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Abstract 

The work presented in this thesis details the synthesis and characterization of two different 

families of multifunctional polymers. The first family involved the incorporation of stable 6-

oxoverdazyl radicals into polymer scaffolds. This was originally achieved by the 

polymerization of the radical precursors, phenyl- and isopropyl-6-oxotetrazanes, followed by 

post-polymerization oxidation to afford the phenyl- and isopropyl-6-oxoverdazyl polymers. A 

second methodology involved the direct polymerization of isopropyl-6-oxoverdazyl radicals 

using ring-opening metathesis polymerization (ROMP) to afford polymers with controlled 

molecular weights and narrow molecular weight distributions. The polymers were 

characterized by the close comparison of the physical and spectroscopic properties to related 

model compounds. The semiconducting behaviour of the latter polymer was explored and 

ultimately exploited in flash memory devices.  

The second family included redox-active Ni(II) complexes of Goedken’s macrocycle. This 

macrocycle was incorporated into main-chain polymers via a step growth mechanism 

involving Sonogashira cross-coupling with π-conjugated solubilizing organic spacers and into 

side-chain polymers via a chain growth polymerization using ROMP. The resulting polymers 

spectroscopic and physical properties were characterized and compared to a variety of model 

compounds. Main-chain Ni(II) complexes of Goedken’s macrocycle and fluorene copolymers 

were further functionalized with Co2(CO)8 via the alkyne synthetic handle to yielded 

heterobimetallic copolymers that yielded metal-rich nanomaterials upon pyrolysis in a 

reducing atmosphere.  

Combined, this work represents a significant advance in the synthesis, characterization and 

application of synthetic multifunctional polymers. 
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Chapter 1  

1 Introduction 

A polymer is a macromolecule that is made up of many repeating units (i.e. building 

blocks) called monomers. The properties of macromolecules change once they reach 

molecular weights above the critical entanglement molecular weight, meaning their 

physical, chemical, and optical properties can change relative to their monomeric starting 

materials. Polymers range from polystyrene used to make plastic containers to DNA 

macromolecules used by our bodies as the building blocks of life. Since the development 

of the first synthetic polymer over 100 years ago, they have become ubiquitous in everyday 

life.1 The discovery that polymers can behave as more than simple commodity materials 

(plastics) has led to the study of multifunctional materials, including π-conjugated, stable 

radical, and metal containing polymers. 

1.1 π-Conjugated, Stable Radical, and Metal-Containing 
Multifunctional Polymers 

The variety of applications associated with multifunctional polymers can be partly 

attributed to the redox active sites and/or the electronic communication that can be 

introduced within or pendant to the polymer backbone. These redox active groups range 

from conjugated polymer backbones (e.g. polyaniline, 1.1), electroactive organic (e.g. 

stable organic radicals, 1.2) or inorganic moieties (e.g. 1.3).2-3  

 

These polymers have been classified many different ways, but for the purposes of this 

thesis, they will be organized in two broad categories: firstly, as organic polymers, which 

consists of functional main-chain (e.g. 1.4) or side-chain (e.g. 1.5) polymers, as well as 



2 

 

polymers containing pendant stable radical groups (e.g. 1.2). The second group will consist 

of functional polymers containing transition metals, which will be further divided into π-

conjugated (e.g. 1.6) and non-conjugated (e.g. 1.7) architectures. 

 

Since the discovery of multifunctional polymers, a significant amount of research has been 

devoted to their development with the goal of producing materials that combine the 

electrical and optical properties of organic or metallic components with the processability 

and mechanical advantages associated with polymers.  

1.2 Organic Polymers 

Historically, the functional polymer field began in the 1970s when it was discovered that 

polyacetylene (PA), that was understood to be insulating, demonstrated electronic 

conductivity in the partially oxidized state. As is often the case, this discovery was 

accidental. A student in the Shirakawa lab had prepared a molar concentration of catalyst 

instead of millimolar for the polymerization reaction. The result was a metallic foil instead 

of the usual grey powder. Through collaboration with MacDiarmid and Heeger, they 

discovered that upon partial doping PA (oxidation or reduction) the conductivity of this 

material increased a billion fold. In fact, this discovery and subsequent research into the 

conductive polymer field was significant enough to deserve a Nobel Prize in chemistry in 

the year 2000. It was awarded to the three collaborating scientists, Alan MacDiarmid, Alan 

J. Heeger, and Hideki Shirakawa “for the discovery and development of conductive 
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polymers”.4-6 Unfortunately, the first conductive polymer was difficult to process and 

unstable towards oxygen. This, however, led to the investigation of more stable conjugated 

polymers. One notable example is the use of poly(phenylenevinylene) (PPV) as the 

electroactive emissive material in light emitting diodes (LEDs)7 (Figure 1.1). 

 

Figure 1.1 Image and schematic of a polymer light emitting diode using PPV. 

Initial research into functional polymers consisted largely of aromatic π-conjugated 

building blocks incorporated into the main-chain of polymer backbones. The metallic 

conductivity seen with these polyaromatic materials has spurred much interest as scientists 

were now able to produce synthetic metals. These organic polymers afford the ability to 

replace metal-based electronic materials with “plastic electronics” as conductors and more 

recently as semiconductors.8  

1.2.1 Polyacetylene 

PA is the classic example of a π-conjugated polymer, or metal-like plastic. In a conjugated 

carbon chain each carbon has 3 sp2-hybridized orbitals, forming two σ C-C bonds and one 

C-H bond. The remaining p orbital is responsible for the formation of π bonds and for the 

conjugation. Looking at the frontier orbitals of a simple system, an ethylene group, there 

is a bonding orbital (the highest occupied molecular orbital; HOMO) and an antibonding 

orbital (the lowest unoccupied molecular orbital; LUMO). As additional π-bonds are 

introduced, there is a splitting of the bonding and antibonding orbitals and the HOMO-

LUMO gap becomes smaller. In a conjugated system with many repeating units the 

HOMO-LUMO gap approaches zero and the material would theoretically behave as a 

conductive metal (Figure 1.2). However, due to Peierls distortion, the structure is unstable, 

which leads to the localization of single and double bonds removing degeneracy and 

opening the band gap (Eg) to usually larger than 1.5 eV.7 
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Figure 1.2 Frontier orbitals of ethene, butadiene, and polyacetylene. 

This problem was originally overcome upon doping PA with halogens or AsF5. In this case, 

PA becomes conducting due to the introduction of a negatively charged species (n-doping). 

The resulting anion is stabilized by resonance throughout the polymer chain and this creates 

an open site where electrons can move along the PA chains and within the bulk of the 

polymer. The propagation of charge from one PA chain to the next is explained by the 

bipolaron hopping mechanism.9 Depending on the dopant used for PA, different 

conductivities can be achieved, ranging from metal-like behavior to an insulating material 

(Figure 1.3).7 

 

Figure 1.3 Range of conductivities covered by PA compared to other relevant materials. 
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PA is a linear polyene chain with two C-H bonds present on the backbone. These bonds 

allow for substitution along the backbone to produce the monosubstituted or disubstituted 

PAs (Scheme 1.1). The interplay between the backbone and pendant functionalities can 

afford new properties such as electro-optic activity, photo-responsiveness, and biological 

compatibility.8 

Considerable effort was devoted to the synthesis of substituted PAs in order to study their 

properties.10-12 However, in the early stages of the synthesis of PA, integration of polar 

groups proved difficult. That was caused by the poisoning of the Ziegler-Natta catalysts by 

the functional groups present.13 The discovery of different metal based catalysts for the 

synthesis of PA allowed for the introduction of more varied functional groups appended to 

acetylene.14-15 Although many applications have been developed for functionalized PAs, I 

will only highlight a few interesting examples. A PA derivative containing a carbazole 

group (1.8) has high conductivity while simultaneously being a good hole transporter.16 

When a bulky chiral core is appended to the PA backbone, a macromolecule with a helical 

conformation was created (1.9).17 When a silolyl functionality is present on the PA 

backbone (1.10) a strongly luminescent species is created due to aggregation induced 

emmission.18 Finally, if a second polymerizable group is introduced, such as methacrylate 

(1.11), photo-polymerization of the methacrylate group can produce a well-defined 

photoresist and the patterns glow under UV irradiation due to the poly(phenylacetylene) 

backbone.19 

 

Scheme 1.1 Synthesis of PAs from acetylene precursors. 
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1.2.2 Polythiophene, its Derivatives, and Organosulfur Compounds 

Polythiophenes (PTs) are an important class of π-conjugated polymers because of their 

optical properties, processability, and charge-transport properties.20-21 The first syntheses 

of unsubstituted PT was reported in 1980 by the Yamamoto22 and Lin and Dudek23 groups. 

This polymer demonstrated relatively good electrical semiconductivity when doped 

(1 S cm−1),24 high thermal and chemical stability, but was plagued by a lack of control 

during polymerization and proved to be insoluble in all organic solvents even at low 

molecular weights. Eventually, flexible and solubilizing alkyl chains were introduced and 

these monomers (1.12) were used to create the first poly(3-alkylthiophene) (P3AT) by 

electrochemical methods25 and subsequently by catalysis using a Grignard reagent,26 which 

was soluble in common organic solvents. The synthesis was then developed to produce 

regioregular head-to-tail coupled P3AT (1.13) which led to conformational ordering along 

the backbone, π-stacking of planar polymer backbones and lamellar stacking between 

adjacent backbones (Scheme 1.2).27 All of these features led to improved electrical 

performance of the materials and, in turn, better device performance (600 S cm−1 for 

regioregular P3AT).27 It was not until 1999 that the current technology for the synthesis of 

P3AT was reported, known as Grignard metathesis (GRIM) polymerization.28-29 This 

polymerization yielded P3AT with 99% HT coupling, a number average molecular weight 

(Mn) of 20−35 kg mol‒1 and dispersities (Ð) of 1.2‒1.4. 

 

Scheme 1.2 General synthetic method for regioregular P3AT using GRIM. 

P3ATs have become ubiquitous in organic electronics, especially in organic field effect 

transistors and organic photovoltaics. The band gap of P3AT is relatively large (2.85 eV), 

so considerable efforts have gone toward lowering this band gap. Conjugated polymers 

including PT have been expanded to produce copolymers with many organic conjugated 

spacers in order to tune their electrical and optical properties. These polymers include, for 
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example, benzene-30 (1.14), dithienothiophene-31 (1.15), and cyano-substituted PPV32 

(1.16). Perhaps the most common derivative of PT would be poly-(3,4-

ethylenedioxythiophene) (PEDOT) (1.17).33-34 PEDOT was beneficial as it had high 

conductivity (ca. 300 S cm‒ 1), was almost transparent in a thin oxidized film, and was 

highly stable.35-36 PEDOT in conjunction with poly(styrene sulfonic acid) yielded a water-

soluble polyelectrolyte system useful in organic electronics being the most successful 

commercially used conducting polymer.37 

 

As PT showed great promise as an organic electronic material and in order to further 

understand the structure-property relationship of PT, many derivatives of the π-conjugated 

heteroatomic five-membered rings were explored. Among these were polyborole (1.18), 

polycyclopentadiene (1.19), polypyrrole (1.20), polyfuran (1.21), polysilole (1.22), 

polyselenophene (1.23), and polytellurophene (1.24).38  

 

These polymers have vastly different electrical properties, chemical stability, and 

syntheses. For example, the conductivity of PT and polyfuran are relatively high at 2000 

and 500 S cm−1, respectively. Polyselenophene and polytellurophene have a low 

conductivity of 3.7 × 10‒2 and 7.6 × 10‒6 S cm−1, respectively. This shows that even though 
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the band gap of the polymer systems has been reduced, from 2.85 to 2.0 eV for PT 

compared to polyselenophene, the electrical properties are not conserved. 

Polymers with disulfide or polysulfide groups show much promise in the field of organic 

photovoltaics (OPV), energy storage, and drug delivery. By creating a polymer such as 

1.2539 with an electron-rich thiophene and electron-poor phosphole units, greater power 

conversion efficiencies can be achieved. Tetrathiafulvalene (TTF) is an important π-

electron donor due to its ability to readily oxidize to the radical cation and the dicationic 

states. The incorporation of these units into polymer materials can improve both their 

electronic and mechanical properties while introducing the processability of 

macromolecules. To date, these materials have been incorporated into main-chain (1.26),40  

side-chain41 (1.27),42 and conjugated43 polymers. Further to this, TTF has also been 

incorporated into polymers for charge storage applications. Compound 1.2844 had an 

observed capacity of 122 mA h g‒1 and the redox response remains essentially unchanged 

for 20 cycles. Compound 1.2945-47 is a promising material as it is produced by a facile 

polymerization method taking advantage of elemental sulfur with vinylic monomers. It 

possesses good thermomechanical properties, and maintained high capacity (823 mA h g-1) 

after 100 cycles. 

 

1.2.3 Heteroatom and Carbonyl-Containing Polymers 

Polyaniline (1.30) was first synthesized in 1834, but it wasn’t until the 1980s that the 

conductive properties of polyaniline were recognized and research dealing with the 
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conductivity was undertaken.48 Over the years, many derivatives of polyaniline have been 

synthesized and many chemical syntheses have been developed in order to produce these 

polymers.49 Another interesting heteroatomic polymer is polytriphenylamine (1.31) and its 

derivatives, which have useful hole-transport abilities. To date, they have been studied in 

organic light-emitting diodes (OLEDs), solar cells, organic field effect transistors (OFETs) 

and photorefractive holographic materials.50 Similar to the other heteroatom-based 

materials, carbazole-based materials, such as compound 1.32, have also been explored for 

their electrical and optical properties.51  For example, their hole-transporting ability has 

been used in xerographic applications52 and lithium-ion batteries.53 Another interesting 

class of heteroatomic redox polymers are poly(viologen)s (1.33).54 These polymers 

combine redox and electrochromic properties useful in sensor and catalyst     

applications.55-56  

 

The family of functional π-conjugated polymers that contain carbonyl groups are another 

relevant class. Architectures that have been investigated for their redox properties include 

anthroquinones, quinones, anhydrides, and imides. Some examples of this group are 

anthroquinone polymer 1.34,57 and naphthalene derivative 1.3558 which have been 

explored for their use as charge storage materials in lithium batteries. Polymer 1.36, which 

contains a quinone, has been used as an actuating material.59 Upon reduction, this material 

forms either a mono- or dianionic species, and the associated solvent and counterions then 

induce the desired swelling for actuation. 
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Redox-active carbonyl containing polymers have exciting potential for further 

development in the energy storage field, as quinone moieties are found in biopolymers and 

are an abundant natural resource.60 

1.2.4 Stable Organic Radical Polymers 

A promising class of organic redox polymers consist of stable radical groups appended to 

a non-conjugated polymer backbone. Although this family of polymers are relatively new, 

persistent organic radicals were discovered over 100 years ago by Gomberg.61 Since then, 

many different types of organic radicals have been synthesized and subsequently 

incorporated into polymeric materials. These types of materials prove interesting to the 

scientific community because they afford the advantage of reversible oxidation and 

reduction of the radical species (Scheme 1.3) and they allow the tailoring of redox potential 

of the resulting polymer by modifying the radical group used or by synthetically modifying 

the radical functionality. 

 

Scheme 1.3 The nitroxide radical can be reversibly oxidized and reduced. 

Stable organic radicals typically gain their stability from the distribution of the unpaired 

electron over electronegative heteroatoms and the introduction of functional groups that 

inhibit side-reactions such as disproportionation, and reactions with other radicals or 

impurities. 2,2,6,6-tetramethylpiperidinyloxy (TEMPO, 1.37) is the most widely studied 

of the nitroxide group of stable radicals.62 Other members of the nitroxide family include 

2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PROXYL, 1.38),63 unsaturated PROXYL (1.39),64 

N-tert-butyl-N-oxy-aminobenzene (1.40),65 nitronyl nitroxide (1.41),66 and 

spirobisnitroxide (1.42).67 Occuring less often in the literature, radicals stabilized by 

delocalization over an aromatic system, steric bulk surrounding the radical species, and 
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distribution of electron density over several nitrogen atoms can be found. These radicals 

include galvinoxyl (1.43)68 and verdazyl (1.44)69 radicals. 

 

One of the advantages of using stable radicals as the functional component of polymers is 

that they can be synthetically modified to include different polymerizable groups. Some of 

the more common backbone architectures include polymethacrylate (PMA), 

polynorbornene (PNB), PA, polyvinyl ether (PEV), and polyethyleneglycol (PEG) using 

either step growth or chain growth polymerization pathways.70 

 

The majority of research in the field of organic radical polymers is focused on their utility 

as electrode materials for use in batteries.71 Stable radical polymers are ideal materials for 

their use as electrode materials in battery applications because of their high charge capacity 

(although limited by molecular weight of the repeating unit) and a self-exchange 

mechanism that is fast and efficient (Figure 1.4). 
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Figure 1.4 Positive charge propagation during the oxidation of p-type radical polymers in 

electrolyte solution. Figure adapted from Ref. [71]. 

Stable radical polymers have been developed as both p-type and n-type materials. The 

recent growth in this field has led to the creation of a library of stable radical polymers that 

can be utilized for various applications. In Figure 1.5 they are organized by redox-capacity 

versus the weight-based capacities.71 

 

Figure 1.5 Energy diagram of p-type (red) and n-type (blue) radical polymers, and redox-

active polymers for comparison (black). Figure adapted from Ref. [71]. 
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Recent advances in this field have led to batteries that have improved performance by 

introduction of carbon nano-fillers72-74 and the creation of zinc hybrid batteries with 

enhanced performance and cyclability.75-76 Most recently, stable radical polymer based 

flow batteries soluble in aqueous medium were developed.75-77 With an emphasis on 

renewable energy sources such as solar and wind, there is a requirement for flexible and 

scalable energy-storage solutions. Schubert and co-workers were able to design an aqueous 

polymer-based battery using low cost materials (Figure 1.6).77 This represents a significant 

advance in the field of radical polymers for charge storage applications. 

 

Figure 1.6 (a) Representation of polymer-based flow battery that includes two reservoir 

tanks, the first including the TEMPO containing copolymer and the second including a 

redox-active viologen based copolymer. The reservoirs are separated by a size-exclusion 

membrane that allows the electrolytes to permeate but not the macromolecules. (b) The 

fundamental electrode reactions are shown of the TEMPO radical and viologen. 

Reproduced with permission from Ref. [77]. 

Other areas of research for radical polymers include applications as (co)catalysts for the 

selective oxidation of alcohols,78 solid-state conductive materials,79-81 inhibitors of self-

polymerization materials,82 and the functional component of memory architectures.83-84 
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Nishide and co-workers have developed a rewritable memory architecture using a TEMPO 

radical polymer as the p-type layer and a galvinoxyl polymer as the n-type layer (Figure 

1.7).83 They reported a difference of four orders of magnitude between the ON-OFF ratio 

and good cyclability. 

 

Figure 1.7 Radical polymer-based memory architecture and electron movement of the 

device. Reproduced with permission from Ref. [83]. 

1.3 Metal-Containing Polymers 

The introduction of transition metals into synthetic polymers allows for processable 

materials with properties and functions comparable to their organic counterparts. The type 

of metal incorporated into the polymer can introduce important redox chemistry, emission 

properties, conductivity, magnetism, and can also be an important structural component to 

the primary or secondary structure. The binding motif of the metal to the polymer structure 

are varied. The metal can be covalently bound, connected through weak or labile 

coordination bonds, or non-covalently coordinated to afford dynamic materials in solution. 

Over the last couple of decades, effective approaches to the synthesis of metal-containing 

polymers (MCPs) have been developed. Crucially, the synthetic methods developed had to 

be compatible with the metal centres present in the monomer or with the binding sites 

present for the subsequent introduction of metals into polymers.85-88  For the purposes of 

this thesis, MCPs will be divided into two broad categories: π-conjugated MCPs (e.g. a Pt-

polyyne polymer, 1.45)89 which contain the metal within the main-chain or appended to a 

conjugated backbone. The other category consists of non-conjugated MCPs [e.g.  

polyferrocenylsilanes (PFSs), 1.46] where the metal is present in the main-chain or side-

chain, but the polymer backbone is non-conjugated. 
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1.3.1 π-Conjugated MCPs 

π-Conjugated MCPs have gained considerable interest over the last 30 years. Within this 

class of materials, the transition metal used strongly affects the π-conjugation within the 

polymer backbone, and results in unique functional materials that offer properties that 

cannot be achieved with either metals or π-conjugated polymer alone. Wolf has described 

the classification of π-conjugated MCPs (Figure 1.8).90 Type I polymers have a pendant 

metal centre connected to a conjugated organic backbone through an electronically isolated 

linker. Type II polymers have electronic interaction between the backbone and the metal 

and Type III polymers contain the metal within the polymer backbone.  

 

Figure 1.8 Representation of Type I-III MCPs. Figure adapted from Ref. [90]. 

1.3.1.1 Wolf Type I Polymers 

In Wolf Type I polymers, the metal is tethered to a conjugated backbone. The polymer 

typically behaves as a conductive support while the metal behaves electronically, optically, 

and chemically as if it were untethered. These types of polymers usually tether the metal 

centre to the conjugated backbone via an alkyl linker. The Chen group utilized this polymer 

motif to design a material for a LED with the highest external quantum efficiency of a 
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polymer LED at the time (1.59%). This polymer uses a conjugated polyfluorene backbone 

and the iridium complex as a phosphorescent dopant which displays red-light emission 

from a the cyclometalated iridium complex (1.47).91-92 Another example includes a 

polyaniline derivative with a ferrocene group appended to the polymer backbone (1.48).93 

The polymers exhibit a colour transition when the ferrocene functionality undergoes a 

reduction or oxidation. This produced a polymer with three electronically different states. 

A third example of this type of polymer utilized a polythiophene backbone with an 

oligopyridine ligand as a metal coordination site (1.49).94 The polymer can detect the 

presence of different metals, such as Cd2+, Cr6+, Mn2+ and Ni2+ upon metal coordination as 

the emission intensity of the polymer varies. This allowed polymer 1.49 to be used as a 

chemosensor.94 

 

1.3.1.2 Wolf Type II Polymers 

A Wolf Type II polymer contains a metal that is electronically coupled to a π-conjugated 

backbone. However, the existence of the polymer backbone does not require the transition 

metal to be present. The backbone and metal groups can be redox-active and this leads to 

systems that can be electronically tuned. An interesting example of a Type II polymer was 

synthesized by the Swager group, and includes a Salen-type ligand with a series of metal 

centres, including Co2+ (1.50), Cu2+ (1.51), and UO2
2+ (1.52).95-96  
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The cobalt containing variation of this polymer system is able to detect a change in 

oxidation potential of 0.1 V when the cobalt metal centre is ligated to nitric oxide.97 This 

allowed for the detection of nitric oxide, a molecule present in many cascade pathways 

within the body, when this polymer system was appended to an electrode.95 

Metal complexes of macrocyclic ligands such as porphyrin and phthalocyanine with metals 

coordinated are an important class of compounds.98-101 An example of a Zn-porphyrin 

polymer (1.53) uses a template-directed synthesis in order to create a macromolecule that 

has the ability to self-organize into a cyclic polymer and display a high degree of order. 

The cyclic polymer nanoring can then stack or nest when deposited onto a gold surface 

(Figure 1.9).102 

    

Figure 1.9 Structure of Zn-porphyrin nanorings and scanning tunneling microscopy 

images of a 30 repeat unit nanoring deposited on a gold surface. Figure reproduced with 

permission from Ref. [102].  

Phthalocyanin macrocycles are structurally similar to porphyrins, with the inclusion of 4 

additional nitrogens in the backbone. One notable example includes an iron metal centre 

coordinated to the phthalocyanine (1.54) within a well-ordered two-dimensional polymer 

matrix (Figure 1.10).103 This polymer represents a fully delocalized 2D matrix with 

paramagnetic metal atoms evenly distributed throughout. This provided a scaffold for the 
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introduction of many different metal centres in order to tune the structure, chemical 

composition, and magnetic properties.  

   

Figure 1.10 STM image of polymer 1.54 formed on a Ag(111) surface. Image reproduced 

with permission from Ref. [103]. 

1.3.1.3 Wolf Type III MCPs 

Wolf Type III MCPs contain metals embedded in the main-chain, typically with the metal 

connected by a single, double, or triple bond. The metal centre can interact with the 

conjugated backbone so that the properties of the resulting material is a combination of 

both parts. One notable example of a Wolf Type III polymer includes a platinum polyynes 

(e.g. 1.45).104 This polymer is characterized by a low-band gad utilizing a donor-acceptor 

copolymer approach in order to improve the charge-transfer properties. The polymer 

demonstrated impressive power conversion efficiencies of 4.1% when blended with 

poly(3-hexylthiophene) (P3HT) and fullerene to produce a photovoltaic device.  

The study of transition-metal alkynyl complexes has been an intense area of research for 

many years, with thousands of research papers published since the 1980s.105-109 

Computational studies of these polymers show that the highest occupied molecular orbital 

is primarily d orbital in character and delocalized along the entire chain through the metal-

ligand groups. Different syntheses were developed and the incorporation of many transition 

metals was achieved. Some examples include octahedral metal centres including Fe2+ 

(1.55),110 Ru2+ (1.56),111 Os2+ (1.57),112 Co4+ (1.58),113 and Rh4+ (1.59),114 as well as square 

planar metal centres Ni2+ (1.60),115 Pd2+ (1.61),116 and Pt2+ (1.45).117  
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The synthesis of a zinc(II)-salen polymer was performed by Peng and co-workers (1.61).118 

This polymer exhibited some interesting thin-film properties. The photoluminescence was 

measured to be ca. 50% and the creation of light-emitting diodes with this material 

produced efficient green emitters. The ability to tailor the conjugated backbone of the 

metallopolymer in order to achieve the desired electronic properties is a powerful synthetic 

tool. Khan and co-workers were able to tune the optical bandgap of the platinum alkynyl 

polymer by introducing one, two or three thiophenes within the polymer backbone, 

(1.62).119 

Iridium-based complexes are attractive candidates for device applications (e.g. 1.63) due 

to the ease of fabrication and high quantum efficiency.120 Unfortunately, when these small 

molecules are incorporated into a polymer network the resulting devices experience fast 

decay due to phase separation. By incorporating the Ir into the polymer main-chain, the 

stability was increased and the polymers realized high efficiency emission. The 

combination of the strong charge-transfer character of a transition metal paired with the 

conductive properties of an organic conjugated polymer can produce polymers ideal for 

photoelectronic applications. One such example, polymer 1.64,121 showed promising short 

circuit currents and open circuit voltages in the 8.9−15.0 µA cm−2 and 0.76−0.84 V ranges, 

respectively when incorporated into a photovoltaic device. 
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1.3.2 Non-Conjugated MCPs 

When the metal and polymer are connected within a polymer backbone via a non-

conjugated pathway, such as an ester group or alkyl chain, the physical properties tend to 

be a combination of the metal and polymer backbone. This family of MCPs is expansive 

and includes thousands of examples. This introduction will focus on examples of main-

chain and side-chain non-conjugated polymers that utilize metallocene moieties in the 

polymer.  

1.3.2.1 Non-Conjugated Main-Chain MCPs 

One of the most widely developed classes of main-chain MCPs are the 

poly(ferrocenylsilane)s (PFSs, 1.65). These polymers were first described by Rosenberg 

and were prepared via a step-growth polycondensation reaction.122-123 Later, the use of a 

strained silicon-bridged [1]ferrocenophanes to produce PFS by ring-opening 

polymerization (ROP) afforded high-molecular weight, well-characterized polymers 

(Scheme 1.4).124 This methodology has since been extensively developed to produce PFS 

by a “living” polymerization at room temperature.125-127 

 



21 

 

 

Scheme 1.4 Synthesis of PFS from ferrocene. 

The incorporation of ferrocene into different polymer systems allows for the tailoring of 

the physical, chemical, and optical properties. The tailoring of these properties relies 

mostly on the ability to control the redox activity of the ferrocene/ferrocenium couple. In 

Figure 1.11a‒c, we can see the production of a ceramic network resulting from the 

pyrolysis of PFS molded to a pentagon shape that has tunable magnetic properties,128-129 

the synthesis of microbeads using microfluidics that are redox responsive,130 and the 

synthesis of colour-tunable fluorescent micelles utilizing block copolymer self-

assembly,131 respectively. 

 

Figure 1.11 (a) Pyrolyzed pentagon shaped polymers derived from PFS, (b) PFS 

microparticle, (c) PFS micelles with complex fluorescent patterning (scale = 5µm). Images 

reproduced with permission from (a) [129], (b) [130], and (c) [131]. 

Further to the ferrocene family of polymers, there exists many different types of 

metallocene polymers contained within the main-chain. For example, a zirconacene-

containing polymer that uses a silsesquioxane macromonomer in the backbone (1.66). This 

polymer was one of the first reported zirconacene complexes that was stable to both air and 

methanol.132 A half-sandwich molybdenum complex was incorporated into a urethane 

monomer to produce polymer 1.67, synthesized by Wang and co-workers.133-134 Lastly, 

Carraher and co-workers were able to synthesize a colbatocene- and titanocene-containing 

copolymer (1.68) that has potential applications as an antitumor agent.135-136  

a c b 
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1.3.2.2 Non-Conjugated Side-Chain MCPs 

When incorporating metallocenes as pendant groups on a polymer scaffold, there exists the 

ability to tune both the backbone and the redox-active metallocene group. In terms of the 

backbone, scientists are afforded the advantage of using many different backbone 

structures as the monomers are typically more tolerant of different polymerization 

methods. For example, ring-opening metathesis polymerization (ROMP) can be used, 

which is a well understood, highly amenable to different functional groups, and a living 

polymerization method.137 The Yan group was able to synthesize a rhodocenium based 

side-chain polymer (1.69) utilizing the ROMP protocol.138 The self-assembly and ion-

exchange properties of this class of rhodocenium-based polymers opens the door for 

potential applications. ROMP was also used to synthesize cobaltocenium side-chain 

polymers (1.70).139 The benefit of this method is the ability to create diblock copolymers 

in a fast and efficient manner in order to produce polymers with higher-order functionality. 

The investigators designed a system in which the copolymer self-assembled to form a 

micelle, followed by the creation of a cobalt nanoparticles resulting from pyrolysis.140 A 

final example of side-chain polymers incorporates a ferrocene functional group that was 

polymerized using a carbanionic polymerization (1.71). The researchers were able to create 

block copolymers with this system and selectively tune the size of vesicle-like materials 

that resulted by changing the solvents used for block copolymer self-assembly.141 
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1.4 Scope of Thesis  

This thesis will focus of the synthesis of functional monomers including 6-oxoverdazyl 

stable radical group and Ni(II) complexes of Goedken’s macrocycle and their subsequent 

incorporation into polymers that demonstrate reversible redox behaviour. The resulting 

optical, electronic, and physical properties of these macromolecules will be explored and 

compared, in certain cases, to model compounds.  

The 6-oxoverdazyl molecule was chosen to be incorporated into a polymer material due to 

several desirable features. The verdazyl radical affords tunability of the reduction and 

oxidation potentials by modifying the substituents present on the 1 and 5 position (Figure 

1.12). Simply by changing the group from an alkyl to an aryl, a change of ca. 0.5 V was 

observed for the reduction potential and 0.2 V for the oxidation potential, for example.142 

Verdazyl radicals also exhibit stabilities towards oxygen and water that rivals the most 

stable organic radicals reported in the literature (e.g. TEMPO), and allow modification at 

the 3 position in order to incorporate a variety of polymerizable groups. 

