
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-14-2016 12:00 AM 

Synthesis of Metal-Containing Phosphines and Their Use in Synthesis of Metal-Containing Phosphines and Their Use in 

Coordination, Polymer, and Materials Chemistry Coordination, Polymer, and Materials Chemistry 

Amir Rabiee Kenaree, The University of Western Ontario 

Supervisor: Joe B. Gilroy, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Chemistry 

© Amir Rabiee Kenaree 2016 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Inorganic Chemistry Commons, Materials Chemistry Commons, and the Polymer 

Chemistry Commons 

Recommended Citation Recommended Citation 
Rabiee Kenaree, Amir, "Synthesis of Metal-Containing Phosphines and Their Use in Coordination, Polymer, 
and Materials Chemistry" (2016). Electronic Thesis and Dissertation Repository. 4302. 
https://ir.lib.uwo.ca/etd/4302 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/137?utm_source=ir.lib.uwo.ca%2Fetd%2F4302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/135?utm_source=ir.lib.uwo.ca%2Fetd%2F4302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/140?utm_source=ir.lib.uwo.ca%2Fetd%2F4302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/140?utm_source=ir.lib.uwo.ca%2Fetd%2F4302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4302?utm_source=ir.lib.uwo.ca%2Fetd%2F4302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract 

This thesis describes the investigation of a novel strategy for the synthesis of metal-containing 

small molecules, polymers, and nanomaterials. In this context, a new family of air-stable, 

homo- and heterometallic primary, secondary, and tertiary phosphines were prepared via the 

radical-initiated hydrophosphination reaction of PH3 with vinylferrocene and/or 

vinylruthenocene. The full characterization of the phosphines confirmed their targeted 

structures and proved that the properties of the starting metallocenes are reflected in those of 

the resulting phosphines.  

To study the coordination behavior of this family of phosphines, primary, secondary, and 

tertiary ethylferrocene phosphines were reacted with Group 6 metal carbonyl adducts 

[M(CO)5•THF; where M: Cr, Mo, and W] to generate the corresponding metal complexes. The 

successful coordination of all three phosphines to M(CO)5 and their purity were confirmed by 

several characterization methods, such as multinuclear NMR, FT-IR, and UV-vis absorption 

spectroscopy, cyclic voltammetry (CV), and elemental analysis. FT-IR spectroscopy studies 

revealed that ethylferrocene substituents act as electron-donating groups and that the 

σ donating ability of the phosphines were lower than that of PEt3 and higher than that of PPh3. 

To realize highly metallized polymers, two phosphorous-containing frameworks were 

targeted: quaternary phosphonium polyelectrolytes and tertiary phosphine polymers. The first 

iron-containing phosphonium monomer was synthesized by the quaternization reaction of 

tertiary ethylferrocene phosphine with 3-chloro-1-propanol followed by an esterification 

reaction with methacryloyl chloride and a salt metathesis reaction with NaOTf. In addition, 

four styrenic phosphonium monomers were synthesized by the quaternization reaction of 4-

vinylbenzyl chloride with the tertiary ethylmetallocene phosphines (where Fe/Ru: 3/0, 2/1, 1/2, 

0/3) before their counter-anion was exchanged with triflate. All five monomers were 

polymerized in the presence of azobisisobutyronitrile (AIBN) and carefully purified. Analysis 

of the polymers with methods including differential scanning calorimetry (DSC), 

thermogravimetric analysis (TGA), and gel permeation chromatography (GPC) confirmed 

their macromolecular nature. The pyrolysis of thin films of the phosphonium polymers, under 

an inert atmosphere, afforded highly metallized crystalline nanomaterials that were 



 

ii 

 

characterized with techniques such as scanning electron microscopy (SEM) and energy-

dispersive X-ray spectroscopy (EDX). 

Finally, the hydrophosphination reaction of 3-buten-1-ol with a secondary ferrocene- and 

ruthenocene-containing phosphine followed by a N,N'-dicyclohexylcarbodiimide (DCC) 

coupling reaction with 4-vinyl benzoic acid afforded a tertiary phosphine monomer which was 

polymerized, in the presence of AIBN, and yielded a heterobimetallic tertiary phosphine 

polymer. The phosphine polymer was reacted with photogenerated W(CO)5•THF to produce 

the first example of a heterotrimetallic polymer. The proposed structure of the resulting 

polymers and their purity were confirmed by methods such as multinuclear NMR, FT-IR, and 

UV-vis absorption spectroscopy, CV, DSC, TGA, and GPC. The complete coordination of all 

phosphorous centres in the tertiary phosphine polymer to W(CO)5 was confirmed by 31P NMR 

spectroscopy and FT-IR studies, where the coordinated-tertiary phosphine polymer gave rise 

to three diagnostic absorption bands due to CO stretching modes from W(CO)5 moieties. 
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Chapter 1  

1 Introduction 

Polymers are ubiquitous materials that have gained much attention in academia and 

industry due to their remarkable processability and durability.1-2 The concept that 

“polymers are macromolecules made by chaining small molecules together” was suggested 

for the first time by Staudinger in 1922 and inspired many researchers to study the 

polymerization of small molecules and develop numerous types of polymers that have 

become an indispensable part of our everyday lives.3  

Most industrial polymers are composed mainly of carbon and hydrogen, are chemically 

inert, and are valuable only for their mechanical properties. In contrast, metallopolymers 

or metal-containing polymers (MCPs) are an interesting class of polymers that contain 

transition metal complexes in their structures.4-7 These metal centres add the unique 

properties of the corresponding crystalline inorganic compounds to the processable MCPs 

that have proved their utility in a variety of applications, for example as catalytic,8-9 

magnetic,10 stimuli-responsive,11-12 biomedical,13 luminescent,14 and conductive 

materials.15-16  

For instance, the Crespy and Gallei groups synthesized a poly(vinylferrocene)-block-

poly(methyl methacrylate) copolymer, e.g., 1.1, and self-assembled it into nanocapsules 

with poly(vinylferrocene) patches surrounded by poly(methyl methacrylate) (Figure 1.1a). 

Then they encapsulated pyrene molecules in the core of the nanocapsules and demonstrated 

that oxidation of the ferrocene units to ferrocenium in the redox-responsive nanopatches 

results in swelling of the patches due to the hydrophobic to hydrophilic transition and 

releasing the load (Figure 1.1b).17   
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Figure 1.1. Load release of MCP-made nanocapsules upon oxidation of the metal centres. In the 

graphics of the nanocapsules, the poly(methyl methacrylate) phase, polyvinylferrocene phase, and 

pyrene molecules are represented by blue, red, and green colors, respectively. 

As another example, Wong and co-workers synthesized conjugated MCPs, e.g., 1.2, and 

utilized them as photoactive materials for the preparation of solar cells which demonstrated 

relatively high power-conversion efficiencies (more examples of conjugated MCP will be 

described in section 1.1.2.).18 

 

Figure 1.2. A conjugated MCP used in solar cell preparation. 

Within the structure of MCPs, metal complexes can be part of the backbone or be present 

as pendant groups (Figure 1.3). Depending on the lability of the metal complexes, MCPs 

can have static (irreversibly bound metals) or dynamic (reversibly bound metals) 

structures.19 Since all of the targeted MCPs in this thesis have static structures, polymers 

with dynamic structures (i.e., coordination polymers) will not be discussed here in detail.20-

Oxidation

b)a)
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24 MCPs also can be categorized based on the type of ligands used for the incorporation of 

metals into their structure. In the following sections, several strategies for MCP preparation 

will be categorized and discussed. 

 

Figure 1.3. MCP types based on their connectivity. 

 

1.1 Synthesis of MCPs 

Strategies for the synthesis of MCPs are commonly based on the incorporation of 

organometallic species and polymerizable groups including styrene, acrylate, norbornene, 

and strained rings. In this regard, arene- and heteroatom-based ligands have been 

extensively used for the introduction of transition metals. Other common strategies include 

condensation polymerization reactions and metal-alkyne clusterization reactions.25-26 

1.1.1 Arene-Based MCPs 

Arene groups (CnHn) are good ligands for electron-poor metals since they can bind metals 

with strong haptic covalent bonds. For example ferrocene, which is comprised of two 

cyclopentadienyl (Cp) ligands coordinated to iron, e.g., 1.3, was the first example of an 

organometallic sandwich compound and was synthesized at 1951 by Kealy and Pauson 

(Scheme 1.1).27 

 

Scheme 1.1. Synthesis of ferrocene. 
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Inspired by this groundbreaking discovery, various organometallic compounds have been 

synthesized and utilized as metal carriers in the preparation of MCPs. Based on the number 

of arene ligands, these MCPs can be divided to half-sandwich, e.g., 1.4, and sandwich 

MCPs, e.g., 1.5. 

 

Figure 1.4. Examples of half-sandwich and sandwich MCPs. 

 

1.1.1.1 Half-Sandwich MCPs 

Half-sandwich MCPs have been prepared in main- and side-chain archituctures.28-29 The 

side-chain MCPs mainly were generated by functionalization of arene groups in order to 

add a polymerizable group. Following this strategy, Pittman and co-workers synthesized 

the first half-sandwich MCP by free-radical polymerization (FRP) of vinylcymantrene to 

afford polyvinylcymantrene.30 So far, different polymerizable and arene groups have been 

used to produce MCPs containing transition metals including Mn, Mo, Ir, W, Co, Cu, Rh, 

and Cr, e.g., 1.6–1.10.30-42 Most of these MCPs contain metal centres complexed to Cp and 

carbonyl (CO) ligands but examples containing phenyl, phosphine (PEt3), nitroxide (NO), 

and methyl ligands also have been reported.43 
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Figure 1.5. Examples of half-sandwich MCPs. 

 

In addition, half-sandwich monomers can be prepared via the reaction of an organometallic 

salt with an arene ligand that carries a polymerizable group. For example, the Schrock 

group coordinated platinum to a pendant Cp group of a functionalized norbornene to yield 

a norbornene- and metal-containing monomer, e.g., 1.12, and polymerized it via ring-

opening metathesis polymerization (ROMP) to produce 1.13 (Scheme 1.2).44 

 

Scheme 1.2. ROMP of a Pt-containing norbornene monomer. 

 

Half-sandwich MCPs have been synthesized by several polymerization techniques, 

including anionic and free-radical polymerization (FRP). However, their polymerization 
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has not been trivial since these metal complexes often have limited stability. As an 

alternative, polymers such as poly(4-vinylbenzyl chloride), e.g., 1.15, can be utilized as 

precursors for post-polymerization functionalization reactions to produce MCPs, e.g., 

1.16a, b (Scheme 1.3).45 

 

Scheme 1.3. Example of the synthesis of half-sandwich MCPs. 

Relatively stable metal dimers which contain arene ligands and bimetallic centres, where 

the metals are connected via a metal-metal bond, are interesting organometallic species for 

the synthesis of polymers containing half-sandwich metal complexes in their backbone. In 

the past two decades, the Tayler group has been the main contributor to this area and they 

have synthesized a variety of MCPs containing M-M dimers.46-47 The metal centres are 

generally ligated to carbonyl and functionalized Cp or phosphine ligands that contain a 

polymerizable group such as alkene, alkyne, or hydroxyl. Depending on the nature of the 

polymerizable groups, the monomers can be polymerized using step-growth 

polymerization methods such as alkyne-azide cycloaddition and acylchloride-hydroxyl 

condensation or chain-growth polymerization methods like acyclic diene metathesis 

polymerization (ADMET) (Figure 1.6).48-54 

 

Figure 1.6. Examples of MCPs based on M-M bonds.  
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Ring-opening polymerization (ROP) of organometallic monomers is the most powerful 

technique for the synthesis of MCPs. In this regard, Pannell and co-workers have reported 

several cyclic monomers wherein the metal and arene group were bridged by different 

elements such as Si and Ge.55-57 These monomers can be synthesized by ring-closing salt 

elimination reactions of an organometallic salt with lithium diisopropylamide (LDA) and 

can undergo ROP induced by heat or UV light to yield polymers with repeating units 

containing metal complexes in the main chain (Scheme 1.4).58 

 

Scheme 1.4. Synthesis and ROP of a strained half-sandwich metal containing monomer. 

 

MCPs with main group element bridges which contain other transition metals such as 

Mo, W, and Ru have also been prepared by this method (Figure 1.7).59-61 

 

 

Figure 1.7. Examples of main-chain half-sandwich MCPs. 
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1.1.1.2 Sandwich MCPs 

Sandwich compounds, and more specifically metallocenes (a family of sandwich 

compounds that contain two Cp ligands), are the most common organometallic compounds 

for MCP preparation. Ferrocene was the starting material for the synthesis of the first MCP, 

i.e., polyvinylferrocene 1.5, which was prepared by Aromoto and Haven.62 Since then, this 

18-electron metallocene has been the dominant metal carrier in the field of MCPs and 

perhaps organometallic chemistry due to its high stability and robust redox chemistry.63 

This impressive stability allows for functionalization of the Cp rings of ferrocene and 

polymerization of ferrocene-containing monomers while the iron centre remains intact. In 

addition to ferrocene-containing polymers, numerous MCPs have been developed by using 

other metallocenes and based on their connectivity, these MCPs can be categorized into 

main- and side-chain sandwich MCPs (Figure 1.8). 

 

 

Figure 1.8. General structures of side- and main-chain sandwich MCPs. 

Installation of a polymerizable group on the arene group of a sandwich compound is a well-

known strategy for synthesis of side-chain sandwich MCPs. In this context, Friedel-Crafts 

and lithiation reactions have been extensively utilized. For example, treatment of ferrocene 

with potassium superbase (mixture of KOt-Bu and t-BuLi) followed by DMF addition is a 
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simple and high yielding method for the preparation of ferrocenealdehyde,64 which can be 

utilized as a precursor for different functional groups, including vinyl groups (Scheme 

1.5).65 

 

Scheme 1.5. Synthesis of ferrocenealdehyde and vinylferrocene. 

 

Upon Cp functionalization, several polymerizable groups such as acrylates, styrene, and 

norbornene have been installed on ferrocene and the resulting monomers were polymerized 

by a variety of polymerization methods including FRP, cationic, anionic, ROMP, atom-

transfer radical-polymerization (ATRP), and reversible addition-fragmentation chain-

transfer polymerization (RAFT) (Figure 1.9).66-72 

 

 

Figure 1.9. Examples of side-chain ferrocene containing MCPs. 
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Organosilanes, e.g., 1.31, are a family of inorganic compounds which have served as metal 

carriers for MCPs. For example, Pannell and Zeigler reported the preparation of MCPs by 

copolymerization of phenylmethyldichlorosilane 1.29, and ferrocenylmethyldichlorosilane 

1.30 (Scheme 1.6).73 

 

Scheme 1.6. Synthesis of a ferrocene-containing polyorganosilane. 

In contrast to ferrocene, cobaltocene (CoCp2) and rhodocene (RhCp2) are 19-electron 

metallocenes that can be easily oxidized to form the corresponding 18-electron 

metallocenium cations.74 Thus, the Tang and Astruc groups have utilized cobaltocenium 

and rhodocenium as metal complexes for the synthesis of several MCPs, e.g., 1.33–1.35.75-

79 Alternatively, the Ragogna group has employed cyclopentadienyl-cobalt-

cyclobutadienyl CpCoCb sandwich compounds, which are stable 18-electron species, e.g., 

1.36.80-81

 

Figure 1.10. Examples of metallocene-containing polymers with metals other than Fe. 
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Zirconocene is another metallocene that has been incorporated into strained 

silacyclobutanes, e.g., 1.37, that can undergo ROP and yield zirconium-containing 

polymers (Scheme 1.7).82 

 

Scheme 1.7. Synthesis of a zirconocene tethered MCP. 

 

Similar to strained silacyclobutanes, cyclic sandwich compounds with bridged Cp ligands 

can undergo ROP and produce MCPs with sandwich compounds in their backbones. For 

instance, the successful ROP of strained sila[1]ferrocenophanes by the Manners group 

resulted in the production of polyferrocenosilane (PFS) (Scheme 1.8).83 In this method, the 

introduction of a bridge between the Cp ligands provides the needed strain for ROP of the 

cyclic monomer. This living polymerization method can be initiated by heat, light, or 

transition metal catalysts and affords high molecular weight polymers.84-85 

 

 

Scheme 1.8. Synthesis of PFSs. 
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The Manners group and others including Müller, Braunschweig, Vansco, and Rehahn have 

developed this chemistry and extended this method to many strained monomers with 

different transition metals and arene groups and arene-arene bridges to prepare many types 

of MCPs (Figure 1.11).86-93 

 

Figure 1.11. Examples of MCPs produced via strained-induced ROP. 

Moreover, MCPs can be produced with metal centres bridged by heteroatom ligands. 

However, they are much less common and typically have been prepared by 

dehyrohalogenation of MCp2X2 salts containing Group IV (e.g., Ti, Zr, Hf) metals (Figure 

1.12).94-98 

 

Figure 1.12. Examples of MCPs with metals bridged by heteroatoms. 

 



13 

 

1.1.2 Alkyne-Based MCPs 

Terminal alkynes can go through coupling or addition reactions to link metal-containing 

species via step-growth polymerization. For example, metallopolyynes are a class of MCPs 

that have been synthesized by coupling reactions of terminal alkynes with metal salts 

(Scheme 1.9).99-101  

 

Scheme 1.9. Synthesis of a metallopolyyne.101 

Metallopolyynes commonly contain Pt(II), Pd(II), Hg(II), and also Ni(II) metal centres and 

are connected by π-conjugated spacers which allows the electronic conjugation to be 

extended throughout the polymer backbone (Figure 13).102-107 As was mentioned earlier, 

conjugated MCPs, e.g., 1.2, can be used as flexible and lightweight conductive materials 

and, due to their promising properties, they have been subject of ongoing research targeting 

polymer solar cells (PSCs) with higher efficiencies and polymer organic light emitting 

diodes (POLEDs).18, 105, 108 

 

Figure 1.13. Examples of metallopolyynes.99 
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The hydrosilylation reaction of dialkynes and bis(dimethylsilyl)ferrocene with Karstedt's 

catalyst is another way in which alkynes can be used as precursors for MCP preparation 

(Scheme 1.10).109 

 

Scheme 1.10. Example of a MCP synthesis by hydrosilylation of dialkynes. 

In addition, alkynes with two π bonds can ligate to a metal or bridging metals to form metal 

clusters and serve as metal carriers for MCPs. So far, various MCPs have been prepared 

by polymerization of monomers containing pendant alkyne-metal clusters (Figure 1.14). 

Clusterization of alkynes with metals can also be performed on alkyne-containing 

polymers. However, as is typical for post-polymerization functionalization reactions, 

complete conversion of alkyne groups at the polymer stage is not trivial.110-111  

 

Figure 1.14. Examples of MCPs prepared by alkyne-metal clusterization.  

 

This method can be useful for the addition of a second transition metal to an alkyne 

functionalized MCP in order to synthesize heterobimetallic polymers (Figure 1.15).112-116 
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Figure 1.15. Heterobimetallic MCPs including alkyne-metal clusters. 

 

1.1.3 Heteroatom-Based Ligands 

In addition to arene and alkyne groups, polydentate heteroatom-based ligands comprised 

of phosphorus, nitrogen, and oxygen have been used extensively as frameworks for MCP 

synthesis.117-118 The stability of these metal complexes are strongly dependent on the type 

of heteroatom, denticity, and rigidity/flexibility of the ligand framework.  

1.1.3.1 Macrocycles 

Polydentate macrocycles such as porphyrins,117 which have rigid structures, are excellent 

ligands for transition metals and have a variety of advantageous electronic properties. 

These macrocycle-metal complexes can serve as metal carriers for MCPs and their pocket 

size can be synthetically adjusted to suit metals with specific sizes. They can undergo 

coupling reactions and be part of the main chain, e.g., 1.68,119-120 or be added to a 

polymerizable group and act as a pendant metal-containing group, e.g., 1.69.121-124 
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Figure 1.16. Examples of macrocycle-based MCPs. 

 

1.1.3.2 Acyclic Polydentate Ligands 

Similar to macrocyclic ligands, acyclic chelating ligands produce stable complexes. Using 

these frameworks, many transition metal-containing polymers have been successfully 

synthesized. In these MCPs, the acyclic-ligand metal complexes can be part of the 

backbone, e.g., 1.70 and 1.71, or exist as a pendant group, e.g., 1.72.118, 125-127 
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Figure 1.17. Example of MCPs based on acyclic ligands. 

 

1.2 Phosphorous-Based Frameworks for MCP Synthesis 

Organophosphorus compounds are one of the most extensively used ligands in 

coordination chemistry and can be used for the MCP synthesis. They can form P-C bonds 

with ligands that carry a metal or directly coordinate to metals using their lone pairs of 

electrons.128 

1.2.1 Phosphazenes 

Phosphazenes are a family of compounds which contain P=N bonds, have high thermal 

stability, are flexible, and as a result they have been used as high performance elastomers 

and as flame retardants.129 In the 1960s, Allcock and co-workers introduced 
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poly(dichloro)phosphazenes (NPCl2)n
 that have received tremendous interest because they 

have an inorganic backbone and a substitutionally labile Cl attached to phosphorous that 

can be replaced by other groups.130-132 Later in 80’s, the Allcock group synthesized cyclic 

phosphazenes attached to ferrocene and ruthenocene, i.e., RuCp2, and by ROP prepared the 

corresponding MCPs (Scheme 1.11).133-135 

 

 

Scheme 1.11. ROP of cyclic metal-containing phosphazenes. 

 

1.2.2 Phosphinoboranes 

Polyphosphinoboranes are another family of polymers that have an inorganic backbone. 

This family was discovered in the early 50’s when Burg and Wagner used heat to 

dehydrocouple phosphine-borane adducts in order to produce the first generation of low-

melt polyphosphinoboranes.136 However, it took about 60 years until the Hey-Hawkins 

group used this strategy and a Rh(I) catalyst to synthesize the first metal-containing 

polyphosphinoboranes (Scheme 1.12).137-138  

 

Scheme 1.12. Example of a dehydrocoupling reaction of a phosphine-borane adduct. 



19 

 

1.2.3 Polyphosphaferrocenes 

Phosphaferrocenophanes are a family of strained ansa-ferrocenes in which the Cp rings are 

bridged by a phosphorous spacer. They can be synthesized by the lithiation of Cp rings of 

ferrocene followed by a condensation reaction with RPCl2 (Scheme 1.13).139-141 

 

Scheme 1.13. Example of the synthesis of a strained phospha[1]ferrocenophane. 

For a phosphaferrocenophane to undergo ROP, the spacer may contain one or two atoms 

but not more as further elongation of the bridge results in decreased ring-strain and lower 

reactivity.139 As an example, Manners and co-workers reported ROP of a 

phosphaferroceneophane with (-PPhCH2-) bridge 1.80. Thermal ROP of this monomer 

yielded polymer 1.81, which was sulfurized before measurement of the molecular weight 

by gel permeation chromatography (GPC) (Scheme 1.14).139 

 

Scheme 1.14. Example of ROP of a strained phospha[2]ferrocenophane. 

1.2.4 Phosphine Ligands 

Phosphines are ubiquitous materials that have been used in various fields of chemistry. 

Tertiary phosphine polymers have been utilized as polyligands for the coordination of 

transition metals and production of MCPs. In this regard, the Gates group has reported 

polymerization of phosphaalkenes to gain 1.83 and later coordinated the polyphoshine to 

AuCl en route to gold nanostructures (Scheme 1.15).142-143 



20 

 

 

Scheme 1.15. Example of coordination of a tertiary phosphine polymer to a metal.143 

A migratory insertion is a classic organometallic reaction in which two ligands on a metal 

complex combine and leave an empty coordination site on the metal. Using this concept, 

Xiaosong Wang’s group recently designed monomer 1.87, in which the alkyl group can 

migrate and become a carbonyl-terminated ligand which is coordinated to iron (Scheme 

1.16).  

 

Scheme 1.16. Monomer synthesis. 

 

The resulting vacant coordination site on the iron can be filled by ligation of a phosphine 

group from a second monomer which contains a metal centre that can also undergo the 

similar process and grow the polymer chain (Scheme 1.17).144-146 

 

Scheme 1.17. Example of migration insertion polymerization. 
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1.3 Thesis Scope 

The main goal of this thesis was the development of new phosphine-based frameworks for 

the introduction of metals into polymer scaffolds. Since the phosphines described were 

utilized as metal carriers for the preparation of polymers, the second chapter will describe 

the synthesis and characterization of a family of air-stable primary, secondary, and tertiary 

phosphines containing all possible combinations of ethylferrocene and ethylruthenocene 

substituents [PH3-n(CH2CH2Mc)n: n = 1−3; Mc: Fc and/or Rc]. 

In the third chapter, as an example of an application of the primary, secondary, and tertiary 

ethylferrocenephosphines, their coordination to Group VI transition metals and the 

properties of the resulting adducts [M(CO)5L: M: Cr, Mo, W; L: PH2(CH2CH2Fc), 

PH(CH2CH2Fc)2, P(CH2CH2Fc)3] will be discussed.  

The fourth chapter will describe results toward the synthesis of phosphonium 

polyelectrolytes that were prepared by quaternization of the tertiary phosphines 

[P(CH2CH2Mc)3 Mc: Fc and/or Rc] in order to install methacrylate or styrene groups which 

were later polymerized by using free-radical polymerization method. Pyrolysis of the 

phosphonium polyelectrolytes yielded metal (Fe and/or Ru) and phosphorous enriched 

crystalline nanomaterials with Fe/Ru ratios dictated by the phosphonium polyelectrolyte 

structures. 

Tertiary phosphine polymers are a valuable subclass of polymers because phosphorus 

centres can act as ligands/nucleophiles. In this context, the secondary phosphine 

[PH(CH2CH2Mc)2; Mc: Fc and Rc], was converted to a heterobimetallic tertiary phosphine 

monomer containing a styrene group. Free-radical polymerization of this monomer gained 

a heterobimetallic polymer, which was later ligated to W(CO)5, to afford the first example 

of a heterotrimetallic polymer. The fifth chapter will report their synthesis and 

characterization and the sixth chapter will summarize the key results and conclusions of 

this thesis and provide suggestions for the future directions of this research. 
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Chapter 2  

2 Synthesis and Characterization of a Family of Air-Stable 
Ferrocene- and Ruthenocene-Containing Primary, 
Secondary, and Tertiary Phosphines 

 

Adapted from: 

1) Rabiee Kenaree, A.; Cuthbert, T.J.; Barbon, S.M.; Boyle, P.D.; Gillies, E.R.; Ragogna, 

P.J.; Gilroy, J.B.* Synthesis and Characterization of a Family of Air-Stable Ferrocene- and 

Ruthenocene-Containing Primary, Secondary, and Tertiary Phosphines. Organometallics 

2015, 34, 4272–4280.  

2) Rabiee Kenaree, A.; Berven, B.M., Ragogna, P.J.*; Gilroy, J.B.* Highly-Metallized 

Phosphonium Polyelectrolytes. Chem. Commun. 2014, 50, 10714–10717. 

 

2.1 Introduction 

Phosphines are common ligands in the field of coordination chemistry1-8, and can be 

synthesized from various precursors such as phosphides. Phosphides are good nucleophiles 

and can be prepared by the metalation reactions of primary and secondary phosphines, 

using Li, Na, and K. They can undergo a salt-elimination coupling reaction with a variety 

of electrophiles, such as alkyl halides, to afford phosphines (Scheme 2.1).9 

 

 

Scheme 2.1. The salt-elimination reaction of phosphides with alkyl halides. 
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The base- or radical-catalyzed hydrophosphination reaction of unsaturated hydrocarbons 

is another synthetic method which is widely used by industry. In this route, a radical or 

base breaks a P-H bond and removes the hydrogen from phosphorous. The resulting 

phosphine-radical or phosphide then attacks an unsaturated bond to produce a new P-C 

bond (Scheme 2.2).10 

 

Scheme 2.2. Hydrophosphination of olefins. 

 

Despite the ubiquity of phosphines in the design and synthesis of catalysts,11-21 they are 

often overlooked in other areas, including materials science, due to the perception that they 

react violently when exposed to air. However, many phosphines, including primary and 

secondary examples, exhibit exceptional stability towards oxygen.22-24,25-39 Among the 

most common strategies for the stabilization of phosphines through synthetic variation are 

the incorporation of steric bulk (e.g., 2.1),25-26, 29 the design of molecules with relatively 

high energy singly occupied molecular orbitals (SOMOs) for their radical cation forms 

(e.g., 2.2),32, 35-36, 38 and the installation of heteroatoms in close proximity to phosphorus 

leading to localization of the highest occupied molecular orbitals (HOMOs) away from 

phosphorus (e.g., 2.3).27-28, 39  

 

Figure 2.1. Examples of air-stable phosphines. 

Phosphines bearing ferrocene substituents combine the desirable characteristics of 

phosphines and ferrocene, and often exhibit surprising stability towards air and moisture.30, 
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35, 37 Consequently, they have been utilized as rigid and potentially redox-active ligands for 

transition metals, e.g., in Pd(dppf)Cl2 2.4 [dppf = 1,1'-bis(diphenylphosphino)ferrocene],40-

43,44-48 as Lewis bases in frustrated Lewis pairs, e.g., 2.5,49-51 and in the synthesis of metal-

containing polymers and polymer networks, e.g., 2.6.37, 39, 52-53 While the properties of 

ferrocene-based phosphines have been widely explored, reports on ruthenocene analogs 

are relatively scarce throughout the literature.38, 54-57 Furthermore, to the best of our 

knowledge, phosphines bearing more than one type of metallocene have not been reported 

to date. 

 

Figure 2.2. Examples of phosphinoferrocene compounds. 

In this work, PH3 gas was used for the radical-catalyzed hydrophosphination reactions of 

vinylferrocene and vinylruthenocene in order to attach metallocene units to the phosphorus 

through an ethylene spacer. The synthesis and characterization of a family of primary, 

secondary, and tertiary phosphines that include all possible combinations of ethylferrocene 

and ethylruthenocene substituents linked to phosphorus are described below. 

2.2 Results and Discussion 

2.2.1 Synthesis and NMR Spectroscopy 

The ferrocene-containing phosphines 2.7ac and ruthenocene-containing phosphines 

2.8ac were synthesized and purified in the same manner. For the synthesis of primary, 

secondary, and tertiary ferrocene-containing phosphines 2.7ac, vinylferrocene and 

phosphine gas were heated in the presence of azobisisobutyronitrile (AIBN) to produce the 

corresponding ferrocene-containing phosphines 2.7ac (Scheme 2.3). The first step of the 

reaction involved a large excess of PH3 and resulted mainly in the conversion of 

vinylferrocene to primary phosphine 2.7a. At this stage, the excess PH3 was removed from 

the reaction flask by purging with N2. Two additional portions of vinylferrocene and AIBN 



36 

 

were then added and the reaction mixture was heated to produce secondary and tertiary 

phosphines 2.7b and 2.7c. We favored a strategy that employed multiple 

AIBN/vinylferrocene additions in order to limit radical concentration and disfavor 

formation of α-addition byproducts (i.e., 2.9).58-59 As vinylferrocene and primary 

phosphine 2.7a have similar polarities, their separation by column chromatography is not 

trivial. We therefore chose to complete the reaction sequence by charging the mixture with 

additional AIBN and heating at 85 °C in order to completely consume excess 

vinylferrocene. A typical experiment involving the synthetic strategy described above 

resulted in isolated yields (after column chromatography in air) of 10%, 34%, and 42% for 

2.7a, 2.7b, and 2.7c, respectively. Hydrophosphination reaction of vinylruthenocene with 

PH3 gas resulted in lower isolated yields which were 10%, 27%, and 22% (Yields by NMR 

spectroscopy: 10%, 36%, and 48%) for 2.8a, 2.8b, and 2.8c, respectively. Starting from 

primary and secondary ferrocene-containing phosphines 2.7a and 2.7b, mixed ferrocene- 

and ruthenocene-containing phosphines 2.10 (1  Rc, 2  Fc), 2.11 (1  Rc, 1  Fc), and 

2.12 (2  Rc, 1  Fc) were synthesized using similar strategies in 94%, 39%, and 42% 

isolated yields (Scheme 2.3). 

 

 

Scheme 2.3. Synthesis of phosphines 2.7ac, 2.8ac, 2.10, 2.11, and 2.12. Fc and Rc represent 

ferrocenyl and ruthenocenyl substituents. 
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The proposed structures and bulk purity of phosphines 2.7ac, 2.8ac, 2.10, 2.11, and 2.12 

were confirmed using 1H, 13C, and 31P NMR spectroscopy, IR and UV-vis absorption 

spectroscopy, mass spectrometry, and elemental analysis. Primary phosphines 2.7a and 

2.8a are soluble in a wide range of solvents including hexanes, THF, acetone, EtOH, 

toluene, CH2Cl2, and CHCl3. Secondary (2.7b, 2.8b, and 2.11) and tertiary (2.7c, 2.8c, 

2.10, and 2.12) phosphines have limited solubility in hexanes and alcohols, but are soluble 

in THF, CH2Cl2, and CHCl3. Each of the phosphines reported was purified by standard 

column chromatography techniques and are stable in air indefinitely in the solid state. In 

solution, each phosphine converts slowly to its corresponding phosphine oxide when 

exposed to air. The degradation of phosphines 2.7ac, 2.8ac, 2.10, 2.11, and 2.12 in 

solution was studied by monitoring the 31P NMR spectra of 75 mM CDCl3 solutions that 

were prepared in air and stored in a fume hood for 1 week with no attempt to limit air or 

light exposure. After 1 week, conversion to phosphine oxides ranged from 07.5% (Table 

2.1). Within the series, primary phosphine 2.7a (1  Fc) degraded the slowest and tertiary 

phosphine 2.8c (3  Rc) degraded the quickest. In general, phosphines containing 

ruthenocene substituents degraded more quickly than ferrocene analogs. 

 

Table 2.1. Degradation of primary, secondary, and tertiary phosphines 2.7ac, 2.8ac, 

2.10, 2.11, and 2.12 in solutions exposed to air. 

Compound Percentage conversion to phosphine oxide after 1 week (168 h) 

Primary Phosphines  

2.7a (1  Fc) 0 

2.8a (1  Rc) 6.3 

Secondary Phosphines  

2.7b (2  Fc) 1.8 

2.11 (1  Rc, 1  Fc) 0 

2.8b (2  Rc) 2.9 

Tertiary Phosphines  

2.7c (3  Fc) 2.9 

2.10 (1  Rc, 2  Fc) 0.6 

2.12 (2  Rc, 1  Fc) 3.8 

2.8c (3  Rc) 7.5 
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The 31P NMR spectra of primary, secondary, and tertiary ruthenocene-containing 

phosphines 2.8ac are shown in Figure 2.3, while proton-coupled and -decoupled 31P NMR 

spectra for the remaining phosphines can be found in Appendix 2. The 31P NMR resonances 

for the primary (2.7a and 2.8a), secondary (2.7b, 2.8b, and 2.11), and tertiary (2.7c, 2.8c, 

2.10, and 2.12) phosphines appeared as triplets at approximately –137 ppm, doublets at 

approximately –69 ppm, and singlets at approximately –29 ppm, respectively. Coupling 

constants (1JPH) for primary and secondary phosphines were calculated to be ca. 200 Hz, 

and were consistent with the coupling constants (1JHP) observed in the corresponding 1H 

NMR spectra (Table 2.2). The 1H NMR spectra collected also confirmed the presence of 

the ethylene bridge, with peaks appearing between 1.541.90 ppm and 2.282.59 ppm in 

their 1H NMR spectra. Mono-substituted metallocene units were identified by the presence 

of singlets for unsubstituted cyclopentadienyl (Cp) ligands and pairs of pseudo-triplets for 

each substituted Cp ligand between 4.064.57 ppm in their 1H NMR spectra (Figures 

A2.1A2.25). 

 

 

Figure 2.3. 31P NMR spectra of primary, secondary, and tertiary ruthenocene-containing 

phosphines 2.8ac in CDCl3. 
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2.2.2 X-ray Crystallography 

The solid-state structures of phosphines 2.7a–c, 2.8b, 2.8c, 2.10, 2.11, and 2.12 were 

determined via single crystal X-ray diffraction (Figures 2.4 and A2.26A2.31 and Tables 

2.2 and 2.3). As is often observed for solid-state structures containing metallocene units, 

the structures exhibited elongated thermal displacement ellipsoids due to either large 

amplitude liberations of the Cp ring about the molecular axis or a static disorder of the Cp 

ring over two or more orientations. Furthermore, the metal sites of the mixed-metal 

metallocene compounds exhibited a statistical disorder of the Fe and Ru atoms. For this 

reason, we have chosen to focus on the average Cpcentroid-Cpcentroid and metal-Cpcentroid 

distances for our discussion of the solid-state structures of the metallocene units in 2.7a–c, 

2.8b, 2.8c, 2.10, 2.11, and 2.12. As the Rc/Fc ratio was increased, a clear trend emerged. 

The average M-Cpcentroid distance increases in tertiary phosphines from 1.653(2) Å in 7c (3 

 Fc), to 1.706(2) Å in 2.10 (1  Rc, 2  Fc), to 1.760(2) Å in 2.12 (2  Rc, 1  Fc), and 

1.807(1) Å in 2.8c (3  Rc). 

 

 

 

Figure 2.4. Solid-state structures of a) secondary phosphine 2.11 (1  Rc, 1  Fc) and b) tertiary 

phosphine 2.12 (2  Rc, 1  Fc). Thermal displacement ellipsoids are shown at 50% probability 

and hydrogen atoms have been omitted for clarity. For depictions of the solid-state structures of 

2.7a–c, 2.8b, 2.8c, and 2.10 see Appendix 2 (Figures A2.26–A2.31). 
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Each phosphine exhibits a trigonal pyramidal geometry where the average C-P-C angles 

are 99.03(4) (2.7b), 99.68(6) (2.7c), 101.2(2) (2.8b), 98.67(4) (2.8c), 99.66(6) (2.10), 

101.5(2) (2.11), and 99.63(8) (2.12). The average P-C bond lengths in the solid-state 

structures of 2.7a, 2.7b, 2.7c, 2.8b, 2.8c, 2.10, 2.11, and 2.12 are 1.883(6), 1.877(7), 

1.8505(12), 1.846(5) Å, 1.845(9) Å, 1.850(13) Å, 1.851(5) Å, and 1.8510(17) Å, 

respectively (Table 2.2).  

