fiber model described in Chapter 1 [16] and subsequently the models for

multiple fibers [18], [56], [61], [62], [71] are all inherently designed for short fibers due

to torque calculation in the center mass of the fiber. The same approach is used in the

described flexible fiber model [68]. Other models described in Chapter 1 [65], [67], [38]

could be applied for long fibers but they would require a massive amount of calculations.

In addition all of the described models were only tested in the literature on a simple

shear flow case and it is unclear how well they would preform under the influence of a

more complex flow. Hence the objectives of this thesis work are as follows:

i. Develop computationally cheap method for torque calculation on long fibers.

ii. Develop a model for long rigid fibers orientation under the influence of a flow field.

iii. Using the developed model for long rigid fibers develop a model for long flexible

fibers.

iv. Integrate interactions between fibers into developed long flexible fiber model.

v. Validate the moldel using existing literature data for simple shear flow.

vi. Generate results for response of long flexible fiber to a squeeze flow field and validate

some of the results experimentally.



Chapter 2

Long Fiber Model Development

2.1 General Approach

In Chapter 1 models representing flexible fibers through connected rigid spheres or

prolate spheroids were described [64], [65], [67] [68]. The difference between the model

proposed in this thesis and models found in the literature is the use of cylinders as

rigid segments in addition to development of a new method for torque calculation in

order to account for the extreme length of the fibers.

In the proposed model long flexible fibers are represented as a collection of rigid

short cylinders which interact with each other at the connection point as shown in

Figure 2.1. In order to calculate the hydrodynamic torque on each rigid segment, its

projection length on the (x − y) axes are calculated and divided into spheres with

hydrodynamic torque calculated on each sphere. This approach is in contrast with

the general practice in the literature to calculate the vorticity [64], [65], [67], [68]

in the middle of a segment geometry and deduct its radial velocity from it. For

long fibers, vorticity could change significantly, and not always symmetrically along

the fiber, thus the approach used in this thesis is more suitable for long fibers. In

addition, rotational friction coefficients for cylinders were derived for this model. In

case of crossover between various rigid segments, the cylinders that interact with each

other are represented as a collection of spheres and elastic collisions are calculated

26
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Figure 2.1: Graphic model representation;a) Cylinder is represented through projections
divided into spheres for hydrodynamic torque and force calculation. b) Cylinder is rep-
resented through a collection of spheres for interactions calculations.

between them.

Computationally the model is divided into two parts where in the first part the equa-

tions for rigid cylinders movement will be solved. In the second part, interactions

between adjacent rigid cylinders will be solved. Equations for interactions are in-

cluded for the cases where rigid segments overlap each other. Model derivation is

explained in the following sections.

2.2 Rigid Cylinder

2.2.1 Infinite Axis Ratio Cylinder

In order to solve the movement of the rigid cylinder it is necessary to solve both linear

and rotational movement equations. Similar assumptions to Jeffery [16] regarding

the linear movement, namely that the rigid cylinder’s center mass is at rest with

respect to the fluid, were used in this model. In other words, the linear velocity

of the cylinder is the same as the velocity of the fluid in the center of mass of the
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cylinder. This assumption will be discussed later on and what it implies will be

shown.

In order to calculate the rotation of a rigid cylinder in the direction of its minor axis

around its center of mass, the torque balance equation [103], [104] is solved:

a
dω

dt
= P − kω, (2.1)

where a is moment of inertia, ω is rotational velocity, k is rotational friction coefficient

and P is the torque acting on the cylinder. This problem is separated into two parts,

where the first part is calculating the hydrodynamic torque P acting on the cylinder

and the second part is calculating the rotational friction coefficient k. In order to

calculate the torque acting on the cylinder, the cylinder’s projections were calculated

on the x and y axes. These projections were divided into spheres (Figure 2.4) to

calculate the force acting on a sphere using Stokes law:

F = 6πµr (Vf − Vs) , (2.2)

where µ is fluid viscosity, r is sphere radius, Vf is the velocity of the fluid and Vs is

the velocity of the sphere. Velocity of the sphere is given by linear and radial velocity

of the cylinder:

Vs = Vc + ω × ls, (2.3)

where Vc is linear velocity of the cylinder, ω radial velocity of the cylinder and ls is

the vector connecting the center of the cylinder to the sphere. Since radial velocity

adds to and reduces the velocity of the spheres above and below the center mass

of the cylinder by the same amount, and it is desired to calculate the overall force

contribution, it is possible to look at the linear velocity of the spheres simply as the

linear velocity of the cylinder’s center of mass. Note that the spheres representing

the projection on the y axis are not generating any force due the to velocity compo-
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nent from y direction and vice versa. Torque contribution from each sphere is then

calculated, by vector multiplication of vector connecting the center of the projection

with the center of the contributing sphere:

P = ls × F, (2.4)

where P is torque, F is force and ls is the vector connecting center mass of the

cylinder to the corresponding sphere. All of the contributions are then summarized

to provide integrated value for the hydrodynamic force and torque acting on the

cylinder because of the summation radial velocity could be disregarded during the

drag force calculation since it will cancel each out from both sides of the cylinder

(different sign of linear velocity on both sides). As the fiber will rotate the values of

projections on the axes will change. The projections are always broken into constant

number of spheres B which was set to 100 (it was found that 10 spheres produce just

as good results but it might not be sufficient for a higher value of shear rate).

Equations for both force and torque are needed to describe the motion of a single

rigid cylinder movement. It could be assumed that the linear velocity of the cylinder

is the velocity of the fluid in the center of mass. Thus for now let’s concentrate on

eq. (2.1) for torque balance. In order to solve eq. (2.1), an expression for friction

coefficient k is required. To the best of our knowledge an expression for k for a

cylinder is not available in the literature. There is, however, a well-known friction

coefficient calculation method for an ellipsoid shaped particle [52,69] which is widely

used in the literature.

In order to find an expression for k, Jeffery’s model eq. (1.7) was applied for an

infinite axis ratio fiber (in this case an ellipsoid and a cylinder should give the same

result) under the influence of simple planar shear flow:

vx = γ̇y, (2.5)
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Figure 2.2: Comparison between Jeffery’s model and current model for the case of con-
stant friction coefficient in interval [π/2,0].

vy = 0, (2.6)

where γ̇ is shear rate, vx is the x component of velocity, vy is the y component of

velocity.

Figure 2.2 presents the solution of the model and its comparison to Jeffery’s model

for two cases of constant friction coefficient: k = 10−7 N ·m·s (lower solution in

Figure 2.2) and k = 7·10−7 N ·m·s. It is apparent from the results that the case

k = 7·10−7 N ·m·s fits better for the upper part of Jeffery’s model solution while the

case k = 10−7 N ·m·s fits better for the lower part. Hence it could be seen that larger

friction coefficient provides better fit for higher angles while lower friction coefficient

provides better fit for the lower angles. Two conclusions could be made out of this

experiment, the first is that friction coefficient should not be constant with respect

to a cylinder’s orientation and the second is that it should decrease with orientation
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in the interval [π/2, 0].

Several functions that decrease in the interval were attempted. The expression

Ksin(θ) gave the best result in term of fitting to Jeffery’s model. The physical

interpretation behind it, is that as the projection of the fiber onto the y axis dimin-

ishes so diminishes the resistance to the flow perpendicular to the projection. Hence

by analogy if the flow would be:

vx = 0, (2.7)

vy = γ̇x, (2.8)

where γ̇ is shear rate, vx is the x component of the velocity, vy is y component of the

velocity. By analogy it is clear that the friction coefficient for the velocity described

in eqs. (2.7)-(2.8) would be Kcos(θ), hence it is clear that friction coefficient depends

on a flow direction. Therefore in order to solve a fiber orientation for a general two

dimensional case in the Cartesian coordinate system, two equations are needed:

a
dωx
dt

= Px −Ksin(θx)ωx, (2.9)

a
dωy
dt

= Py −Kcos(θy)ωy, (2.10)

where a is the moment of inertia, ωx is the angular velocity generated by forces from

x direction, ωy is the angular velocity generated by forces from y direction, Px is the

torque generated by forces from x direction, Py is toque generated by forces from y

direction, θx is the orientation caused by forces from x direction, θy is the orientation

caused by forces from y direction. Eqs. (2.9)-(2.10) could also be presented in tensor

form:

a
dω

dt
= P − k

=
ω, (2.11)
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where k
=

is given by:

k
=

=

K1sin(θ) 0

0 K1cos(θ)

 (2.12)

θi and ωi do not have any physical meaning, but their sum is the orientation angle

and radial velocity respectively:

θ =
∑

θi (2.13)

ω =
∑

ωi (2.14)

The justification behind decomposing cylinders rotation to rotation due to influence

from x and y directions comes from the principle of superposition which is shown in

Figure 2.3.

Figure 2.3: Superposition of forces on the cylinder.

