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Abstract

Since the concept of the Concentric-Tube Robot (CTR) was proposed in 2006, CTRs have

been a popular research topic in the field of surgical robotics. The unique mechanical de-

sign of this robot allows it to navigate through narrow channels in the human anatomy and

operate in highly constrained environments. It is therefore likely to become the next gen-

eration of surgical robots to overcome the challenges that cannot be addressed by current

technologies. In CSTAR, we have had ongoing work over the past several years aimed at

developing novel techniques and technologies for CTRs. This thesis describes the contri-

butions made in this context, focusing primarily on topics such as modeling, sensorization,

and control of CTRs. Prior to this work, one of the main challenges in CTRs was to

develop a kinematic model that achieves a balance between the numerical accuracy and

computational efficiency for surgical applications. In this thesis, a fast kinematic model of

CTRs is proposed, which can be solved at a comparatively fast rate (0.2 ms) with minimal

loss of accuracy (0.1 mm) for a 3-tube CTR. A Jacobian matrix is derived based on this

model, leading to the development of a real-time trajectory tracking controller for CTRs.

For tissue-robot interactions, a force-rejection controller is proposed for position control

of CTRs under time-varying force disturbances. In contrast to rigid-link robots, instability

of position control could be caused by non-unique solutions to the forward kinematics of

CTRs. This phenomenon is modeled and analyzed, resulting in design criteria that can

ensure kinematic stability of a CTR in its entire workspace. Force sensing is another ma-

jor difficulty for CTRs. To address this issue, commercial force/torque sensors (Nano43,

ATI Industrial Automation, United States) are integrated into one of our CTR prototypes.

These force/torque sensors are replaced by Fiber-Bragg Grating (FBG) sensors that are

helically-wrapped and embedded in CTRs. A strain-force calculation algorithm is pro-

posed, to convert the reflected wavelength of FBGs into force measurements with 0.1 N

force resolution at 100 Hz sampling rate. In addition, this thesis reports on our innovations

in prototyping drive units for CTRs. Three designs of CTR prototypes are proposed, the
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latest one being significantly more compact and cost efficient in comparison with most de-

signs in the literature. All of these contributions have brought this technology a few steps

closer to being used in operating rooms. Some of the techniques and technologies men-

tioned above are not merely limited to CTRs, but are also suitable for problems arising in

other types of surgical robots, for example, for sensorizing da Vinci surgical instruments

for force sensing (see Appendix A).

KEYWORDS: Concentric-Tube Robots, Continuum Robotics, Kinematic Modeling, Kine-

matic Instability, Force and Shape Sensing, Torsion Sensing, Fiber-Bragg Grating Sensors,

Helically-Wrapped FBG Sensors, Position Control of Continuum Robots, Force Control of

Continuum Robots, Swiss-Type Micro Engraving.
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1

Chapter 1

Introduction

1.1 A Brief Overview of Concentric-Tube Robots

Concentric-tube robots (CTRs) consist of a set of pre-curved elastic tubes with incremen-

tal differences in diameter, as shown in Fig. 1.1. By translating and rotating one tube

with respect to the other(s) the shape of the robot as well as the position and orientation

of its tip can be accurately controlled. Because of this unique design, the robot is able

to generate complex 3D curvatures to navigate through winding lumens and steer inside

soft tissue. This feature makes CTRs suitable for minimally and non-invasive surgery and

therapy [1–3]. The concept of extending curved needles from outer shafts has been im-

plemented in several hand-held medical products to enlarge the surgical workspace and

provide better directional control (e.g. StarBurst® and Osteo-Rx®). However, this idea was

not extensively studied until a series of modeling and control algorithms were developed

from a robotics perspective [1, 2, 4]. Using these techniques the robot is able to provide

clinicians with high dexterity in extremely constrained environments, allowing them to ac-

complish demanding surgical tasks. Compared to the traditional tools used in minimally

invasive surgery such as needles and catheters, CTRs can achieve significantly better bal-

ance between flexibility and rigidity in certain applications. Through proper robot design



1.1. A BRIEF OVERVIEW OF CONCENTRIC-TUBE ROBOTS 2

Figure 1.1: (a) Demonstration of the concept of a CTR [1] (© 2010 IEEE). (b) A 3-tube
CTR [2] (© 2009 IEEE). (c) A CTR with an micro-grasper attached at the tip [5](© 2012
IEEE).

and control strategies, the robot body could potentially be made compliant while exerting

sufficient force at the robot’s tip. Further functionality can be offered by installing minia-

ture end-effectors such as graspers and specialized tools at the tip of the robot [6–8], and

a wrist can be added close to the distal end to regenerate human-like manipulation [9].

These advantages have motivated researchers to evaluate the effectiveness of CTRs in per-

forming surgical procedures such as cardiac surgery [7, 8, 10–12], brain surgery [6, 13],

bronchoscopic interventions [14], and trans-urethral surgery [15, 16].

Fig. 1.2 demonstrates the application of a CTR in beating heart robotic surgery [7, 8, 10–

12]. The robot is inserted into the vascular system through a small incision in the neck

and navigated to the right atrium of the heart. A tissue approximation device carried by

the CTR is deployed at the foramen ovale channel to maintain a permanent seal. The fea-

sibility and performance of the proposed robotic system was evaluated in trials involving

porcine models under 3D ultrasound guidance. In Fig. 1.3, endoscopic-CTR systems are

developed to access the peripheral regions in the lung from the inside of bronchi and bron-

chioles. In these designs, CTRs are extended from the tool channel of the bronchoscope,

which reduces the incision size and the risks of lung collapse. A new approach to improve



1.2. MODELING, SENSING AND CONTROL OF CTRS 3

Figure 1.2: Beating-heart intracardiac steerable needle surgery. (a) Steerable needle enters
internal jugular vein in the neck and navigates through the vasculature into the right atrium.
(b) Right atrium view of a 5 DOF manipulator portion of a needle. Arrows mark the patent
foramen ovale (PFO) channel allowing abnormal blood flow from the right to left atrium.
Surgery is to seal this channel. (c) Steerable needle robot consisting of three telescoping
sections. (d) Magnified view of a metal-MEMS tissue approximation device delivered
through the lumen of the steerable needle. (e) Teleoperated robot control inside the beating
heart is guided by 3D ultrasound. (f) Postmortem view of sealed porcine PFO channel [17]
(© 2012 IEEE).

intracerebral hemorrhage management is proposed by designing and implementing an in-

terchangeable 2-tube CTR. As shown in Fig. 1.4, it is possible to remove around 90% of the

hemorrhage through a needle-size incision similar to a standard brain biopsy. A bi-manual

robotic system was developed in [15], as shown in Fig. 1.5, to facilitate prostate surgeries,

specifically, a procedure called Holmium Laser Enucleation of the prostate (HoLEP). Two

CTR arms were used to maximize the dexterity of the endoscopic tools under the constraint

of urethral channels.