 

Figure 1.12 (left) Calculated singly occupied molecular orbital (SOMO, DFT; B3LYP/6-

31G),143 (right) corresponding molecular drawing for 6-oxoverdazyl 1.72. 
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The second family of molecules chosen to be incorporated into polymer scaffolds were 

nickel complexes of Goedken’s macrocycle. This π-conjugated macrocycle offers the 

advantage of being relatively easy to synthesize when templated with Ni(OAc)2 in a high 

yielding and scalable reaction.144 Chemical modification of the C-H on the macrocycle 

backbone will allow the introduction of polymerizable groups or reactive moieties to allow 

polymerization.145 

 

Scheme 1.5 Templated synthesis of a Ni(II) complex of Goedken’s macrocycle.144 

Chapter 2 will focus on the synthesis of 6-oxoverdazyl radical polymers and their resulting 

redox properties in solution and the solid-state. The chapter details the post-polymerization 

conversion of the pendant 6-oxotetrazane moiety to 6-oxoverdazyl in the polymers 

produced, as confirmed by spectroscopic studies and comparison to closely related model 

compounds. Kelvin probe force microscopy studies also highlight the potential utility of 6-

oxoverdazyl polymers as redox-active thin films. 

Chapter 3 includes discussion on the ring-opening metathesis polymerization methods used 

to directly prepare novel side-chain polymer bearing 6-oxoverdazyl stable radicals. 

Detailed characterization, including FT-IR, UV-vis absorption, and electron paramagnetic 

resonance (EPR) spectroscopy quantitatively and qualitatively confirmed the large radical 

content within the polymer backbone. The polymers exhibited ambipolar redox properties 

in solution, and the resistivity of thin-films varied dramatically when an external potential 

of 5 V was applied (1010 Ωm 104 Ωm). This behaviour led to the development of 

bistable memory devices. 

Chapter 4 describes the optimized copolymerization of 2,7-dibromo-9,9-dihexylfluorene 

and ethynyl functionalized Goedken’s macrocycle and the subsequent copolymerization 

with 1,4-dibromo-2,5-dihexyloxybenzene and 2,5-dibromo-3-hexylthiophene. These 

polymers were characterized in detail and their redox and optical properties were studied. 



25 

 

The post-polymerization functionalization of the initial polymer at the alkyne position with 

cobalt carbonyl produced a heterobimetallic polymer. Upon pyrolysis in a reducing 

atmosphere, nanoparticles with the metallic content influenced by the polymer composition 

were obtained. 

Chapter 5 highlights the controlled polymerization of norbornene-based side-chain 

monomers of Ni(II) complexes of Goedken’s macrocycle. The title polymer was 

characterized and the redox and optical properties were studied. Differences in the 

electrochemical reduction behaviour of Ni species were observed in the macromolecule 

when compared to the discrete monomer unit. 
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Chapter 2  

2 6-Oxoverdazyl Radical Polymers with Tunable 
Electrochemical Properties 

Adapted from:  

J.T. Price, J.A. Paquette, C.S Harrison, R. Bauld, G. Fanchini,* and J.B. Gilroy* Polym. 

Chem. 2014, 5, 5223‒5226. 

2.1 Introduction 

Organic radicals have fascinated scientists since the discovery of the persistent triphenyl 

methyl radical by Gomberg in 1900.1 Since then, many families of stable radicals have 

been discovered and their properties widely explored across a number of applications.2-3  

More recently, polymers containing stable radicals within or appended to a variety of 

polymer backbones have been prepared as part of efforts towards combining the 

processability of polymers with the functionality (i.e., magnetic and redox properties) of 

stable organic radicals. Based on the combination of these traits, stable radical polymers 

have shown application as host materials in Li-ion batteries,4 silica-grafted catalysts for the 

oxidation of alcohols,5 ferromagnetic organic materials,6 solid-state conductive  

materials,7-8 redox mediators in transparent conducting materials,9 the functional 

component of rewritable memory devices,10 and electrode materials in stable radical 

polymer batteries.11-12,13-17 

Although advances in the stable radical polymer field have been impressive, examples that 

exhibit readily tunable properties through structural variation have remained elusive. 6-

Oxoverdazyl radicals (2.1: X = CO) represent one of the only classes of stable radicals with 

stabilities rivaling nitroxide (2.2) and nitronyl nitroxide radicals (2.3). The ability to tune 

the properties of 6-oxoverdazyl radicals through structural variation (2.1: R, R', and X) has 

led to their use as mediators for controlled radical polymerization,18-19 in model 

coordination complexes for molecule-based magnets,20,21-25 as photoconductive liquid-

crystalline materials,26 and in tunable redox-active molecular materials.27-30 However, the 
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synthetic methodologies required to produce polymers containing 6-oxoverdazyls,31-34 

which have the potential to exhibit tunable redox properties,27 have not been developed to 

date.  

 

Herein, we describe the synthesis and characterization of two side-chain 6-oxoverdazyl 

polymers and a series of model compounds designed to delineate the underlying properties 

of the isolated polymers. Attempts were made to prepare verdazyl polymers with a 

polystyrene backbone, but this synthetic route proved unsuccessful. Therefore, poly(phenyl 

methacrylate) backbone was chosen and it was anticipated to increase the solubility profile 

of the resulting polymer. 

2.2 Experimental 

2.2.1 General considerations 

All reactions and manipulations were carried out under a nitrogen atmosphere using 

standard Schlenk or glove box techniques unless otherwise stated. Solvents were obtained 

from Caledon Laboratories, dried using an Innovative Technologies Inc. solvent 

purification system, collected under vacuum, and stored under a nitrogen atmosphere over 

4 Å molecular sieves. Reagents were purchased from Sigma-Aldrich or Alfa Aesar and 

used as received unless otherwise stated. p-Benzoquinone was freshly sublimed in vacuo 

before use. 4-Methacryloyloxybenzaldehyde,35 4-pivaloyloxybenzaldehyde,36 tetrazane 

2.4,37-38 tetrazane 2.10c,27, 37 and 6-oxoverdazyl 2.11c27, 37 were prepared according to 

published protocols.  

NMR spectra were recorded on a 400 MHz (1H: 399.8 MHz) and a 600 MHz (1H: 

599.5 MHz, 13C: 150.8 MHz) Varian INOVA instrument, or a 400 MHz (13C: 100.6 MHz) 
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Varian Mercury instrument. 1H NMR spectra were referenced to CHCl3 (7.26 ppm), 

CD3SOCD2H (2.50 ppm), or CD2HCN (1.93 ppm) and 13C{1H} NMR spectra were 

referenced to CDCl3 (77.2 ppm) or CD3SOCD3 (39.5 ppm). Mass spectrometry data were 

recorded in positive-ion mode using a high resolution Finnigan MAT 8200 spectrometer 

using electron impact ionization. UV-vis spectra were recorded in CH2Cl2 solutions and 

recorded using a Cary 300 Scan instrument. Four separate concentrations were run for each 

sample, and molar extinction coefficients were determined from the slope of a plot of 

absorbance against concentration. IR spectra were recorded as KBr pellets using a Bruker 

Vector 33 FT-IR spectrometer. Gel permeation chromatography (GPC) was carried out at 

a flow rate of 1 mL min−1 in N,N-dimethylformamide (DMF) with 10 mM LiBr and 1% 

(v/v) Et3N added at a regulated temperature of 85 °C using a Waters 515 pump, equipped 

with a Wyatt Optilab REx detector and two PLgel 5 μm mixed-D (300 mm × 7.5 mm) 

columns from Polymer Laboratories connected in series. Calibration was performed using 

monodisperse polystyrene standards supplied by Polymer Lab.  Elemental analyses (C, H, 

N) were carried out by Laboratoire d’Analyse Élémentaire de l’Université de Montréal, 

Montréal, QC, Canada. 

2.2.2 Electrochemical Methods 

Cyclic voltammetry experiments were performed with a Bioanalytical Systems Inc. (BASi) 

Epsilon potentiostat and analyzed using BASi Epsilon software. Typical electrochemical 

cells consisted of a three-electrode setup including a glassy carbon working electrode, 

platinum wire counter electrode, and silver wire pseudo-reference electrode. Experiments 

were run at variable scan rates in degassed tetrahydrofuran (THF) solutions of the analyte 

(~1 mM) and electrolyte (0.1 M nBu4N PF6). Cyclic voltammograms were referenced 

against the ferrocene/ferrocenium redox couple (~1 mM internal standard) and corrected 

for internal cell resistance using the BASi Epsilon software.  

2.2.3 Electron Paramagnetic Resonance (EPR) Spectroscopy 

EPR measurements were made on ca. 10-5 M CH2Cl2 solutions of verdazyl radical 

polymers 2.7a,b and verdazyl radicals 2.11a,b that had been subjected to three freeze-
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pump-thaw cycles in 0.4 mm quartz tubes using a JEOL JES-FA200 EPR spectrometer. 

All measurements were made at 20 C and g-factors were referenced relative to a built-in 

manganese dioxide marker within the resonant cavity of the instrument. 

2.2.4 Kelvin Probe Force Microscopy (KPFM) 

Thin films of polymer 2.7a were spun under atmospheric conditions using a Laurell 

WS40-6NPP spin coater from a 15 mg mL‒1 solution in anhydrous chlorobenzene (Sigma-

Aldrich). A spinning speed of 1,000 RPM produced a polymeric thin film of approximately 

166±10 nm thickness. The topography and work function of thin films of 6-oxoverdazyl 

polymer 2.7a were determined in one single scan by intermittent contact mode Atomic 

Force Microscopy (AFM) and Kelvin Probe Force Microscopy (KPFM), respectively. 

Images were recorded on a Witec Alpha 300S atomic force microscope specifically 

modified for KPFM experiments with the attachment of a Stanford DS 345 function 

generator. This generator is locked-in at the second-order resonance frequency of the AFM 

cantilever using a Stanford SR844-RF lock-in amplifier that transfers the data directly to 

the digital controller of the Witec system. The AFM/KPFM microscope is contained in a 

sealed enclosure for controlling the temperature and humidity of the atmosphere during 

measurements. For each pixel of an AC-mode AFM scan, the voltage Vb0 resulting in the 

minimum force between the tip and the sample is optimized in the Vb = ± 10 V range using 

an integral-proportional feedback loop. Under those conditions, eVb0 represents the work 

function of the sample relative to the tip.39 Conducting cantilevers (~75 kHz first-order 

resonance frequency, ~425 kHz second-order resonance frequency, from Nanosensors 

Inc.) were used for AFM/KPFM imaging. For KPFM, the work function of the polymeric 

thin film was determined from its shift from the work function of ITO recorded on a portion 

of the sample in which the polymer film was removed. The work function of the used ITO 

reference was assumed to be 4.7 eV.40 In order to determine the uncertainty associated with 

such a work function estimate, the conducting AFM tip was also calibrated by scanning 

highly doped p- and n-type silicon wafers of known work functions and determined to be 

~4.6 ± 0.1 eV. With this crosscheck we determined the uncertainty associated to our KPFM 

measurements to be ± 0.1 eV, or better. KPFM histograms were directly extracted from the 

recorded images using the Witec Project 2.04 software and analyzed using a model 
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comprising three Gaussian peaks, one for the signal from the polymeric film surface, one 

for the signal from the ITO film surface and one minor peak related to the signal related to 

the edge of the film, as shown in the inset of Figure 2.9. 

2.2.5 X-ray Crystallography Details 

Crystals suitable for X-ray diffraction were grown by slow cooling (‒20 C) a saturated 

toluene solution of 2.11a, slow cooling (‒20 C) a saturated EtOAc solution of 2.11c, or 

vapor diffusion of Et2O into a saturated acetonitrile solution of 2.12c at ‒35 C. X-ray 

diffraction data were collected on a Nonius KappaCCD or a Bruker ApexII CCD area 

detector using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Single crystals 

were selected under Paratone-N, mounted on MiTeGen polyimide micromount, and 

immediately placed under a cold stream of N2. Structures were solved by direct methods 

and refined using full-matrix least squares on F2.41 See Table 2.1 for crystallographic data 

and the CCDC (991914-991916) for structural data. 
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Table 2.1 Crystallographic data for compounds 2.11a, 2.11c, and 2.12c. 

 2.11a 2.11c 2.12c 
Chemical Formula C19H27N4O3 C14H19N4O C14H19BFN4O 
FW (g/mol) 359.44 259.33 346.14 
Crystal Dimensions 
(mm) 

0.51 x 0.17 x 0.052 0.4 x 0.3 x 0.3 0.24 x 0.22 x 0.18 

Crystal Habit Red, block Red, block Red, block 
Crystal System Monoclinic Orthorhombic Monoclinic 
Space Group P 21/c P na21 P 21/c 
Temperature (K) 110 150(2) 150(2) 
a (Å) 18.930(7) 16.219(7) 8.1059(16) 
b (Å) 5.8718(19) 15.484(9) 13.501(5) 
c (Å) 18.364(5) 5.7192(14) 15.435(6) 
α (°) 90 90 90 
β (°) 105.364(12) 90 99.864(10) 
γ (°) 90 90 90 
V (Å3) 1968.3(11) 1436.4(11) 1664.3(10) 
Z 4 4 4 
ρ (g/cm) 1.213 1.199 1.381 
λ, Å, (Mo Kα) 0.71073 0.71073 0.71073 
μ (cm-1) 0.084 0.079 0.119 
Diffractometer Type Bruker APEX-II CCD Nonius KappaCCD Nonius KappaCCD 
Rmerge 0.0548 0.0269 0.0376 
aR1 [2σI > 2] 0.0515 0.0313 0.0580 
bwR2 [2σI > 2] 0.1282 0.0735 0.1489 
R1 (all data) 0.0891 0.0378 0.0818 
wR2 (all data) 0.1527 0.0767 0.1685 
GOF 1.041 1.045 1.048 

aR1 = Σ( |Fo| ‒ |Fc| ) / Σ Fo 
bwR2 = [ Σ( w( Fo

2 ‒ Fc
2 )2 ) / Σ(w Fo

4 ) ]½ 

GOF = [ Σ( w( Fo
2 ‒ Fc

2 )2 ) / (No. of reflns. ‒ No. of params. ) ]½ 

2.2.6 Synthetic Procedures 

Synthesis of 1,5-di-isopropyl-3-(4-phenylmethacryloyl)-6-oxotetrazane 2.5a 

A sample of tetrazane 2.4 (2.20 g, 7.90 mmol) was added to a Schlenk flask 

equipped with a stir bar and combined with dry CH2Cl2 (150 mL) and dry 

Et3N (1.1 mL, 0.79 g, 7.9 mmol). Methacryloyl chloride (0.70 mL, 0.75 g, 

7.9 mmol) was then added drop wise via syringe to the suspension of 

tetrazane 2.4 causing dissolution. After stirring for 3 h at 20 C, deionized 

H2O (10 mL) was transferred to the reaction flask via syringe and the 

reaction mixture was stirred for 5 min to consume any remaining methacryloyl chloride. 

The reaction mixture was then transferred to a separatory funnel and washed with deionized 

H2O (3 x 100 mL). The organic layer was dried over MgSO4 before the solvent was 
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removed to yield a light yellow powder. Recrystallization from a saturated EtOAc solution 

afforded tetrazane 2.5a as a soft, fibrous white solid. Yield = 1.75 g, 65 %. 1H NMR (400.1 

MHz, d6-DMSO): δ 7.61 (d, 2H, 3JHH = 8 Hz, aryl CH), 7.20 (d, 2H, 3JHH = 8 Hz, aryl CH), 

6.28 (s, 1H, =CH), 5.91 (s, 1H, =CH), 5.00 (d, 2H, 3JHH = 12 Hz, NH), 4.50 (sept, 1H, 3JHH 

= 7 Hz, CH), 4.39 (t, 1H, 3JHH = 12 Hz, CH), 2.00 (s, 3H, CH3), 1.07 (d, 6H, 3JHH = 7 Hz, 

CH3), 1.04 (d, 6H, 3JHH = 7 Hz, CH3). 
13C{1H} NMR (100.6 MHz, d6-DMSO): δ 165.3, 

153.4, 150.4, 135.2, 134.1, 127.9, 121.7, 71.1, 46.7, 19.5, 18.4, 18.0. FT-IR (ranked 

intensity), KBr pellet: 724(10), 916(7), 1129(2), 1205(9), 1317(8), 1429(6), CO tetrazane 

1583(1), CO ester 1735(3), 2977(4), NH tetrazane 3232(5) cm-1. Mass Spec. (EI, +ve 

mode): exact mass calculated for C18H26N4O3: 346.2005; found: 346.1992; difference: −3.8 

ppm. Anal. Calcd. (%) for C18H26N4O3: C, 62.41; H, 7.56; N, 16.17. Found: C, 62.40; H, 

7.61; N, 16.01. 

Synthesis of isopropyl-substituted tetrazane polymer 2.6a 

A sample of tetrazane 2.5a (3.0 g, 8.64 mmol) was added degassed MeOH 

(15 mL) in a greaseless Schlenk flask equipped with a stir bar under N2. 

AIBN (0.075 g, 0.43 mmol) was added to the reaction flask under a flow of 

nitrogen and the reaction mixture was further degassed by 2 more freeze-

pump-thaw cycles. The reaction was then heated to 65 ºC for 22 h at which 

time the solvent was removed in vacuo yielding a white solid. The white 

solid was then washed with EtOAc (3 × 30 mL) to remove trace amounts of tetrazane 2.5a. 

Tetrazane polymer 2.6a was isolated as a white solid by centrifugation and dried at 20 C 

in vacuo for 16 h before it was stored at 20 ºC to avoid undesirable oxidation.  Yield = 2.47 

g, 83%. 1H NMR (400.1 MHz, d6-DMSO): 7.57 (br, s, 2H, aryl CH), 7.15 (br, s, 2H, aryl 

CH), 4.97 (br, s, 2H, NH), 4.45 (br, s, 2H, CH(CH3)), 4.35 (br, s, 1H, CH), 2.50‒2.20 

overlaps residual NMR solvent signal (v. br, s, 2H, CH2), 1.41‒1.33 (br, m, 3H, CH3), 0.99 

(br, s, 12H, CH3). FT-IR (ranked intensity), KBr pellet: 728(8), 879(5), 1017(9), 1166(2), 

1416(4), 1507(10), CO tetrazane 1613(1), CO ester 1751(6), 2917(3), NH tetrazane 

3244(7) cm-1.  GPC: Mn = 25,260 g mol‒1, Mw = 46,230 g mol‒1, Ð = 1.83. 
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Synthesis of isopropyl-substituted 6-oxoverdazyl polymer 2.7a 

A sample of 2.6a (1.50 g, 4.30 mmol) and p-benzoquinone (0.72 g, 6.6 

mmol) were added to a mixture of THF (30 mL) and MeOH (30 mL) and 

heated to 85 ºC for 15 h.  Upon heating, the reaction mixture changed from 

yellow to bright red/orange in colour. The reaction was cooled to 20 C and 

concentrated in vacuo.  The resulting red residue was taken up in CH2Cl2 (60 

mL) and purified by column chromatography (neutral alumina, CH2Cl2 

eluent).  The orange solution was then collected and concentrated in vacuo. The polymer 

was further purified by precipitating (in triplicate) concentrated CH2Cl2 solutions into 

pentane. 6-Oxoverdazyl polymer 2.7a was isolated as an orange solid by centrifugation 

and dried at 35 ºC under reduced pressure for 16 h.  Yield = 1.15 g, 78%. FT-IR (ranked 

intensity), KBr pellet: 657(8), 877(9), 722(6), 1016(7), 1164(2), 1387(3), 1510(5), CO 

verdazyl 1685(1), CO ester 1753(10), 2979(4) cm-1. UV-vis (CH2Cl2): λmax 417 nm (ε = 

1,649 M-1 cm-1). GPC: Mn = 25,750 g mol‒1, Mw = 48,670 g mol‒1, Ð = 1.89. 

Synthesis of 4-methacryloylbenzaldehyde phenylhydrazone 2.8 

The preparation was adapted from a procedure by Milcent and co-workers.42 

To a solution of 4-formylphenyl methacrylate (4.00 g, 21.0 mmol) in EtOH 

(50 mL) was added phenylhydrazine (2.49 mL, 2.73 g, 25.2 mmol).  A 

yellow precipitate quickly formed, and was left to stir for 1 h. The solution 

was poured into ice-cold H2O (200 mL) and the resulting white precipitate 

was filtered before it was recrystallized in iPrOH to give 2.8 as lustrous 

white crystals. Yield = 5.01 g, 85%.  1H NMR (599.5 MHz, d6-DMSO): δ 10.36 (s, 1H, 

NH), 7.89 (s, 1H, N=CH), 7.70 (d, 2H, 3JHH = 9 Hz, aryl CH), 7.22 (m, 4H, aryl CH), 7.09 

(d, 2H, 3JHH = 7 Hz, aryl CH), 6.75 (t, 1H, 3JHH = 7 Hz, aryl CH), 6.29 (s, 1H, C=CH2), 

5.90 (s, 1H, C=CH2), 2.01 (s, 3H, CH3). 
13C{1H} NMR (150.8 MHz, d6-DMSO): δ 165.2, 

150.1, 145.2, 135.5, 135.2, 133.6, 129.1, 127.7, 126.5, 122.0, 118.8, 112.0, 18.0. Mass 

Spec. (EI, +ve mode): exact mass calculated for C17H16N2O2: 280.1212; exact mass found: 

280.1211; difference: −0.43 ppm. 
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Synthesis of 4-methacryloylbenzaldehyde α-chloroformylphenylhydrazone 2.9 

This procedure was adapted from a preparation by Milcent and co-

workers.42 To a cooled solution of phosgene (2.94 mL, 4.46 mmol, 15 wt % 

in toluene) was added dropwise hydrazone 2.8 (1.00 g, 3.57 mmol) 

dissolved in a minimum amount of dry EtOAc/benzene (1:1, 20 mL) 

containing dry pyridine (0.32 mL, 0.33 g, 3.9 mmol) under N2. Once the 

addition was complete, the pink mixture was heated to 60 °C for 1 h. The 

solvent was then removed in vacuo. The pink impurity was removed by column 

chromatography (silica gel, CH2Cl2 eluent). The resulting solid was recrystallized in 

cyclohexane to give 2.9 as a white microcrystalline solid. Yield = 1.19 g, 98%. 1H NMR 

(399.8 MHz, CDCl3): δ 7.67 (m, 2H, aryl CH), 7.56 (m, 3H, aryl CH), 7.32 (s, 1H, N=CH), 

7.26 (m, 2H, aryl CH), 7.15 (m, 2H, aryl CH), 6.34 (s, 1H, C=CH2), 5.77 (m, 1H, C=CH2), 

2.04 (s, 3H, CH3). 
13C{1H} NMR (100.6 MHz, CDCl3): δ 165.3, 152.6, 144.7 (bs, COCl), 

135.9, 135.5, 130.8, 130.5, 130.2, 128.8, 128.7, 127.6, 122.0, 18.2. Note: The 13C NMR 

spectra were initially gathered in d6-DMSO, which resulted in rapid decomposition of 2.9. 

Therefore, CDCl3 was used, but this caused broadening of several signals and certain peaks 

could not be resolved. Mass Spec. (EI, +ve mode): exact mass calculated for 

C18H15ClN2O3: 342.0771; exact mass found: 342.0769; difference: −0.68 ppm.  

Synthesis of 1,5-diphenyl-3-(4-phenylmethacryloyl)-6-oxotetrazane 2.5b 

This procedure was adapted from a previous synthesis by Milcent and 

co-workers.42 To a stirred solution of phenylhydrazine (0.23 mL, 0.25 g, 

2.3 mmol) in EtOH (10 mL) was added the α-

chloroformylphenylhydrazone 2.9 (0.40 g, 1.2 mmol) in small portions 

over 15 min. After the addition was complete, the solution was heated to 

55 °C and left to stir for 3 h. The solution began clear and became opaque 

as the reaction proceeded. The warm mixture was then poured into ice cold H2O (30 mL). 

The precipitate was filtered, dried in vacuo overnight and the grey solid was recrystallized 

in n-PrOH to give 2.5b as a white powder. Yield = 0.31 g, 64%. 1H NMR (399.8 MHz, d6-

DMSO): δ 7.60 (m, 6H, aryl CH), 7.33 (t, 4H, 3JHH = 7 Hz, aryl CH), 7.17 (d, 2H, 3JHH = 
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9 Hz, aryl CH), 7.08 (t, 2H, 3JHH = 7 Hz, aryl CH), 6.43 (d, 2H, 3JHH = 9, NH), 6.27 (s, 1H, 

C=CH2), 5.89 (s, 1H, C=CH2), 5.42 (t, 1H, 3JHH = 9 Hz, N-CH), 1.99 (s, 3H, CH3). 
13C{1H} 

NMR (100.5 MHz, d6-DMSO): δ 165.6, 157.4, 150.8, 143.1, 135.7, 135.6, 128.6, 128.4, 

128.2, 123.7, 122.1, 121.5, 72.8, 18.4. FT-IR (ranked intensities) KBr pellet: 692(10), 

742(11), 922(12), 1124(3), 1167(4), 1310(6), 1202(7), 1375(2), 1501(8), CO tetrazane 

1625(1), CO ester 1735(5), NH tetrazane 3233(9) cm-1. Mass Spec. (EI, +ve mode): exact 

mass calculated for C24H22N4O3: 414.1692; exact mass found: 414.1682; difference: −2.4 

ppm. Anal. Calcd. (%) for C24H22N4O3: C, 69.55; H, 5.35; N, 13.52. Found: C, 69.20; H, 

5.39; N, 13.40. 

Synthesis of phenyl-substituted tetrazane polymer 2.6b 

A dry solution of THF/MeOH (1:1, 10 mL) was degassed using the 

freeze-pump-thaw technique 3 times, followed by the addition of AIBN 

(0.050 g, 0.30 mmol, 5 mol %) to THF.  2 mL of this AIBN solution was 

then transferred to a greaseless Schlenk flask containing 6-oxotetrazane 

2.5b (0.50 g, 1.21 mmol). The mixture was shielded from light and 

heated to 65 °C in a temperature controlled oil bath in a sealed flask and 

stirred for 48 h.  The solution was removed from the oil bath and precipitated into ethyl 

acetate (3 x 20 mL), then dried in vacuo to afford 5b as a white solid. Yield = 0.38 g, 76 

%. 1H NMR (599.4 MHz, d6-DMSO): δ 7.55 (bs, 6H, aryl CH), 7.22 (bs, 4H, aryl CH), 

7.01 (bs, 4H, aryl CH), 6.35 (bs, 2H, NH), 5.32 (bs, 1H, CH), 2.21 (bs, 2H, CH2), 1.27 (bs, 

3H, CH3). FT-IR (ranked intensities) KBr pellet: 692(10), 756(9), 883(12), 1105(7), 

1166(3), 1363(2), 1497(1), 1596(8), CO tetrazane 1666(5), CO ester 1750(4), NH tetrazane 

3248(11) cm-1. GPC: Mn = 20,280 g mol−1, Mw = 25,450 g mol−1, Ð = 1.49. Anal. Calcd. 

(%) for [C24H22N4O3]n: C, 69.55; H, 5.35; N, 13.52 Found: C, 69.33; H, 5.44; N, 13.52. 
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Synthesis of phenyl-substituted 6-oxoverdazyl polymer 2.7b 

A sample of 2.6b (0.15 g, 0.36 mmol) and freshly sublimed p-

benzoquinone (0.060 g, 0.54 mmol) were dissolved in THF (20 mL). 

Once dissolved, MeOH (10 mL) was added and the solution was heated 

to 85 ºC for 21 h.  Upon heating, the reaction mixture changed from 

yellow to dark red. The reaction was cooled to 20 C and concentrated 

in vacuo.  The resulting red residue was taken up in CH2Cl2 (10 mL) and 

purified by column chromatography (neutral alumina, CH2Cl2 followed by THF as eluent).  

The second fraction, a dark red solution, was collected and concentrated in vacuo. The 

solid was further dried at 40 °C in vacuo for 36 h, to obtain 2.7b as a dark red solid. Yield 

= 0.12 g, 81%. FT-IR (ranked intensities) KBr pellet: 688(9), 748(8), 1101(3), 1162(2), 

1266(4), 1251(7), 1464(5), CO verdazyl 1701(1), CO ester 1750(6), 2953(10) cm-1. UV-

vis (CH2Cl2): λmax 566 nm (ε = 1,667 M-1 cm-1), 319 nm (ε = 9,760 M-1 cm-1), 262 nm (ε = 

21,314 M-1 cm-1). GPC: Mn = 12,000 g mol−1, Mw = 14,500 g mol−1, Ð = 1.46. 

Synthesis of 1,5-diisopropyl-3-(4-trimethylacetylphenyl)-6-oxotetrazane 2.10a 

A sample of tetrazane 2.4 (2.80 g, 10.1 mmol) was added to a Schlenk flask 

equipped with a stir bar and combined with CH2Cl2 (200 mL) and Et3N (1.41 

mL, 1.02 g, 10.1 mmol). Trimethylacetyl chloride (1.24 mL, 1.21 g, 10.1 

mmol) was then added drop wise via syringe to the suspension of tetrazane 

2.4 causing complete dissolution after a few min. After stirring for 3 h at 20 

C, deionized H2O (10 mL) was transferred to the reaction flask via syringe 

and the mixture was allowed to stir for 5 min to ensure any remaining trimethylacetyl 

chloride was consumed. The reaction mixture was transferred to a separatory funnel and 

washed with deionized H2O (3 × 100 mL). The organic layer was dried over MgSO4 before 

the solvent was removed in vacuo to yield a light yellow powder. Recrystallization from a 

saturated EtOAc solution afforded tetrazane 2.10a as an off-white solid. Yield = 2.08 g, 

57%. 1H  NMR (400.1 MHz, d6-DMSO): δ 7.59 (d, 2H,  3JHH = 8 Hz, aryl CH), 7.12 (d, 

2H, 3JHH = 8 Hz, aryl CH), 4.99 (d, 2H, 3JHH = 11 Hz, NH), 4.50 (sept. 2H, 3JHH= 6.61 Hz, 

CH), 4.39 (t, 1H, 3JHH = 11 Hz, CH), 1.31 (s, 9H, CH3), 1.05 (d, 6H, 3JHH = 7 Hz, CH3), 
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1.03 (d, 6H, 3JHH = 7 Hz, CH3). 
13C{1H} NMR (100.6 MHz, d6-DMSO): δ 176.6, 153.6, 

150.8, 134.2, 128.1, 121.7, 71.3, 46.9, 26.9, 19.7, 18.6. FT-IR (ranked intensity), KBr 

pellet: 619(7), 640(10), 726(5), 894(3), 1115(4), 1426(8), CO tetrazane 1579(1), CO ester 

1751(9), 2975(2), NH tetrazane 3236(6) cm-1. Mass Spec. (EI, +ve mode): exact mass 

calculated for C19H30N4O3: 362.2318; exact mass found: 362.2315; difference: 0.8 ppm. 

Anal. Calcd. (%) for C19H30N4O3: C, 62.96; H, 8.34; N, 15.46. Found: C, 62.95; H, 8.44; 

N, 15.44. 