2.2.2 Finite Axis Ratio Cylinder

An infinite axis ratio cylinder will orient itself with the direction of the flow for

the simple shear flow case. Finite axis ratio cylinder, however, will continuously

rotate due to the torque on the cross section of the cylinder. In the model the

hydrodynamic torque is calculated on the cross-section of the cylinder (a disc). The
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disc which represents the cross sectional area will be represented through two spheres

connected at the center of the disc (Figure 2.4b). A projection of these spheres is

calculated on the axes, these projections represent diameter of projected spheres

which are influenced by the x and y components of the flow field. Stokes drag is

calculated on each of the projected spheres and a torque that is generated by each

projected sphere is calculated through vector multiplication of this force by the lever

which is generated between the center mass of each projected sphere and the center

of the disc which is described in eqs. (2.15)-(2.16)

F j
dn = 6πrµ(V j − V j

0 ), (2.15)

pjdn = lidn × F
j
dn, (2.16)

where F j
dn is the force acting from direction j on cross section sphere n, r is the

radius of the sphere on the cross section projection, V j is the j component of fluid

velocity at center mass of the sphere on the cross section, V j
0 is the j component

of linear velocity of the cylinder, pjdn is the torque acting on sphere n on the cross

Figure 2.4: a. Representation of a cylinder through a collection of spheres on the cylinder
projections. b. Representation of cylinder’s cross section with two spheres.
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section from j direction, lidn is the vector connecting the center of the cross section

and the center of sphere n, index i, j refers to direction from which the force or

torque contribution comes and bottom index n refers for the sphere for which the

contribution is calculated.

This procedure is done for both spheres and then summarized into total torque

produced by the cross section:

P j
d = pjd1 + pjd2 (2.17)

Note that as the orientation of the fiber is changing lidn and r will change as well, for

example when the fiber is at vertical position (cross-section is horizontal position)

lxdn and rx will be equal to the radius of the spheres while lydn and ry will equal zero,

shown in Figure 2.5. Since the cross-section area of two spheres is two times smaller

than original disc, the calculated torque is multiplied by a factor of two.

Friction for the cross section must also be accounted for, hence eq. (2.12) for the case

of finite axis ratio cylinder:

k
=

=

K1sin (θ) +K2cos (θ) 0

0 K1cos (θ) +K2sin (θ)

 (2.18)

where K1 is a constant responsible of representing the resistance to the flow by the

length of the cylinder and K2 is a constant responsible of representing the resistance

Figure 2.5: Cross section projections change during orientation.
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to the flow by the cross section of the cylinder.

It is possible to make a similar assumption to Jeffery [16] and assume non-inertial flow

which could be assumed for very low Reynold’s number (� 1) [105] thus eliminating

the derivatives in eq. (2.11) reducing it to:

0 = P − k
=
ω (2.19)

Results obtained under this assumption are identical to results obtained by solving

eq. (2.11) which proves that this assumption is valid. Note that infinite aspect ratio

cylinder will orient itself with the flow under the influence of a simple shear flow. It

will not be able to cross the axis in which the shear flow is happening or in other

words it will not be able to rotate like a finite axis ratio cylinder.

2.3 Flexible Fiber

In order to obtain flexibility several rigid cylinders are connected together. Since

equations of motion are calculated for every rigid cylinder, and in order to keep the

overall fiber continuous several interactions between rigid fibers must be incorporated

into the equations. The first interaction between adjacent rigid cylinders is elonga-

tion [65]. Elongation interaction comes into effect when the ends of two adjacent

cylinders are about to separate and prevents it. As an analogy we can assume that

the two cylinders are connected through an elastic spring and hence the force on each

cylinder is the spring constant multiplied by the distance between the ends of the

cylinders (Figure 2.6). In reality, glass and carbon fibers are non-expandable, but

mathematically in order to connect rigid segments, the mechanism shown in Figure

2.6 is used. Another interaction between rigid segments is bending. This interaction

comes into effect when the angle between two neighboring segments is different from

the equilibrium angle (rigid rod) which is set as π.
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Figure 2.6: Schematic representation of rigid segments connected through elastic springs.

2.3.1 Elongation

Assume a cylinder of length l, radius r, Young’s modulus E and a distance ∆l to the

next cylinder which has the same properties as the first. Then the elongation force

Fe on both cylinders is described by eq. (2.20):

Fe = ke(∆l), (2.20)

where ∆l is the distance between the rigid segments ends and ke is elastic force

constant. Since the force that each segment feel is proportional to ∆l, it is assumed

that the origin of the force is elongation of each segment by ∆l (Figure 2.7), although

in the current model segments have constant length this exercise is essential to express

ke through geometrical and physical properties of a segment.

Segment of length l stretched to length of l + ∆l will exhibit the following force:
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Figure 2.7: Elongation diagram.

Fe1 = ke∆l (2.21)

This force would also generate a torque:

Pe1 = 0.5l × Fe1 (2.22)

Half of the segment taken to calculate elongation torque since the rotation happens

around the center of the segment. Since from physics of rigid bodies it is known that:

F

A
= E

∆l

l
, (2.23)

F = EA
∆l

l
, (2.24)

where A is the cross section area of the cylinder and E is Young’s modulus. By

comparing eq. (2.21) with eq. (2.24) it can be concluded that:

ke =
EA

l
=
πr2E

l
, (2.25)

Interactions like these are used by Yamamoto and Matsuoka [65] to describe inter-

action between spheres connected by elastic springs.

As was mentioned, the fibers with the proposed model are not extensible. Although

elongation interactions are implemented to ensure fiber continuity, discontinuity can

still occur. Due to the nature of elastic springs, the model form will allow fibers to
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elongate (and thus become dis-continuous) under certain conditions such as, high

elongation forces and low Young’s modulus. Since Youngs modulus is a physical

property, it can not be set arbitrarily high to prevent elongation. In reality, inexten-

sible fibers under such conditions will simply break but since breakage is not covered

by the current model the fibers will appear to become longer. Hence the limit of

such extension should be set as extension at break of the material. Numerically as

the fibers extend, the rigid segments assembling this fiber should extend as well,

but in the current model they stay the same, which results in inaccurate calculation

of torque and friction coefficients hence under high elongation the model loses its

accuracy.

2.3.2 Bending

The second interaction between rigid segments is resistance to bending. The bending

torque is given by eq. (2.26).

Pb = kb(θ0 − θ), (2.26)

where θ is the angle between two segments, θ0 is the equilibrium angle between the

two segments, which is taken as π, and kb is bending constant. As in the case of ke

it is important to express kb as a function of the material property and the geometry

of the segments:

Pb = E
IA
R
, (2.27)

where R is radius of curvature and IA is the area moment of inertia. From the

geometry as represented in Figure 2.8:

γ

2π
=

l

2πR
, (2.28)
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R =
l

γ
, (2.29)

substituting eq. (2.29) into eq. (2.27)

P = E
IAγ

l
(2.30)

From the geometry as represented in Figure 2.8:

γ = π − θ (2.31)

and for circular cylinder with diameter d:

IA =
πd4

64
, (2.32)

Substituting eqs. (2.31) and (2.32) into eq. (2.30)

Figure 2.8: Bending diagram.
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Pb =
πEd4(π − θ)

64l
(2.33)

By comparing eq. (2.33) with eq. (2.26):

kb =
πEd4

64l
(2.34)

Schmid et. al. [79] and Yamamoto and Matsuoka [65] obtained the same expression

for kb. As seen from Figure 2.8, one of the base assumptions of this calculation is

that the length of the arc with radius of curvature R is equal to 2l, which is correct

for small deformations. As the deformation of the fiber increases the model will

Figure 2.9: Schematic representation of bending torque with imeginary force Fbp.
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become less accurate. As was previously shown, in order to solve eq. (2.19) the

torque is decomposed into torque generated by forces from x and y directions. This

is a simple task for torque which is calculated from forces (for example elongation

torque eq.(2.22)) since the x and y vector components of the force are known. Since

bending torque calculation path does not go through force calculation but rather a

direct calculation of torque through eq. (2.26) its decomposition is more complex.

The direction of bending torque ε is calculated by:

ε =
pi × pi−1

(pi × pi−1)
, (2.35)

where pi and pi−1 are vectors representing rigid segments as represented by Figure 2.9.

In order to decompose the bending torque an imaginary force Fbp is employed. This

force will be imaginary and will not participate in any calculations other than the

decomposition calculation of the bending torque. This is done in the following man-

ner:

• Set a unit vector ε to be perpendicular to a vector pi representing a rigid seg-

ment.

• Calculate pi × ε, if the result is of the same sign as the bending torque then ε

is the direction of the force Fbp, else multiply ε by -1.

• Calculate the size of Fbp by:

Fbp =
(Pb)

l

• The force size and direction are then εFbp

Once the imaginary force vector is calculated the decomposition is trivial:

P j
b = l × F j

bp (2.36)

Since now there are multiple rigid segments connected to each other it can no longer

be assumed that they are moving at the velocity of the fluid at their center of mass.
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Linear and radial movement of rigid fibers is calculated through a force and torque

balance on the fibers.

m
dvj

dt
= F j

h + F j
e (2.37)

a
dωj

dt
= P j

h − k
jωj + P j

e + P j
b (2.38)

Similar assumption to Jeffery [16] is made, assuming non-inertial flow, thus elimi-

nating the derivatives in eqs. (2.37) and (2.38) reducing them to:

0 = P j
h − k

jωj + P j
e + P j

b (2.39)

0 = F j
h + F j

e (2.40)

In order to express the linear velocity of rigid segments from eq. (2.37), F j
h is replaced

with the drag force equation:

0 =
∑

6πrµ
(
V j − V j

0

)
+ F j

e (2.41)

From eqs. (2.39) and (2.41) expressions for radial velocity ω and linear velocity V

are extracted:

ωj =
P j
h + P j

e + P j
b

kj
(2.42)

V j
0 =

∑
µ6πriV

j∑
6πriµ

+
F j
e∑

6πriµ
= V j

avg +
F j
e∑

6πriµ
≈ Vfluid +

F j
e∑

6πriµ
(2.43)

Eq. (2.43) is analytically correct for simple shear flow and other linear flows, while

for non-linear flow it is an approximation for short cylinders. Practically it is hard to
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calculate
∑

6πriµ where ri is the radius of the projected spheres both from cylinder

length and its cross-section since ri is fiber diameter dependent and changes with

orientation. Eqs. (2.44)-(2.45) were found to provide good results when compared to

results obtained from the literature [34], [65], [79].