Table 2.2. Selected average angles (deg) and bond lengths (Å) for phosphines 2.7ac, 2.8b, 2.8c, 

2.10, 2.11, and 2.12. 
 2.7a 2.7b 2.7c 2.8b 2.8c 2.10 2.11 2.12 

C-P-C - 99.03(4) 99.68(6) 101.2(2) 98.67(4) 99.66(6) 101.5(2) 99.63(8) 

P-C 1.883(6) 1.877(7) 1.8505(12) 1.846(5) 1.845(9) 1.8499(13) 1.851(5) 1.8510(17) 

M-Cpcentroid 

(unsubstituted Cp) 
1.660(5) 1.653(8) 1.655(2) 1.822(5) 1.810(1) 1.707(2) 1.734(3) 1.761(2) 

M-Cpcentroid 

(substituted Cp) 
1.665(4) 1.656(8) 1.651(2) 1.815(4) 1.803(1) 1.705(2) 1.732(4) 1.758(2) 

Cpcentroid-Cpcentroid 3.325(5) 3.309(8) 3.306(2) 3.637(5) 3.613(1) 3.412(2) 3.466(4) 3.519(2) 

2.2.3 UV-vis Absorption Spectroscopy 

The UV-vis absorption spectra of tertiary phosphines 2.7c, 2.8c, 2.10, and 2.12 in THF are 

shown in Figure 2.5 and the results are summarized in Table 2.2. Each phosphine gave rise 

to a weak absorption spectrum consistent with formally forbidden d→d electronic 

transitions associated with d8 ferrocene and/or ruthenocene moieties. Ferrocene-containing 

phosphines exhibited wavelengths of maximum absorption (λmax) of approximately 440 nm 

with molar extinction coefficients proportional to the number of ferrocene units in their 

respective structures. However, the molar extinction coefficients () of the absorption 

centered at approximately 320 nm for phosphines containing ruthenocene were not strictly 

proportional to the number of ruthenocenes in the structure as both ferrocene and 

ruthenocene absorb at ca. 320 nm. Nevertheless, a general trend was observed. As 

ferrocene groups were replaced by ruthenocene groups the intensity of the absorption peak 

at 440 nm decreased and the intensity of the absorption peak at 320 nm increased. 

Qualitatively similar trends were observed for the UV-vis absorption spectra of primary 

phosphines 2.7a and 2.8a and secondary phosphines 2.7b, 2.8b, and 2.11 (Figures 

A2.32A2.36 and Table 2.2). 
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Figure 2.5. UV-vis spectra of tertiary phosphines 2.7c (3  Fc; black line), 2.8c (3  Rc; red line), 

2.10 (1  Rc, 2  Fc; blue line), and 2.12 (2  Rc, 1  Fc; green line) in THF. 

2.2.4 Cyclic Voltammetry 

The reversible one-electron oxidation of ferrocene is well understood, so much so, that it 

is commonly used as an internal standard for electrochemical studies.60,61 Despite the 

structural and electronic similarities between ferrocene and ruthenocene, the 

electrochemical oxidation behavior of the latter has not been studied to the same extent. 

Most reports of the oxidation of ruthenocene indicate that it occurs as a two-electron 

process as 17-electron [RuIIICp2]
+, formed via oxidation of 18-electron RuIICp2, is 

extremely Lewis acidic and readily combines with Lewis bases to form 19-electron adducts 

that undergo rapid disproportionation (Scheme 2.4). Previous studies have shown that 

[RuIIICp2]
+

 can scavenge mercury from electrodes,62-63 activate C-Br bonds,64 bind to 

solvents such as CH3CN,65 and react with dihalogens such as I2 en route to the formation 

of RuIV complexes.66-67 However, by using [n-Bu4N][B(PhF5)4], a non-coordinative 

supporting electrolyte,68 Geiger and co-workers have shown that the oxidation of RuIICp2 

involves loss of a single electron.69-71 Depending on the conditions, for example when an 

ethane bridge is introduced between the cyclopentadienyl substituents in 

dicarba[2]ruthenocenophanes, oxidation leads to formation of isolable dimers linked 

through a Ru-Ru bond.64, 72 
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Scheme 2.4. Summary of the known chemical oxidation behavior of ruthenocene in 

coordinative/non-coordinative media. L: neutral or anionic donor. 

 

In this study, all solvents and reagents were rigorously purified prior to electrochemical 

studies and CH2Cl2 alone was employed as the solvent to avoid the formation of 

ruthenocenium-CH3CN adducts with polar solvents during the evaluation. In addition,     

[n-Bu4N][OTF] was used as a supporting electrolyte since it stabilizes the oxidized 

phosphines and reduces plating of the analytes on the working electrode much better than 

the traditional supporting electrolytes (e.g., [n-Bu4N][PF6] and [n-Bu4N][BF4]). The 

number of electrons involved for each process was determined by relative comparison to 

the current generated during the oxidation of a stoichiometric amount of 

decamethylferrocene.73  

We began the study by collecting cyclic voltammograms of ferrocene and ruthenocene in 

order to establish 'baseline' behavior under the experimental conditions employed. 

Ferrocene yielded a reversible one-electron oxidation wave while ruthenocene underwent 

an irreversible two-electron oxidation with significant cathodic peak current (Figure 

A2.37). The cyclic voltammograms collected for tertiary phosphines 2.7c, 2.8c, 2.10, and 

2.12 under identical conditions are shown in Figure 2.6 and the data are summarized in 

Table 2.2. For each ferrocene-containing tertiary phosphine, a small, irreversible oxidation 

peak at ca. ‒100 mV relative to the ferrocene/ferrocenium redox couple was observed. This 

electrochemical feature may be due to redox reactivity and/or electrode interactions 

associated with the phosphorus lone pair as similar electrochemical behavior and 

conclusions have been reported for related phosphines.31, 74 
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Figure 2.6. Cyclic voltammograms of tertiary phosphines 2.7c (3  Fc; black line), 2.8c (3  Rc; 

red line), 2.10 (1  Rc, 2  Fc; blue line), and 2.12 (2  Rc, 1  Fc; green line) recorded at 250 mV 

s‒1 in 1 mM solutions of CH2Cl2 containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 

Although the ferrocene moieties present in 2.7ac, 2.10, 2.11, and 2.12 underwent 

qualitatively reversible electrochemical oxidation (E1/2,Fc ~ 0 mV), irreversible oxidation 

events (Epa,Rc 330550 mV) were observed for the ruthenocene groups in each of the 

ruthenocene-containing phosphines. The anodic current response did not scale linearly 

with the number of ruthenocene moieties present. For these compounds, we postulate that 

the initial formation of 17-electron ruthenocenium is rapidly followed by the formation of 

a 19-electron adduct. We suggest that intermolecular complexes form between phosphines 

in the vicinity of the working electrode and electrochemically-generated ruthenocenium 

compounds (e.g., [R3PRuIIICp2]
+). The resulting adduct can decompose or 

disproportionate to produce a variety of different stable 18-electron species (Scheme 2.3). 

At lower scan rates (50250 mV s1), decomposition of the complexes generated during 

the cyclic voltammetry studies (e.g., [R3PRuIVCp2]) may lead to the irreversible 

oxidation behavior observed. When scan rates were increased (5001000 mV s1), the 

anodic peak current response approached the two-electrons per ruthenocene we initially 

expected, providing further indication that the complexes generated during the cyclic 

voltammetry studies are short lived. Furthermore, at high scan rates (20008000 mV s1), 

reduction half-waves potentially associated with the re-formation of ruthenocene were 

observed (Figure A2.38). While the fate of the ruthenocene moieties is not clear, the 

qualitatively reversible oxidation of ferrocene in all cases implies that the 

-1 -0.5 0 0.5 1

50 μA

Potential (V vs. Ferrocene/Ferrocenium)
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ferrocene/ferrocenium redox couple is not involved in any of the proposed 

disproportionation and/or decomposition pathways. This behavior was in stark contrast to 

that observed for the electrochemical oxidation of ruthenocene under identical conditions, 

where the observed oxidation wave was accompanied by a corresponding reduction wave 

with significant peak current. 

 

Scheme 2.5. Postulated reactivity pathway upon electrochemical oxidation of tertiary phosphine 

2.12 (2  Rc, 1  Fc). L = phosphine or OTf ¯ anion, E = electrochemical reaction, C = chemical 

reaction, and EC = electrochemical/chemical reaction. 

The electrochemical behavior of primary and secondary phosphines 2.7a, 2.7b, 2.8a, 2.8b, 

and 2.11 were found to be qualitatively similar to that described above (Figures A2.39 and 

A2.40 and Table 2.3). For each ferrocene-containing primary and secondary phosphine, a 

reversible oxidation wave with anodic/cathodic peak currents corresponding to one 

electron per ferrocene was observed. For each ruthenocene-containing phosphine, an 

irreversible oxidation wave associated with the ruthenocene moiety was observed.  

 

Table 2.3. Selected characterization data for phosphines 2.7ac, 2.8ac, 2.10, 2.11, and 2.12. 

 2.7a 2.7b 2.7c 2.8a 2.8b 2.8c 2.10 2.11 2.12 

M.p. (°C) 51‒53 93‒95 119‒121 52‒54 97‒99 110‒112 135‒137 76‒78 106‒108 

31P NMR shift (δ) –137.1 –68.8 –27.9 –137.0 –68.9 –29.4 –28.4 –68.9 –28.9 
1JP-H (Hz) 196 201 - 195 201 - - 200 - 
1JH-P (Hz) 204 200 - 195 201 - - 201 - 

Molar absorptivity at 

 320 nm (M–1 cm–1) 
75 130 280 210 480 770 375 300 495 

Molar absorptivity at 

 440 nm (M–1 cm–1) 
110 195 325 - - - 205 105 95 

Epa, Rc
a (mV) - - - 330 550 490 545 480 495 

E1/2,Fc (mV) 10 –10 10 - - - 10 –10 10 
aIrreversible process; anodic peak potential reported. 
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2.3 Conclusion 

During this study, we have demonstrated that the radical-catalyzed hydrophosphination of 

alkenes can be used to produce primary, secondary, and tertiary ferrocene- and 

ruthenocene-containing phosphines. The phosphines, which degrade slowly when exposed 

to air in solution and are stable indefinitely in the solid state, exhibited properties consistent 

with the presence of ferrocene and/or ruthenocene moieties. Phosphines containing one or 

more ferrocenes were reversibly oxidized electrochemically (one electron per ferrocene), 

and absorbed visible light at a maximum of 440 nm. Analogs containing ruthenocene 

underwent irreversible electrochemical oxidation (two electrons per ruthenocene at high 

scan rates), consistent with the phosphines themselves coordinating to electrochemically 

generated ruthenocenium. They also showed characteristic wavelengths of maximum 

absorption at 320 nm. Phosphines containing both ferrocene and ruthenocene showed 

properties associated with both types of metallocenes, with the relative intensity of their 

UV-vis absorption and electrochemical responses qualitatively relating to the number of 

each type of metallocene present. Our future work in this area will focus on the utilization 

of these phosphines as metal carriers for the preparation of highly-metallized polymers and 

crosslinked polymer networks. 

2.4 Experimental Section 

2.4.1 General Considerations 

Reactions and manipulations were carried out under a N2 atmosphere using standard 

Schlenk techniques unless otherwise stated. Solvents were obtained from Caledon 

Laboratories, dried using an Innovative Technologies Inc. solvent purification system, 

collected under vacuum, and stored under a N2 atmosphere over 4 Å molecular sieves. 

Reagents were purchased from Sigma-Aldrich or Alfa Aesar and used as received. 

Ferrocenecarboxaldehyde and ruthenocenecarboxaldehyde were synthesized according to 

literature procedures75 and vinylruthenocene and vinylferrocene were synthesized 

according to modified procedures.76 1H, 13C{1H}, and 31P NMR spectra were recorded on 

a 600 MHz (1H: 599.5 MHz, 13C: 150.8 MHz, 31P: 242.6 MHz) Varian INOVA instrument. 

1H NMR spectra were referenced to residual CHCl3 (7.27 ppm) and 13C{1H} NMR spectra 
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were referenced to CDCl3 (77.0 ppm). 31P NMR spectra were referenced internally relative 

to triphenyl phosphine (–6.0 ppm relative to H3PO4). Mass spectrometry data were 

recorded using a high resolution Finnigan MAT 8400 spectrometer, in positive-ion mode. 

UV-vis spectra were recorded using a Cary 300 Scan instrument. Infrared spectra were 

recorded using a PerkinElmer Spectrum Two FT-IR spectrometer with an attenuated total 

reflectance (ATR) attachment and a single reflection diamond. Elemental analyses (C and 

H) were carried out by Laboratoire d’Analyse Élémentaire de l’Université de Montréal, 

Montréal, QC, Canada. 

 

CAUTION: PH3 gas is toxic and pyrophoric 

PH3 gas must be handled carefully in a controlled environment. The use of commercially 

available personal and laboratory PH3 detectors during all experiments involving PH3 is 

strongly advised. Reactions should be conducted in high-pressure reactors and purged 

thoroughly with inert gas (e.g., N2) before they are opened inside a glove box. Excess PH3 

should be ignited as it is purged from the reaction vessel under controlled conditions. Please 

see Figure A2.41 for photographs of the experimental apparatus used in this study. 

 

2.4.2 Cyclic Voltammetry 

Cyclic voltammograms were collected using a Bioanalytical Systems Inc. (BASi) Epsilon 

potentiostat and analyzed using BASi Epsilon software. Typical electrochemical cells 

consisted of a three-electrode setup including a glassy carbon working electrode, platinum 

wire counter electrode, and silver wire pseudo-reference electrode. Experiments were run 

at variable scan rates in degassed CH2Cl2 solutions of the analyte (~1 mM) and supporting 

electrolyte (0.1 M [n-Bu4N][OTF]) under a blanket of argon. Cyclic voltammograms were 

referenced against an internal standard (1 mM decamethylferrocene: ‒520 mV vs 

ferrocene/ferrocenium under identical conditions) and corrected for internal cell resistance 

using the BASi Epsilon software. 
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2.4.3 X-ray Crystallography 

Single crystals of all compounds suitable for X-ray diffraction studies were grown from 

concentrated THF solutions of the compounds layered with hexanes, except for tertiary 

phosphine 2.8c, which was grown by vapor diffusion of pentane into a concentrated CHCl3 

solution. The samples were mounted on a MiTeGen polyimide micromount with a small 

amount of Paratone N oil. X-ray diffraction measurements were made on a Bruker 

APEX­II CCD diffractometer. The unit cell dimensions were determined from a symmetry 

constrained fit of 9813 reflections with 6.48° < 2θ < 68.96° for 2.8b, 8712 reflections with 

5.54° < 2θ < 46.48° for 2.8c, 9847 reflections with 5.88° < 2θ < 79.26° for 2.10, 9849 

reflections with 5.50° < 2θ < 63.22° for 2.11, and 9420 reflections with 6.86° < 2θ < 79.66° 

for 2.12. The data collection strategy was a number of ω and φ scans which collected data 

up to 72.608° (2θ) for 2.8b, 52.832° (2θ) for 2.8c, 80.634° (2θ) for 2.10, 63.400° (2θ) for 

2.11, and 87.406° (2θ) for 2.12, respectively. The frame integration was performed using 

SAINT.77 The resulting raw data were scaled and absorption corrected using a multi­scan 

averaging of symmetry equivalent data using SADABS,78 except the data for 2.8b which 

were processed using TWINABS.79 The crystal of 2.8b was non-merohedrally twinned 

(see supporting information for twin law). The twin fraction of the minor domain refined 

to a value of 0.4120(7). The structures for 2.8b, 2.8c, 2.10, 2.11, and 2.12 were solved 

using the SHELXT program.80 All non­hydrogen atoms were obtained from the initial 

solution. The hydrogen atoms were introduced at idealized positions and were allowed to 

ride on the parent atom. The structural model was fit to the data using full matrix 

least­squares based on F2 corrections for anomalous dispersion from the usual tabulation. 

The structure was refined using the SHELXL-2014 program from the SHELX program 

package.81 Structural disorder related to the ethylene linkers and the unsubstituted Cp 

ligands was modeled under unconstrained conditions. For tertiary phosphine 2.8c, the 

minor component of the rotational disorder associated with two of the unsubstituted Cp 

ligands could not be fully resolved (see .cif file for details). For phosphines 2.10, 2.11, and 

2.12 the occupancy of the metal sites were fixed to the stoichiometric ratios of Fe/Ru, as 

confirmed by elemental analysis. Graphic plots were produced using Mercury software 

(version 3.3). For additional collection and refinement details, see Table 2.4. 
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Table 2.4. Selected X-ray diffraction data collection and refinement details for phosphines      

2.7a–c, 2.8b, 2.8c, 2.10, 2.11, and 2.12. 
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2.4.4 Synthetic Procedures and Characterization Data 

Preparation of Vinylferrocene 

Vinylferrocene was prepared according to a modified literature 

procedure.76 In a 1 L three-neck round bottom flask equipped with a 

dropping funnel, methyltriphenylphosphonium iodide (18.70 g, 46.03 

mmol), potassium t-butoxide (6.00 g, 53.5 mmol) and dibenzo-18-crown-

6 (0.03 g, 0.08 mmol) were dissolved in 400 mL of dry THF and the resulting solution was 

stirred for 2 h at 22 °C. In a dropping funnel, ferrocenecarboxaldehyde (7.36 g, 34.4 mmol) 

was dissolved in 100 mL of dry THF and added dropwise to the solution. The solution was 

stirred for 16 h at 22 °C before it was treated with 300 mL of brine. Vinylferrocene was 

extracted with Et2O (5 × 200 mL). The extracts were combined, washed with 2  300 mL 

of brine, 2  300 mL of deionized H2O, and dried over MgSO4. After gravity filtration, the 

solvent was removed in vacuo before the resulting residue was dissolved in hexanes and 

filtered through a silica plug (2” × 3”). Pure vinylferrocene was isolated as an orange 

microcrystalline solid by removing the solvent in vacuo. Yield = 7.08 g, 97%.1H NMR 

(599.5 MHz, CDCl3): δ 6.46 (d of d, 3JHH, cis = 11 Hz, 3JHH, trans = 18 Hz, 1H, C5H4CH), 5.35 

(d of d, 2JHH, gem = 2 Hz, 3JHH, trans = 18 Hz, 1H, trans-CHCH2), 5.03 (d of d, 2JHH, gem = 2 

Hz, 3JHH, cis = 11 Hz, 1H, cis-CHCH2), 4.37 (t, 3JHH = 2 Hz, 2H, β-C5H4R), 4.22 (t, 3JHH = 2 

Hz, 2H, α-C5H4R), and 4.12 (s, 5H, C5H5). These data are consistent with those spectra 

reported previously.76 

Preparation of Vinylruthenocene 

Vinylruthenocene was prepared according to a modified literature 

procedure.76 In a 1 L three-neck round bottom flask equipped with a 

dropping funnel, methyltriphenylphosphonium iodide (18.70 g, 46.03 

mmol), potassium t-butoxide (6.00 g, 53.5 mmol) and dibenzo-18-crown-

6 (0.03 g, 0.08 mmol) were dissolved in 400 mL of dry THF and the resulting solution was 

stirred for 2 h at 22 °C. In a dropping funnel, ruthenocenecarboxaldehyde (8.92 g, 34.4 

mmol) was dissolved in 100 mL of dry THF and added dropwise to the solution. The 

solution was stirred for 16 h at 22 °C before it was treated with 300 mL of brine. 
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Vinylruthenocene was extracted with Et2O (5 × 200 mL). The extracts were combined, 

washed with 2 × 300 mL of brine, 2 × 300 mL of deionized H2O, and dried over MgSO4. 

After gravity filtration, the solvent was removed in vacuo before the resulting residue was 

dissolved in hexanes and filtered through a silica plug (2” × 3”). Pure vinylruthenocene 

was isolated as a pale yellow microcrystalline solid by removing the solvent in vacuo. Yield 

= 8.52 g, 96%. 1H NMR (599.5 MHz, CDCl3): δ 6.34 (d of d, 3JHH, cis = 11 Hz, 3JHH, trans = 

18 Hz, 1H, C5H4CH), 5.29 (d of d, 2JHH, gem = 2 Hz, 3JHH, trans = 18 Hz, 1H, trans-CHCH2), 

4.90 (d of d, 2JHH, gem = 2 Hz, 3JHH, cis = 11 Hz, 1H, cis-CHCH2), 4.78 (t, 3JHH = 2 Hz, 2H, 

β-C5H4R), 4.57 (t, 3JHH = 2 Hz, 2H, α-C5H4R), and 4.52 (s, 5H, C5H5). These data are 

consistent with those previously reported.82 

Preparation of Primary, Secondary, and Tertiary Ferrocene-Containing 

Phosphines 2.7ac 

In a 300 mL autoclave, vinylferrocene (2.00 g, 9.43 mmol) and AIBN (0.06 g, 0.4 mmol) 

were dissolved in dry toluene (170 mL). The autoclave was degassed by N2 purging for 10 

min before it was pressurized with PH3 gas to 80 psi. The solution was stirred for 16 h at 

45 C. Excess pressurized PH3 gas was released in a controlled environment where it was 

ignited and allowed to burn. The resulting solution was then transferred to a 350 mL grease-

free Schlenk flask in a glove box, which was charged with vinylferrocene (2.00 g, 9.43 

mmol) and AIBN (0.06 g, 0.4 mmol) before it was stirred for 16 h at 45 C and 8 h at 65 

C, respectively. The reaction flask was charged a second time with vinylferrocene (1.00 

g, 4.71 mmol) and AIBN (0.03 g, 0.2 mmol) and stirred for 16 h at 45 C and then 8 h at 

65 C, respectively. Vinylferrocene (0.50 g, 2.4 mmol) and AIBN (0.015 g, 0.091 mmol) 

were added to the reaction flask for a third time and the orange solution was stirred at 45 

C for 16 h, followed by stirring at 65 C for 8 h and 85 C for 2 h, respectively, before the 

mixture was concentrated in vacuo. In order to reduce decomposition of phosphines during 

column chromatography, Et3N [10% (v/v) relative to dry silica] was added to the silica 

slurry in hexanes before the slurry was transferred to the column, which was later washed 

with pure hexanes (3  volume of the column) to remove excess Et3N. Using this column 
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(1.5”  10”), N2 pressure, and a gradient solvent strategy, primary phosphine 2.7a, 

secondary phosphine 2.7b, and tertiary phosphine 2.7c were separated (see below).  

Primary Phosphine 2.7a (1  Fc) 

Primary phosphine 2.7a was removed from the column using 

hexanes as a yellow band (Rf = 0.21). The solution containing 2.7a 

was collected and concentrated in vacuo to yield 2.7a as a yellow 

solid. Yield = 1.34 g, 20%. M.p.: 51‒53 °C. 1H NMR (599.5 MHz, 

CDCl3): δ 4.12 (s, 5H, C5H5), 4.09 (t, 3JHH = 2 Hz, 2H, β-C5H4R), 

4.07 (t, 3JHH = 2 Hz, 2H, α-C5H4R), 2.72 (d of m, 1JHP = 204 Hz, 2H, PH2, the signal is 

overlapped with signal at δ 2.57), 2.57 (m, 2H, C5H4CH2, the signal is overlapped with 

signal at δ 2.72), 1.72 (m, 2H, CH2PH2).
 31P NMR (161.8 MHz, CDCl3): δ –137.1 (t, 1JPH 

= 196 Hz). Mass Spec. (EI, +ve mode): exact mass calculated for [C12H15FeP]+: 246.0260; 

exact mass found: 246.0256; difference: ‒1.6 ppm. These data are consistent with a 

previous report describing the synthesis of phosphine 2.7a by a different synthetic 

strategy.30 

Secondary Phosphine 2.7b (2  Fc) 

Secondary phosphine 2.7b was collected by changing the elution 

solvent to 99:1 hexanes: Et2O (Rf = 0.13). The solution containing 

2.7b was collected and concentrated in vacuo to yield 2.7b as a 

yellow solid. Yield = 1.91 g, 31%. M.p.: 93‒95 °C. 1H NMR (399.8 

MHz, CDCl3): δ 4.20 (s, 10H, C5H5), 4.18 (t, 3JHH = 2Hz, 4H, β-

C5H4R), 4.16 (t, 3JHH = 2 Hz, 4H, α-C5H5R), 3.25 (d of quintets, 1JHP = 200 Hz, 3JHH = 7 

Hz, 1H, PH), 2.60 (m, 4H, C5H4CH2), 1.87 (dm, 2JHP = 52 Hz, 4H, CH2PH). 13C{1H} NMR 

(100.5 MHz, CDCl3): δ 89.1 (d, 3JCP = 10 Hz, ipso-C5H4R), 68.2 (s, C5H5), 67.7 (d, 5JCP = 

3 Hz, β-C5H4R), 67.0 (d, 4JCP = 1 Hz, α-C5H4R), 28.3 (d, 2JCP = 10 Hz, C5H4CH2), 21.7 (d, 

1JCP = 11 Hz, CH2PH). 31P NMR (161.8 MHz, CDCl3): δ –68.8 (d, 1JPH = 201 Hz). FT-IR 

(KBr): 815 (s), 1001 (m), 1100 (m), 1443 (w), 2254 (s), 3097 (w) cm−1. UV-vis (CH2Cl2): 

λmax 439 nm (ε = 232 M–1 cm–1). Mass Spec. (EI, +ve mode): exact mass calculated for 
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[C24H27Fe2P]+: 458.0549; exact mass found: 458.0549; difference: 0 ppm. Anal. Calcd. (%) 

for C24H27Fe2P: C, 62.92; H, 5.94. Found: C, 62.88; H, 6.04. 

Tertiary Phosphine 2.7c (3  Fc) 

Tertiary phosphine 2.7c was collected by changing the elution solvent 

to a 9:1 mixture of hexanes: Et2O (Rf = 0.29). The solution containing 

2.7c was collected and concentrated in vacuo to yield an orange solid. 

Recrystallization from 4:1 EtOAc: EtOH yielded 2.7c as an air-stable 

yellow powder. Yield = 1.63 g, 27%. M.p.: 119‒121 °C. 1H NMR 

(399.8 MHz, CDCl3): δ 4.15 (s, 15H, C5H5), 4.13 (t, 3JHH = 2 Hz, 6H, β-C5H4R), 4.11 (t, 

3JHH = 2 Hz, 6H, α-C5H4R), 2.56 (m, 6H, C5H4CH2), 1.84 (m, 6H, CH2P). 13C{1H} NMR 

(150.7 MHz, CDCl3): δ 89.3 (d, 3JCP = 11 Hz, ipso-C5H4R), 68.1 (s, C5H5), 67.5 (s, β-

C5H4R), 66.9 (s, α-C5H4R), 28.0 (d, 2JCP = 11 Hz, C5H4CH2), 25.6 (d, 1JCP = 12 Hz, CH2P). 

31P NMR (161.8 MHz, CDCl3): δ –27.9 (s). FT-IR (KBr): 808 (s), 1001 (m), 1105 (m), 

1441 (w), 3097 (w) cm−1. UV-vis (CH2Cl2): λmax 440 nm (ε = 311 M–1 cm–1). Mass Spec. 

(EI, +ve mode): exact mass calculated for [C36H39Fe3P]+: 670.0838; exact mass found: 

670.0822; difference: ‒2.4 ppm. Anal. Calcd. (%) for C36H39Fe3P: C, 64.52; H, 5.87. 

Found: C, 64.63; H, 5.81. 

Preparation of Primary, Secondary, and Tertiary Ruthenocene-

Containing Phosphines 2.8ac 

In a 300 mL autoclave, vinylruthenocene (1.20 g, 4.66 mmol) and AIBN (0.03 g, 0.2 mmol) 

were dissolved in dry toluene (150 mL). The autoclave was degassed by N2 purging for 10 

min before it was pressurized with PH3 to 80 psi. The solution was stirred for 16 h at 45 C 

at which time the pressurized PH3 gas was released in a controlled environment where it 

was ignited and allowed to burn. The resulting P2O5 was treated with H2O to from H3PO4 

and discarded appropriately. The resulting solution was then transferred to a 350 mL 

grease-free Schlenk flask, which was charged with vinylruthenocene (1.20 g, 4.66 mmol) 

and AIBN (0.03 g, 0.2 mmol) before it was stirred for 16 h at 45 C then 8 h at 65 C. 

Vinylruthenocene (0.72 g, 2.8 mmol) and AIBN (0.02 g, 0.1 mmol) were added to the 
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reaction flask for a second time and the pale yellow solution was stirred at 45 C for 16 h, 

followed by stirring at 65 C for 6 h, before AIBN (0.02 g, 0.1 mmol) was added to the 

reaction flask for a last time and the solution was stirred at 85 C for 3 h before it was 

mixed with Celite, concentrated in vacuo, and transferred to the top of a silica column. In 

an effort to reduce the degree of decomposition of phosphines during column 

chromatography, Et3N [10% (v/v) relative to dry silica] was added to the silica slurry in 

hexanes before the slurry was transferred to the column and later washed with pure hexanes 

(3  volume of the column) to remove excess Et3N. Using this column (1.5”  10”) and a 

gradient solvent strategy, primary phosphine 2.8a, secondary phosphine 2.8b, and tertiary 

phosphine 2.8c were separated (see below). 

Primary Phosphine 2.8a (1  Rc) 

Using N2 pressure and 95:5 hexanes: Et2O solvent mixture as eluent, 

primary phosphine 2.8a (Rf = 0.41, untreated silica TLC plate) was 

isolated from the column. The solution containing 2.8a was 

concentrated in vacuo to yield a white solid. Yield = 0.35 g, 10%. 

M.p.: 52‒54 °C. 1H NMR (599.5 MHz, CDCl3): δ 4.53 (s, 5H, C5H5), 

4.52 (t, 3JHH = 2 Hz, 2H, β-C5H4R), 4.45 (t, 3JHH = 2 Hz, 2H, α-C5H5R), 2.72 (d of m, 1JHP 

= 195 Hz, 2H, PH2), 2.40 (m, 2H, C5H4CH2), 1.65 (m, 2H, CH2PH2). 
13C{1H} NMR (150.1 

MHz, CDCl3): δ 93.0 (d, 3JCP = 6 Hz, ipso-C5H4R), 70.5 (s, β-C5H4R), 70. 4 (s, C5H5), 69.4 

(s, α-C5H4R), 32.8 (d, 2JCP = 3 Hz, C5H4CH2), 16.0 (d, 1JCP = 8 Hz, CH2PH). 31P NMR 

(161.8 MHz, CDCl3): δ –137.0 (t of m, 1JPH = 195 Hz). FT-IR/ATR: 3084 (w), 2916 (w), 

2281 (s), 1433 (w), 1222 (w), 1099 (m), 995 (m), 806 (s) cm−1. UV-vis (THF): λmax 319 

nm (ε = 210 M–1 cm–1). Mass Spec. (EI, +ve mode): exact mass calculated for 

[C12H15P
102Ru]+: 291.9955; exact mass found: 291.9955; difference: 0 ppm. Anal. Calcd. 

(%) for C12H15PRu: C, 49.48; H, 5.19. Found: C, 50.15; H, 5.25. 
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Secondary Phosphine 2.8b (2  Rc) 

After removal of primary phosphine 2.8a, secondary phosphine 2.8b 

was isolated from the column by changing the elution solvent to 4:1 

hexanes:Et2O (Rf = 0.58, untreated silica TLC plate). The solution 

containing 2.8b was concentrated in vacuo to yield a white solid. 

Yield = 0.90 g, 27%. M.p.: 97‒99 °C. 1H NMR (599.5 MHz, CDCl3): 

δ 4.54 (t, 3JHH = 2 Hz, 4H, β-C5H4R), 4.53 (s, 10H, C5H5), 4.46 (t, 3JHH = 2 Hz, 4H, α-

C5H5R), 3.16 (d of m, 1JHP = 201 Hz, 1H, PH), 2.36 (m, 4H, C5H4CH2), 1.72 (d of m, 2JHP 

= 70 Hz, 4H, CH2PH). 13C{1H} NMR (150.1 MHz, CDCl3): δ 93.5 (d, 3JCP = 10 Hz, ipso-

C5H4R), 70.6 (s, β-C5H4R), 70.4 (s, C5H5), 69.4 (s, α-C5H4R), 28.2 (d, 1JCP = 12 Hz, 

CH2PH), 22.3 (d, 2JCP = 10 Hz, C5H4CH2).
 31P NMR (161.8 MHz, CDCl3): δ –68.9 (d of 

m, 1JPH = 201 Hz). FT-IR/ATR: 3083(w), 2920 (w), 2252 (w), 1442 (w), 1227 (w), 1100 

(m), 995 (m), 803 (s), and 667 (w) cm−1. UV-vis (THF): λmax 319 nm (ε = 480 M–1 cm–1). 

Mass Spec. (EI, +ve mode): exact mass calculated for [C24H27P
96Ru99Ru]+: 540.9986; exact 

mass found: 540.9975; difference: –2.03 ppm. Anal. Calcd. (%) for C24H27PRu2: C, 52.55; 

H, 4.96. Found: C, 52.84; H, 4.95. 

Tertiary Phosphine 2.8c (3  Rc) 

After removal of secondary phosphine 2.8b, tertiary phosphine 2.8c 

was also collected from the column by changing the elution solvent to 

a 1:1 mixture of hexanes:Et2O (Rf = 0.40, untreated silica TLC plate). 

The solution containing 2.8c was concentrated in vacuo to yield a 

white solid. Yield = 0.70 g, 22%. M.p.: 110‒112 °C. 1H NMR (599.5 

MHz, CDCl3): δ 4.55 (t, 3JHH = 2 Hz, 6H, β-C5H4R), 4.54 (s, 15H, C5H5), 4.47 (t, 3JHH = 2 

Hz, 6H, α-C5H5R), 2.31 (m, 6H, C5H4CH2), 1.59 (m, 6H, CH2P). 13C{1H} NMR (150.1 

MHz, CDCl3): δ 93.8 (d, 3JCP = 12 Hz, ipso-C5H4R), 70.5 (s, β-C5H4R), 70.4 (s, C5H5), 69.4 

(s, α-C5H4R), 28.7 (d, 2JCP = 13 Hz, C5H4CH2), 25.4 (d, 1JCP = 14 Hz, CH2P). 31P NMR 

(161.8 MHz, CDCl3): δ –29.4 (m). FT-IR/ATR: 3101 (w), 2931 (w), 2360 (w), 2304 (w), 

1409 (w), 1187 (m), 1100 (m), 1040 (m), 997 (m), 802 (s), and 683 (m) cm−1. UV-vis 

(THF): λmax 319 nm (ε = 770 M–1 cm–1). Mass Spec. (EI, +ve mode): exact mass calculated 
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for [C36H39P
96Ru2

102Ru]+: 795.9985; exact mass found: 795.9998; difference: 1.63 ppm. 

Anal. Calcd. (%) for C36H39PRu3: C, 53.65; H, 4.88. Found: C, 53.60; H, 4.81. 

Preparation of Tertiary Phosphine 2.10 (1  Rc, 2  Fc) 

In a 25 mL grease-free Schlenk flask, 

secondary phosphine 2.7b (2.00 g, 4.37 

mmol) was combined with vinylruthenocene 

(0.38 g, 1.5 mmol) and AIBN (0.01 g, 0.06 

mmol) in 6 mL of dry THF before it was stirred for 16 h at 45 C then 8 h at 65 C. The 

reaction flask was charged a second time with vinylruthenocene (0.25 g, 0.97 mmol) and 

AIBN (0.008 g, 0.05 mmol) and stirred for 16 h at 45 C then 8 h at 65 C. 

Vinylruthenocene (0.16 g, 0.64 mmol) and AIBN (0.005 g, 0.03 mmol) were added to the 

reaction flask for a third time and the orange solution was stirred at 45 C for 16 h, followed 

by stirring at 65 C for 8 h. Vinylruthenocene (0.11 g, 0.43 mmol) and AIBN (0.003 g, 

0.02 mmol) were added to the reaction flask for a fourth time and the orange solution was 

stirred at 45 C for 16 h, followed by stirring at 65 C for 8 h, and 85 C for 2 h before it 

was concentrated in vacuo. The oily orange solid was dissolved in CH2Cl2 and combined 

with Celite before the resulting mixture was dried in vacuo and transferred to the top of a 

silica column [1.5” × 8”, treated with Et3N 10% (v/v) as described above] for subsequent 

purification by column chromatography using a gradient solvent strategy. Using N2 gas 

and a mixture of 99:1 hexanes:Et2O, unreacted secondary phosphine 2.7b was removed 

from the column (0.38 g recovered). After removal of secondary phosphine 2.7b, tertiary 

phosphine 2.10 was collected from the column by changing the elution solvent to 4:1 

hexanes:Et2O (Rf = 0.47, untreated silica TLC plate). The solution containing tertiary 

phosphine 2.10 was concentrated in vacuo to yield an orange solid. Yield = 2.36 g, 94%. 

M.p.: 135‒137 °C. 1H NMR (599.5 MHz, CDCl3): δ 4.56 [t, 3JHH = 2 Hz, 2H, β-

C5H4R(Ru)], 4.54 [s, 5H, C5H5(Ru)], 4.47 [t, 3JHH = 2 Hz, 2H, α-C5H5R(Ru)], 4.13 [s, 10H, 

C5H5(Fe)], 4.11 [t, 3JHH = 2 Hz, 4H, β-C5H4R(Fe)], 4.09 [t, 3JHH = 2 Hz, 4H, α-C5H5R(Fe)], 

2.48 [m, 4H, C5H4CH2(Fe)], 2.33 [m, 2H, C5H4CH2(Ru)], 1.66 [m, 4H, CH2P(Fe)], 1.61 

[m, 2H, CH2P(Ru)]. 13C{1H} NMR (150.1 MHz, CDCl3): δ 93.9 [d, 3JCP = 13 Hz, ipso-
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C5H4R(Ru)], 89.8 [d, 3JCP = 13 Hz, ipso-C5H4R(Fe)], 70.5 [s, β-C5H4R(Ru)], 70.5 [s, 

C5H5(Ru)], 69.4 [s, α-C5H4R(Ru)], 68.5 [s, C5H5(Fe)], 67.8 [s, β-C5H4R(Fe)], 67.3 [s, α-

C5H4R(Fe)], 28.9 [d, 2JCP = 13 Hz, C5H4CH2(Ru)], 28.5 [d, 2JCP = 13 Hz, C5H4CH2(Fe)], 

26.1 [d, 1JCP = 16 Hz, CH2P(Fe)], 25.5 [d, 1JCP = 15 Hz, CH2P(Ru)]. 31P NMR (161.8 MHz, 

CDCl3): δ –28.4 (m). FT-IR/ATR: 3101 (w), 2941 (w), 2915 (w), 1440 (w), 1227 (w), 1104 

(m), 1000 (m), 807 (s), and 667 (w) cm−1. UV-vis (THF): λmax 324 nm (ε = 375 M–1 cm–1) 

and 436 nm (ε = 205 M–1 cm–1). Mass Spec. (EI, +ve mode): exact mass calculated for 

[C36H39
56Fe2P

96Ru]+: 710.0564; exact mass found: 710.0557; difference: –0.98 ppm. Anal. 