Synthesis of 1,5-di-isopropyl-3-(4-trimethylacetylphenyl)-6-oxoverdazyl 2.11a  

A sample of tetrazane 2.10a (2.40 g, 6.20 mmol) was combined with freshly 

sublimed p-benzoquinone (1.08 g, 9.40 mmol) in a 250 mL round bottom 

flask equipped with a stir bar and a reflux condenser. To this flask, toluene 

(35 mL) was added before it was immersed in an oil bath, stirred, and heated 

at 120 C for 30 min. The orange-red reaction mixture was cooled to 20 C 

causing p-hydroquinone to precipitate from solution. The reaction mixture 

was filtered and the toluene removed from the filtrate in vacuo to afford an orange-red 

residue. Purification via flash column chromatography (neutral alumina, toluene eluent) 

followed by removal of the solvent afforded 6-oxoverdazyl 2.11a as a bright orange 

microcrystalline solid. Yield = 1.90 g, 85%. FT-IR (ranked intensity), KBr: 658(9), 720(8), 

895(10), 1116(2), 1165(7), 1227(4), 1366(3), CO verdazyl 1681(1), CO ester 1757(6), 

2983(5) cm-1. UV-vis (CH2Cl2): λmax 417 nm (ε = 1,648 M-1 cm-1). Mass Spec. (EI, +ve 

mode): exact mass calculated for C19H27N4O3: 359.2083; exact mass found: 359.2078; 

difference 1.4 ppm. Anal. Calcd. (%) for C19H27N4O3: C, 63.49; H, 7.57; N, 15.59. Found: 

C, 63.65; H, 7.76; N, 15.33. 
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Synthesis of 1,5-di-isopropyl-3-(4-trimethylacetylphenyl)-6-oxotetrazinium cation 

2.12a 

A sample of 6-oxoverdazyl 2.11a (0.40 g, 1.10mmol) was added to a 20 mL 

glass vial equipped with a stir bar and dissolved in 3 mL of MeCN. An 

MeCN (5 mL) solution of NOBF4 (0.13 g, 1.1 mmol) was then added drop 

wise to the reaction mixture over 5 min. During the reaction, the mixture 

changed from dark red to dark purple and the evolution of NO(g) was 

observed. The reaction mixture stirred at 20 C for 30 min and then 

concentrated in vacuo. The resulting purple powder was washed with Et2O (3 × 10 mL) 

and then concentrated affording tetrazinium cation 2.12a as a dark purple solid. Yield: 0.47 

g, 96%; 1H NMR (400.1 MHz, CDCl3): δ 7.97 (br s, 2H, aryl CH), 7.20 (br s, 3H, aryl CH), 

5.23 (br s, 2H, (CH3)2CH), 1.52 (br s, 12H, CH3), 1.38 (s, 9H, CH3); 
19F NMR (376.1 MHz, 

CDCl3): δ ‒153.4; 11B NMR (128.3 MHz, CDCl3): δ ‒2.1. FT-IR (ranked intensity), KBr 

pellet: 657(4), 789(9), 899(5), 1118(1), 1209(10), 1277(8), 1402(3), CO tetrazinium cation 

1605(7), CO ester 1751(2), 2975(6) cm-1. UV-vis (CH2Cl2): λmax 287 nm (ε = 21,400 M-1 

cm-1), 355 nm (ε = 3,100 M-1 cm-1), 530 nm (ε = 1,600 M-1 cm-1). Mass Spec. (EI, +ve 

mode): exact mass calculated for C19H27N4O3: 359.2083; exact mass found: 359.2074; 

difference: −2.5 ppm. Anal. Calcd. (%) for C19H27B1F4N4O3: C, 51.14; H, 6.10; N, 12.56. 

Found: C, 50.15; H, 6.20; N, 12.78. 

 Synthesis of 1,5-di-isopropyl-3-phenyl-6-oxotetrazinium cation 2.12c 

A sample of 6-oxoverdazyl 2.11c (0.30 g, 1.14 mmol) was added to a 20 mL 

glass vial equipped with a stir bar and dissolved in 3 mL of MeCN.  An 

MeCN (5 mL) solution of NOBF4 (0.13 g, 1.1 mmol) was then added drop 

wise to the reaction mixture over 5 min.  During the reaction, the mixture 

changed from dark red to dark purple and the evolution of NO(g) was observed. The reaction 

mixture stirred at 20 C for 30 min and then concentrated under reduced pressure. The 

resulting bright orange powder was washed with Et2O (3 × 10 mL) and then concentrated 

affording tetrazinium cation 2.12c as a bright orange/red powder. Yield: 0.32 g, 79%; 1H 

NMR (400.1 MHz, CD3CN, 40 °C): δ 8.22 (br s, 2H, aryl CH), 7.76 (br s, 3H, aryl CH), 
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5.41 (br s, 2H, (CH3)2CH), 1.62 (br s, 12H, CH3); 
19F NMR (376.1 MHz, CD3CN, ‒40 °C): 

δ 151.3; 11B NMR (128.3 MHz, CD3CN, 40 °C): δ 1.4. FT-IR (ranked intensities), KBr 

pellet: 659(8), 692(5), 782(4), 900(9), 1037(1), 1276(6), 1400(3), CO tetrazinium 

1603(10), 751(2), 998(7) cm-1. UV-vis (CH2Cl2): λmax 280 nm (ε = 14,700 M-1 cm-1), 350 

nm (ε = 1,900 M-1 cm-1), 510 nm (ε = 1,600 M-1 cm-1). Mass Spec. (EI, +ve mode): exact 

mass calculated for C14H10N4O1: 259.1559 exact mass found: 259.1562; difference: +1.15 

ppm. Anal. Calcd. (%) for C14H19B1F4N4O1: C, 48.58; H, 5.53; N, 16.19. Found: C, 48.65; 

H, 5.65; N, 16.19. 

Synthesis of 4-pivaloylbenzaldehyde phenylhydrazone 2.13 

The preparation was adapted from a procedure by Milcent and co-workers.42 

To a solution of 4-formylphenyl pivalate (3.00 g, 14.6 mmol) in EtOH (50 

mL) was added phenylhydrazine (1.72 mL, 18 g, 17.5 mmol).  A yellow 

precipitate quickly formed, and was left to stir for 1 h. The solution was 

poured into ice-cold water (200 mL).  The grey precipitate was filtered 

before it was recrystallized in 2-propanol to give 2.13 as an off-white solid. 

Yield = 2.34 g, 54 %. 1H NMR (399.8 MHz, d6-DMSO): δ 10.36 (s, 1H, NH), 7.89 (s, 1H, 

N=CH), 7.69 (d, 2H, 3JHH = 8.6 Hz, aryl CH), 7.23 (m, 2H, aryl CH), 7.10 (m, 2H, aryl 

CH), 6.76 (t, 1H, 3JHH = 7, aryl CH), 1.31 (s, 9H, CH3). 
13C{1H} NMR (100.5 MHz, d6-

DMSO): δ 176.3, 150.3, 145.2, 135.5, 135.5, 133.5, 129.1, 126.5, 126.4, 121.9, 118.7, 

112.0, 38.5, 26.8, 26.7. Three extra signals were present in the 13C NMR due to restricted 

rotation of phenylpivalate moiety. Mass Spec. (EI, +ve mode): exact mass calculated for 

C18H20N2O2: 296.1525; exact mass found: 296.1531; difference: +2.03 ppm. 

4-pivaloylbenzaldehyde α-chloroformylphenylhydrazone 2.14 

This procedure was adapted from a preparation by Milcent and co-

workers.42 To a cooled solution of phosgene (4.17 mL, 6.33 mmol, 15 wt % 

in toluene) was added dropwise phenylhydrazone 2.13 (1.50 g, 5.06 mmol) 

that was dissolved in minimum amount of dry EtOAc/benzene (1:1, 20 mL) 

with distilled pyridine (0.45 mL, 0.44 g, 5.6 mmol) under N2.  Once the 

addition was complete, the pink mixture was heated to 60 °C for 1 h. The 
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solvent was then removed in vacuo. The pink impurity was removed by a short silica 

column in CH2Cl2. The clear colourless oil was precipitated in EtOH, followed by 

recrystallization in EtOH to give 2.14 as a white solid. Yield = 1.53 g, 84%. 1H NMR 

(399.8 MHz, CDCl3): δ 7.67 (d, 2H, 3JHH = 9 Hz, aryl CH), 7.59 (m, 3H, aryl CH), 7.33 (s, 

1H, N=CH), 7.28 (d, 2H, 3JHH = 7.43 Hz, aryl CH), 7.09 (d, 2H, 3JHH = 9 Hz, aryl CH), 

1.36 (s, 9H, (CH3)3). 
13C{1H} NMR (100.6 MHz, CDCl3): δ 176.6, 153.0, 144.9 (bs, 

COCl), 136.1, 130.7, 130.5, 130.2, 128.9, 122.0, 39.1, 27.0. Note: The 13C NMR spectra 

were initially gathered in d6-DMSO, which resulted in rapid decomposition of product. 

Therefore, CDCl3 was used, but this caused broadening of several signals and certain 

signals could not be resolved. Mass Spec. (EI, +ve mode): exact mass calculated for 

C19H19ClN2O3: 358.1084; exact mass found: 358.1087; difference: +1.01 ppm. 

 

1,5-diphenyl-3-(4-pivaloylphenyl)-6-oxotetrazane 2.10b 

To a stirred solution of phenylhydrazine (0.22 mL, 0.24 g, 2.2 mmol) in 

EtOH (10 mL) was added α-chloroformylphenylhydrazone 2.14 (0.40 g, 

1.1 mmol), in small portions over 15 min.  After the addition was 

complete, the solution was heated to 55 °C and left to stir for 1 h. The 

solution began clear and became opaque as precipitate formed. The 

warm mixture was poured into ice cold H2O (30 mL).  The off-white 

precipitate was filtered, dried in vacuo overnight and recrystallized in n-PrOH to give 2.10b 

as a white powder. Yield = 0.39 g, 80%.  1H NMR (399.8 MHz, d6-DMSO): δ 7.66 (d, 4H, 

3JHH = 8 Hz, aryl CH), 7.62 (d, 2H, 3JHH = 8 Hz, aryl CH), 7.34 (t, 4H, 3JHH = 7 Hz, aryl 

CH), 7.10 (m, 4H, aryl CH), 6.33 (d, 2H, 3JHH = 9 Hz, NH), 5.43 (t, 1H, 3JHH = 9 Hz, CH), 

1.33 (s, 9H, CH3). 
13C{1H} NMR (100.5 MHz, d6-DMSO): δ 176.1, 156.4, 150.5, 142.7, 

134.9, 128.0, 127.8, 123.1, 121.3, 121.1, 72.1, 38.3, 26.6. FT-IR (ranked intensity), KBr 

pellet: 692(7), 742(10), 757(11), 899(13), 918(12), 1118(1), 1165(4), 1310(8), 1200(9), 

1373(3), 1500(5), CO tetrazane 1628(2), CO ester 1751(6), NH tetrazane 3241(14) cm-1. 

Mass Spec. (EI, +ve mode): exact mass calculated for C25H26N4O3: 430.2005; exact mass 

found: 430.2011; difference: +1.39 ppm. Anal. Calcd. (%) for C25H26N4O3: C, 69.75; H, 

6.09; N, 13.01. Found: C, 69.41; H, 6.21; N, 12.93. 
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1,5-diphenyl-3-(4-pivaloylphenyl)-6-oxoverdazyl 2.11b 

This procedure was adapted from a report published by Hicks and co-

workers.27 Celite (0.10 g) and Ag2CO3 (0.19 g) were combined in MeOH 

(10 mL) and allowed to stir for 10 min. 6-oxotetrazane 2.10b (0.15 g, 

0.35 mmol) was then added to the suspension and the mixture was left 

to stir for 16 h at room temperature. The solution turned a dark red colour 

and darkened as the reaction proceeded. To the mixture was added 

CH2Cl2 to dissolve the product and a gravity filtration was performed to remove 

Celite/Ag(s). The solid was recrystallized in MeOH/H2O (9:1) to give 2.11b as a dark red 

solid. Yield = 1.40 g, 94%. FT-IR (ranked intensity) KBr pellet: 689 (1), 749 (9), 1113 (2), 

1161 (6), 1201 (5), 1249 (8), 1485 (7), CO verdazyl 1702 (3), CO ester 1746 (4), 2974 (10) 

cm-1. UV-vis (CH2Cl2): λmax: 563 nm (ε = 2,000 M-1·cm-1), 317 nm (ε = 11,800 M-1·cm-1), 

258 nm (ε = 24,700 M-1·cm-1). Mass Spec. (EI, +ve mode): exact mass calculated for 

C25H23N4O3: 427.1770; exact mass found: 427.1757; difference: -3.00 ppm. Anal. Calcd. 

(%) for C25H23N4O3: C, 70.24; H, 5.42; N, 13.11. Found: C, 70.24; H, 5.46; N, 13.00. 

2.3 Results and Discussion 

2.3.1 Synthesis of Monomers 

The synthesis towards 2.5a involved the addition of a polymerizable methacrylate group 

using methacryloyl chloride to a previously reported iPr-tetrazane compound (2.4) 

functionalized with an alcohol group. This reaction yielded compound 2.5a in 65% yield 

(Scheme 2.1).  The synthesis of phenyl-substituted monomer 2.5b was synthetically more 

demanding (Scheme 2.1). The condensation of phenylhydrazine with 4-formylphenyl 

methacrylate afforded hydrazone 2.8 in 85% yield. The subsequent installation of a 

chloroformyl functionality to the α-nitrogen of the hydrazone with phosgene afforded 

compound 2.9 in 98% yield. The introduction of a second equivalent of phenylhydrazine 

produced monomer 2.5b in 36% yield. The low yield in the final step of the monomer 

synthesis was due to the direct filtration of the precipitate formed during the reaction, which 

afforded very pure monomer that did not require further purification.  
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Scheme 2.1 (a) Synthesis of monomer 2.5a and (b) synthesis of monomer 2.5b. 

The 1H and 13C{1H} NMR spectra of compounds 2.5a and b are shown in Figures 1, A2.1‒

2.2. d6-DMSO was used as it allowed for better resolution of the splitting patterns resulting 

from the coupling of protons in these molecules.  

2.3.2 Polymerization 

The polymerization method employed in this study (Scheme 2.2) began with the free 

radical polymerization of phenyl methacrylate-substituted tetrazanes 2.5a,b, which 

afforded tetrazane polymers 2.6a,b as white powders in 83% and 76% yield, respectively. 

Oxidation of tetrazane polymers 2.6a,b with p-benzoquinone gave 6-oxoverdazyl 

polymers 2.7a,b in 78% and 81% yield after purification by column chromatography and 

repeated precipitation. A summary of characterization data for polymers 2.6a,b and 2.7a,b 

can be found in Table 2.2 and additional details can be found in the supplementary 

information (Figures A2.4−2.12). 
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Scheme 2.2 (a) Synthesis of polymers 2.6a,b and (b) verdazyl radicals polymers 2.7a,b. 

Characterization of polymer 2.6b was carried out in the solution phase by NMR 

spectroscopy. The chemical shifts present in the 1H NMR of 2.5b (Figure 2.1a), clearly 

show aromatic CH signals at 7.61, 7.34, 7.16, and 7.08 ppm. The methacrylate vinyl signals 

were observed at 6.27 and 5.90 ppm. The signals for NH and CH are present at 6.43 and 

5.43 ppm as a doublet and triplet, respectively (Figure 2.1). The coupling between NH and 

CH protons can be attributed to hydrogen bonding of the amine proton with the carbonyl 

present in dimethyl sulfoxide. 
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Figure 2.1 1H NMR spectra of (a) monomer 2.5b and (b) polymer 2.6b. The squares 

indicate H2O signals, circles indicate EtOAc, and triangles incidate residual DMSO. 

Tetrazane polymer 2.6b shows broadened NMR signals (Figure 2.1b). The aromatic signals 

at 7.55, 7.50, 7.24, and 6.99 ppm generally shifted upfield due to the increased shielding 

from the polymeric system.  The NH and CH signals are present at 6.35 and 5.22 ppm, 

respectively. The most diagnostic signals are the methacrylate vinyl signals at 6.27 and 

5.90 ppm which disappear upon successful polymerization and the appearance of signals 

in the alkyl proton region at 2.19, 5.32, and 5.22 ppm, which are indicative of the saturated 

hydrocarbon polymer backbone. 

2.3.3 Macromolecular Properties 

The polymers presented herein, including tetrazane polymers 2.6a,b and 6-oxoverdazyl 

polymers 2.7a,b, all exhibit drastically different solubility profiles. In general, the tetrazane 

polymers are soluble only in highly polar solvents while 6-oxoverdazyl polymers are 

soluble in a wide range of solvents. We were unable to obtain reproducible GPC data for 

our polymers in THF, due to poor solubility of tetrazane polymers 2.6a,b. However, we 

were able to obtain reproducible GPC data for all of our polymers in DMF containing 10 
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mM LiBr and 1 % (v/v) Et3N at 85 C using conventional calibration for the determination 

of molecular weight distributions (Table 2.2). Tetrazane polymer 2.6a and 6-oxoverdazyl 

polymer 2.7a gave rise to very similar GPC traces (Figure 2.2a). Tetrazane polymer 2.6b 

and 6-oxoverdazyl polymer 2.7b did not behave in the same way (Figure 2.2b). 

 

Table 2.2 Polymer characterization data. 

 Mn (g mol‒1)a Ða Tg (C) Onset of Decomposition (C)b 

2.6a 25,250 1.83 204 288 
2.7a 
2.6b 
2.7b 

25,750 
20,300 
12,000 

1.89 
1.48 
1.46 

203 
180 
174 

188 
246 
236 

aConventional calibration GPC vs. polystyrene standards in DMF (10 mM LiBr and 1% (v/v) NEt3) at 85C. 

See supplementary information for additional discussion of GPC experiments. b Calculated at 2 % mass loss. 

 

 

Figure 2.2 Normalized GPC traces recorded in DMF containing 10 mM LiBr and 1 % 

(v/v) triethylamine at 85 C for (a) tetrazane polymer 2.6a (black) and 6-oxoverdazyl 

polymer 2.7a (red), and (b) for tetrazane polymer 2.6b (black), tetrazane polymer 2.6b after 

air oxidation for 24 h (blue), tetrazane polymer 2.6b after air oxidation for 48h (green), 

and 6-oxoverdazyl polymer 2.7b (red). 

We initially suspected that the chemical oxidation of tetrazane polymer 2.6b using p-

benzoquinone as an oxidant in refluxing THF/MeOH may have resulted in chain scission. 

However, upon closer inspection of the distributions observed for 2.6b and 2.7b, we 

hypothesized that it was highly unlikely that chain scission had occurred based on the 
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remarkably similar shape and width of the distributions (Ð = 1.48 for 2.6b, Ð = 1.46 for 

2.7b). To further probe this hypothesis, we allowed the GPC solution used for the analysis 

of 2.6b to stand in air to partially oxidize. The sample, which becomes a random 

tetrazane/6-oxoverdazyl copolymer upon partial oxidation, was analyzed after 24 h and 

after 48 h of air exposure (Figure 2.2). As the radical content in the polymer increased with 

time, the centre of the GPC distributions shifted to longer retention times and the shape 

and width of the distributions did not change significantly (Ð = 1.40 for 2.6b after 24 h in 

air, Ð = 1.50 for 2.6b after 48h in air). The shape and width of the GPC traces obtained for 

6-oxoverdazyl polymer 2.7b after standing in air did not change. In our opinion, the 

difference in molecular weights observed for tetrazane polymer 2.6b and 6-oxoverdazyl 

polymer 2.7b arises due to limitations associated with the comparison of polymers with 

substantially different solubility profiles using conventional calibration GPC. It is likely 

that each of our polymers interact very differently with the solvent system and size-

exclusion columns employed, and that their properties match those of the polystyrene 

standards employed to different extents [specifically the relationship between molecular 

weight and radius of gyration (Rg) in the solvent system employed]. 

2.3.4 Synthesis of Model Compounds 

Model compound 2.11a and the corresponding oxoammonium cation 2.12a were 

synthesized using a method similar to that of the monomer and polymer (Scheme 2.3). 

Compound 2.4 was treated with pivaloyl chloride in the presence of Et3N to afford 2.10a 

in 57% yield. From there, 2.10a was oxidized using 1.5 equiv. of benzoquinone to give 

2.11a in 85% yield. Verdazyl radical 2.11a was further oxidized using NOBF4 in MeCN 

to afford oxoammonium cation 2.12a in 96% yield, which was further investigated by X-

ray crystallography (discussed later). 
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Scheme 2.3 Synthesis of iPr-substituted model compounds 2.11a and 2.12a. 

In order to synthesize model compound 2.11b, pivalate benzaldehyde was synthesized and 

used in a condensation reaction with phenyl hydrazine to give hydrazone 2.13, in 54% 

yield. Hydrazone 2.13 was treated with phosgene to give α-chloroformyl hydrazone 2.14 

in 84% yield, followed by treatment with phenylhydrazine to give tetrazane 2.10b in 80% 

yield.  Once the tetrazane compound was synthesized, oxidation using Fetizon’s reagent 

afforded pivalate substituted triphenyl-6-oxoverdazyl radical 2.11b in 94% yield (Scheme 

2.4). NMR data for compounds 2.10a,b can be found in Figures A2.19−2.22. 

 

Scheme 2.4 Synthesis of phenyl-substituted model compound 2.11b. 

2.3.5 Spectroscopic Characterization 

The IR spectra of tetrazanes and 6-oxoverdazyls were found to be highly diagnostic (Figure 

2.3, A2.13‒2.16). In each case the spectra of the model compounds were in very close 

agreement with those collected for the corresponding polymers (Figure 2.3). Further 

comparison of the IR spectra qualitatively confirmed the complete conversion of tetrazane 
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polymers 2.6a,b to 6-oxoverdazyl polymers 2.7a,b as the NH stretches of 2.6a,b 

disappeared completely and CO stretches shifted to higher energies (Figure 2.3). 

 

Figure 2.3 IR spectra for tetrazane polymer 2.6a (black), verdazyl polymer 2.7a (red), and 

verdazyl model compound 2.11a (green). The baselines are offset for ease of comparison. 

The radical content within the verdazyl polymer backbones was studied qualitatively using 

electron paramagnetic resonance (EPR) spectroscopy. Broad, isotropic signals were 

observed for radical polymers 2.7a,b (g = 2.0050 and 2.0043) and complex signals were 

observed for model 6-oxoverdazyl radicals 2.11a,b (g = 2.0043 and 2.0038) (Figures 2.4, 

A2.17-2.18). Broadening of the EPR spectra obtained for polymers 2.7a,b is consistent 

with their proposed structures and macromolecular nature.  

Quantitative analysis of the radical content in 6-oxoverdazyl polymers 2.7a,b was 

performed using UV-vis absorption spectroscopy. The complex spectra obtained were in 

close agreement with model compounds 2.11a,b indicating that > 95 % of the repeating 

units within the polymer backbone contain a pendant radical unit (Figures 2.5, A2.23). To 

illustrate this point, the UV-vis absorption spectra of compounds 2.7b and 2.11b are 

compared in Figure 2.5, with the inset that shows the absorbances at 566 and 563 nm, 

respectively. The excitations at ca. 566 nm are the transitions of the radical species from 

the SOMO to the HOMO and the LUMO to the SOMO. The overlap of the absorptions in 
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these spectra suggest that there was an efficient conversion of the tetrazane polymer to the 

verdazyl radical polymer upon oxidation. 

 

Figure 2.4 EPR spectra of (a) 6-oxoverdazyl 2.11a (g = 2.0043, black) and 6-oxoverdazyl 

polymer 2.7a (g = 2.0050, red) and (b) triaryl-6-oxoverdazyl 2.11b (g = 2.0038, black) and 

triaryl-6-oxoverdazyl polymer 2.7b (g = 2.0043, red) in CH2Cl2. (See Figures A17,18 for 

simulation of the spectrum of 2.11a,b). 

 

 

Figure 2.5 UV-vis absorption spectrum of 6-oxoverdazyl 2.7b (red) and model 2.11b 

(black). 

2.3.6 Electrochemical Properties 

The electrochemical properties of 6-oxoverdazyl polymer 2.7a,b and the model 6-

oxoverdazyls 2.11a,b were studied using cyclic voltammetry in THF (Figure 2.6 and Table 

2.3). Consistent with reports of similar compounds,27 6-oxoverdazyls 2.11a,b were 

reversibly oxidized and reduced (one electron each). Polymers 2.7a,b exhibited pseudo 
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reversible oxidation and reduction waves under similar conditions. It should be noted that, 

as a result of the loss of control associated with the slow diffusion of polymers in solution, 

sharp, asymmetric responses were observed in the CVs of 2.7a,b. We were unable to study 

the thin film electrochemistry of 6-oxoverdazyl polymers 2.7a,b due to our inability to find 

a common solvent for the neutral and charged forms of the polymers. Crucially, switching 

from N-isopropyl to N-phenyl substituents causes a shift in the half wave oxidation (Eox) 

and reduction (Ered) potentials by 220 mV and 530 mV, respectively. Although the redox 

properties of verdazyl polymers 2.7a,b are very similar to those of the model complexes 

studied, the incorporation of the radicals into polymers will allow them to be used in 

applications where film-forming properties are essential. 

 

Figure 2.6 Cylic voltammograms of 6-oxoverdazyl polymer 2.7b (red) and model 

6-oxoverdazyl 2.11b (black) recorded at scan rate 100 mV s-1 in THF solutions of 1 mM 

analyte and 0.1 M nBu4NPF6. 

 

Table 2.3 Electrochemical data for verdazyl polymers 2.7a,b and verdazyl radicals 

2.11a,b. 

Compound Eox (V vs. Fc/Fc+) Ered (V vs. Fc/Fc+) 

2.7a 0.17 −1.50 

2.11a 0.20 −1.49 

2.7b 0.39 −0.97 

2.11b 0.38 −1.01 
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2.3.7 Solid-State Behaviour 

The ability of stable radical polymers to undergo redox reactions without significant 

structural change is advantageous for their use in organic electronics where changes in 

volume accompanying electron transfer are highly undesirable. In order to study potential 

structural changes accompanying oxidation, we chemically oxidized 6-oxoverdazyls 

2.11a,c with NOBF4 (Scheme 2.5). Oxidation resulted in a red-shift in the wavelength of 

their maximum absorption (e.g., from max = 414 nm in 2.11c to max = 510 nm for 2.12c) 

(Figures S2.24−2.27). The crude residues were washed with Et2O to afford analytically 

pure samples of 2.12a,c, which exhibited qualitatively similar electrochemical behavior to 

the corresponding neutral radicals (Figures A2.28, A2.29), in 96% and 79% yield. Attempts 

to chemically reduce 6-oxoverdazyls 2.11a,c using Na/15-crown-5 and 

decamethylcobaltocene in an inert atmosphere glovebox (< 1 ppm O2/H2O) reproducibly 

resulted in decomposition of the verdazyl framework. 

 

 

Scheme 2.5 Synthesis and oxidation of 6-oxoverdazyl radical 2.11c. 

The solid-state structures of 6-oxoverdazyls 2.11a, 2.11c and tetrazinium cation 2.12c were 

determined by single crystal X-ray diffraction (Table 2.4, Figure 2.7Figure 2.8). Once 

synthesized, recrystallization was performed in order to produce crystals suitable to X-ray 

diffraction. In the solid-state structures of 2.11c and 2.12c, the N1-N2-C1-N4-N3-C2 

heterocycle is planar, and twisted with respect to the phenyl substituents by 21.5 and 

24.7, respectively. Despite these similarities, a shortening of the N-N bonds in the 

nitrogen-rich heterocycle was observed upon oxidation. The average N-N bond distance 

decreases from 1.369(2) Å in 2.11c to 1.299(2) Å in 2.12c, while the average C-N bond 

lengths increased slightly upon removal of an electron from the antibonding singly 
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occupied molecular orbital (-SOMO) of 6-oxoverdazyl 2.11c. The structural metrics of 

6-oxoverdazyl 2.11a were found to be very similar to those of 2.11c. The reversible nature 

of the electrochemical oxidation of 6-oxoverdazyl polymers 2.7a and 2.7b along with the 

structural similarities of model compounds 2.11c and 2.12c further illustrates the potential 

utility of the polymers produced in this study for use as redox-active materials for organic 

electronics. 

 

Figure 2.7 Solid-state structures of 6-oxoverdazyl 2.11c (left) and tetrazinium cation 2.12c 

(right). Anisotropic displacement ellipsoids are shown at 50% probability level. Hydrogen 

atoms have been omitted for clarity. 

 

  

Figure 2.8 Solid-state structure of 2.11a. Anisotropic displacement ellipsoids are shown at 

50 % probability level. Hydrogen atoms have been omitted for clarity. 
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Table 2.4 Selected bond lengths (Å) and angles () for 6-oxoverdazyl 2.11a,c and cation 

2.12c. 

Bonds and Angles 2.11a 2.11c 2.12c 

N1-N2, N3-N4 1.365(1), 1.368(1) 1.372(2), 1.366(2) 1.307(2), 1.291(2) 

C1-N2, C1-N4 1.333(1), 1.331(1) 1.327(2), 1.334(2) 1.340(2), 1.344(2) 

N1-C2, N3-C2 1.379(1), 1.379(1) 1.381(2), 1.372(2) 1.398(2), 1.414(2) 

N1-N2-C1, N3-N4-C1 115.11(8), 115.24(7) 115.0(1), 115.1(1) 117.4(1), 117.7(1) 

N2-C1-N4 126.66(8) 126.9(2) 123.2(1) 

N2-C2-N3 113.74(8) 114.1(1) 111.4(1) 

 

2.3.8 Thin-Film Studies 

Kelvin probe force microscopy (KPFM),43 a scanning probe technique able to image the 

work function (i.e., the energy of the highest occupied molecular orbital) of materials at 

the nanoscale was employed in order to study thin films of 6-oxoverdazyl polymer 2.7a. 

In this context, the KPFM measurements provided an estimate of the energy (relative to 

ITO, work function: 4.7 eV40) of the -SOMO of the 6-oxoverdazyl polymer studied. A 

166  10 nm thick film of 2.7a was spin coated onto ITO glass from a 15 mg mL-1 solution 

in chlorobenzene. The topography image shown in Figure 2.9 revealed a very smooth and 

uniform layer of polymer 2.7a on ITO. The KPFM image of the polymer film (Figure 2.9) 

is also very uniform, suggesting the presence of few defects, and corroborating a very high 

radical content of polymer 2.7a. The work function of the -SOMO orbital was measured 

to be 4.9  0.1 eV, which corresponds to an oxidation potential of ca. 0.20 V against 

ferrocene, which has a work function of 5.1 eV.44 This number agrees well with the 

solution-phase electrochemical data collected for 6-oxoverdazyl polymer 2.7a and 6-

oxoverdazyl radical 2.11a. 
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Figure 2.9 AFM topography (top) and KPFM image (bottom) of 6-oxoverdazyl polymer 

2.7a referenced to ITO (work function: 4.7 eV40). The inset is a histogram of the KPFM 

image showing a work function of 4.9  0.1 eV for 2.7a. The small peak on the right is a 

KPFM artifact due to lateral contact of the tip with the film edge. 

2.4 Conclusion 

Two distinct synthetic routes were described in this chapter that have allowed for the first 

examples of alkyl- and aryl-6-oxotetrazene and -oxoverdazyl polymers to be realized. The 

polymers exhibited substituent-dependent, tunable, and reversible oxidation and reduction 

in solution and their oxidation was also studied in thin films using KPFM, confirming that 

the redox properties of the 6-oxoverdazyl polymers were retained. Structural 

characterization of model compounds further demonstrated the potential of 6-oxoverdazyl 

polymers as functional redox-active materials as several structural features, including 

planarity, of the neutral radical were retained upon oxidation. Future work in this area will 

aim to exploit the structural versatility of the 6-oxoverdazyl scaffold and to evaluate the 

utility of the polymers reported as functional redox-active thin films. 
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Chapter 3  

3 Synthesis, Characterization, and Thin-Film Properties of 
6-Oxoverdazyl Polymers Prepared by Ring-Opening 
Metathesis Polymerization 

Adapted from:  

J. A. Paquette, S. Ezugwu, V. Yadav, G. Fanchini*, J. B. Gilroy* J. Polym. Sci., Part A: 

Polym. Chem. 2016, 54, 1803−1813. 

S. Ezugwu, J. A. Paquette, V. Yadav, J. B. Gilroy*, G. Fanchini* Adv. Electron. Mater. 

2016, 2, 1600253. 