∑
6πrxi µ = 0.5·6·π·µ(d+ (l − d) sin (θ)) (2.44)

∑
6πryi µ = 0.5·6·π·µ(d+ (l − d) cos (θ)) (2.45)

2.4 Interactions

In the proposed model, interactions are implemented through elastic collisions through

the Walton and Braun model [106]. Cylinders are represented through a collection

of spheres. In the next step, the distances between each two sphere’s centers are

calculated. Once the distance between the centers of spheres from different cylinders

is less than the sphere’s diameter, elastic collisions and subsequent torques are being

calculated. Force and torque caused by collisions are:

Fc = nQδ, (2.46)

Pc = l × Fc, (2.47)

where n is the unit vector connecting two centers of spheres in the direction of the

sphere whose force is calculated, Q is the elastic collision constant, which is effectively

a numeric penalty multiplier for overlapping of objects and δ is the overlap distance

between two spheres as shown on Figure 2.10.
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Figure 2.10: Schematic representation of elastic collision force.

Taking all of these factors into account the overall equation for force and torque

balance are represented in eqs. (2.48) and (2.49)

0 = Fh + Fs + Fb + Fint (2.48)

0 = Ph + Pb + Pint − kω (2.49)

For interaction implementation the coefficient Q from eq. (2.46) is determined. As Q

increased the time step is decreased hence it is needed to find the lowest coefficient Q

possible. It was determined that Q could be reduced to a value of 100 kg/s2 without

affecting the quality of results.

By knowing the distance between any two spheres it is possible to introduce addi-

tional interaction models such as lubrication forces eq. (1.31).

2.5 Tolerance

Finally before running the overall model, error tolerance of the model has to be

determined. In order to determine the appropriate tolerance of the ODE15s solver

used to solve the described model for a simple shear flow field the following tests

were preformed. First the Young’s modulus was set to a high value that would
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Figure 2.11: Cycle times of rigid fiber of axis ratio of 40 solved for two different tolerances.

guarantee rigid behaviour, then simulation was run and cycle time was measured

for sequential cycles. This was done for different tolerance values until a tolerance

that gave stable cycle time was found. Then Young’s modulus was set to flexibility

limit a fiber shapes were observed. In the case that the resulting fiber shapes are not

symmetrical tolerance has to be further decreased. Results of one of such methods

are presented in Figure 2.11. In Figure 2.11 a rigid fiber with axis ratio of 40 was

simulated with multiple rotation cycles in two simulations with different tolerances.

It could be seen that while for tolerance of 10−6 the cycle time is constant, it fluctuates

for the tolerance of 10−3. In order to achieve symmetric results for the flexible fiber

case in the simple shear field (γ̇ = 4s−1) the tolerance should be even further reduced

to 10−10.
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2.6 Summary

As could be seen through Chapter 2 multiple parameters are needed to implement

the model. Table 2.1-2.3 summarizes the parameter that are needed for the model.

In addition to the parameters described Table 2.1-2.3 additional parameters may be

required in order to calculate the flow field, for example if the fiber is simulated in a

simple shear flow, shear rate has to be provided.
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Property Symbol Unit Comment
Cylinder diameter d m Diameter of the fiber
Cylinder length l m Length of the fiber

Young’s modulus E Pa Young’s modulus of the fiber
Viscosity µ Pa·s Viscosity of the polymeric matrix

Table 2.1: Physical properties in the system

Property Symbol Unit Comment
Major axis friction coefficient A1 N ·m·s Calculated by fitting the

results to Jeffery’s model
Minor axis friction coefficient A2 N ·m·s Calculated by fitting the

results to Jeffery’s model
Elongation constant ks N/m Calculated through

Young’s modulus and
fiber geometry

Bending constant kb N ·m Calculated through
Young’s modulus and
fiber geometry

Table 2.2: Calculated properties in the system

Property Symbol Unit Comment
Number of rigid segment n NA Found by showing that

larger number of seg-
ments doesn’t change the
results

Number of sphere in projection B NA Found by showing that
larger number of spheres
doesn’t change the re-
sults

Tolerance ε NA Found by showing that
lower tolerance doesn’t
change the results

Table 2.3: Model parameters in the system



Chapter 3

Simple Shear

In the current chapter the proposed model is applied and validated for the simple

shear flow case. Simple shear is ideal for model application and validation for several

reasons. First, simple shear flow could be regarded as 2D flow and since the proposed

model is currently in a 2D form simple shear is a perfect engineering application for

this model. Second, the literature contains many experimental and computational

results for flexible fibers under the influence of a simple shear flow. Hence it is

possible to compare the results of the proposed model to other results available in

the literature.

3.1 Rotational Friction Coefficients

Note:The results of this section were obtained using Matlab2013 using ode15s solver.

By applying the proposed model to the case of fibers with λ=1, for various fiber

lengths in various conditions and comparison to Jeffery’s model a correlation to K1

from eq. (2.12) was obtained. This correlation is presented in eq. (3.1):

K1 = 0.25 · π · l3 · µ, (3.1)

where l is fiber length and µ is fluids viscosity.

48
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The constants K1 and K2 from eq. (2.18) calculated by eq. (3.1) did not provide a

good match between our model and Jeffery’s model for finite aspect ratio cylinders.

In order to calculate K1 and K2 constants of the rotational friction coefficients the

following calibration procedure was performed in a simple shear flow environment:

i. Length and diameter of the fiber are defined.

ii. Length of the fiber is divided to designated number of rigid components.

iii. Eq. (1.7) is solved for the geometry of rigid component using the equivalent axis

ratio. Eq. (2.19) is solved for a rigid component. By fitting the solution of

Eq. (2.19) to Eq. (1.7) rotational friction coefficients k are determined.

iv. Young’s modulus E is set to a high value. Eqs. (2.48) and (2.49) are solved for

each rigid part with iterations for each step of time.

v. Cycle time of rigid rod (high E) combined out of number of rigid components

is compared to anticipated value from the solution of Jeffery’s model Eq. (1.7)

for equivalent axis ratio obtained from experimental data [34]. If match is not

adequate, step iii is repeated. Thus in order to calculate the constants K1 and

K2 simulation results are fitted to any two points of experimental results [34],

which describe the actual cylinder axis ratio and its corresponding period of

rotation for several axis ratio cylinders.

vi. Once step v is completed, Young’s modulus may be reduced so that flexible be-

havior could be achieved. Longer or shorter fibers could now also be constructed

using rigid component obtained in step ii and friction coefficients obtained in

steps iii-v.

K1 and K2 constants from eq. (2.18) for different geometries are summarized in Table

3.1. Results in Table 3.1 are presented for viscosity of 1000 Pa · s , K1 and K2 are

first order viscosity dependent. The coefficients that are presented in table 2 were

calibrated to give cycle of rotation of approximately 54.8±0.1 seconds for a combined

rigid cylinder with axis ratio of 60.
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Table 3.1: Friction coefficient parameters for several cylinder dimensions.
l[m] d[m] A1[N ·m·s] A2[N ·m·s]
0.0012 0.0002 1.145E-06 1.15E-07
0.001 0.000166 6.63E-07 6.67E-08
0.001 0.0002 6.87E-07 8.49E-08
0.001 0.00025 7.12E-07 1.123E-07
0.0008 0.0002 3.65E-07 5.75E-08

3.2 Rigid Cylinder

The results of a simulation for a rigid cylinder constructed from one rigid component

eq. (2.19) using the friction coefficient eq. (2.18) and its comparison to Jeffery’s model

eq. (1.7) are shown in Figures 3.1 and 3.2.

It could be seen from Figures 3.1 that for the case where λ=1 the model perfectly

matches the solution of eq. (1.7). For the case where λ6=1 (Figure 3.2) the proposed

model fits well to the solution of eq. (1.7) with a slight mismatch, due to represen-

tation of the cross section plane with two connected spheres at the center. All the

results presented are obtained with viscosity of 1000 Pa·s.

The model is designed for long fibers hence it has a lower bound of axis ratio at which

it could be used because of the assumption on the representation of the cross section

Figure 3.1: Comparison between simulation and Jeffery’s model solution for the following
conditions: l

d
=∞, γ̇ = 41

s
, l = 0.001.
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Figure 3.2: Comparison between simulation and Jeffery’s model solution for the following
conditions: l

d
= 5 (4.3 equivalent), γ̇ = 41

s
, l = 0.001m.

area. This model showed poor correlation to Jeffery’s model for rigid cylinders with

axis ratio below four.

Additional simulations were conducted to prove that rotational friction coefficient

k from eq. (2.19) is independent of the flow field type and flow field parameters

such as shear rate and only affected by orientation, geometry and viscosity. Figure

3.3 presents the comparison between the simulation and Jeffery’s model eq. (1.7)

Figure 3.3: Friction coefficients as a function of shear rate.
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solution for the same rod geometry (and same friction coefficients), but different

flow conditions for the fiber with λ=1. Simulation results matched Jeffery’s model

results in all the tests. Hence it could be concluded that friction coefficients are

independent of flow conditions. Since the friction coefficients are not affected by the

flow conditions it is possible to use in any general flow case under the condition that

it does not violate non-inertial flow assumption.