1.2 Modeling, Sensing and Control of CTRs

This chapter reviews recent developments in concentric-tube robotics by researchers other

than our group, focusing on modeling methodologies, sensing modalities and control ar-

chitectures. The advantages and drawbacks of various methods are discussed in order to

guide the selection of application-specific control strategies for current use and the devel-
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Figure 1.3: Demonstration of a CTR extending the tool channel of a brochoscope. (a, b) A
robot that combines bronchoscope, CTR, and bevel steered needle. (c) steps in deployment
involve: (1) deploying the bronchoscope (2) deploying the CTR to the bronchial wall,
puncturing through it, and entering the parenchyma, and (3) steering the bevel-tip needle
to the target under closed-loop control [18] (© 2015 IEEE). (d, e) Simulation of a single
concentric tube robot reaching two pre-specified clinical targets in the bronchial tubes of a
human lung [5] (© 2012 IEEE).

Figure 1.4: Robot-assisted ICH evacuation prototype setup. (a) The robot is positioned
and held in place with a passive articulated arm. The aspirator is attached to the aspiration
cannula that enters the brain through a trajectory guide attached to the skull. A reference
frame is rigidly attached to the robot for optical tracking. (b) The active cannula deployed
to the clot and the aspiration tube used to debulk the clot. (c) Blood clot is shown prior to
beginning the experiment, (d) progress midway through the removal experiment, and (e)
the same area after aspiration [13] (© 2013 IEEE).
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Figure 1.5: An illustration of the robotic system for HoLEP. The surgeon is able to position
and angle the endoscope while simultaneously controlling two CTRs that extend from its
tip. (a, b) The CAD design of the robotic surgical setup. (c) Distal end of the actual CTRs
and endoscope [15] (© 2014 IEEE).

opment of more advanced algorithms to improve the performance of this technology. The

contributions by the author are discussed in detail in the rest of this thesis.

1.2.1 Modeling

Understanding the mechanical interaction between pre-curved elastic tubes is essential to

designing CTRs and controlling them during surgical interventions. Developing an accu-

rate and practical kinematic model is fundamental to optimizing the robot structure and

designing model-based control algorithms.

Simplified Models

In the early days of concentric-tube robotics, several kinematic models were derived by

simplifying the mechanical effects of tube interactions. In [19], a kinematic model was

derived from purely geometric relations, which constrained tube selection such that the

outer tubes could be considered infinitely stiff compared to the inner tubes. A kinematic

model was then developed that relaxed this constraint, calculating the resultant bending

curvatures of the robot regardless of stiffness ratios between tubes [20]. In both methods,
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the position of the distal end was expressed by the multiplication of a series of transfor-

mation matrices from the base. This followed the conventional kinematic form of tradi-

tional rigid-link robots and resulted in closed-form forward and inverse kinematic models.

Through experimentation, it was shown that considering torsion in the kinematic model

could increase the model accuracy [2, 21], and a model was proposed that accounted for

torsion along the straight portions of the tubes by minimizing an energy function. Although

this kinematic model must be evaluated numerically, the differential kinematic model has

a closed-form [22]. While more detailed models have been proposed since, these initial

models are still used in some applications. As long as the features of the CTR meet certain

assumptions these simplified models work effectively with the minimum computational

cost and reduce the complexity in designing control schemes. In Intracerebral Hemorrhage

Evacuation only one straight and one curved tube is required to access the whole clot [13],

and the purely geometric model has been used with sufficient accuracy. In another case, as

shown in [23], a model that neglected torsion was used for real-time stiffness control as the

bending effect was dominant.

Geometrically Exact Models

Fig. 1.6 demonstrates the torsional twisting along the curved section of a tube pair. It can

be seen that the angle difference between the two tube α(s) varies significantly along the

shaft of the tubes, which attributes to the final shape of the robot. In order to include this

twisting effect into a kinematic model, a geometrically accurate rod theory called Special

Cosserat Rod Theory, is used as an optimal tool for modeling the bending, and twisting

of concentric-tubes with arbitrary pre-curvatures [1, 4, 24]. Based on this general theory,

a torsionally complaint kinematic model was developed and has shown high accuracy in

experiments [1, 4, 24]. Considering that CTRs will experience frequent interaction with

their environment during surgical interventions, this model was further extended to include

the effects of distributed external loading [4, 25]. There are still some assumptions associ-
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Figure 1.6: Effect of torsional twisting when two curved tubes are combined. Tube coor-
dinate frames are denoted by Fi(s). The relative z-axis twist angle between frames α(s)
varies from a maximum α(0) at the base to a minimum α(L) at the tip. The central angles
βi are proportional to the precurvature and to the tube length L [1] (© 2010 IEEE).

ated with this model, such as assumption of shear deformation, elongation, and clearance

between the tubes being negligible; however, these assumptions hold in almost all CTR

designs. The drawback to this model is its high computational cost, as its kinematic calcu-

lations are formulated as a set of differential equations with two-point boundary conditions.

Additionally, extra calculations have to be performed since the outputs of this model are

tube curvatures, not positions and orientations of the distal tip. To address these chal-

lenges, a Fourier series approximation approach was proposed to evaluate the positions

and orientations of the robot [1]. This method provides real-time performance but requires

pre-computation of a large dataset of position and orientation information over the entire

workspace. When the robot is under unknown external loading, it is not practical to pre-

compute all possible kinematic solutions. A framework for calculating the Jacobian and

Compliance matrix efficiently was proposed in [26] for general continuum robots allowing

a servo rate of 40 Hz for a three-tube CTR. The models mentioned above do not take fric-

tion into account, although the amount of friction involved is significant as the tubes move

with respect to each other in a telescoping manner. It has been shown through further mod-
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elling that including friction into the kinematics will improve the model accuracy [27]. The

experimental results presented in this work match the model’s output more closely when

the friction is assumed to consist of lumped torques concentrated at the robot boundaries

as opposed to distributed torques along the body of the robot.