3.1 Introduction 

Functional polymers with potentially useful optical and electronic properties have received 

significant attention due to the ability of these materials to improve upon existing 

technologies by combining the unique properties of small functional molecules (e.g., 

electron transfer, light absorption/emission, magnetic) with the processability, mechanical 

robustness, and flexibility associated with polymers.1 An interesting subclass of functional 

polymers that has emerged in recent years contain stable organic radicals2 in the repeating 

unit pendant to their backbones.3-5 The vast majority of research towards stable radical 

polymers has been motivated by their utility as electrode materials in batteries,3-4, 6 where 

the introduction of conductive (nano)fillers has led to enhanced performance.7-10 However, 

radical polymers have also shown application as high-spin ground state materials,11 

(co)catalysts for the selective oxidation of alcohols,12 inhibitors of self-polymerization 

reactions,13 solid-state conductive materials,14-16 and the functional component of memory 

architectures.17-19  

The most widely studied family of stable radical polymers is based on 2,2,6,6-tetramethyl-

piperidin-1-yl (TEMPO, 3.1) radicals,14-15, 20-27 while examples based on other families of 

radicals, including nitronyl nitroxide (3.2),28 2,2,5,5-tetramethyl-1-pyrrolidinylloxy 

(PROXYL, 3.3),29 spirobisnitroxide (3.4),30 aminoxy (3.5),31 galvinoxyl (3.6),32 and 6-

oxoverdazyl (7)33 radicals have received considerably less attention. Further expansion of 
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the stable radical polymer field to include examples based on these and other stable radicals 

will allow for the realization of materials with targeted properties that are suitable for the 

applications described above. 6-Oxoverdazyl radicals offer exceptional stability towards 

air and moisture, and, while their high molecular weights render them poor candidates for 

battery applications, their tunable ambipolar redox properties33-34 may allow for their future 

use as charge transport materials. 

 

Most synthetic protocols, for example, those targeting nitroxide radical polymers, involve 

the polymerization of monomers based on radical precursors followed by post-

polymerization reactions designed to generate the targeted stable radical polymers. These 

strategies are often hampered by difficulty surrounding the complete conversion of the 

radical precursor pendant units to their stable radical form, a factor that has recently been 

shown to affect their charge transport properties.16 Therefore, there remains a need for 

further development of polymerization protocols that allow for direct polymerization of 

stable radical-containing monomers25, 35-39 and to ensure a high degree of radical content 

along the polymer backbone. 



72 

 

Herein, the ring-opening metathesis polymerization (ROMP) behavior of a 6-oxoverdazyl 

radical monomer and the thorough characterization of the bulk, solution, and thin-film 

properties of the resulting polymers is reported.  

3.2 Experimental 

3.2.1 General Considerations 

Reactions and manipulations were carried out under a nitrogen atmosphere using standard 

Schlenk techniques unless otherwise stated. Solvents were obtained from Caledon 

Laboratories, dried using an Innovative Technologies Inc. solvent purification system, 

collected under vacuum, and stored under a nitrogen atmosphere over 4 Å molecular sieves. 

Reagents were purchased from Sigma-Aldrich, Alfa Aesar, or Oakwood Chemicals and 

used as received unless otherwise stated. 2,4-Di-isopropylcarbonohydrazide bis-

hydrochloride 3.8,40 N-(3-hydroxylpropyl)-cis-5-norbornene-exo-2,3-dicarboximide 

3.11,41 and 3-bromopyridine derivative of Grubbs’ 3rd generation catalyst42 were prepared 

according to published procedures. NMR spectra were recorded on a 400 MHz (1H: 400.1 

MHz, 13C{1H}: 100.4 MHz) Varian INOVA instrument. 1H NMR spectra were referenced 

to residual CD3SOCD2H (2.50 ppm) and 13C{1H} NMR spectra were referenced to 

CD3SOCD3 (39.5 ppm). Mass spectrometry data were recorded in positive-ion mode using 

a high resolution Finnigan MAT 8200 spectrometer using electron impact ionization. UV-

vis absorption spectra were recorded in CH2Cl2 solutions using a Cary 300 Scan 

instrument. Four separate concentrations were run for each sample, and molar extinction 

coefficients were determined from the slope of a plot of absorbance against concentration. 

FT-IR spectra were recorded on a PerkinElmer Spectrum Two FT-IR as KBr pellets. 

Elemental analysis (C, H, N) was carried out by Laboratoire d’Analyse Élémentaire, 

Université de Montréal, Montréal, QC, Canada.  

3.2.2 Gel Permeation Chromatography (GPC) 

GPC experiments were conducted in chromatography grade THF at concentrations of 

5 mg mL−1 using a Viscotek GPCmax VE 2001 GPC instrument equipped with an Agilent 

PolyPore guard column (PL1113-1500) and two sequential Agilent PolyPore GPC columns 

packed with porous poly(styrene-co-divinylbenzene) particles (MW range 



73 

 

200−2,000,000 g mol−1; PL1113-6500) regulated at a temperature of 30 C. Signal 

response was measured using a Viscotek VE 3580 RI detector, and molecular weights were 

determined by comparison of the maximum RI response with a calibration curve (10 points, 

1,500–786,000 g mol−1) established using monodisperse polystyrene purchased from 

Viscotek.  

3.2.3 Thermal Analysis 

Thermal degradation studies were performed using a TA Instruments Q600 SDT TGA and 

processed using TA Universal Analysis software. Samples were placed in an alumina cup 

and heated at a rate of 10 °C min–1 from 25 to 800 °C under a flow of nitrogen (100 mL 

min–1). Glass transition (Tg) temperatures were determined using differential scanning 

calorimetry (DSC) on a TA Instruments DSC Q20. The polymer samples were placed in 

an aluminum Tzero pan and heated from room temperature to 180 °C at a scan rate of 10 

°C min–1 under a flow of nitrogen (50 mL min–1) and cooled down to 0 °C at a scan rate 10 

°C min–1 before they underwent two more heating/cooling cycles. The glass transition 

temperature was determined from the second heating/cooling cycle. 

3.2.4 Cyclic Voltammetry 

CV experiments were performed with a Bioanalytical Systems Inc. (BASi) Epsilon 

potentiostat and analyzed using BASi Epsilon software. Typical electrochemical cells 

consisted of a three-electrode setup including a glassy carbon working electrode, platinum 

wire counter electrode, and silver wire pseudo-reference electrode. Experiments were run 

at 100 mV s1 in degassed MeCN/CH2Cl2 (1:1) solutions of the analyte (~1 mM) and 

electrolyte (0.1 M nBu4NPF6). Voltammograms were referenced internally against the 

ferrocene/ferrocenium redox couple (~1 mM internal standard) and corrected for internal 

cell resistance using the BASi Epsilon software.  

3.2.5 Electron Paramagnetic Resonance Spectroscopy  

EPR spectroscopy measurements were made on ca. 10‒5 M CH2Cl2 solutions of 6-

oxoverdazyl monomer 3.12 and polymer 3.13 that had been subjected to three freeze-

pump-thaw cycles in 4 mm quartz tubes using a JEOL JES-FA200 EPR spectrometer. All 
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measurements were made at 20 °C and g-factors were referenced relative to a built-in 

manganese oxide marker within the resonant cavity of the instrument. Quantification of the 

number of unpaired electrons present in polymer 3.13 was done by comparing an EPR 

spectrum collected for a TEMPO solution of known concentration in CH2Cl2 that was 

compared to the manganese oxide marker signal as outlined above. The integration of the 

TEMPO signal with respect to the manganese oxide marker was compared to that of the 

radical polymer. By assuming one molecule of TEMPO contributes one unpaired electron, 

the number of unpaired electrons present in the radical polymer sample was determined. 

3.2.6 X-ray Crystallography  

Crystals of monomer 3.12 suitable for X-ray diffraction were grown by vapor diffusion of 

hexanes into a saturated CH2Cl2 solution at ‒30 °C. The sample was mounted on a 

MiTeGen polyimide micromount with a small amount of Paratone-N oil. All X-ray 

measurements were made on a Nonius KappaCCD Apex2 diffractometer at a temperature 

of 110 K. The frame integration was performed using SAINT.43 The resulting raw data was 

scaled and absorption corrected using a multi-scan averaging of symmetry equivalent data 

using SADABS.44 The structure was solved by using a dual space methodology using the 

SHELXT program.45 All non-hydrogen atoms were obtained from the initial solution. The 

hydrogen atoms were introduced at idealized positions and the positional parameters but 

not the displacement parameters were allowed to refine. The structural model was fit to the 

data using full matrix least-squares based on F2. The calculated structure factors included 

corrections for anomalous dispersion from the usual tabulation. The structure was refined 

using the SHELXL-2014 program from the SHELX suite of crystallographic software.46 

Graphic plots were produced using the Mercury program suite. See Table 3.1 and CCDC 

1428231 for X-ray diffraction data collection and refinement details. 
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Table 3.1 Selected X-ray diffraction data collection and refinement details for monomer 

3.12. 

Compound 3.12 
Chemical Formula C27H32N5O5 
Formula Weight (g mol−1) 506.57 
Crystal Dimensions (mm) 0.349 × 0.325 × 0.115 
Crystal Color and Habit Red prism 
Crystal System Triclinic 
Space Group P−1 
Temperature (K) 110 
a (Å) 10.063(2) 
b (Å) 11.316(2) 
c (Å) 12.516(2) 
α (°) 100.839(4) 
β (°) 112.235(5) 
γ (°) 98.624(5) 
V (Å3) 1257.0(4) 
Z 2 
ρ (g cm−1) 1.338 
λ (Å) 1.54178 
μ (cm−1) 0.769 
Diffractometer Type Nonius KappaCCD Apex2 
Rmerge 0.0245 
R1

a [2σI > 2] 0.0352 
ωR2

b [2σI > 2] 0.0900 
R1 (all data) 0.0391 
ωR2 (all data) 0.0940 
GOFc 1.028 

aR1 = Σ(|Fo|  |Fc|) / Σ Fo 
bωR2 = [Σ(ω( Fo

2  Fc
2 )2 ) / Σ(ω Fo

4)]½ 
cGOF = [Σ(ω( Fo

2  Fc
2 )2) / (No. of reflns.  No. of params.)]½ 

3.2.7 Thin-Film Preparation and Electrical Conductivity 
Measurements 

Thin films of various thickness were prepared from polymer 3.13 and their electrical 

properties were measured. Film preparation and electrical measurements were both carried 

out in a glove box loaded with N2 (Nexus II, Vacuum Atmospheres Co.) attached to an 

ultra-high vacuum (UHV) chamber for sample metallization and contacting. Samples can 

be transferred to/from this chamber from/to the glove box without any direct exposure to 

air. O2 and H2O contents in the glove box were below 3 ppm during the entire fabrication 

and measurement process. To prepare the thin films, the polymer was dissolved at 

12.5 mg mL1 in anhydrous chlorobenzene. The solution was stirred overnight at 50 C, 

filtered through 0.8 μm pore size syringe filters and spun on glass substrates with pre-

deposited indium tin-oxide (ITO) contacts (15 /square sheet resistance, Sigma-Aldrich) 
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using a KW-4A spin coater (Chemat Technologies Inc.) located in the glove box. ITO 

substrate patterning on glass was previously obtained by coating the ITO area to be retained 

with KaptonTM tape and etching the remaining area in a 2:1:1 H2O:HCl:HNO3 mixture at 

55 C. 

Different spinning speeds, from 500 to 3000 rpm, were used to obtain a set of thin films at 

thicknesses from 50  4 nm to 10  4 nm, respectively. These thicknesses were measured 

by atomic force microscopy (AFM) from samples identical to those used for electrical 

measurements. In order to perform the thickness measurements, part of the substrate was 

masked prior to spin coating the polymer solution. The mask was then removed and 

samples were extracted from the glove box and analyzed in contact-mode using a Witec 

Alpha300S AFM microscope, from which topography profiles of the step in the 

correspondence of the masked area were obtained. Additional AFM profiles were recorded 

in the correspondence of scratches made on the polymer film using soft probes that were 

known not to affect the substrate. AFM images showed that root mean squared (RMS) 

roughness of thin films of polymer 3.13 could be estimated to be about 2 nm, which was 

significantly less than the RMS roughness of ITO. This suggests the polymeric film is 

continuous with no outstanding ITO pinholes (Figure A3.1). 

Electrical measurements were performed in a sandwich configuration in the glove box. To 

complete the sandwich structure, samples were transferred in the aforementioned UHV 

chamber directly accessible from the glove box and 100 nm thick aluminum contacts were 

thermally evaporated on top of the polymer films, with contact thickness measured in situ 

using a Sycom STM-2 thickness monitor. The temperature was kept below 50 C during 

the entire thermal evaporation process. A first set of current voltage (I-V) characteristics 

of the thin films were recorded at ± 1 V using a computer automated Keithley 2400 source 

meter with 10 mV scan step. After this set of measurements a significantly higher voltage, 

V○ = 5 V, was applied to the samples, and electrical measurements were repeated. The 

breakdown voltage was determined to be 812 V for the thinnest sample and is therefore 

significantly higher than any voltages used during our experiments. Consistent electrical 

measurements were successfully reproduced on different sets of identically prepared 

samples. 
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3.2.8 Synthetic Procedures 

1,5-di-isopropyl-3-(4-carboxyphenyl)-6-oxotetrazane (3.9) 

To a refluxing solution of 2,4-di-isopropylcarbazide (2.00 g, 8.09 mmol) 

and NaOAc (1.33 g, 16.2 mmol) in MeOH (50 mL) was added dropwise 

over a 3 h period, a solution of 4-carboxybenzaldehyde (1.21 g, 8.09 mmol) 

and NaOAc (0.66 g, 8.1 mmol) in MeOH (50 mL). The solution was stirred 

at reflux overnight, removed from the heat and allowed to cool to room 

temperature. The reaction mixture was then acidified to pH ~ 3 using 1 M 

HCl, followed by the removal of MeOH in vacuo. The white precipitate that crashed out 

of the resulting aqueous solution was filtered and washed with two portions of deionized 

H2O (50 mL) to give tetrazane 3.9 as a white microcrystalline powder. Yield = 2.34 g, 94%. 

1H NMR (400.1 MHz, d6-DMSO): δ 13.00 (s, 1H, COOH), 7.97 (d, 2H, 3JHH = 6 Hz, aryl 

CH), 7.68 (d, 2H, 3JHH = 6 Hz, aryl CH), 5.05 (d, 2H, 3JHH = 11 Hz, NH), 4.50−4.43 (m, 

3H, NCHN and CHMe2), 1.06−1.04 (m, 12H, CH3). 
13C{1H} NMR (100.6 MHz, d6-

DMSO): δ 167.0, 153.4, 141.1, 130.6, 129.3, 126.9, 72.2, 46.8, 19.6, 18.4. FT-IR (ranked 

intensity, assignment), KBr pellet: 3249 (13, NH), 2981 (7), 2935 (11), 2872 (12), 1694 (3, 

CO), 1586 (1, CO), 1423 (2), 1227 (5), 1125 (6), 1062 (8), 904 (9), 863 (10), 752 (4) cm‒

1. Mass Spec. (EI, +ve mode): exact mass calculated for C15H22N4O3: 306.1692; found: 

306.1688; difference: ‒1.3 ppm.  

1,5-di-isopropyl-3-(4-carboxyphenyl)-6-oxoverdazyl (3.10) 

To a deionized H2O/THF (2:1, 45 mL) solution of 1,5-di-iPr-3-(4-

carboxyphenyl)-6-oxotetrazane 3.9 (2.34 g, 7.64 mmol) and NaOH (0.31 g, 

7.6 mmol) open to air was added NaIO4 (2.45 g, 11.5 mmol) in deionized 

H2O (30 mL) dropwise over 30 min. The reaction was stirred at room 

temperature for 18 h and slowly turned a dark red colour. The mixture was 

then acidified to pH ~ 3 using 1 M HCl, followed by removal of THF in 

vacuo. The resultant dark-red precipitate was filtered and washed with two portions of 

deionized H2O (50 mL) to give verdazyl 3.10 as a red microcrystalline powder. Yield = 

2.15 g, 93%. FT-IR (ranked intensity, assignment), KBr pellet: 3434 (4, br, OH), 3198 (8), 
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2985 (6), 2937 (9), 1721 (3, CO), 1680 (1, CO), 1656 (2), 1612 (7), 1432 (12), 1386 (10), 

1290 (11), 1219 (5) cm‒1. UV-vis (CH2Cl2): λmax 419 nm (ε = 1,875 M‒1 cm‒1), 405 nm (ε 

= 1,600 M‒1 cm‒1), 270 nm (ε = 29,750 M‒1 cm‒1). Mass Spec. (EI, +ve mode): exact mass 

calculated for C15H19N4O3: 303.1457; found: 303.1459; difference: +0.7 ppm. 

1,5-di-isopropyl-3-(cis-5-norbornene-exo-2,3,-dicarboxiimide)-6-oxoverdazyl (3.12) 

To a solution of N,N’-dicyclohexylcarbodiimide (DCC) (0.75 g, 3.6 

mmol) and 4-dimethylaminopyridine (DMAP) (0.48 g, 4.0 mmol) in 

dry CH2Cl2 (20 mL) was added 1,5-di-iPr-3-(4-carboxyphenyl)-6-

oxoverdazyl 3.10 (1.00 g, 3.30 mmol) before the mixture was stirred 

for 10 min at room temperature. To this solution was added N-(3-

hydroxylpropyl)-cis-5-norbornene-exo-2,3-dicarboxiimide 3.11 (0.73 

g, 3.3 mmol) and a further 10 mL of dry CH2Cl2 (for rinsing). The 

reaction mixture was stirred for 4 h at room temperature. The solution 

was filtered to remove precipitated material, which was rinsed with dry CH2Cl2 (20 mL) 

before the organic phases were combined and taken to dryness in vacuo. The resulting 

orange oil was purified by column chromatography [75 mL neutral alumina, 

hexanes/EtOAc (35:65), Rf = 0.45], and recrystallized from a hot saturated solution of 

hexanes to give 3.12 as dark-red needles. Yield = 1.18 g, 71%. FT-IR (ranked intensity, 

assignment), KBr pellet: 2978 (11), 2935 (12), 2877 (14), 1770 (13, CO), 1697 (1, CO), 

1679 (2, CO), 1611 (10), 1386 (9), 1367 (8), 1268 (2), 1230 (5), 1174 (6), 776 (7), 705 (4) 

cm‒1. UV-vis (CH2Cl2): λmax 418 nm (ε = 1,900 M‒1 cm‒1), 403 nm (ε = 1,400 M‒1 cm‒1), 

268 nm (ε = 31,025 M‒1 cm‒1). Mass Spec. (EI, +ve mode): exact mass calculated for 

C27H32N5O5: 506.2403; found: 506.2399; difference: −0.8 ppm. Anal. Calcd. (%) for 

C27H32N5O5: C, 64.02; H, 6.37; N, 13.82. Found: C, 63.88; H, 6.50; N, 13.65. 
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Representative synthesis of poly[1,5-di-isopropyl-3-(cis-5-norbornene-exo-2,3-

dicarboxiimide)-6-oxoverdazyl] (3.13) 

A grease-free Schlenk flask was charged with monomer 3.12 (0.50 

g, 0.99 mmol) and degassed CH2Cl2 (12 mL, 3 freeze-pump-thaw 

cycles). The monomer solution was cooled to 0 °C in an ice bath 

for 10 min before a 1 mg mL−1 CH2Cl2 solution of Grubbs’ 3rd 

generation catalyst (8.73 mL, 9.87 × 10−3 mmol) was rapidly added 

in one portion. The polymerization proceeded for 1 h before it was 

terminated with ethyl vinyl ether (2.37 mL, 24.7 mmol) and stirred 

for an additional 30 min while warming to room temperature. The 

crude mixture was filtered through a short neutral alumina column 

(20 mL, CH2Cl2) before the solvent was removed in vacuo. The resultant polymer, an 

orange oil was dissolved in THF (10 mL) and precipitated thrice into cold hexanes (90 mL) 

to afford 3.13 as an orange powder. Yield = 0.46 g, 92%. FT-IR (ranked intensity, 

assignment), KBr pellet: 2975 (13), 2939 (14), 2871 (16), CO ester 1775 (15), 1698 (1, 

CO), 1682 (2, CO), 1611 (12), 1387 (10), 1368 (8), 1270 (3), 1228 (9), 1173 (6), 1104 (7), 

1101 (5), 776 (11), 705 (4) cm‒1. UV-vis (CH2Cl2): λmax 419 nm (ε = 2,050 M‒1 cm‒1), 402 

nm (ε = 1,475 M‒1 cm‒1), 270 nm (ε = 29,900 M‒1 cm‒1). GPC (THF, conventional 

calibration relative to polystyrene standards): Mn = 46,100 g mol1, Mw = 49,000 g mol−1, 

Ð = 1.07). 

3.2.9 Kinetic Studies of the ROMP of Monomer 3.12 

3.2.9.1 Catalyst Loading 

Using 0.05 g of monomer 3.12 each, a series of five reactions were carried out according 

to the procedure described above. The catalyst molar feed stock ratios (monomer:catalyst) 

were: 20, 40, 60, 80, and 100. The polymerization times were held constant at 60 min. The 

degree of polymerization was measured by GPC analysis using conventional calibration 

relative to polystyrene (PS) standards. 



80 

 

3.2.9.2 Timed aliquots 

A 1 mg mL−1 CH2Cl2 solution of 3-bromopyridine derivative of Grubbs’ 3rd generation 

catalyst (3.5 mL, 4.0 × 103 mmol) was rapidly added in one portion to a 42 mg mL−1 

CH2Cl2 solution of monomer 3.12 (4.8 mL, 0.40 mmol) and the mixture was stirred at 0 C. 

Six samples were taken at 150 s intervals and added into separate reaction flasks containing 

ethyl vinyl ether (0.94 mL, 9.9 mmol) to terminate polymerization. The number average 

molecular weights (Mn) were measured by GPC analysis using conventional calibration 

relative to PS standards. 

3.3 Results and Discussion 

3.3.1 Synthesis 

The synthesis of monomer 3.12 (Scheme 3.1) began with the condensation reaction 

between bis-hydrazide•2HCl salt 3.8 and 4-formylbenzoic acid to afford tetrazane 3.9 as a 

white powder in 94% yield (Figures A3.2 and A3.3). Tetrazane 3.9 was then oxidized in 

THF/deionized H2O solution using NaIO4 to yield 6-oxoverdazyl 3.10 as an orange powder 

in 93% yield. The reaction was monitored by FT-IR spectroscopy where the disappearance 

of the NH stretch at 3249 cm−1 was observed (Figure A3.4). Verdazyl 3.10 was then 

coupled to N-(3-hydroxylpropyl)-cis-5-norbornene-exo-2,3-dicarboximide 3.11 in the 

presence of DCC and DMAP to afford monomer 3.12 as dark-red crystals in 71% yield. 

The propyl-substituted cis-5-norbornene-exo-2,3-dicarboximide polymerizable group was 

chosen based on previous reports by Tang and co-workers describing the successful ROMP 

of monomers bearing redox-active cobaltocenium moieties.42  

X-ray diffraction studies of single crystals of monomer 3.12 afforded a solid-state structure 

(Figure 3.1 and Table 3.1). The bond lengths of N1-N2 1.3558(15) and N3-N4 

1.3595(15) Å are intermediate between single and double N-N bonds.47 Similarly, the 

N2-C1 1.3319(16) and N4-C1 1.3315(16) Å bond lengths fall between those expected for 

single and double N-C bonds,47 confirming the delocalized nature of the bonding in the 

planar verdazyl radical. The dihedral angle between the verdazyl plane (N1-N2-C1-N4-

N3-C2) and the plane defined by the phenyl ring (C9C14) was found to be 6.13°. 

Furthermore, the bond length of C24-C25 of 1.318(2) Å is consistent with the preservation 
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of the alkene in the norbornene ring. The structural metrics observed for verdazyl monomer 

3.12 are consistent with those of other 6-oxoverdazyl radicals.33, 48-52  

 

 

Figure 3.1 Solid-state structure of monomer 3.12. Anisotropic displacement ellipsoids are 

shown at 50% probability and hydrogen atoms have been omitted for clarity. Selected bond 

lengths (Å): N1-N2 1.3558(15), N3-N4 1.3595(15), N1-C2 1.3819(16), N2-C1 1.3319(16), 

N3-C2 1.3802(16), N4-C1 1.3315(16), C24-C25 1.318(2). Selected bond angles (deg): N1-

N2-C1 115.00(10), N3-N4-C1 114.96(10), N1-C2-N3 114.35(11), N2-C1-N4 127.20(11). 

 

 

Scheme 3.1 Synthesis of 6-oxoverdazyl monomer 3.12 and polymer 3.13. 
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With monomer 3.12 in hand, we began to explore its ROMP behavior. In a representative 

reaction, polymerization was initiated by the rapid introduction of a solution of 3-

bromopyridine derivative of Grubbs' 3rd generation catalyst (G3) to a stirring solution of 

monomer 3.12 in dry and degassed CH2Cl2 at 0 °C with a feed molar ratio of 100 

(monomer:catalyst = 100:1). Reaction progress was monitored by GPC, confirming the 

reaction was near completion after approximately 15 min. Nonetheless, the solution was 

stirred for an additional 45 min to ensure complete monomer conversion before a large 

excess of ethyl vinyl ether (EVE) was added to terminate the polymerization. The reaction 

mixture was passed through a plug of neutral alumina to remove residual catalyst. 

Subsequent precipitations from THF into cold hexanes, followed by centrifugation 

afforded polymer 3.13 as an orange powder in 92% yield. Figure 3.2a shows the GPC trace 

(typical) obtained for polymer 3.13 after purification (Mn = 46,100 g mol−1, Mw = 49,300 g 

mol−1, Ð = 1.07). Our best results were obtained when CH2Cl2 was employed as a solvent, 

while Nishide and co-workers have recently noted improved results when acetone was 

employed as solvent for the ROMP of a related bis nitroxide monomer.26 

It is worth noting that during our investigations of the ROMP of monomer 3.12, 

approximately 20% of our reactions yielded polymer samples that contained a high 

molecular weight shoulder in their GPC chromatograms (e.g., Figure 3.2b, Mn = 

51,100 g mol1, Mw = 57,750 g mol−1, Ð =1.13). Based on the inconsistent appearance of 

this shoulder in our GPC data, we assume that the high molecular weight species are 

generated via chain coupling or related reactions during the termination step. The origin of 

the coupling remains unclear, however, molecular oxygen inadvertently introduced when 

EVE was introduced to the reaction flask via syringe may play a role in the observed 

reactivity. 

We performed two separate experiments designed to further probe the ROMP of monomer 

3.12. Unfortunately, the scope of our studies were limited due to the paramagnetic nature 

of polymer 3.13, which precluded the use of integration data obtained from 1H NMR 

spectroscopy for the determination of the number average degree of polymerization (DPn) 

and monomer consumption as a function of time. The first study involved ROMP of 

monomer 3.12 at five different molar feedstock ratios (Figure 3.2c).  
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As expected, the values of DPn determined by GPC analysis increased significantly as the 

molar feedstock ratios were increased from 20 to 100. However, when high molecular 

weight polymers were targeted, we observed a deviation from ideal behavior, and lower 

than expected values of DPn. This observation is indicative of well-behaved, but not 

formally living polymerization ROMP. A second study was performed, where a single 

ROMP reaction (monomer:catalyst 100:1) was studied at time intervals of 150 s (Figure 

3.2d). The molecular weight of the isolated polymers increased in a non-linear fashion as 

a function of time due to a decrease in monomer concentration as the reaction proceeded. 

Again, this trend was consistent with a well-behaved ROMP reaction involving limited 

side reactions. 

 

  
Figure 3.2 Representative GPC traces for (a) a typical sample of polymer 3.13 (Mn = 

46,100 g mol−1, Mw = 49,300 g mol−1, Ð = 1.07) and (b) a GPC trace for a polymer 

containing a minor fraction of high molecular weight polymer 3.13 (Mn = 51,100 g mol−1, 

Mw = 57,750 g mol−1, Ð = 1.13). (c) Relationship of feed molar ratio and DPn determined 

by GPC. The black line represents the theoretical relationship between DPn and feed molar 

ratio. (d) Molecular weight (Mn) as a function of reaction time.  
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3.3.2 Polymer Characterization 

Thermal gravimetric analysis (TGA) revealed that polymer 3.13 was thermally stable up 

to a temperature of 190 °C, where rapid degradation occurred in three steps (Figure A3.5). 

The first step (190290 C) involved a mass loss of 13%, the second (290430 C) 35%, 

and the third (430800 C) 40%, to give an overall char yield of 12%. Differential scanning 

calorimetry (DSC) studies of polymer 3.13 revealed a Tg of 152 C (Figure A3.6). 

To confirm the presence of 6-oxoverdazyl radicals in the polymer, careful comparison of 

the spectroscopic and electrochemical properties of monomer 3.12 and polymer 3.13 were 

made. The FT-IR spectrum of monomer 3.12 showed characteristic carbonyl peaks at 1679, 

1697, 1770 cm−1 similar to the carbonyl peaks at 1682, 1698, and 1775 cm−1 of polymer 

3.13 (Figure A3.7). Moreover, when we compared the UV-vis absorption spectra of 

monomer 3.12 and polymer 3.13 between 350 and 475 nm, we found that they were in very 

close agreement (Figure 3.3). Based on the IR and UV-vis absorption spectra, we conclude 

that nearly 100% of the repeating units in polymer 3.13 contain a 6-oxoverdazyl moiety, 

indicating that the ROMP reaction employed is indeed tolerant of such radicals. 

 

 

Figure 3.3 (a) UV-vis absorption spectra acquired for CH2Cl2 solutions of monomer 3.12 

(red line) and polymer 3.13 (black line). (b) Magnified spectra from 350 to 475 nm. 
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In order to further support these findings, electron paramagnetic resonance (EPR) 

spectroscopy was performed to quantitatively determine the number of unpaired 6-

oxoverdazyl units present in polymer 3.13. This experiment showed that ca. 94% of the 

repeating units in the polymer contain an unpaired electron, supporting our IR and UV-vis 

absorption spectroscopy-based claims discussed above. An EPR spectrum of monomer 

3.12 was also obtained and compared to the spectrum of polymer 3.13 (Figure 3.4). The 

spectrum of monomer 3.12 showed a typical pattern for 1,5-substituted 6-oxoverdazyls,40 

with the radical coupling to two unique pairs of nitrogen atoms and the CH protons of the 

iPr groups [simulation data (Figure A3.8): g = 2.0045, line width = 0.089 mT, aN1,3 = 0.529 

mT, aN2,4 = 0.640 mT, aH = 0.140 mT]. The isotropic EPR spectrum of polymer 3.13 

(g = 2.0043) was very broad and essentially featureless, as would be expected for a polymer 

containing stable radicals in random orientations and close proximity.  

 

Figure 3.4 Experimental EPR spectra of 6-oxoverdazyl monomer 3.12 (red line, 

g = 2.0045) and polymer 3.13 (black line, g = 2.0043). Simulation of the spectrum of 

monomer 3.12 yielded the following parameters: line width = 0.089 mT, aN1,3 = 0.529 mT, 

aN2,4 = 0.640 mT, aH = 0.140 mT (Figure A3.8).  

 The electrochemical properties of monomer 3.12 and polymer 3.13 were studied 

using cyclic voltammetry (CV) in a CH2Cl2/MeCN (1:1) solvent mixture (Figure 3.5, Table 

3.2). 6-Oxoverdazyl monomer 3.12 was reversibly oxidized and reduced at half-wave 

oxidation (E1/2,ox) and reduction (E1/2,red) potentials of 0.24 and −1.36 V relative to the 

ferrocene/ferrocenium redox couple, respectively. Similarly, the CV of polymer 3.13 
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showed oxidation and reduction wave potentials at 0.25 V and 1.35 V, respectively. The 

current response for the polymer was lower than expected and the oxidation/reduction 

waves broadened as a result of a loss of diffusion control at the electrode interface, a 

commonly observed phenomenon for redox-active polymers. 

Table 3.2 Electrochemical data for 6-oxoverdazyl monomer 3.12 and polymer 3.13. 