The long rigid fiber was modelled by combining several rigid cylinders (1-20 rigid

cylinders). By setting a high value of Young’s modulus and subsequently high ks and

kb long rigid fiber behavior is achieved. Jeffery’s model was developed for ellipsoids;

however, it can be used for cylinders as long as the equivalent axis ratio of ellipsoid

A.Re is used to represent the axis ratio of a cylinder A.Rc. The results of the

simulated equivalent axis ratio were compared with experimental data [34] in Figure

3.4 and were found to give a good approximation.

For a single rigid part simulation with friction coefficients from Table 3.1, cycle time

and consequently equivalent axis ratio matches perfectly to cycle time obtained from

Jeffery’s model eq. (1.7) (Figure 3.2). The comparison between the cycle time of a

fiber combined out of several rigid parts (Figure 3.4) with these coefficients shows

Figure 3.4: Comparison between simulation and experimental [34] periods of rotation of
a rigid fiber as a function of aspect ratio.
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slight deviation from the experimental value. This is because the friction coefficients

are fitted to match cycle time obtained from Jeffery’s model and a simulation for a

single rigid rod, while the results for fibers constructed out of several rigid segments

are calculated using the friction coefficients that were obtained in Table 2.1 using

the calibration with any two points from Figure 3.4.

3.3 Flexible Fiber

In the simple shear flow field, a flexible fiber with initial position perpendicular to

the flow direction is expected to first rotate rigidly for π/2 until it lies horizontally

then it will start to bend into a “S” form and rotate. In each cycle the “S” form

will open back into horizontal line and then start to bend again. This behaviour is

described both in experimental [31,63] as well as in theoretical [65,67,68,107] works.

Flexible long fiber was simulated by combining cylinders (16 cylinders in Figure 3.5)

with cylinder axis ratio of five (5) and varying Young’s modulus. These simulations

were conducted with a shear rate of 4s−1. Note that the snapshots of fiber shapes

in Figure 3.5 are not given at equal time intervals between fiber shapes as well as

that the time intervals are different between shapes from different Young’s modulus

cases.

The results match well to previous work. One can also notice that the cycle time

is increasing as the fiber becomes more rigid as described in the literature [65]. In

order to measure the critical Young’s modulus value after which the fiber will start

to bend. A ∆θ parameter was introduced, according to eq. (3.2), and graphically

shown in Figure 3.6.

∆θ = θ1 − θn, (3.2)

where θ1 is the orientation of the central rigid part and θn is the orientation of the

rigid part from the end of the fiber.
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Figure 3.5: Flexible fiber transition states through rotation in a simple shear flow γ̇ = 41
s
.

The flow is from left to right.

As it could be seen from Figures 3.7 ∆θ is decreased to approximately –π which

could be also confirmed by Figure 3.5. Figure 3.8 presents ∆θ for the rigid case in

Figure 3.5. In this case it was expected to get ∆θ = 0 for all time steps since the

fiber is rigid. The results, however, show some level of flexibility which is due the

nature of the model and numerical error. Due to this it is needed to set a threshold

for ∆θ beneath which the fiber will be considered rigid. From visual observation of

the results this threshold was set to 0.02 ± 0.005 radian. Note that the x axis on

Figures 3.7 and 3.8 are time step increment and not actual time with the time step

size through the simulation is changing as the solver is picking the maximum size

step that would still maintain a stable solution.

Flexible fibers with various A.Rc were constructed out of cylinders with A.Rc of 5

and various Young’s modulus values were simulated. A critical Young’s modulus

values, at which bending begins, was obtained. These values were compared with

theoretical values obtained from eq. (3.3) [31]:

µγ̇

Eb
=

ln (2A.Rc)− 1.75

2A.R4
c

, (3.3)

where A.Rc is major axis length divided by minor axis length or in our case just
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Figure 3.6: Graphical representation of bending parameter.

Figure 3.7: ∆θ calculations for the E = 109Pa case from Figure 3.5.
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Figure 3.8: ∆θ calculations for the E = 1010Pa case from Figure 3.5.

l/d of the fiber, Eb is bending modulus, which is approximately twice the value of

Young’s modulus E, µ is matrix viscosity and γ̇ is shear rate [108]. The simulation

results match theoretical results closely if equivalent axis ratio is used to calculate

the theoretical value in eq. (3.3).

In order to investigate the effect of number of segments representing a flexible fiber on

the results, a fiber of 12 mm length and 0.2 mm diameter was divided into segments

of axis ratio 6,5 and 4. The resulting fibers were composed of 10, 12 and 15 segments

respectively. In addition, fiber length of 24 mm and 0.2 mm diameter was divided

into segments of the same axis ratio as previous, which resulted in fibers composed

of 20,24 and 30 parts. These fibers were simulated with various values of Young’s

modulus (108−109Pa). Fibers combined of segments with smaller axis ratio produced

smoother shapes. This result depended on the axis ratio of the components, but not

on the number of components. The differences between fibers composed from axis

ratio segments decreased as Young’s modulus increased. This behaviour could be

observed in Figures 3.10 and 3.11. Figure 3.11 shows that although fibers composed

out of axis ratio elements of l/d = 4 and l/d = 6 give very similar results at higher

Young’s modulus a fiber composed out of elements with Young’s modulus of l/d = 5

gives a very different result, we believe that this is a result of numerical error.



3.3. Flexible Fiber 57

Figure 3.9: Comparison between theoretical [31] and simulated values for critical Young
modulus values for buckling.

Figure 3.10: 12 mm fiber made out of rigid parts with axis ratio of 4,5 and 6 with Young’s
modulus of 108Pa at shear rate of 4s−1.
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Figure 3.11: 12 mm fiber made out of rigid parts with axis ratio of 4,5 and 6 with Young’s
modulus of 109Pa at shear rate of 4s−1.

3.4 Calculation time

Table 3.2 summarizes the time taken to simulate various fibers in the period of 100

s under a shear rate of 4s−1. The simulations were done on a computer with eight

inter Xeon 2.4 GHz processors. Although the qualitative results could be interpreted

the quantitative results in this table can change due to code optimisation or fiber

initial position (position on the y axis). The initial position in simple shear flow does

not change the calculation results (since the calculation is always symmetric to the

center of the fiber). Calculation time will change, since the higher the fiber is located

on the y axis the higher its linear velocity which will result in higher calculation

time. For a single segment fiber, fiber with lower length to diameter ratio takes

more simulation time since it has to make more rotation periods in a given time.

It could be seen that increasing the number of segments increases the simulation

time. Increasing Young’s modulus also increases the simulation time dramatically.

As Young’s modulus increases the fiber becomes more stiff, for the same Young’s

modulus shorter fiber will be more stiff than longer fiber hence for the case where

both fibers could already be treated as rigid a shorter fiber would take longer time

to simulate.
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axis ratio of
rigid component

Number of
components

Young’s
modulus [Pa]

Number of
simulation steps

Simulation
time [s]

4 1 - 5105 152
5 1 - 4530 132
6 1 - 4202 126
5 12 107 6245 1683
5 12 109 4417 3022
5 12 1011 47061 86136
5 16 107 6559 2264
5 16 109 5087 4701
5 16 1011 29634 72500

Table 3.2: Number of simulation steps and simulation time for various fibers simulations
(initial position of fiber’s center of mass was at [0.8, 0.8]
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Squeeze Flow

In order to study fiber orientation in a compression molding flow, it is important

to find a reliable compression molding solver. In order to simplify the calculations,

compression molding flow is approximated by a rheometric squeeze flow.

In the present chapter, dynamics of a rigid fiber in a rheometric squeeze flow will be

studied as well as long flexible fiber orientation and deformation will be solved in two

systems Table 4.1 of rheometric squeeze flow using the solution by Gupta [102]. The

first system (System A) results are shown in Figure 4.1-Figure 4.16 and it is for the

case of c = a0�lf , where a0 is the initial distance between the center of the mold

and the plate, c is half the plate length and lf is fiber’s length, in this system the

size of the fiber is significantly smaller than the size of the compression axis. Second

system (System B) results are shown in Figure 4.17-Figure 4.20 and it is for the case

of c > a0 > lf in this system the size of the fiber is comparable to the size of the

compression axis. The parameters chosen for both systems are presented in Table

4.1.

The solution by Gupta [102] does not make simplifying assumptions, such as neglect-

ing the time derivatives and assuming ∂vx
∂x
� ∂vx

∂y
. Hence it is possible to compare a

real case system where these assumptions are true (system B) to the extreme case

(system A) where these assumption no longer hold and see the full effect of rheomet-

ric squeeze flow on a long flexible fiber. Such a comparison allows study of all the

60
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effects in the system. In addition both systems have to be large enough to neglect

wall effects as they are not included in the model. According to eqs. (1.48), (1.49),

(1.50) the velocity of the fluid in the y direction is proportional to 1/a while the

velocity in the x direction is independent of a. Hence by reducing the gap between

the plates in system B compared to system A but leaving the length of the plates the

same in both systems equal dimensionless velocity between two systems is achieved.

Therefore a fiber starting at the same dimensionless coordinates (x/c, y/a) in both

systems, at time t would be found in the same dimensionless coordinates in both

systems thus allowing a comparison.

Flexible fiber orientation in a squeeze flow field was obtained using Gupta [102]

solution for a rheometric squeeze flow sytem which is described in Figure 1.10 for

system A. According to Gupta [102] analytical solution to rheometric squeeze flow

problem exists for the case where the distance between the system’s horizontal center

line and the upper wall could be represented through eq. (1.47). Upper plate velocity

(for system A) as a function of time is shown in Figure 4.1 and its location (for system

A) as a function of time is shown in Figure 4.2. Velocity values as a function of time

were obtained by calculating a derivative of eq. (1.47) with respect to time, the

resulting expression is given in eq. (4.1).