Calcd. (%) for C36H39Fe2PRu: C, 60.44; H, 5.49. Found: C, 60.41; H, 5.49. 

Preparation of Secondary Phosphine 2.11 (1  Rc, 1  Fc) and Tertiary 

Phosphine 2.12 (2  Rc, 1  Fc) 

In a 25 mL grease-free Schlenk flask, primary phosphine 2.7a (1  Fc) (1.00 g, 4.06 mmol) 

was combined with vinylruthenocene (0.70 g, 2.7 mmol) and AIBN (0.02 g, 0.1 mmol) in 

6 mL of dry THF before it was stirred for 16 h at 45 C, 6 h at 65 C, and 2 h at 85 C and 

concentrated in vacuo. The oily orange solid was dissolved in CH2Cl2 and combined with 

Celite before the resulting mixture was dried in vacuo and transferred to the top of a silica 

column [1.5” × 8”, treated with Et3N 10% (v/v) as described above] for subsequent 

purification by column chromatography using a gradient solvent strategy (see below). 

Secondary Phosphine 2.11 (1 Rc, 1  Fc) 

Using N2 gas pressure and hexanes as eluent, 

unreacted primary phosphine 2.7a (0.45g) was 

removed from the column before the eluent was 

changed to a mixture of 99:1 hexanes:Et2O 

which removed secondary phosphine 2.11 from the column as a yellow band (Rf = 0.15, 

untreated silica TLC plate). The solution containing secondary phosphine 2.11 was 

concentrated in vacuo to yield an orange solid. Yield = 0.52 g, 39%. M.p.: 76‒78 °C. 1H 

NMR (599.5 MHz, CDCl3): δ 4.54 [t, 3JHH = 2 Hz, 2H, β-C5H4R(Ru)], 4.53 [s, 5H, 

C5H5(Ru)], 4.46 [t, 3JHH = 2 Hz, 2H, α-C5H5R(Ru)], 4.12 [s, 5H, C5H5(Fe)], 4.08 [t, 3JHH = 
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2 Hz, 2H, β-C5H4R(Fe)], 4.07 [t, 3JHH = 2 Hz, 2H, α-C5H5R(Fe)], 3.16 (d of quintets, 1JHP 

= 201 Hz, 3JHH = 7 Hz, 1H, PH), 2.52 [m, 2H, C5H4CH2(Fe)], 2.37 [m, 2H, C5H4CH2(Ru)], 

1.81 [m, 2H, CH2PH(Fe)], 1.69 [m, 2H, CH2PH(Ru)]. 13C{1H} NMR (150.1 MHz, CDCl3): 

δ 93.4 [d, 3JCP = 10 Hz, ipso-C5H4R(Ru)], 89.3 [d, 3JCP = 9 Hz, ipso-C5H4R(Fe)], 70.5 [s, 

β-C5H4R(Ru)], 70.4 [s, C5H5(Ru)], 69.4 [s, α-C5H4R(Ru)], 68.4 [s, C5H5(Fe)], 67.8 [s, β-

C5H4R(Fe)], 67.2 [s, α-C5H4R(Fe)], 28.4 [d, 2JCP = 10 Hz, C5H4CH2 (Ru)], 28.1 [d, 2JCP = 

10 Hz, C5H4CH2(Fe)], 22.3 [d, 1JCP = 10 Hz, CH2PH(Fe)], 21.8 [d, 1JCP = 11 Hz, 

CH2PH(Ru)]. 31P NMR (161.8 MHz, CDCl3): δ –68.9 (d of m, 1JPH = 200 Hz). FT-IR/ATR: 

3096 (w), 2915 (w), 2254 (w), 1442 (w), 1100 (w), 1000 (w), and 805 (s) cm−1. UV-vis 

(THF): λmax 324 nm (ε = 300 M–1 cm–1) and 436 nm (ε = 105 M–1 cm–1). Mass Spec. (EI, 

+ve mode): exact mass calculated for [C24H27
56FeP102Ru]+: 504.0243; exact mass found: 

504.0248; difference: 0.99 ppm. Anal. Calcd. (%) for C24H27FePRu: C, 57.27; H, 5.41. 

Found: C, 57.31; H, 5.40. 

Tertiary Phosphine 2.12 (2  Rc, 1  Fc) 

After removal of secondary phosphine 2.11, 

tertiary phosphine 2.12 was collected from the 

column by changing the elution solvent to a 

mixture of 95:5 hexanes:Et2O (Rf = 0.46, 

untreated silica TLC plate). The solution containing tertiary phosphine 2.12 was 

concentrated in vacuo to yield a yellow solid. Yield = 0.44 g, 42%. M.p.: 106‒108 °C. 1H 

NMR (599.5 MHz, CDCl3): δ 4.55 [t, 3JHH = 2 Hz, 4H, β-C5H4R(Ru)], 4.54 [s, 10H, 

C5H5(Ru)], 4.47 [t, 3JHH = 4 Hz, 4H, α-C5H5R(Ru)], 4.12 [s, 5H, C5H5(Fe)], 4.11 [t, 3JHH = 

2 Hz, 2H, β-C5H4R(Fe)], 4.08 [t, 3JHH = 2 Hz, 2H, α-C5H5R(Fe)], 2.47 [m, 2H, 

C5H4CH2(Fe)], 2.32 [m, 4H, C5H4CH2(Ru)], 1.64 [m, 2H, CH2P(Fe)], 1.60 [m, 4H, 

CH2P(Ru)]. 13C{1H} NMR (150.1 MHz, CDCl3): δ 93.9 [d, 3JCP = 13 Hz, ipso-C5H4R(Ru)], 

89.8 [d, 3JCP = 13 Hz, ipso-C5H4R(Fe)], 70.5 [s, β-C5H4R(Ru)], 70.4 [s, C5H5(Ru)], 69.4 [s, 

α-C5H4R(Ru)], 68.5 [s, C5H5(Fe)], 67.8 [s, β-C5H4R(Fe)], 67.2 [s, α-C5H4R(Fe)], 28.8 [d, 

2JCP = 14 Hz, C5H4CH2(Ru)], 28.4 [d, 2JCP = 13 Hz, C5H4CH2(Fe)], 26.0 [d, 1JCP = 15 Hz, 

CH2P(Fe)], 25.5 [d, 1JCP = 15 Hz, CH2P(Ru)]. 31P NMR (161.8 MHz, CDCl3): δ –28.9 (m). 

FT-IR/ATR: 3101 (w), 2928 (w), 1411 (w), 1229 (w), 1100 (m), 998 (m), 805 (s), and 666 
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(w) cm−1. UV-vis (THF): λmax 322 nm (ε = 495 M–1 cm–1) and 438 nm (ε = 95 M–1 cm–1). 

Mass Spec. (EI, +ve mode): exact mass calculated for [C36H39
56FeP96Ru99Ru]+: 753.0274; 

exact mass found: 753.0274; difference: 0 ppm. Anal. Calcd. (%) for C36H39FePRu2: C, 

56.84; H, 5.17. Found: C, 56.88; H, 5.16. 
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Chapter 3  

3 Group 6 Metal Pentacarbonyl Complexes of Air-Stable 
Primary, Secondary, and Tertiary Ethylferrocenephosphines 

 

Adapted from: 

Rabiee Kenaree, A.; Sauvé, E.R.; Ragogna, P.J.; Gilroy, J.B.* Group 6 Metal 

Pentacarbonyl Complexes of Air-Stable Primary, Secondary, and Tertiary 

Ethylferrocenephosphines. Dalton Trans. 2016, 45, 2859–2867. 

 

3.1 Introduction 

Phosphines, including examples based on ferrocene,1-6 are among the most widely 

exploited L-type ligands within the field of coordination chemistry7-11,12-20 as a result of 

their tunable steric21 and electronic22 properties. They have been employed extensively as 

ancillary and/or labile ligands in homogeneous catalysts [e.g., Grubbs I 3.1, Ni(dppp)Cl2 

3.2, Pd(dppf)Cl2 3.3, Wilkinson's catalyst Rh(PPh3)3Cl, and Pd(PPh3)4] that rapidly 

facilitate polymerization,23-27 C-C and C-E bond formation,28-33 and hydrogenation 

reactions.34-39 While homogeneous catalysts commonly employ tertiary phosphines, 

relatively few examples include electron-rich primary and secondary alkyl phosphines due 

to their high reactivity towards air and moisture.  

 

 

Figure 3.1. Examples of phosphine-based ligands. 
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Building on recent advances surrounding the design and synthesis of air-stable primary, 

secondary, and tertiary phosphines40-41,42-49 we have developed a unique series of electron-

rich alkylphosphines bearing ethylferrocene and ethylruthenocene substituents (e.g., 

3.4ac).50-51 These phosphines have shown utility as precursors to highly-metallized 

polymers50 and polymer networks52 and in the phosphane-ene reaction.53 They are 

remarkably stable towards air and moisture, redox active, and afford the ability to tune their 

steric properties through the sequential addition of ethylmetallocene units. Herein, we 

present a comprehensive study of the structure, bonding, and properties of a series of Group 

6 metal pentacarbonyl (M: Cr, Mo, W) complexes of primary, secondary, and tertiary 

ethylferrocenephosphines in order to establish fundamental knowledge of their ligand 

characteristics. Specifically, these ligands may be particularly well suited for the generation 

of high nuclearity transition metal clusters, where the presence of ferrocene has previously 

led to materials with application as sensors and electrode materials.54-59 

 

3.2 Results and Discussion 

3.2.1 Synthesis and NMR Spectroscopy 

Primary, secondary, and tertiary ethylferrocene phosphines 3.4ac were prepared 

according to published protocols.50-51 Monosubstituted phosphine complexes of Group 6 

metal pentacarbonyls [M(CO)5, M: Cr, Mo, W] were produced by first irradiating 

commercially available hexacarbonyls in THF with UV light to produce the corresponding 

THF adducts. The THF adducts were stirred with the appropriate phosphines for 2 h, 

isolated, and purified via column chromatography to afford phosphine complexes 3.5ac 

(M = Cr), 3.6ac (M = Mo), and 3.7ac (M = W) in yields ranging from 78 to 90% (Scheme 

3.1). The structure and purity of the reported complexes were confirmed using multinuclear 

NMR spectroscopy, X-ray crystallography, IR and UV-Vis absorption spectroscopy, mass 

spectrometry, and elemental analysis. 
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Scheme 3.1. Synthesis of primary, secondary, and tertiary phosphine-M(CO)5 complexes 3.5a–c, 

3.6a–c, and 3.7a–c. FcH = ferrocene. 

The NMR spectra of phosphine-M(CO)5 complexes 3.5ac, 3.6ac, and 3.7ac were 

consistent with the proposed structures of the complexes, with each phosphine coordinated 

to a single M(CO)5 fragment (Figures 3.1, A3.1A3.33, and Table 3.1). The 1H NMR 

spectra of the complexes confirmed the presence of ligated primary, secondary, and tertiary 

phosphines and gave rise to two resonances (1.972.26 ppm and 2.512.77 ppm) attributed 

to the ethyl linker and a singlet and pair of pseudo-triplets (4.044.26 ppm) due to the 

presence monosubstituted ferrocene groups. The phosphine protons were observed as 

complex doublets between 4.24 and 4.55 ppm for primary phosphine complexes 3.5a, 3.6a, 

and 3.7a and between 4.52 and 4.85 for secondary phosphine complexes 3.5b, 3.6b, and 

3.7b. 

31P NMR spectroscopy showed that the phosphorus atoms within the phosphine-M(CO)5 

complexes described became increasingly deshielded as the number of ethylferrocene 

groups was increased (e.g., 3.7a: 101.9 ppm; 3.7b: 43.6 ppm; and 3.7c: 6.8 ppm). A 

second trend emerged when we examined the effect of the transition metal on the 31P NMR 

shift. The shielding effect of the metals increased as we moved down Group 6 from Cr to 

W, resulting in a dramatic upfield shift of the 31P NMR signals (e.g., 3.5a: 47.7 ppm; 

3.6a: 80.4 ppm; and 3.7a: 101.9 ppm). The 13C NMR signals observed for the CO 

ligands in each complex follow the same trend, with the most upfield resonances being 

observed for W(CO)5 complexes and the most downfield resonances being observed for 

the Cr(CO)5 complexes. Coupling to 183W (1JPW for 3.7a: 217 Hz; 3.7b: 225 Hz; and 3.7c: 

233 Hz) in complexes 3.7ac further supports the proposed structures of the complexes 

and the static nature of the P-W bonds (Figures A3.27, A3.30, and A3.33). The observed 

trend for the P-W coupling constants is consistent with previous reports where a linear 
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relationship between CO stretching frequencies (E mode) and coupling constants was 

established (Table 3.1).60 

 

Figure 3.2. 31P{1H} NMR spectra of primary, secondary, and tertiary phosphine-W(CO)5 

complexes 3.7a (black line), 3.7b (blue line), 3.7c (red line and the inset) recorded in CDCl3. 

 

Table 3.1. Selected characterization data for complexes 3.5ac, 3.6ac, and 3.7ac. 

 3.5a 3.5b 3.5c 3.6a 3.6b 3.6c 3.7a 3.7b 3.7c 

(CO) A1cis (cm–1) 2067 2062 2058 2075 2071 2067 2074 2070 2066 

(CO) A1trans (cm–1) 1979 1979 1975 1993 1986 1981 1976 1978 1974 

(CO) E (cm–1) 1916 1916 1922 1922 1925 1929 1912 1914 1922 

31P (δ) 47.7 3.5 30.4 80.4 22.9 12.5 101.9 43.6 6.8 

1JPH (Hz) 324 321 - 319 315 - 333 328 - 

1JPW (Hz) - - - - - - 217 225 233 

E1/2, Fc (mV) 10 0 5 10 0 5 10 0 5 

λmax (nm) 437 436 439 439 436 435 441 437 436 

ε (M1 cm1) 130 230 350 115 250 350 120 245 335 
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3.2.2 X-ray Crystallography  

The solid-state structures of complexes 3.5c, 3.6c, and 3.7ac were determined by single 

crystal X-ray diffraction and are shown in Figures 3.2, A3.34, and A3.35 and the data are 

summarized in Table 3.2. The structures contain many general features including a Group 

6 metal in an octahedral environment, C-O bond lengths between 1.138(3) and 1.145(4) Å, 

and P-C bond lengths of 1.832(3)1.842(7) Å. The P-C bond lengths observed were 

slightly shorter than those of free phosphines 3.4ac [1.843(1)1.93(1) Å].50 

Examination of the solid-state structures of 3.7ac (M = W) allowed for direct comparison 

of the primary, secondary, and tertiary phosphine complexes. Partial space filling models, 

viewed down the W-P bond axis, are shown in Figure 3.2 and demonstrate the dramatic 

increase in relative size associated with the sequential addition of ethylferrocene 

substituents at phosphorus. The M-P distances are 2.492(2) Å for 3.7a, 2.5135(10) Å for 

3.7b, and 2.5094(8) Å for 3.7c, which provides an indication that the introduction of 

additional ethylferrocene substituents at phosphorus does not result in a significant 

enhancement in the steric interactions between the phosphine ligands and M(CO)5 unit. A 

further indication that the structures of the phosphine ligands are not being altered in the 

complexes due to unfavorable steric interactions are the average C-P-C angles, which 

increased from 99.03(4) and 99.68(6) in free phosphines 3.4b and 3.4c to 104.57(19) 

and 102.62(10) in their respective W(CO)5 complexes, 3.7b and 3.7c.  

By comparing the solid-state structures of tertiary phosphine complexes 3.5c, 3.6c, and 

3.7c we assessed the influence of the different Group 6 metals on their structural metrics. 

The M-P bond length observed for complex 3.5c [M = Cr, 2.3747(10) Å] was shorter than 

that of 3.6c [M = Mo, 2.5121(11) Å] due to an increase in the number of electrons 

associated with a change from Period 4 to Period 5. Similar elongation of the M-P bond 

was not observed when Mo was replaced by W in 3.7c [2.5094(8) Å] due to the lanthanoid 

contraction. 
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Figure 3.3. Solid-state structures and partial spacefill models of primary, secondary, and tertiary 

phosphine-W(CO)5 complexes 3.7a (a,b), 3.7b (c,d), and 3.7c (e,f). Thermal displacement 

ellipsoids are shown at 50% probability and hydrogen atoms have been omitted for clarity. Only 

one of the two structurally similar molecules from the asymmetric unit for 3.7a is shown. 
 

Table 3.2. Selected bond lengths (Å) and angles (deg) for complexes 3.5c, 3.6c, and 3.7ac. 

aThe asymmetric unit for 3.6a contains two crystallographically independent molecules. Average values for 

the two molecules are listed. 

3.2.3 FT-IR Spectroscopy 

The assignment of the CO stretching frequencies [(CO)] of monosubstituted metal 

carbonyl complexes [M(CO)5L] and surrounding theory was developed by Orgel and 

Cotton in the early 1960s.61-62 Based on their findings, we expected to observe three unique 

CO stretches (A1cis, A1trans, E) in the IR spectra of phosphine-M(CO)5 complexes 3.5ac, 

3.6ac, and 3.7ac (Figures 3.3, A3.36A3.44, and Table 3.1). In general, the (CO) A1cis 

 3.5c 3.6c 3.7aa 3.7b 3.7c 

trans M-C 1.866(4) 2.018(4) 2.012(8) 1.998(4) 2.012(2) 

cis M-C (avg) 1.895(4) 2.041(4) 2.044(8) 2.047(5) 2.041(3) 

M-C (avg) 1.890(4) 2.036(4) 2.038(8) 2.037(5) 2.035(3) 

M-P 2.3747(10) 2.5121(11) 2.492(2) 2.5135(10) 2.5094(8) 

trans C-O 1.149(4) 1.141(4) 1.145(8) 1.156(5) 1.141(3) 

cis C-O (avg) 1.145(4) 1.144(4) 1.143(8) 1.136(6) 1.138(3) 

C-O (avg) 1.145(4) 1.144(4) 1.144(8) 1.140(6) 1.138(3) 

P-C (avg) 1.832(3) 1.833(3) 1.842(7) 1.832(4) 1.832(2) 

C-P-C (avg) 102.28(15) 102.46(16) - 104.57(19) 102.62(10) 
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(20582075 cm1) and A1trans (19741993 cm1) absorptions for the complexes were shown 

to decrease when primary phosphine 3.4a was replaced by secondary phosphine 3.4b and 

when secondary phosphine 3.4b was replaced by tertiary phosphine 3.4c. This trend 

provides evidence that the σ donating ability of the phosphine ligands employed in this 

study, and thus the extent of  backbonding to CO, increased as ethylferrocene substituents 

were introduced at the ligand. By comparing the CO stretching frequencies [(CO) A1trans] 

observed for tertiary phosphine complexes 3.5c, 3.6c, and 3.7c with those recorded for 

analogous PEt3 (Et3PCrCO5: 1943 cm1; Et3PMoCO5: 1944 cm1; Et3PWCO5: 1943 

cm1)63 and PPh3 (Ph3PCrCO5: 1989 cm1; Ph3PMoCO5: 1990 cm1; Ph3PWCO5: 1981 

cm1)62 complexes, we conclude that the tertiary phosphine ligand employed in this study 

is a stronger σ donor than the phenyl-substituted analog, but a weaker σ donor than the 

ethyl-substituted analog. Variation of the transition metals involved provided further 

insight into the bonding within the series of complexes. The extent of  backbonding to the 

CO ligands, based on the values of (CO) A1trans and A1cis, followed the trend: Cr > W > 

Mo and mirrored the trend in electronegativity for the metals involved. 

 

 

Figure 3.4. FT-IR spectra (CO region) for primary, secondary, and tertiary phosphine-W(CO)5 

complexes 3.7a (black line), 3.7b (blue line), and 3.7c (red line) recorded as thin films on KBr 

plates. 
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3.2.4 UV-Vis Absorption Spectroscopy and Cyclic Voltammetry 

The UV-Vis absorption spectra and cyclic voltammograms (CVs) recorded for phosphine-

M(CO)5 complexes 3.5ac, 3.6ac, and 3.7ac were consistent with the presence of 

electronically isolated ferrocene groups. Due to the large octahedral field splitting 

associated with strong field carbonyl ligands, the UV- Vis absorption spectra of phosphine-

M(CO)5 complexes 3.5ac, 3.6ac, and 3.7ac in CH2Cl2 are comprised primarily of 

features associated with the ferrocene moieties (Figures 3.4, A3.45A3.50, and Table 3.1). 

For each series of primary, secondary, and tertiary complexes the molar absorptivity () at 

the absorption maxima (max = 435441 nm) associated with the formally forbidden, dd 

transitions of ferrocene scaled linearly with the number of ferrocene groups present and 

ranged from 115 to 350 M1 cm1. 

 

Figure 3.5. UV-Vis spectra of primary, secondary, and tertiary phosphine-W(CO)5 complexes 

3.7a (black line), 3.7b (blue line), and 3.7c (red line) recorded in CH2Cl2. 

The electrochemical properties of phosphine-M(CO)5 complexes 3.5ac, 3.6ac, and 

3.7ac were studied by collecting CVs of 1 mM degassed 2:1 CH2Cl2:CH3CN solutions 

containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte (Figures 3.5, A3.51A3.58, and 

Table 3.1). This solvent/supporting electrolyte combination was required in order to 

solubilize both the ferrocene and electrogenerated ferrocenium forms of the complexes. 

When traditional electrolytes (e.g., [n-Bu4N][PF6]) were employed in non-polar solvents 

such as CH2Cl2, plating of the ferrocenium forms of the complexes resulted in a loss of 

diffusion control at the interface of the working electrode. For each complex a single 
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reversible oxidation wave with peak currents corresponding to one electron per ferrocene 

unit was observed. Significantly, the small electrochemical feature observed at ca. 

150 mV vs. Fc/Fc+ in the CVs of the free phosphines (Figure 3.6), which has been 

previously linked to electrode adsorption relating to the phosphorus lone pair,50-51 

disappears upon metal coordination. Within each series the relatively electron-poor 

primary phosphine complexes (10 mV) were harder to oxidize than the secondary 

phosphine complexes which contain an additional ethylferrocene substituent (0 mV). 

Furthermore, the relatively electron-rich tertiary phosphine complexes were the easiest to 

oxidize (5 mV). All of the complexes reported in this study were more difficult to oxidize 

than free phosphines 3.4ac under identical conditions50 and there were no observable 

differences in the CVs when the transition metals were varied. 

 

Figure 3.6. Cyclic voltammograms of tertiary phosphine 3.4c (grey line) and tertiary phosphine-

W(CO)5 complex 3.7c (red line) recorded at 250 mV s‒1 for 1 mM degassed 2:1 CH2Cl2:CH3CN 

solutions containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 

3.3 Conclusions 

We have reported the synthesis and characterization of a series of Group 6 M(CO)5 

complexes of air-stable, redox-active primary, secondary, and tertiary 

ethylferrocenephosphines. 31P NMR spectroscopic studies confirmed the phosphine units 

to be intact in the complexes while X-ray crystallography was used to verify the proposed 

structures of the complexes and demonstrated trends in M-C and M-P bond lengths that 

followed those of the atomic radii of the metals involved. The X-ray structures of 
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complexes 3.7ac also allowed for a qualitative assessment of the relative size of the 

ligands, showing that the volume occupied by the phosphine ligands increased dramatically 

with the sequential introduction of additional ethylferrocene substituents. Cyclic 

voltammetry studies confirmed that the ferrocene moieties were electronically isolated 

from the metals in the complexes studied, and UV-Vis absorption spectroscopy revealed 

properties consistent with monosubstituted ferrocenes. By monitoring the CO stretches of 

the complexes with IR spectroscopy, we demonstrated that the σ donating ability of the 

phosphine ligands increased as ethylferrocene substituents were introduced [σ donor 

strength: P(CH2CH2Fc)3 > PH(CH2CH2Fc)2 > PH2(CH2CH2Fc)] and that the σ donating 

ability of the phosphines were intermediate between those of ethyl and phenyl phosphines 

[σ donor strength: PEt3 > P(CH2CH2Fc)3 > PPh3].  

Based on the fundamental knowledge of the ligand characteristics of this promising class 

of ethylferrocene phosphine ligands produced as a result of this work, we are hopeful that 

they will be employed by those working towards novel homogeneous catalysts and redox-

active coordination complexes. Our future work in this area will focus on their use in the 

coordination chemistry of late transition metal chalcogens as we pursue large, redox-active 

transition metal clusters. 

3.4 Experimental section 

3.4.1 General Considerations 

Reactions and manipulations were carried out under a N2 atmosphere using standard glove 

box or Schlenk techniques unless otherwise stated. Solvents were obtained from Caledon 

Laboratories, dried using an Innovative Technologies Inc. solvent purification system, 

collected under vacuum, and stored under a N2 atmosphere over 4 Å molecular sieves. 

Reagents were purchased from Sigma-Aldrich or Alfa Aesar and used as received, aside 

from metal carbonyls which were sublimed before use. Primary, secondary, and tertiary 

phosphines 3.4ac were synthesized according to previously reported protocols.50-51 UV 

irradiation experiments were conducted with a medium pressure mercury lamp in a Quartz 

housing with reaction flasks mounted approximately 10 cm from the lamp. 1H, 13C{1H}, 

and 31P NMR spectra were recorded on a 600 MHz (1H: 599.5 MHz, 13C{1H}: 150.8 MHz, 
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31P: 242.6 MHz) Varian INOVA instrument. 1H NMR spectra were referenced to residual 

CHCl3 (7.27 ppm) and 13C{1H} NMR spectra were referenced to CDCl3 (77.0 ppm). 31P 

NMR spectra were referenced to PPh3, as an internal standard (–6.0 ppm relative to H3PO4). 

Mass spectrometry data were recorded in positive-ion mode using a high resolution 

Finnigan MAT 8400 spectrometer. UV-Vis spectra were recorded using a Cary 300 Scan 

instrument. Infrared spectra were recorded using a PerkinElmer Spectrum Two FT-IR 

spectrometer as thin films on KBr plates. Elemental analyses (C and H) were carried out 

by Laboratoire d’Analyse Élémentaire de l’Université de Montréal, Montréal, QC, Canada. 

3.4.2 Cyclic Voltammetry 

CVs were collected using a Bioanalytical Systems Inc. (BASi) Epsilon potentiostat and 

analyzed using BASi Epsilon software. Typical electrochemical cells consisted of a three-

electrode setup including a glassy carbon working electrode, platinum wire counter 

electrode, and silver wire pseudo-reference electrode. Experiments were run at a scan rate 

of 250 mV s1 in degassed 2:1 CH2Cl2:CH3CN solutions of the analyte (~1 mM) and 

supporting electrolyte (0.1 M [n-Bu4N][OTF]) under a blanket of argon. CVs were 

referenced relative to a decamethylferrocene internal standard (1 mM, ‒520 mV relative to 

ferrocene/ferrocenium under identical conditions) and corrected for internal cell resistance 

using the BASi Epsilon software. 

3.4.3 X-ray Crystallography 

Single crystals of 3.5c, 3.7b, and 3.7c suitable for X-ray diffraction studies were grown by 

slow evaporation of concentrated Et2O solutions. Crystals of 3.6c were grown by slow 

diffusion of hexanes into a concentrated THF solution and crystals of 3.7a were grown by 

slow diffusion of pentane into a concentrated CHCl3 solution. The samples were mounted 

on a MiTeGen polyimide micromount with a small amount of Paratone N oil. X-ray 

measurements for 3.6c and 3.7ac were made on a Bruker ApexII CCD diffractometer. 

Measurements for 3.5c were made on a Nonius KappaCCD ApexII diffractometer. The 

unit cell dimensions were determined from a symmetry constrained fit of 5928 reflections 

with 7.30° < 2θ < 121.36° for 3.5c, 9131 reflections with 5.58° < 2θ < 46.98° for 3.6c, 

9155 reflections with 5.86° < 2θ < 49.02° for 3.7a, 9530 reflections with 7.48° < 2θ < 
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64.96° for 3.7b, and 9801 reflections with 5.58° < 2θ < 65.90° for 3.7c. The data collection 

strategy was a number of ω and φ scans which collected data up to 121.410° (2θ) for 3.5c, 

47.242° (2θ) for 3.6c, 50.758° (2θ) for 3.7a, 72.758° (2θ) for 3.7b, and 72.824° (2θ) for 

3.7c, respectively. The frame integration was performed using SAINT.64 The resulting raw 

data were scaled and absorption corrected using a multi­scan averaging of symmetry 

equivalent data using SADABS,65 except the data for 3.7b which were processed using 

TWINABS.66 The twin law for 3.7b was derived from the two orientation matrices using 

the GNU Octave program67 and was determined to be: 

 

0.986857 0.045843 0.154954 
0.045946 0.839733 0.541052 
0.154923 0.541061 0.826590 

which represents a 180° rotation about [1 1 1]. The twin fraction refined to a value of 

0.44883(63). The structures for 3.5c, 3.6c, 3.7a, 3.7b, and 3.7c were solved by using a dual 

space methodology using the SHELXT program.67 All non-hydrogen atoms were obtained 

from the initial solution. The hydrogen atoms were introduced at idealized positions and 

were allowed to ride on the parent atom aside for 6c where they were treated in a mixed 

fashion. The structural models were fit to the data using full matrix least-squares based on 

F2. The calculated structure factors included corrections for anomalous dispersion from the 

usual tabulation. The structures were refined using the SHELXL-2014 program from the 

SHELX suite of crystallographic software.68 For complex 3.7a, the minor component of 

the rotational disorder associated with the unsubstituted Cp ligands could not be fully 

resolved. Graphic plots were produced using Mercury (v3.3). Structural data has been 

deposited in the CCDC (14233581423362). For additional collection and refinement 

details, see Table 3.3. 
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Table 3.3. Selected X-ray diffraction data collection and refinement details for complexes 3.5c, 

3.6c, and 3.7ac. 

 3.5c 3.6c 3.7a 3.7b 3.7c 

Chemical formula C41H39CrFe3O5P C41H39Fe3MoO5P C17H15FeO5PW C29H27Fe2O5PW C41H39Fe3O5PW 

FW (g mol–1) 862.24 906.18 569.96 782.02 994.09 

Temp (K) 110 110 110 110 110 

Crystal system monoclinic monoclinic monoclinic monoclinic monoclinic 

Crystal habit orange prism yellow prism yellow plate yellow prism orange prism 

Space group C2/c C2/c P21/c P21/c C2/c 

λ (Å) 1.54178 0.71073 0.71073 0.71073 0.71073 

a (Å) 20.142(3) 20.300(8) 20.416(7) 17.504(2) 20.307(6) 

b (Å) 15.184(2) 15.312(5) 7.239(3) 12.9315(14) 15.287(5) 

c (Å) 25.001(6) 25.118(10) 25.066(9) 12.708(2) 25.101(7) 

α (deg) 90 90 90 90 90 

β (deg) 104.581(9) 104.367(10) 97.888(15) 109.260(5) 104.391(13) 

γ (deg) 90 90 90 90 90 

V (Å3) 7400(2) 7563(5) 3669(2) 2715.5(6) 7548(4) 

Z 8 8 8 4 8 

ρ (g cm–3) 1.548 1.592 2.063 1.913 1.750 

μ (cm–1) 12.369 1.538 7.166 5.377 4.254 

R1 [I > 2σ(I)] 0.0350 0.0312 0.0379 0.0412 0.0381 

R2 [I > 2σ(I)] 0.0772 0.0633 0.0631 0.0971 0.0688 

R1 (all data) 0.0460 0.0456 0.0615 0.0684 0.0670 

R2 (all data) 0.0818 0.0691 0.0686 0.1115 0.0757 

GOF 1.045 1.042 1.063 1.019 1.062 

R1 = Σ(|Fo| − |Fc|) / ΣFo, R2 = [Σ((Fo
2 − Fc

2)2) / Σ(Fo
4)]½; GOF = [Σ ((Fo

2 ‒ Fc
2)2) / (No. of reflns. ‒ No. 

of params.)]½. 

3.4.4 Representative Procedure for the Preparation of M(CO)5 

Complexes of 3.5ac, 3.6ac, 3.7ac. 

Primary Phosphine Complex 3.5a (M = Cr) 

Cr(CO)6 (0.27 g, 1.2 mmol, 5 equiv.) was dissolved in 15 mL dry THF 

in a sealed 1 L Pyrex flask and irradiated with UV light for 2.5 h to 

produce an orange solution containing Cr(CO)5•THF. The flask was 

opened inside a glove box and a solution of 3.4a (0.06 g, 0.24 mmol) in 15 mL dry THF 

was added dropwise over a 5 min period. The resulting solution was stirred for 2 h before 

the solvent was removed under reduced pressure. The reaction mixture was then combined 

with Et2O (5 mL) and the mixture filtered to remove excess Cr(CO)6. The filtrate was then 

mixed with Celite, concentrated in vacuo, and transferred to the top of a silica column (1” 

 4”). Using flash column chromatography and a gradient solvent strategy, residual 

Cr(CO)6, and 3.5a were separated. Using 4:1 hexanes: CH2Cl2 as eluent, 3.5a (Rf = 0.36) 

was isolated from the column before Cr(CO)6 was eluted using hexanes (Rf = 0.68). The 
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solution containing 3.5a was concentrated in vacuo to yield an orange solid. Yield = 0.09 

g, 84%. M.p.: 74‒76 °C. 1H NMR (CDCl3): δ 4.28 (d of m, 1JHP = 324 Hz, 2H, PH2), 4.14 

(s, 5H, C5H5), 4.13 (s, 2H, -C5H4R), 4.11 (s, 2H, α-C5H4R), 2.72 (m, 2H, C5H4CH2), 2.04 

(m, 2H, CH2PH2). 
13C{1H} NMR (CDCl3): δ 220.3 (d, 2JCP = 7 Hz, cis-CO), 216.0 (d, 2JCP 

= 14 Hz, trans-CO), 86.8 (d, 3JCP = 10 Hz, ipso-C5H4R), 68.6 (s, C5H5), 68.1 (s, α-C5H4R), 

67.8 (s, -C5H4R), 30.5 (d, 2JCP = 7 Hz, C5H4CH2), 23.4 (d, 1JCP = 25 Hz, CH2PH2).
 31P 

NMR (CDCl3): δ –47.7 (t of m, 1JPH = 324 Hz). FT-IR: 2329 (w), 2067 (m), 1979 (w), 1916 

(s), 1105 (w), 1090 (w), 1000 (w), 926 (w), 821 (w), 674 (m), 649 (m) cm−1. UV-Vis 

(CH2Cl2): λmax 437 nm (ε = 130 M–1 cm–1). Mass Spec. (EI, +ve mode): exact mass 

calculated for [C17H15
52Cr56FeO5P]+: 437.9412; exact mass found: 437.9418; difference: 

+1.4 ppm. Anal. Calcd. (%) for C17H15CrFeO5P: C, 46.60; H, 3.45. Found: C, 46.66; H, 

3.47.  

Secondary Phosphine Complex 3.5b (M = Cr) 

From Cr(CO)6 (0.24 g, 1.09 mmol, 5 equiv.) and phosphine 3.4b 

(0.10 g, 0.218 mmol). Yield = 0.11 g, 80% of orange solid (Rf = 

0.23). M.p.: 88‒90 °C. 1H NMR (CDCl3): δ 4.52 (d of m, 1JHP = 322 

Hz, 1H, PH), 4.13 (s, 10H, C5H5), 4.12 (s, 4H, -C5H4R), 4.11 (s, 

4H, α-C5H4R), 2.63 (m, 4H, C5H4CH2), 2.09 (m, 4H, CH2PH). 13C{1H} NMR (CDCl3): δ 

220.7 (d, 2JCP = 7 Hz, cis-CO), 216.8 (d, 2JCP = 14 Hz, trans-CO), 87.4 (d, 3JCP = 13 Hz, 

ipso-C5H4R), 68.6 (s, C5H5), 67.8 (d, 4JCP = 16 Hz, α-C5H4R), 67.6 (s, -C5H4R), 27.4 (d, 

1JCP = 22 Hz, CH2PH), 26.6 (d, 2JCP = 2 Hz, C5H4CH2). 
31P NMR (CDCl3): δ 3.5 (d of m, 

1JPH = 321 Hz). FT-IR: 2922 (w), 2062 (m), 1979 (w), 1916 (s), 1637 (m), 1105 (w), 999 

(w), 817 (w), 676 (w), 651 (w) cm−1. UV-Vis (CH2Cl2): λmax 436 nm (ε = 230 M–1 cm–1). 

Mass Spec. (EI, +ve mode): exact mass calculated for [C29H27
52Cr56Fe2O5P]+: 649.9700; 

exact mass found: 649.9677; difference: –3.5 ppm. Anal. Calcd. (%) for C29H27CrFe2O5P: 

C, 53.57; H, 4.19. Found: C, 53.68; H, 4.24. 
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Tertiary Phosphine Complex 3.5c (M = Cr) 

From Cr(CO)6 (0.25 g, 1.1 mmol, 5 equiv.) and phosphine 3.4c (0.15 

g, 0.22 mmol). Yield = 0.14 g, 78% of orange solid (Rf = 0.14). M.p.: 

140‒142 °C. 1H NMR (CDCl3): δ 4.18 (s, 15H, C5H5), 4.17 (s, 12H, 

α-C5H4R and -C5H4R), 2.61 (m, 6H, C5H4CH2), 2.08 (m, 6H, 

CH2P). 13C{1H} NMR (CDCl3): δ 220.9 (d, 2JCP = 7 Hz, cis-CO), 217.5 (d, 2JCP = 14 Hz, 

trans-CO), 87.9 (d, 3JCP = 15 Hz, ipso-C5H4R), 68.6 (s, C5H5), 67.7 (s, α-C5H4R), 67.6 (s, 

-C5H4R), 30.6 (d, 1JCP = 18 Hz, CH2P), 23.8 (s, C5H4CH2). 
31P NMR (CDCl3): δ 30.4 (m). 