Compound E1/2,ox (V vs. Fc/Fc+) E1/2,red (V vs. Fc/Fc+) 
3.12 0.24 −1.36 
3.13 0.25 −1.35 

 

Figure 3.5 CVs of 6-oxoverdazyl monomer 3.12 (red line) and polymer 3.13 (black line) 

recorded at a scan rate of 100 mV s−1 in CH2Cl2/MeCN (1:1) solution containing 1 mM 

analyte and 0.1 M nBu4NPF6 as supporting electrolyte.  

3.3.3 Electrical Properties of Thin Films of Polymer 3.13 

 Based on the spectroscopic and electrochemical studies described above, we 

concluded that polymer 3.13 may have interesting and potentially unique thin-film 

properties. To this end, we investigated the electrical properties of thin solid films of this 

polymer, from approximately 10 nm to 50 nm in thickness, by using a sandwich 

architecture. Thin polymeric films may have very peculiar morphological and structural 

properties53 as a consequence of the preferential alignment of the polymeric chains with 

respect to the substrate. Specifically, the alignment may be strongly dependent on the 
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thickness, which may sometimes lead to non-ohmic conductivity mechanisms and 

thickness-dependent resistivity in ultrathin polymeric films.53  

Figure 3.6a illustrates the configuration we used to measure the I-V characteristics of our 

films before and after the films were pretreated at high voltage (V○ = 5 V). In both cases, 

the film resistivity () was inferred from the I-V characteristics through the relationship 

    
d

AR 
                  (1) 

where A is the area of the region in which the top and bottom contacts overlap, d is the film 

thickness and R = V/I is the thin film resistance, obtained from the slope of the I-V 

characteristics in the proximity of the origin. The I-V curves recorded from our films of 

polymer 3.13 are reported in Figure 3.6b and 3.6c for measurements recorded after and 

before 5 V film treatment, respectively. In ohmic systems  is an inherent property of the 

material, independent of the thickness of the thin film that is being considered. After 5 V 

treatment, all films were electrically ohmic and exhibit a relatively high conductivity, with 

linear I-V characteristics in the entire  1 V range as can be observed in Figure 3.6b. The 

extracted resistivity value (  1.7  104 m, Figure 3.6d) is thickness independent, as 

can be expected from ohmic systems. This value favorably compares with poly(2,2,6,6-

tetramethylpiperidinyloxy methacrylate) 1 (  1  104 m),15 the most widely studied 

stable radical polymer that has also shown defect-dependent thin-film properties.16 In 

contrast, Figure 3.6d also shows that these films are significantly more insulating before 

the high voltage treatment at 5 V. They revert to such a low-conductivity state after the 

effects of high-voltage treatment vanish, typically in 20200 h.  

Although a more complete understanding of the electrical properties of our films is beyond 

the scope of this thesis and will be the subject of future reports, it is noteworthy that the 

I-V characteristics before high-voltage treatment of our films are typically non-ohmic, as 

can be inferred from Figure 3.6c. As a consequence of non-ohmicity, the resistivity inferred 

from eq. (1) strongly increases as the thickness of the films decreases and could not be 

measured with our equipment at thicknesses below 20 nm. This suggests that  should be 

higher than 1012 m below this thickness value and, therefore, it may be approximately 
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comparable with that of glass (  10121014 m).54 It can be phenomenologically 

observed that the I-V curves shown in Figure 3.6c can be fitted using a Poole-Frenkel 

model for non-ohmic transport via localized trapped charges,55 in which the current is 

related to the voltage by the following relationship: 

 







 


Tk

dVπqqΔ
V

d

A
I

B

m

-1/2 2/12/3 )/(
exp





                                        (2) 

where ○ corresponds to the polymer resistivity in the absence of traps, q is the electron 

charge,  is the voltage barrier electrons must cross at low voltage to hop from one 

charged trap to another, m is the dielectric permittivity of the polymer relative to vacuum, 

and kBT = 0.025 eV at room temperature.  

 

Figure 3.6 (a) Sandwich-type configuration for measuring the I-V characteristics of 

polymer 3.13 thin films, showing bistable electrical transport. (b) I-V curves of thin films 

at four different thicknesses in high conductivity state, which were fitted with straight lines 

to demonstrate ohmic transport and (c) I-V curves of thin films in low conductivity state 

showing non-ohmic, Poole-Frenkel like, behavior. Solid line fits were performed using eq. 

(2). (d) Film resistivity values obtained from the low-voltage portions of I-V curves. 
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While the high-conductivity state observed in Figure 3.6b can be attributed to extended-

state transport via free electrons, the low-conductivity, Poole-Frenkel-like transport 

mechanism observed in Figure 3.6c can be assigned to hopping between localized states 

situated at specific charged monomers along a polymer filament. The hopping conditions 

may be strongly dependent on the degree of alignment of the polymer filaments along the 

substrate, in analogy to what previously observed in polythiophenes.53 Specifically, if all 

of the polymer chains are aligned parallel to the substrate, hopping along the z-direction 

must occur through localized states situated on different polymer chains, thus explaining 

why the thinnest films, presumably containing polymer filaments more aligned along the 

substrate, are also more electrically insulating.  

The switchable conductor-insulator transitions in thin films of polymer 3.13 and their 

relationship with the redox processes in this material requires further investigation. 

However, the observation of Poole-Frenkel type transport in the low conductivity state 

leads us to tentatively suggest that such a state corresponds to a situation in which only a 

few repeating units in a polymer chain are charged, while most of them are in a neutral 

state. At sufficiently high voltage (i.e., V  Vo   5 V) charges may directly tunnel from 

the electrodes into some of the neutral repeating units, charging them either positively or 

negatively. When a sufficient concentration of charged repeating units is reached in a thin 

film, a percolating pathway may be established between such repeating units, leading to 

switching to the high conductivity state, dominated by transport between extended 

electronic states. This conductor-insulator transition makes polymer 3.13 uniquely 

positioned for several applications in bistable electronics and will be the subject of future 

reports. 

3.3.4 Ultrathin Memristor Device 

The quest for memristors with flash properties suitable to retain information without any 

external power source, but capable of satisfying the thinness requirements of next-

generation electronics, demands the development of device architectures with a 

homogeneous layer of active material that can be made as thin as possible. An ultrathin 

memristor device was fabricated in which the active layer is formed by a 10 nm 
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homogeneous thin film of polymer 3.13 (Figure 3.7). To the best of our knowledge, these 

are the thinnest organic flash memristors obtained to date. Careful engineering of the anode 

and cathode work functions, specifically aligning them with the negative and positive 

energy levels of polymer 3.13 is vital to maximize the on/off current ratio and ensure flash 

operation. Conversely, devices in which the cathode work function aligns with the neutral 

energy level of 3.13 are writable only once. We assign the bistability of our memristors to 

two distinct transport regimes in organic polyradicals: extended states and Poole-Frenkel. 

 

Figure 3.7 (a) Schematic representation of the electron hopping mechanism from repeating 

unit to repeating unit, in a Poole-Frenkel mechanism in the high conductivity and in an 

extended states mechanism for low conductivity. (b) The structural schematic of sandwich 

memristors from 3.13 thin film formed by spin coating 12.5 mg mL1 of 3.13 dissolved in 

anhydrous chlorobenzene, four identical pre-patterned bottom electrodes and thermally 

evaporated Ca/Al top electrodes. 

3.4 Conclusion 

As a result of this work, we have demonstrated that ROMP using Grubbs' 3rd generation 

catalyst can produce 6-oxoverdazyl polymers with up to ca. 100 repeating units, narrow 

molecular weight distributions (Ð < 1.2), and high radical content (> 94%). A 

representative sample of the 6-oxoverdazyl polymers produced was thermally stable up to 

a temperature of 190 °C and had a glass transition temperature of 152 C. Comparison of 

the same polymer, which is stable towards air and moisture, to the monomer employed 

using several spectroscopic techniques, including IR, UV-vis, and EPR spectroscopy. CV 
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confirmed that the identity and properties of the pendant 6-oxoverdazyl groups were 

maintained after ROMP. The redox properties of the polymers described led us to explore 

their thin-film electrical transport properties, revealing a significant decrease in sheet 

resistance from 240  to 26 M upon application of a potential, V○ = 5 V. Our future work 

in this area will include expansion of the ROMP methods described to include other stable 

radical monomers and a detailed description of the electrical transport mechanism in 6-

oxoverdazyl polymers in the solid state. 
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Chapter 4  

4 Synthesis, Characterization, and Preceramic Properties 
of π-Conjugated Polymers Based on Ni(II) Complexes of 
Goedken’s Macrocycle 

Adapted from: 

J. A. Paquette, E. R. Sauvé, and J. B. Gilroy* Macromol. Rapid Commun. 2015, 36, 

621−626. 

J. A. Paquette, J. G. Gilroy* J. Polym. Sci., Part. A: Polym Chem. 2016, 54, 3257−3266. 

4.1 Introduction 

Metallopolymers,1-10 which combine the processability of macromolecules and the 

properties of transition metals, are an intriguing class of functional materials. As a result 

of these combined traits, metallopolymers have been used extensively, for example, as 

redox-active,11-16 magnetic,17-22 and luminescent materials.23-27 

The introduction of metals into π-conjugated polymer frameworks affords the ability to 

further expand their functionality.28-34 One of the most well-studied classes of π-conjugated 

metallopolymers are metal-polyynes.30, 35-38 Wong and co-workers have previously 

described platinum-based systems (e.g., 4.1) with π-conjugation along the polymer 

backbone and demonstrated their utility in photovoltaic devices37 and as pre-ceramic 

materials.38-40 Another widely explored family of polymers based on π-conjugated units 

contain porphyrins and phthalocyanine complexes.41-45 For example, Paik and co-workers 

realized a Cu(II)-containing phthalocyanine polymer (4.2) via intramolecular 

macrocyclization reactions in order to create single chain nanoparticles.45 π-Conjugated 

metallopolymers composed of Schiff bases coordinated to transition metals have also 

shown widespread utility.28, 46-53 Notably, Swager and colleagues have reported polymers 

based on salen ligands coordinated to cobalt (e.g., 4.3) and demonstrated their utility as 

nitric oxide sensors.48-49 
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Most metallopolymers contain one metal atom in their repeating unit, which can limit their 

utility in some applications, including as pre-ceramic materials. The introduction of 

additional transition metal atoms to polymer scaffolds can afford highly metallized 

polymers.38, 54-58 One such example was synthesized by Manners and co-workers, where 

molybdenum cyclopentadienyl (Cp) carbonyl was used to append two MoCp(CO)2 groups 

to each repeating unit of the backbone of a polyferrocenylsilane (4.4) to produce 

metallopolymers with utility in UV-photolithography applications.54 

 

Herein, we present a series of -conjugated polymers containing Ni(II) complexes of 

Goedken’s macrocycle and their comprehensive characterization, including comparison to 

model compounds. These copolymers have been specifically targeted in an effort to 

combine the redox and charge transfer properties of Ni(II)-complexes of Goedken’s 

macrocycle59-60 with common traits associated with π-conjugated organic polymers (e.g., 

low band-gaps, charge transport properties).28, 35, 61  Furthermore, we describe post-

polymerization reactions used to transform one of the copolymers into a heterobimetallic 

polymer and its use as a pre-ceramic material. 

4.2 Experimental 

4.2.1 General Considerations 

Reactions and manipulations were carried out under a nitrogen atmosphere using standard 

Schlenk or glove box techniques unless otherwise stated. Solvents were obtained from 
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Caledon Laboratories, dried using an Innovative Technologies Inc. solvent purification 

system, collected under vacuum, and stored under a nitrogen atmosphere over 4 Å 

molecular sieves. Reagents were purchased from Sigma-Aldrich, Alfa Aesar, or Oakwood 

Chemical and used as received unless otherwise stated. 4-[(trimethylsilyl)ethynyl]-benzoyl 

chloride,62 tetramethyldibenzo-tetraaza[14]annulene nickel(II),63 2,7-dibromo-9,9-

dihexylfluorene,64 2-bromo-9,9-dihexylfluorene,64 2,5-dibromo-3-hexylthiophene65, and 

1,4-dibromo-2,5-bis(hexyloxy)benzene66 were prepared according to previously published 

protocols.  NMR Spectra were recorded on a 600 MHz (1H: 599.3 MHz, 13C{1H}: 150.7 

MHz) Varian INOVA instrument or a 400 MHz (1H 400.1 MHz, 13C{1H}: 100.6 MHz) 

Varian Mercury instrument. 1H NMR spectra were referenced to residual CHCl3 (7.27 

ppm) and 13C{1H} NMR spectra were referenced to CDCl3 (77.0 ppm). Mass spectrometry 

data were recorded in positive-ion mode with a Bruker microTOF II instrument using 

electrospray ionization. UV-vis absorption spectra were recorded in CH2Cl2 solutions 

using a Cary 300 Scan instrument. Four separate concentrations were run for each sample 

and molar extinction coefficients were determined from the slope of a plot of absorbance 

against concentration. FT-IR spectra were recorded on a PerkinElmer Spectrum Two 

instrument using an attenuated total reflectance accessory or as KBr pellets using a Bruker 

Vector 33 FT-IR spectrometer. Powder XRD diffractograms were acquired using an Inel 

CPS powder diffractometer with an Inel XRG 3000 generator and Inel CPS 120 detector 

using a CuKα radiation source. Elemental analyses (C, H, N) were carried out by 

Laboratoire d’Analyse Élémentaire de l’Université de Montréal, Montréal, QC, Canada. 

4.2.2 Microwave Reactions 

Microwave reactions were carried out in a 400 W Biotage Initiator 2.0 microwave reactor. 

A 5 mL glass vial was charged with the relevant solid or degassed liquid reagents/solvents, 

sealed in an inert atmosphere glove box, and subjected to microwave irradiation as 

described below. 

4.2.3 Gel Permeation Chromatography (GPC) 

GPC experiments were conducted in chromatography-grade THF at concentrations of 5 

mg mL−1 using a Viscotek GPCmax VE 2001 GPC instrument equipped with an Agilent 
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PolyPore guard column (PL1113-1500) and two sequential Agilent PolyPore GPC columns 

packed with porous poly(styrene-co-divinylbenzene) particles (MW range: 200–2,000,000 

g mol−1; PL1113-6500) regulated at a temperature of 30 C. Signal responses were 

measured using a Viscotek VE 3580 RI detector, and molecular weights were determined 

by comparison of the maximum RI response with a calibration curve (10 points, 1,500–

786,000 g mol−1) established using monodisperse polystyrene standards purchased from 

Viscotek. 

4.2.4 Thermal Analysis and Pyrolysis Studies 

Thermal degradation studies were performed using a TA Instruments Q50 TGA. Samples 

were placed in platinum pan and heated at a rate of 10 °C min–1 from 25 to 800/1000 °C 

under a flow of nitrogen (60 mL min–1). Differential scanning calorimetry (DSC) traces 

were acquired on a TA Instruments DSC Q20 instrument. The polymer samples were 

placed in an aluminum Tzero pan and heated from room temperature to 150/250 °C at 10 °C 

min–1 under a flow of nitrogen (50 mL min–1) and cooled down to 0/−50 °C at 10 °C        

min–1, before they underwent two more heating/cooling cycles. 

Thin films of 4.10F and 4.10F-[Co2(CO)6]2 were prepared by drop-casting 250 L of a 20 

mg mL‒1 solution of each polymer in chlorobenzene onto a silicon wafer (area = 1 cm2). 

The samples were dried in air, transferred to a vacuum oven, and further dried under 

vacuum at 60 C for 16 h before they were heated at a rate of 10 C min‒1 to a temperature 

of 800 C under a gentle flow of N2/H2 (95:5) in a quartz tube within a Lindberg Blue M 

tube furnace. The temperature was maintained at 800 °C for an additional 3 h before the 

furnace was cooled to room temperature at a rate of 10 C min‒1. The samples were 

analyzed directly using scanning electron microscopy (SEM) at 1 keV beam energy and 

elemental analysis was performed at 10 keV beam energy on a LEO (Zeiss) 1540XB with 

an equipped Oxford X-sight X-ray detector and INCA analysis software at the Western 

Nanofabrication Facility.  
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4.2.5 Electrochemical Methods 

CV experiments were performed with a Bioanalytical Systems Inc. (BASi) Epsilon 

potentiostat and analyzed using BASi Epsilon software. Typical electrochemical cells 

consisted of a three-electrode setup including a glassy carbon working electrode, platinum 

wire counter electrode, and silver wire pseudo reference electrode. Experiments were run 

at a scan rate of 100 mV s−1 in dry and degassed CH2Cl2 solutions of the analyte (~1 mM) 

and electrolyte (0.1 M [nBu4N][PF6]). CVs were internally referenced against the 

ferrocene/ferrocenium redox couple (~1 mM internal standard) and corrected for internal 

cell resistance using the BASi Epsilon software. 

4.2.6 X-ray Crystallography Details 

A crystal of monomer 4.7 was mounted on a MiTeGen polyimide micromount with a small 

amount of Paratone-N oil. All X-ray measurements were made on a Bruker Kappa Axis 

Apex2 diffractometer at a temperature of 110 K. The unit cell dimensions were determined 

from a symmetry constrained fit of 9769 reflections with 6.16° < 2θ < 68.84°. The data 

collection strategy was a number of w and j scans which collected data up to 69.238° (2θ). 

The frame integration was performed using SAINT.67  The resulting raw data was scaled 

and absorption corrected using a multi-scan averaging of symmetry equivalent data using 

SADABS.68 The structure was solved by using a dual space methodology using the 

SHELXT program.69 All non-hydrogen atoms were obtained from the initial solution. The 

hydrogen atoms were introduced at idealized positions and were allowed to ride on the 

parent atom. The structural model was fit to the data using full matrix least-squares based 

on F2. The calculated structure factors included corrections for anomalous dispersion from 

the usual tabulation. The structure was refined using the SHELXL-2014 program from the 

SHELX suite of crystallographic software.70 Additional crystallographic data can be found 

in Table 4.1. 
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Table 4.1 Crystallography data for compound solid state structure of 4.7. 

Chemical Formula C42.50H33Cl5N4NiO2 
Formula Weight (g/mol) 867.69 
Crystal Dimensions (mm) 0.494 × 0.270 × 0.126 
Crystal Color and Habit green plate 
Crystal System monoclinic 
Space Group P 21/c 
Temperature (K) 110 
a (Å) 14.480(6) 
b (Å) 16.295(4) 
c (Å) 17.868(7) 
 (°) 90 
 (°) 112.466(16) 
 (°) 90 
V (Å3) 3896(2) 
Z 4 
 (g/cm) 1.483 
, Å, (MoK) 0.71073 
, (cm-1) 0.884 
Diffractometer Type Bruker Kappa Axis Apex2 
Rmerge 0.0545 
R1

a) [2σI > 2] 0.0513 
wR2

b) [2σI > 2] 0.1277 
R1 (all data) 0.0776 
wR2 (all data) 0.1421 
GOF 1.034 
a)R1 = ( |Fo|  |Fc| ) /  Fo 
b)wR2 = [ ( w( Fo

2  Fc
2 )2 ) / (w Fo

4 ) ]½ 
GOF = [ ( w( Fo

2  Fc
2 )2 ) / (No. of reflns.  No. of params.) ]½ 

 

4.2.7 Synthetic Procedures 

Synthesis of complex 4.6 

A Schlenk flask equipped with a stir bar was charged with 

complex 4.5 (0.81 g, 2.0 mmol), 4-

[(trimethylsilyl)ethynyl]benzoyl chloride (1.00 g, 4.22 

mmol) and dry toluene (90 mL) in a glove box before it was 

sealed and removed from the glove box.  Et3N (4.2 mL, 3.1 

g, 30 mmol) was added and the vessel was fitted with a 

condenser and heated to 125 °C.  After stirring for 16 h, the 

mixture was cooled to 20 °C and filtered in vacuo. The 

solvent was then removed to yield a dark green solid.  Precipitation of a saturated CH2Cl2 

solution in pentane afforded TMS-substituted complex 4.6 as a green solid. Yield = 1.54 

g, 96%. 1H NMR (400.1 MHz, CDCl3): δ 8.18 (d, 4H, 3JHH = 8 Hz, aryl CH), 7.66 (d, 4H, 
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3JHH = 8 Hz, aryl CH), 6.676.59 (m, 8H, aryl CH), 1.90 (s, 12H, CH3), 0.29 (s, 18H, 

SiCH3). 
13C{1H} NMR (100.6 MHz, CDCl3) δ 199.5, 153.8, 147.2, 138.5, 132.5, 129.5, 

128.3, 122.8, 121.9, 120.9, 104.1, 98.5, 20.5, −0.2. IR (KBr): ν = 2957 (w, CH), 2158 (w, 

C≡C), 1653 (m, C=O), 1598 (m), 1533 (s), 1457 (m), 1429 (m), 1380 (s), 1054(m), 855 

(s), 746 (m) cm−1. UV-vis (CH2Cl2): λmax (ε) 587 nm (5,975 M−1 cm−1), 435 nm (sh, 12,275 

M−1 cm−1), 389 nm (30,075 M−1 cm−1), 300 nm (73,875 M−1 cm−1), 286 nm (78,775 M−1 

cm−1). Mass Spec. (ESI, +ve mode) m/z: [M + H+] calcd for [C46H47N4NiO2Si2]
+, 801.2591; 

found, 801.2584; difference: 0.9 ppm. Anal. Calcd for C46H46N4NiO2Si2: C, 68.91; H, 

5.78, N, 6.99; found: C, 68.03, H, 5.83; N, 6.92. 

Synthesis of monomer 4.7 

TMS-protected complex 4.6 (1.88 g, 2.34 mmol) was 

stirred with K2CO3 (1.30 g, 9.38 mmol) in THF/MeOH 

(3:1, 80 mL) for 16 h. CH2Cl2 was added and the organic 

layer was washed with 0.5 M aqueous NH4Cl, dried with 

MgSO4 and concentrated in vacuo. The resulting dark 

green solid was purified via column chromatography (silica gel, hexanes/EtOAc [8:2]), and 

precipitated from a saturated CH2Cl2 solution in pentane to afford compound 4.7 as a dark 

green microcrystalline solid. Yield = 1.39 g, 90%. 1H NMR (400.1 MHz, CDCl3): δ 8.21 

(d, 4H, 3JHH = 8 Hz, aryl CH), 7.70 (d, 4H, 3JHH = 8 Hz, aryl CH), 6.686.60 (m, 8H, aryl 

CH), 3.31 (s, 2H, CH), 1.91 (s, 12H, CH3). 
13C{1H} NMR (100.6 MHz, CDCl3): δ 199.4, 

153.8, 147.2, 138.9, 132.7, 129.6, 127.2, 122.8, 121.8, 120.8, 82.9, 80.6, 20.5. IR (KBr): ν 

= 3284 (w, C≡CH), 1656 (s, C=O), 1599 (m), 1533 (s), 1431 (m), 1380 (s), 1055 (m), 855 

(s), 748 (m) cm−1. UV-vis (CH2Cl2): λmax (ε) 583 nm (6,525 M−1 cm−1), 389 nm (31,475 

M−1 cm−1), 262 nm (76,900 M−1−cm−1). Mass Spec. (ESI, +ve mode) m/z: [M + H+] calcd 

for [C40H31N4NiO2]
+: 657.1800; found: 657.1802; difference: +0.3 ppm. Anal. Calcd for 

C40H30N4NiO2: C, 73.08, H, 4.60, N, 8.52; found: C, 72.23, H, 4.46, N, 8.41. 
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Synthesis of complex 4.8 

A Schlenk flask equipped with a stir bar was charged with 

complex 4.5 (1.68 g, 4.19 mmol), 4-

[(trimethylsilyl)ethynyl]benzoyl chloride (1.00 g, 4.19 mmol) and 

dry toluene (100 mL) in a glove box. Upon removal, dry and 

degassed Et3N (4.67 mL, 33.5 mmol) was added and the vessel 

was fitted with a condenser and heated to 125 °C.  After stirring 

for 16 h, the mixture was cooled to room temperature and filtered in vacuo. The solvent 

was then removed. Column chromatography (CH2Cl2/Hexanes, 2:1, 100 mL silica gel) was 

performed to yield complex 4.8 as a dark green solid. Yield = 0.57 g, 23% yield (and 4.7; 

1.26 g, 38%). 1H NMR (400.1 MHz, CDCl3): δ 8.15 (d, 2H, JHH = 8 Hz, aryl CH), 7.61 (d, 

2H, JHH = 8 Hz, aryl CH), 6.72 (dd, 2H, JHH =8, 1 Hz, aryl CH) 6.626.60 (m, 4H, aryl 

CH), 6.57−6.55 (m, 2H, aryl CH), 4.86 (s, 1H, CH), 2.10 (s, 6H, CH3), 1.88 (s, 6H, CH3), 

0.28 (s, 9H, SiCH3). 
13C{1H} NMR (100.6 MHz, CDCl3) δ 199.5, 155.4, 153.8, 147.4, 

147.2, 138.6, 132.4, 129.5, 128.1, 122.9, 121.8, 121.7, 120.9, 120.5, 111.3, 104.2, 98.3, 

21.9, 20.7, −0.2. FT-IR (ATR): ν = 2957 (w, CH), 2158 (w, C≡C), 1638 (m, C=O), 1596 

(m), 1529 (s), 1453 (m), 1430 (m), 1381 (s), 1168 (m), 1215 (s), 1168 (m), 913 (m), 840 

(m), 743 (m) cm−1. UV-vis (CH2Cl2): λmax (ε) 589 nm (5,500 M−1 cm−1), 433 nm (sh, 14,100 

M−1 cm−1), 392 nm (33,400 M−1 cm−1), 301 nm (sh, 52,800, M−1 cm−1), 285 nm (60,800 

M−1 cm−1). Mass Spec. (ESI, +ve mode) m/z: [M]+ calc’d for [C34H34N4NiOSi]+, 600.1855; 

found, 600.1853; difference: −0.3 ppm.  

Synthesis of complex 4.9 

Complex 4.8 (0.20 g, 0.33 mmol) was stirred with K2CO3 (0.09 g, 

0.7 mmol) in THF/MeOH (3:1, 16 mL) for 16 h. CH2Cl2 was added 

and the organic layer was washed with 0.5 M aqueous NH4Cl (50 mL), 

dried with MgSO4 and concentrated in vacuo. The resulting dark green 

solid was purified via precipitation from a saturated CH2Cl2 solution 

in pentane to afford 4.9 as a dark green microcrystalline solid. Yield = 0.14 g, 81%. 1H 

NMR (400.1 MHz, CDCl3): δ 8.18 (d, 2H, JHH = 7 Hz, aryl CH), 7.65 (d, 2H, JHH = 8 Hz, 
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aryl CH), 6.73 (d, 2H, JHH = 8 Hz) 6.626.60 (m, 4H, aryl CH), 6.57−6.56 (m, 2H, aryl 

CH) 4.87 (s, 1H, CH), 3.28 (s, 1H, C≡C-H), 2.10 (s, 6H, CH3), 1.90 (s, 6H, CH3). 
13C{1H} 

NMR (100.6 MHz, CDCl3) δ 199.4, 155.4, 153.8, 147.4, 147.1, 139.0, 132.6, 129.5, 127.0, 

123.0, 121.8, 121.7, 120.9, 120.4, 111.2, 82.9, 80.5, 21.9, 20.7.  FT-IR (ATR): ν = 3301 

(w), 1663 (w, C=O), 1597 (w), 1530 (m), 1454 (m), 1429 (m), 1382 (s), 1365 (s), 1217 

(m), 1166 (m), 1054 (m), 913 (m), 853 (s), 772 (m), 746 (s), 645 (m), 617 (m) cm−1. UV-

vis (CH2Cl2): λmax (ε) 588 nm (4,100 M−1 cm−1), 427 nm (sh, 9,200 M−1 cm−1), 392 nm 

(23,700 M−1 cm−1), 274 nm (33,700 M−1 cm−1). Mass Spec. (ESI, +ve mode) m/z: [M]+ 

calc’d for [C31H26N4NiO]+, 528.1460; found, 528.1452; difference: −1.5 ppm.  

General synthetic procedure for copolymers 4.10F, 4.10T, and 4.10B 

Compound 4.7 (0.10 g, 0.15 mmol), dibromoaryl monomer (0.15 mmol), Pd(PPh3)4 (0.004 

g, 0.004 mmol, 10%) and CuI (0.002 g, 0.008 mmol, 5%) were combined in a microwave 

vial. The solvent mixture, 3 mL DMF/DIPA/H2O (2:1:0.03), was degassed by three freeze-

pump-thaw cycles, brought into a glove box and added to the solids. The reaction vessel 

was sealed before it was heated to 100 °C for 60 min in a microwave reactor. The resulting 

dark green solution was diluted with CH2Cl2 (20 mL), filtered and column chromatography 

was performed (CH2Cl2, 20 mL silica gel). The solvent was then removed and the resulting 

residue was dried overnight under vacuum. The solid was dissolved in ca. 2 mL CH2Cl2 

and precipitated int Et2O (3 × 100 mL) and pentane (2 × 50 mL), dried, dissolved in THF 

(ca. 5 mL) and precipitated into MeOH (2 × 50 mL). The resulting dark green polymers 

were isolated by centrifugation and dried overnight under vacuum.  

Copolymer 4.10F 

From 2,7-dibromo-9,9-dihexylfluorene 

(0.20 g, 0.30 mmol). Yield = 0.16 g, 

56%. 1H NMR (399.8 MHz, CDCl3): 

δ 8.25 (m, 4H, aryl CH), 7.75 (m, 6H, 

aryl CH), 7.58 (m, 4H, aryl CH), 6.66 

(m, 8H, aryl CH), 2.02 (m, 4H, CH2), 1.95 (s, 12H, CH3), 1.09 (m, 12H, CH2), 0.79 (t, 6H, 

JHH = 7.03 Hz, CH3), 0.65 (m, 4H, CH2). IR (KBr): ν = 3426 (w, C≡C), 2949 (w), 2926 
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(w), 2855 (w) 1654 (m, C=O), 1596 (m), 1532 (s), 1431 (m), 1381 (s), 1055 (m), 853 (s), 

747 (m) cm−1. UV-vis (CH2Cl2): λmax (ε) = 588 nm (6,000 M−1 cm−1), 378 nm (100,750 

M−1 cm−1), 275 nm (50,850 M−1 cm−1). 

Copolymer 4.10T 

From 2,5-dibromo-3-hexylthiophene (0.050 g, 

0.15 mmol). Yield = 0.075 g, 60%. 1H NMR 

(599.3 MHz, CDCl3) δ 8.23 (4H, br s, aryl 

CH), 7.72−7.70 (4H, m, aryl CH), 7.18 (1H, s, 

thiophene-CH), 6.67−6.62 (8H, m, aryl CH), 

2.81−2.77 (2H, t, JHH = 8 Hz, CH2), 1.93 (12H, br s, CH3), 1.74−1.69 (2H, m, CH2), 

1.40−1.29 (6H, m, CH2), 0.93−0.89 (3H, m, CH3). FT-IR (ATR): ν = 2953 (w sh), 2926 

(w), 2854 (w) 1655 (m, C=O), 1596 (m), 1527 (s), 1488 (w), 1449 (w), 1429 (m), 1362 (s), 

1217 (m), 1168 (m), 1053 (w), 1013 (w), 911 (m), 852 (s), 743 (m) cm−1. UV-vis (CH2Cl2): 

λmax (ε) = 590 nm (5,700 M−1 cm−1), 387 nm (74,300 M−1 cm−1), 272 nm (45,900 M−1 cm−1). 

GPC (THF, conventional calibration): Mn = 6,575 g mol−1, Mw = 18,250 g mol−1, Ð = 2.77. 