Vw = 0.5M
(
a2
o +Mt

)−0.5
(4.1)

Gupta’s rheometric squeeze flow is given by eqs. (1.49) and (1.50). The solution for

the upper left rectangle marked in Figure 1.10 is represented in Figure 4.3.

Shear rate, γ̇, which is effectively the scalar value of the deformation tensor D can

Table 4.1: System’s A and B parameters.
Parameters System A System B

a0/c 1 0.1
c m 1 1
R 0.05 0.0005

µ Pa·s 1000 1000
ρ kg/m3 1000 1000
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be calculated for a general flow through eq. (4.2) [109,110]

γ̇ =
√

2D : D (4.2)

The proposed model [111] was run on MATLAB 2014a Using Linux system ma-

chines provided by SHARCNET. The differential equations were solved using ode23tb

solver. The tolerance for all the simulations was set to 10−10.

The vorticity tensor is calculated for vx and vy separately in order to evaluate which

direction of rotation will be preferred by flow from each direction.

σy = 0.5·

0 0

0 dvy
dy
− dvy

dy

 = 0, (4.3)

σx = 0.5·

 0 dvx
dy

−dvx
dy

0

 . (4.4)

Figure 4.1: Upper plate velocity as a function of time.
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Figure 4.2: Upper plate location as a function of time.

Figure 4.3: Solution of a squeeze flow system (for system A).
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It can be seen from eq. (4.3) and (4.4) that the vorticity tensor for vy is zero and thus

it will not generate rotation and hence the velocity from y direction will contribute to

orientation only by forcing the rod into an equilibrium position, which is horizontal

(vertical position is an unstable equilibrium position), dvx/dy is negative in this

quarter of the solution and thus vorticity tenor for vx will generate negative radial

velocity.

4.1 Rigid Fiber

Squeeze flow presented in Figure 4.3 was investigated with respect to Jeffery’s model

[16]. Rigid fiber orientation depends on the fiber’s initial position and axis ra-

tio(A.R). Figure 4.4 shows that as the ratio of length to diameter of the fiber de-

creases, its angular velocity (at least initially) decreases. This is due to the fact that

according to initial vertical position the length of the fiber is forced into rotation by

the x component of the velocity, vx, but on the other hand slowed by y component

of the velocity, vy acting on the cross section of the fiber, since the cross section of

the fiber is in an equilibrium position with respect to vy. Figure 4.5 shows that the

trajectory of orientation will depend on the initial position of the fiber.

Solution of Jeffery’s model in a squeeze flow field presented in Figure 4.3 was com-

pared with the solution of the proposed model. For λ = 1,4.6, the model perfectly

matches the solution of Jeffery’s model. These results are additional proof that rota-

tional friction coefficients previously obtained in simple shear flow are independent of

flow conditions. In addition these results validate the proposed model for a squeeze

flow case. For λ 6= 1, Figure 4.7, the proposed model fits well to the solution of

Jeffery’s model with slight mismatch (maximum of 5% at some points), this is due

to several base assumptions of the model: the effects of cylinder length and its di-

ameter on hydrodynamic torque are decoupled and the effect of cylinder diameter

on the hydrodynamic torque is represented through two connected spheres located

at the center of the cylinder and perpendicular to its length [111].
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Figure 4.4: Solution of Jeffery’s model for a fiber of different axis ratio, λ, under squeeze
flow. Fiber initial coordinates are (xo, yo) = (0.8, 0.8).

Figure 4.5: Solution of Jeffery’s model for a fiber at different initial coordinates for λ = 1.
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Figure 4.6: Comparison between simulation and Jeffery’s model solution for: l
d

= ∞,
l = 1mm.

Figure 4.7: Comparison between simulation and Jeffery’s model solution for: l
d

= 5,
l = 1mm.
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4.2 Flexible Fiber

Fiber orientation and deformation in squeeze flow for three values of Young’s modulus

107, 108 and 109Pa were simulated for systems A and B. Fiber length was set to

16mm, combined from 16 segments with each rigid segment having an axis ratio

of 5. Fiber was placed in vertical position (θo = 0.5π) with its center mass at

different initial positions: (x/c, y/a0) = (0.8, 0.8), (0.8, 0.4), (0.8, 0) one more initial

position was tested for each system (x/c, y/a0) = (0.8, 0.003) for system A and

(x/c, y/a0) = (0.8, 0.03) for system B. Where the line (1,y) represents the vertical

mid-line of the mold, the line (x,1) represents the upper wall of the mold and the

line (x,0) represents the horizontal center of the mold. Note that the last position

dimensionless coordinates differ from each other but the absolute coordinates are the

same (x, y) = (0.8, 0.003). As previously mentioned systems A and B are selected in

such a manner that at time t, fiber will be located at the same dimensionless position

(x/c, y/a). Figures 4.8 presents the path that fiber’s center of mass from Figures 4.9-

4.15 (system A) and Figures 4.17-4.20 (system B) takes. Each point in Figure 4.8

represents the position of the center mass of the fiber at the following times: 0, 2.37,

5.54, 8.13 and 8.8 seconds. Snapshots of fiber shapes were also taken at these times

and plotted in order to see the evolution of fiber orientation and deformation in

this process, and these results are shown in Figures 4.9-4.15 (system A) and Figures

4.17-4.20 (system B).

System A

Figure 4.9 and Figure 4.10 show that when the fiber is placed above the (x, 0) line

it will orient itself in the direction of the elongation flow which exists in the center

between two plates. If the fiber is not rigid enough the fiber will go through a

transition stage in which it will get distorted before it will get straightened and

lie horizontally. As the fiber is placed closer to the (x, 0) line (Figure 4.10) the

Young’s modulus that was previously sufficient to keep the fiber straight is no longer

sufficient, due to the fact that shear rate is increasing with the decreasing distance
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to the middle.

Phelps et. al. [112] investigated fiber breakage in LFT materials prepared by injec-

tion molding and found that it was due to bending and elongation. In their work

they developed a fiber breakage prediction model and compared experimental and

computational fiber distribution lengths. It could be seen from Figure 4.9 C that

once the fiber is close to the horizontal position its segments start to separate. This

happens due to velocity gradient in the x direction, the elongation is induced due

to the fact that front segments are faster than the back segments. Since current

simulation does not include breakage, for a small enough Young’s modulus the fiber

will simply stretch although in reality if the fiber is brittle it will break, such results

could also be observed in Figure 4.9 - Figure 4.20.

Figure 4.8: Path of fiber’s center mass from Figures 4.9-4.20.
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Figure 4.9: Fiber orientation and deformation in squeeze flow for three values of Young’s
modulus A.109Pa,B.108Pa and C.107Pa for fiber placed at the initial position of
(x/c, y/a0) = (0.8, 0.8) using coordinates of Figure 1.10. The fiber is presented at times:
0, 2.37, 5.54, 8.13 and 8.8 s.



70 Chapter 4. Squeeze Flow

Figure 4.10: Fiber orientation and deformation in squeeze flow for three values of
Young’s modulus A.109Pa,B.108Pa and C.107Pa for fiber placed at the initial posi-
tion of (x/c, y/a0) = (0.8, 0.4) using coordinates of Figure 1.10. The fiber is presented at
times: 0, 2.37, 5.54, 8.13 and 8.8 s.
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It could also be noted that during fiber orientation in Figure 4.9 -4.15 very sharp

angles between rigid segments could be observed. These effects do not necessarily

suggest buckling and could simply be visual effects due to the nature of the model.

In the proposed model flexible fiber continuity is achieved by connecting several rigid

segments together with elastic springs. This method achieves fiber continuity but

does not provide continuity in the derivative of the shape hence the obtained shapes

are not always smooth. In some cases these effects could be mitigated by reducing

the axis ratio of the constructed rigid segments. The proposed model is limited to

rigid segments with axis ratio of 4 and above. Attempting to solve these cases with

20 segments with axis ratio of 4 did not change the results much and the sharp angles

remained.

These results are not limited to low Young’s modulus values. In a simple shear flow

case fiber bending is governed by Weissenberg number (We) shown in eq. 4.5.

We =
µγ̇

E
(4.5)

Similarly in squeeze flow the same results could be obtained with higher Young’s

modulus values providing that the value of viscosity is increased by the same pro-

portion, although unlike in simple shear flow case in squeeze flow kinematic viscosity

has to remain the same in both cases since according the eq. (4.1) the flow field

in rheometric squeeze flow will depend on kinematic viscosity unlike simple shear

flow field which depends only on the shear rate. The relationship between viscosity

and Young’s modulus could be easily seen through model eq. (2.42). The numerator

term P j
h is first order viscosity dependent while the other two numerator terms P j

e

and P j
b are first order Young’s modulus dependent, the only denominator term kj is

first order viscosity dependent. Hence it could be seen that increasing both Young’s

modulus and viscosity by the same proportion will not influence the result. The

analysis for the shear rate in squeeze flow is much more complicated since it changes

in time and space. In addition, unlike in the simple shear flow case, the shear rate

in squeeze flow is dictated by two velocity components hence the bending should
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also be dependent on at least two parameters. This suggests that unlike in simple

shear flow, bending in squeeze flow can not be analysed by We number, which de-

pends only on one flow parameter the shear rate. The scalar value of shear rate in

a rheometric squeeze flow is decreasing as the distance from horizontal center of the

system is increased. Hence the shear rate that acts on the fiber in Figure 4.9 is lower

that in the case solved in Figure 4.10. It could be seen that larger shear rate causes

the fiber to exhibit less rigidity in Figure 4.10 than in Figure 4.9. The values of the

shear rate could be seen from Figures 4.11-4.13.