Kinematic Instability

Kinematic instability in CTRs, commonly referred to as the snapping problem [1, 2], is a

specific phenomenon that does not exist in conventional rigid-link robots. It occurs when

the accumulated torsional energy is too large for the current tube configuration to support.

As shown in Fig. 1.7, at the snapping point, the tip of the robot jumps from one equilibrium

position (with a higher potential energy) to another (with a lower potential energy). This

fast motion of the tip cannot be controlled by the motors connected to the tubes. Therefore,

it can be very damaging in a surgical environment, and addressing the issue appropriately

is essential. In [2], kinematic instability is described as the bifurcation of the potential

energy function. Fig. 1.8 shows an example of analyzing the stability of a 2-tube CTR

using energy function, in which, the contours are the potential energy levels of a tube pair,

and ψi is the tip orientation of the ith tube. It can be seen that for these two tubes under

test, in most rotation angles, the energy function only has one local minimum, resulting in

an unique tip orientation for the robot. However, when the two tubes are 180◦ apart, two

local minimums exists, which means the tip orientation of the robot becomes non-unique.

A stability condition is derived based on this energy method; however, the energy function

only considers the torsion in the straight sections of the tubes, which limits this method

to tubes with small curvatures. Another way of interpreting the snapping phenomenon is

that the solution of the forward kinematic model loses its uniqueness [1]. Following this

concept, a stability condition for a tube pair was derived from the analytical solution of

the forward kinematics. This condition was extended to a two-tube robot with varying

pre-curvatures [28]. A general stability condition for a robot with an arbitrary number of
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Figure 1.7: Snapping analysis through video tip tracking [32]. Green marks (left) show the
traced distal end of an unstable tube pair that snaps at a certain point, and red marks (right)
show the traced distal end of a stable tube pair (© 2014 IEEE).

Figure 1.8: Contour plots of the energy landscape as the angular difference between the
tube bases is increased. Angular difference between the base inputs of the two tubes is
listed in the upper right corner of each plot. For small angular differences, there is only one
global minimum. As the angular difference approaches 180◦, two appear. Beyond 180◦,
the new minimum becomes the global minimum, and eventually the only minimum [2]
(© 2009 IEEE).

tubes was not discovered yet, but a design test was found in an implicit form [29, 30].

Optimization techniques for designing stable CTRs are developed in [28, 31].
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In the cases where the robot has an unstable region in its workspace, stability can be guar-

anteed by avoiding these regions in path planning or control schemes [30, 31, 33, 34]. The

method used in [31, 33] is called a ”s-curve” stability test that requires significant pre-

computation before path planning. To release this constraint, an online stability measure

that can be used together with a controller or a motion planner is proposed for the unloaded

CTRs in [30]. For CTR under large external loadings, a more general testing method was

developed, which consists of a second order sufficient condition, and a separate necessary

condition for evaluating the stability of CTRs [34]. Numerical simulation results showed

the effectiveness of using this testing method to design stable paths for CTRs. These tech-

niques give more flexibility in designing the tube parameters; for example, highly-curved

tubes can be used to navigate and operate in extremely constrained environments. Although

various formulations and algorithms have been developed to guide in the design and control

of a CTR and ensure stability, the friction effect is still ignored, and how to ensure that the

differences between theoretical and experimental results are sufficiently small is an open

problem. Another way of improving the kinematic stability of a CTR is by redesigning the

structure of the tubes. By manipulating the overall Poisson’s ratio the stability condition

can be met for tubes with high curvatures. Several feasible solutions were illustrated re-

cently, such as tubes with grooved patterns [32, 35], and multi-layer helical tubes [35]. One

concern about this method is that grooved patterns on the surface of the tube will reduce

the rigidity at the tip of the robot. Tip rigidity is one of the advantages that concentric-

tube robots have over other flexible tools such as catheters. The balance between rigidity

and kinematic stability should be considered in designing CTRs according to their specific

applications.

1.2.2 Sensing

High-frequency, high signal-to-noise ratio feedback is essential for improving the perfor-

mance of continuum robots due to the nonlinear uncertainties in the kinematic model. For
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surgical applications, this is especially important since the safety of the robotic system is

strongly related to this.

Position and Shape Sensing

Commercially available electromagnetic (EM) tracking has been shown to be a feasible so-

lution for real-time position feedback in CTRs since the small-size tracker can be directly

integrated within tubular shafts [6, 23]. In addition, embedding multiple EM trackers or

motorizing a single EM tracker along the lumen of a CTR could provide useful informa-

tion for reconstructing the 3D shape of the robot. The disadvantage of this modality is

that the measurement accuracy of the EM tracker can be degraded by other ferro-magnetic

components in the surrounding area. In the worst-case scenario, when the accumulated

errors are high, the output signal could be discontinuous, which could cause control in-

stability. Imaging feedback is widely used in medical robotic control and navigation, and

various shape-sensing and reconstruction techniques have been developed for CTRs based

on different imaging modalities such as fluoroscopy [36, 37], and 2D and 3D ultrasound

imaging [38–40], as shown in Fig. 1.9. MR compatible CTRs have also been designed in or-

der to use MR imaging for position feedback [41]. Most of these techniques have not been

used in closed-loop control; possible reasons include time delay caused by low-sampling

rate and high computational cost for image processing. As an alternative, Fiber Bragg

Grating (FBG) based sensing seems promising because of its small size and multiplexing

capabilities, as well as sterilizability and immunity to EM interference. In recent years,

these sensors have been used in various needle-based robotic applications [42, 43], such

as a detachable 3D shape sensing tool consisting of a polymer substrate and FBG sensors

for continuum robots [44]. Fig. 1.10 demonstrates the design concept of this shape sens-

ing tool. A wide range of surgical instruments can benefit from this technology, because

it does not require modifications on the mechanical structures as long as the instruments

have a hollow channel. The determination of optimal locations for placing multiple FBG
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Figure 1.9: Continuum robot inserted inside a porcine heart. (a) Experimental set up; (b)
3D ultrasound image showing both the left atrium and the curved robot [39] (© 2012 IEEE).

Figure 1.10: Schematic of wire braided polymer tube with surface mounted optical
fibers [44] (© 2014 IEEE).

sensors according to the mechanical parameters of CTRs is discussed in [45].