Copolymer 4.10B 

From 1,4-dibromo-2,5-

bis(hexyloxy)benzene (0.066 g, 0.15 

mmol). Yield = 0.081 g, 57%. 1H NMR 

(599.3 MHz, CDCl3) δ 8.22−8.15 (4H, m, 

aryl CH), 7.74-7.72 (4H, m, aryl CH), 7.08 

(2H, s, aryl CH), 6.68−6.62 (8H, m, aryl 

CH), 4.11−4.00 (4H, m, OCH2), 1.94 (12H, br. s, CH3), 1.91−1.88 (4H, m, CH2), 1.61−1.49 

(4H, m, CH2), 1.42−1.34 (8H, m, CH2), 0.96−0.89 (6H, m, CH3). FT-IR (ATR): ν = 3407 

(w, C≡C), 2949 (w sh), 2925 (w), 2856 (w) 1655 (m, C=O), 1596 (m), 1527 (s), 1429 (m), 

1362 (s), 1217 (m), 1168 (m), 1053 (w), 1013 (w), 911 (m), 852 (s), 743 (m) cm−1. UV-vis 

(CH2Cl2): λmax (ε) = 589 nm (5,700 M−1 cm−1), 387 nm (57,400 M−1 cm−1), 330 nm (38,300 

M−1 cm−1), 302 (sh, 41,200 M−1 cm−1), 272 (44,100 M−1 cm−1). GPC (THF, conventional 

calibration): Mn = 7,700 g mol−1, Mw = 13,600 g mol−1, Ð = 1.76. 



106 

 

Synthesis of model compound 4.13 

Compound 4.9 (0.11 g, 0.21 mmol), 

2,7-dibromo-9,9-dihexylfluorene 

(0.05 g, 0.1 mmol), Pd(PPh3)4 

(0.006 g, 0.005 mmol) and CuI 

(2.0 g, 0.011 mmol) were combined in a 5 mL microwave vial. The solvent mixture, 3 mL 

DMF/DIPA/H2O (2:1:0.03) was degassed by 3 freeze-pump-thaw cycles, brought into a 

glove box and added to the solid. The microwave vial was sealed and then heated at 100 °C 

for 45 min in a microwave reactor. Upon cooling, CH2Cl2 (10 mL) was added to the dark 

green solution and the entire mixture washed with H2O (6 × 100 mL), dried with MgSO4 

and concentrated in vacuo. The resulting dark green residue was purified using a column 

chromatography (CH2Cl2, 25 mL silica gel) to afford 4.13 as a dark green microcrystalline 

solid after solvent removal in vacuo. Yield = 0.12 g, 83%. 1H NMR (599.4 MHz, CDCl3): 

δ 8.23 (d, 4H, 3JHH = 8 Hz, aryl CH), 7.72 (m, 6H, aryl CH), 7.59-7.54 (m, 2H, aryl CH), 

7.56 (s, 2H, aryl CH), 6.74 (m, 4H, aryl CH), 6.676.61 (m, 8H, aryl CH), 6.586.56 (m, 

4H, aryl CH), 4.89 (s, 2H, CH), 2.12 (s, 12H, CH3) 2.04−2.01 (m, 4H, CH2), 1.94 (s, 12H, 

CH3), 1.161.05 (m, 12H, CH2), 0.78 (t, 6H, 3JHH = 8 Hz, CH3), 0.68−0.63 (m, 4H, CH2). 

13C{1H} NMR (150.7 MHz, CDCl3): δ 199.5, 155.4, 153.9, 151.3, 147.4, 147.2, 141.1, 

138.4, 132.0, 131.0, 129.7, 128.5, 126.1, 122.9, 121.9, 121.8, 121.5, 120.9, 120.6, 120.2, 

111.3, 94.0, 89.3, 55.4, 40.4, 31.5, 29.7, 23.7, 22.6, 21.9, 20.7, 14.0. FT-IR (ATR): ν = 

2952 (s, hex CH), 2923 (s, hex CH), 2852 (s, hex CH), 1631 (m, C=O), 1595 (m), 1527 

(s), 1454 (m), 1430 (m), 1381 (s), 1215 (m), 1051 (m), 1022 (m), 912 (m), 853 (m), 819 

(m), 742 (m) cm−1. UV-vis (CH2Cl2): λmax (ε) = 584 nm (7,900 M−1 cm−1), 387 nm (91,100 

M−1 cm−1), 273 nm (52,100 M−1 cm−1). Mass Spec. (ESI, +ve mode) m/z: [M + H]+ calc’d 

for [C87H83N8Ni2O2]
+, 1387.5346; found, 1387.5365; difference: +1.4 ppm. 
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Synthesis of model complex 4.14 

Monomer 4.7 (0.08 g, 0.1 mmol), 9,9-

dihexyl-6-bromofluorene (0.10 g, 

0.24 mmol), Pd(PPh3)4 (0.007 g, 0.006 

mmol) and CuI (0.002 g, 0.01 mmol) 

were combined in a 5 mL microwave vial. The solvent mixture, 2 mL DMF/H2O (100:1) 

and 1 mL DIPA were degassed by 3 freeze-pump-thaw cycles, brought into a glove box 

and added to the solid. The vessel containing the reaction mixture was sealed and then 

heated at 100 °C for 30 min in a microwave reactor. Upon cooling, CH2Cl2 was added to 

the dark green solution and the entire mixture washed with H2O (6 × 100 mL), dried with 

MgSO4 and concentrated in vacuo. The resulting dark green residue was purified using a 

short silica column (CH2Cl2 as eluent) afforded 4.14 as a dark green microcrystalline solid 

after solvent removal in vacuo. Yield = 0.13 g, 80%. 1H NMR (400.1 MHz, CDCl3): δ 8.25 

(d, 4H, 3JHH = 7 Hz, aryl CH), 7.77 (d, 4H, 3JHH = 8 Hz, aryl CH), 7.737.71 (m, 4H, aryl 

CH), 7.597.56 (m, 4H, aryl CH), 7.377.34 (m, 6H, aryl CH), 6.706.61 (m, 8H, aryl 

CH), 2.00 (t, 8H, 3JHH = 8 Hz, CH2), 1.95 (s, 12H, CH3), 1.151.03 (m, 24H, CH2), 0.78 (t, 

12H, 3JHH = 8 Hz, CH3), 0.63 (m, 8H, CH2). 
13C{1H} NMR (100.6 MHz, CDCl3): δ 199.5, 

153.9, 151.1, 150.9, 147.3, 142.1, 140.2, 138.2, 132.0, 130.9, 129.7, 128.8, 127.7, 126.9, 

126.1, 122.9, 122.8, 121.9, 120.9, 120.7, 120.1, 119.7, 94.4, 88.8, 55.2, 40.4, 31.5, 29.7, 

23.7, 22.6, 20.5, 14.0. IR (KBr): ν = 3064 (w), 2954 (s, hex CH), 2923 (s, hex CH), 2855 

(s, hex CH), 2205 (w), 1660 (m, C=O), 1597 (m), 1535 (s), 1382 (s), 1056 (m), 854 (s), 

741 (m) cm−1. UV-vis (CH2Cl2): λmax (ε) = 587 nm (7,100 M−1 cm−1), 349 nm (109,150 

M−1 cm−1), 283 nm (67 600 M−1 cm−1). Mass Spec. (ESI, +ve mode) m/z: [M]+ calcd for 

[C90H94N4NiO2]
+, 1320.6730; found, 1320.6768; difference: 2.9 ppm. Anal. Calcd for 

C90H94N4NiO2: C, 81.74, H, 7.16, N, 4.24; found, C, 80.77, H, 7.40, N, 4.20. 
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Synthesis of copolymer 4.10F-[Co2(CO)6]2 

In a glovebox, 4.10F (0.10 g, 0.10 

mmol) was dissolved in 5 mL dry 

CH2Cl2. Co2(CO)8 (0.09 g, 0.25 

mmol) was then added to the 

solution, causing the immediate 

evolution of gas. The reaction 

mixture was stirred at room temperature for 30 min. Once the reaction was complete, 

column chromatography was performed (CH2Cl2, 20 mL silica gel). The solvent was 

removed under reduced pressure, and the residue was dissolved in ca. 1 mL of CH2Cl2 and 

precipitated into pentane (1 × 50 mL, then 2 × 30 mL).  The solvent was then decanted and 

the dark green solid was dried overnight under vacuum to give 4.10F-[Co2(CO)6]2 as a 

dark green/brown powder. Yield = 0.15 g, 95%. 1H NMR (599.3 MHz, CDCl3) δ 8.30−8.24 

(4H, m, aryl CH), 7.84−7.49 (10H, m, aryl CH), 6.70 (4H, br. s, aryl CH), 6.62 (4 H, br. s, 

aryl CH), 2.00 (12H, s, CH3), 1.94 (4H, s, CH2), 1.33−1.08 (12H, m, CH2), 0.90−0.71 (10H, 

m, CH2, CH3). FT-IR (ATR): v = 2957 (m), 2920 (m), 2853 (m) 2088 (s, C=O), 2051 (s, 

C=O), 2019 (s, C=O), 1725 (w), 1658 (w, C=O), 1596 (w), 1551 (m), 1454 (w), 1377 (s), 

1223 (m), 1055 (m), 910 (m), 799 (m), 744 (m) cm−1. UV-vis (CH2Cl2): λmax (ε) = 587 nm 

(9,900 M−1 cm−1), 385 nm (71,500 M−1 cm−1), 270 (85,900 M−1 cm−1). GPC (THF, 

conventional calibration): Mn = 7,700 g mol−1, Mw = 10,900 g mol−1, and Ð = 1.41.  

4.3 Results and Discussion 

4.3.1 Monomer Synthesis 

In order to access the desired polymerizable macrocyclic Ni(II) complex, two equivalents 

of 4-[(trimethylsilyl)ethynyl]-benzoyl chloride62 was first combined with macrocycle 4.5 

to afford complex 4.6 in 96% yield (Scheme 4.1, Figures A4.1, 4.2). The TMS protecting 

groups were removed by treating complex 4.6 with K2CO3 to afford monomer 4.7 in 90% 

yield (Scheme 4.1, and Figures A4.3, 4.4). Single crystals suitable for X-ray diffraction 

were grown via slow evaporation of a saturated CH2Cl2 solution of 4.7 (Figure 4.1). In the 

solid state, monomer 4.7 adopts a saddle-like geometry, although it must be noted that the 
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4-ethynylbenzoyl substituents are expected to rotate freely in solution and their orientation 

in the solid state may result from crystal-packing effects. The average C-C and C-N bond 

lengths within the -N-C(Me)-CR'-C(Me)-N- ligand backbones are 1.414 and 1.333 Å 

respectively, and are between the lengths of typical single and double bonds.71 The Ni(II) 

ion is coordinated by four nitrogen atoms with an average bond distance of 1.8550 Å in a 

square planar coordination environment described by angles of N1-Ni-N2 94.35(6), N2-

Ni-N3 85.97(6), N3-Ni-N4 93.93(6), N1-Ni-N4 85.69(6)°. The torsion angles between the 

planes defined by N1-C2-C3-C4-N2 and N3-C16-C17-C18-N4 and the plane defined by 

the nickel-bound nitrogen atoms (N1-N2-N3-N4) are 28.29 and 29.76°, respectively.  

 

 
Scheme 4.1 Synthesis of monomer 4.7 and macrocycle 4.9. 

Access to a Ni(II) complex of Goedken’s macrocycle substituted with a single alkyne 

functionality was required in order to synthesize model complexes. Thus, a mixture of 4-

[(trimethylsilyl)ethynyl]-benzoyl chloride and compound 4.5 was heated to reflux in the 

presence of triethylamine (Scheme 4.3). This reaction afforded a mixture of mono- (4.8) 

and di-substituted (4.6) macrocycles which could be separated using column 

chromatography, in 23 and 38% yield, respectively. The identity of complex 4.8 was 

confirmed by NMR spectroscopy (Figures A4.5, 4.6). Removal of the TMS group from 

compounds 4.8 and was achieved using potassium carbonate to afford compounds 4.9 and 

in 81% yield (Figures A4.7, 4.8). 
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Bromine-substituted 9,9-dihexylfluorene was chosen as a comonomer for 4.7 as it has been 

widely used in the synthesis of highly soluble -conjugated polymers possessing 

interesting and useful electronic and optical properties.72 Comonomers 2,5-dibromo-3-

hexylthiophene and 1,4-dibromo-2,5-bis(hexyloxy)benzene were also chosen due to their 

π-conjugated nature and ability to potentially solubilize the rigid, π-conjugated backbones 

of the targeted copolymers (Scheme 4.2). 

 

Figure 4.1 (a) Side view, and (b) top view of the solid-state structure of monomer 4.7. 

Anisotropic displacement ellipsoids are shown at 50% probability. Hydrogen atoms and 

co-crystallized solvent molecules omitted for clarity. Selected bond lengths (Å): N1-C2 

1.335(2), N1-C35 1.417(2), N1-Ni 1.8543(15), N2-C4 1.336(2), N2-C29 1.4156(19), N2-

Ni 1.8590(13), N3-C16 1.333(2), N3-C34 1.4140(19), N3-Ni 1.8533(15), N4-C18 

1.329(2), N4-C40 1.414(2), N4-Ni 1.8533(13), C2-C3 1.411(2), C3-C4 1.411(2), C16-C17 

1.418(2), C17-C18 1.414(2). Selected bond angles (°): N1-Ni-N2 94.35(6), N2-Ni-N3 

85.97(6), N3-Ni-N4 93.93(6), N1-Ni-N4 85.69(6). 

4.3.2 Copolymer Synthesis 

Polymers (4.10F, 4.10T, and 4.10B) containing 9,9-dihexylfluorene (F), 3-hexylthiophene 

(T), or 2,5-bis(hexyloxy)benzene (B) and a Ni(II) complex of Goedken’s macrocycle (4.5) 

were synthesized using optimized polymerization conditions (Table 4.2, Scheme 4.2).73 In 

order to optimize the copolymerization of 4.7 and 4.11 several microwave reactions were 

attempted. The mass balance for these reactions was typically made up of highly soluble 

oligomers, soluble polymers, and an unidentified insoluble gel (see below). Initially, three 

solvent combinations were screened for potential use in the production of polymer 4.10F 

(Table 4.1, runs 13a). The polymers produced after 30 min of microwave irradiation at 
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100 C in toluene/DIPA and DMF/DIPA had lower molecular weights than the polymer 

produced from a mixture of DMF/DIPA containing a small quantity of water. Using the 

latter solvent combination, the effect of catalyst loading on the production of polymer 

4.10F was studied (runs 4 and 5). In both cases, an increase in catalyst loading resulted in 

a decrease in polymer yield and molecular weight, perhaps due to the presence of an 

increased number of active oligomeric/polymeric species in solution. 

 

 

Scheme 4.2 Synthesis of copolymers 4.10F, 4.10B, and 4.10T. 

Shorter and longer reaction times (runs 6 and 7) resulted in polymers with similar 

molecular weight distributions, but decreased yields compared to those isolated for run 3. 

Longer reaction times led to the formation of increased quantities of insoluble materials, 

while shorter reaction times led to increased quantities of oligomeric species. When the 

temperature was decreased to 75 C (run 8) no reaction was observed. When the 

temperature was increased to 125 C (run 9) an increased fraction of insoluble material was 

observed and the yield of soluble polymer was greatly diminished.  
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Table 4.2 Reaction conditions for the production of polymer 4.10F (optimized conditions 

shown in bold). 

Run Solvent Time 
(min) 

Temp 
(°C) 

Catalyst (%) Yield 
(%) 

Mn
 

(g mol‒1) 
Ð Gel 

(%)  Pd(PPh3)4 CuI 
1 Toluene/DIPA 30 100 2.5 5.0 58 6,775 1.72 22 
2 dry DMF/DIPA 30 100 2.5 5.0 50 5,825 1.65 22 
3a DMF/DIPA/H2O 30 100 2.5 5.0 56 10,100 2.37 29 
3b DMF/DIPA/H2O 30 100 2.5 5.0 59 12,050 2.43 30 
3c DMF/DIPA/H2O 30 100 2.5 5.0 56 10,500 2.00 30 
4 DMF/DIPA/H2O 30 100 5.0 10.0 39 8,175 2.10 30 
5 DMF/DIPA/H2O 30 100 10.0 20.0 34 5,550 1.85 65 
6 DMF/DIPA/H2O 15 100 2.5 5.0 19 8,525 2.60 15 
7 DMF/DIPA/H2O 45 100 2.5 5.0 25 12,175 2.42 48 
8 DMF/DIPA/H2O 30 75 2.5 5.0 - - - - 
9 DMF/DIPA/H2O 30 125 2.5 5.0 15 5,125 1.53 51 

 

Upon completion of these experiments, we concluded that the optimal conditions for the 

production of polymer 4.10F were those employed in run 3a. The reaction was performed 

in triplicate to demonstrate reproducibility (runs 3ac). The average isolated yield over 

three runs, Mn, and Ð for the isolated polymers was 57%, 10,900 g mol‒1, and 2.27, 

respectively (Figures A4.9, 4.10). The mass balance for these reactions was made up of 

12% oligomers (Figure A4.11) and 30% dark-green insoluble solid (gel). The dark-green, 

insoluble solid formed a gel when treated with a broad range of organic solvents. This 

behavior was consistent with a crosslinked structure and precluded further analysis as we 

were unable to purify or process the gels into powders or films. Copolymers 4.10T and 

4.10B subjected to the same conditions produce significantly lower molecular weight 

polymers, therefore a longer microwave reaction time of 60 min was required. The isolated 

yields for copolymers 4.10T and 4.10B were 60 and 57% and a summary of the molecular 

weight data acquired by GPC can be found in Table 4.3. The relatively low molecular 

weights and broad molecular weight distributions observed are consistent with the step-

growth polymerization method employed. 1H NMR spectra of 4.10F compared to the 

relevant monomer units is shown in Figure 4.2. Additional details, including thermal 

analysis and spectroscopic data (Figures A4.12, A4.13) are discussed below.  
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Table 4.3 Summary of GPC data for copolymers 4.10F, 4.10F-[Co2(CO)6]2, 4.10B, and 

4.10T. 

Compound Mn (g mol−1) Mw (g mol−1) Ð 
4.10F 10,900 22,400 2.27 
4.10F-[Co2(CO)6]2

a 7,700 10,900 1.41 
4.10T 6,575 18,250 2.77 
4.10B 7,700 13,600 1.76 

a) The post-polymerization was performed on polymer 4.10F with a Mn = 7,825, Mw = 10,900 and Ð = 1.51. 

 

 

Figure 4.2 1H NMR spectra of comonomers 4.7 (blue), 4.11 (black), and polymer 4.10F 

(red) recorded in CDCl3 (asterisks denote residual CHCl3 and H2O). 

 

4.3.3 Model Compound Synthesis 

In order to gain further insight into the spectroscopic properties of the copolymers, 

specifically 4.10F, model compounds 4.13 and 4.14 were prepared via similar Sonogashira 

cross-coupling reactions (Scheme 4.3). The first model compound consisted of two Ni(II) 

complexes of Goedken’s macrocycles bridged by a 9,9-dihexylfluorene molecule (4.13). 

Microwave irradiation of a mixture of two equiv. of 4.9 with one equiv. of 4.11 for 30 min 

at 100 °C in the presence of Pd(PPh3)4 and CuI dissolved in DMF/DIPA/H2O (2:1:0.03) 

produced compound 4.13 in 83% yield after purification by column chromatography 

(Figures A4.14, A4.15). The second model compound consisted of two 

9,9-dihexylfluorene molecules bridged by a single Ni(II) complex of Goedken’s 
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macrocycle (4.14). Microwave irradiation of a mixture of one equiv. of 4.7 with one equiv. 

of 4.12 for 30 min at 100 °C in the presence of Pd(PPh3)4 and CuI dissolved in 

DMF/DIPA/H2O (2:1:0.03) produced compound 4.14 in 80% yield after purification by 

column chromatography (Figures A4.16, A4.17) 

 

 

 

Scheme 4.3 Synthesis of model compounds 4.13 and 4.14. 

 

4.3.4 UV-vis Absorption Spectroscopy 

The UV-vis absorption spectra of polymers 4.10F, 4.10T, and 4.10B are presented in 

Figure 4.3 and the spectral features summarized in Table 4.4. The spectra of polymers 

4.10T and 4.10B showed absorption maxima at 272 nm (4.10T, ε = 45,900 and 4.10B, ε = 

44,100 M−1 cm−1), 387 nm (4.10T, ε = 74,300 and 4.10B, ε = 57,400 M−1 cm−1) and similar 

low-energy absorption maxima at ca. 590 nm (5,700 M−1 cm−1). Similarly, polymer 4.10F 

yielded absorption maxima at 275 nm (50,900 M−1 cm−1), 378 nm (100,800 M−1 cm−1), and 

588 nm (6,000 M−1 cm−1). The low energy absorption has been previously assigned in 

molecular analogues to a charge transfer (LMCT) from the ligand centred HOMO of the 

macrocyclic backbone to the lowest energy empty d orbital of Ni(II).74 It was observed that 
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the absorption at ca. 590 nm remains essentially unchanged in the copolymers due to the 

lack of long range electronic delocalization via the orthogonal arrangement of the Ni(II) 

macrocycle units and the organic spacers, as inferred by the solid-state structure of 4.9.73 

The high-energy absorptions at ca. 272 nm is thought to be a π → π* transition associated 

with Goedken’s macrocycle, while the transition at ca. 387 nm appears to originate 

primarily from a macrocycle centered π → π* transition associated with the π-conjugated 

organic spacer in each structure. The π → π*2 transition of copolymer 4.10F is blue-shifted 

by ca. 10 nm compared to these of copolymers 4.10T and 4.10B. This trend is consistent 

with that observed for the wavelengths of maximum absorption of poly(9,9-

dihexylfluorene) and poly(3-hexylthiophene) and may relate to the antiaromatic nature of 

the 9,9-dihexylfluorene spacer.75-76 

 

  
 

Figure 4.3 UV-vis absorption spectra recorded in CH2Cl2. (a) Comparison of copolymers 

4.10F, 4.10T, and 4.10B. (b) Comparison of model compounds 4.13, 4.14, and copolymer 

4.10F. 

In order to further understand the absorption properties of the copolymers, the absorption 

behavior of model complexes 4.13 and 4.14 were examined. Model compound 4.13, which 

contains two Ni(II) complexes bridged by a 9,9-dihexylfluorene, shows absorption maxima 

at 584, 387, and 273 nm (Figure 1b). Model compound 4.14, which contains two fluorene 

molecules and one Ni(II) complex, shows absorbance maxima at 587, 349, and 283 nm. 

The intermediate absorption maxima at 349 nm was blue-shifted with respect to 4.10F and 

4.13, which both had maximum absorptions at 387 nm. This is thought to be due to the 
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presence of a shorter conjugated π-system [CO-Ph-alkyne-(9,9-dihexylfluorene)] within 

the backbone in compound 4.14, compared to the relatively large [CO-Ph-alkyne-(9,9-

dihexylfluorene)-alkyne-Ph-CO] system present in model compound 4.13 and copolymer 

4.10F. The increase in π-conjugation accounts for ten additional π-electrons and results in 

a red-shift in λmax of 38 nm. The Ni(II) based absorption at ca. 590 nm for 4.13, 4.14, and 

4.10F were unchanged regardless of the degree of π-conjugation within the organic spacer 

(Table 4.4). 

Table 4.4 UV-vis absorption spectroscopy data for copolymers 4.10F, 4.10F-[Co2(CO)6]2, 

4.10T, and 4.10B, and model compounds 4.13 and 4.14 in CH2Cl2. 

 
Compound 

λmax (nm), ε (M−1 cm−1) 
π → π*1 π → π*2 LMCT 

4.10F59 275, 50,900 378, 100,800 588, 6,000 
4.10F-[Co2(CO)6]2 270, 85,900 385, 71,500 587, 9,900 
4.10T 272, 45,900 387, 74,300 590, 5,700 
4.10B 272, 44,100 387, 57,400 589, 5,700 
4.13 273, 52,100 387, 91,100 584, 7,900 
4.1459 283, 67,600 349, 109,200 587, 7,100 

 

4.3.5 Cyclic Voltammetry 

The electrochemical properties of polymers 4.10F, 4.10T, and 4.10B are summarized in 

Table 4.5. Cyclic voltammetry studies of the copolymers revealed two reversible one-

electron oxidation events at E°ox1 = 0.24 and E°ox2 = 0.74 V for 4.10F, E°ox1 = 0.23 and 

E°ox2 = 0.74 V for 4.10T, and E°ox1 = 0.25 and E°ox2 = 0.75 V for 4.10B in CH2Cl2, relative 

to the ferrocene/ferrocenium redox couple (Figure 4.4). Model compound 4.14 also 

produced two reversible one-electron oxidation waves at E°ox1 = 0.25 and E°ox2 = 0.76 V 

(Figure A4.18). The electrochemical behavior of model compound 4.13 was considerably 

more complicated, although similar to other unsubstituted Ni(II) complexes of Goedken’s 

macrocycle (Figure A4.19).74 Compound 4.13 gave rise to three irreversible oxidation 

waves at Epa(1) = 0.16 V, Epa(2) = 0.92 V, and Epa(3) = 1.11 V and a single irreversible 

reduction wave Epc(1) = 0.74 V. The irreversible oxidation at 1.11 V has been reported to 

arise due to the oxidation of a dimer formed via radical coupling of two equivalents of the 

radical cation form of similar Ni(II) complexes of Goedken’s macrocycle.77 
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Figure 4.4 Cyclic voltammagrams of 4.10F, 4.10T, and 4.10B recorded at a scan rate of 

100 mV s−1 in CH2Cl2 solutions containing 1 × 10−3 M analyte and 0.1 M [nBu4N][PF6] as 

supporting electrolyte. 

 

Furthermore, Ni(II) complexes of Goedken’s macrocycle have been shown to form 

polymeric species on electrode surfaces.78 Upon cycling repeatedly between 0.0 and 1.3 V, 

film formation was observed in the case of 4.13, but there was a lack of current 

enhancement typically associated with electropolymerization (Figure A4.20).28 Rather, we 

presume that a variety of oligomeric species are generated upon oxidation, leading to 

similar oxidation events (E = 0.6−0.9 V) and electrode plating being observed.79 

Table 4.5 Cyclic voltammetry data for polymers 4.10F, 4.10T, 4.10B and model 

compounds 4.13 and 4.14.a 

Compounds Epa(1)
b E°ox1 Epc(1)

c E°ox2 Epa(2)
b Epa(3)

b 

4.10F59 - 0.24 - 0.74 - - 

4.10T - 0.23 - 0.74 - - 
4.10B - 0.25 - 0.75 - - 
4.13 0.16 - 0.74 - 0.92 1.11 
4.1459 - 0.25 - 0.76 - - 

a Recorded at a scan rate of 100 mV s−1 in a CH2Cl2 solution containing 1 × 10−3 M analyte and 0.1 M 

[nBu4N][PF6] as supporting electrolyte. Potentials reported in V relative to the ferrocene/ferrocenium redox 

couple. 

 



118 

 

4.3.6 Post-Polymerization Functionalization 

In order to produce a heterobimetallic copolymer, 4.10F was dissolved in CH2Cl2 and 

reacted with 2.5 equiv. of Co2(CO)8. The resulting copolymer was purified using flash 

column chromatography on alumina and repeated precipitations from CH2Cl2 into pentane, 

to afford 4.10F-[Co2(CO)6]2 in 95% yield (Scheme 4.4). GPC analysis of 4.10F-

[Co2(CO)6]2 yielded Mn = 7,700 g mol−1, Mw = 10,900 g mol−1, and Ð = 1.41. The overall 

distribution and shape of the GPC traces are conserved when compared to the original 

polymer 4.10F (Figure A4.21), which suggests the integrity of the polymer backbone was 

maintained after the introduction of the cobalt carbonyl clusters. 

 

 

Scheme 4.4 Synthesis of 4.10F-[Co2(CO)6]2. 

UV-vis absorption spectroscopy confirmed the preservation of the absorption maxima at 

587, 385, and 270 nm when compared to the parent polymer 4.10F (Figure A4.22), 

although the molar absorptivity of the absorption maxima at 385 nm was reduced from ε = 

100,800 M−1 cm−1 in 4.10F to ε = 71,500 M−1 cm−1
 in 4.10F-[Co2(CO)6]2 and the molar 

absorptivity of the absorption maxima at 275 nm was increased from ε = 50,900 M−1 cm−1 

in 4.10F to ε = 85,900 M−1 cm−1
 in 4.10F-[Co2(CO)6]2.  Furthermore, analysis of the FT-

IR spectrum of 4.10F-[Co2(CO)6]2 revealed the appearance of three diagnostic carbonyl 

stretches at 2019, 2051, and 2088 cm−1, and the disappearance of the alkyne C≡C stretch 

at 2196 cm−1 (Figure 4.5). 1H NMR spectroscopy revealed similar chemical shifts for most 

of the proton signals present in 4.10F and 4.10F-[Co2(CO)6]2 copolymers, although there 

was a significant difference for some of the chemical shifts of the signals corresponding to 
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the protons present on the fluorene organic spacer, including the aromatic and aliphatic 

signals (Figure A4.23).  

 

Figure 4.5 FT-IR spectra of 4.10F (black) and 4.10F-[Co2(CO)6]2 (purple). The dashed 

boxes highlight the energy regions of specific interest. 

 

4.3.7 Thermal Analysis 

The TGA of copolymers 4.10F, 4.10T, and 4.10B demonstrated their thermal stability up 

to temperatures of 316, 284, and 252 °C, respectively (Figures 4.6, A4.24‒A4.26). 

Differential scanning calorimetry studies did not reveal glass transitions between 0 and 

250 °C (Figures A4.27‒4.29). We speculate that the lack of observable glass transitions 

may be attributed to interdigitation of the alkyl chains present on the backbones of these 

polymers.  

TGA data collected for copolymer 4.10F-[Co2(CO)6]2 showed its thermal stability up to 

177 °C before decomposition occurred in two steps. The first decomposition occurred to a 

temperature of ca. 300 °C with an initial mass loss of ca. 20%. This mass loss accounts for 

the expulsion of the carbonyl groups present on the polymer backbone, which corresponds 

to 21% of the total polymer mass. The second step resulted in a further mass loss of 46% 

to a temperature of 490 °C, and was followed by a slow thermal degradation until a char 

yield of 50% was achieved at 800 °C (Figure 4.6). For comparison, the char yield observed 

for 4.10F was ca. 70%. Upon inspection of the TGA data for 4.10F and 4.10F-

[Co2(CO)6]2, there were similar degradation features after the initial loss of the carbonyl 

groups once the thermal stability limit was reached at 316 °C. The DSC data for 4.10F-
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[Co2(CO)6]2 did not reveal a glass transition within the stability window of the polymer 

(Figure A4.30). 

 

Figure 4.6 TGA data demonstrating the thermal decomposition of 4.10F (black) and 

4.10F-[Co2(CO)6]2 (purple). 

4.3.8 Pre-Ceramic Properties 

The interesting thermal decomposition characteristics and significant char yields (> 50%) 

observed for 4.10F and 4.10F-[Co2(CO)6]2 suggested the formation of potentially useful 

ceramic materials. Specifically, Ni/Co alloys were targeted due to their demonstrated utility 

as magnetic materials,80 their use in catalysis,81-82 and their high charge capacity.83 

Thin-films of 4.10F and 4.10F-[Co2(CO)6]2, estimated to be approximately 5 μm thick 

(Figure A4.31), were created by drop-casting a 20 mg mL−1 solution of each polymer in 

chlorobenzene onto a silicon wafer. The loaded wafers were then dried overnight in a 

vacuum oven at 60 °C before the samples were heated to 800 °C at a rate of 10 °C min−1 

and held at that temperature for an additional 3 h under a N2/H2 (95:5) atmosphere. Upon 

cooling, the samples were studied using SEM and energy-dispersive X-ray (EDX) 

spectroscopy.  
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Figure 4.7 SEM of the nanomaterials resulting from pyrolysis of A) 4.10F and B) 4.10F-

[Co2(CO)6]2. Elemental maps (EDX spectroscopy) of the nanomaterials resulting from the 

pyrolysis of C) 4.10F and D) 4.10F-[Co2(CO)6]2. Light areas indicate a positive response 

for the elements in question. 