In Figure 4.14 A and B relatively small angles could be observed between segments,

such a high bending can cause breakage in brittle materials. Similar results could

be seen also in Figures 4.15, 4.16, 4.19 and 4.20. As mentioned previously, breakage

is not included in the current model, and thus no breakage occurs in the simulation

and the fiber continues to deform.

In order to incorporate buckling breakage into the model a critical angle θc should

be set. When the angle between two adjacent rigid segments goes below θc the fiber

will break at the connection between the segments. A similar approach was used by

Lee [113] with an experimental value of θc.

In another investigation the fiber was placed with its center mass at (x, 0) line these

results are presented at Figure 4.14. In this case the fiber will bend into an accordion

Figure 4.11: Shear rate in system A at time t = 0.
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Figure 4.12: Shear rate in system A at time t = 5.

Figure 4.13: Shear rate in system A at time t = 9.

shape form. It could be seen that the fiber is symmetrically bent in this case.

A fiber was also placed asymmetrically to the (x,0) line meaning that the fiber

would still cut through the (x,0) line but the center mass of the fiber will be at

(x/c, y/a0) = (0.8, 0.003). Figure 4.15 shows that a very flexible fiber with Young’s

modulus of 107Pa acts very similarly to the fiber that was placed with its center mass

at (x/c, y/a0) = (0.8, 0) in Figure 4.14. A fiber with intermediate and low flexibility

(Young’s modulus of 108Pa and 109Pa) starts to bend asymmetrically (unlike Figure

4.14A-B, Figure 4.15A-B is not perfectly symmetrical), which results in a different

shape from the one in Figure 4.14. This becomes more evident as Young’s modulus

is increased.
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Figure 4.14: Fiber orientation and deformation in squeeze flow for three values of
Young’s modulus A.109Pa,B.108Pa and C.107Pa for fiber placed at the initial posi-
tion of (x/c, y/a0) = (0.8, 0) using coordinates of Figure 1.10. The fiber is presented at
times: 0, 2.37, 5.54, 8.13 and 8.8 s.
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Figure 4.15: Fiber orientation and deformation in squeeze flow for three values of Young’s
modulus A.109Pa,B.108Pa and C.107Pa for fiber that was placed at the initial position
of (x/c, y/a0) = (0.8, 0.003) using coordinates of Figure 1.10.The fiber is presented at
times: 0, 2.37, 5.54, 8.13 and 8.8 s.
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Figure 4.16: Fiber orientation and deformation in squeeze flow for Young’s modulus of
107Pa. The fiber is placed with center mass at (x/c, y/a0) = (0.8, 0.8) at three different
initial orientations: A. − 0.2π,B. − 0.3π,C. − 0.4π.The fiber is presented at times: 0,
2.37, 5.54, 8.13, 8.8 and 9.2 s.
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A fiber with Young’s modulus of 107Pa was placed with its center of mass at

(x/c, y/a0) = (0.8, 0.8) at various orientations relative to the x axis: A.− 0.2π,B.−

0.3π,C.− 0.4π. The results are presented in Figure 4.16. In these cases the angular

velocity generated by velocity from x direction is competing with angular velocity

generated by the velocity from y direction. Since the vorticity tensor of y velocity

is zero (eq. (4.3)) it generates velocity only through deformation tensor, pushing the

fiber to the fastest track to the horizontal position (which is equilibrium position for

vy). As a result, the fiber which is highly oriented in the direction against the angular

velocity generated by vx (close to horizontal position, case A) will get oriented in the

opposite direction to the fiber which is much less initially oriented in this direction

(close to vertical position, case C), in other words case A will exhibit positive radial

velocity while case C will show negative radial velocity. In case B, which has the

initial orientation between case A and C, the fiber will be severely deformed by the

two rival velocities. These results are presented in Figure 4.16. It was found that

fiber’s linear velocity does not depend on its original orientation or Young’s modulus

hence all the three cases described in Figure 4.16 move in the same path which could

be observed on Figure 4.8 (x/c, y/a0) = (0.8, 0.8) case.

System B

Figures 4.17-4.20 present results of a study of the influence of Young’s modulus

and initial location on fiber deformation for the case where system dimensions are

comparable to fiber length.

Figure 4.17 shows, that the fiber with initial position near the upper moving wall

shown in Figure 1.10 ((x/c, y/a0) = (0.8, 0.8)) will simply orient itself in the

direction of elongational flow, which exists at the horizontal middle line (x, 0). As

the Young’s modulus decreases the fiber will still remain straight, but rigid segments

will start to separate as the Young’s modulus magnitude is not enough to keep the

rigid parts together.

As the fiber is placed closer to the horizontal mid-line (x, 0) of the system in Figure
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Figure 4.17: Fiber orientation and deformation in squeeze flow for three values of
Young’s modulus A.109Pa,B.108Pa and C.107Pa for fiber placed at the initial posi-
tion of (x/c, y/a0) = (0.8, 0.8). The fiber is presented at times: 0, 2.37, 5.54, 8.13 and
8.8 s.
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Figure 4.18: Fiber orientation and deformation in squeeze flow for three values of
Young’s modulus A.109Pa,B.108Pa and C.107Pa for fiber placed at the initial posi-
tion of (x/c, y/a0) = (0.8, 0.4). The fiber is presented at times: 0, 2.37, 5.54, 8.13 and
8.8 s.
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1.10 ((x/c, y/a0) = (0.8, 0.4)), the fiber will bend for lower values of Young’s mod-

ulus (Figure 4.18C compared with Figure 4.17C) as it progresses in the horizontal

direction until at some point it will be straightened and stretched. For higher values

of Young’s modulus the fiber will just orient itself in the direction of the elongation

flow in horizontal mid-line (x, 0) while for smaller Young’s modulus the fiber will

start to bend, as shown in Figure 4.18. As was mentioned previously the snapshots

of fiber deformation progression are all take at the same times namely: 0, 2.37,5.54,

8.13 and 8.8 s hence it allows to compare speed of orientation between cases. It

could be noted that the orientation in the cases presented in Figure 4.17 and Figure

4.18 are more rapid than the orientation observed in Figure 4.9 and Figure 4.10.

Fiber placed at the horizontal mid-line of Figure 1.10((x/c, y/a0) = (0.8, 0)) will get

squeezed symmetrically (Figure 4.19), and the resulting shapes will differ from the

shapes that were obtained in Figure 4.14 by having less potential places for buckling.

A fiber can be placed in a manner such that the horizontal mid-line (x, 0) goes

through it, but does not cut it symmetrically, with its center of mass at (x/c, y/a0) =

(0.8, 0.03). The reason for choosing a different dimensionless position from the one

discussed in system A is that the absolute position (x, y) = (0.8, 0.003) ,which is the

same in both systems, is much more important in this case. If the same dimensionless

position would be chosen for this case the horizontal center would cut too close to

the center of the fiber. In this case the fiber will be squeezed asymmetrically (Figure

4.20). The asymmetry in this case is much more evident than in the case with larger

system (Figure 4.15), and there are less potential places for buckling.

Influence of wall velocity was investigated in Figure 4.21. Case presented in Figure

4.9C was investigated for system A but with R=0.1 (eq. (4.1)) which increased the

wall velocity by more than two (ratio of velocities changes with time). Due to

different velocities, fibers from 4.21 and 4.9C will not be in the same location at the

same time, however, it is easy to prove that the change in the R parameter (which

affects the plate velocity) will not change the path of the fiber hence the comparison

will be made on the basis of space meaning the shapes of the fiber on Figure 4.21



4.2. Flexible Fiber 81

Figure 4.19: Fiber orientation and deformation in squeeze flow for three values of
Young’s modulus A.109Pa,B.108Pa and C.107Pa for fiber placed at the initial posi-
tion of (x/c, y/a0) = (0.8, 0). The fiber is presented at times: 0, 2.37, 5.54, 8.13 and 8.8
s.
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Figure 4.20: Fiber orientation and deformation in squeeze flow for three values of
Young’s modulus A.109Pa,B.108Pa and C.107Pa for fiber placed at the initial posi-
tion of (x/c, y/a0) = (0.8, 0.03). The fiber is presented at times: 0, 2.37, 5.54, 8.13 and
8.8 s.
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still correspond to locations described on Figure 4.8 with the difference that now the

fiber gets to this location at times 0, 1.13, 2.75, 4.07, 4.34 s. By comparing Figure

4.21 with Figure 4.9C it could be seen that the deformation of the fiber is increased

slightly by increasing the wall velocity.