Force Sensing

In order to control robot-tissue interaction, it is important to have force measurements with

high speed and precision. Because of the flexibility of CTRs, intrinsic force sensing [46]

techniques can be used to convert the deflection of the flexible continuum robot into force



1.2. MODELING, SENSING AND CONTROL OF CTRS 13

measurements through kinematic models [23]. An extended Kalman filter approach was

developed to enhance the measurement accuracy in the presence of sensing noise and mod-

eling uncertainties [46]. However, the sampling rate of EM trackers and imaging modalities

is not usually sufficient for calculating time-varying interaction forces and quality visual or

EM feedback is not always available in a surgical environment. At present, commercially

available force sensors are not compact enough to attach to the tip of CTRs as space is

extremely limited. In [47], a novel miniature tip force sensor was developed that measured

both the magnitude and contact angle; however, this sensor does not allow interventional

tools to pass through. Optical strain sensors are another good choice for robots with hous-

ing constraints. As in shape sensing, FBG-based strain sensors have revolutionized force

sensing technologies for medical robotics [48, 49] and implementations in CTRs are ex-

pected in the coming years.

1.2.3 Control

To perform surgical tasks such as tissue manipulation and drug delivery advanced real-time

control schemes need to be designed based on comprehensive knowledge in tube modeling

and robot control. In contrast to traditional rigid-link robots, the position and force control

of CTRs are coupled together in the sense that the deflection of the robot is determined by

both actuation and external loading, which increases the difficulty in controller design. The

limitations of commercially available sensing technologies for position and force feedback

in surgical tools make it even harder to design a reliable controller that can handle time-

varying interactions between the robot and the environment.

Control of the Tip

In the literature, the tip of a CTR has been controlled mainly through solving the inverse

kinematics or Jacobian and then sending the joint space values to the low-level motor con-



1.2. MODELING, SENSING AND CONTROL OF CTRS 14

Figure 1.11: The unilateral control block diagram of a teleoperated CTR; θi and li are the
joint space variables of the ith tube [1] (© 2010 IEEE).

troller. To achieve real-time performance, the computationally efficient techniques men-

tioned in the previous sections are used [1, 26]. In those methods it is assumed that the

inverse kinematic model is accurate enough such that the position errors will be com-

pensated for using appropriate feedback. The stability of these control strategies in the

presence of modeling errors is not analyzed. In [50], a new control strategy designed at

the actuator level is proposed, where the errors in Cartesian space can be reduced using

approximate kinematics. In a tele-operation scenario, the position error of the robot’s tip

can be compensated for by the operator. Bilateral control schemes for CTR have not been

studied extensively in the literature; a unilateral architecture is commonly used as shown

in Fig. 1.11.

In order to avoid singularities and undesired regions in task space while controlling the

position of the robot, Jacobian-based control strategies combined with inequality con-

straints [51] or a damped least-squares approach [6] have been developed such that the

calculated velocities satisfy these constraints. An inverse kinematic control scheme that

includes inequality constraints on joint variables (C(q) ≤ b) was proposed, as shown in

Fig. 1.12. Experimental results showed that this algorithm can control the movement of the

robot’s tip while avoiding snapping regions.
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Figure 1.12: The control block diagram of the closed-loop system. The inequality con-
straints on the joint space variables C(q) ≤ b are converted into equal constrains C̃(q̃) = b,
then applied to the inverse kinematic control algorithm. D and Dc are positive definite
diagonal matrices, J̃c is the augmented constraints Jacobian matrix and (log g)∨ returns the
6D vector representation of g [51] (© 2014 IEEE).

Control of the Robot’s Shape

In clinical applications, the body of the CTR would need to navigate inside organs or

through curved lumens of the human body. Therefore, the position of every point along

the robots shaft should be precisely controlled to avoid damage to delicate tissue and or-

gans, and several motion planning algorithms have been developed to address this [52–54].

A sampling-based motion planner that employs a torsionally compliant kinematic model

was proposed in [54], which leads a CTR to its target with the minimum probability of ob-

stacle collision. Simulation results for this method for spherical objects and a neurosurgery

environment are shown in Fig. 1.13. This method was further extended to an online motion

planner for systems with teleoperation architectures [55]. In this way, surgeons would only

need to direct the tip of the robot during a surgical procedure and the computer program

would provide the collision avoidance strategy. A three-stage lung access system [56] uses

a motion plan technique similar to the one above to navigate a steerable needle extended

from a bronchoscope and a CTR to the peripheral areas in the lung. The previously men-

tioned motion planners rely on geometric information calculated from preoperative images.

Intraoperative updating of the motion plans according to image and sensor feedback is still

under investigation.
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Figure 1.13: (a) Simulation of a CTR in a neurosurgery environment executing the motion
plan that calculated from the proposed sampling-based approach based on the Rapidly-
Exploring Roadmap. The robot is inserted through the nostril and guided toward the pitu-
itary gland (highlighted in green) in the skull base while avoiding skin, bone, blood vessels,
and healthy brain tissue. (b, c, d, e) Simulation of a CTR in four different spherical obstacle
environment [54] (© 2011 IEEE).

To reduce tube-tissue forces and avoid collisions with the tube body during tool insertion

a follow-the-leader approach has been proposed [1, 31, 57, 58], where the body of the

robot is controlled to conform to the path created by the prescribed tool tip trajectory.

This deployment manner is automatically achieved when the stiffness of the outer tube

dominates all the inner tubes [13, 19]. For CTRs in general, this is not straightforward

to achieve since the movement of the tip is usually generated by varying the shape of

the robot shaft. To address this issue, conditions have been derived for follow-the-leader

deployment [31, 57]. Experimental results showed the feasibility of this method, provided

the pre-curvatures and actuation sequences are appropriately designed [31, 58].

Control of Interaction

The control schemes mentioned above are for the situations where the robot moves in free

space or with minimal environmental contact. However, in surgical procedures, intensive
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tool/tissue interactions may be involved.

A stiffness control algorithm for CTRs is described in [23], and evaluated in an experimen-

tal setup. As shown in Fig. 1.14, the robot is controlled to behave as a linear virtual spring

with respect to an arbitrary point P r
bt in the environment. The control law starts from cal-

culating the desired tip force (F d
w = Kd(Pm

bt − P r
bt)), according to the pre-defined stiffness

and real-time tip position and orientation feedback. This force value is then converted to

the desired deflection and orientation gd
t̂t

as the input for the inverse kinematics position

controller. In the end, the outputs of the position controller drive the actuation unit of the

CTR to achieve this deflection and orientation. This algorithm can be generalized to other

surgical continuum robots as long as the robot behaves as a single elastic rod. Experimental

results with good accuracy and dynamic response were obtained for a two-tube robot. This

method can be extended to an impedance control strategy to provide proper damping to the

system. For this purpose a velocity-based controller should be considered as an addition to

the proposed control scheme in order to stabilize the robot in both the position and velocity

domains.