SEM images of the pyrolyzed films of 4.10F and 4.10F-[Co2(CO)6]2 are shown in Figure 

4.7. The micrographs of the nanomaterials derived from 4.10F show the presence of 

ill-defined nanoparticles within a porous matrix. Based on our EDX spectroscopy analysis 

we conclude that the nickel-rich nanoparticles are suspended in a porous and amorphous 

carbon matrix, presumably carbon black (Figures 4.7a,c). Oxygen appeared throughout the 

film and was concentrated in metal-rich areas. Although the pyrolysis experiments were 

performed in the absence of oxygen, brief exposure likely led to the formation of a thin 

layer of nickel-oxide. The micrograph of the nanomaterials that resulted from the pyrolysis 

of 4.10F-[Co2(CO)6]2 showed a surface more densely populated with metallic 

nanoparticles within an amorphous carbon matrix (Figure 4.7b). The nanoparticles were 
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shown to be rich in cobalt and nickel (Figure 4.7d), while the cobalt and nickel alloys 

appeared to be more susceptible to oxidation based on the elemental maps obtained 

(Figure 4.7d). Furthermore, the ratio of cobalt to nickel (ca. 5.5:1) was measured by EDX 

spectroscopy, which deviated from the 4:1 ratio of metals present in 4.10F-[Co2(CO)6]2 

(Figure A4.32).  PXRD studies of the pyrolyzed thin-films of 4.10F and 

4.10F-[Co2(CO)6]2 indicated the presence of amorphous materials, consistent with the 

morphologies observed using SEM. These studies demonstrated our ability, through post-

polymerization functionalization, to control the ratio of metals present within the 

nanomaterials. 

4.4 Conclusion 

The copolymerization of Ni(II) complexes of Goedken’s macrocycle bearing alkyne 

substituents with 2,7-dibromo-9,9-dihexylfluorene via a microwave-induced Sonogashira 

cross-coupling reaction to produce copolymers 4.10F was reported and optimized. An 

expansion of the series to include comonomers 2,5-dibromo-3-hexylthiophene and 1,4-

dibromo-2,5-bis(hexyloxy)benzene, to produce copolymers 4.10T and 4.10B was 

explored. The copolymers exhibited high thermal stability (up to 300 °C) and two one-

electron oxidation waves in their cyclic voltammograms. The spectroscopic properties of 

copolymer 4.10F were probed by comparison with model compounds 4.13 and 4.14, which 

provided insight into the observed spectroscopic properties for this family of copolymers. 

Specifically, the intermediate absorption maxima observed for the copolymers was shown 

to vary with the size and nature of the organic spacer within the polymer backbones. Post-

polymerization functionalization via the alkyne synthetic handle present in 4.10F led to the 

production of heterobimetallic copolymers that produced interesting amorphous 

nanomaterials rich in nickel and cobalt upon pyrolysis, with metal content influenced by 

the structure of the polymer. 
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Chapter 5  

5 Side-Chain Polymers bearing Ni(II) Complexes of 
Goedken’s Macrocycle  

5.1 Introduction 

Metal-containing polymers (MCPs) have attracted significant attention due to their 

potential applications as functional materials.1-4,5-14 They gain their unique properties 

through the combination of the desirable properties of transition metals (e.g., redox, 

catalytic, magnetic, pre-ceramic, and optical) and the processability and film-forming 

characteristics of polymers. As a result, MCPs have shown utility as, for example, the 

functional component of redox-active capsules15-16 and responsive surfaces,17 photonic 

crystal displays,18 antimicrobial surfaces,19 nanostructured magnetic materials,20 and 

photovoltaic cells.21 

While there has been impressive progress in the MCP field as a whole, there are relatively 

few examples of synthetic strategies that afford well-defined Ni-containing polymers. For 

example, the Manners group has expanded their ring-opening polymerization methods to 

include tricarba[3]nickelocenophanes, affording paramagnetic polymers (e.g., 5.1),22 and 

the Yamamoto group has prepared electrochemically-active copolymers based on Ni-

salophen complexes and 9,9-dioctylfluorene  (e.g., 5.2).23 

MCPs based on transition-metal complexes of macrocyclic ligands, including Schiff bases 

(e.g. 5.3),24 porphyrins (e.g., 5.4)25-26 and phthalocyanines27-29 have received significant 

attention due to their unique properties. However, polymers of the metal complexes are 

often produced by low-yielding and time-consuming synthetic routes, and examples of Ni-

containing polymers are therefore relatively uncommon. 

The Ni(II) complex of 4,11-dihydro-5,7,12,14-tetramethyldibenzo[b,i]-

[1,4,8,11]tetraazacyclotetradecine (aka, Geodken’s macrocycle) 5.5 exhibits unusual and 

potentially very useful electrochemical properties and can be produced via simple synthetic 

pathways in large quantities (> 10 g) and high yield (ca. 87%) from inexpensive starting 



131 

 

materials.30-31 Although this complex has garnered significant interest from coordination 

chemists for over 5 decades,32-38 very little has been reported with respect to its 

incorporation into polymers with the only existing examples, prior to our work, produced 

in small quantities by electropolymerization.39-41 A polymer-substituted derivative of 

complex 5.5 has also been used to template ladder-like nanostructures.42  In this chapter, 

we report the synthesis and characterization of a Ni-containing side-chain polymers 

produced by ring-opening metathesis polymerization (ROMP).  

 

5.2 Experimental 

5.2.1 General Considerations 

Reactions and manipulations were carried out under a nitrogen atmosphere using standard 

Schlenk or glove box techniques unless otherwise stated. Solvents were obtained from 

Caledon Laboratories, dried using an Innovative Technologies Inc. solvent purification 

system, collected under vacuum, and stored under a nitrogen atmosphere over 4 Å 

molecular sieves. Reagents were purchased from Sigma-Aldrich, Alfa Aesar, or Oakwood 

Chemical and used as received unless otherwise stated. 4-[(trimethylsilyl)ethynyl]-benzoyl 

chloride,43 tetramethyldibenzo-tetraaza[14]annulene Ni(II),31 3-azido-1-propanol,44 were 

prepared according to previously published protocols and isolation of endo-5-norbornene-

2-carboxylic acid45 was completed according to a literature procedure.  NMR spectra were 

recorded on a 600 MHz (1H: 599.3 MHz, 13C: 150.7 MHz) Varian INOVA instrument or a 
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400 MHz (1H 400.1 MHz, 13C{1H}: 100.6 MHz) Varian Mercury instrument. 1H NMR 

spectra were referenced to residual CHCl3 (7.27 ppm) and 13C{1H} NMR spectra were 

referenced to CDCl3 (77.0 ppm). Mass spectrometry data were recorded in positive-ion 

mode with a Bruker microTOF II instrument using electrospray ionization. UV-vis 

absorption spectra were recorded in CH2Cl2 solutions using a Cary 5000 

spectrophotometer. Four separate concentrations were run for each sample and molar 

extinction coefficients were determined from the slope of a plot of absorbance against 

concentration. FT-IR spectra were recorded on a PerkinElmer Spectrum Two instrument 

using an attenuated total reflectance accessory or as KBr pellets using a Bruker Vector 33 

FT-IR spectrometer. 

5.2.2 Gel Permeation Chromatography (GPC) 

GPC experiments were conducted in chromatography-grade THF at concentrations of 

5 mg mL−1 using a Viscotek GPCmax VE 2001 GPC instrument equipped with an Agilent 

PolyPore guard column (PL1113-1500) and two sequential Agilent PolyPore GPC columns 

packed with porous poly(styrene-co-divinylbenzene) particles (MW range: 200–

2,000,000 g mol−1; PL1113-6500) regulated at a temperature of 30 C. Signal responses 

were measured using a Viscotek VE 3580 RI detector, and molecular weights were 

determined by comparison of the maximum RI response with a calibration curve (10 points, 

1,500–786,000 g mol−1) established using monodisperse polystyrene standards purchased 

from Viscotek. 

5.2.3 Thermal Analysis and Pyrolysis Studies 

Thermal degradation studies were performed using a TA Instruments Q50 TGA. Samples 

were placed in a platinum pan and heated at a rate of 10 °C min–1 from 35 to 1000 °C under 

a flow of nitrogen (60 mL min–1). Differential scanning calorimetry (DSC) traces were 

acquired on a TA Instruments DSC Q20 instrument. The polymer samples were placed in 

an aluminum Tzero pan and heated from room temperature to 250 °C at 10 °C min–1 under 

a flow of nitrogen (50 mL min–1) and cooled down to −50 °C at 10 °C min–1, before they 

underwent two additional heating/cooling cycles. 



133 

 

5.2.4 Electrochemical Methods 

Cyclic voltammetry experiments were performed with a Bioanalytical Systems Inc. (BASi) 

Epsilon potentiostat and analyzed using BASi Epsilon software. Typical electrochemical 

cells consisted of a three-electrode setup including a glassy carbon working electrode, 

platinum wire counter electrode, and silver wire pseudo reference electrode. Experiments 

were run at a scan rate of 250 mV s−1 in dry and degassed CH2Cl2 solutions of the analyte 

(~1 mM) and electrolyte (0.1 M [nBu4N][PF6]). Cyclic voltammograms were internally 

referenced against the ferrocene/ferrocenium redox couple (~1 mM internal standard) and 

corrected for internal cell resistance using the BASi Epsilon software. 

5.2.5 Synthesis 

Synthesis of 4-hexylphenyl substituted macrocycle (5.6) 

A Schlenk flask equipped with a stir bar was charged with 

complex 5.5 (10.0 g, 24.9 mmol), 4-hexylbenzoyl chloride 

(5.44 mL, 24.9 mmol) and dry toluene (250 mL). Dry and 

degassed Et3N (27.8 mL, 199 mmol) was added and the vessel 

was fitted with a condenser and heated to 125 °C.  After stirring 

for 16 h, the mixture was cooled to room temperature, filtered, 

and the solvent was removed in vacuo. Column chromatography (CH2Cl2/toluene, 1:1, 350 

mL silica gel, Rf = 0.17) was performed to yield complex 5.6 as a dark green solid. Yield 

= 3.02 g, 21% (recovered starting material (5.5) 2.56 g and disubstituted product; 5.41 g, 

28%). 1H NMR (400.1 MHz, CDCl3): δ 8.13 (d, 2H, JHH = 8 Hz, aryl CH), 7.34 (d, 2H, JHH 

= 9 Hz, aryl CH), 6.72 (d, 2H, JHH = 8, 1 Hz, aryl CH) 6.646.59 (m, 4H, aryl CH), 

6.56−6.53 (m, 2H, aryl CH), 4.86 (s, 1H, CH), 2.70 (t, 2H, JHH = 8 Hz, CH2), 2.10 (s, 6H, 

macrocycle CH3), 1.91 (s, 6H, macrocycle CH3), 1.67 (m, 2H, CH2), 1.37‒1.31 (m, 6H, 

CH2), 0.91‒0.88 (m, 3H, CH3). 
13C{1H} NMR (150.7 MHz, CDCl3) δ 200.1, 155.3, 153.7, 

149.2, 147.4, 147.3, 136.9, 129.9, 128.9, 122.7, 121.8, 121.7, 121.1, 120.9, 111.2, 36.1, 

31.7, 31.1, 29.0, 22.6, 21.9, 20.6, 14.1. FT-IR (ATR): ν = 2964 (w), 2923 (w), 2853 (w), 

1653 (w), 1602 (w), 1530 (m), 1453 (m), 1430 (m), 1380 (s), 1260 (m), 1215 (m), 1171 

(m), 1020 (m), 914 (m), 799 (m), 742 (s), 583 (w), 535 (w). UV-vis (CH2Cl2): λmax (ε) 588 
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nm (5,800 M−1 cm−1), 434 nm (sh, 12,200 M−1 cm−1), 393 nm (32,800 M−1 cm−1), 269 nm 

(44,000 M−1 cm−1). Mass Spec. (EI, +ve mode) m/z: [M]+ calc’d for [C35H38N4NiO]+, 

588.2399; found, 588.2387; difference: −2.0 ppm. 

Synthesis of 4-hexylphenyl and (TMS-ethynyl)phenyl substituted macrocycle (5.7)  

A Schlenk flask equipped with a stir bar was charged with 

complex 5.6 (0.45 g, 0.76 mmol), 4-

[(trimethylsilyl)ethynyl]benzoyl chloride (0.22 g, 0.92 mmol) 

and dry toluene (45 mL). Dry and degassed Et3N (0.85 mL, 6.1 

mmol) was added and the vessel was fitted with a condenser 

and heated to 125 °C under a N2 atmosphere.  After stirring for 

16 h, the mixture was cooled to room temperature, filtered, and 

the solvent was removed in vacuo. Column chromatography (CH2Cl2/toluene, 2:1, 750 mL 

silica gel, Rf = 0.12) was performed to yield complex 5.7 as a dark green solid. Yield = 

0.55 g, 91%. 1H NMR (599.3 MHz, CDCl3): δ 8.18‒8.16 (m, 4H, aryl CH), 7.66 (d, 2H, 

JHH = 8 Hz, aryl CH), 7.39 (d, 2H, JHH = 8 Hz, aryl CH), 6.67‒6.64 (m, 4H, aryl CH), 

6.606.58 (m, 4H, aryl CH), 2.72 (t, 2H, JHH = 8 Hz, CH2), 1.92 (s, 6H, macrocycle CH3), 

1.90 (s, 6H, macrocycle CH3), 1.71‒1.66 (m, 2H, CH2), 1.38‒1.32 (m, 6H, CH2), 0.91‒

0.89 (m, 3H, CH3), 0.29 (s, 9H, SiCH3). 
13C{1H} NMR (150.7 MHz, CDCl3) δ 200.0, 

199.5, 153.7, 153.6, 149.3, 147.3, 147.2, 138.5, 136.7, 132.5, 129.9, 129.5, 129.0, 128.2, 

122.7, 122.6, 121.8, 121.4, 120.8, 104.2, 98.4, 36.1, 31.6, 31.1, 29.0, 22.5, 20.5, 20.4, 14.1, 

‒0.2. FT-IR (ATR): ν = 3064 (w), 2924 (w), 2854 (w), 1652 (m), 1598 (m), 1491 (m), 1449 

(m), 1429 (m), 1362 (s), 1323 (m), 1222 (s), 1169 (m), 1053 (m), 919 (m), 841 (s), 743 (s) 

cm−1. UV-vis (CH2Cl2): λmax (ε) 590 nm (6,000 M−1 cm−1), 430 nm (sh, 14,200 M−1 cm−1), 

390 nm (30,200 M−1 cm−1), 275 nm (60,500 M−1 cm−1). Mass Spec. (ESI, +ve mode) m/z: 

[M]+ calc’d for [C47H50N4NiO2Si]+, 788.3056; found, 788.3059; difference: +0.4 ppm. 
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Synthesis of n-hexylphenyl and ethynylphenyl substituted macrocycle (5.8) 

Compound 5.7 (0.40 g, 0.51 mmol) was stirred with K2CO3 

(0.14 g, 1.0 mmol) in THF/MeOH (3:1, 20 mL) for 16 h at 

room temperature. CH2Cl2 (50 mL) was then added and the 

organic layer was washed with 0.5 M aqueous NH4Cl (50 mL), 

dried with MgSO4 and concentrated in vacuo. The resulting 

dark green solid was purified via precipitation from a saturated 

CH2Cl2 solution in pentane to afford 5.8 as a dark green 

microcrystalline solid. Yield = 0.31 g, 85%. 1H NMR (599.3 MHz, CDCl3): δ 8.22‒8.21 

(m, 2H, aryl CH), 8.15 (s, 2H, aryl CH), 7.70 (d, 2H, JHH =8, 1 Hz, aryl CH), 7.39 (d, 2H, 

JHH = 8 Hz, aryl CH), 6.72‒6.65 (m, 4H, aryl CH), 6.616.59 (m, 4H, aryl CH), 3.30 (s, 

1H, CH), 2.72 (t, 2H, JHH = 7 Hz, CH2), 1.92 (s, 6H, macrocycle CH3), 1.91 (s, 6H, 

macrocycle CH3), 1.71‒1.66 (m, 2H, CH2), 1.40‒1.32 (m, 6H, CH2), 0.90 (t, 3H, JHH = 7 

Hz, CH3). 
13C{1H} NMR (150.7 MHz, CDCl3) δ 200.1, 199.5, 153.8, 153.7, 149.4, 147.4, 

147.2, 139.0, 136.7, 132.7, 129.9, 129.6, 129.0, 127.2, 122.8, 122.6, 121.8, 121.4, 120.8, 

82.9, 80.5, 36.1, 31.7, 31.1, 29.0, 22.6, 20.5, 20.4, 14.1. FT-IR (ATR): ν = 3291, 2923, 

2853, 1657, 1600 (w), 1491 (w), 1530 (s), 1448 (m), 1428 (m), 1363 (s), 1323 (m), 1223 

(s), 1170 (m), 1054 (m), 912 (m), 854 (m), 745 (s) cm−1. UV-vis (CH2Cl2): λmax (ε) 590 nm 

(5,700 M−1 cm−1), 429 nm (sh, 13,400 M−1 cm−1), 390 nm (28,500 M−1 cm−1), 274 nm 

(62,300 M−1 cm−1). Mass Spec. (ESI, +ve mode) m/z: [M]+ calc’d for [C44H42N4NiO2]
+, 

716.2661; found, 716.2658; difference: −0.4 ppm. 

Synthesis of 3-azidopropyl endo-2-norbornene-2-carboxylate (5.9) 

3-Azido-1-propanol (0.81 g, 8.0 mmol), endo-5-norbornene-2-carboxylic acid 

(1.10 g, 7.96 mmol), dicyclohexylcarbodiimide (1.64 g, 7.96 mmol), 4-

(dimethylamino)pyridine (0.97 g, 7.96 mmol) were combined in dry/degassed 

CH2Cl2 (100 mL). Reaction progress was monitored by TLC and the reaction 

was stopped after 2 h, upon disappearance of the starting material. The solution was filtered 

and the solvent was removed in vacuo. Column chromatography (hexanes/EtOAc, 9:1, 75 

mL silica gel, Rf = 0.8) was performed to yield 5.9 as a colourless oil. Yield = 1.08 g, 62%. 
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1H NMR (400.1 MHz, CDCl3): δ 6.21 (dd, 1H, JHH = 6, 3 Hz C=CH), 5.93 (dd, 1H, JHH = 

6, 3 Hz C=CH), 4.12 (t, 2H, JHH = 6 Hz, CH2), 3.40 (t, 2H, JHH = 7 Hz, CH2), 3.22 (s, 1H, 

CH), 2.99‒2.95 (m, 1H, CH), 2.92 (s, 1H, CH), 1.93‒1.87 (m, 2H, CH2), 1.47‒1.41 (m, 

2H, CH2), 1.30‒1.27 (m, 2H, CH2). 
13C{1H} NMR (150.7 MHz, CDCl3) δ 174.6, 137.9, 

132.2, 61.0, 49.7, 48.3, 45.7, 43.3, 42.5, 29.2, 28.2. FT-IR (ATR): ν = 3062 (w), 2969 (w), 

2878 (w), 2095 (s), 1729 (s), 1455 (w), 1336 (m), 1270 (m), 1172 (s), 1132 (m), 1066 (m), 

991 (w), 905 (w), 838 (w) 710 (s) cm−1. Mass Spec. (ESI, +ve mode) m/z: [M]+ calc’d for 

[C11H15N3O2]
+, 221.1164; found, 221.1158; difference: −2.7 ppm. 

Synthesis of norbornene-functionalized macrocycle (5.10) 

An oven-dried Schlenk flask was charged with CuI (1.3 mg, 

0.068 mmol) and N,N,N’,N’’,N’’-

pentamethyldiethylenetriamine (14.6 µL, 0.068 mmol) in 

dry/degassed THF (50 mL) and stirred for 10 min. To the 

reaction mixture was added compounds 5.8 (1.00 g, 1.40 

mmol) and 5.10 (0.31 g, 1.40 mmol) and the mixture was 

stirred for 18 h at room temperature. The solvent was then 

removed in vacuo. Column chromatography (toluene/EtOAc, 

19:1, 75 mL silica gel, Rf = 0.13) was performed to yield 

complex 5.10 as a dark green solid as the third fraction. Yield 

= 0.64 g, 54%. 1H NMR (599.3 MHz, CDCl3): δ 8.32‒8.31 (m, 2H, aryl CH), 8.16 (s, 2H, 

aryl CH), 8.07 (d, 2H, JHH = 8 Hz, aryl CH), 7.95 (s, 1H, triazole-CH), 7.40 (d, 2H, JHH = 

8 Hz, aryl CH), 6.68‒6.66 (m, 4H, aryl CH), 6.606.58 (m, 4H, aryl CH), 6.23 (dd, 1H, 

JHH = 5, 3 Hz, C=CH), 5.96 (dd, 1H, JHH = 6, 3 Hz, C=CH), 4.55 (t, 2H, JHH = 6 Hz, CH2), 

4.17‒4.10 (m, 2H, CH2), 3.23 (s, 1H, CH), 2.99‒2.97 (m, 1H, CH), 2.94 (s, 1H, CH), 2.73 

(t, 2H, JHH = 8 Hz, CH2), 2.36‒2.33 (m, 2H, CH2), 1.96‒1.92 (m, 2H, CH2), 1.92 (s, 6H, 

macrocycle CH3), 1.90 (s, 6H, CH3), 1.70‒1.68 (m, 2H, CH2), 1.47‒1.28 (m, 10H, CH2), 

0.91‒0.87 (m, 3H, macrocycle CH3). 
13C{1H} NMR (150.7 MHz, CDCl3) δ 200.1, 199.7, 

174.5, 153.7, 153.6, 149.4, 147.4, 147.3, 146.8, 138.6, 138.0, 136.7, 135.3, 132.0, 130.5, 

130.4, 129.9, 129.0, 126.1, 122.7, 122.6, 121.8, 121.4, 121.0, 120.8, 60.5, 49.7, 47.4, 45.8, 

43.3, 42.5, 36.1, 31.6, 31.1, 29.6, 29.2, 29.0, 22.6, 20.5, 20.4, 14.1. FT-IR (ATR): ν = 3058 
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(w), 2928 (w), 2856 (w), 1729 (m), 1652 (m), 1603 (m), 1531 (s), 1448 (m), 1429 (m), 

1363 (s), 1326 (m), 1224 (s), 1171 (s), 1054 (m), 912 (m), 839 (m), 732 (m), 704 (m), 535 

(w) cm−1. UV-vis (CH2Cl2): λmax (ε) 590 nm (5,900 M−1 cm−1), 429 nm (sh, 14,000 M−1 

cm−1), 391 nm (29,300 M−1 cm−1), 274 nm (54,300 M−1 cm−1). Mass Spec. (ESI, +ve mode) 

m/z: [M]+ calc’d for [C55H57N7NiO4]
+, 937.3825; found, 937.3853; difference: +2.8 ppm. 

Polymerization of norbornene-functionalized macrocycle (5.11) 

A grease-free Schlenk flask was charged with monomer 5.10 

(0.100 g, 0.117 mmol) before dry and degassed CH2Cl2 (4 mL) 

was added. Once the monomer was dissolved a 10.4 mg mL−1 

CH2Cl2 solution of Grubbs’ 3rd generation catalyst (0.20 mL, 

2.34 × 10−3 mmol) was rapidly added in one portion. The 

polymerization proceeded for 3 h before it was terminated with 

ethyl vinyl ether (0.28 mL, 2.93 mmol) and stirred for an 

additional 30 min. The crude mixture was filtered through a 

short neutral alumina column (4 cm × 2.5 cm, CH2Cl2 then 

THF) before the solvent was removed in vacuo. The resultant 

polymer, a green solid was dissolved in THF (10 mL) and precipitated thrice into Et2O (90, 

90, and 15 mL) to afford 5.10 as a green powder. Yield = 0.084 g, 84%. 1H NMR (599.3 

MHz, CDCl3): δ 8.22‒8.03 (m, 7H, aryl CH and triazole CH), 7.36 (bs, 2H, aryl CH), 6.63 

(s, 4H, aryl CH), 6.58 (s, 4H, aryl CH), 5.46−5.31 (m, 2H, C=CH), 4.56 (bs, 2H, CH2), 

4.14 (bs, 2H, CH2), 3.19 (bs, 1H, CH), 2.94 (m, 2H, CH), 2.70 (s, 2H, CH2), 2.33 (s, 2H, 

CH2), 1.99‒1.86 (m, 14H, macrocycle CH3 and CH2), 1.66 (s, 2H, CH2), 1.36−1.31 (m, 

10H, CH2), 0.88 (s, 3H, CH3). FT-IR (ATR): ν = 3062 (w), 2928 (w), 2856 (w), 1728 (m), 

1652 (m), 1604 (m), 1532 (s), 1450 (m), 1429 (m), 1375 (s), 1326 (m), 1224 (s), 1172 (s), 

1054 (m), 911 (m), 859 (w), 727 (s) cm−1. UV-vis (CH2Cl2): λmax (ε) 592 nm (4,000 M−1 

cm−1), 430 nm (sh, 9,600 M−1 cm−1), 391 nm (19,800 M−1 cm−1), 274 nm (36,900 M−1 

cm−1). GPC (THF, conventional calibration): Mn = 24,100 g mol1, Mw = 26,500 g mol−1, 

Ð = 1.12). 
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Variation of Feed Molar Ratio: Using 0.05 g of monomer 5.10 each, a series of five 

reactions were carried out according to the procedure described above. The catalyst molar 

feed stock ratios (monomer:catalyst) were: 20, 40, 60, 80, and 100. The polymerization 

times were held constant at 30 min. The number average degree of polymerization (DPn) 

for each sample was measured by GPC analysis using conventional calibration relative to 

polystyrene standards. 

Monitoring Polymerization Progress with Timed Aliquots: A 1 mg mL−1 CH2Cl2 solution 

of 3-bromopyridine derivative of Grubbs’ 3rd generation catalyst (1.0 mL, 6.4 × 103 mmol) 

was rapidly added in one portion to a 27 mg mL−1 CH2Cl2 solution of monomer 5.10 (11 

mL, 0.32 mmol) and the mixture was stirred at 0 C. Eight samples were removed at 

different time intervals (60, 120, 210, 300, 450, 600, 750, and 900 s) and added into 

separate reaction flasks containing excess ethyl vinyl ether to terminate the polymerization. 

The number average molecular weights (Mn) were measured by GPC analysis using 

conventional calibration relative to polystyrene standards and monomer to polymer ratios 

were monitored using NMR analysis. 

5.3 Results and Discussion 

5.3.1 Monomer Synthesis 

The synthesis of monomer 5.10 (Scheme 5.1) began with the reaction of 4-hexylbenzoyl 

chloride with the Ni(II) complex of Goedken’s macrocycle (5.5) in the presence of Et3N. 

This condensation reaction afforded compound 5.6 in 21% yield. This transformation 

suffers from a low yield due to the statistical formation of unsubstituted (5.5), mono- and 

di-4-n-hexylbenzoyl substituted macrocycles, with yields of 26, 28, and 21%, respectively. 

The 4-hexylbenzoyl substituent was chosen to increase the solubility of the targeted 

polymers and to circumvent potential reactivity of the C-H present on the backbone. Next, 

4-(TMS-ethynyl)benzoyl chloride was combined with 5.6 in the presence of Et3N to afford 

compound 5.7 in 91% yield. The ethynyl functionality was deprotected using K2CO3 giving 

compound 5.8 in 85% yield. We chose to use the endo-norbornene derivative because it 

afforded the advantages of simplified 1H and 13C{1H} NMR spectra and slower reactions46 

which improves our ability to probe the reaction kinetics of this polymerization. The endo-
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norbornene carboxylic acid was purified using an existing protocol.45 Compound 5.9 was 

synthesized by combining 3-azido-1-propanol with endo-5-norbornene-2-carboxylic acid, 

using the Steglich esterification,47 in 62% yield. Taking advantage of the azide and alkyne 

functional groups, a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction 

was performed to produce monomer 5.11 in 54% yield. Compounds 5.6‒5.10 were 

characterized by high resolution mass spectrometry 1H and 13C{1H} NMR spectroscopy, 

FT-IR, and UV-vis absorption spectroscopy (see appendix 5). 

 

Scheme 5.1 Synthesis of monomer 5.10. 

5.3.2 Polymerization 

Once monomer 5.10 was synthesized, it’s polymerization behavior was studied. ROMP 

was chosen because it is tolerant of many organic solvents and functional groups. Solvent 

choice can effect the reaction kinetics of ROMP,48 therefore, different solvents were 

screened for the polymerization. A typical polymerization reaction involved the rapid 

introduction of a solution of a 3-bromopyridine derivative of Grubbs’ 3rd generation 

catalyst to a stirring solution of 5.10 at ambient temperature (21 °C) with a monomer to 

catalyst ratio of 50:1 (Scheme 5.2). The solvents that were tested included THF, DMF, and 

CH2Cl2 as the polymerization was not limited by the solubility of the monomer in these 

solvents. Monomer 5.10 was subjected to the same reaction conditions in each solvent and 

the resulting polymers were analyzed by GPC (Table 5.1). Polymerization in THF gave 

undesirable, broadened molecular weight distributions (Ð = 2.69), and the reaction did not 

proceed when performed in DMF. The polymerization in CH2Cl2 produced polymers with 
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narrow molecular weight distributions (Ð = 1.12), which is what is typically observed for 

a controlled polymerization protocol such as ROMP. 

Table 5.1 MW data for the polymer 5.11 produced in different solvents. 

Solvent Mn (g mol−1) Mw (g mol−1) Ð 

THF 16,500 44,600 2.69 

DMF - - - 

CH2Cl2 24,100 26,500 1.12 

Reaction progress in CH2Cl2 was monitored by the disappearance of signals associated 

with norbornene in the monomer (6.23 and 5.96 ppm) and appearance of olefinic signals 

associated with the polymer (5.46−5.31 ppm) in the corresponding 1H NMR spectra. The 

reaction neared completion after approximately 15 min, and it was stirred for another 15 

min to ensure complete conversion. This was followed by the addition of ethyl vinyl ether 

(EVE) to terminate the polymerization. The reaction mixture was passed through an 

alumina plug using THF to remove the catalyst, followed by precipitation from THF into 

Et2O, and centrifugation and drying in vacuo to afford polymer 5.11 in 84% yield. 

 

Scheme 5.2 ROMP of monomer 5.10 using Grubbs’ 3rd generation catalyst. 

5.3.3 Kinetic Studies 

We performed two different studies on our norbornene-based monomers to further 

investigate the polymerization behaviour of our novel monomer. Typically, the molecular 
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weight of polymers can be determined by end-group analysis via 1H NMR integration data. 

Unfortunately, the signals associated with the phenyl moiety on the end group were 

shrouded by the aromatic proton signals associated with Goedken’s macrocycle (7.4‒7.3 

ppm), precluding end-group analysis for this polymer system. Therefore, the molecular 

weights of the polymers were estimated using GPC analysis (conventional calibration 

referencing PS). GPC analysis using triple detection methods were also unavailable as the 

absorbance maxima of the polymer at 593 nm overlaps with that of the laser used for the 

light scattering detector (630 nm). It is important to note that due to the significant 

difference between PS and the target polymer 5.11, it is expected that the measured 

molecular weight will not accurately reflect the molecular weight of our polymer. 

However, GPC still allowed for a useful comparison of different molecular weights during 

kinetic experiments, and confirmed that high molecular weight polymers have been 

produced. 