FT-IR: 3092 (w), 2928 (w), 2058 (m), 1975 (w), 1922 (s), 1635 (w), 1411 (w), 1106 (w), 

1000 (w), 818 (w), 755 (w), 677 (m), 655 (m) cm−1. UV-Vis (CH2Cl2): λmax 439 nm (ε = 

350 M–1 cm–1). Mass Spec. (EI, +ve mode): exact mass calculated for 

[C41H39
52Cr56Fe3O5P]+: 861.9988; exact mass found: 861.9966; difference: –2.6 ppm. 

Anal. Calcd. (%) for C41H39CrFe3O5P: C, 57.11; H, 4.56. Found: C, 57.11; H, 4.62. 

Primary Phosphine Complex 3.6a (M = Mo) 

From Mo(CO)6 (0.32 g, 1.2 mmol, 5 equiv.) and phosphine 3.4a (0.06 

g, 0.24 mmol). Yield = 0.09 g, 79% of orange solid (Rf = 0.35). M.p.: 

56‒58 °C. 1H NMR (CDCl3): δ 4.24 (d of m, 1JHP = 319 Hz, 2H, PH2), 

4.13 (s, 5H, C5H5), 4.12 (pseudo-t, 3JHH = 2 Hz, 2H, -C5H4R), 4.11 

(pseudo-t, 3JHH = 2 Hz, 2H, α-C5H4R), 2.70 (m, 2H, C5H4CH2), 2.02 (m, 2H, CH2PH2). 

13C{1H} NMR (CDCl3): δ 208.7 (d, 2JCP = 23 Hz, cis-CO), 204.9 (d, 2JCP = 9 Hz, trans-

CO), 86.9 (d, 3JCP = 10 Hz, ipso-C5H4R), 68.6 (s, C5H5), 68.1 (s, α-C5H4R), 67.7 (s, -

C5H4R), 30.6 (d, 2JCP = 5 Hz, C5H4CH2), 23.2 (d, 1JCP = 25 Hz, CH2PH2).
 31P NMR 

(CDCl3): δ –80.4 (t of m, 1JPH = 319 Hz). FT-IR: 3094 (w), 2917 (w), 2345 (w), 2075 (m), 

1993 (w), 1922 (s), 1644 (w), 1413 (w), 1445 (w), 1105 (w), 1089 (w), 1000 (w), 925 (w), 

670 (w), 607 (m) cm−1. UV-Vis (CH2Cl2): λmax 439 nm (ε = 115 M–1 cm–1). Mass Spec. 

(EI, +ve mode): exact mass calculated for [C17H15
56Fe92MoO5P]+: 477.9076; exact mass 

found: 477.9056; difference: –4.2 ppm. Anal. Calcd. (%) for C17H15FeMoO5P: C, 42.36; 

H, 3.14. Found: C, 42.45; H, 2.99.  
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Secondary Phosphine Complex 3.6b (M = Mo) 

From Mo(CO)6 (0.29 g, 1.1 mmol, 5 equiv.) and phosphine 3.4b 

(0.10 g, 0.22 mmol). Yield = 0.12 g, 81% of orange solid (Rf = 0.20). 

M.p.: 64‒66 °C. 1H NMR (CDCl3): δ 4.54 (d of m, 1JHP = 315 Hz, 

1H, PH), 4.13 (s, 10H, C5H5), 4.11 (s, 8H, α-C5H4R, and -C5H4R), 

2.63 (m, 4H, C5H4CH2), 2.05 (m, 4H, CH2PH). 13C{1H} NMR (CDCl3): δ 209.2 (d, 2JCP = 

22 Hz, cis-CO), 205.7 (d, 2JCP = 9 Hz, trans-CO), 87.5 (d, 3JCP = 14 Hz, ipso-C5H4R), 68.6 

(s, C5H5), 67.9 (d, 4JCP = 15 Hz, α-C5H4R), 67.6 (s, -C5H4R), 27.6 (d, 1JCP = 22 Hz, 

CH2PH), 27.0 (s, C5H4CH2). 
31P NMR (CDCl3): δ –22.9 (d of m, 1JPH = 315 Hz). FT-IR: 

3094 (w), 2917 (w), 2071 (m), 1986 (w), 1925 (s), 1640 (w), 1411 (w), 1105 (w), 1000 

(w), 819 (w), 608 (m) cm−1. UV-Vis (CH2Cl2): λmax 436 nm (ε = 250 M–1 cm–1). Mass Spec. 

(EI, +ve mode): exact mass calculated for [C29H27
56Fe2

92MoO5P]+: 689.9367; exact mass 

found: 689.9335; difference: –4.6 ppm. Anal. Calcd. (%) for C29H27Fe2MoO5P: C, 50.18; 

H, 3.92. Found: C, 50.25; H, 3.95. 

Tertiary Phosphine Complex 3.6c (M = Mo) 

From Mo(CO)6 (0.30 g, 1.1 mmol, 5 equiv.) and phosphine 3.4c (0.15 

g, 0.22 mmol). Yield = 0.16 g, 81% of orange solid (Rf = 0.18). M.p.: 

75‒77 °C. 1H NMR (CDCl3): δ 4.20 (s, 15H, C5H5), 4.19 (s, 6H, -

C5H4R), 4.18 (s, 6H, α-C5H4R), 2.61 (m, 6H, C5H4CH2), 2.06 (m, 6H, 

CH2P). 13C{1H} NMR (CDCl3): δ 209.4 (d, 2JCP = 21 Hz, cis-CO), 206. 3 (d, 2JCP = 9 Hz, 

trans-CO), 88.0 (d, 3JCP = 15 Hz, ipso-C5H4R), 68.6 (s, C5H5), 67.8 (s, α-C5H4R), 67.6 (s, 

-C5H4R), 31.1 (d, 1JCP = 18 Hz, CH2P), 24.3 (s, C5H4CH2). 
31P NMR (CDCl3): δ 12.5 (m). 

FT-IR: 3094 (w), 2928 (w), 2067 (m), 1981 (w), 1929 (s), 1634 (w), 1411 (w), 1106 (w), 

1000 (w), 818 (w), 610 (m) cm−1. UV-Vis (CH2Cl2): λmax 435 nm (ε = 350 M–1 cm–1). Mass 

Spec. (EI, +ve mode): exact mass calculated for [C41H39
56Fe3

98MoO5P]+: 907.9637; exact 

mass found: 907.9595; difference: ‒4.6 ppm. Anal. Calcd. (%) for C41H39Fe3MoO5P: C, 

54.34; H, 4.34. Found: C, 54.40; H, 4.38. 
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Primary Phosphine Complex 3.7a (M = W) 

From W(CO)6 (0.43 g, 1.2 mmol, 5 equiv.) and phosphine 3.4a (0.06 

g, 0.24 mmol). Yield = 0.12 g, 89% of orange solid (Rf = 0.35). M.p.: 

74‒76 °C. 1H NMR (CDCl3): δ 4.55 (d of m, 1JHP = 332 Hz, 2H, PH2), 

4.14 (s, 5H, C5H5), 4.13 (pseudo-t, 3JHH = 2 Hz, 2H, -C5H4R), 4.11 

(pseudo-t, 3JHH = 2 Hz, 2H, α-C5H4R), 2.70 (m, 2H, C5H4CH2), 2.12 (m, 2H, CH2PH2). 

13C{1H} NMR (CDCl3): δ 198.1 (d, 2JCP = 22 Hz, cis-CO), 195.5 (d, 2JCP = 7 Hz, trans-

CO), 86.6 (d, 3JCP = 12 Hz, ipso-C5H4R), 68.7 (s, C5H5), 68.1 (s, α-C5H4R), 67.8 (s, -

C5H4R), 30.5 (d, 2JCP = 5 Hz, C5H4CH2), 23.9 (d, 1JCP = 28 Hz, CH2PH2).
 31P NMR (CDCl3): 

δ –101.9 (t of m, 86%, 1JPH = 333 Hz), –101.9 (t of d of m, 14%, 1JPH = 333 Hz, 1JPW = 217 

Hz). FT-IR: 3092 (w), 2917 (w), 2345 (w), 2074 (m), 1976 (w), 1912 (s), 1638 (w), 1439 

(w), 1411 (w), 1318 (w), 1105 (w), 1089 (w), 1000 (w), 926 (w), 884 (w), 821 (w), 676 

(w) cm−1. UV-Vis (CH2Cl2): λmax 441 nm (ε = 120 M–1 cm–1). Mass Spec. (EI, +ve mode): 

exact mass calculated for [C17H15
56FeO5P

184W]+: 569.9516; exact mass found: 569.9517; 

difference: +0.2 ppm. Anal. Calcd. (%) for C17H15FeO5PW: C, 35.82; H, 2.65. Found: C, 

36.06; H, 2.55. 

Secondary Phosphine Complex 3.7b (M = W) 

From W(CO)6 (0.38 g, 1.1 mmol, 5 equiv.) and phosphine 3.4b (0.10 

g, 0.22 mmol). Yield = 0.15 g, 90% of orange solid (Rf = 0.22). M.p.: 

84‒86 °C. 1H NMR (CDCl3): δ 4.85 (d of m, 1JHP = 327 Hz, 1H, PH), 

4.14 (s, 10H, C5H5), 4.12 (pseudo-t, 3JHH = 2 Hz, 8H, α-C5H4R and 

-C5H4R), 2.62 (m, 4H, C5H4CH2), 2.16 (m, 4H, CH2PH). 13C{1H} NMR (CDCl3): δ 198.7 

(d, 2JCP = 21 Hz, cis-CO), 196.4 (d, 2JCP = 7 Hz, trans-CO), 87.3 (d, 3JCP = 14 Hz, ipso-

C5H4R), 68.7 (s, C5H5), 67.8 (d, 4JCP = 17 Hz, α-C5H4R), 67.7 (s, -C5H4R), 28.1 (d, 1JCP = 

25 Hz, CH2PH), 27.1 (s, C5H4CH2). 
31P NMR (CDCl3): δ –43.6 (d of m, 86%, 1JPH = 328 

Hz), –43.6 (d of d of m, 14%, 1JPH = 328 Hz, 1JPW = 225 Hz). FT-IR: 3092 (w), 2917 (w), 

2070 (m), 1978 (w), 1914 (s), 1640 (w), 1411 (w), 1219 (w), 1105 (w), 1000 (w), 820 (w), 

772 (s), 599 (w) cm−1. UV-Vis (CH2Cl2): λmax 437 nm (ε = 245 M–1 cm–1). Mass Spec. (EI, 

+ve mode): exact mass calculated for [C29H27
56Fe2O5P

184W]+: 781.9804; exact mass found: 
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781.9791; difference: –1.7 ppm. Anal. Calcd. (%) for C29H27Fe2O5PW: C, 44.54; H, 3.48. 

Found: C, 44.70; H, 3.44. 

Tertiary Phosphine Complex 3.7c (M = W) 

From W(CO)6 (0.39 g, 1.1 mmol, 5 equiv.) and phosphine 3.4c (0.15 

g, 0.22 mmol). Yield = 0.19 g, 87% of orange solid (Rf = 0.18). M.p.: 

143‒145 °C. 1H NMR (CDCl3): δ 4.15 (s, 15H, C5H5), 4.14 (s, 12H, 

α-C5H4R and -C5H4R), 2.56 (m, 6H, C5H4CH2), 2.11 (m, 6H, CH2P). 

13C{1H} NMR (CDCl3): δ 198.8 (d, 2JCP = 21 Hz, cis-CO), 197.2 (d, 2JCP = 8 Hz, trans-

CO), 87.8 (d, 3JCP = 15 Hz, ipso-C5H4R), 68.6 (s, C5H5), 67.8 (s, α-C5H4R), 67.6 (s, -

C5H4R), 31.6 (d, 1JCP = 22 Hz, CH2P), 24.6 (s, C5H4CH2). 
31P NMR (CDCl3): δ –6.8 (m, 

86%), –6.8 (d of m, 14%, 1JPW = 233 Hz). FT-IR: 3090 (w), 2924 (w), 2066 (m), 1974 (w), 

1922 (s), 1635 (w), 1411 (w), 1415 (w), 1442 (w), 1321 (w), 1230 (w), 1105 (w), 1000 

(w), 820 (w), 754 (w), 601 (w) cm−1. UV-Vis (CH2Cl2): λmax 436 nm (ε = 335 M–1 cm–1). 

Mass Spec. (EI, +ve mode): exact mass calculated for [C41H39
56Fe3O5P

184W]+: 994.0093; 

exact mass found: 994.0095; difference: +0.2 ppm. Anal. Calcd. (%) for C41H39Fe3O5PW: 

C, 49.54; H, 3.95. Found: C, 50.07; H, 4.03. 
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Chapter 4  

4 Synthesis and Characterization of Metal-Rich 
Phosphonium Polyelectrolytes and Their Use as 
Precursors to Nanomaterials   

 

Adapted from: 

1) Rabiee Kenaree, A.; Gilroy, J.B.* Synthesis and Characterization of Metal-Rich 

Phosphonium Polyelectrolytes and Their Use as Precursors to Nanomaterials. Dalton 

Trans. 2016, 45, 18229–18240. 

2) Rabiee Kenaree, A.; Berven, B.M., Ragogna, P.J.*; Gilroy, J.B.* Highly-Metallized 

Phosphonium Polyelectrolytes. Chem. Commun. 2014, 50, 10714–10717. 

 

4.1 Introduction 

Metallopolymers, which differ from coordination polymers that have dynamic structures, 

are an intriguing class of materials that benefit from the processability of macromolecules 

and functional properties of transition metals.1-7 They have been utilized as redox-active, 

catalytic, emissive, biomedical, and magnetic materials8-21 and successfully prepared from 

different precursors. So far, several different synthetic strategies that exploit the chemistry 

of phosphorous have been introduced.22-26 For example, main-chain 

poly(ferrocenylphosphine)s (e.g., 4.1) have been produced by the ring-opening 

polymerization of strained [1]phosphaferrocenophanes,27-30 while a unique migration-

insertion polymerization mechanism has been used to produce 

poly(cyclopentadienylcarbonyldiphenyl-phosphinobutanoyliron)s (e.g., 4.2).17, 31 Block 

copolymers incorporating a side-chain metallopolymer block based on 

poly(phosphaalkene)s (e.g., 4.3) have been realized through a sequential anionic 

polymerization / metal-coordination strategy before they were self-assembled into micelles 

with a gold core.32 Although advances towards phosphorus-containing metallopolymers 
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have been impressive, examples possessing more than one metal per polymer repeating 

unit remain elusive. 

 

In addition to phosphorous-containing metallopolymers, examples of heterobimetallic 

polymers, which can take advantage of the properties of more than one type of metal, are 

uncommon. There are several strategies for the incorporation of more than one type of 

transition metal into polymer structures. For example, post-polymerization 

functionalization of metallopolymers can be employed for the addition of transition metals 

to the repeating unit of the polymer backbone.33-36 However, it can be a challenge to 

completely functionalize all of the repeating units in the polymer backbone. Manners and 

co-workers have used their well-established ring-opening polymerization methodology for 

the synthesis of polyferrocenylsilanes (PFS) to prepare monometallic acetylide-substituted 

PFSs, which were further reacted with Co2(CO)8, [MoCp(CO)2]2, and [NiCp(CO)2]2 to 

produce heterobimetallic polymers 4.4.33-35 They also showed that reactive ion etching 

(RIE),33 electron-beam lithography,34 and pyrolysis35 can be used to convert the 

heterobimetallic polymers produced to the corresponding bimetallic alloy nanoparticles 

(NPs).  

Copolymerization of more than one type of metal-containing monomer is another strategy 

that can yield heterobimetallic polymers, where the metal ratio can be adjusted by 

controlling the ratio of the repeating units.37-42 Following this strategy and starting with 

two methacrylate-based ferrocene- and cobaltocenium-containing monomers, the Tang 

group recently performed a reversible addition-fragmentation chain-transfer (RAFT) 

polymerization and successfully synthesized heterobimetallic diblock copolymers 

containing cobaltocenium and ferrocene units 4.5. By pyrolysis of the heterobimetallic 

copolymer under N2/H2, magnetic nanomaterials comprised of FexCoyP (where x + y = 2) 

were realized.41 Starting with a monomer that has more than one metal within its structure 
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is a strategy that affords heterobimetallic polymers with transition metal content equal to 

that of the monomer.43-50 For instance, Wong and co-workers synthesized an iron- and 

platinum-containing heterobimetallic polymer 4.6 and used nanoimprint lithography to 

generate nanopatterns. RIE converted the polymer to nanopatterned magnetic Fe/Pt NPs.45 

The Manners group has also reported the synthesis of a palladium-based [1]ferrocenophane 

4.7 that was thermolized at 190 °C under vacuum to directly yield Fe/Pd alloy NPs, 

presumably via a heterobimetallic polymer.47 

 

Bimetallic particles are an interesting subclass of nanomaterials that benefit from their high 

surface area.51-59 For example, Fe/Ru heterobimetallic particles are industrially valuable 

materials due to their catalytic role in processes including hydrogenation,60-63 the water-

gas shift reaction,64 and the Fischer-Tropsch synthesis.65-66 They are conventionally 

prepared by techniques such as thermolysis and co-reduction of metal ions.67-68 Although, 
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metallopolymers can serve as precursors to metal-containing nanomaterials,69 few reports 

of the generation of bimetallic nanomaterials from heterobimetallic polymers have been 

made. To the best of our knowledge, Fe/Ru nanomaterials have not been prepared via the 

degradation of heterobimetallic polymers. Herein, we describe our strategy for the 

synthesis of highly-metallized phosphonium polyelectrolytes bearing three metallocenes 

(Fe/Ru: 3/0, 2/1, 1/2, 0/3) per repeating unit, as well as conversion of these polyelectrolytes 

to novel nanomaterials by conducting pyrolysis experiments. 

4.2 Results 

4.2.1 Synthesis and Characterization of Methacrylate-Based 
Phosphonium Polyelectrolytes 

Tertiary phosphine 4.11a was used to produce the target phosphonium polyelectrolytes 

(Scheme 4.1). The quaternization of tertiary phosphine 4.11a via reaction with 3-chloro-1-

propanol led to the formation of the ferrocene-substituted phosphonium chloride salt 4.8a 

as a fine yellow powder in 88% yield (Figures A4.1‒A4.3).  

 

Scheme 4.1. Synthesis of methacrylate-based phosphonium polyelectrolytes. 
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Ion exchange, using NaBF4, yielded microcrystalline phosphonium tetrafluoroborate salt 

4.8b (Figures A4.4‒A4.7). The solid-state structure of 4.8b confirmed the proposed 

structure and the nearly tetrahedral geometry at phosphorus (Figure 4.1, Table 4.1). 

 

 

Figure 4.1. Solid-state structure of phosphonium alcohol 4.8b. Thermal displacement ellipsoids 

shown at 50% probability level. Hydrogen atoms and BF4
‒ counter anion have been removed for 

clarity. Selected bond lengths (Å) and angles (): P1-C12 1.806(4), P1-C24 1.809(4), P1-C36 

1.802(4), P1-C37 1.808(4), C11-C12 1.550(6), C23-C24 1.545(5), C35-C36 1.548(6), C37-38 

1.522(6); C12-P1-C24 110.9(2), C12-P1-C36 109.1(2), C12-P1-C37 109.4(2), C24-P1-C36 

110.2(2), C24-P1-C37 109.6(2), C36-P1-C37 107.6(2). 

Polymerizable phosphonium triflate salt 4.9 was synthesized in two steps in 89% yield 

(Scheme 4.1, Figures 4.2 and A4.8‒A4.10). Esterification of the alcohol group in 4.8a was 

accomplished by reacting it with methacryloyl chloride in the presence of NEt3 under 

anhydrous conditions. The chloride counter anions were exchanged for triflate anions to 

overcome the tendency of the phosphonium chloride salts encountered during this study to 

decompose via an unidentified decomposition pathway in solution when exposed to air. 

Phosphonium triflate 4.9 is air- and moisture-stable and has significantly enhanced 

solubility in organic solvents compared to its chloride analog. The latter trait is highly 

desirable for further polymerization chemistry where poor solubility can be problematic. 

Inspired by the work of Endo,70-73 Gin,74 Long,75-77 and others,78-79 polyelectrolytes    

4.10a‒c were produced via a free-radical polymerization mechanism using AIBN as a 

thermally-activated initiator. Three polymerization reactions were conducted by first 

combining monomer 4.9 and 0.01 (1.0 g monomer mL‒1), 0.005 (0.75 g monomer mL‒1), 

and 0.0033 (0.50 g monomer mL‒1) molar equivalents of AIBN in THF. Each solution was 
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subjected to three freeze-pump-thaw cycles, before heating at 75 C for 17, 25, and 32 h, 

respectively. Polyelectrolytes 4.10a‒c were isolated in 70%, 79%, and 75% yields after 

purification by successive precipitation of CH2Cl2 solutions into benzene and pentane 

(Figures 4.2 and A4.11‒A4.18, Table 4.2).  

Table 4.1. Characterization data for compounds 4.9 and 4.10a‒c. 
Compound 31P NMR (δ) , 434 nm (M–1 cm–1) E1/2, Fc

 (mV) Mn (g mol−1) DPn Ð 

4.9 31.9 294 5 - - - 

4.10a 31.8 322 0 118,200 46 2.74 

4.10b 31.8 310 0 79,000 34 2.44 

4.10c 31.9 323 0 105,700 48 2.34 

1H NMR spectroscopy confirmed the conversion of monomer 4.9 to polyelectrolytes 

4.10a‒c as the signals attributed to the alkene functionality disappeared ( 6.16 and 5.66) 

and new signals assigned to the saturated hydrocarbon backbone appeared ( 3.00‒0.50) 

in the spectrum of polyelectrolyte 4.10b (Figure 4.2). The 1H NMR spectra of 4.10a‒c 

were very broad, further supporting the proposed polyelectrolyte structures. 

 

Figure 4.2. 1H NMR spectra of monomer 4.9 (black) and polyelectrolyte 4.10b (red) in CDCl3. 

The asterisk denotes residual CHCl3 signals. 

Gel permeation chromatography experiments were used to study the molecular weight 

distributions of polyelectrolytes 4.10a‒c. To overcome common issues regarding strong 

interactions between polyelectrolytes and GPC columns and by adapting a methodology 

developed by the Matyjaszewski group,80 a 60 °C DMF solution containing 0.02 M [n-

Bu4N][OTf] was used as an eluent in tandem with Teflon-treated size-exclusion columns. 

These studies confirmed the high molecular weight nature of 4.10a‒c (Mw = 79,000‒



94 

 

118,200 g mol-1, Ð = 2.34‒2.74, vs. poly(methyl methacrylate) (PMMA) standards; 

(Tables 4.2 and A4.1 and Figure A4.42). The trends in molecular weight data were 

consistent with the free-radical polymerization mechanism employed, and revealed that 

both concentration and monomer:initiator ratio influenced the molecular weights of the 

polyelectrolytes isolated in an uncontrolled fashion. Each of the compounds reported in 

this study, including polyelectrolytes 4.10a‒c, exhibit properties consistent with the 

presence of ferrocene(s) in solution (Table 4.2). Their UV-vis absorption spectra exhibit 

maximum absorption at wavelengths (λmax) of ca. 440 nm. Their cyclic voltammograms 

are comprised of reversible oxidation waves at potentials (E1/2, Fc) between 0 and 5 mV 

relative to the ferrocene/ferrocenium redox couple (Figures 4.3 and A4.44‒A.46). In each 

case, the current response observed corresponded to one electron for each ferrocene group 

present. 

 

Figure 4.3. Cyclic voltammograms of ferrocene-substituted monomer 4.9 (black) and 

polyelectrolyte 4.10b (red) recorded at 250 mV s‒1 in 1 mM solutions of 2:1 CH2Cl2:CH3CN 

containing 0.1 M [n-Bu4N][OTf] as supporting electrolyte. 

Differential scanning calorimetry studies revealed glass transition temperatures of 108 C 

for 4.10a‒c (Figures A4.49‒A4.51). Thermal gravimetric analysis confirmed their 

exceptional thermal stability, as 4.10a‒c all reached 310 C before significant mass loss 

was observed. After the onset of decomposition, degradation occurred in a single smooth 

step, before the masses plateaued above ca. 500 C (Figures 4.4 and A4.53‒A4.54). The 

high char yields of ~46% observed for polyelectrolytes 4.10a‒c, which may result from the 
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low volatility of the ionic compounds generated during decomposition, prompted us to 

conduct preliminary studies of their pyrolysis behavior. 

 

 

Figure 4.4. TGA trace for polyelectrolyte 4.10b. 

A thin film of polyelectrolyte 4.10b was prepared by spin coating a 80 mg mL‒1 3:2 

PhCl:CHCl3 solution onto a freshly cleaned silicon wafer. The film was dried in vacuo for    

16 h at 50 C before it was heated to 800 C at a rate of 10 C min‒1 and held at that 

temperature for an additional 2 h under a steady flow of nitrogen. Upon cooling to room 

temperature at a rate of 10 C min‒1 the pyrolyzed film was exposed to air and analyzed by 

scanning electron microscopy (SEM) (Figures 4.5 and A4.55). The resulting images and 

elemental mapping/analysis experiments revealed a mixture of magnetite (Fe3O4) 

crystallites and a carbon, phosphorus, and oxygen containing phase. Crucially, a significant 

quantity of the iron within the polyelectrolytes appears to be retained upon pyrolysis, 

illustrating the promise of this new class of highly-metallized polyelectrolytes as precursors 

to functional metal-rich ceramics and / or nanoparticles. 
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Figure 4.5. (a) SEM images and (b) SEM image and elemental mapping (Si, C, P, Fe, O) for the 

nanostructured films produced by heating a thin film of polyelectrolyte 4.10b at 800 ˚C for 2 h 

under a flow of N2 gas. Representative Fe3O4 crystallites highlighted by red circle. Scale bars = 1 

µm. 
 

4.2.2 Synthesis and Characterization of Styrene-Based 
Heterobimetallic Phosphonium Polyelectrolytes 

The high efficiency of 4-vinylbenzyl chloride for the quaternization of phosphines 

prompted us to use it for the installation of a polymerizable group. Reaction of tertiary 

phosphines 4.11ad81 with a slight excess of 4-vinylbenzyl chloride and heating at 75 °C 

afforded phosphonium chloride monomers 4.12ad in quantitative yields (Scheme 4.2). 

Due to the poor solubility of the tertiary phosphines in DMF, they were initially dissolved 

in a minimum amount of THF and later combined with DMF, an effective solvent for the 
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quaternization reaction. Butylated hydroxytoluene (BHT) was added to prevent the 

undesired polymerization of the styrene groups during the quaternization reaction. To 

improve the solubility of the phosphonium salts in organic solvents and to prevent 

metallocene degradation,18 the chloride counter anions were once again exchanged with 

triflate anions to quantitatively afford monomers 4.13ad. The structure and purity of the 

monomers were confirmed using multinuclear NMR spectroscopy, IR and UV-vis 

absorption spectroscopy, mass spectrometry, elemental analysis, and X-ray 

crystallography (Figures 4.6, A4.19A4.34, and Table 4.3).  

 

Scheme 4.2. Synthetic pathway for the preparation of polyelectrolytes 4.14ad. 

Phosphonium triflate monomers 4.13ad gave rise to a singlet in their 19F NMR spectra at 

δ ~ 77 and a singlet in their 31P{1H} NMR spectra at δ ~31.0. Single crystals of monomer 

4.13a suitable for X-ray crystallography were grown by slow evaporation of the solvent 

from a THF solution (Figure 4.6 and Table 4.1). In the solid-state structure, each tetrahedral 

phosphonium cation was in close proximity to a triflate anion (shortest contact: P1-O2 

3.958 Å). The C-P bond lengths ranged from 1.782(6) to 1.803(5) Å, and are shorter than 

those of the parent phosphine 4.12a [1.843(1) to 1.855(1) Å].18 The average C-P-C angle 

was 109.5(3)° and the C44-C45 bond length for the vinyl group was 1.162(9) Å. 
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Figure 4.6. Solid-state structure of monomer 4.13a. Thermal displacement ellipsoids are shown at 

50% probability and hydrogen atoms have been omitted for clarity. Selected bond lengths (Å): P1-

C12 1.782(6), P1-C24 1.803(5), P1-C36 1.798(5), P1-C37 1.791(6), C44-C45 1.162(9). Selected 

bond angles (degrees): C12-P1-C24 111.7(3), C12-P1-C36 108.5(3), C12-P1-C37 110.9(3), C24-

P1-C36 110.0(3), C24-P1-C37 106.2(2), and C36-P1-C37 109.6(3).  

Using azobisisobutyronitrile (AIBN) as an initiator, the phosphonium triflate monomers 

4.13ad were polymerized in THF before they were precipitated into diethyl ether to yield 

the corresponding polyelectrolytes 4.14ad (Scheme 4.2). At room temperature, these 

polyelectrolytes gave rise to very broad 1H, 31P{1H}, and 19F NMR spectra. However, upon 

heating to 125 °C in DMSO-d6 the spectra sharpened (Figures A4.35A4.38). The 

disappearance of the vinyl proton resonances and the observation of broad peaks associated 

with the unsaturated polyelectrolyte backbone (δ 0.752.15) in the 1H NMR spectra of the 

polyelectrolytes confirmed successful polymerization. The presence of the aromatic (δ 

5.757.50), metallocene (δ 4.005.00), methylene bridge (δ 3.404.20), and ethylene 

bridge (δ 2.10−3.25) proton resonances in the 1H NMR spectra; a peak for each 

polyelectrolyte (δ ~ 31.0) in the 31P{1H} NMR spectra; and a peak for each polyelectrolyte 

(δ ~ 77) in the 19F NMR spectra further supported the proposed structures of the 

polyelectrolytes. 

Gel permeation chromatography (GPC) experiments were carried out to evaluate the 

molecular weight distributions for polyelectrolytes 4.14ad. The results confirmed the 

macromolecular nature of the polyelectrolytes 4.14ad (Mw: 143,450278,100 gmol−1, Ð: 

3.164.10, Tables 4.3 and A4.2, and Figure A4.43). 
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4.2.2.1 UV-vis Absorption Spectroscopy and Cyclic Voltammetry 

Similar to phosphines 4.12ac,81 the ferrocene units in polyelectrolytes 4.14ad gave rise 

to two absorption maxima at ca. 434 nm and 320 nm while the ruthenocene units exhibited 

a single absorption maximum at ca. 320 nm. The relative intensities of each peak varied 

with the number of ferrocene/ruthenocene units present (Table 4.3 and Figures 

A4.39A4.41).  

The electrochemical properties of the phosphonium triflate monomers 4.13ad and the 

corresponding polyelectrolytes 4.14ad were examined by cyclic voltammetry (CV) in a 

CH2Cl2/CH3CN (2/1) solvent mixture containing 0.1 M [n-Bu4N][OTf] as supporting 

electrolyte. Consistent with the electrochemical properties of the parent phosphines,81 the 

ferrocene units of the monomers and polyelectrolytes were oxidized reversibly, while the 

ruthenocene moieties demonstrated an irreversible oxidation wave. The observed 

irreversible behavior was consistent with the ability of ruthenocenium cations to rapidly 

engage in electrochemically-induced reactions.46, 82-83 Due to the presence of the cationic 

phosphonium centres in the monomers, the recorded E1/2, Fc and Epa, Rc values were slightly 

more positive than those of the parent phosphines (Table 4.3, Figures A4.47 and A4.48).81 

Table 4.2. Selected characterization data for monomers 4.13ad and polyelectrolytes 4.14ad. 

Compound 

31P 

NMR 

(δ) 

, 320 

nmb                 

(M–1 

cm–1) 

, 434 

nm              

(M–1 

cm–1) 

Epa, Rc 

(mV) 

E1/2, Fc 

(mV) 

Mn                         

(g mol−1) 
DPn Ð 

4.13a 31.2 260 320 - 10 - - - 

4.13b 31.0 440 240 465 15 - - - 

4.13c 30.9 730 140 510 20 - - - 

4.13d 30.8 910 - 555 - - - - 

4.14a 31.1 260 330 - 20 46,900 50 3.16 

4.14b 30.9 440 230 - 20 45,100 46 4.10 

4.14c 30.8 620 150 410 35 69,100 67 4.02 

4.14d 30.8 870 - 450 - 38,650 36 3.71 

4.2.2.2 Thermal Analysis and Pyrolysis Studies 

Differential scanning calorimetry studies of polyelectrolytes 4.14ad revealed glass 

transition temperatures (Tgs) between 165 and 177 C (Figure A4.52 and Table 4.4). TGA 

studies demonstrated that polyelectrolytes 4.14ad have high thermal stability, with the 

onset of decomposition observed at ca. 310 °C and char yields ranging from 33 to 54% 

(Figure 4.7 and Table 4.4). 
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Figure 4.7. TGA traces for polyelectrolytes: 4.14a (3  Fc, black), 4.14b (2  Fc, 1  Rc; red), 

4.14c (1  Fc, 2  Rc; blue), and 4.14d (3  Rc, green). 

Based on the high char yields observed and growing interest in the catalytic and 

electrochemical properties of nano-structured metal phosphides,84-88 we decided to explore 

the preceramic behavior of polyelectrolytes 4.14ad. Polyelectrolyte films with 

approximate thickness of 6 μm (Figure A4.57) were prepared by drop casting and 

pyrolyzed at 1000 C under a flow of N2/H2 (95/5) for 3h. Each pyrolysis experiment was 

repeated in triplicate, and representative SEM images and relevant data are shown in Figure 

4.8 and Table 4.4. It is worth noting that we were unable to employ transmission electron 

microscopy (TEM) for our studies as our thorough attempts to dislodge the nanomaterials 

produced by pyrolysis from silicon substrates using physical scraping (razor blade), 

ultrasonication, and solvent rinsing were unsuccessful. However, our SEM analyses 

provided significant insight into the structures of the nanomaterials produced. In each case, 

pyrolysis of polyelectrolyte films resulted in the formation of large particles and/or 

continuous materials surrounded by numerous smaller particles. In the case of the 

nanomaterials produced from 4.14b and 4.14c, the multi-faceted appearance of the imaged 

materials hinted to the fact that they may be crystalline (vide infra).  
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Figure 4.8. SEM images of the nanomaterials prepared via the pyrolysis of films of polyelectrolytes 

(a) 4.14a, (b) 4.14b, (c) 4.14c, and (d) 4.14d. Scale bars = 1 µm. 

 

Elemental maps (EDX spectroscopy) revealed that the nanomaterials produced were 

comprised of C, O, P, Fe, and/or Ru and that the inorganic components were distributed 

throughout the nanomaterials produced (Figures 4.9, A4.58A4.60). The presence of 

carbon was attributed to incomplete volatilization of the polystyrene backbone and 

oxidation during brief (and unavoidable) exposure of the samples to air prior to SEM 

analysis accounts for the presence of oxygen. Unfortunately, the elemental maps obtained 

provide little quantitative information about the composition of the nanomaterials 

produced. With this in mind, at least five different data sets were collected for regions 

(ca. 1 μm2) of the nanomaterial surfaces densely populated with relatively large particles 

and/or continuous material ('bulk') and with relatively small particles ('particles') for each 

of the samples (Figures A4.61A4.64 and Table 4.4). For each sample, the smaller particles 

produced were clearly embedded within a carbon-rich matrix, and the overall 

phosphorus/metal content was significantly lower than those observed for areas densely 

populated with bulk material. 

 

a b

dc
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Figure 4.9. SEM images and elemental maps (O, Ru, Fe, P, C) for the nanomaterials prepared via 

the pyrolysis of a film of polyelectrolyte 4.14b. Scale bar = 1 µm. 
 

Table 4.3. Thermal characterization and elemental composition data for the nanomaterials 

produced via the pyrolysis of polyelectrolytes 4.14ad. 

Polymer Tg (°C) 
Onset of 

Decomposition (°C) 
Char Yield (%) Regiona 

Atomic Ratioa,b 

P Fe Ru Fe + Ru 

4.14a 177 310 33 
bulk 1 1.9  0.3 - 1.9  0.3 

particles 1 2.1  0.5 - 2.1  0.5 

4.14b 165 311 51 
bulk 1 1.7  0.7 1.1  0.4 2.8  0.8 

particles 1 1.5  0.3 0.9  0.1 2.4  0.3 

4.14c 173 312 39 
bulk 1 0.5  0.1 1.6  0.1 2.1  0.1 

particles 1 0.6  0.3 1.8  0.5 2.4  0.6 

4.14d 171 330 54 
bulk 1 - 2.1  0.0 2.1  0.0 

particles 1 - 1.5  0.1 1.5  0.1 

aAtomic ratios determined using EDX spectroscopy for dense regions of relatively large particles 

('bulk') and less dense regions of relatively small particles ('particles'). See electronic 

supplementary information for additional details. bPhosphorus stoichiometry fixed at 1.  

4.2.2.3 Powder X-ray Diffraction Studies 

Powder X-ray diffraction studies of the nanomaterials produced by pyrolysis of films of 

polyelectrolytes 4.14ad are shown in Figure 4.10. In each case, the patterns produced 

confirmed the presence of crystalline materials. Qualitative phase identification studies 

were performed through careful comparison of our diffraction data with those of a PXRD 

SEM C O

FePRu
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database,89 which included data for known mono- and bimetallic phosphides (i.e., M4P, 

M3P, M2P, and MP; where M: Fe and/or Ru), metal carbides, pure metals, etc. (Figures 

A4.65A4.68). The PXRD data for the films produced from polyelectrolytes 4.14ac were 

not closely matched with those of any known phases, and were indicative of the presence 

of multiple crystalline phases, which prevented us from indexing the data. Conversely, the 

PXRD data collected for the film produced from polyelectrolyte 4.14d was consistent with 

that of Ru2P (Figure 4.10d and A4.68).  