1.3 Remarks

Kinematic modeling provides the fundamental knowledge to facilitate the design and con-

trol of CTRs for surgery. The dominant mechanical phenomena (i.e. bending and torsion)

have been well modeled with high accuracy but real-time performance still requires im-

provements. Other mechanical effects may also be significant but the deciding factors for

when these effects cannot be neglected have not been addressed in the literature. For ex-

ample, in some surgical applications, tubes with high curvatures may be necessary, and in

these applications nonlinear elasticity and friction may need to be considered. In addition,

the kinematic accuracy of specially designed tubes, such as grooved tubes with patterns

and multi-layer helical tubes, has not been evaluated experimentally. Based on the pro-
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Figure 1.14: (a) Block diagram of the stiffness controller. (b) Continuum robot represented
as a space curve (solid line). W is world coordinate frame, while B,P, T̂ , and T are
robot body frames. T̂ and T are tip frames without and with the application of tip wrench
F , respectively. Coordinate transformations are denoted by gbt, gbt̂, and gt̂t. (c) Robot in
contact with environment. The stiffness controller implements a virtual linear spring at the
robots tip. Desired actuator positions are such that when robot is deflected from unloaded
tip configuration T̂ to configuration T , the desired tip spring force is generated, and the
desired tip orientation is achieved [23] (© 2011 IEEE).

posed kinematic models, a series of control schemes have been developed for performing

surgical tasks using CTRs. These methods usually assume that a CTR moves at low speeds

and the contact force is minimal. For situations in which the robot and the tissues/organs

have complex interactions, algorithms for stiffness control have been proposed but position

control under force disturbances is still needed. Other valuable control strategies that are

widely used in medical robotics such as force control, impedance control, and haptics in

teleoperation have not yet been applied for this type of robot. This could be the result of

uncertainties in modeling and limitations in current sensing technologies. With recent and

future developments in position, shape and force sensing, the control architecture could be

improved to incorporate this additional information, thereby enhancing the performance of
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these robots and enabling their use in the next generation of devices for surgical interven-

tions.

1.4 Thesis Outline and Contributions

From the literature review in previous sections, it can been seen that the fundamental the-

ories concerning CTRs are still at an early stage compared to those for conventional rigid

manipulators. In addition, specialized sensing technologies for CTRs have not received

enough attention. In this thesis, novel techniques and technologies in modeling, sensoriza-

tion and control of CTRs are proposed and evaluated, and will fill in several of the gaps

in the current literature, thereby resulting in significant improvements on the performance

and functionality of CTRs for surgical or interventional procedures. The theoretical contri-

butions of the thesis include: (1) the most computationally efficient torsionally compliant

kinematic model for CTRs [59, 60]; (2) the first general design criteria that guarantee sta-

bility of a CTR in its entire workspace [61]; (3) the first force-rejection control scheme

for CTRs [62]; and (4) the first intrinsic force sensing algorithm for CTRs using FBG sen-

sors [63]. The following are the contributions in technological advancements of the work

described in the thesis: (1) the first CTR with force sensing capability [62]; (2) the first

micro-engraver that can fabricate micro patterns on flexible thin tubes [63]; (3) the first sen-

sorized continuum robot with torsional sensing capability [63, 64]; (4) the first sensorized

CTR using embedded FBGs (Chapter 8); and (5) one of the most cost effective, portable

and compact CTR drive unit (Chapter 2), which is easy to integrate with other robotic plat-

forms. The details of these contributions are discussed in the following paragraphs and in

the rest of the thesis:

• Chapter 2 presents overall descriptions of all the custom-made experimental setups

used to complete the work presented in this thesis. Because the nature of this research

is to improve a growing technology for future surgical procedures, many components
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of the robotic setup had to be custom-made. For shaping the Nitinol tubes, a series

of aluminum and steel molds were built for temperature controlled heat treatment.

Three robot prototypes were built for the purpose of validating the kinematic models,

control techniques, sensorization capabilities of CTRs. In addition, the manufactur-

ing process for embedding FBG sensors into the thin-walled Nitinol tubes was not

available. This is an key step to developed sensorized CTRs. Hence, a special micro-

engraving machine was designed and built, in order to machine helical patterns on a

flexible hollow tube for embedding FBG sensors.

• Chapter 3 describes a computationally efficient kinematic model developed by ap-

plying piecewise linearization on the torsionally compliant kinematic model. Prior

to the author’s work, the computational efficiency of the torsionally compliant kine-

matic models of CTRs was too low to be used in real-time trajectory tracking, force

control and teleoperation, not to mention online motion planning and redundancy

resolution. The fastest calculation speed reported was 40 Hz for a three-tube CTR.

For this reason, off-line computation was often used for real-time control problems.

To overcome this deficiency, our fast kinematic model was developed. The computa-

tion time for solving this kinematics model is generally less than 3 ms in MATLAB

scripts and 0.2 ms in C++ programming for a three-tube robot with minimum loss of

accuracy. To date, it is still the most efficient algorithm in literature for computing

the kinematics of a CTR.

• In Chapter 4, the Jacobian matrix of the computational efficient kinematic model

(developed in Chapter 3) is presented along with simulation and experimental results.

This augmented Jacobian includes the velocity mapping between joint and Cartesian

spaces, as well as the relations between the changes of torques at the proximal and

distal ends of the robot. A robot prototype was built from two linear and two rotary

stages for testing the Jacobian matrix in several control tasks. A Jacobian-based

controller is proposed to command the position of the robot’s tip while avoiding the
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singularity regions.

• Chapter 5 contains a local disturbance analysis performed on the kinematic model

of a CTR. A general stability condition is proposed for CTRs having multiple tubes

with and without transmission sections. Prior to this work, there was no general

design criteria for a CTR with arbitrary number of tubes, such that the kinematic

stability can be guaranteed in the entire workspace. The proposed stability condition

overcomes this problem. Simulation studies showed that this condition can evaluate

stability of CTRs in the entire workspace without the need for solving the forward

kinematics. Although this condition becomes more conservative when the number

of tubes increases, its concise form provides an intuitive interpretation of the role of

each tube parameter, such as curvature, length, stiffness, and Poisson’s ratio, in the

stability of a multi-tube robot.