It is desired to have long straight fibers in long fiber thermoplastic part in a compression

process [15], [114]. By studying and comparing results from system A and B, several

operational parameters could be observed, which would contribute to the desired re-

sult. It could be seen that in both systems fibers, which were initially located higher

in the system end up in a straight form and have less potential buckling possibilities

during the flow. Both systems A and B are designed in a way that all the velocities

and velocity derivatives in space are the same for both systems at a dimensionless

coordinate (x/c, y/a) except for two: vy, which is an order of magnitude lower, in

system B; however, since the dimensions of system B are also one order of magnitude

lower, the path of the fiber along the dimensionless coordinate (x/c, y/a) will be the

same in both systems. Since the different plate velocity (a) in the system will not

change the path of the fiber and fiber orientation and deformation is affected by the

relative velocity along the rigid segments and between their centers of mass, which

are the same for both systems, it is expected that different vy will not cause any dif-

Figure 4.21: Fiber orientation and deformation in squeeze flow for three Young’s modulus
107Pa placed at initial position (x/c, y/a) = (0.8, 0.8) in system A, with flow parameter
R = 0.1. Thefiber is shown at time:0, 1.13, 2.75, 4.07, 4.34 s.
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ference in the deformation shapes between two systems. The other parameter that

is different between two systems is ∂vx
∂y

which is one order of magnitude greater in

system B. This parameter appears to be crucial to fiber orientation and deformation

as it is evident from eq. 4.4. It could be seen by comparing the results from system

A and B that the fibers placed in system B are always smoother with less buckling

possibilities and achieve steady state orientation faster than fibers placed in system

A at the same dimensionless coordinate (x/c, y/a). Thus, it can be concluded that

larger ∂vx
∂y

in a system would result in smoother and longer fibers (since they will not

break) and more orientation in the final product. The effect of seeing non-smooth

systems is not limited to large systems, as a smaller system would provide similar

results under the condition that higher axis ratio fiber would be used. According to

We number we would expect that increasing the shear rate would increase the bend-

ing of the fiber. Shear rate in system B is approximately order of magnitude higher

than in system A, however, the fibers in system B seem more rigid than in system

A. Nevertheless when shear rate was increased due to the increase in wall velocity

the fiber showed slightly more bending, hence the effect of shear rate in squeeze flow

on bending can not be explained by simple We number. It was observed for both

systems that unless the fiber cuts the horizontal center line of the system at some

point of time and providing it has enough time it will always end up in a steady

state orientation which is parallel to the plates.
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Interactions

Interactions between fibers are implemented through elastic collisions between fibers.This

is done by representing cylinders through collection of spheres. The method is de-

scribed in detail in Chapter 2.

5.1 Rigid Cylinders

Interactions between two rigid cylinders in a simple shear flow were studied using

the algorithm described in Chapter 2. Two rigid cylinders of 1mm length with axis

ratio of 5 are placed at simple shear flow with shear rate of 4s−1, the initial distance

between centres is set to 0.0006m along the x axis. The results as shown in Figure

5.1. Figure 5.1 describes a cycle of cylinder interactions divided into four stages:

Stage A. In Figure 5.1, the cylinders are first approaching each other through rota-

tion (centers of cylinders remain at the same distance but the head of black

cylinder is approaching the tail of the blue cylinder). Once the cylinders

are touching they can no longer rotate as they can not pass through each

other.

Stage B. At this point the cylinders start to interact with each other in the y axis

direction (the black cylinder is pushed up while the blue cylinder is pushed

85
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down). As the center of the black cylinder gets higher compared to the

blue cylinder, the linear velocity of the black cylinder increases compared

to the velocity of the blue cylinder (in simple shear velocity increases with

the coordinate).

Stage C. The black cylinder, which is now travelling faster than the blue cylinder,

is now passing across the blue cylinder from above while both cylinders

continue to rotate together. Eventually the cylinders switch places and the

cylinder that was originally in the back moves to the front.

Stage D. Due to the fact that the black cylinder is slightly higher than the blue

cylinder it is moving faster, which results in separation.

Several literature sources [24,72,73] agree with steps A-C although the experiments

were made with spheres and not with cylinders. For stage D, however, literature sug-

gests that after the rotation the cylinder’s center mass should be at the same distance

as it was in the initial conditions thus the system has returned to its initial state. The

reason for the results discrepancy between the literature and our simulation is the

absence of attractive force, i.e lubrication force. Several publications show that the

lubrication force, which is a major factor in spheres interactions, is only important

in cylinders interactions in the two dimensional simulation case [68,77].

Mason and Manley [24] showed that the period of rotation T is influenced by inter-

actions. In their experiments they showed that the period of rotation increase due to

presence of other cylinders. It was impossible to obtain quantitative results regarding

the dependence of rotation time from initial fiber distance and length. Rigid fibers

of 0.2mm diameter and various lengths were places to simple shear flow simulation

with shear rate of 4s−1 at different distances from each other. Figure 5.2 presents

the results in dimensionless form of rotation time (rotation time with interactions

divided by rotation time without interactions) change as a function of initial distance

between cylinders. Figure 5.2 shows that as the initial distance between the cylinders

is increased (in the range that still allows interactions) the rotation time increases.

This is due to the fact that the farther the cylinders are apart initially the longer
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is the distance they need to slide across each other (stage C). During stage C the

cylinders are slowing each other’s rotation; hence the longer this stage, the longer

overall rotation becomes. Although all the three axis ratio cylinders fall on the same

line of dimensionless rotation time dependence with dimensionless distance between

fibers, stagnant areas could be seen on the plot, where rotation time remains constant

while the distance is increasing. This area has lengths of approximately one sphere

diameter, which is an indication of numerical error resulting from representation of a

cylinder by a collection of spheres. In the rotation time calculation only half rotation

time is taken into account. During the first half of rotation only repulsion forces are

active and they are taken into account through elastic collision forces, while for the

second period of rotation attraction forces that are not represented in a simulation

would come into effect. Since both halves of rotation period should take the same

time it is possible to include only the first half and simply to multiply it by two.

Figure 5.1: Interactions between rigid cylinders at shear rate of γ̇ = 41
s
.
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Figure 5.2: Normalised rotation time with dependence to ratio of length of cylinders to
initial distance between cylinders centers of mass.
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5.2 Flexible Fibers

5.2.1 Simple Shear Flow

Two flexible fibers with length of 8mm, diameter of 0.2mm and Young’s modulus of

108Pa were placed in a simple planar shear flow with shear rate of 4s−1 viscosity of

1000Pa · s at distance of 4mm from each other, Figure 5.3 shows the results of this

simulation. Interactions between flexible fibers were studied in both simple shear

and squeeze flow cases, these results are presented in Figures 5.3-5.5. For the simple

shear flow flexible fibers will first try to rotate rigidly into horizontal position just

as a single flexible fiber in Figure 3.5. Due to rotation, the back end of the front

fiber and the front of the fiber in the back will start to interact. Just as in the

case of rigid cylinders the fibers will slide across each other pushing the back fiber

slightly up and the front fiber slightly down. As the fibers slide across each other

the combined structure of both flexible fibers starts to bend as if a single fiber was

bending. Eventually the fibers separate and finish the rotation as antisymmetric

version of each other. Due to the lack of lubrication forces just as in the rigid fiber

case flexible fibers are simulated only for the first half of rotation period.

5.2.2 Squeeze Flow

Interactions between flexible fibers in squeeze flow were studied with respect to sys-

tem A defined in Chapter 4. It is difficult to induce interactions in a squeeze flow

due to existence of flow velocity gradient in all directions which results in fibers sep-

arating from each other. Hence in order to observe interactions at least one fiber has

to be fixed in at least one of the directions. This could be done by placing one of

the fibers in the horizontal middle of the system thus fixing it in the y direction. In

Figure 5.4 two fibers with length of 10mm, diameter of 0.2mm and Young’s modu-

lus of 108Pa start in perpendicular position to each other. The first fiber is placed

in horizontal position in the center of vertical axis (0.8,0) while the second fiber is

placed in a vertical position slightly above the first fiber (0.798,0.0051). The hori-
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Figure 5.3: Interactions between 8mm flexible fibers placed in initial distance of 4mm in
a simple shear flow (4s−1) at viscosity of 1000Pa · s.
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zontal fiber is pushed by the flow field from above and below which keeps it straight

and allows velocity only in the vertical direction. Since the horizontal fiber is kept

straight by the flow field it affectively acts as a wall toward the vertical line. The

vertical fiber is hence compressed and bends against the horizontal fiber. In another

simulation the same two fibers are placed in a different position. In Figure 5.5 one

of the fibers start at the position where the first fiber is placed in a vertical position

in the horizontal center line in the system (0.8,0) and the second fiber is pressed to

him at angle of 5/6π and placed at (0.801,0.007). Due to the flow, the first fiber

is allowed to move only in the horizontal direction where it is being compressed by

the flow. The second fiber is moved by the flow toward the horizontal center of the

system, which results in even farther compression of the first fiber. The both squeeze

flow interaction cases were chosen in a way that would allow qualitative prediction of

the results before running the simulation, so that the results could be evaluated. In

both cases the fibers behaved as was expected from them. Lubrication forces are not

important in the rheometric flow case due to low contact area compared to a simple

shear flow case, which is due to the initial position of the fibers and since they are

being separated by the flow.
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Figure 5.4: Interactions between two flexible fibers in squeeze flow where the fibers start
perpendicular position to each other.
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Figure 5.5: Interactions between two flexible fibers in squeeze flow where the fibers start
at an angle of 5/6π angle to each other.



Chapter 6

Conclusions

A two dimensional long flexible fiber model was developed. This model employs

unique torque calculation mechanism presented in Figure 2.5 and rotational friction

coefficients for cylinders eq. (2.18) both of which were developed specifically for this

model. A formula for infinite axis ratio cylinder friction coefficient eq. (3.1) was

obtained. Friction coefficients values for finite axis ratio cylinders were obtained for

several geometry values by fitting (Table 3.1). This new model should be able to

simulate fibers of any length as in its development no length limiting assumptions

were used.

The new developed model was tested in two flow cases: simple shear flow and rheo-

metric squeeze flow.

6.1 Simple Shear Flow

The model was applied for a simple shear flow and compared to known literature

results. The comparison showed that proposed fiber model matches well to exper-

imental results and theory found in the literature (Figures 3.4, 3.5 and 3.9). Since

the model is designed in a general form and it was shown that friction coefficients

are independent of flow conditions (Figure 3.3) it could be applied for a rheometric

squeeze flow case.