 

 

Figure 4.10. Powder X-ray diffractograms for the nanomaterials prepared via the pyrolysis of films 

of polyelectrolytes (a) 4.14a, (b) 4.14b, (c) 4.14c, and (d) 4.14d. Miller indices corresponding to 

Ru2P are shown in panel (d). 
 

4.2.2.4 Discussion  

Considering the PXRD, EDX spectroscopy, and elemental mapping results obtained for 

the nanomaterials produced from pyrolyzed films of polyelectrolytes 4.14ac, two points 

become immediately obvious. First, given the large standard deviations associated with the 

atomic ratios determined from the EDX data collected, it is clear that phosphorus, iron, 

and/or ruthenium are not distributed uniformly throughout the nanomaterials produced. It 

is therefore probable that multiple different materials/phases have been produced. For the 
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heterobimetallic materials derived from 4.14b and 4.14c, PXRD data confirmed the 

absence of simple Fe2P/Ru2P/Fe3P/Ru3P phases and supported this hypothesis. Second, 

within a single standard deviation, the average composition of the small particles and bulk 

materials analyzed were the same. Conversely, for the nanomaterials derived from 4.14d, 

the relatively smaller standard deviations calculated point toward the uniform distribution 

of phosphorus and ruthenium throughout regions containing bulk material and relatively 

small particles. Furthermore, this was the only case where the composition of the bulk 

(P:Ru, 1 : 2.1  0.0) and small-particle-rich (P:Ru, 1 : 1.5  0.1) were statistically different. 

When these results are combined with the PXRD data collected and indexed for this 

sample, it becomes clear that the bulk phase produced from the pyrolysis of films of 

polyelectrolyte 4.14d is comprised of Ru2P. 

4.3 Conclusion 

In conclusion, through the use of a novel and unique approach, we have synthesized the 

first example of methacrylate-based phosphonium monomer in addition to a library of 

styrene-based phosphonium triflate monomers. By free-radical polymerization of the 

triflate salts, polyelectrolytes with four different stoichiometric ratios of Fe/Ru were 

prepared and fully characterized. Due to the presence of ferrocene/ruthenocene, these 

materials exhibited redox properties and gave rise to UV-vis absorption maxima consistent 

with the number of each metallocene present. GPC and DSC results confirmed the 

macromolecular nature of the polyelectrolytes and TGA studies confirmed their stability 

up to ~310 °C. Studies of the nanomaterials that resulted from the pyrolysis of 

polyelectrolytes using SEM showed that they can be used as precursors to crystalline 

nanomaterials. EDX spectroscopy and elemental mapping data indicated that the 

crystalline nanomaterials contained Fe, Ru, and P distributed throughout, with Fe/Ru/P 

ratios influenced by the polyelectrolyte structures. 

4.4 Experimental section 

4.4.1 General Considerations 

Reactions and manipulations were carried out under a N2 atmosphere using standard glove 

box or Schlenk techniques unless otherwise stated. Solvents were obtained from Caledon 
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Laboratories and Fischer Scientific, dried using an Innovative Technologies Inc. solvent 

purification system, collected under vacuum, and stored under a nitrogen atmosphere over 

4 Å molecular sieves. Reagents were purchased from Sigma-Aldrich or Alfa Aesar and 

used as received, aside from 4-vinylbenzyl chloride which was purified according to a 

literature procedure and stored under N2 at –35 °C.90 Tertiary phosphines 4.11a–d were 

synthesized according to reported protocols.81 1H, 13C{1H}, 19F and 31P NMR spectra were 

recorded on a 600 MHz (1H: 599.5 MHz, 13C{1H}: 150.8 MHz, 19F: 563.9 MHz and 31P: 

242.6 MHz) Varian INOVA instrument. NMR spectra were recorded on a 400 MHz (1H: 

399.8 MHz, 13C: 100.5 MHz, 19F: 376.4 MHz, 31P: 161.8 MHz) or a 600 MHz (1H: 599.5 

MHz, 13C{1H}: 150.8 MHz, 31P: 242.6 MHz) Varian INOVA instrument, or a 400 MHz 

(1H: 400.8 MHz, 13C{1H}: 100.6 MHz, 31P: 161.9 MHz) Varian Mercury instrument. 1H 

NMR spectra were referenced to residual CHCl3 (7.27 ppm) or (CD3)(CD2H)SO (2.50 

ppm) and 13C NMR spectra were referenced to CDCl3 (77.0 ppm) or DMSO-d6 (39.5 ppm). 

31P NMR spectra were referenced to PPh3 as an internal standard (–6.0 ppm relative to 

H3PO4). Mass spectrometry data were recorded in positive-ion mode using a 

Micromass/Waters Q-TOF Ultima LC-MS/MS system or Micromass LCT electrospray 

ionization time-of-flight mass spectrometer. UV-vis absorption spectra were recorded 

using a Cary 300 Scan instrument. Infrared spectra were recorded using a PerkinElmer 

Spectrum Two FT-IR spectrometer as thin films on KBr plates. Elemental analyses (C and 

H) were carried out by Laboratoire d’Analyse Élémentaire de l’Université de Montréal, 

Montréal, QC, Canada. 

4.4.2 Cyclic Voltammetry 

Cyclic voltammograms were collected using a Bioanalytical Systems Inc. (BASi) Epsilon 

potentiostat and analyzed using BASi Epsilon software. Typical electrochemical cells 

consisted of a three-electrode setup including a glassy carbon working electrode, platinum 

wire counter electrode, and silver wire pseudo-reference electrode. 1 mM degassed 

solutions of phosphonium salts 4.9, 4.10ac, 4.13ad, and 4.14ad, combined with 

supporting electrolyte (0.1 M [n-Bu4N][OTf]) in a CH2Cl2/CH3CN (2/1) solvent mixture 

were prepared and run at a scan rate of 250 mV s1 under a blanket of argon. To study the 

electrochemical behavior of 4.14ad, different solvents such as THF, DMF, CH3CN, and 
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CH2Cl2 containing 0.1 M [n-Bu4N][OTf] were used to make 0.2 mM solutions of the 

analytes. In each case, severe plating of the oxidized forms of 4.14ad was observed on 

the glassy carbon working electrode. Therefore, a 2/1 solvent mixture of CH2Cl2 and 

CH3CN was used as it was the least problematic combination. Degassed solutions of 

polyelectrolytes 4.14ad in a CH2Cl2/CH3CN (2/1) solvent mixture were prepared by 

stirring the mixture overnight at 40 °C. After addition of the supporting electrolyte, the 

mixtures were sonicated for 20 s and filtered (Nylon membrane, 0.2 μm). Using these 

solutions, electrochemical studies were performed at a scan rate of 250 mV s1 under a 

blanket of argon. Cyclic voltammograms were referenced relative to a 

decamethylferrocene internal standard (1 mM, ‒520 mV relative to ferrocene/ferrocenium 

under identical conditions) and corrected for internal cell resistance using the BASi Epsilon 

software. 

4.4.3 X-ray Diffraction Studies 

Single crystals of 4.8b were grown by vapor diffusion of pentane into a concentrated 

solution of the compound in CHCl3 and single crystals of monomer 4.13a were grown by 

slow evaporation of a THF solution. The samples were mounted on MiTeGen polyimide 

micromounts with a small amount of Paratone N oil. X-ray diffraction measurements of 

4.8b were made on a Nonius Kappa CCD diffractometer and 4.13a were made on a Bruker 

Kappa Axis Apex2 diffractometer. Initial indexing indicated that the sample crystal of 

4.13a was non-merohedrally twinned. The twin law was determined to be: 

0.99635 0.00646 0.00848 

0.00835 ‒1.00086 0.00433 

0.85236 ‒0.00198 ‒0.99547 

which represents a 179.8º rotation about [100]. The twin fraction was included in the 

refinement as an adjustable parameter (vide infra). The unit cell dimensions for 4.8b, and 

4.13a were determined from a symmetry constrained fit of 9891 reflections with 5.14° < 

2θ < 50.28°, and 5386 reflections with 6.58° < 2θ < 47.88°. The data collection strategy 

was a number of ω and φ scans which collected data up to 57.156 (2θ) for 4.8b and 53.538° 

(2θ) for 4.13a. The frame integration was performed using SAINT.91 The resulting raw 

data for 4.8b were scaled and absorption corrected using a multi­scan averaging of 
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symmetry equivalent data using SADABS92 and the raw data for 4.13a were scaled and 

absorption corrected using a multi-scan averaging of symmetry equivalent data using 

TWINABS.93 The structure for 4.8b was solved using the SIR92 program94 and the 

structure for 4.13a was solved by using a dual space methodology using the SHELXT 

program.95 All non-hydrogen atoms were obtained from the initial solution. The hydrogen 

atoms were introduced at idealized positions and were allowed to ride on the parent atom. 

The twin fraction refined to a value of 0.465(1). The structural models were fit to the data 

using full matrix least-squares based on F2. The calculated structure factors included 

corrections for anomalous dispersion from the usual tabulation. The structures of 4.8b and 

4.13a were refined using the SHELXL-2014 program from the SHELX suite of 

crystallographic software.96 Graphic plots were produced using Mercury software (version 

3.3). For additional collection and refinement details, see CCDC 1012823 and 1476067, 

Table 4.1 and Figures 4.1 and 4.6. Powder X-ray diffraction (PXRD) data for nanomaterial 

films deposited on silicon wafers were acquired using an Inel CPS powder diffractometer 

with an Inel XRG 3000 generator and Inel CPS 120 detector using a CuKα radiation source. 

For diffractograms, see Figure 4.10 and A4.65A4.68. 

Table 4.4. Selected X-ray diffraction data collection and refinement details for 4.8b and 4.13a. 
 4.8b 4.13a 

Chemical formula C39H46BF4Fe3OP C46H48F3Fe3O3PS 

FW (g mol–1) 816.1 936.42 

Temp (K) 150 110 

Crystal system monoclinic Triclinic 

Space group P21/c P-1 

λ (Å) 0.71073 0.71073 

a (Å) 7.342(8) 12.378(6) 

b (Å) 29.84(4) 12.619(5) 

c (Å) 17.170(19) 14.252(7) 

α (deg) 90 79.298(7) 

β (deg) 106.475(19) 68.524(10) 

γ (deg) 90 89.953(7) 

V (Å3) 3607(7) 2030.1(17) 

Z 4 2 

ρ (g cm–3) 1.503 1.532 

μ (cm–1) 1.286 1.204 

R1 [I > 2σ(I)] 0.0582 0.0534 

R2 [I > 2σ(I)] 0.138 0.1278 

R1 (all data) 0.0869 0.0917 

R2 (all data) 0.1522 0.1463 

GOF 1.031 1.042 

R1 = Σ(|Fo| − |Fc|) / ΣFo, R2 = [Σ((Fo
2 − Fc

2)2) / Σ(Fo
4)]½; GOF = [Σ ((Fo

2 ‒ Fc
2)2) / 

(No. of reflns. ‒ No. of params.)]½.  
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4.4.4 Gel Permeation Chromatography (GPC) 

GPC experiments were performed by PolyAnalytik Inc. Canada (London, Ontario). 

Molecular weights and dispersities (Ð = Mw / Mn) were obtained using a Viscotek 

TDA302/GPCmax gel permeation chromatograph equipped with automatic sampler, 

isocratic pump, injector, in-line degasser, column and detector oven (60 °C), refractive 

index detector, and Viscotek Inert Series Columns: 1 × Mixed Bed Low Molecular Weight 

(I-MBLMW, exclusion limit of 20 kg mol-1 PS) and 1 × Mixed Bed High Molecular 

Weight (I-MBHMW, exclusion limit of 10,000 kg mol-1 PS). The eluent employed was 

DMF (60 ºC) containing 0.02 M [n-Bu4N][OTf] at a flow rate of 0.7 mL min‒1. Samples 

were dissolved in the eluent (5 mg mL‒1), heated for 1.5 h, and filtered (Nylon membrane, 

0.2 μm) before analysis. For 4.10ac, the conventional calibration of the refractive index 

detector was performed using a series of monodisperse poly(methyl methacrylate) 

standards (PolyAnalytik) and for 4.14ad, the conventional calibration of the refractive 

index detector was performed using a series of monodisperse polystyrene standards 

(PolyAnalytik). All data were processed using Viscotek's OmniSEC v4.6.2 software. 

4.4.5 Thermal Analysis 

The thermal degradation studies of 4.10ac were performed using a TA Instruments Q600 

SDT TGA instrument and the thermal degradation studies of 4.14ad were performed 

using a TA Instruments Q50 TGA instrument under an atmosphere of N2. Samples were 

placed in a platinum pan and heated at a rate of 10 °C min–1 under a flow of N2 (60 mL 

min–1). Glass transition temperatures were determined under an atmosphere of N2 using 

differential scanning calorimetry (DSC) on a TA Instruments DSC Q20. The polymer 

samples were placed in an aluminum Tzero pan and heated (to 280 °C for 4.10ac and to 

300 °C for 4.14ad) at 10 °C min–1 under a flow of N2 (50 mL min–1) and cooled to 0 °C 

at 5 °C min–1, before they underwent two more heat/cool cycles. The glass transitions were 

determined from the second heat/cool cycle. 
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4.4.6 Pyrolysis Studies and Scanning Electron Microscopy 

The thin films of polyelectrolyte 4.10b were prepared by spin coating (2000 rpm, 30 s, 

acceleration time < 2 s) 20 L of a 80 mg mL‒1 solution of polyelectrolyte 4.10b in a 3:2 

mixture of PhCl:CHCl3 onto the freshly cleaned silicon wafers (A = 1 cm2) using a Laurell 

WS-400BZ-6NPP/LITE spin-coater and the thick films of polyelectrolytes 4.14ad were 

prepared by drop-casting 250 L of a 20 mg mL‒1 PhCl solution of each polyelectrolyte 

onto a silicon wafer (A = 2.5 cm2). The samples of 4.10b dried in a vacuum oven at 50 C 

for 16 h before they were heated at a rate of 10 C min‒1 to a temperature of 800 C under 

a gentle flow of N2 gas in a Lindberg Blue M tube furnace. The samples of 4.14ad were 

dried in air, transferred into a vacuum oven, and dried at 50 C for 2 h before they were 

heated at a rate of 10 C min‒1 to a temperature of 1000 C under a gentle flow (ca. 60 mL 

min1) of a N2/H2 (95/5) gas mixture in a Lindberg Blue M tube furnace. The samples of 

4.10b heated at the maximum temperature for 2 h and the samples of 4.14ad were heated 

at the maximum temperature for 3 h before the furnace was cooled to room temperature at 

a rate of 10 C min‒1. Polymer film thickness of 4.14a and the surface morphologies of 

thermally deposited nanomaterials on silicon wafers were assessed directly using scanning 

electron microscopy (SEM) at 1 keV beam energy using LEO/Zeisss 1530 and LEO/Zeisss 

1540XB instruments. Energy dispersive X-ray spectroscopy (EDX) experiments were 

performed at 10 keV beam energy on the 1540XB with the equipped Oxford X-sight X-

ray detector and INCA analysis software. 

Phosphonium Chloride Salt 4.8a (3  Fc) 

In a 250 mL Schlenk flask equipped with a condenser, 

tertiary phosphine 4.11a (1.00 g, 1.49 mmol) and 3-

chloro-1-propanol (2.00 mL, 23.4 mmol) were dissolved 

in 25 mL dry DMF. The solution was refluxed with 

stirring for 16 h, cooled and concentrated in vacuo. The orange oily residue was then 

dissolved in about 50 mL of degassed CH2Cl2, washed with 3 × 20 mL of degassed H2O, 

dried over MgSO4, transferred to a silica plug (1” × 2”) for subsequent purification in 

vacuo. Unreacted tertiary phosphine 4.11a was removed by eluting degassed CH2Cl2 
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through the plug. Phosphonium chloride salt 4.8a remained on top of the plug while 150 

mL degassed CH2Cl2 passed through the column before the elution solvent was changed to 

degassed EtOH to remove 4.8a. The EtOH solution containing 4.8a was collected and 

concentrated in vacuo before dissolved in a minimum amount of degassed CH2Cl2, and 

precipitated by adding degassed hexanes. The resulting powder was filtered in vacuo before 

it was once again dissolved, precipitated, and filtered to yield 4.8a as a yellow solid. Yield 

= 1.01 g, 88%. M.p. : 102‒104 °C. 1H NMR (599.4 MHz, CDCl3): δ 5.19 (t, 3JHH = 6 Hz, 

1H, OH), 4.17 (s, 15H, C5H5), 4.16 (d, 3JHH = 2 Hz, 6H, β-C5H4R), 4.16 (t, 3JHH = 2 Hz, 

6H, α-C5H4R), 3.78 (m, 2H, CH2OH), 2.68 (m, 6H, C5H4CH2), 2.57 (m, 2H, 

PCH2CH2CH2), 2.44 (m, 6H, C5H4CH2CH2), 1.92 (m, 2H, PCH2CH2CH2).
 13C{1H} NMR 

(150.7 MHz, CDCl3): δ 85.5 (d, 3JCP = 12 Hz, ipso-C5H4R), 68.8 (s, C5H5), 68.1 (d, 5JCP = 

2 Hz, β-C5H4R), 67.9 (d, 4JCP = 2 Hz, α-C5H4R), 60.7 (d, 3JCP = 14 Hz, CH2OH), 24.8 (s, 

2JCP = 2 Hz, PCH2CH2CH2), 22.1 (s, C5H4CH2), 21.3 (d, 1JCP = 45 Hz, C5H4CH2CH2), 16.5 

(d, 1JCP = 48 Hz, PCH2CH2CH2).
 31P NMR (242.7 MHz, CDCl3): δ 32.6. FT-IR (KBr): 813 

(s), 1001 (m), 1105 (m), 1411 (w), 3095 (br, w), 3267 (br, m) cm−1. UV-vis (CH2Cl2): λmax 

439 nm (ε = 326 M–1 cm–1). Mass Spec. (ESI, +ve mode): exact mass calculated for 

[C39H46PFe3O]
+
: 729.1334; exact mass found: 729.1351; difference: +2.3 ppm. Anal. 

Calcd. (%) for C39H46PFe3OCl: C, 61.25; H, 6.06. Found: C, 61.82; H, 6.31. 

Preparation of Phosphonium Tetrafluoroborate Salt 4.8b 

In a 100 mL Schlenk flask, 4.8a (0.50 g 0.65 mmol) was 

dissolved in 25 mL dry and degassed CHCl3 before NaBF4 

(0.70 g, 6.2 mmol) was charged into the reaction flask. 

The resulting mixture was stirred at 20 °C for 16 h, gravity 

filtered to remove precipitate, washed with 3 × 20 mL of H2O, dried over MgSO4, and 

gravity filtered. NaBF4 (0.07 g, 0.06 mmol) was once again charged into a 100 mL flask 

containing the filtrate before the mixture was stirred for another 16 h. It was then gravity 

filtered to remove the precipitate, washed with 3 × 20 mL of H2O, dried over MgSO4, and 

gravity filtered before it was concentrated to yield an orange solid. Recrystallization from 

9:1 CH2Cl2:pentane yielded 4.8b as a yellow solid. Yield = 0.39 g, 74%. M.p. : 203‒205 

°C. 1H NMR (399.8 MHz, d6-DMSO): δ 4.90 (t, 3JHH = 5 Hz, 1H, OH), 4.24 (s, 6H, β-
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C5H4R), 4.20 (s, 15H, C5H5), 4.15 (s, 6H, α-C5H4R), 3.52 (m, 2H, CH2OH), 2.54‒2.70 (m, 

12H, C5H4CH2 and C5H4CH2CH2), 2.38 (m, 2H, PCH2CH2CH2), 1.73 (m, 2H, 

PCH2CH2CH2). 
13C{1H} NMR (100.6 MHz, d6-DMSO): δ 86.9 (d, 3JCP = 17 Hz, ipso-

C5H4R), 68.5 (s, C5H5), 67.7 (s, β-C5H4R)], 67.4 (s, α-C5H4R), 60.4 (d, 3JCP = 16 Hz, 

CH2OH), 24.2 (s, PCH2CH2CH2), 20.8 (s, C5H4CH2), 18.9 (d, 1JCP = 45 Hz, C5H4CH2CH2), 

14.7 (d, 1JCP = 49 Hz, PCH2CH2CH2).
 19F NMR (376.4 MHz, d6-DMSO): δ –1483. 31P 

NMR (162.0 MHz, d6-DMSO): δ 34.2 (s). FT-IR (KBr): 825 (s), 1068 (br, s), 1085 (s), 

1224 (m), 1409 (br, m), 2930 (br, m), 3100 (br, w), 3437 (br, m) cm−1. UV-vis (CH2Cl2): 

λmax 443 nm (ε = 331 M–1 cm–1). Mass Spec. (ESI, +ve mode): exact mass calculated for 

[C39H46PFe3O]
+
: 729.1334; exact mass found: 729.1338; difference: +0.5 ppm. Anal. 

Calcd. (%) for C39H46PFe3OBF4: C, 57.40; H, 5.68. Found: C, 57.51; H, 5.76. 

Preparation of Monomer 4.9 

In a 250 mL Schlenk flask, 4.8a (0.50 g 0.65 mmol) 

was dissolved in dry CH2Cl2 (100 mL). Et3N (1.4 

mL, 10 mmol) was added to the reaction flask at 

room temperature. After stirring at 20 C for 20 

min, methacryloyl chloride (1.10 mL, 10.9 mmol) 

was added to the reaction flask and the resulting solution was stirred for 2 h. The reaction 

mixture was then stirred at 20 C for 16 h before it was washed with 2 × 25 mL of saturated 

solution of Na2CO3 and 3 × 25 mL of H2O, respectively, dried over MgSO4, and transferred 

to a silica plug (1” × 3”) for subsequent purification in vacuo. The chloride salt remained 

on top of the plug while 150 mL degassed CH2Cl2 eluted before the solvent was changed 

to degassed EtOH to remove the monomer as a chloride salt. The EtOH solution containing 

the chloride salt was collected and concentrated in vacuo. The resulting residue was 

dissolved in 25 mL of dry and degassed CHCl3 before NaOTf (1.00 g, 5.70 mmol) was 

charged into the reaction flask. The resulting mixture was stirred at 20 C for 16 h, gravity 

filtered to remove precipitate, washed with 3 × 20 mL of H2O, dried over MgSO4, and 

gravity filtered. NaOTf (0.10 g, 0.57 mmol) was once again charged into a 100 mL flask 

containing the filtrate before the mixture was stirred for another 16 h. It was then gravity 
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filtered to remove the precipitate that formed, washed with 3 × 20 mL of H2O, dried over 

MgSO4, and gravity filtered before it was concentrated in vacuo. The resulting orange 

residue was then dried in vacuo for 2 h at 35 °C to remove residual solvents to afford 

monomer 4.9 as an orange solid. Yield = 0.54 g, 89%. M.p. : 68‒70 C. 1H NMR (599.4 

MHz, CDCl3): δ 6.16 (m, 1H, trans-CCH2), 5.66 (m, 1H, cis-CCH2), 4.22 (s, 15H, C5H5), 

4.21 (s, 6H, β-C5H4R), 4.20 (s, 6H, α-C5H4R), 4.15 (m, 2H, CH2CH2O), 2.59 (m, 6H, 

C5H4CH2), 2.32 (m, 6H, C5H4CH2CH2), 2.10 (m, 2H, PCH2CH2CH2), 1.98 (s, 3H, CH3), 

1.81 (m, 2H, PCH2CH2CH2).
 13C{1H} NMR (100.5 MHz, CDCl3): δ 166.8 (s, CO), 135.7 

(s, CCH3), 126.1 (s, CCH2), 120.8 (q, 1JCF = 321 Hz, OTf), 85.2 (d, 3JCP = 13 Hz, ipso-

C5H4R), 68.8 (s, C5H5), 68.0 (s, β-C5H4R and α-C5H4R), 63.5 (d, 3JCP = 16 Hz, CH2CH2O), 

21.9 (d, 2JCP = 5 Hz, C5H4CH2), 21.0 (d, 2JCP = 4 Hz, PCH2CH2CH2), 20.6 (d, 1JCP = 46 Hz, 

C5H4CH2CH2), 18.24 (s, CH3), 15.8 (d, 1JCP = 48 Hz, PCH2CH2CH2).
 19F NMR (376.4 

MHz, CDCl3): δ –78.1.  31P NMR (242.7 MHz, CDCl3): δ 31.9 (s). FT-IR (KBr): 825 (m), 

1032 (s), 1163 (s), 1275 (br, s), 1645 (br, m), 1722 (br, m), 3109 (br, w), 3468 (br, s) cm−1. 

UV-vis (CH2Cl2): λmax 440 nm (ε = 294 M–1 cm–1). Mass Spec. (ESI, +ve mode): exact 

mass calculated for [C44H50PFe3O5]
+
: 797.1597; exact mass found: 797.1598; difference: 

+0.1 ppm. Anal. Calcd. (%) for C44H50PFe3O5SF3: C, 55.84; H, 5.32; S, 3.39. Found: C, 

56.03; H, 5.49; S, 3.52. 

Preparation of Polyelectrolyte 4.10a 

In a 20 mL grease-free Schlenk flask, monomer 4.9 

(400 mg, 0.423 mmol) was dissolved in 400 µL of 

a THF solution containing AIBN (0.70 mg, 0.0042 

mmol). The resulting solution was degassed using 

3 freeze-pump-thaw cycles before it was stirred at 

75 C for 17 h. The solution was concentrated in vacuo to yield a dark orange residue 

before it was dissolved in a minimum amount of CH2Cl2, precipitated in benzene, and 

centrifuged for 1 min to separate the solids. The solids were collected and the precipitation 

process was repeated once in benzene and twice in pentane, respectively: The solid was 

dried in vacuo at 50 C for 40 h to yield polyelectrolyte 4.10a as a yellow powder. Yield = 
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0.28 g, 70%. 1H NMR (599.4 MHz, CDCl3): δ 3.30‒5.40 (broad, C5H5, C5H4R and 

CH2CH2O), 0.50‒3.05 (broad, saturated polymer backbone CH2, C5H4CH2, C5H4CH2CH2, 

PCH2CH2CH2, CH3, PCH2CH2CH2).
 19F NMR (376.4 MHz, CDCl3): δ –77.2. 31P NMR 

(242.7 MHz, CDCl3): δ 31.8 (s). FT-IR (KBr): 638 (m), 829 (w), 1032 (m), 1161 (m), 1265 

(s), 1660 (br, w), 1734 (br, w), 2934 (br, w), 3099 (br, w) cm−1. UV-vis (CH2Cl2): λmax 437 

nm (ε = 322 M–1 cm–1). Anal. Calcd. (%) for (C44H50PFe3O5SF3)n: C, 55.84; H, 5.32; S, 

3.39. Found: C, 56.14; H, 5.42; S, 3.69. GPC (DMF, 0.02 M [n-Bu4N][OTf], 60 ºC, 

conventional calibration vs. PMMA standards): Mn = 43,100 g mol−1, Mw = 118,200 g 

mol−1, Đ = 2.74. 

Preparation of Polyelectrolyte 4.10b 

In a 20 mL grease-free Schlenk flask, monomer 4.9 

(400 mg, 0.423 mmol) was dissolved in 533 µL of 

a THF solution containing AIBN (0.35 mg, 0.0021 

mmol). The resulting solution was degassed using 

3 freeze-pump-thaw cycles before it was stirred at 

75 C for 25 h. The solution was concentrated in vacuo to yield a dark orange residue 

before it was dissolved in a minimum amount of CH2Cl2, precipitated in benzene, and 

centrifuged for 1 min to separate the solids. The solids were collocated and the precipitation 

process was repeated once in benzene and twice in pentane, respectively: The solid was 

dried in vacuo at 50 C for 40 h to yield polyelectrolyte 4.10b as a yellow powder. Yield 

= 0.32 g, 79%. 1H NMR (599.4 MHz, CDCl3): δ 3.40‒5.00 (broad, C5H5, C5H4R and 

CH2CH2O), 0.50‒3.10 (broad, saturated polymer backbone CH2, C5H4CH2, C5H4CH2CH2, 

PCH2CH2CH2, CH3, PCH2CH2CH2).
 19F NMR (376.4 MHz, CDCl3): δ –77.2.  31P NMR 

(242.7 MHz, CDCl3): δ 31.8 (s). FT-IR (KBr): 638 (m), 827 (w), 1031 (m), 1159 (m), 1267 

(s), 1656 (br, w), 1730 (br, m), 2937 (br, w), 3099 (br, w) cm−1. UV-vis (CH2Cl2): λmax 438 

nm (ε = 310 M–1 cm–1). Anal. Calcd. (%) for (C44H50PFe3O5SF3)n: C, 55.84; H, 5.32; S, 

3.39. Found: C, 56.96; H, 5.56; S, 3.50. GPC (DMF, 0.02 M [n-Bu4N][OTf], 60 ºC, 

conventional calibration vs. PMMA standards): Mn = 32,400 g mol−1, Mw = 79,000 g 

mol−1, Đ = 2.44. 
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Preparation of Polyelectrolyte 4.10c 

In a 20 mL grease-free Schlenk flask, monomer 4.9 

(400 mg, 0.423 mmol) was dissolved in 800 µL of 

a THF solution containing AIBN (0.23 mg, 0.0014 

mmol). The resulting solution was degassed using 

3 freeze-pump-thaw cycles before it was stirred at 

75 C for 32 h. The solution was concentrated in vacuo to yield a dark orange residue 

before it was dissolved in a minimum amount of CH2Cl2, precipitated in benzene, and 

centrifuged for 1 min to separate the solids. The solids were collocated and the precipitation 

process was repeated once in benzene and twice in pentane, respectively. The solid was 

dried in vacuo at 50 C for 40 h to yield polyelectrolyte 4.10c as a yellow powder. Yield = 

0.30 g, 75%. 1H NMR (599.4 MHz, CDCl3): δ 3.50‒5.50 (broad, C5H5, C5H4R and 

CH2CH2O), 0.50‒3.20, (broad, saturated polymer backbone CH2, C5H4CH2, C5H4CH2CH2, 

PCH2CH2CH2, CH3, PCH2CH2CH2).
 19F NMR (376.4 MHz, CDCl3): δ –77.2.  31P NMR 

(242.7 MHz, CDCl3): δ 31.9 (s). FT-IR (KBr): 638 (m), 827 (w), 1032 (m), 1161 (m), 1265 

(s), 1651 (br, m), 1732 (br, m), 2935 (br, w), 3101 (br, w) cm−1. UV-vis (CH2Cl2): λmax 440 

nm (ε = 323 M–1 cm–1). Anal. Calcd. (%) for (C44H50PFe3O5SF3)n: C, 55.84; H, 5.32; S, 

3.39. Found: C, 55.86; H, 5.54; S, 3.58. GPC (DMF, 0.02 M [n-Bu4N][OTf], 60 ºC, 

conventional calibration vs. PMMA standards): Mn = 45,100 g mol−1, Mw = 105,700 g 

mol−1, Đ = 2.34. 

Representative Procedure for the Preparation of 4.12ad 

Phosphonium Chloride Salt 4.12a (3  Fc) 

In a sealed tube, tertiary phosphine 4.11a (1.00 g, 1.49 mmol) 

and 4-vinylbenzyl chloride (230 µL, 1.63 mmol, 1.1 equiv.) 

were combined with DMF/THF (5/1, 12 mL) before the 

mixture was heated with stirring for 1 h at 75 C. After cooling 

to room temperature, the flask was opened to air and the 

phosphonium chloride salt was extracted with CHCl3 (3 × 40 



115 

 

mL), washed with H2O (5 × 20 mL), dried over MgSO4, and concentrated in vacuo. The 

resulting oily orange residue was then dissolved in a minimum amount of CH2Cl2 and 

precipitated into pentane. The powder produced was isolated by centrifugation before it 

was again dissolved, precipitated, and filtered to yield 4.12a as an orange powder. Yield = 

1.20 g, 98%. M.p. : 74‒76 °C. 1H NMR (DMSO-d6): δ 7.59 (d, 3JHH = 8 Hz, 2H, aryl CH), 

7.46 (dd, 3JHH = 8 Hz, 5JHP = 2 Hz, 2H, aryl CH), 6.74 (dd, 3JHH,cis = 11 Hz, 3JHH,trans = 18 

Hz, 1H, ArCH=CH2), 5.86 (d, 3JHH,trans = 18 Hz, 1H, ArCH=CH2), 5.26 (d, 3JHH,cis = 11 Hz, 

1H, ArCH=CH2), 4.17 (pseudo-t, 3JHH = 2 Hz, 6H, β-C5H4R), 4.12 (s, 15H, C5H5), 4.10 

(pseudo-t, 3JHH = 2 Hz, 6H, α-C5H4R), 4.06 (d, 2JHP = 15 Hz, 2H, PCH2Ar), 2.59‒2.43 (m, 

12H, C5H4CH2CH2 and C5H4CH2CH2, overlaps with residual CD3CD2HSO signal). 

13C{1H} NMR (DMSO-d6): δ 137.0 (d, JCP = 3 Hz), 135.9 (d, JCP = 2 Hz), 130.4 (d, JCP = 

6 Hz), 128.8 (d, JCP = 8 Hz), 127.0 (d, JCP = 3 Hz), 115.1 (s), 86.8 (d, JCP = 17 Hz), 68.5 

(s), 67.7 (s), 67.4 (s), 25.4 (d, JCP = 43 Hz), 20.8 (d, JCP = 2 Hz), 19.3 (d, JCP = 44 Hz). 

31P{1H} NMR (DMSO-d6): δ 31.1 (s). FT-IR: 3092 (w), 3009 (w), 2922 (m), 2455 (w), 

1629 (w), 1511 (w), 1410 (w), 1219 (w), 1105 (m), 1000 (m), 922 (w), 820 (m), 753 (s), 

660 (w) cm−1. UV-vis (THF): λmax 285 nm (ε = 2,620 M–1 cm–1), 295 nm (ε = 1,380 M–1 

cm–1), 325 nm (ε = 290 M–1 cm–1), 436 nm (ε = 300 M–1 cm–1). Mass Spec. (ESI, +ve 

mode): exact mass calculated for [C45H48
56Fe3P]+: 787.1542; exact mass found: 787.1563; 

difference: +2.7 ppm. 

Phosphonium Chloride Salt 4.12b (2  Fc, 1  Rc) 

From tertiary phosphine 4.11b (1.00 g, 1.40 mmol) and 4-

vinylbenzyl chloride (217 µL, 1.54 mmol, 1.1 equiv.). Yield = 

1.16 g, 96%. M.p. :  80‒82 °C. 1H NMR (DMSO-d6): δ 7.62 

(d, 3JHH = 8 Hz, 2H, aryl CH), 7.48 (dd, 3JHH = 7 Hz, 5JHP = 2 

Hz, 2H, aryl CH), 6.78 (dd, 3JHH,cis = 11 Hz, 3JHH,trans = 18 Hz, 

1H, ArCH=CH2), 5.90 (d, 3JHH,trans = 18 Hz, 1H, ArCH=CH2), 

5.30 (d, 3JHH,cis = 11 Hz, 1H, ArCH=CH2), 4.65 [s, 2H, β-

C5H4R(Ru)], 4.57 [s, 5H, C5H5(Ru)], 4.51 [s, 2H, α-

C5H5R(Ru)], 4.21 [s, 4H, β-C5H4R(Fe)], 4.16 [s, 10H, 

C5H5(Fe)], 4.13 [s, 4H, α-C5H5R(Fe)], 4.10 (d, 2JHP = 16 Hz, 2H, PCH2Ar), 2.65‒2.30 (m, 
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12H, C5H4CH2CH2 and C5H4CH2CH2, overlaps with residual CD3CD2HSO signal). 

13C{1H} NMR (DMSO-d6): δ 137.0 (d, JCP = 3 Hz), 135.9 (s), 130.4 (d, JCP = 5 Hz), 128.8 

(d, JCP = 9 Hz), 126.9 (d, JCP = 3 Hz), 115.1 (s), 91.2 (d, JCP = 18 Hz), 86.8 (d, JCP = 17 

Hz), 70.6 (s), 70.4 (s), 69.6 (s), 68.4 (s), 67.7 (s), 67.3 (s), 25.3 (d, JCP = 43 Hz), 20.8 (s), 

20.2 (s), 20.0 (d, JCP = 45 Hz), 19.3 (d, JCP = 45 Hz). 31P{1H} NMR (DMSO-d6): δ 30.9 

(s). FT-IR: 3091 (w), 3008 (w), 2922 (m), 2455 (w), 1629 (w), 1511 (w), 1410 (w), 1221 

(w), 1104 (m), 999 (m), 918 (w), 811 (m), 753 (s), 661 (w) cm−1. UV-vis (THF): λmax 287 

nm (ε = 2,170 M–1 cm–1), 295 nm (ε = 1,290 M–1 cm–1), 320 nm (ε = 420 M–1 cm–1), 431 

nm (ε = 220 M–1 cm–1). Mass Spec. (ESI, +ve mode): exact mass calculated for 

[C45H48
56Fe2P

102Ru]+: 833.1236; exact mass found: 833.1259; difference: +2.8 ppm. 