• Chapter 6 discusses the technologies and techniques for controlling a CTR under

time-varying tip force disturbances. Although the position controllers mentioned

previously were shown to be valid, they did not evaluate the effects of time-varying

force disturbances that are typically present in surgical applications. These distur-

bance could have a negative effect on targeting accuracy and ultimately the effective-

ness of the therapy. In order to resolve this problem, the deflection of a CTR under

external disturbances is estimated from force sensing and kinematic modeling, in

which case the effect of time-varying disturbances can be compensated by reshaping

the desired trajectory corresponding to the deflection.

• Chapter 7 presents the first design of a continuum robot that integrates helically-

wrapped FBG sensors. The bending curvatures and torsional twisting in the robot’s

shaft can be accurately measured by these sensors. It is also the first work discussing

FBG-based force sensing on pre-curved continuum robots, especially concentric-

tube robots. A curvature-strain model is proposed to relate the strains in the helically-

wrapped sensors to the curvature and twist of the robot shaft. For measuring tip forces
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in large deflecting continuum robots, the cosserat rod theory is adapted to develop a

force-curvature-strain model. The unsymmetrical nature of the pre-curved structures

introduces a non-linearity in the force-strain relationship, which is also included and

calibrated in this model. One of the most important problems in designing FBG-

based sensing technology is that of fiber protection. In this chapter, a unique design

of a sensorized tube assembly is proposed, such that the FBG sensors are protected

from the “cutting forces” during the telescopic motions of a CTR. The feasibility of

3D force sensing in continuum robots is studied via simulations.
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Chapter 2

Custom Built Experimental Setups

This chapter describes the design and implementation of five experimental setups devel-

oped during my research. They were built to validate and demonstrate the proposed tech-

niques and technological advancements in the field of continuum robots. The developed

setups are: (1) Tube shaping molds; three different molds were designed and tested to

accurately shape Nitinol tubes into desired curvatures; (2) A Swiss-type micro-engraver

that can address the challenges in slotting arbitrary 2D or 3D patterns on a thin flexible

tubular structure; (3) A CTR prototype for needle insertion applications which consists of

four high-precision linear and rotary stages that drive two Nitinol tubes for percutaneous

medical applications; (4) A CTR prototype for teleoperated surgical tasks; this robot is

an upgraded version of the previous prototype, significant improvements were made on

the movement speed and communication rate; (5) A low-cost and compact CTR prototype

which features a 6DOF robot with a small cross-section (8 × 15 cm) and light weight (< 5

kg). The total cost is less than $1200. It is worth mentioning that all of the custom built se-

tups described in this chapter are research prototypes designed to facilitate the experiments

in a laboratory environment.
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Figure 2.1: Molds used for shaping Nitinol tubes. From left to right, they are made of a
half inch aluminum plate, two 1/4 inch low-carbon steel sheets (lid and the bottom pieces),
and a half inch low-carbon steel plate. (a) Top view of the three molds (b) Side view of the
three molds.

2.1 Tube Shaping Setup

Shape setting of Nitinol is done through a heat treatment process, in which the material

is placed in a fixture or on a mandrel, that keeps it firmly constrained into a new shape.

The heating method can be an air or vacuum furnace, salt bath, sand bath, heated die, or

electrical heating. The temperature should be in the range 500-550◦C. In a research lab

environment, an air furnace is the most popular choice because it is affordable and does

not have a large foot print. The heating time is determined experimentally as it can vary

significantly depending on the heating method, and the size and material of the fixture. For

example, for small parts in a salt bath and heating die, it may take less than a minute, but for

massive fixtures in an air furnace, it can take up to an hour. Following the heating process,

a rapid cooling such as water quenching is recommended to avoid material aging.
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In our experiments, an aluminum plate with curved slots was used as the shaping mold

(Fig. 2.1(a)). Nitinol tubes were embedded in this mold and heated up to 540◦C for 20

minutes in an air furnace, followed by a rapid water quenching. However, these tubes did

not change to the desired shape and lost their superelastic behavior at room temperature.

Similar phenomenon is observed by other research groups as well. One solution found

by our group was to increase the temperature to 640◦C, and heat it for 20 minutes. This

method is proven to be effective but not preferable, since 640◦C is very close to the melt-

ing point of aluminum (660.3◦C). It can be seen in Fig. 2.1(b), the aluminum mold was

warped during the heat treatment, which reduces the accuracy in shape setting. In addition,

higher temperature than 550◦C can change the mechanical characteristics of Nitinol tubes,

such as reducing their tensile strength. Due to the unsatisfactory performance of the alu-

minum mold, a low-carbon steel sheet (1/4 inch) was used for the second mold as shown in

Fig. 2.1(a). In our experiments, heating this mold at 540◦C for 60 minutes can effectively

set the new shape of Nitinol tubes. However, the residual stresses generated during the

cooling process (uneven cooling speed at two sides of the sheet) caused undesired bending

of the steel sheet, as shown in Fig. 2.1(b). This bending increased every time this mold

went through the heat treatment. Finally, this problem was addressed by using a 1/2 inch

thick steel plate for the third mold shown in Fig. 2.1(a), which has shown better perfor-

mance than the previous two. It is important to mention that the last two molds are rather

heavy for a single person to pick up using a tong. A safe procedure for picking up this

red-hot metal should be carefully designed and followed.

For achieving consistent mechanical features along the tubes, it is recommended to embed

the full body of the tubes into the mold, even the sections that do not need to be bent. This

requirement will result in a prolonged machining time, since many tubes used in CTRs are

longer than 300 mm. For example, the second mold mentioned above takes more than 15

hours to engrave by a professional machinist, costing more than one thousand Canadian

dollars. It is quite expensive, especially for research, as new molds are required for testing

different designs of CTRs.
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2.2 Tube Engraving Setup

In this section, a Swiss-type micro-engraver is developed as a general solution to create

special designed patterns on a thin flexible Nitinol tubes [1]. In the literature, it has been

shown that patterned Nitinol tubes can provide the required features for designing sen-

sorized continumm robots [2, 3] and CTRs with improved stability [4, 5].