94
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6.2 Rheometric Squeeze Flow

Rigid segments simulated in rheometric squeeze flow were compared to results ob-

tained by Jeffery’s model. The results for infinite axis ratio match perfectly to

Jeffery’s results (Figure 4.6) and the results for finite axis ratio matches well (Figure

4.7). The author believes that this results validate the model for rheometric squeeze

flow, as no other simulation or experimental references were found.

The comparison between different systems allowed to find some rules of thumb in

compression molding operation. The fibers should have high Young’s modulus, the

fibers should be located as far as possible from the horizontal center of the mold,the

compression charge should be as thin as possible and the viscosity of the matrix

should be as low as possible.

The effects of elongational and compression of a long flexible fiber were observed in

the solution of the rheometric squeeze flow system. Although the current model does

not permit fiber breakage it could be added into the model thus allowing to predict

fiber breakage providing that material parameters of the fibers would be provided.

6.3 Interactions

Elastic collision interactions were implemented in the proposed model and simula-

tions of fibers were conducted in simple shear and rheometric squeeze flows. Rotation

time dependence on initial fiber distance was studied in simple shear flow and it was

found that in its dimensionless form the results are independent of fibers axis ratio. In

a simulation of flexible fibers in a squeeze flow where one of the fibers was placed hor-

izontally middle of the system, the fiber in the horizontal middle behaved like a wall

as the flow acts symmetrically on the fiber in the vertical direction. This interaction

model can be used for initial study and understanding of interactions between long

flexible fibers. These interactions could then be integrated into a Folgar-Tucker [18]

type of interactions for concentrated suspensions.
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6.4 Future Work

The results presented in this thesis were obtained using Matlab. In several implemen-

tations: squeeze flow and interaction implementation, numerical error was observed

under certain conditions. This error was overcome in squeeze flow by changing the

ODE solver from ODE15s used for simple shear to ODE23tb used in squeeze flow.

The authors, however, could not find the solution to numerical error during interac-

tions calculations under certain conditions. Hence it is important to transform the

code into higher programming level language such as C++ or Fortran where there

are more available ODE solvers.

Current model has to be expanded into three dimensional model. In order for that

to be done rotational friction coefficient has to be expanded to account for the third

dimension and a twisting interaction between rigid segments has to be added similarly

to Yamamoto and Matsuoka [65].

Once the model is expanded into third dimension, concentrated fiber systems could

be solved. The main idea could be easily explained using the Jeffery’s model solution

of a simple shear flow system that could be observed on Figure 1.6. As could be seen

no matter what is the initial orientation of the fiber it will simply continue to rotate in

a predefined manner, hence if the orientation for one fiber is solved it is not necessary

to solve the orientation for other fibers provided that their initial orientation is given.

Although simple shear is easy example since flow pattern and its derivatives are the

same everywhere in the system, the same logic although in a more complex manner

could be applied to harder flow patterns.

The proposed idea will work in the following way: a fragment of concentrated sys-

tem with fibers should be calculated. Overall orientation tensor of rigid segments

composing the fibers in that fragment could then be calculated as well. Orientation

tensor everywhere else in the system can then be calculated by applying a mask that

takes into consideration flow progression and different fiber initial orientation. In

addition systems rheology could also be updated with respect to changing orienta-

tion. This idea can work only for the case that initial orientation everywhere in the
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system is known. The reason this is such case is that the compressed polymer/fibers

charge is prepared via twin screw extruder with patterned screws which means that

the fibers in the charge are also patterned and could be expressed by a mathematical

function.

Finally it is important to validate the model. Some preliminary validation work was

made for this thesis and it is presented in Appendix A. More work should be done

in this direction which would involve the use of different fluid media, different fibers

and different flow conditions. In additions experiments with high concentration of

fibers should also be conducted to study interaction.
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Appendix A

Squeeze Flow Fiber Orientation

Experimental

Several experiments were conducted in order to validate the model. Petroleum jelly

was chosen as a matrix for the experiments due to it being highly viscous and rela-

tively transparent. Petroleum jelly (Vaseline trademark) rheology was tested using

TA instruments AR2000ex rheometer. The test showed a power law behaviour. Sim-

ilar results could be found in the literature [115,116]. The experiment was conducted

under the following conditions: 25mm plates with 0.5mm gap at 22oC. Results in

log-log plot are presented in Figure A.1. Eq. (A.1) represents power law viscosity

material:

µ = Kγ̇n−1 (A.1)

Figure A.1 shows that equation from type of eq. (A.1) could fit the data very well

with power law parameters obtained: K = 81Pa·s0.77, n = 0.23.

Although the petroleum jelly rheology obtained in this research in general is similar

to results obtained in the literature it differs slightly. In [115] sanded plates are

used to measure petroleum jelly viscosity and the constants they found were: K =

190Pa·s0.78, n = 0.22

Polyester sewing thread of approximately 0.2mm thickness was chosen as a fiber.

111



112 Chapter A. Squeeze Flow Fiber Orientation

Figure A.1: Rheology results of petroleum jelly at 22◦C.

Figure A.2: Fiber Young’s modulus measurement.
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Young’s modulus was measured using MARK-10 ESH301L motorized test stand

with MARK-10 series force gauge model MS-10 (5kg capacity) as a load cell. The

tests were conducted under the extension rate of 10mm/min. The results of these

experiments could be observed in Figure A.2. As it could be seen from Figure A.2

the thread was pulled until it was torn at approximately 0.3 relative elongation. A

linear fit was then made to the elastic deformation region and Young’s modulus was

extracted from the slope, which was found to be 2·109Pa which corresponds to data

found online.

Mold for sample formation was a two end open cylinder with 9cm diameter and 3cm

height which was made from poly(methyl methacrylate). The bottom part of the

mold was closed with a petri dish large enough to block one of the exits from the

cylinder mold. Half of the mold was then filled with petroleum jelly all the way

up. A 1.6cm fiber was then placed in a vertical position on the diameter line 2cm

away from the center. The fiber was placed as symmetrically as possible toward the

horizontal line. Once the fiber was in place the other half of the mold was also closed

with petroleum jelly, a petri dish just small enough to pass through the mold (in fact

dishes from the same set with one a bit smaller than the other where used for the top

and the bottom of the mold) was used to push the petroleum jelly pack out of the

mold. Thus we received open edges petroleum jelly puck with a vertical polyester

fiber inside placed between two rigid petri dishes. This puck was then pressed at

a constant speed of 3mm/s (analogical for two walls moving toward each other at

1.5mm/s). These experiments were conducted using MTS press with MTS 25 ton

load cell which was controlled by MTS 458.20 MictoConsole. The results of such

experiments are shown in Figure A.3.

Experiments conducted with petroleum jelly confirmed that the flow in cylindrical

coordinates in radial direction could be approximated to a two dimensional flow. In

all the results the entire fiber could always be found on the rz plane. In addition

it could be seen that the resulting shape resembles previously obtained simulation

results for fibers that were initially placed at the horizontal center of the system.
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Figure A.3: Visualization experiment, resulting fiber shape at 3.3s.

Radial power law squeeze flow solution was obtained from the literature [117, 118]

and it is presented in eqs. (A.2)-A.3 this solution is for the quarter system presented

in Figure 1 although the horizontal center of the system in this case is at r = 0.

Vr =
r

a

(2n+ 1

2n+ 2

(
1−

(z
a

)1+1/n))
(−Vw) (A.2)

Vz =
2n+ 1

n+ 1

( n

2n+ 1

)((z
a

)2+1/n

− z

a

)
(−Vw) (A.3)

In order to solve the model for the power law case several modifications had to be

made. From Chapter 3.1 it is known that the rotational friction coefficients depend

linearly on viscosity hence the values in Table 3.1 were divided by 1000Pa · s (the

viscosity at which they were obtained) and multiplied by the power law viscosity

expression, shear rate for which is calculated at the center of each rigid segment

using eq. 4.2. Linear friction coefficient as well as the calculation of torque were also

modified. A simulation of long flexible fiber in a power law fluid was conducted. A

system with gap of 3 cm (distance between two walls) was defined and the fiber made

out of 16 segments of 1 mm each was placed in the horizontal mid-line at a distance
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of 2 cm from the center along the x axis. The velocity of the plates was set as 1.5

mm/s. Young’s modulus of the fiber was set as 2 · 109 Pa · s. The simulation was

run twice, first for the viscosity parameters measured by the authors and sond for

the viscosity found in the literature [115]. The resulting snap shots of fiber shapes

at 0, 3.3, 4, 5 s.

By comparing simulation results from Figures A.4 and A.5 to experimental results

from Figure A.3 it could be seen that qualitatively the results match well. Quantita-

tively the experimental results match better to simulation results obtained with the

viscosity from the literature. As was previously mentioned it was extremely difficult

to place the fiber exactly in the mid-line and exactly straight at π/2 position. In

addition it could be seen that at 4s of simulation time the fiber is already much

more bent while the difference in compression between the two is only 2mm. Such a

high precision is very hard to control during the experiment, which could be an addi-

tional reason for the mismatch. The linear movement in simulation and experimental

results was approximately the same which resulted in fiber moving approximately

0.5cm in the 3.3s of the experiment. It could also be seen from simulation results

Figure A.4: Long flexible fiber simulation in power law fluid, experimental viscosity.
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Figure A.5: Long flexible fiber simulation in power law fluid, literature viscosity.

that the simulation is highly dependent on the viscosity.

Eqs. (A.2)-(A.3) are obtained using Hele-Shaw assumptions which essentially make

it a Hele-Shaw type solver. It could be seen that the results in Figure A.4 and A.5

resemble results from Figure 4.19A, further increase in viscosity will lead to results

similar to Figure 4.19B.
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