Phosphonium Chloride Salt 4.12c (1  Fc, 2  Rc) 

From tertiary phosphine 4.11c (1.00 g, 1.32 mmol) and 4-

vinylbenzyl chloride (204 µL, 1.45 mmol, 1.1 equiv.). Yield = 

1.14 g, 95%. M.p. : 84‒86 °C. 1H NMR (DMSO-d6): δ 7.62 (d, 

3JHH = 8 Hz, 2H, aryl CH), 7.44 (dd, 3JHH = 7 Hz, 5JHP = 2 Hz, 

2H, aryl CH), 6.78 (dd, 3JHH,cis = 11 Hz, 3JHH,trans = 18 Hz, 1H, 

ArCH=CH2), 5.92 (d, 3JHH,trans = 18 Hz, 1H, ArCH=CH2), 5.31 

(d, 3JHH,cis = 11 Hz, 1H, ArCH=CH2), 4.65 [s, 4H, β-

C5H4R(Ru)], 4.56 [s, 10H, C5H5(Ru)], 4.52 [s, 4H, α-

C5H5R(Ru)], 4.21 [pseudo-t, 3JHH = 2 Hz, 2H, β-C5H4R(Fe)], 

4.16 [s, 5H, C5H5(Fe)], 4.14 [pseudo-t, 3JHH = 2 Hz, 2H, α-C5H5R(Fe)], 4.06 (d, 2JHP = 16 

Hz, 2H, PCH2Ar), 2.60‒2.30 (m, 12H, C5H4CH2CH2 and C5H4CH2CH2, overlaps with 

residual CD3CD2HSO signal). 13C{1H} NMR (DMSO-d6): δ 137.0 (d, JCP = 5 Hz), 135.9 

(s), 130.3 (d, JCP = 5 Hz), 128.7 (d, JCP = 9 Hz), 126.9 (d, JCP = 3 Hz), 115.1 (s), 91.1 (d, 

JCP = 17 Hz), 86.7 (d, JCP = 17 Hz), 70.6 (s), 70.4 (s), 69.7 (s), 68.4 (s), 67.7 (s), 67.4 (s), 

25.3 (d, JCP = 43 Hz), 20.8 (s), 20.3 (d, JCP = 3 Hz), 20.0 (d, JCP = 44 Hz), 19.3 (d, JCP = 45 

Hz). 31P{1H} NMR (DMSO-d6): δ 30.8 (s). FT-IR: 3095 (w), 3010 (w), 2923 (m), 2455 

(w), 1630 (w), 1511 (w), 1409 (w), 1219 (w), 1101 (m), 998 (m), 918 (w), 810 (m), 753 

(s), 666 (w) cm−1. UV-vis (THF): λmax 287 nm (ε = 2,520 M–1 cm–1), 295 nm (ε = 1,600 M–

1 cm–1), 320 nm (ε = 680 M–1 cm–1), 434 nm (ε = 150 M–1 cm–1). Mass Spec. (ESI, +ve 
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mode): exact mass calculated for [C45H48
56FeP96Ru99Ru]+: 870.0978; exact mass found: 

870.1002; difference: +2.8 ppm. 

Phosphonium Chloride Salt 4.12d (3  Rc) 

From tertiary phosphine 4.11d (1.00 g, 1.24 mmol) and 4-

vinylbenzyl chloride (192 µL, 1.36 mmol, 1.1 eq). Yield = 

1.12 g, 94%. M.p. : 102‒104 °C. 1H NMR (DMSO-d6): δ 7.62 

(d, 3JHH = 8 Hz, 2H, aryl CH), 7.40 (dd, 3JHH = 8 Hz, 5JHP = 2 

Hz, 2H, aryl CH), 6.77 (dd, 3JHH,cis = 11 Hz, 3JHH,trans = 18 Hz, 

1H, ArCH=CH2), 5.90 (d, 3JHH,trans = 18 Hz, 1H, ArCH=CH2), 

5.31 (d, 3JHH,cis = 11 Hz, 1H, ArCH=CH2), 4.64 (pseudo-t, 3JHH = 2 Hz, 6H, β-C5H4R), 4.55 

(s, 15H, C5H5), 4.51 (pseudo-t, 3JHH = 2 Hz, 6H, α-C5H4R), 3.98 (d, 2JHP = 15 Hz, 2H, 

PCH2Ar), 2.27‒2.47 (m, 12H, C5H4CH2CH2 and C5H4CH2CH2). 
13C{1H} NMR (DMSO-

d6): δ 137.1 (d, JCP = 3 Hz), 135.9 (s), 130.3 (d, JCP = 5 Hz), 128.6 (d, JCP = 9 Hz), 127.0 

(s), 115.3 (s), 91.1 (d, JCP = 18 Hz), 70.6 (s), 70.5 (s), 69.8 (s), 25.4 (d, JCP = 44 Hz), 20.4 

(s), 20.0 (d, JCP = 45 Hz). 31P{1H} NMR (DMSO-d6): δ 30.8 (s). FT-IR: 3093 (w), 3010 

(w), 2919 (m), 2460 (w), 1670 (w), 1511 (w), 1409 (m), 1218 (w), 1100 (m), 997 (m), 917 

(w), 809 (s), 752 (s), 660 (w) cm−1. UV-vis (THF): λmax 287 nm (ε = 2,060 M–1 cm–1), 297 

nm (ε = 1,560 M–1 cm–1), 315 nm (ε = 890 M–1 cm–1). Mass Spec. (ESI, +ve mode): exact 

mass calculated for [C45H48
96Ru99Ru100RuP]+: 914.0671; exact mass found: 914.0678; 

difference: +0.8 ppm. 

Representative Procedure for the Preparation of Phosphonium Salts 

4.13ad 

Phosphonium Triflate Salt 4.13a (3  Fc) 

In a Schlenk flask, 4.12a (1.00 g, 1.22 mmol) was dissolved in 

dry and degassed CHCl3 (10 mL) before NaOTf (0.63 g, 3.6 

mmol, 3 equiv.) was charged into the reaction flask. The 

resulting mixture was stirred at 20 C for 16 h, gravity filtered 

to remove precipitate, washed with H2O (3 × 10 mL), dried 
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over MgSO4, and gravity filtered. NaOTf (0.21 g, 1.2 mmol, 1 equiv.) was once again 

charged into a flask containing the filtrate before the contents were stirred for an additional 

16 h. The reaction mixture was then gravity filtered to remove precipitate, washed with 

H2O (3 × 10 mL), dried over MgSO4, and gravity filtered before it was concentrated in 

vacuo. The resulting orange residue was then dried in vacuo for 2 h at 45 °C to remove 

residual solvent to afford monomer 4.13a as an orange solid. Yield = 1.12 g, 98%. M.p. : 

66‒68 °C. 1H NMR (DMSO-d6): δ 7.61 (d, 3JHH = 8 Hz, 2H, aryl CH), 7.44 (dd, 3JHH = 8 

Hz, 5JHP = 2 Hz, 2H, aryl CH), 6.76 (dd, 3JHH,cis = 11 Hz, 3JHH,trans = 18 Hz, 1H, ArCH=CH2), 

5.89 (d, 3JHH,trans = 18 Hz, 1H, ArCH=CH2), 5.29 (d, 3JHH,cis = 11 Hz, 1H, ArCH=CH2), 

4.19 (s, 6H, β-C5H4R), 4.14 (s, 15H, C5H5), 4.13 (s, 6H, α-C5H4R), 3.96 (d, 2JHP = 15 Hz, 

2H, PCH2Ar), 2.60‒2.42 (m, 12H, C5H4CH2CH2 and C5H4CH2CH2, overlaps with residual 

CD3CD2HSO signal). 13C{1H} NMR (DMSO-d6): δ 137.1 (d, JCP = 5 Hz), 135.9 (s), 130.4 

(d, JCP = 3 Hz), 128.6 (d, JCP = 9 Hz), 127.0 (s), 120.7 (q, JCF = 322 Hz), 115.2 (s), 86.8 (d, 

JCP = 18 Hz), 68.4 (s), 67.7 (s), 67.4 (s), 25.4 (d, JCP = 44 Hz), 20.8 (s), 19.2 (d, JCP = 45 

Hz). 19F NMR (DMSO-d6): δ −77.6 (s). 31P{1H} NMR (DMSO-d6): δ 31.2 (s). FT-IR: 3095 

(w), 3010 (w), 2913 (w), 1512 (w), 1410 (w), 1262 (s), 1157 (m), 1124 (w), 1105 (w), 1030 

(s), 1000 (w), 922 (w), 821 (m), 754 (m), 637 (s) cm−1. UV-vis (THF): λmax 285 nm (ε = 

2,470 M–1 cm–1), 295 nm (ε = 1,290 M–1 cm–1), 325 nm (ε = 260 M–1 cm–1), 436 nm (ε = 

320 M–1 cm–1). Mass Spec. (ESI, +ve mode): exact mass calculated for [C45H48
56Fe3P]+: 

787.1542; exact mass found: 787.1564; difference: +2.7 ppm. Anal. Calcd. (%) for 

C46H48F3Fe3O3PS: C, 59.00; H, 5.17. Found: C, 58.94; H, 5.37. 

Phosphonium Triflate Salt 4.13b (2  Fc, 1  Rc) 

From phosphonium chloride 4.12b (1.00 g, 1.15 mmol) and 

NaOTf (0.60 g, 3.5 mmol, 3 equiv. for the first metathesis 

reaction and 0.20 g, 1.2 mmol, 1 equiv. for the second 

metathesis reaction). Yield = 1.11 g, 98%. M.p. : 68‒70 °C. 1H 

NMR (DMSO-d6): δ 7.64 (d, 3JHH = 8 Hz, 2H, aryl CH), 7.44 

(d, 3JHH = 7 Hz, 2H, aryl CH), 6.78 (dd, 3JHH,cis = 11 Hz, 

3JHH,trans = 18 Hz, 1H, ArCH=CH2), 5.91(d, 3JHH,trans = 18 Hz, 

1H, ArCH=CH2), 5.31 (d, 3JHH,cis = 11 Hz, 1H, ArCH=CH2), 
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4.64 [s, 2H, β-C5H4R(Ru)], 4.56 [s, 5H, C5H5(Ru)], 4.52 [s, 2H, α-C5H5R(Ru)], 4.20 [s, 

4H, β-C5H4R(Fe)], 4.15 [s, 10H, C5H5(Fe)], 4.14 [s, 4H, α-C5H5R(Fe)], 3.96 (d, 2JHP = 15 

Hz, 2H, PCH2Ar), 2.57‒2.32 (m, 12H, C5H4CH2CH2 and C5H4CH2CH2, overlaps with 

residual CD3CD2HSO signal). 13C{1H} NMR (DMSO-d6): δ 137.2 (d, JCP = 3 Hz), 135.9 

(s), 130.4 (d, JCP = 6 Hz), 128.6 (d, JCP = 9 Hz), 127.1 (d, JCP = 2 Hz), 120.7 (q, JCF = 322 

Hz), 115.3 (d, JCP = 164 Hz), 91.2 (d, JCP = 18 Hz), 86.8 (d, JCP = 17 Hz), 70.6 (s), 70.5 (s), 

69.8 (s), 68.5 (s), 67.8 (s), 67.5 (s), 25.4 (d, JCP = 43 Hz), 20.9 (s), 20.3 (s), 20.1 (d, JCP = 

45 Hz), 19.3 (d, JCP = 45 Hz). 19F NMR (DMSO-d6): δ −77.8 (s). 31P{1H} NMR (DMSO-

d6): δ 31.0 (s). FT-IR: 3089 (w), 3011 (w), 2912 (w), 1630 (w), 1512 (w), 1410 (w), 1262 

(s), 1224 (m), 1158 (m), 1104 (w), 1030 (s), 999 (w), 919 (w), 813 (m), 755 (s), 637 (s) 

cm−1. UV-vis (THF): λmax 284 nm (ε = 2,860 M–1 cm–1), 295 nm (ε = 1,390 M–1 cm–1), 320 

nm (ε = 440 M–1 cm–1), 431 nm (ε = 240 M–1 cm–1). Mass Spec. (ESI, +ve mode): exact 

mass calculated for [C45H48
56Fe2P

96Ru]+: 827.1268; exact mass found: 827.1274; 

difference: +0.7 ppm. Anal. Calcd. (%) for C46H48F3Fe2O3PRuS: C, 56.28; H, 4.93. Found: 

C, 56.22; H, 5.11. 

Phosphonium Triflate Salt 4.13c (1  Fc, 2  Rc) 

From phosphonium chloride 4.12c (1.00 g, 1.10 mmol) and 

NaOTf (0.57 g, 3.3 mmol, 3 equiv. for the first metathesis 

reaction and 0.19 g, 1.1 mmol, 1 equiv. for the second 

metathesis reaction). Yield = 1.09 g, 97%. M.p. : 70‒72 °C. 

1H NMR (DMSO-d6): δ 7.64 (d, 3JHH = 8 Hz, 2H, aryl CH), 

7.42 (d, 3JHH = 8 Hz, 2H, aryl CH), 6.78 (dd, 3JHH,cis = 11 Hz, 

3JHH,trans = 18 Hz, 1H, ArCH=CH2), 5.92 (d, 3JHH,trans = 18 Hz, 

1H, ArCH=CH2), 5.32 (d, 3JHH,cis = 11 Hz, 1H, ArCH=CH2), 

4.65 [s, 4H, β-C5H4R(Ru)], 4.56 [s, 10H, C5H5(Ru)], 4.52 [s, 

4H, α-C5H5R(Ru)], 4.21 [s, 2H, β-C5H4R(Fe)], 4.16 [s, 5H, C5H5(Fe)], 4.15 [s, 2H, α-

C5H5R(Fe)], 3.96 (d, 2JHP = 15 Hz, 2H, PCH2Ar), 2.57‒2.21 (m, 12H, C5H4CH2CH2 and 

C5H4CH2CH2, overlaps with residual CD3CD2HSO signal). 13C{1H} NMR (DMSO-d6): δ 

137.1 (d, JCP = 3 Hz), 135.9 (s), 130.3 (d, JCP = 5 Hz), 128.5 (d, JCP = 8 Hz), 127.0 (d, JCP 

= 2 Hz), 115.2 (s), 91.0 (d, JCP = 18 Hz), 86.7 (d, JCP = 17 Hz), 70.6 (s), 70.4 (s), 69.7 (s), 
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68.4 (s), 67.6 (s), 67.4 (s), 25.3 (d, JCP = 44 Hz), 20.8 (s), 20.2 (s), 19.9 (d, JCP = 45 Hz), 

19.2 (d, JCP = 45 Hz). 19F NMR (DMSO-d6): δ −77.7 (s). 31P{1H} NMR (DMSO-d6): δ 

30.9 (s). FT-IR: 3093 (w), 3013 (w), 2911 (w), 1630 (w), 1512 (w), 1410 (w), 1262 (s), 

1224 (s), 1159 (s), 1101 (m), 1030 (s), 998 (w), 918 (w), 811 (m), 756 (s), 637 (s) cm−1. 

UV-vis (THF): λmax 283 nm (ε = 3,260 M–1 cm–1), 295 nm (ε = 1,770 M–1 cm–1), 320 nm 

(ε = 730 M–1 cm–1), 434 nm (ε = 140 M–1 cm–1). Mass Spec. (ESI, +ve mode): exact mass 

calculated for [C45H48
56FeP96Ru99Ru]+: 870.0978; exact mass found: 870.1000; difference: 

+2.5 ppm. Anal. Calcd. (%) for C46H48F3FeO3PRu2S: C, 53.80; H, 4.71. Found: C, 53.94; 

H, 4.77. 

Phosphonium Triflate Salt 4.13d (3  Rc) 

From phosphonium chloride 4.12d (1.00 g, 1.04 mmol) and 

NaOTf (0.54 g, 3.1 mmol, 3 equiv. for the first metathesis 

reaction and 0.18 g, 1.1 mmol, 1 equiv. for the second 

metathesis reaction). Yield = 1.07 g, 96%. M.p. : 88‒90 °C. 

1H NMR (DMSO-d6): δ 7.62 (d, 3JHH = 8 Hz, 2H, aryl CH), 

7.38 (dd, 3JHH = 8 Hz, 5JHP = 2 Hz, 2H, aryl CH), 6.78 (dd, 

3JHH,cis = 11 Hz, 3JHH,trans = 18 Hz, 1H, ArCH=CH2), 5.92 (d, 3JHH,trans = 18 Hz, 1H, 

ArCH=CH2), 5.32 (d, 3JHH,cis = 11 Hz, 1H, ArCH=CH2), 4.64 (pseudo-t, 3JHH = 2 Hz, 6H, 

β-C5H4R), 4.56 (s, 15H, C5H5), 4.52 (pseudo-t, 3JHH = 2 Hz, 6H, α-C5H4R), 3.94 (d, 2JHP = 

15 Hz, 2H, PCH2Ar), 2.49‒2.25 (m, 12H, C5H4CH2CH2 and C5H4CH2CH2). 
13C{1H} NMR 

(DMSO-d6): δ 137.1 (s), 135.8 (s), 130.3 (s), 128.5 (d, JCP = 8 Hz), 127.0 (s), 120.6 (q, JCF 

= 321 Hz), 115.2 (s), 91.0 (d, JCP = 17 Hz), 70.6 (s), 70.4 (s), 69.7 (s), 25.3 (d, JCP = 44 Hz), 

20.3 (s), 20.0 (d, JCP = 45 Hz). 19F NMR (DMSO-d6): δ −77.7 (s). 31P{1H} NMR (DMSO-

d6): δ 30.8 (s). FT-IR: 3094 (w), 3013 (w), 2911 (w), 1630 (w), 1512 (w), 1409 (w), 1261 

(s), 1159 (m), 1101 (w), 1030 (s), 997 (w), 917 (w), 810 (m), 755 (s), 637 (s) cm−1. UV-

vis (THF): λmax 286 nm (ε = 1,970 M–1 cm–1), 296 nm (ε = 1,510 M–1 cm–1), 315 nm (ε = 

910 M–1 cm–1). Mass Spec. (ESI, +ve mode): exact mass calculated for 

[C45H48
96Ru99Ru100RuP]+: 914.0671; exact mass found: 914.0664; difference: –0.8 ppm. 

Anal. Calcd. (%) for C46H48F3O3PRu3S: C, 51.53; H, 4.51. Found: C, 51.84; H, 4.62. 
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Representative Procedure for the Preparation of Polyelectrolytes 

4.14ad 

Polyelectrolyte 4.14a (3  Fc) 

In a grease-free Schlenk flask, monomer 4.13a (0.25 g, 

0.27 mmol) was dissolved in 1.00 mL of a THF stock 

solution containing AIBN (0.2 mg, 0.001 mmol). The 

resulting solution was degassed during 3 freeze-pump-

thaw cycles before the flask was sealed and the solution 

was stirred at 85 C for 16 h. After cooling to room 

temperature, the polymerization mixture was poured into diethyl ether and the solids were 

separated by centrifugation before they were collected, dissolved in a minimum amount of 

CH2Cl2, and precipitated in Et2O. This precipitation/centrifugation process was repeated 

once more in Et2O and pentane. The polyelectrolyte 4.14a was dried in vacuo at 50 C for 

16 h to yield a yellow powder. Yield = 0.25 g, 98%. 1H NMR (DMSO-d6, 125 °C): δ 6.94 

(s, br, 2H, aryl CH), 6.19 (s, br, 2H, aryl CH), 4.17 (s, br, 27H, α-C5H4R, β-C5H4R, and 

C5H5), 3.77 (s, br, 2H, PCH2Ar), 2.61 (s, br, 6H, C5H4CH2CH2), 2.45 (s, br, 6H, 

C5H4CH2CH2, overlaps with residual CD3CD2HSO signal), 1.96 (s, 1H, br, ArCHCH2), 

and 1.32 (s, br, 2H, ArCHCH2). 
19F NMR (DMSO-d6, 125 °C): δ −77.1 (s). 31P{1H} NMR 

(DMSO-d6, 125 °C): δ 31.1 (s). FT-IR: 3094 (w), 2949 (w), 2919 (w), 1510 (w), 1410 (w), 

1261 (s), 1159 (m), 1105 (w), 1030 (s), 1001 (w), 822 (m), 756 (s), 637 (s) cm−1. UV-vis 

(THF): λmax 325 nm (ε = 260 M–1 cm–1), 436 nm (ε = 330 M–1 cm–1). GPC (DMF, 0.02 M 

[n-Bu4N][OTf], 60 ºC, conventional calibration vs. PS standards): Mn = 46,900 g mol−1, 

Mw = 148,000 g mol−1, Đ = 3.16. 
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Polyelectrolyte 4.14b (2  Fc, 1  Rc) 

From monomer 4.13b (0.25 g, 0.26 mmol) and AIBN (0.2 

mg, 0.001 mmol). Yield = 0.24 g, 96%. 1H NMR (DMSO-d6, 

125 °C): δ 6.94 (s, br, 2H, aryl CH), 6.21 (s, br, 2H, aryl CH), 

4.63 [s, br, 2H, β-C5H4R(Ru)], 4.56 [s, br, 7H, C5H5(Ru) and 

α-C5H5R(Ru)], 4.17 [s, br, 18H, α-C5H4R(Fe), β-C5H4R(Fe), 

and C5H5(Fe)], 3.75 (s, br, 2H, PCH2Ar), 2.61 (s, br, 6H, 

C5H4CH2CH2), 2.42 (s, br, 6H, C5H4CH2CH2, overlaps with 

residual CD3CD2HSO signal), 1.96 (s, br, 1H, ArCHCH2), 

and 1.34 (s, br, 2H, ArCHCH2). 
19F NMR (DMSO-d6, 125 

°C): δ −76.3 (s). 31P{1H} NMR (DMSO-d6, 125 °C): δ 30.9 (s). FT-IR: 3093 (w), 3013 

(w), 2916 (w), 1510 (w), 1410 (w), 1260 (m), 1221 (m), 1105 (w), 1030 (s), 1000 (w), 814 

(w), 772 (s), 637 (m) cm−1. UV-vis (THF): λmax 320 nm (ε = 440 M–1 cm–1), 431 nm (ε = 

230 M–1 cm–1). GPC (DMF, 0.02 M [n-Bu4N][OTf], 60 ºC, conventional calibration vs. PS 

standards): Mn = 45,100 g mol−1, Mw = 184,900 g mol−1, Đ = 4.10. 

Polyelectrolyte 4.14c (1  Fc, 2  Rc) 

From monomer 4.13c (0.25 g, 0.24 mmol) and AIBN (0.2 

mg, 0.001 mmol). Yield = 0.24 g, 97%. 1H NMR (DMSO-

d6, 125 °C): δ 6.97 (s, br, 2H, aryl CH), 6.21 (s, br, 2H, aryl 

CH), 4.63 [s, br, 4H, β-C5H4R(Ru)], 4.56 [s, br, 14H, 

C5H5(Ru) and α-C5H5R(Ru)], 4.17 [s, br, 9H, α-C5H4R(Fe), 

β-C5H4R(Fe), and C5H5(Fe)], 3.78 (s, br, 2H, PCH2Ar), 2.62 

(s, br, 6H, C5H4CH2CH2), 2.42 (s, br, 6H, C5H4CH2CH2, 

overlaps with residual CD3CD2HSO signal), 1.90 (s, br, 1H, 

ArCHCH2), and 1.34 (s, br, 2H, ArCHCH2). 
19F NMR 

(DMSO-d6, 125 °C): δ −76.3 (s). 31P{1H} NMR (DMSO-d6, 125 °C): δ 30.8 (s). FT-IR: 

3095 (w), 3014 (w), 2916 (w), 1510 (w), 1410 (w), 1260 (m), 1224 (m), 1101 (w), 1030 

(s), 999 (w), 811 (m), 756 (s), 637 (s) cm−1. UV-vis (THF): λmax 320 nm (ε = 620 M–1 cm–
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1), 434 nm (ε = 150 M–1 cm–1). GPC (DMF, 0.02 M [n-Bu4N][OTf], 60 ºC, conventional 

calibration vs. PS standards): Mn = 69,100 g mol−1, Mw = 278,100 g mol−1, Đ = 4.02. 

Polyelectrolyte 4.14d (3  Rc) 

From monomer 4.13d (0.25 g, 0.23 mmol) and AIBN (0.2 

mg, 0.001 mmol). Yield = 0.24 g, 97%. 1H NMR (DMSO-

d6, 125 °C): δ 6.98 (s, br, 2H, aryl CH), 6.26 (s, br, 2H, aryl 

CH), 4.63 (s, br, 6H, β-C5H4R), 4.56 (s, br, 21H, C5H5, and 

α-C5H5R), 3.80 (s, br, 2H, PCH2Ar), 2.43 (s, br, 12H, 

C5H4CH2CH2 and C5H4CH2CH2), 1.85 (s, br, 1H, 

ArCHCH2), and 1.37 (s, br, 2H, ArCHCH2). 
19F NMR (DMSO-d6, 125 °C): δ −76.5 (s). 

31P{1H} NMR (DMSO-d6, 125 °C): δ 30.8 (s). FT-IR: 3095 (w), 3013 (w), 2914 (w), 1510 

(w), 1409 (w), 1261 (s), 1224 (m), 1160 (m), 1101 (m), 1030 (s), 997 (w), 810 (m), 755 

(m), and 637 (s) cm−1. UV-vis (THF): λmax 315 nm (ε = 870 M–1 cm–1). GPC (DMF, 0.02 

M [n-Bu4N][OTf], 60 ºC, conventional calibration vs. PS standards): Mn = 38,650 g mol−1, 

Mw = 143,450 g mol−1, Đ = 3.71. 
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Chapter 5  

5 An Organometallic Polymer with Three Different Metals 
per Repeating Unit 

 

5.1 Introduction 

Processable metal-containing polymers (MCPs)1-10 have received great attention due to 

their potential applications in various fields as a result of their magnetic,11-12 catalytic,13-14 

stimuli-responsive,15-16 luminescent,17 biomedical,18 and conductive materials.19-20 Most 

MCPs contain a single metal, although heterobimetallic MCPs have been reported. The 

fact that heterobimetallic polymers can take advantage of unique properties of more than 

one type of transition metal has been the driving force for the investigation for new 

strategies for their synthesis. For example, the copolymerization of monomers that carry 

different transition metals is a method which can afford heterobimetallic polymers.21-30 

Tew and co-workers followed this strategy and synthesized cobalt-rich and iron-rich 

monomers and performed ring-opening metathesis polymerization (ROMP) to prepare a 

heterobimetallic random copolymer 5.1.25 

Although gaining full conversion via post-polymerization functionalization reactions is 

generally a challenge, the addition of transition metals to the repeating units of homometallic 

polymers is a method that has also been exploited for the generation of heterometallic 

polymers.31-37 In this regard, the Manners group utilized a strained sila[1]ferrocenophane for 

the synthesis of a homometallic polyferrocenylsilane (PFS)38 containing alkyne groups in each 

repeating unit. Then, they reacted the alkyne groups with Co2(CO)8, [NiCp(CO)2]2, and 

[MoCp(CO)2]2 to prepare heterobimetallic polymers 5.2.31-34  

The synthesis and polymerization of heterometallic monomers is another strategy that has 

yielded heterometallic polymers with controlled metal content. However, examples of such 

monomers are rare.39-40 For instance, the Manners group synthesized a sila[1]ferrocenophane 

[{Fe(η-C5H4)2}SiMe(η-C5H4)Ru(η-C5H5)] and performed a photocontrolled ring-opening 

polymerization (ROP) to generate a monodisperse PFS with pendant ruthenocenyl groups 5.3. 



133 

 

Recently, our group introduced a synthetic strategy regarding the use of metal-containing 

tertiary phosphines as precursors to highly metallized homometallic41-42 and heterobimetallic 

phosphonium polyelectrolytes with precisely controlled Fe/Ru ratios 5.4. This methodology 

exploited the reactivity of P-H bonds for the installation of a polymerizable group.  

 

Even though, in the past few decades, the field of MCPs has witnessed great advances, to 

the best of our knowledge, the synthesis of a heterotrimetallic polymers has not been 

reported. Hence, we set out to prepare a heterobimetallic polymer based on phosphines and 

investigated its conversion to a heterotrimetallic polymer via a post-polymerization 

coordination reaction.  

5.2 Results and Discussion 

5.2.1 Synthesis and NMR Spectroscopy 

The exceptional air-stability of secondary phosphine 5.5 prompted us to use it as a 

heterobimetallic precursor, which was synthesized according to a literature procedure.43 In 

the presence of a catalytic amount of azobisisobutyronitrile (AIBN) and excess 3-buten-1-

ol, 5.5 was fully converted to tertiary phosphine alcohol 5.6, which was conveniently 
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purified by column chromatography in air. The observation of tertiary phosphine alcohol 

5.6 as a single product implies that the radical intermediate (RR′PCH2CH•CH2CH2OH), 

which was produced from the reaction of phosphine radical (RR′P•) with 3-buten-1-ol, 

prefers to acquire a hydrogen radical and generate tertiary phosphine alcohol 5.6 rather 

than attacking another olefin to pursue oligomerization/polymerization routes (Scheme 

5.1).44-45  

 

Scheme 5.1. Suggested mechanism for the synthesis of 5.6. 

To install a styrene group, N,N'-dicyclohexylcarbodiimide (DCC) coupling was selected 

due its high efficiency and mild experimental conditions (Scheme 5.2). In the absence of 

external heat/light sources and under N2, a slight excess of 4-vinylbenzoic acid, DCC, and 

4-dimethylaminopyridine (DMAP) were briefly stirred, and later combined with tertiary 

phosphine alcohol 5.6 to produce tertiary phosphine monomer 5.7, which was isolated in 

94% yield. The free-radical polymerization of monomer 5.7 afforded tertiary phosphine 

polymer 5.8, which was simply purified by consecutive precipitation in Et2O from THF. 

Contrary to tertiary phosphine sulfide polymers, GPC analysis of tertiary phosphine 

polymers is problematic.46 Hence, the phosphorous centres in tertiary phosphine polymer 

5.8 were sulfurized in the presence of S8 and purified by successive precipitation in Et2O 

from THF, and dried overnight at 60 °C to afford tertiary phosphine sulfide polymer 5.8•S, 

which was analyzed by GPC to calculate the number average molecular weight of tertiary 

phosphine polymer 5.8. 
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The UV light irradiation of a solution of tungsten hexacarbonyl in THF generated the 

W(CO)5•THF adduct, which was combined with a THF solution of tertiary phosphine 

polymer 5.8 in order to produce heterotrimetallic coordinated-tertiary phosphine polymer 

5.8•W(CO)5 (Scheme 5.2). Characterization data gathered from methods including 1H, 

13C, and 31P NMR spectroscopy, cyclic voltammetry, FT-IR and UV-vis absorption 

spectroscopy, mass spectrometry, and elemental analysis confirmed the proposed structure 

and purity of compounds 5.6–5.8, 5.8•S, and 5.8•W(CO)5 (Figures A5.1– A5.16, and Table 

5.2). 

 

Scheme 5.2. Synthetic pathway for the preparation of heterotrimetallic polymer 5.8•W(CO)5. 

Complete conversion of secondary phosphine 5.5 to tertiary phosphine alcohol 5.6 was 

confirmed by 31P{1H} NMR spectroscopy, as the starting material peak (δ: –68.8) 

disappeared and a downfield-shifted singlet (δ: –28.8) for tertiary phosphine alcohol 5.6 

was observed (Figures A5.3 and A5.4). The presence of the butanol substituent also 

confirmed by 1H NMR spectroscopy, where the butyl linker gave rise to signals which were 

overlapped by ethyl linker signals (δ: 3.71–1.39) (Figure A5.1). Tertiary phosphine 

monomer 5.7 appeared as a sharp singlet (δ: –29.0) in its 31P{1H} NMR spectrum and 

demonstrated two aromatic multiplets (δ: 8.05–7.42) and three diagnostic vinylic 

resonances (δ: 6.76, 5.87, and 5.39), in addition to ethyl and butyl linker and metallocene 
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signals (Figure A5.5, A5.7, and A5.8). Upon polymerization, the vinylic signals 

disappeared in the 1H NMR spectrum of tertiary phosphine polymer 5.8 and the polymer 

backbone protons gave rise to two broad signals that were coincident with the aliphatic 

linker signals (δ: 1.80–0.85) (Figure A5.9). Furthermore, tertiary phosphine polymer 5.8 

appeared as a singlet (δ: ca. –29.2) in the 31P NMR spectrum. This shows that the phosphine 

centres remained intact during the synthesis and purification steps (Figure A5.10). 

Coordination to W(CO)5 deshielded the phosphorous centres and gave rise to a singlet (δ: 

–6.1) accompanied by two satellite peaks, which appeared due to the coupling of the 

phosphorous centres with 183W (natural abundance of 183W = 14.3%;47 1JPW = 233 Hz) 

(Figure 5.1). In the 1H NMR spectrum, coordinated-tertiary phosphine polymer 

5.8•W(CO)5 exhibited resonances attributed to monosubstituted ferrocene and 

ruthenocene (δ: 4.78–3.75), ethyl and butyl linkers (δ: 4.39–1.44), and aromatic group 

multiplets (δ: 8.05–5.93). The polymer backbone protons in 5.8•W(CO)5 gave rise to two 

broad signals which were partially overlapped by aliphatic linker signals (Figure A5.13). 

 

Figure 5.1. 31P{1H} NMR spectra of tertiary phosphine polymer 5.8 (black) and coordinated-

tertiary phosphine polymer 5.8•W(CO)5 (red) recorded in CDCl3. 

5.2.2 FT-IR Spectroscopy  

Comparison of the FT-IR spectra recorded for tertiary phosphine polymer 5.8 and 

coordinated-tertiary phosphine polymer 5.8•W(CO)5 revealed that, aside from the 

observation of three absorption bands (2066, 1974, and 1909 cm–1) from W(CO)5, the IR 
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spectra of tertiary phosphine polymer 5.8 and coordinated-tertiary phosphine polymer 

5.8•W(CO)5 match very well, further confirming that the polymer backbone remained 

intact during the post-polymerization reaction. The three diagnostic CO stretches observed 

in the FT-IR absorption spectrum of coordinated-tertiary phosphine polymer 5.8•W(CO)5 

were assigned based on theory proposed by Orgel48 and Cotton49 (Figure 5.2). The 

observed A1cis and A1trans stretching frequencies were very similar to those reported for 

complex 5.9.50 This implies that the σ donating ability of the phosphorous centres and the 

extent of π backbonding to CO ligands in coordinated-tertiary phosphine polymer 

5.8•W(CO)5 are similar to those of 5.9. In addition, the observation of equal 1JPW coupling 

constants for coordinated-tertiary phosphine polymer 5.8•W(CO)5 and 5.9 further supports 

the idea that the coordination behavior of phosphorous centres in 5.8•W(CO)5 and 5.9 are 

similar because the strength of P-W bond is directly correlated with phosphorous-tungsten 

NMR coupling constants.51 

 

Figure 5.2. FT-IR spectra of tertiary phosphine polymer 5.8 (black) and coordinated-tertiary 

phosphine polymer 5.8•W(CO)5 (red). 

 

5.2.3 UV-vis Absorption Spectroscopy and Cyclic Voltammetry 

The electronic structure of compounds 5.6–5.8 and 5.8•W(CO)5 were studied by UV-vis 

absorption spectroscopy in CH2Cl2. The recorded spectra revealed two absorption maxima 
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(λmax: 322 and 440 nm) indicative of the presence of ferrocene and ruthenocene and were 

consistent with those recorded for related compounds (Figure A5.14, and Table 5.1).43, 50  

The electrochemical properties of secondary phosphine 5.5 has been described (E1/2, Fc = 0, 

and Epa, Rc = 440 mV).43 The electrochemical behavior of 5.6–5.8, and 5.8•W(CO)5 were 

studied for THF solutions of the analytes in the presence of [n-Bu4N][OTf] salt as 

supporting electrolyte. Cyclic voltammograms of 5.6–5.8 were comprised of three features 

(Figures 5.3, A5.15, and A5.16). A one-electron redox wave at –15 mV, which was slightly 

more negative compared to that of secondary phosphine 5.5, corresponded to the reversible 

oxidation of ferrocene. The fact that these ferrocene moieties exhibited more negative 

potentials implies that the butyl substituents in 5.6–5.8 electronically enriched the 

phosphorous centres and ferrocene moieties. The second feature was attributed to the 

irreversible one-electron oxidation of ruthenocene (ca. 400 mV). This behavior was in 

accordance with reports describing electrochemical properties of ruthenocene, which can 

be oxidized to ruthenocenium cation and subsequently undergo a medium-related 

decomposition, dimerization, disproportion, bond activation, and/or ion scavenging 

processes.40, 52-56 The third feature was a prewave (ca. –150 mV), which was observed due 

to the adsorption/oxidation of the analytes on the surface of electrodes. Such behavior has 

been reported for several phosphines and it is likely that the lone pair of electrons on 

phosphorous promotes the adsorption.43, 57-58 However, such an oxidation event was not 

observed for coordinated-tertiary phosphine polymer 5.8•W(CO)5, due to the engagement 

of the electron pair of phosphorous centres in the P-W bond. The ferrocene units in 

coordinated-tertiary phosphine polymer 5.8•W(CO)5 gave rise to a reversible one-electron 

oxidation wave at slightly more positive potential (0 mV) compared to those of recorded 

for 5.6–5.8. This indicates that the coordination of phosphorous to W(CO)5 inductively 

affected the ferrocene moieties and made them relatively electron poor and harder to 

oxidize. Similar to 5.6–5.8, the ruthenocene groups in coordinated-tertiary phosphine 

polymer 5.8•W(CO)5 gave rise to an irreversible oxidation half-wave (350 mV). In 

addition, the oxidation of W0 to W+1 in W(CO)5 complexes appeared as an irreversible one-

electron oxidation half-wave at 750 mV in cyclic voltammogram of coordinated-tertiary 

phosphine polymer 5.8•W(CO)5. The latter electrochemical feature is consistent with 
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reports of the electrochemical properties of tungsten carbonyl metal complexes and further 

confirms the presence of W(CO)5 in the structure of 5.8•W(CO)5.59 

 

Figure 5.3. Cyclic voltammograms of tertiary phosphine polymer 5.8 (black) and coordinated-

tertiary phosphine polymer 5.8•W(CO)5 (red) recorded at 250 mV s‒1 in solutions of THF 

containing 0.1 M [n-Bu4N][OTf] as supporting electrolyte. 

Table 5.1. Selected characterization data for compounds 5.65.10. 

aAnodic potential of prewave is reported in the bracket. bIrreversible process; anodic peak potential 

reported. 