There are many challenges in generating precision patterns into the surface of Nitinol tubes

including accurate depth of cut, precision profiling and smooth surface finishing. Since

the workpiece is superelastic, there should be a special fixation in order to provide con-

stant support in all orientations of the workpiece throughout the machining process. In the

literature, non-contact machining methods such as laser cutting and Electrical Discharge

Machining (wire-EDM) are commonly used to address the problems in machining flexible

tubes. To date, only cutting-through patterns or straight slots can be made into the walls of

continuum robots, as shown in [3, 4]. For our work, we are interested in machining helical

slots along the surface of the CTRs in order to integrate FBG sensors in a helical layout for

real-time shape and force sensing. The depth of these slots needs to be precisely controlled

to protect the fiber from the forces and pressures of surrounding structures. In recent years,

a Swiss-type CNC lathe that combines the advantages of a CNC mill and a lathe became a

popular solution to generate helical cuts in a cylinder structure, as shown in Fig. 2.2(a, b).

However, in a normal configuration, there is almost no support on the workpiece except for

the clutch. As a result, the machining precision decreases as the rigidity of the workpiece

drops. For flexible Nitinol tubes used in CTRs, it is almost impossible to engrave patterns

with desired accuracy. Building a custom made jig for this type of machine could be an

option, but the cost is quite high.

The promising research potentials in patterned CTRs and deficiencies in current machining

processes motivated us to build a desktop micro-engraver, specially for creating various

patterns on the surface of flexible tubes. As shown in Fig. 2.2(c, d), a support block was

designed to provide constant support in all orientations of the workpiece during the ma-
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Figure 2.2: (a) A commercially available Swiss-type CNC lathe, Citizen-Cincom K16
(Marubeni Citizen-Cincom Inc., United States). (b) A view of the machine’s full size. (c, d)
The CAD design of our desktop micro-engraver (e) The actual setup of the developed desk-
top micro-engraver. The machining process can be monitored using a microscope through
the viewing window on the support block.

chining process. The alignment between the end mill and workpiece was maintained by

the inner structures of this block, while the workpiece rotates and translates. A new block

can be easily custom made for different tube diameters, since it was made out of ABS us-

ing a 3D printer. In order to observe the tool-workpiece interface in real-time, a viewing

window was designed and a microscope was placed on top of the block. A wide-angle

entry from the end mill side was designed for the application of pressurized air. Silicon

lubricant was constantly sprayed into the support block to minimize the friction between

the block and the Nitinol tube. It also serves as machining coolant to reduce tool wear. To

find the required tool offset for machining, a multimeter continuity test was used to probe
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for contact between the end mill and the workpiece.

Since the hardness of Nitinol is quite high (58-64, Rockwell C scale), an AlTiN-Nano

coated carbide mill bit (944215-C6, Harvey Tool, United States) was used in this setup.

This mill bit features a ball end and three V-shape helical flutes for maximized chip loading.

The diameter of this end mill is 0.015 inch and the cutting length is 0.023 inch. It is special

designed for micro-milling exotics & aerospace alloys. The formulas for calculating the

machining speed and feed rate are:

RPM = (3.82× SFM) / D (2.1)

IPM = RPM× IPT× T (2.2)

where, RPM denotes revolutions per minute; SFM is surface feet per minute; D is the

diameter of the end mill; IPT is chip load per tooth; and T is the number of teeth of the

end mill. According to the datasheet of the chosen end mill, and the hardness of the Nitinol

alloy, these numbers are: SFM = 40∼75; D = 0.015 inch; IPT = 0.00006; T = 3. As a result,

the speed and feed rates for machining Nitinol tubes are: RPM = 10000∼19000; IPM =

0.9144 m/s; and the depth of cut is 0.1524 mm.

To provide the accuracy and repeatability required for patterning CTRs, high-precision lin-

ear stages (T-LSR300B, Zaber Technologies, United States), and rotary stages (T-RS60A,

Zaber Technologies, United States) were chosen to generate the cutting profiles. The rotary

spindle (200 series rotary tool, Dremel, United States) was mounted on one of the linear

stages for accurate depth control. The entire system has a portable size (40 x 40 cm), and

weighs less than 7 kg. The performance of this Swiss-type micro-engraver for creating

helical patterns on Nitinol tubes will be discussed in detail in Chapter 7. Although this

technology was designed for engraving helical patterns, it can be generalized for creating

much more complex 3D patterns since all the three axes are computerized. In this case,

significant upgrades on the user interface are needed, in order to automatically generate
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Figure 2.3: (a, b) The CAD design of a 6DOF CTR drive unit using high precision linear
and rotary stages. The parts in grey are commercial products and the rest of the parts are
custom built. (c) The actual robotic setup using two linear and two rotary stages.

tool paths for machining from standard CAD files.

2.3 A Custom-built CTR for Needle Insertion Applications

Concentric-tube robots can be considered as an extension of steerable needles, since the

body of a CTR can generate 3D insertion paths to avoid obstacles. The goal of this section

is to develop a robotic setup for the application of CTRs in percutaneous procedures.

In this section, we discuss the design and implementation of a CTR drive unit using com-

mercially available rotary and linear stages (T-RS60A and T-LSR300B, Zaber Technolo-

gies, Canada), as shown in Fig. 2.3. In the literature, most CTRs are designed from scratch

based on basic mechanical elements such as planar gears, timing belts, ball-screw transmis-
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sion and guide rods. Compared to this method, our design approach significantly reduces

the amount of time and efforts required for developing the first prototype in a research lab.

Furthermore, our drive unit has accuracy and reliability similar to commercial products, be-

cause all the high-precision mechanical transmissions, such as ball-screw and worm gears,

are built into the selected stages by the industrial supplier. In addition, the chances of

wiring hazards in this drive unit are also minimized, since the motor controllers are already

integrated into the packaging of these stages.

As shown in Fig. 2.3(a, b), the robot frame was designed from several aluminum plates that

provided structural support and mounting locations. Three linear and three rotary stages

were installed on this frame in a desired alignment, such that the center of each rotary stage

(where the tube is attached) was on the same axis. The rotary and linear stages chosen

were the same models as the ones in the Swiss-type micro-engravor, because of their high

precision and repeatability. Each rotary stage has an opening in the center (30 mm in

diameter), which allows the tubes of CTRs to pass through. Two adapter plates (blue and

green) were designed to attach Force/Torque sensors (Nano43, ATI Industrial Automation,

United States) for force control or haptic feedback. Fig. 2.3(c) shows the actual robotic

setup with four motorized stages. Although the stages in this robot use open-loop controlled

stepper motors, there should not be any noticeable step missing since the interaction forces

between the tubes are much smaller than the load capabilities of these motors. In needle

insertion applications, the tip of the robot is not always detectable by imaging feedback. To

address this problem, an electromagnetic (EM) tracking system (Aurora, Northern Digital

Inc., Canada) was integrated into this setup in order to obtain position feedback. A 5DOF

EM sensor was mounted at the tip of the inner tube using a 3D printed adapter (Fig. 2.3(c)).