The first study involved a single ROMP reaction (monomer:catalyst 50:1) with the Mn 

measured as a function of time (Figure 5.1). The molecular weight of the polymer increased 

over time, with the reaction nearing completion around 300 s and complete conversion seen 

over 600 s made evident by the plateau appearing after 600 s (Figure 5.1a). This behaviour 

was consistent with a well-behaved ROMP reaction with limited side reactivity, whereby 

the rate of reaction decreases as the monomer is consumed. The consumption of monomer 

as a function of time was monitored by 1H NMR spectroscopy using the ratio of olefinic 

signals of monomer (6.23 and 5.96 ppm) and polymer (5.46−5.31 ppm). A semilogarithmic 

plot (Figure 5.1Figure 5.1b) as a function of time shows a linear trend between ln[M]0/[M] 

and time, consistent with living polymerization (black line), where [M]0 is the initial 

concentration of monomer and [M] the concentration of monomer at different time 

intervals in solution. 
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Figure 5.1 (a) Number average molecular weight (Mn) as a function of time from GPC, (b) 

semilogarithmic plot for the consumption of monomer 5.10 as a function of time. [M]0/[M] 

was determined using 1H NMR integration data. 

 

The second experiment was designed to further examine the ROMP of monomer 5.10 and 

involved several reactions with different feed molar (monomer:catalyst) ratios (Figure 5.2). 

The ratios (monomer:catalyst) studied were 20, 40, 60, 80, and 100. The molecular weights, 

and thus degree of polymerization, were analyzed by GPC. The measured molecular weight 

of the polymers increased as the feedstock ratios were increased from 20 to 100. The GPC 

traces of the different experiments are presented in Figure 5.2a and reveal increased 

average molecular weights as the molar feedstock ratio was increased. The linear 

relationship between monomer:feedstock and DPn predicted was not maintained at high 

ratios as the increased number of ring-opening reactions required also increased the 

probability of side reactions (Figure 5.2b). The deviation of polymer molecular weights 

from ideal behaviour (black line, Figure 5.2b) may be due to the underestimation of the 

molecular weights by conventional calibration GPC. The upward tailing at higher feed 

molar ratio may imply early termination and/or side reactivity. These results demonstrate 

that this ROMP is well-behaved, although does not exhibit perfect living character. 
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Figure 5.2 (a) GPC traces of polymer samples at different catalyst loadings. The graphs 

have been colour coded for ease of comparison. (b) Relationship of feed molar ratio and 

DPn determined by GPC using conventional calibration. The black line depicts ideal 

behaviour. 

5.3.4 Polymer Characterization 

TGA analysis of a representative sample of polymer 5.11 revealed its stability up to a 

temperature of 278 °C, followed by a rapid decomposition to ca. 40% mass, then a slow 

decomposition to an overall char yield of 6% when heated to 1000 °C (Figure A5.12). A 

sample of polymer 5.11 was also analyzed by DSC where it was heated to 250 °C followed 

by a cooling to −50 °C, and the cycle was repeated twice more. The second heating/cooling 

cycle was used to determine a Tg = 211 °C (Figure A5.13). 

The UV-vis absorption spectra of monomer 5.10 and polymer 5.11 were very similar 

(Figure 5.3). The characteristic absorption maxima for Ni(II) complexes of Goedken’s 

macrocycle in monomer 5.10 [590 nm (5,900 M−1 cm−1), 429 nm (sh, 14,000 M−1 cm−1), 

391 nm (19,800 M−1 cm−1), and 274 nm (54,300 M−1 cm−1) nm] were conserved in the 

polymer [592 nm (4,000 M−1 cm−1), 430 nm (sh, 9,600 M−1 cm−1), 391 nm (19,800 M−1 

cm−1), and 274 nm (36,900 M−1 cm−1) nm].  
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Figure 5.3 (a) UV-vis absorption spectra recorded in CH2Cl2 of monomer 5.10 (black) and 

polymer 5.11 (red). (b) UV-vis absorption spectra of polymer 5.11 in CH2Cl2 (red) and as 

a thin-film (blue). 

The thin-film absorption properties of polymer 5.11 were also studied. The film was 

produced by spin coating a solution of the polymer in chlorobenzene (15 mg mL−1) on a 

glass slide at 3000 rpm. The UV-vis spectrum was similar to that of the solution sample 

with absorption maxima at 396, 438 (sh), and 596 nm, confirming the conservation of the 

Ni(II) macrocycle in the side-chain polymer and the lack of significant interactions 

between macrocycle units in the solid state (Figure 5.3b). 

The electrochemical properties of monomer 5.10 and polymer 5.11 were explored in 

CH2Cl2 (Figure 5.4, Table 5.2). In the cyclic voltammegram (CV) of the monomer, two 

reversible oxidation waves with half-wave potentials at 0.21 and 0.72 V vs the 

ferrocene/ferrocenium redox couple were observed. These waves correspond to the 

oxidation of the Ni-macrocycle (NiL) to the radical cation (NiL → NiL●+) followed by the 

oxidation to the dication (NiL●+ → NiL2+). In unfunctionalized derivatives, oxidative 

dimerization occurs during electrochemical studies.39, 49 Our monomer design has shut 

down this reactive pathway. An irreversible reduction was also observed for the monomer 

at Epc(2) = −2.14 V, which was previously assigned to the reduction of Ni.49 The 

irreversibility of the electrochemical reduction wave suggests decomposition of the newly 

formed species. 
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Figure 5.4 CVs of 5.10 (black) and 5.11 (red) recorded at a scan rate of 250 mV s−1 in 

CH2Cl2 solutions containing 1 × 10−3 M analyte and 0.1 M [nBu4N][PF6] as supporting 

electrolyte. 

Table 5.2 Cyclic voltammetry data for monomer 5.10 and polymer 5.11. 

Compound Epc(2) E°red1 E°ox1 Epc(1) Epa(1) E°ox2 

5.10 −2.14 - 0.21 - - 0.72 

5.11 - −2.07 0.21 0.57 0.70 - 

 

In the CV of the polymer, two oxidation events with half-wave potentials at 0.21 and 0.62 

V were observed (Table 5.2). The first oxidation appears to be fully reversible, while the 

second oxidation showed Epa at ca. 0.70 V, with a sharp cathodic peak (Epc(1) = 0.57 V) 

most likely caused by the plating of the dicationic species onto the working electrode 

surface, a common observation for redox-active polymers. To address the insolubility of 

the dicationic species different solvents were employed. CV experiments were run in THF, 

although the first oxidation to the radical cation demonstrated similar behaviour with a 

sharp cathodic reduction most likely caused by insolubility. The oxidation to the dicationic 

species was improved and did not show any significant electrode plating. Unfortunately, 

the combination of THF and CH2Cl2 (1:1 mixture) did not result in improved 

electrochemical behaviour and the oxidation of the macrocycle units in this solvent system 

were irreversible (Figure 5.5). DMF, and DMF:CH2Cl2 (1:1 mixture) solutions were also 

studied, but were plagued by the poor solubility of the analyte.  
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Figure 5.5 CVs of polymer 5.11 in THF (green) and THF/CH2Cl2 (1:1) solvent mixture 

(purple) recorded at a scan rate of 250 mV s−1 in CH2Cl2 solutions containing 1 × 10−3 M 

analyte and 0.1 M [nBu4N][PF6] as supporting electrolyte. 

 

Furthermore, the polymer exhibited a reversible one-electron reduction wave associated 

with Ni (Ni2+ → Ni+),49-50 with a half-wave potential of −2.07 V. The difference in 

electrochemical behaviour of the monomer and polymer must arise from the 

macromolecular nature of the polymer, where the electrogenerated Ni+ species is protected 

by the tertiary structure of the polymer. This behaviour has been observed for related 

molecular species in the past.39, 50-53 

5.4 Conclusion 

This chapter describes the design of a novel side-chain polymer 5.11, incorporating Ni(II)-

complexes of Goedken’s macrocycle, one of the few examples of side-chain Ni-containing 

MCPs. ROMP was performed using a Grubbs’ 3rd generation catalyst and a norbornene 

polymerizable group. The reaction was well behaved, although did not formally satisfy the 

criteria for a living polymerization. Polymer 5.11, in solution and the solid state, exhibited 

UV-vis absorbance spectra similar to the monomeric unit and characteristic of Ni(II)-

complexes of Goedken’s macrocycle. The polymer also demonstrated three redox events, 

including two separate macrocycle-centred oxidations and a reversible reduction 
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associated with Ni. This behaviour was unique to the polymer, as the discrete monomer 

5.10 showed an irreversible reduction at similar potential. 
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Chapter 6  

6 Conclusions and Future Work 

6.1 Conclusions 

The work presented throughout this thesis describes the incorporation of two different 

stable radicals into polymer scaffolds and the study of their physical and chemical 

properties. The incorporation of a 6-oxoverdazyl stable organic radical group appended to 

a methacrylate polymerizable functionality (Figure 6.1) yielded the first well-characterized 

example of a 6-oxoverdazyl being incorporated into a polymer. This methodology required 

the polymerization of the tetrazane precursor in order to use AIBN free radical 

polymerization followed by oxidation to the radical species. Post-polymerization reactions 

often suffer from poor conversions, but our methodology showed conversion of ca. 95% 

of the neutral species to radical species. We were able to demonstrate the tunability of the 

redox behaviour by modifying the substituents attached to the verdazyl moiety (iPr and Ph) 

to shift the reduction half wave potential from −1.5 to −1.0 V vs. the ferrocene redox 

couple. The ability to modify the redox potentials will allow for incorporation into devices 

that may require different potentials to efficiently communicate electronically within the 

device. This system also displayed minimal change in the structural metrics upon 

oxidation, which is a crucial feature when they are to be used as redox-active materials for 

organic electronics. 

 

Figure 6.1 Graphical summary of Chapter 1. 
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Taking this system further, we combined isopropyl-6-oxoverdazyl stable organic radicals 

with a cis-5-norbornene-exo-2,3-dicarboximide polymerizable group. With this system, we 

were able to directly polymerize the 6-oxoverdazyl radical monomer using ROMP with 

Grubbs’ 3rd generation catalyst, ensuring high radical content in the resulting polymer. This 

polymerization protocol led to the creation of polymers with controllable and narrow 

molecular weight distributions. The redox properties of this polymer were explored further 

by incorporation into different organic electronics. Initially, it was incorporated into thin-

film devices that exhibited high and low conductivity states based on the applied voltage 

bias, creating a switchable conducting-insulating device. This material was also 

incorporated into an ultrathin memristor device (10 nm) that demonstrated three tunable 

charge states: positive, neutral, and negative (Figure 6.2). As the field of organic radical 

polymers is heavily focused on the design of battery systems, this research shows that the 

unique reactivity and stability of these materials are useful beyond charge storage and 

illustrate the suitability for different applications. 

 

Figure 6.2 Graphical summary of Chapter 2. 

The second family of polymers studied in this thesis incorporated Ni(II) complexes of 

Goedken’s macrocycle into main-chain and side-chain architectures. The electronic and 

spectroscopic properties of this macrocycle have been extensively explored, but their 

incorporation into polymers was unprecedented. We utilized an alkyne functionalized 

version of Goedken’s macrocycle in tandem with a variety of organic spacers in order to 

produce a highly π-delocalized copolymer via a step-growth Sonogashira cross-coupling 

reaction. The resulting polymers showed impressive thermal stability, conservation of 
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electronic spectra, and preserved redox behaviour. As a result of having an alkyne 

functionality available, we introduced a cobalt carbonyl into the system to create a 

heterobimetallic copolymer (Figure 6.3). Due to the macromolecular nature of this system, 

we were also able to take advantage of the processability of the materials. Thin-films of 

the system, before and after incorporation of cobalt, were cast and pyrolyzed in a reducing 

atmosphere to create nanomaterials, where the composition was influenced by the structure 

of the polymer. Control of elemental composition at the nanoscale becomes a more 

important research area as technology and electronics require less space to fulfill more 

demanding tasks. This study was successful in demonstrating some degree of control over 

molecular structure, although it requires an extensive synthesis pathway which may be a 

barrier to the scale-up of this polymer for commercialization. 

 

 

Figure 6.3 Graphical summary of Chapter 4. 

To expand the functionality of the Ni(II) complex of Goedken’s macrocycle we also 

produced side-chain polymers via a chain-growth mechanism utilizing norbornene 

polymerizable group and ROMP (Figure 6.4). This polymerization method produced well-

defined polymers with narrow molecular weight distributions. The spectroscopic and 

electronic properties of the macrocycle were preserved in the polymer, which even showed 

the reversible redox behaviour of Ni2+ during cyclic voltammetry measurements in CH2Cl2, 

a process that was observed to be irreversible in the discrete monomer. The developed 

synthetic methodologies will allow for the expansion of this polymers series in order to 

tune electronic and physical properties for the incorporation into organic electronic devices 

or nanomaterials in the future. 
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Figure 6.4 Graphical summary of Chapter 5. 

 

6.2 Future Work 

6.2.1 6-Oxoverdazyl Radical Polymers 

Stable organic radicals incorporated into polymer systems has revealed many interesting 

applications for these materials that take advantage of their unique redox behaviour. The 

6-oxoverdazyl system, compared to other radicals, offers distinct advantages in terms of 

stability and tunability of the redox potentials. However, the 6-oxoverdazyl polymers 

discussed in this thesis have relatively low radical content, considering the molecular 

weight of the repeating unit.  By decreasing the overall molecular weight of the repeating 

unit we can target organic electronic devices that require increased radical content. The 

proposed synthetic route (Scheme 6.1), would produce an isopropyl-6-oxoverdazyl radical 

monomer (6.2) with a much lower molecular weight monomer unit, while still allowing for 

a controlled polymerization by ROMP utilizing a norbornene polymerizable group to 

produce 6.3. 
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Scheme 6.1 Proposed synthesis of an isopropyl-6-oxoverdazyl polymer with higher radical 

content using ROMP. 

One of the most popular applications for stable organic radical polymers involves their 

incorporation into batteries, as the charge storage material. Important criteria for these 

battery materials are high charge capacity, high radical content, robust redox cycling, and 

minimal distant between adjacent radical sites.1-3 Most of these factors are dependent on 

the molecular weight of the repeating unit, therefore the design of a 6-oxoverdazyl with a 

relatively low molecular weight would be ideal. The proposed synthesis would take 

advantage of a methyl-6-oxoverdazyl radical unit4 appended to an ethynyl group (6.5) 

which would then be polymerized with a living mechanism using a molybdenum5 or 

rhodium6 catalyst to produce polymer 6.6 (Scheme 6.2).  

 

Scheme 6.2 Proposed synthetic route towards 6-oxoverdazyl polymers with higher radical 

content metal-catalyzed polymerization. 

The resulting polymers would have the highest theoretical charge density and the smallest 

distance between radical units of any polymer reported to date (Figure 6.5).2, 7 Furthermore, 

the stability of the verdazyl radical may even rival that of polymers used in existing radical 

battery technologies which are based on nitroxide radicals. This synthetic strategy may also 

afford an advantage due to the direct polymerization of the radical species circumventing 

post-polymerization modification and ensuring each repeating unit contains a radical. This 

approach could be expanded to include other variations of the verdazyl polymer, including 
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the phenyl-6-oxoverdazyl and the phenyl-verdazyl radicals in order to study the effect of 

different redox potentials in the electronic materials. 

 

Figure 6.5 Plot of mean intersite distance (δAV) versus redox capacities for various redox 

active polymers. Polymers from left to right: 3.13, 1.2, 6.3, poly(vinylferrocene), 

poly(ethernitroxide), and 6.6. The dotted curve represents the mean intersite distance 

calculated per repeating unit. Inset: R represents redox-active sites. 

6.2.2 Incorporation of Goedken’s Macrocycle into Copolymers 

Developing a side-chain polymer that incorporates Goedken’s macrocycle using a 

controlled polymerization method such as ROMP affords us the ability to create 

copolymers. A new system would include the copolymerization of a polymer system 

similar to that presented in Chapter 5 with a water soluble cis-5-norbornene-endo-2,3-

dicarboxyic acid (Figure 6.6). Once the appropriate ratio of hydrophobic (Goedken’s 

macrocycle) to hydrophilic (norbornenedicarboxylic acid) blocks are achieved micelles 

can be targeted by self-assembly. A payload can be introduced into the micelle during the 

self-assembly process. Upon targeted oxidation of Goedken’s macrocycle (using NOBF4, 

for example) both blocks become water-soluble which results in the disassembly of the 

micelles releasing the payload into the system. 
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Figure 6.6 Synthesis of a block copolymer based on Goedken’s macrocycle, followed by 

their self-assembly into micelles and targeted payload release. 

The importance of non-covalent self-assembly is the driving force for many studies of 

supramolecular chemistry. By creating monodisperse macromolecules we can imitate the 

properties of biomacromolecules such as folding, coiling and multiplex formation through 

these non-covalent interactions. It is difficult to achieve the same degree of three 

dimensional (3D) control as biological systems, although by creating new two-dimensional 

(2D) systems with increasing complexity and size, we can progress towards creating and 

understanding the factors at play for 3D organization and self-assembly.8 The 2D system 

proposed requires an asymmetric M(II) complex of Goedken’s macrocycle (M = Mn,9 Fe,10 

Zn,9 Ru11) with an iodine functionalized benzoyl moiety and a alkyne functionalized 

benzoyl moiety (6.11, Figure 6.7a) paired with a template molecule (6.12, Figure 6.7b). 

These metals were chosen as they have demonstrated coordination to pyridine or nitrogen 

containing molecules. It is important to note that the template molecule may require 

optimization in order to properly align the macrocycles for an efficient cross-coupling 

reaction. 
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Figure 6.7 (a) Synthesis of an asymmetric Goedken’s macrocycle and (b) potential 

template molecule 6.12. 

The template molecule 6.12 will coordinate to the metal centres present in the macrocycle 

ensuring the correct physical orientation for an efficient Sonogashira cross-coupling 

reaction. After the reaction has completed, pyridine will be introduced into the system to 

remove the template molecules from the newly formed cyclic oligomers (Figure 6.8). The 

macrocycles will then be studied on various surfaces (e.g. gold) in order to observe their 

self-assembly behaviour.  

 

Figure 6.8 Template synthesis of cyclic oligomers composed of M(II) complexes of 

Goedken’s macrocycle (6.11) with template molecule (6.12). i) PdCl2(PPh3)2, CuI, Et3N, 

THF. ii) pyridine. 
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Appendix 2 – Supporting Information for Chapter 2 

 

 

Figure A2.1    1H NMR spectrum of tetrazane monomer 2.5a in d6-DMSO. 

 

 

Figure A2.2 13C{1H} NMR spectrum of tetrazane monomer 2.5a in d6-DMSO. 
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Figure A2.3     13C{1H} NMR triaryl-6-oxotetrazane monomer 2.5b in d6-DMSO. 

 

  

Figure A2.4 1H NMR spectrum of tetrazane polymer 2.6a in d6-DMSO. 
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Figure A2.5 TGA trace for tetrazane polymer 2.6a. 

 

 

Figure A2.6 DSC thermogram for tetrazane polymer 2.6a. 

204 C
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Figure A2.7 TGA trace for 6-oxoverdazyl polymer 2.7a. 

 

 

 

Figure A2.8 DSC thermogram of 6-oxoverdazyl polymer 2.7a. 

 

204 C
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Figure A2.9 TGA trace for 6-oxoverdazyl polymer 2.6b. 

 

 

Figure A2.10 DSC thermogram of 6-oxoverdazyl polymer 2.6b. 
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Figure A2.11    TGA trace for 6-oxoverdazyl polymer 2.7b. 

 

 

 

Figure A2.12 DSC thermogram of 6-oxoverdazyl polymer 2.7b. 
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Figure A2.13 IR spectra of tetrazane polymer 2.6a (red) and tetrazane 2.10a (black) 

recorded as KBr pellets. The baselines have been offset for ease of comparison. 

 

 

Figure A2.14 IR spectra for tetrazane polymer 2.6b (black) and tetrazane 2.10b (red) 

recorded as KBr pellets. The baselines have been offset for ease of comparison. 
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Figure A2.15 IR spectra of 6-oxoverdazyl polymer 2.7b (red) and 6-oxoverdazyl 2.11b 

(black) recorded as KBr pellets. The baselines have been offset for ease of comparison. 

 

Figure A2.16 IR spectra for tetrazane polymer 2.6b (black) and 6-oxoverdazyl polymer 

2.7b (red) recorded as KBr pellets. The baselines have been offset for ease of comparison. 

The rectangle highlights the NH region of the spectrum. 
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Figure A2.17 Simulated (top, red) and collected (bottom, black) EPR spectra of 6-

oxoverdazyl 2.11a in dichloromethane. Parameters used for simulation: g = 2.0043, line 

width = 0.85 mT, aN1,5 = 0.533 mT, aN2,4 = 0.656 mT, aH = 0.132 mT. 

 

Figure A2.18 Simulated (top, red) and collected (bottom, black) EPR spectra of 6-

triaryloxoverdazyl 2.11b in dichloromethane. Parameters used for simulation: g = 2.0038, 

line width = 0.20 mT, aN1,5 = 0.645 mT, aN2,4 = 0.475 mT. 
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Figure A2.19 1H NMR spectrum of tetrazane 2.10a in d6-DMSO. 

 

 

 

Figure A2.20 13C{1H} NMR spectrum of tetrazane 2.10a in d6-DMSO. 
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Figure A2.21 1H NMR of triaryl-6-oxotetrazane 2.10b in d6-DMSO. 

 

Figure A2.22 13C{1H} NMR triaryl-6-oxotetrazane 2.10b in d6-DMSO. 
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Figure A2.23 UV-Vis absorption spectrum of 6-oxoverdazyl polymers 2.7a (red) and 

model 6-oxoverdazyl 2.11a (black) recorded in CH2Cl2. 

 

 

 

 

Figure A2.24 1H NMR spectrum of tetrazinium cation 2.12a in CDCl3. 
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Figure A2.25 1H NMR spectrum of tetrazinium cation 2.12c in CD3CN at ‒40 C. 

 

 

Figure A2.26    UV-Vis absorption spectra of 6-oxoverdazyl 2.11a (black) and tetrazinium 

cation 2.12a (red) recorded in CH2Cl2. 
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Figure A2.27 UV-Vis absorption spectra of 6-oxoverdazyl 2.11c (black) and tetrazinium 

cation 2.12c (red) recorded in CH2Cl2. 

 

 

 

Figure A2.28   CVs of 6-oxoverdazyl 2.11a (black) and tetrazinium cation 2.12a (red) 

recorded at scan rate 100 mV s-1 in THF solutions containing 1 mM analyte and 0.1 M 

tetrabutylammonium hexafluorophosphate.  
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Figure A2.29 CVs of 6-oxoverdazyl 2.11c (black) and tetrazinium cation 2.12c (red) 

recorded at scan rate 100 mV s-1 in THF solutions containing 1 mM analyte and 0.1 M 

tetrabutylammonium hexafluorophosphate.  
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Appendix 3 ‒ Supporting Information for Chapter 3 

 

 

 

Figure A3.1 (a) Atomic Force Microscopy (AFM) image of a 20 nm thin film of polymer 

3.13 (left side of the image) and indium-tin oxide (ITO) substrate (right side of the image). 

(b) Z-axis profile of the “step” at the edge of polymer 3.13 used to determine the thin film 

thickness.  From the right side of the profile, root mean squared (RMS) roughness of ITO 

could be estimated to be about 4 nm, much less than the polymer thickness, which is about 

20 nm with an RMS roughness of about 2 nm, significantly less than the RMS roughness 

of ITO. This suggests the polymeric film is continuous with no outstanding ITO pinholes. 
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Figure A3.2 1H NMR spectrum of tetrazane 3.9 in d6-DMSO. The asterisk denotes residual 

CD3SOCD2H. 
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Figure A3.3 13C{1H} NMR spectrum of tetrazane 3.9 in d6-DMSO. The asterisk denotes 

d6-DMSO. 

 



187 

 

 

Figure A3.4 FT-IR spectra of tetrazane 3.9 (green line), 6-oxoverdazyl 3.10 (blue line), 

and monomer 3.12 (black line). Baselines have been offset for ease of comparison. Note 

the disappearance of the stretch at 3249 cm−1 upon oxidation of tetrazane 3.9 to verdazyl 

3.10, and the disappearance of the broad COOH stretch at 3434 cm−1 after the DCC 

coupling reaction (3.10  3.12). 
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Figure A3.5 TGA trace for 6-oxoverdazyl polymer 3.13. 

 

Figure A3.6 DSC data (second heating/cooling cycle) for 6-oxoverdazyl polymer 3.13.  
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Figure A3.7 FT-IR spectra of 6-oxoverdazyl monomer 3.12 (red line) and polymer 3.13 

(black line). Baselines have been offset for ease of comparison. 

 

Figure A3.8 Simulated (top, blue line) and experimental (bottom, red line) EPR spectra of 

6-oxoverdazyl monomer 3.12 in CH2Cl2. Parameters for simulation: g = 2.0045, line width 

= 0.089 mT, aN1,3 = 0.529 mT, aN2,4 = 0.640 mT, aH = 0.140 mT. 
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Appendix 4 ‒ Supporting Information for Chapter 4 

 

Figure A4.1. 1H NMR spectrum of compound 4.6 in CDCl3. The asterisk denotes residual 

CHCl3. 

 

Figure A4.2 13C{1H} NMR spectrum of compound 4.6 in CDCl3. The asterisk denotes 

CDCl3. 
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Figure A4.3. 1H NMR spectrum of 4.7 in CDCl3. The asterisk denotes residual CHCl3 and 

H2O. 

 

Figure A4.4. 13C{1H} NMR spectrum of 4.7 in CDCl3. The asterisk residual CDCl3. 
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Figure A4.5. 1H NMR spectrum of 4.8 in CDCl3. Asterisks denote residual solvent and 

grease signals. 
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Figure A4.6. 13C{1H} NMR spectrum of 4.8 in CDCl3. Asterisks denote solvent and grease 

signals. 
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Figure A4.7. 1H NMR spectrum of 4.9 in CDCl3. Asterisks denote residual solvent signals. 
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Figure A4.8. 13C{1H} NMR spectrum of 4.9 in CDCl3. Asterisk denotes solvent signal. 
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Figure A4.9. GPC trace for copolymer 4.10F (run 3a) recorded in THF at 30 °C. 

 

 

Figure A4.10. GPC trace for the Et2O soluble oligomers (run 3a) recorded in THF. 
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Figure A4.11. 1H NMR spectrum of the Et2O soluble oligomers (run 3a) recorded in 

CDCl3. The asterisks denote residual CHCl3, CH2Cl2, MeOH and H2O (from left to right). 
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Figure A4.12. 1H NMR spectra of copolymer 4.10T in CDCl3. Asterisks denote residual 

solvent signals. 
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Figure A4.13. 1H NMR spectra of copolymer 4.10B in CDCl3. Asterisks denote residual 

solvent signals. 
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Figure A4.14. 1H NMR spectrum of 4.13 in CDCl3. Asterisks denote residual solvent 

signals. 
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Figure A4.15. 13C{1H} NMR spectrum of 4.13 in CDCl3. Asterisk denotes solvent signal. 

 

 

Figure A4.16. 1H NMR spectrum of 4.14 in CDCl3. The asterisks denote residual CHCl3 

and H2O. 
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Figure A4.17. 13C{1H} NMR spectrum of 4.14 in CDCl3. The asterisk denotes CDCl3. 

 

 

Figure A4.18. CV of model compound 4.14 recorded at a scan rate of 100 mVs−1 in a 

CH2Cl2 solution containing 1 × 10−3 M analyte and 0.1 M [nBu4N][PF6] as supporting 

electrolyte. 
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Figure A4.19. CV of model compound 4.13 recorded at a scan rate of 100 mV s−1 in a 

CH2Cl2 solution containing 1 × 10−3 M analyte and 0.1 M [nBu4N][PF6] as supporting 

electrolyte. 

 

Figure A4.20. CVs of 4.13 cycled 10 times and recorded at a scan rate of 250 mV s−1 in a 

CH2Cl2 solution containing 1 × 10−3 M analyte and 0.1 M [nBu4N][PF6] as supporting 

electrolyte. 
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Figure A4.21. GPC traces for 4.10F (black) and 4.10F-[Co2(CO)6]2 (grey). 

 

 
 

Figure A4.22. UV-vis absorption spectra of 4.10F (black) and 4.10F-[Co2(CO)6]2 (grey) 

in CH2Cl2. 
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Figure A4.23. 1H NMR spectrum of 4.10F and 4.10F-[Co2(CO)6]2 in CDCl3. Asterisks 

denote residual solvent signals. 

 

 

Figure A4.24. TGA trace data for 4.10F. 
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Figure A4.25. TGA trace data for 4.10T. 

 

Figure A4.26. TGA trace for 4.10B. 
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Figure A4.27. DSC trace for 4.10F. The second heating/cooling cycle is shown. 

 

Figure A4.28. DSC trace for 4.10T. The second heating/cooling cycle is shown. 
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Figure A4.29. DSC trace for 4.10B. The second heating/cooling cycle is shown. 

 

Figure A4.30. DSC trace for 4.10F-[Co2(CO)6]. The second heating/cooling cycle is 

shown. 
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Figure A4.31. SEM of a cross-section of a thin film prepared by drop casting 4.10F-

[Co2(CO)6]2 onto a silicon wafer. 

 

 

Figure 4.32. EDX spectroscopy data collected from the nanomaterials produced from the 

pyrolysis of thin film of 4.10F-[Co2(CO)6]2 on a silicon wafer.  
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Appendix 5 ‒ Supporting Information for Chapter 5 
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Figure A5.1 1H NMR spectrum of compound 5.6. Asterisks denotes residual CHCl3 and 

grease.  

 

Figure A5.2 13C{1H} NMR spectrum of 5.6 in CDCl3. Asterisks denote CDCl3 and grease. 
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Figure A5.3 1H NMR spectrum of compound 5.7. Asterisk denotes residual CHCl3. 

  

 

Figure A5.4 13C{1H} NMR spectrum of 5.7 in CDCl3. Asterisk denotes CDCl3. 
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Figure A5.5 1H NMR spectrum of compound 5.8. Asterisks denote residual CHCl3, water, 
and grease. 

 

 

Figure A5.6 13C{1H} NMR spectrum of 5.8 in CDCl3. Asterisk denotes CDCl3. 
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Figure A5.7 1H NMR spectrum of compound 5.9. Asterisks denote residual CHCl3 and 

water. 
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Figure A5.8 13C{1H} NMR spectrum of 5.9 in CDCl3. Asterisk denotes CDCl3. 

* 

* 

* * 
* 

* 



210 

 

PROTON_JP-6-205_ppt_dry_overnight_01.esp

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
N

o
rm

a
liz

e
d
 I
n
te

n
s
it
y

3.6110.552.2314.332.232.140.940.940.942.132.080.880.884.324.242.031.002.001.821.82

8
.3

2
8
.3

1
8
.1

6 8
.0

7
7
.9

5

7
.4

0
7
.3

9
6
.6

8
6
.6

7
6
.6

6
6
.6

0
6
.6

0
6
.5

9
6
.5

9

6
.2

3
6
.2

3
6
.2

2
5
.9

6
5
.9

6
5
.9

5
5
.9

5 4
.5

6
4
.5

5
4
.5

4
4
.1

5 4
.1

4
4
.1

3
4
.1

2
3
.2

3
2
.9

9
2
.9

7
2
.7

4 2
.7

3
2
.7

2
2
.3

6
2
.3

5
2
.3

4

1
.9

5
1
.9

4
1
.9

3
1
.6

9

1
.4

2

1
.3

4 1
.3

4
1
.3

3
1
.3

1 0
.9

1
0
.9

0
0
.9

0
0
.8

9
0
.8

9
0
.8

7

 

Figure A5.9 1H NMR spectrum of compound 5.10. Asterisk denotes residual CHCl3. 

 

 

Figure A5.10 13C{1H} NMR spectrum of 5.10 in CDCl3. Asterisk denotes CDCl3. 
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Figure A5.11 1H NMR spectrum of polymer 5.11. Asterisk denotes residual CHCl3, THF, 

and Et2O. 

  

Figure A5.12 TGA trace for polymer 5.11.
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Figure A5.13 DSC of polymer 5.11. The trace is taken from the second heating/cooling 

cycle. 
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