5.2.4 Gel Permeation Chromatography and Thermal Analysis 

The molecular weights and molecular weight distribution of tertiary phosphine polymer 

5.8 calculated from values recorded by GPC of the corresponding tertiary phosphine sulfide 

polymer 5.8•S. The observation of a GPC trace with a shoulder at low molecular weight 

suggested that the growing chains stopped after reaching a certain size perhaps due to 

precipitation or high-molecular polymer chains were filtered out during the GPC sample 

preparation (Table 5.2). Coordinated-tertiary phosphine polymer 5.8•W(CO)5 

demonstrated a limited solubility in common GPC eluents and, even after 24 h stirring in 

THF, appeared as an orange solution containing some particulates. However, after 

filtration, the solution passed the GPC column without a problem. It is likely that 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Potential (V vs Ferrocene Ferrocenium)

30 µA

Compound 31P NMR (δ) , 322 nm (M– 1 cm– 1) , 440 nm (M– 1 cm– 1) E1/2, Fc
 (mV) Epa, Rc

b (mV) Epa,W
b (mV) 

5.6 –28.8 300 100 –15 (–120)a 440 - 

5.7 –29.0 300 100 –15 (–150)a 390 - 

5.8 –29.2 300 100 –15 (–150)a 400 - 

5.8•W(CO)5 –6.1 450 100 0 350 750 
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coordination of the phosphorous centres prevented the strong interaction of the 

phosphorous centres with the GPC column material. The GPC trace of 5.8•W(CO)5 

appeared as a peak with an extremely broad feature toward high molecular weight 

direction. Since the characterization of coordinated-tertiary phosphine polymer 

5.8•W(CO)5 by other methods confirmed its suggested structure, we postulate that the 

W(CO)5 moieties caused 5.8•W(CO)5 molecules to self-aggregate in solution and lead to 

a broad distribution in its recorded GPC (Figure 5.4). 

 

 

Figure 5.4. GPC traces recorded for polymers 5.8•S (grey) and 5.8•W(CO)5 (red) in THF. The 

limits used to estimate the molecular weights relative to monodisperse polystyrene standards are 

shown as black bars and the signal attributed to aggregates of 5.8•W(CO)5 in solution is shown in 

the dashed box. 

 

The macromolecular nature of tertiary phosphine polymer 5.8 and coordinated-tertiary 

phosphine polymer 5.8•W(CO)5 were further confirmed by the observation of glass 

transition temperatures (Tg) in thermograms recorded by differential scanning calorimetry 

(DSC). Coordinated-tertiary phosphine polymer 5.8•W(CO)5 revealed a relatively higher 

Tg compared to that of 5.8. This indicated that intramolecular interactions of polymer 

chains in 5.8•W(CO)5 are stronger than that of 5.8 and supports our interpretation of the 

GPC data. 
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Figure 5.5. a) DSC thermograms of tertiary phosphine polymer 5.8 (black) and coordinated-tertiary 

phosphine polymer 5.8•W(CO)5 (red) recorded at a scan rate of 10 ºC min‒1 and b) TGA data 

obtained for tertiary phosphine polymer 5.8 (black) and coordinated-tertiary phosphine polymer 

5.8•W(CO)5 (red). 

Thermogravimetric analysis (TGA) of tertiary phosphine polymer 5.8 and coordinated-

tertiary phosphine polymer 5.8•W(CO)5 showed they are stable up to a temperature of 220 

°C. Comparison of the char yields with the metal content of the starting polymers (22.2% 

and 32.0% for 5.8 and 5.8•W(CO)5, respectively) suggests that the thermal degradation of 

these MCPs under an active flow of N2 may have involved the loss of organic fractions. 

Table 5.2. Selected characterization data for compounds tertiary phosphine polymer 5.8 and 
coordinated-tertiary phosphine polymer 5.8•W(CO)5. 

Compound Mn
 (g mol−1) Mw

 (g mol−1) Ð Tg (°C) Char Yield (%) Polymer Metal Content (Mass %) 

5.8 9,300a 13,600a 1.46a 52 24.0 22.2 

5.8•W(CO)5 11,600 28,000 2.41 92 32.1 32.0 
aCalculated from the GPC data recorded for the corresponding sulfurized polymer 5.8•S. 

5.3 Conclusions 

We have synthesized a heterobimetallic tertiary phosphine polymer and showed that all of 

its phosphorus centres are available for further chemistry. As an example, we reacted it 

with W(CO)5•THF to synthesize the first example of a heterotrimetallic polymer. The 

structure and purity of the compounds synthesized were confirmed by methods such as 

multinuclear NMR, FT-IR, and UV-vis absorption spectroscopy, and elemental analysis. 

The presence of electroactive groups, including ferrocene, ruthenocene, and tungsten in the 

structure of the synthesized materials was confirmed by cyclic voltammetry wherein they 

gave rise to waves/half-waves consistent with those reported for related compounds. The 

macromolecular nature of coordinated-tertiary phosphine polymer/tertiary phosphine 
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polymer was confirmed by NMR spectroscopy, GPC, and the observation of glass 

transition temperature during DSC studies. The complete coordination of all phosphorous 

centres in the tertiary phosphine polymer to W(CO)5 was confirmed by the observation of 

a downfield chemical shift in 31P NMR spectrum and disappearance of phosphine signals. 

This conclusion was further supported by FT-IR studies, where the coordinated-tertiary 

phosphine polymer gave rise to three diagnostic absorption bands due to CO stretching 

from W(CO)5 moieties. Thermal degradation of heterobimetallic tertiary phosphine 

polymer and heterotrimetallic coordinated-tertiary phosphine polymer resulted in the 

observation of char yields that were in close agreement with metal content of the 

corresponding polymers. We believe that our results have opened a new door to the design 

and synthesis of heterometallic materials and our future work will focus expanding the 

range of heterotrimetallic polymers known. 

5.4 Experimental Section 

5.4.1 General Considerations 

Reactions and manipulations were carried out under a N2 atmosphere using standard glove 

box or Schlenk techniques unless otherwise stated. Solvents were obtained from Caledon 

Laboratories and Fischer Scientific, dried using an Innovative Technologies Inc. solvent 

purification system, collected under vacuum, and stored under a nitrogen atmosphere over 

4 Å molecular sieves. Reagents were purchased from Sigma-Aldrich or Alfa Aesar and 

used as received, aside from W(CO)6, which was sublimed at 50 °C under vacuum and 

stored under N2. Secondary phosphine 5.5 was synthesized according to a reported 

protocol.43 UV irradiation experiments were conducted using a custom built UV light 

source equipped with four high intensity light emitting diodes (LEDs) with irradiation peak 

centered at 350 nm. 1H, 13C{1H}, and 31P NMR spectra were recorded on a 600 MHz (1H: 

599.5 MHz, 13C{1H}: 150.8 MHz, 19F: 563.9 MHz and 31P: 242.6 MHz) Varian INOVA 

instrument. 1H NMR spectra were referenced to residual CHCl3 (7.27 ppm) and 13C{1H} 

NMR spectra were referenced to CDCl3 (77.0 ppm). gHSQCAD NMR spectra were used 

to support 13C{1H} NMR spectral assignments. Mass spectrometry data were recorded in 

positive-ion mode and using a high resolution Finnigan MAT 8400 or Micromass LCT 

electrospray ionization time-of-flight mass spectrometer. UV-vis absorption spectra were 
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recorded using a Cary 300 Scan instrument. FT-IR spectra were recorded using a 

PerkinElmer Spectrum Two FTIR spectrometer with an attenuated total reflectance (ATR) 

attachment and a single reflection diamond. 

5.4.2 Cyclic Voltammetry 

Cyclic voltammograms were collected using a Bioanalytical Systems Inc. (BASi) Epsilon 

potentiostat and analyzed using BASi Epsilon software. Typical electrochemical cells 

consisted of a three-electrode setup including a glassy carbon working electrode, platinum 

wire counter electrode, and silver wire pseudo-reference electrode. In a glovebox and away 

from light, 1 mM solutions of the analytes in dry and degassed THF were prepared and 

stirred overnight, before they were combined with supporting electrolyte (0.1 M [n-

Bu4N][OTf]) and run at a scan rate of 250 mV s1. Cyclic voltammograms were referenced 

relative to a decamethylferrocene internal standard (1 mM, ‒385 mV relative to 

ferrocene/ferrocenium under identical conditions) and corrected for internal cell resistance 

using the BASi Epsilon software. 

5.4.3 Gel Permeation Chromatography 

Polymer 5.8•S and 5.8•W(CO)5 were combined with chromatography-grade THF (5 mg 

mL-1) and stirred for 24 h and filtered (Nylon membrane, 0.2 μm) before the gel permeation 

chromatography (GPC) experiments were conducted for the soluble portion using a 

Viscotek GPCmax VE 2001 GPC instrument equipped with an Agilent PolyPore guard 

column (PL1113-1500) and two sequential Agilent PolyPore GPC columns packed with 

porous poly(styrene-co-divinylbenzene) particles (MW range: 200–2,000,000 g mol−1; 

PL1113-6500) regulated at a temperature of 30 °C. Signal responses were measured using 

a Viscotek VE 3580 RI detector, and molecular weights were determined by comparison 

of the maximum RI response with a calibration curve (10 points, 1500–786,000 g mol−1) 

established using monodisperse polystyrene standards purchased from Viscotek. 

5.4.4 Thermal Analysis 

Thermal degradation studies were performed using a TA Instruments Q50 TGA instrument 

under an atmosphere of N2. Samples were placed in a platinum pan and heated at a rate of 
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10 °C min–1 from 20 ºC to 1000 °C under a flow of N2 (60 mL min–1). Glass transition 

temperatures were determined under an atmosphere of N2 using differential scanning 

calorimetry (DSC) on a TA Instruments DSC Q20. The polymer samples were placed in 

an aluminum Tzero pan and heated from room temperature to the maximum temperature 

[200 °C for 5.8 and 180 °C for 5.8•W(CO)5] at 10 °C min–1 under a flow of N2                      

(50 mL min–1) and cooled to –70 °C at 5 °C min–1, before they underwent two more 

heat/cool cycles. The Tgs were determined from the second heat/cool cycle. 

Preparation of Tertiary Phosphine 5.6 (1  Fc, 1  Rc) 

In a sealed tube, secondary phosphine 5.5 (1.00 g, 1.99 

mmol), 3-buten-1-ol (500 µL, 5.81 mmol, 2.9 equiv.), and 

AIBN (21 mg, 0.13 mmol, 0.065 equiv.) were combined with 

THF (5 mL) before the mixture was heated with stirring for 

24 h at 75 C. After cooling to room temperature, the resulting 

orange solution was concentrated in vacuo, dissolved in a minimum amount of CH2Cl2 and 

transferred to a silica/hexanes column (1” × 6”). Using N2 pressure and a 5:1 hexanes:Et2O 

solvent mixture as eluent, tertiary phosphine 5.6 (Rf = 0.22) was isolated from the column. 

The solution containing 5.6 was concentrated in vacuo to yield an orange solid that was 

dried overnight in vacuo at 80 ºC in the presence of P2O5. Yield = 1.06 g, 93%. M.p. 64‒

66 °C. 1H NMR: δ 4.54 [s, 2H, β-C5H4R(Ru)], 4.53 [s, 5H, C5H5(Ru)], 4.46 [s, 2H, α-

C5H4R(Ru)], 4.12 [s, 5H, C5H5(Fe)], 4.10 [s, 2H, β-C5H4R(Fe)], 4.07 [s, 2H, α-C5H4R(Fe)], 

3.68 (t, 2H, 3JHH = 7 Hz, 2H, CH2OH), 2.46 [m, 2H, (Fe)C5H4CH2CH2], 2.32 [m, 2H, 

(Ru)C5H4CH2CH2], 1.68 (m, 2H, CH2CH2OH), 1.64 [m, 2H, (Fe)C5H4CH2], 1.59 [m, 2H, 

(Ru)C5H4CH2], 1.39‒1.47 (m, 2H, CH2CH2CH2OH). 13C{1H} NMR: δ 93.9 [d, 3JCP = 13 

Hz, ipso-C5H4R(Ru)], 89.8 (d, 3JCP = 13 Hz, ipso-C5H4R(Fe)], 70.5 [s, β-C5H4R(Ru)], 70.4 

[s, C5H5(Ru)], 69.4 [s, α-C5H5R(Ru)], 68.5 [s, C5H5(Fe)], 67.8 [s, β-C5H4R(Fe)], 67.2 [s, 

α-C5H5R(Fe)], 62.4 (s, CH2OH), 34.3 (d, 3JCP = 10 Hz, CH2CH2OH), 28.9 [d, 3JCP = 13 

Hz, (Ru)C5H4CH2], 28.4 [d, 3JCP = 13 Hz, (Fe)C5H4CH2], 26.8 (d, 2JCP = 13 Hz, 

CH2CH2CH2OH), 26.0 [d, 2JCP = 16 Hz, (Fe)C5H4CH2CH2], 25.5 [d, 2JCP = 15 Hz, 

(Ru)C5H4CH2CH2], 22.2 (d, 1JCP = 13 Hz, CH2CH2CH2CH2OH). 31P{1H} NMR: δ ‒28.8 

(s). FT-IR: 3306 (br), 3082 (w), 2926 (w), 2878 (w), 2862 (w), 1638 (w), 1408 (w), 1315 
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(w), 1227 (w), 1099 (m), 1036 (m), 1022 (m), 998 (m), 922 (w), 806 (s), 666(w) cm−1. UV-

vis (CH2Cl2): λmax 323 nm (ε = 300 M–1 cm–1) and 438 nm (ε = 100 M–1 cm–1). Mass Spec. 

(ESI, +ve mode): exact mass calculated for [C28H36
56FeOP102Ru]+: 577.0896; exact mass 

found: 577.0904; difference: +1.2 ppm. Anal. Calcd. (%) for C28H35OPFeRu: C, 58.44; H, 

6.13. Found: C, 58.48; H, 6.14. 

Preparation of Tertiary Phosphine Monomer 5.7 (1  Fc, 1  Rc) 

In a sealed tube and in the absence of external 

light/heat sources, 4-vinylbenzoic acid (0.30 g, 2.0 

mmol, 1.15 equiv.), 4-(dimethylamino)pyridine 

(0.25 g, 2.0 mmol, 1.15 equiv.), and N,N′-

dicyclohexylcarbodiimide (0.43 g, 2.1 mmol, 1.2 

equiv.) were combined in dry CH2Cl2 (6 mL) and the resulting mixture was stirred for 15 

min before tertiary phosphine 5.6 (1.00 g, 1.74 mmol) was added and the mixture stirred 

for an additional 90 min at room temperature. The resulting mixture was gravity filtered 

and the orange filtrate was concentrated in vacuo, before the resulting residue was 

dissolved in a minimum amount of CH2Cl2 and transferred to a silica/hexanes column (1” 

× 6”). Using N2 pressure and a 4:1 hexanes:Et2O solvent mixture as eluent, tertiary 

phosphine monomer 5.7 (Rf = 0.29) was isolated from the column. The solution containing 

5.7 was concentrated in vacuo to yield an orange oil. Yield = 1.15 g, 94%. 1H NMR: δ 8.01 

(d, 2H, 3JHH = 8 Hz, aryl CH), 7.46 (d, 2H, 3JHH = 8 Hz, aryl CH), 6.76 (dd, 1H, 3JHH,cis = 

11 Hz, 3JHH,trans = 18 Hz, ArCH=CH2), 5.87 (d, 1H, 3JHH,trans = 18 Hz, ArCH=CH2), 5.39 

(d, 1H, 3JHH,cis = 11 Hz, ArCH=CH2), 4.53 [s, 7H, α-C5H4R(Ru) and C5H5(Ru)], 4.46 [s, 

2H, β-C5H4R(Ru)], 4.36 (t, 2H, 3JHH = 7 Hz, COOCH2), 4.11 [s, 5H, C5H5(Fe)], 4.08 [s, 

4H, α-C5H5R(Fe) and β-C5H4R(Fe)], 2.47 [m, 2H, (Fe)C5H4CH2CH2], 2.32 [m, 2H, 

(Ru)C5H4CH2CH2], 1.89 (m, 2H, CH2CH2OOC), 1.69‒1.55 [m, 6H, (Fe)C5H4CH2, 

(Ru)C5H4CH2, and PCH2CH2CH2], 1.54‒1.45 (m, 2H, CH2CH2CH2OOC). 13C{1H} NMR: 

δ 166.3 (s, COO), 141.8 (s, CCHCH2), 136.0 (s, CCHCH2), 129.8 (s, COCCH), 129.4 (s, 

COC), 126.1 (s, COCCHCH), 116.4 (s, CCHCH2), 93.8 [d, 3JCP = 12 Hz, ipso-C5H4R(Ru)], 

89.7 (d, 3JCP = 12 Hz, ipso-C5H4R(Fe)], 70.5 [s, β-C5H4R(Ru)], 70.4 [s, C5H5(Ru)], 69.4 

[s, α-C5H5R(Ru)], 68.4 [s, C5H5(Fe)], 67.8 [s, β-C5H4R(Fe)], 67.2 [s, α-C5H5R(Fe)], 64.4 
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(s, CH2OOC), 30.3 (d, 3JCP = 12 Hz, CH2CH2OOC), 28.9 [d, 3JCP = 13 Hz, (Ru)C5H4CH2], 

28.4 [d, 3JCP = 13 Hz, (Fe)C5H4CH2], 26.6 (d, 2JCP = 12 Hz, CH2CH2CH2OOC), 26.0 [d, 

2JCP = 15 Hz, (Fe)C5H4CH2CH2], 25.5 [d, 2JCP = 15 Hz, (Ru)C5H4CH2CH2], 22.5 (d, 1JCP 

= 14 Hz, PCH2CH2CH2CH2O). 31P{1H} NMR: δ ‒29.0 (s). FT-IR: 3306 (br), 3088 (w), 

2953 (m), 2922 (s), 2853 (m), 1710 (m), 1607 (w), 1461 (m), 1378 (w), 1270 (m), 1178 

(w), 1101(m), 1016 (w), 995 (w), 914 (w), 804 (m), 781 (w), 711 (w) cm−1. UV-vis 

(CH2Cl2): λmax 322 nm (ε = 300 M–1 cm–1) and 440 nm (ε = 100 M–1 cm–1). Mass Spec. (EI, 

+ve mode): exact mass calculated for [C37H41
56FeO2P

96Ru]+: 700.1271; exact mass found: 

700.1244; difference: ‒3.8 ppm. Anal. Calcd. (%) for C37H41O2PFeRu: C, 62.98; H, 5.86. 

Found: C, 62.29; H, 5.78. 

Preparation of Tertiary Phosphine Polymer 5.8 (1  Fc, 1  Rc) 

In a grease-free Schlenk flask, monomer 5.7 (0.40 

g, 0.57 mmol) was dissolved in 2.00 mL of a THF 

stock solution containing AIBN (0.93 mg, 0.0057 

mmol, 0.01 equiv.). The resulting solution was 

stirred at 75 C for 16 h. After cooling to room 

temperature, the polymerization mixture was 

poured into Et2O and the solids were separated by centrifugation before they were 

collected, dissolved in a minimum amount of CHCl3, and precipitated in Et2O for twice 

more. The polymer 5.8 was dried in vacuo, and in the presence of P2O5, at 60 C for 16 h 

to yield an orange powder. Yield = 0.24 g, 60%. 1H NMR: δ 7.59 (s, br, 2H, aryl CH), 

6.74–6.14 (m, br, 2H, aryl CH), 4.53 [s, 2H, β-C5H4R(Ru)], 4.51 [s, 5H, C5H5(Ru)], 4.43 

[s, 2H, α-C5H5R(Ru)], 4.28 (s, 2H, CH2OOC), 4.09 [s, 7H, β-C5H4R(Fe) and C5H5(Fe)], 

4.04 [s, 2H, α-C5H4R(Fe)], 2.46 [s, 2H, (Fe)C5H4CH2CH2], 2.32 [s, 2H, 

(Ru)C5H4CH2CH2], 1.89 (s, 2H, CH2CH2OOC), 1.73–1.53 (m, 6H, (Fe)C5H4CH2, 

(Ru)C5H4CH2, PCH2CH2CH2], 1.48 (s, 2H, CH2CH2CH2OOC), 1.80–0.85 (m, br, 3H, 

ArCHCH2, ArCHCH2).
 31P{1H} NMR: δ −29.2 (s). FT-IR: 3086 (w), 2925 (w), 2850 (w), 

1713 (s), 1608 (w), 1417 (w), 1312 (w), 1270 (s), 1178 (m), 1100 (s), 1040 (w), 1017 (m), 

997 (m), 916 (w), 855 (w), 804 (s), 772 (m), 706 (s) cm−1. UV-vis (CH2Cl2): λmax 322 nm 

(ε = 300 M–1 cm–1) and 437 nm (ε = 100 M–1 cm–1). 
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Preparation of Tertiary Phosphine Sulfide Polymer 5.8•S (1  Fc, 1  

Rc) 

In air, tertiary phosphine polymer 5.8 (0.02 g, 0.03 

mmol) and S8 (0.02 g, 0.08 mmol, 2.7 equiv.) were 

combined in 2.00 mL of a CHCl3 and stirred for 

30 min at room temperature. The resulting mixture 

was gravity filtered and poured into Et2O and the 

solids were separated by centrifugation before 

they were collected, dissolved in a minimum amount of CHCl3, and precipitated in Et2O 

twice more. The tertiary phosphine sulfide polymer 5.8•S was dried in vacuo, and in the 

presence of P2O5, at 60 C for 16 h to yield a yellow powder. Yield = 0.14 g, 67%. 1H 

NMR: δ 7.56 (s, br, 2H, aryl CH), 6.77–6.01 (m, br, 2H, aryl CH), 4.52 [s, 7H, β-

C5H4R(Ru) and C5H5(Ru)], 4.44 [s, 2H, α-C5H5R(Ru)], 4.28 (s, 2H, CH2OOC), 4.11 [s, 

7H, β-C5H4R(Fe) and C5H5(Fe)], 4.06 [s, 2H, α-C5H4R(Fe)], 2.67 [s, 2H, 

(Fe)C5H4CH2CH2], 2.51 [s, 2H, (Ru)C5H4CH2CH2], 2.18–1.97 (m, 4H, CH2CH2OOC, 

PCH2CH2CH2), 1.98–1.67 (m, 6H, (Fe)C5H4CH2, (Ru)C5H4CH2, CH2CH2CH2OOC], 1.57 

(s, br, 1H, ArCHCH2), 1.34 (s, br, 2H, ArCHCH2).
 31P{1H} NMR: δ 47.7 (s). GPC (THF, 

conventional calibration vs. PS standards): Mn = 9,700 g mol−1, Mw = 14,200 g mol−1, Đ = 

1.46. 

Preparation of Coordinated-Tertiary Phosphine Polymer 5.8•W(CO)5 

(1  Fc, 1  Rc, 1  W(CO)5) 

In a glovebox, a quartz tube was charged with 

W(CO)6 (0.15 g, 0.43 mmol, 6 equiv.) and THF (4 

mL) capped with a rubber septum, and transferred 

to a fumehood before it was exposed to UV light 

for 45 min to produce a golden yellow solution. In 

a second flask, tertiary phosphine polymer 5.8 

(0.05 g, 0.07 mmol) was dissolved in THF (4 mL) and added to the W(CO)5•THF solution 

in a dropwise manner before the resulting solution stirred for 60 min, concentrated, and 
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poured into dry Et2O, and the solids were separated by centrifugation. The orange powder 

was collected, dissolved in a minimum amount of THF, and precipitated in Et2O once more 

before the coordinated-tertiary phosphine polymer 5.8•W(CO)5 was dried in vacuo, and in 

the presence of P2O5, at 60 C for 16 h to yield a yellow powder. Yield = 0.05 g, 66%. 1H 

NMR: δ 7.56 (s, br, 2H, aryl CH), 6.81–6.00 (m, br, 2H, aryl CH), 4.52 [s, 7H, β-

C5H4R(Ru) and C5H5(Ru)], 4.44 [s, 2H, α-C5H5R(Ru)], 4.28 (s, 2H, CH2OOC), 4.10 [s, 

7H, β-C5H4R(Fe) and C5H5(Fe)], 4.07 [s, 2H, α-C5H4R(Fe)], 2.53 [s, 2H, 

(Fe)C5H4CH2CH2], 2.35 [s, 2H, (Ru)C5H4CH2CH2], 2.24–1.58 (m, 10H, CH2CH2OOC, 

PCH2CH2CH2, (Fe)C5H4CH2, (Ru)C5H4CH2, CH2CH2CH2OOC], 1.55 (s, br, 1H, 

ArCHCH2), 1.30 (s, br, 2H, ArCHCH2).
 31P{1H} NMR: δ –6.1 (s). FT-IR: 3088 (w), 2932 

(w), 2848 (w), 2066 (m), 1974 (w), 1909 (s), 1717 (m), 1609 (w), 1418 (w), 1273 (m), 

1180 (w), 1103 (m), 1018 (w), 809 (m), 708 (w), 600 (w) cm−1. UV-vis (CH2Cl2): λmax 325 

nm (ε = 450 M–1 cm–1) and 430 nm (ε = 100 M–1 cm–1). GPC (THF, conventional 

calibration vs. PS standards): Mn = 11,600 g mol−1, Mw = 28,000 g mol−1, Đ = 2.41. 
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Chapter 6  

6 Conclusions and Future Work 

6.1 Conclusions 

This dissertation presents our novel strategy involving the exploitation of 

hydrophosphination chemistry for the incorporation of transition metals into polymers. We 

have demonstrated that the radical-catalyzed hydrophosphination of vinylmetallocenes 

(metallocene: ferrocene and ruthenocene) is a straightforward method for the synthesis of 

primary, secondary, and tertiary ethylmetallocene phosphines that demonstrated 

exceptional stability toward air and moisture (Figure 6.1). This stability allowed for their 

facile purification in air as confirmed by several characterization techniques, including 

multinuclear NMR, FT-IR, and UV-vis absorption spectroscopy, mass spectrometry, 

elemental analysis, cyclic voltammetry, and X-ray crystallography. 

 

 

Figure 6.1.  The synthesis of metal-containing phosphines from PH3 gas. 

To investigate the coordination behavior of this new family of phosphines and show that 

the ligand steric effects could be tuned by determination of number of ethylferrocene 

substituents on the phosphorous centre, we selected primary, secondary, and tertiary 

ethylferrocenephosphines, as representatives, and reacted them with photolytically 

produced M(CO)5•THF (M: Cr, Mo, W) (Figure 6.2). The successful coordination of all 

three ethylferrocenephosphines to the M(CO)5 moieties proved that the presence of bulky 

substituents in the phosphine structures didn’t inhibit the phosphines from the ligation to 
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the metals. Analysis of FT-IR spectra for the benchmarking of the phosphines revealed that 

the σ donating ability of our primary, secondary, and tertiary ethylferrocenephosphines 

increased as ethylferrocene substituents were introduced and that the σ donating ability of 

our tertiary phosphine was higher than PPh3 and lower compared to PEt3. 

 

 

Figure 6.2. Solid-state structure and properties of W(CO)5•phosphine metal complexes. 

 

To test our design strategy for the synthesis of MCPs from metal-containing phosphine 

precursors, we synthesized a phosphonium triflate monomer by a three-step quaternization, 

esterification, and salt metathesis protocol. Free-radical polymerization of this monomer 

afforded phosphonium polyelectrolyte salts, and their macromolecular nature was 

confirmed by multinuclear NMR spectroscopy, GPC and DSC experiments. The full 

characterization of the monomer and polymers verified that their metal centres were 

preserved and that our strategy for the incorporation of metals into polymer structures was 

successful. In addition, the observation of high char yields during TGA experiments 

suggested the execution of pyrolysis studies which led to the formation of metal-containing 

nanoparticles (Figure 6.3). 
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Figure 6.3. The production of nanomaterials from metal-containing polymers. 

 

The fact that, in our strategy, the metal content/ratio of the monomers/polymers reflected 

that in the phosphine precursors motivated us to utilize this method for the synthesis of 

heterobimetallic phosphonium polyelectrolyte salts with precisely controlled metal 

content/ratio. By the quaternization reaction of four different tertiary 

ethylmetallocenophosphines (where ferrocene/ruthenocene: 3/0, 2/1, 1/2, and 0/3) with 4-

vinylbenzylchloride and a salt metathesis reaction, we prepared four monomers that were 

successfully polymerized in the presence of AIBN. Extensive characterization of the 

monomers and polymers verified that all metallocene units in the structure of the monomers 

and polymers remained intact and that our strategy for the control of Fe/Ru ratios at both 

monomer and polymer levels were successful. Furthermore, analysis of the nanomaterials 

that resulted from the pyrolysis of these four phosphonium polyelectrolytes, demonstrated 

their potential for the production of highly metallized nanomaterials with metal ratios 

influenced by that of the corresponding phosphonium polyelectrolytes. 
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Figure 6.4.  The synthesis of highly metallized nanomaterials from heterobimetallic phosphonium 

polyelectrolyte salts. 

En route to a heterotrimetallic tertiary phosphine polymer, we took advantage of the 

reactivity of the P-H bond in the structure of a secondary ferrocene- and ruthenocene-

containing phosphine and, in two steps, synthesized a styrene-based tertiary phosphine 

monomer that was polymerized by using a free-radical polymerization method. The 

resulting heterobimetallic tertiary phosphine polymer was coordinated to a photogenerated 

W(CO)5•THF metal complex in order to produce a novel heterotrimetallic polymer 

(Scheme 6.1). Extensive characterization of the monomer, tertiary phosphine polymer, and 

coordinated tertiary phosphine polymer showed that all of the phosphine centres in the 

tertiary phosphine polymer were coordinated to W(CO)5 and that the metallocene moieties 

didn’t degrade during the reactions. These results leave no doubt that we have successfully 

synthesized the first example of a heterotrimetallic polymers and again show the strength 

of our methodology for the synthesis of MCPs. 

 

Scheme 6.1. Synthesis of a heterotrimetallic polymer. 
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Overall, we have developed a new synthetic strategy for the preparation of stable metal-

containing phosphines that can be utilized as ligands with tunable steric effects that also 

serve as precursors to heterometallic polymers with controlled metal ratios. In addition, we 

studied the pyrolysis behavior of our metal-containing polymers and proved their potential 

for the production of highly metallized nanomaterials. We believe that our results clearly 

demonstrate the success of our strategy and open a new door for materials scientists for the 

preparation of novel heterometallic polymers as well as nanomaterials. 

6.2 Future Work 

This work can be expanded in many different directions. Below, a few are described. 

6.2.1 Novel MCP Designs: Based on New Stable Phosphines/ 
Polymerizable Groups 

The hydrophosphination reaction of organometallic compounds bearing an olefin group 

can add several new members to this family of stable metal-containing phosphines. For 

example, alkyne substituted rhodocenium and cobaltocenium salts1-2 are good candidates 

for the synthesis of the corresponding vinylmetallocenes and following 

hydrophosphination reactions (Scheme 6.2). This approach can be beneficial for the 

realization of heterotrimetallic phosphines that combine the properties of three different 

transition metals. 

   

Scheme 6.2. Synthesis of rhodocenium- and cobaltocenium-based phosphines. 

The utilization of different polymerizable groups is another route that may afford novel 

MCPs. For instance, the hydrophosphination of 6.4 in the presence of catalytic amount of 

AIBN, large excess of PH3, and under a mild thermal condition can result in the production 

of 6.5, which is likely to be stable toward air due to the presence of heteroatoms in close 
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proximity of the phosphorous. This PH2 group can react with organometallic compounds 

bearing an olefin group to afford highly metallized monomers that can be protected by use 

of groups such as BH3 and further undergo a ring-opening polymerization. The P centres 

in the structure of the resulting polymers can be later deprotected and be used as precursors 

to heterometallic polymers (Scheme 6.3). 

  

Scheme 6.3. A novel MCP design based on a hydrophosphination reaction. 

 

6.2.2 Block Copolymer Synthesis and Self-Assembly 

In this dissertation, the free-radical polymerization of metal-containing phosphonium salts 

and a tertiary phosphine are described. Polymerization of these monomers with different 

comonomers via living methods such as reversible addition-fragmentation chain-transfer 

(RAFT) polymerization can afford diblock copolymers that can self-assemble into 

morphologies with metallic and non-metallic nano-sized domains. The pyrolysis of such 

materials in the solid-state can afford patterns of highly metallized nanomaterials (Figure 

6.5). 
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Figure 6.5. Self-assembly and nano-patterning of metallized nanomaterials. 

6.2.3 Electron-Beam Lithography 

Electron-beam lithography (EBL) is a method that can convert thin films of MCPs to 

patterns of metallized nanomaterials that may be used for data storage purposes or as 

templated nanocatalyst.3 The fact that pyrolysis of the phosphonium polyelectrolytes films 

yielded metal-containing nanomaterials is very encouraging for the use of our synthesized 

polymers as resists for EBL (Figure 6.6). 

 

Figure 6.6. Fabrication of patterned nanomaterials by use of EBL. 
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6.2.4 Catalysis 

Nano-sized transition metal phosphides comprised of FeP, Ni2P, Co2P, MoP, and WP have 

attracted great attention due to their activity toward H2 production.4-5 As our preliminary 

characterization of the nanomaterials produced from the pyrolysis of phosphonium 

polyelectrolytes confirmed that they are enriched with Fe/Ru/P, investigation of their 

catalytic properties for the H2 production may show that they have catalytic properties. In 

addition, since the pyrolysis of our coordinated tertiary phosphine polymers is likely to 

afford nanomaterials with new transition metal/phosphorous combinations, their pyrolysis 

and the study of the catalytic behavior of the pyrolytically-produced materials are also 

suggested. This work can be expanded by using our methodology for the synthesis of MCPs 

containing other transition metals and their pyrolysis. 
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Chapter 7  

Appendices 
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Appendix 2 – Supporting Information for Chapter 2 

NMR Spectra 

 

Figure A2.1. 1H NMR spectrum of primary phosphine 2.7a in CDCl3. The asterisk denotes residual 

H2O signal. 

 

Figure A2.2. 1H NMR spectrum of secondary phosphine 2.7b in CDCl3. 
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Figure A2.3. 13C{1H} NMR spectrum of secondary phosphine 2.7b in CDCl3. The asterisk denotes 

the solvent signal. 

 

 

 

Figure A2.4. 31P NMR spectrum of secondary phosphine 2.7b in CDCl3. 
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Figure A2.5. 1H NMR spectrum of tertiary phosphine 2.7c in CDCl3. 

 

 

 

 Figure A2.6. 13C{1H} NMR spectrum of tertiary phosphine 2.7c in CDCl3. The asterisk denotes 

the solvent signal. 
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Figure A2.7. 31P{1H} NMR spectrum of primary phosphine 2.7c in CDCl3. 

 

 

 

Figure A2.8. 1H NMR spectrum of primary phosphine 2.8a in CDCl3. 
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Figure A2.9. 13C{1H} NMR spectrum of primary phosphine 2.8a in CDCl3. The asterisk denotes 

the solvent signal. 

 

 

 

Figure A2.10. 31P{1H} NMR spectrum of primary phosphine 2.8a in CDCl3. 
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Figure A2.11. 1H NMR spectrum of secondary phosphine 2.8b in CDCl3. 

 

 

  

Figure A2.12. 13C{1H} NMR spectrum of secondary phosphine 2.8b in CDCl3. The asterisk 

denotes the solvent signal. 
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Figure A2.13. 31P{1H} NMR spectrum of secondary phosphine 2.8b in CDCl3. 

 

 

 

Figure A2.14. 1H NMR spectrum of tertiary phosphine 2.8c in CDCl3. 
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Figure A2.15. 13C{1H} NMR spectrum of tertiary phosphine 2.8c in CDCl3. The asterisk denotes 

the solvent signal. 

 

 

 

Figure A2.16. 1H NMR spectrum of tertiary phosphine 2.10 in CDCl3. 
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Figure A2.17. 13C{1H} NMR spectrum of tertiary phosphine 2.10 in CDCl3. The asterisk denotes 

the solvent signal. 

 

 

 

 

Figure A2.18. 31P{1H} NMR spectrum of tertiary phosphine 2.10 in CDCl3. 
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Figure A2.19. 1H NMR spectrum of secondary phosphine 2.11 in CDCl3. The asterisk denotes 

residual H2O signal. 

 

 

 

Figure A2.20. 13C{1H} NMR spectrum of secondary phosphine 2.11 in CDCl3. The asterisk 

denotes the solvent signal. 
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Figure A2.21. 31P{1H} NMR spectrum of secondary phosphine 2.11 in CDCl3. 

 

 

 

Figure A2.22. 31P NMR spectrum of secondary phosphine 2.11 in CDCl3. 
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Figure A2.23. 1H NMR spectrum of tertiary phosphine 2.12 in CDCl3. 

 

 

 

Figure A2.24. 13C{1H} NMR spectrum of tertiary phosphine 2.12 in CDCl3. The asterisk denotes 

the solvent signal. 
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Figure A2.25. 31P{1H} NMR spectrum of tertiary phosphine 2.12 in CDCl3. 

 

 

 

Solid-State Structures 

 

 

 

Figure A2.26. Solid-state structure of secondary phosphine 2.7a (1  Fc). Thermal displacement 

ellipsoids are shown at 50% probability and hydrogen atoms have been omitted for clarity. 
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Figure A2.27. Solid-state structure of secondary phosphine 2.7b (2  Fc). Thermal displacement 

ellipsoids are shown at 50% probability and hydrogen atoms have been omitted for clarity. 

 

 

Figure A2.28. Solid-state structure of secondary phosphine 2.7c (3  Fc). Thermal displacement 

ellipsoids are shown at 50% probability and hydrogen atoms have been omitted for clarity. 

 

 

 

 

Figure A2.29. Solid-state structure of secondary phosphine 2.8b (2  Rc). Thermal displacement 

ellipsoids are shown at 50% probability and hydrogen atoms have been omitted for clarity. 



179 

 

 

Figure A2.30. Solid-state structure of tertiary phosphine 2.8c (3  Rc). Thermal displacement 

ellipsoids are shown at 50% probability and hydrogen atoms have been omitted for clarity. 

 

 

 

Figure A2.31. Solid-state structure of tertiary phosphine 2.10 (1  Rc, 2  Fc). Thermal 

displacement ellipsoids are shown at 50% probability and hydrogen atoms have been omitted for 

clarity. 
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Analysis of Twinning for 2.8b 

 

The diffraction pattern was successfully indexed as a non-merohedral twin wherein the 

domains were related by an approximate 1 degree rotation about [111]. The twin fraction 

for the minor domain refined to a value of 0.4120(7). The twin law is given below: 

 

Twin Law, Sample 1 of 1 

Transforms h1.1(1)->h1.2(2) 

0.99989 -0.00134 0.73662 

-0.00009 -1.00000 0.00008 

0.00031 -0.00215 -0.99989 

 

UV-vis Absorption Spectra 

 

 

 

Figure A2.32. UV-vis absorption spectrum of primary phosphine 2.7a (1  Fc) in THF. 
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Figure A2.33. UV-vis absorption spectrum of secondary phosphine 2.7b (2  Fc) in THF. 

 

 

 

 

Figure A2.34. UV-vis absorption spectrum of primary phosphine 2.8a (1  Rc) in THF. 
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Figure A2.35. UV-vis absorption spectrum of secondary phosphine 2.8b (2  Rc) in THF. 

 

 

 

 

Figure A2.36. UV-vis absorption spectrum of secondary phosphine 2.11 (1  Rc, 1  Fc) in THF. 
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Cyclic Voltammograms 

                    

Figure A2.37. Cyclic voltammograms of ferrocene (black) and ruthenocene (red) recorded at 250 

mV s‒1 in 1 mM solutions of CH2Cl2 containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 

 

 

Figure A2.38. Cyclic voltammograms of tertiary phosphine 2.12 (2  Rc, 1  Fc) at different scan 

rates in 1 mM solutions of CH2Cl2 containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 
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Figure A2.39. Cyclic voltammograms of 2.7a (1  Fc, black) and 2.8a (1  Rc, red) recorded at 

250 mV s‒1 in 1 mM solutions of CH2Cl2 containing 0.1 M [n-Bu4N][OTF] as supporting 

electrolyte. 

 

 

 

          

Figure A2.40. Cyclic voltammograms of secondary phosphines 2.7b (2  Fc, black), 2.8b (2  Rc, 

red), and 2.11 (1  Rc, 1  Fc, blue) recorded at 250 mV s‒1 in 1 mM solutions of CH2Cl2 containing 

0.1 M [n-Bu4N][OTF] as supporting electrolyte. 
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Hydrophosphination Reaction Setup 

 

 

 

 

Figure A2.41. Photographs of the reaction setup (top) and burn box (bottom) used for the safe 

handling and disposal of PH3 gas during this study. 

 

 

Burn
Box

3-way 
valve

N2 PH3



186 

 

* 

* 

Appendix 3 – Supporting Information for Chapter 3 

NMR Spectra 

 

Figure A3.1. 1H NMR spectrum of 3.5a in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

Figure A3.2. 13C{1H} NMR spectrum of 3.5a in CDCl3. The asterisk denotes the solvent signal. 
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Figure A3.3. 31P NMR spectrum of 3.5a in CDCl3. 

 

 

 

 

Figure A3.4. 31P{1H} NMR spectrum of 3.5a in CDCl3. 
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Figure A3.5. 1H NMR spectrum of 3.5b in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A3.6. 13C{1H} NMR spectrum of 3.5b in CDCl3. The asterisk denotes the solvent signal. 
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Figure A3.7. 31P NMR spectrum of 3.5b in CDCl3. 

 

 

 

 

Figure A3.8. 31P{1H} NMR spectrum of 3.5b in CDCl3. 
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Figure A3.9. 1H NMR spectrum of 3.5c in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A3.10. 13C{1H} NMR spectrum of 3.5c in CDCl3. The asterisk denotes the solvent signal. 
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Figure A3.11. 31P NMR spectrum of 3.5c in CDCl3. 

 

 

 

 

Figure A3.12. 31P{1H} NMR spectrum of 3.5c in CDCl3. 
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Figure A3.13. 1H NMR spectrum of 3.6a in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A3.14. 13C{1H} NMR spectrum of 3.6a in CDCl3. The asterisk denotes the solvent signal. 
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Figure A3.15. 31P NMR spectrum of 3.6a in CDCl3. 

 

 

 

 

Figure A3.16. 31P{1H} NMR spectrum of 3.6a in CDCl3. 
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Figure A3.17. 1H NMR spectrum of 3.6b in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A3.18. 13C{1H} NMR spectrum of 3.6b in CDCl3. The asterisk denotes the solvent signal. 
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Figure A3.19. 31P NMR spectrum of 3.6b in CDCl3. 

 

 

 

 

Figure A3.20. 31P{1H} NMR spectrum of 3.6b in CDCl3. 
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Figure A3.21. 1H NMR spectrum of 3.6c in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A3.22. 13C{1H} NMR spectrum of 3.6c in CDCl3. The asterisk denotes the solvent signal. 
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Figure A3.23. 31P NMR spectrum of 3.6c in CDCl3. 

 

 

 

 

Figure A3.24. 31P{1H} NMR spectrum of 3.6c in CDCl3. 
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Figure A3.25. 1H NMR spectrum of 3.7a in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A3.26. 13C{1H} NMR spectrum of 3.7a in CDCl3. The asterisk denotes the solvent signal. 
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Figure A3.27. 31P NMR spectrum of 3.7a in CDCl3. 

 

 

 

 

Figure A3.28. 1H NMR spectrum of 3.7b in CDCl3. The asterisk denotes residual CHCl3 signal. 
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Figure A3.29. 13C{1H} NMR spectrum of 3.7b in CDCl3. The asterisk denotes the solvent signal. 

 

 

 

 

Figure A3.30. 31P NMR spectrum of 3.7b in CDCl3. 

CARBON_ARK3-151A_.ESP

200 180 160 140 120 100 80 60 40 20

Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d

 I
n
te

n
s
it
y

2
7

.0
9

2
7

.9
9

2
8

.1
6

6
7

.6
9

6
8

.6
5

7
7

.0
0

8
7

.2
2

8
7

.3
1

1
9

6
.4

3
1
9

6
.4

7
1
9

8
.5

9
1
9

8
.7

3

PHOSPHORUS_ark4-151a_02.esp

-42.0 -42.5 -43.0 -43.5 -44.0 -44.5 -45.0

Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d

 I
n
te

n
s
it
y

-4
4
.7

1

-4
4
.3

2
-4

4
.3

0
-4

4
.2

9
-4

4
.2

7
-4

4
.2

4
-4

4
.2

3
-4

4
.2

0
-4

4
.1

9
-4

4
.1

7

-4
3
.7

8

-4
3
.3

4

-4
2
.9

7
-4

2
.9

5
-4

2
.9

4
-4

2
.9

2
-4

2
.8

9
-4

2
.8

7
-4

2
.8

5
-4

2
.8

4
-4

2
.8

2

-4
2
.4

1



201 

 

* 

* 

 

Figure A3.31. 1H NMR spectrum of 3.7c in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A3.32. 13C{1H} NMR spectrum of 3.7c in CDCl3. The asterisk denotes the solvent signal. 
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Figure A3.33. 31P NMR spectrum of 3.7c in CDCl3. 

 

  

Solid-State Structures 

 

 

 

Figure A3.34. Solid-state structure of 3.5c. Thermal displacement ellipsoids are shown at 50% 

probability and hydrogen atoms have been omitted for clarity. 
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Figure A3.35. Solid-state structure of 3.6c. Thermal displacement ellipsoids are shown at 50% 

probability and hydrogen atoms have been omitted for clarity. 

 

 

 

FT-IR Absorption Spectra 

 

 

Figure A3.36. FT-IR absorption spectrum of 3.5a recorded as a thin film on a KBr plate. 
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Figure A3.37. FT-IR absorption spectrum of 3.5b recorded as a thin film on a KBr plate. 

 

 

 

Figure A3.38. FT-IR absorption spectrum of 3.5c recorded as a thin film on a KBr plate. 
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Figure A3.39. FT-IR absorption spectrum of 3.6a recorded as a thin film on a KBr plate. 

 

 

 

Figure A3.40. FT-IR absorption spectrum of 3.6b recorded as a thin film on a KBr plate. 
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Figure A3.41. FT-IR absorption spectrum of 3.6c recorded as a thin film on a KBr plate. 

 

 

 

Figure A3.42. FT-IR absorption spectrum of 3.7a recorded as a thin film on a KBr plate. 
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Figure A3.43. FT-IR absorption spectrum of 3.7b recorded as a thin film on a KBr plate. 

 

 

 

Figure A3.44. FT-IR absorption spectrum of 3.7c recorded as a thin film on a KBr plate. 
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UV-Vis Absorption Spectra 

 

 

Figure A3.45. UV-Vis absorption spectrum of 3.5a recorded in CH2Cl2. 

 

 

 

 

Figure A3.46. UV-Vis absorption spectrum of 3.5b recorded in CH2Cl2. 
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Figure A3.47. UV-Vis absorption spectrum of 3.5c recorded in CH2Cl2. 

 

 

 

 

 

 

Figure A3.48. UV-Vis absorption spectrum of 3.6a recorded in CH2Cl2. 
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Figure A3.49. UV-Vis absorption spectrum of 3.6b recorded in CH2Cl2. 

 

 

 

 

 

 

Figure A3.50. UV-Vis absorption spectrum of 3.6c recorded in CH2Cl2. 
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Cyclic Voltammograms 

 

 

Figure A3.51. Cyclic voltammogram of 3.5a recorded at 250 mV s‒1 for a 1 mM degassed 2:1 

CH2Cl2:CH3CN solution containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 

 

 

 

Figure A3.52. Cyclic voltammogram of 3.5b recorded at 250 mV s‒1 for a 1 mM degassed 2:1 

CH2Cl2:CH3CN solution containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 
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Figure A3.53. Cyclic voltammogram of 3.5c recorded at 250 mV s‒1 for a 1 mM degassed 2:1 

CH2Cl2:CH3CN solution containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 

 

 

 

 

 

Figure A3.54. Cyclic voltammogram of 3.6a recorded at 250 mV s‒1 for a 1 mM degassed 2:1 

CH2Cl2:CH3CN solution containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 
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Figure A3.55. Cyclic voltammogram of 3.6b recorded at 250 mV s‒1 for a 1 mM degassed 2:1 

CH2Cl2:CH3CN solution containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 

 

 

 

 

 

Figure A3.56. Cyclic voltammogram of 3.6c recorded at 250 mV s‒1 for a 1 mM degassed 2:1 

CH2Cl2:CH3CN solution containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 
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Figure A3.57. Cyclic voltammogram of 3.7a recorded at 250 mV s‒1 for a 1 mM degassed 2:1 

CH2Cl2:CH3CN solution containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 

 

 

 

 

 

 

Figure A3.58. Cyclic voltammogram of 3.7b recorded at 250 mV s‒1 for a 1 mM degassed 2:1 

CH2Cl2:CH3CN solution containing 0.1 M [n-Bu4N][OTF] as supporting electrolyte. 
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Appendix 4 – Supporting Information for Chapter 4 

NMR Spectra 

  

Figure A4.1. 1H NMR spectrum of phosphonium chloride salt 4.8a in CDCl3. The asterisk denotes 

residual CHCl3 signal. 

 

 

Figure A4.2. 13C{1H} NMR spectrum of phosphonium chloride salt 4.8a in CDCl3. The asterisk 

denotes the solvent signal. 
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Figure A4.3. 31P{1H} NMR spectrum of phosphonium chloride salt 4.8a in CDCl3. 

 

 

 

 

Figure A4.4. 1H NMR spectrum of phosphonium tetrafluoroborate salt 4.8b in d6-DMSO. The 

asterisks denote residual (CD3)(CD2H)SO and H2O signals. 
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Figure A4.5. 13C{1H} NMR spectrum of phosphonium tetrafluoroborate salt 4.8b in d6-DMSO. 

The asterisk denotes the solvent signal. 

 

 

 

 

Figure A4.6. 19F NMR spectrum of phosphonium tetrafluoroborate salt 4.8b in d6-DMSO. 
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Figure A4.7. 31P{1H} NMR spectrum of phosphonium tetrafluoroborate salt 4.8b in d6-DMSO. 

 

 

 

Figure A4.8. 13C{1H} NMR spectrum of phosphonium monomer 4.9 in CDCl3. The asterisk 

denotes the solvent signal. 
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Figure A4.9. 19F NMR spectrum of monomer 4.9 in CDCl3. 

 

 

 

Figure A4.10. 31P{1H} NMR spectrum of monomer 4.9 in CDCl3. 
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Figure A4.11. 1H NMR spectrum of polyelectrolyte 4.10a in CDCl3. The asterisk denotes residual 

CHCl3 signal. 

 

 

 

  

Figure A4.12. 19F NMR spectrum of polyelectrolyte 4.10a in CDCl3. 
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Figure A4.13. 31P{1H} NMR spectrum of polyelectrolyte 4.10a in CDCl3. 

 

 

 

 

Figure A4.14. 19F NMR spectrum of polyelectrolyte 4.10b in CDCl3. 
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Figure A4.15. 31P{1H} NMR spectrum of polyelectrolyte 4.10b in CDCl3. 

 

 

  

Figure A4.16. 1H NMR spectrum of polyelectrolyte 4.10c in CDCl3. The asterisk denotes residual 

CHCl3 signal. 
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Figure A4.17. 19F NMR spectrum of polyelectrolyte 4.10c in CDCl3. 

 

 

 

 

Figure A4.18. 31P{1H} NMR spectrum of polyelectrolyte 4.10c in CDCl3. 
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Figure A4.19. 1H NMR spectrum of 4.12a in DMSO-d6. The asterisks denote residual 

(CD3)(CD2H)SO and H2O signals. 

 

 

 

Figure A4.20. 13C{1H} NMR spectrum of 4.12a in DMSO-d6. The asterisk denotes the solvent 

signal. 

PROTON_FC3PSTYCL_01.ESP

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
rm

a
liz

e
d

 I
n
te

n
s
it
y

16.6632.841.151.171.122.342.29

2
.4

6
2
.5

0
2
.5

1

3
.3

0

4
.0

4
4
.0

7
4
.1

0
4
.1

2
4
.1

7

5
.2

5
5
.2

7

5
.8

5
5
.8

8

6
.7

2
6
.7

4
6
.7

5
6
.7

7

7
.4

5
7
.4

5
7
.4

6
7
.4

6
7
.5

8
7
.6

0

*

*

CARBON_FC3PSTYCL_01.ESP

136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16

Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d

 I
n
te

n
s
it
y

1
9

.1
1

1
9

.4
0

2
0

.8
0

2
5

.2
1

2
5

.5
0

3
9

.5
1

6
7

.3
5

6
7

.6
9

6
8

.4
5

8
6

.7
8

8
6

.8
9

1
1

5
.0

9

1
2

6
.9

4
1
2

6
.9

6
1
2

8
.8

0
1
2

8
.8

6
1
3

0
.3

9
1
3

0
.4

3
1
3

5
.8

9
1
3

6
.9

7
1
3

6
.9

9

*



225 

 

 

Figure A4.21. 1H NMR spectrum of 4.12b in DMSO-d6. The asterisk denotes residual 

(CD3)(CD2H)O signal. 

 

 

Figure A4.22. 13C{1H} NMR spectrum of 4.12b in DMSO-d6. The asterisk denotes the solvent 

signal. 

PROTON_FC2RCPSTYCL_01.ESP

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

N
o
rm

a
liz

e
d

 I
n

te
n
s
it
y

14.7019.989.051.001.010.994.09

2
.3

9
2

.4
4

2
.4

6
2

.5
0

2
.5

3
2

.5
4

2
.5

6
2

.5
7

3
.3

3

4
.0

84
.1

1
4

.1
3

4
.1

6
4

.2
1

4
.5

1
4

.5
7

4
.6

5

5
.2

9
5

.3
1

5
.8

9
5

.9
2

6
.7

6
6

.7
7

6
.7

9
6

.8
0

7
.4

7
7

.4
97

.6
2

7
.6

3

*

CARBON_Fc2RcPSTyCl_01

136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8

Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d

 I
n
te

n
s
it
y

1
9

.1
1

1
9

.4
1

1
9

.8
8

2
0

.1
8

2
0

.2
5

2
0

.7
9

2
5

.1
8

2
5

.4
7

3
9

.5
1

6
7

.3
3

6
7

.6
7

6
8

.4
3

7
0

.5
6

8
6

.7
5

8
6

.8
7

9
1

.1
2

9
1

.2
4

1
1

5
.0

8

1
2

6
.9

0
1
2

8
.8

1
1
2

8
.8

7
1
3

0
.3

6

1
3

5
.8

9
1
3

6
.9

5

*



226 

 

 

Figure A4.23. 1H NMR spectrum of 4.12c in DMSO-d6. The asterisks denote residual 

(CD3)(CD2H)SO and H2O signals. 

 

 

Figure A4.24. 13C{1H} NMR spectrum of 4.12c in DMSO-d6. The asterisk denotes the solvent 

signal. 
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Figure A4.25. 1H NMR spectra of 4.12d in DMSO-d6. The asterisks denote residual 

(CD3)(CD2H)SO and H2O signals. 

 

 

Figure A4.26. 13C{1H} NMR spectrum of 4.12d in DMSO-d6. The asterisk denotes the solvent 

signal. 

PROTON_RC3PSTYCL_01.ESP

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

N
o
rm

a
liz

e
d

 I
n

te
n
s
it
y

12.052.1627.001.011.071.022.192.10

2
.3

4
2

.3
6

2
.3

7
2

.3
8

2
.4

02
.5

0

3
.3

8

3
.9

7
3

.9
9

4
.5

1
4

.5
5

4
.6

4

5
.3

0
5

.3
2

5
.8

9
5

.9
2

6
.7

5
6

.7
7

6
.7

8
6

.8
0

7
.3

9
7

.3
9

7
.4

1

7
.6

1
7

.6
2

*

*

CARBON_RC3PSTYCL_01.ESP

140 130 120 110 100 90 80 70 60 50 40 30 20 10

Chemical Shift (ppm)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

N
o
rm

a
liz

e
d

 I
n
te

n
s
it
y

1
9

.9
0

2
0

.2
0

2
0

.3
6

2
5

.2
1

2
5

.5
0

3
9

.5
1

6
9

.7
7

7
0

.6
4

9
1

.0
1

9
1

.1
3

1
1

5
.2

6

1
2

7
.0

0
1
2

8
.6

1
1
2

8
.6

8
1
3

0
.3

3

1
3

5
.9

1
1
3

7
.0

8

*



228 

 

 

Figure A4.27. 1H NMR spectrum of 4.13a in DMSO-d6. The asterisks denote the (CD3)(CD2H)SO 

and H2O signals. 

 

 

Figure A4.28. 13C{1H} NMR spectrum of 4.13a in DMSO-d6. The asterisk denotes the solvent 

signal. 
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Figure A4.29. 1H NMR spectrum of 4.13b in DMSO-d6. The asterisks denote the (CD3)(CD2H)SO 

and H2O signals. 

 

 

Figure A4.30. 13C{1H} NMR spectrum of 4.13b in DMSO-d6. The asterisk denotes the solvent 

signal. 
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Figure A4.31. 1H NMR spectrum of 4.13c in DMSO-d6. The asterisks denote the (CD3)(CD2H)SO 

and H2O signals. 

 

Figure A4.32. 13C{1H} NMR spectrum of 4.13c in DMSO-d6. The quaternary carbon of the triflate 

anion was not detected. However, the purity of 4.13c was confirmed by other methods such as 19F 

NMR spectroscopy and elemental analysis. The asterisk denotes the solvent signal. 
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Figure A4.33. 1H NMR spectrum of 4.13d in DMSO-d6. The asterisks denote residual 

(CD3)(CD2H)SO and H2O signals. 

 

 

Figure A4.34. 13C{1H} NMR spectrum of 4.13d in DMSO-d6. The asterisk denotes the solvent 

signal. 
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Figure A4.35. 1H NMR spectra of 4.14a recorded at different temperatures in DMSO-d6. The 

asterisks denote residual (CD3)(CD2H)SO and H2O signals and grease. Note – the residual H2O 

signal shifts upfield as temperature increases. 

 

 

Figure A4.36. 1H NMR spectrum of 4.14b recorded in DMSO-d6 at 125 °C. The asterisks denote 

residual (CD3)(CD2H)SO and H2O signals and grease. 
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Figure A4.37. 1H NMR spectrum of 4.14c recorded in DMSO-d6 at 125 °C. The asterisks denote 

residual (CD3)(CD2H)SO and H2O signals and grease. 

 

Figure A4.38. 1H NMR spectrum of 4.14d recorded in DMSO-d6 at 125 °C. The asterisks denote 

residual (CD3)(CD2H)SO and H2O signals and grease. 
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UV-Vis Absorption Spectra 

 

 

Figure A4.39. UV-vis absorption spectra recorded for 4.12a (3  Fc; black), 4.12b (2  Fc, 1  Rc; 

red), 4.12c (1  Fc, 2  Rc; blue) and 4.12d (3  Rc; green) in THF. 

 

 

 

Figure A4.40. UV-vis absorption spectra recorded for 4.13a (3  Fc; black), 4.13b (2  Fc, 1  Rc; 

red), 4.13c (1  Fc, 2  Rc; blue) and 4.13d (3  Rc; green) in THF. 
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Figure A4.41. UV-vis absorption spectra recorded for 4.14a (3  Fc; black), 4.14b (2  Fc, 1  Rc; 

red), 4.14c (1  Fc, 2  Rc; blue) and 4.14d (3  Rc; green) in THF. 
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GPC Data 

Table A4.1. Processed conventional calibration GPC data for phosphonium polyelectrolytes 

4.10a‒c. 

Sample Injection Max RI Response (mL) Mn (g mol−1) Mw (g mol−1) Đ 

4.10a 

1 19.45 43,050 117,400 2.73 

2 19.45 44,350 118,600 2.68 

3 19.44 42,000 118,650 2.83 

Average 19.45 43,100 118,200 2.74 

Std. Dev. 0.004 967 569 0.063 

%RSD 0.02% 2.24% 0.48% 2.28% 

4.10b 

1 19.79 31,200 76,750 2.46 

2 19.80 32,600 77,050 2.366 

3 19.74 33,300 83,150 2.50 

Average 19.78 32,050 79,000 2.44 

Std. Dev. 0.028 860 2,939 0.057 

%RSD 0.14% 2.66% 3.72% 2.32% 

4.10c 

1 19.51 45,000 104,750 2.33 

2 19.51 44,600 105,500 2.36 

3 19.50 45,750 106,800 2.33 

Average 19.51 45,150 105,700 2.34 

Std. Dev. 0.005 473 846 0.016 

%RSD 0.03% 1.05% 0.80% 0.69% 

 

 

Figure A4.42. GPC traces of polyelectrolytes 4.10a (3  Fc, black), 4.10b (3  Fc, red), and 4.10c 

(3  Fc, blue) recorded using a 60 ºC DMF solution containing 0.02 M [n-Bu4N][OTf]. The 

fluctuations from 27‒37 mL arise due to changes in RI associated with sample injections. The 

asterisks denote system peaks. 
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Table A4.2. Processed conventional calibration GPC data for polyelectrolytes 4.14ad. 

 

Figure A4.43. GPC traces of polyelectrolytes 4.14a (3  Fc, black), 4.14b (2  Fc, 1  Rc; red), 

4.14c (1  Fc, 2  Rc; blue), and 4.14d (3  Rc, green) recorded using a 60 ºC DMF solution 

containing 0.02 M [n-Bu4N][OTf]. The asterisks denote system peaks. 
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Sample Injection Max RI Response (mL) Mn (g mol−1) Mw (g mol−1) Đ 

4.14a 

1 12.91 45,850 148,250 3.23 

2 12.91 46,300 147,100 3.18 

3 12.92 48,500 148,750 3.07 

Average 12.91 46,900 148,000 3.16 

Std. Dev. 0.00 1,162 699 0.069 

%RSD 0.04% 2.48% 0.47% 2.19% 

4.14b 

1 12.77 44,000 176,800 4.02 

2 12.77 46,150 183,550 3.98 

3 12.77 45,150 194,400 4.31 

Average 12.77 45,100 184,900 4.10 

Std. Dev. 0.00 887 7,262 0.147 

%RSD 0.02% 1.97% 3.93% 3.60% 

4.14c 

1 12.64 68,100 256,850 3.77 

2 12.61 69,350 284,700 4.10 

3 12.60 69,850 292,750 4.19 

Average 12.61 69,100 278,100 4.02 

Std. Dev. 0.02 751 15,389 0.18 

%RSD 0.12% 1.09% 5.53% 4.48% 

4.14d 

1 13.16 37,250 137,300 3.68 

2 13.15 40,100 146,000 3.64 

3 13.15 38,650 147,150 3.81 

Average 13.15 38,650 143,450 3.71 

Std. Dev. 0.00 1,150 4,398 0.07 

%RSD 0.04% 2.97% 3.07% 1.89% 
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Cyclic Voltammograms 

 
 

 

Figure A4.44. Cyclic voltammogram of monomers 4.8a (3  Fc) recorded at 250 mV s‒1 in 

solutions of 2/1 CH2Cl2/CH3CN containing 0.1 M [n-Bu4N][OTf] as supporting electrolyte. 

 

 

 

Figure A4.45. Cyclic Cyclic voltammogram of monomers 4.10a (3  Fc) recorded at 250 mV s‒1 

in solutions of 2/1 CH2Cl2/CH3CN containing 0.1 M [n-Bu4N][OTf] as supporting electrolyte. 
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Figure A4.46. Cyclic voltammogram of monomers 4.10c (3  Fc) recorded at 250 mV s‒1 in 

solutions of 2/1 CH2Cl2/CH3CN containing 0.1 M [n-Bu4N][OTf] as supporting electrolyte. 

 

 

 

 

 

Figure A4.47. Cyclic voltammograms of monomers 4.13a (3  Fc; black), 4.13b (2  Fc, 1  Rc; 

red), 4.13c (1  Fc, 2  Rc; blue), and 4.13d (3  Rc; green) recorded at 250 mV s‒1 in solutions of 

2/1 CH2Cl2/CH3CN containing 0.1 M [n-Bu4N][OTf] as supporting electrolyte. 
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Figure A4.48.   Cyclic voltammograms of polyelectrolytes: 4.14a (3  Fc, black), 4.14b (2  Fc, 1 

 Rc; red), 4.14c (1  Fc, 2  Rc; blue), and 4.14d (3  Rc, green) recorded at 250 mV s‒1 in 

solutions of 2/1 CH2Cl2/CH3CN containing 0.1 M [n-Bu4N][OTf] as supporting electrolyte. Note  

due to the limited and different solubilities of the polyelectrolytes in the solvent/electrolyte mixture, 

the intensities of the waves in the recorded cyclic voltamogramms were lower compared to that of 

the corresponding monomers and also a clear trend was not observed when their cyclic 

voltamogramms were compared. Furthermore, due to low concentration and extreme broadening, 

the irreversible oxidation wave of ruthenocene for 4.14b was not observed. 

 

 

 

 

-0.5 -0.2 0.1 0.4 0.7 1

Potential (V vs. Ferrocene/Ferrocenium)

20 μA



241 

 

Differential Scanning Calorimetry Thermograms 

 

Figure A4.49. DSC thermogram of polyelectrolyte 4.10a. 

 

 

 

 

Figure A4.50. DSC thermogram of polyelectrolyte 4.10b. 

Tg = 108  C
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Figure A4.51. DSC thermogram of polyelectrolyte 4.10c. 

 

 

 

Figure A4.52. DSC thermograms of polyelectrolytes 4.14a (3  Fc, black), 4.14b (2  Fc, 1  Rc; 

red), 4.14c (1  Fc, 2  Rc; blue), and 4.14d (3  Rc, green) recorded at a scan rate of 10 ºC min‒1. 
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Thermal Gravimetric Analysis 

 

Figure A4.53. TGA trace for polyelectrolyte 4.10a. 

 

 

 

Figure A4.54. TGA trace for polyelectrolyte 4.10c. 

Decomposition onset = 312  C

Decomposition onset = 312  C
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Scanning Electron Microscopy and Energy-Dispersive X-Ray 
Spectroscopy Results 

 

 

 

Figure A4.55. SEM images of the nanostructures produced by heating a thin film of polyelectrolyte 

4.10b at 800 C for 2 h under a flow of N2 gas. Scale bars = 1 m. 
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Figure A4.56. SEM image and elemental analysis for a crystallite produced by heating a thin film 

of polyelectrolyte 4.10b at 800 C for 2 h under a flow of N2 gas. The analyzed area is indicated 

by the purple box and the ratio of Fe:O is consistent with formation of Fe3O4. 

 

Figure A4.57. SEM of a cross section of a representative drop-cast film of polyelectrolyte 4.14a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S39     SEM image and elemental analysis for a crystallite produced by heating a thin film of  

Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed (Normalized) 

Number of iterations = 4 

 

Standard : 

C    CaCO3   1-Jun-1999 12:00 AM 

O    SiO2   1-Jun-1999 12:00 AM 

Si    SiO2   1-Jun-1999 12:00 AM 

P    GaP   1-Jun-1999 12:00 AM 

Fe    Fe   1-Jun-1999 12:00 AM 

 

Element Weight% Atomic%  

         

C K 1.74 4.53  

O K 20.65 40.23  

Si K 21.00 23.31  

P K 0.75 0.75  

Fe L 55.86 31.18  

    

Totals 100.00   

 

 

Scale bar = 10 µm

H = 5.747 µm
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Elemental Maps 

 

 

 

 

 

 

Figure A4.58. SEM image and elemental maps (C, O, Si, P, Fe) for the nanomaterials prepared via 

the pyrolysis of a film of polyelectrolyte 4.14a. Scale bar = 1 μm. 
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Figure A4.59. SEM image and elemental maps (C, O, Ru, P, Fe, Si) for the nanomaterials prepared 

via the pyrolysis of a film of polyelectrolyte 4.14c. Scale bar = 1 μm. 
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Figure A4.60. SEM image and elemental maps (C, O, Ru, P, Si) for the nanomaterials prepared 

via the pyrolysis of a film of polyelectrolyte 4.14d. Scale bar = 350 nm. 
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Scanning Electron Microscopy and Energy-Dispersive X-ray 
Spectroscopy Results 

 

 

 

 

%a C O P Fe 

 

 

Bulk 

 

 

20.6 18.6 21.3 39.4 

25.1 25.4 17.1 32.5 

25.3 28.8 16.3 29.5 

23.9 21.3 19.8 34.9 

20.2 29.2 14.3 36.4 

Average 23.0  2.5 24.7  4.6 17.7  2.8 34.6  3.8 

Particles 

36.9 27.1 11.1 24.9 

33.7 25.8 10.4 30.1 

46.3 26.9 8.2 18.6 

78.1 20.0 0.5 1.4 

79.5 18.6 0.7 1.3 

80.4 17.9 0.5 1.1 

48.6 33.0 7.5 10.9 

52.4 30.0 7.3 10.3 

Average 57.0  19.5 24.9  5.5 5.8  4.5 12.3  11.2 
aData normalized to exclude silicon detected from substrate. 

 

Figure A4.61. (a) Representative SEM image illustrating the areas analyzed to determine the 

elemental composition of dense regions of relatively large particles (bulk) and less dense regions 

of relatively small particles (particles) produced via the pyrolysis of a film of polyelectrolyte 4.14a. 

(b) Data table summarizing the elemental composition of multiple areas of the silicon wafer 

determined using EDX spectroscopy. Scale bar = 5 μm. 
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%a C O P Fe Ru 

 

 

 

 

Bulk 

 

 

 

 

14.1 25.9 16.3 26.8 16.9 

3.8 20.9 10.7 38.4 26.2 

10.9 44.7 11.8 23.6 8.9 

14.0 24.4 16.0 28.6 17.0 

13.2 27.3 16.2 26.1 17.1 

13.9 26.2 18.8 21.9 19.3 

16.6 25.4 18.8 20.5 18.7 

14.9 28.5 18.5 19.6 18.5 

13.2 27.4 19.4 20.5 19.4 

13.9 25.6 16.0 27.6 16.9 

12.3 26.6 15.9 28.5 16.8 

Average 12.8  3.3 27.5  6.0 16.2  2.8 25.6  5.4 17.8  4.0 

 

 

Particles 

 

 

16.2 30.7 14.9 24.0 14.2 

38.6 36.6 8.6 8.3 8.0 

26.7 34.2 12.1 16.5 10.4 

15.5 42.4 12.1 22.1 7.8 

21.2 28.6 14.3 22.3 13.7 

Average 23.6  9.5 34.5  5.4 12.4  2.5 18.7  6.4 10.8  3.0 
aData normalized to exclude silicon detected from substrate. 

Figure A4.62. (a) Representative SEM image illustrating the areas analyzed to determine the 

elemental composition of dense regions of relatively large particles (bulk) and less dense regions 

of relatively small particles (particles) produced via the pyrolysis of a film of polyelectrolyte 4.14b. 

(b) Data table summarizing the elemental composition of multiple areas of the silicon wafer 

determined using EDX spectroscopy.  Scale bar = 5 μm. 
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%a C O P Fe Ru 

Bulk 

14.5 44.2 12.9 6.7 21.6 

14.6 46.5 12.0 6.6 20.2 

13.2 42.9 13.6 7.4 22.9 

13.7 42.0 13.7 7.3 23.3 

28.9 16.3 18.4 8.0 28.5 

22.1 14.9 20.3 9.6 33.2 

31.9 20.0 16.0 6.9 25.2 

Average 19.8  7.8 32.4  14.5 15.3  3.1 7.5  1.0 25.0  4.5 

Particles 

16.0 48.9 9.4 6.6 19.1 

13.5 54.2 6.9 7.9 17.5 

70.6 19.5 2.8 1.6 5.4 

74.2 15.4 3.1 1.6 5.7 

64.7 26.1 2.6 1.5 5.0 

63.1 10.9 10.4 3.1 12.5 

62.8 11.6 9.8 3.3 12.6 

Average 52.1  25.9 26.6  17.8 6.4  3.5 3.7  2.6 11.1  5.9 
aData normalized to exclude silicon detected from substrate. 

Figure A4.63. (a) Representative SEM image illustrating the areas analyzed to determine the 

elemental composition of dense regions of relatively large particles (bulk) and less dense regions 

of relatively small particles (particles) produced via the pyrolysis of a film of polyelectrolyte 4.14c.  

(b) Data table summarizing the elemental composition of multiple areas of the silicon wafer 

determined using EDX spectroscopy.  Scale bar = 5 μm. 
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%a C O P Ru 

Bulk 

16.1 5.2 25.5 53.1 

17.8 5.2 25.1 51.9 

17.6 5.1 25.0 52.3 

18.3 5.0 25.0 51.7 

20.9 6.1 23.9 49.1 

Average 18.1  1.8 5.3  0.4 24.9  0.6 51.6  1.5 

Particles 

71.4 20.6 3.2 4.8 

76.0 16.4 3.1 4.6 

69.7 18.9 4.6 6.8 

72.1 15.4 5.1 7.4 

74.2 19.6 2.3 4.0 

Average 72.7  2.4 18.2  2.2 3.6  1.2 5.5  1.5 
aData normalized to exclude silicon detected from substrate. 

Figure A4.64. (a) Representative SEM image illustrating the areas analyzed to determine the 

elemental composition of dense regions of relatively large particles (bulk) and less dense regions 

of relatively small particles (particles) produced via the pyrolysis of a film of polyelectrolyte 4.14d. 

(b) Data table summarizing the elemental composition of multiple areas of the silicon wafer 

determined using EDX spectroscopy.  Scale bar = 5 μm. 
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Powder X-ray Diffractograms 

 

Figure A4.65. Powder X-ray diffractogram of the nanomaterials prepared via pyrolysis of a film 

of 4.14a plotted vs. iron phosphides and iron.  
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Figure A4.66. Powder X-ray diffractogram of the nanomaterials prepared via pyrolysis of a film 

of 4.14b plotted vs. iron phosphides, iron, ruthenium phosphides and ruthenium.  
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Figure A4.67. Powder X-ray diffractogram of the nanomaterials prepared via pyrolysis of a film 

of 4.14c plotted vs. iron phosphides, iron, ruthenium phosphides and ruthenium.  
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Figure A4.68. Powder X-ray diffractogram of the nanomaterials prepared via pyrolysis of a film 

of 4.14d plotted vs. ruthenium phosphides and ruthenium.  
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Appendix 5 – Supporting Information for Chapter 5 

NMR Spectra 

 

Figure A5.1. 1H NMR spectrum of 5.6 in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

Figure A5.2. 13C{1H} NMR spectrum of 5.6 in CDCl3. The asterisk denotes the solvent signal. 
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Figure A5.3. 31P NMR{1H} spectrum of 5.6 in CDCl3. 

 

 

 

Figure A5.4. 31P NMR spectrum of 5.6 in CDCl3. 
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Figure A5.5. 1H NMR spectrum of 5.7 in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A5.6. 13C{1H} NMR spectrum of 5.7 in CDCl3. The asterisk denotes the solvent signal. 
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Figure A5.7. 31P NMR{1H} spectrum of 5.7 in CDCl3. 

 

 

 

 

Figure A5.8. 31P NMR spectrum of 5.7 in CDCl3. 

PHOSPHORUS_AB-04-50-T3_01.ESP

80 60 40 20 0 -20 -40 -60 -80 -100

Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a
liz

e
d

 I
n
te

n
s
it
y

-2
9
.0

5

PHOSPHORUS_ARK6-35_02.ESP

-27.0 -27.5 -28.0 -28.5 -29.0 -29.5 -30.0 -30.5 -31.0

Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a
liz

e
d

 I
n
te

n
s
it
y

-2
9
.1

5
-2

9
.1

0
-2

9
.0

5
-2

9
.0

1
-2

8
.9

7



261 

 

 

Figure A5.9. 1H NMR spectrum of 5.8 in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A5.10. 31P NMR{1H} spectrum of 5.8 in CDCl3. 
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Figure A5.11. 1H NMR spectrum of 5.8S in CDCl3. The asterisk denotes residual CHCl3 signal. 

 

 

 

 

Figure A5.12. 31P NMR{1H} spectrum of 5.8S in CDCl3. 
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Figure A5.13. 1H NMR spectrum of 5.8•W(CO)5 in CDCl3. The asterisks denote residual CHCl3, 

Et2O, and CH2Cl2 signals. 

 

UV-Vis Absorption Spectra 

 

Figure A5.14. UV-vis absorption spectra recorded for 5.6 (black), 5.7 (red), 5.8 (blue), and 5.8•W 

(CO)5 (green) in CH2Cl2. 
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Cyclic Voltammograms 

 

 

 

Figure A5.15. Cyclic voltammogram of 5.6 (1  Fc, 1  Rc) recorded at 250 mV s‒1 in solution of 

THF containing 0.1 M [n-Bu4N][OTf] as supporting electrolyte. 

 

 

 

 

Figure A5.16. Cyclic voltammogram of monomer 5.7 (1  Fc, 1  Rc) recorded at 250 mV s‒1 in 

solution of THF containing 0.1 M [n-Bu4N][OTf] as supporting electrolyte. 
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