A ring-shaped slot was made in the middle of this adapter to attach calibration weights. The

main control program of this robot was developed in MATLAB (Mathworks, United States)

and QuaRC toolbox (Quanser Consulting Inc., Canada). This program sent commands to

motorized stages through four serial ports at 100 Hz. The tip position and orientation

measured by the Aurora system was read by a separate C++ code and sent to the main
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program via UDP protocol at 40 Hz. At the beginning of each experiment, two Nitinol

tubes rotated together with the same speed for a full revolution to calibrate the registration

matrix between the robot frame and the Aurora frame. Then these tubes moved relative to

each other to calibrate the parameters required for force estimation.

2.4 A Custom-Built CTR for Teleoperated Manipulation

The robot described in the previous section has high performance in needle insertion appli-

cations because of its precision and reliability. However, for teleoperated manipulations,

it has a few shortcomings. First of all, the maximum speed is 2 cm/s for the linear stages,

and 13◦/s for the rotary stages. From our teleoperation simulation results, the desired speed

should be around 10 cm/s for translations, and 360◦/s for rotations, in order to follow the

operator’s hand motion properly. Another problem is that the communication rate between

the motor controller and the computer is around 100 Hz, which limits the performance of

this robot in force control and haptics-enabled teleoperation. Furthermore, this communi-

cation rate drops dramatically when these stages are daisy-chained and connected to the

computer through a single port. For the 4DOF robot shown in Fig. 2.3, the communication

rate is less than 25 Hz. Multiple serial ports are needed to achieve higher rates, which is

not a common configuration of modern computers, and will increase the number of cables

in the setup. All of these problems should be addressed in a second prototype.

This section describes the design of our second prototype of the CTR drive unit. Com-

mercial linear and rotary stages were chosen again in order to speed up the design and

manufacturing process. A compact hollow-centered rotary stage (FHA-8C-100-US200-E,

Harmonic Drive, United States) was chosen for the rotary actuators. It features a harmonic

gear box (100:1) with an open center for tubes to pass through (6.2 mm), and a 2000 lines

differential encoder, resulting in a theoretical resolution of 0.00045 ◦. The maximum speed

of this rotary stage is 360◦/s. A 500 mm long linear stage (MXE25P BN08 SM300 LMI
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Figure 2.4: (a) The CAD design of the CTR drive unit for teleoperated operations. The
components in grey are commercial products and the ones in purple are custom designed
parts. (b) The CAD model except for the linear stages (c, d) Side view and front view of
the actual 6 DOF robotic setup controlled by a haptic device (Touch X, Geomagic, United
States).

YM117004 TC2, Tolomatic Inc., United States) was used to generate translational motions

as shown in Fig. 2.4 (a, b). The maximum speed of this linear stage is around 15 cm/s.

A Nema 23 servo motor (EXC23-67V60-120-D, ElectroCraft, United States) with a 1000

lines differential encoder was used to motorize this linear stage, resulting in a resolution of

0.00079 mm. Please note that this resolution is calculated from the pitch of the ball-screw

and encoder counts, not including the backlash in the linear threaded rod. From our ex-

periments, the backlash of these linear stages can be as high as ±0.5 mm, which requires

software compensations.

In this design, instead of using built-in motion drivers, general purpose motion controllers

(DMC-30012, Galil Motion Control, United States) were chosen to achieve high perfor-

mance position and velocity control. This controller integrates a hardware sinusoidal wave
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Figure 2.5: (a, b) A side-by-side view of the actual and virtual robot, which was pro-
grammed using the Virtual Reality Modeling Language (VRML) in Simulink. (c) The
developed CTR prototype in a positioning task controlled by a haptic device. (d) The de-
veloped CTR prototype in a surface pattern tracking task.

generator for controlling brushless motors. Each controller is equipped with two Ethernet

ports, allowing daisy-chaining multiple controllers to the main computer via a TCP/IP or

UDP protocol. The control box of the entire robot consists of six of the above mentioned

motion controllers and six panel mount power supplies (PMC-24V050W1AA, DeltaPSU,

United States) packaged in an empty computer case.

Beside the mechanical and electrical designs, a simulation environment was developed

using the Virtual Reality Modeling Language (VRML) to provide a friendly user interface.

This environment is compatible with Simulink and the QuaRC toolbox, which accelerates

the programming process. As shown in Fig. 2.5(a, b), the developed software presented

a real-time virtual robot in a visualization computer window, which could be useful for

evaluating control algorithms before implementing them on the real robot.

The performance of the second robotic prototype was tested in positioning tasks and surface

tracking tasks using standard surgical training modules, as shown in Fig. 2.5(c, d). Each
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stage was controlled at 10 kHz at the low level, and communicated with the computer at 1

kHz for high-level control. For the second task, the robot can track 2D patterns on a surface

while regulating the position of the robot in the gravitational direction. The residual errors

in regulation control did not result in applying extensive forces on the tracking pad, due to

the inherent compliance of CTRs.

2.5 A Low-Cost and Compact CTR Design

The robot built in the previous section exhibited high performance in teleoperated surgical

tasks. However, the cost of this robot was around $20,000 and the size of it was 25 ×

20 × 90 cm (width, height, length), weighing roughly 20 kg. This bulky design does

not allow it to be installed on any of the existing surgical robotic platforms; therefore,

positioning and orienting this robot during surgical operations will be difficult. In addition,

electrical wiring will be challenging, as it has 96 electric conductors between the drive unit

and the control box, which must be protected and sealed for medical applications. In this

section, a low-cost and compact CTR drive unit is proposed and implemented to address the

above mentioned shortcomings. This new design minimizes the complexity in mechanical

transmissions and electrical circuits, allowing this prototype to be more affordable and

compact than the previous design.

As shown in Fig. 2.6, the actuation module of each tube was made of two stepper mo-

tors and an aluminum bracket. A stainless steel linear guide rail (SS MGN12, RobotDigg,

China) with three ball-bearing carriages were used to provide low-friction linear guidance

and high-precision alignment between each motorized module. Three hollow-centered

stepper motors (HS-Nema17, RobotDigg, China) were used for rotating the tubes. The

holding torque of each motor is up to 0.4 Nm, which satisfies the specifications for driving

Nitinol tubes in most medical applications. Therefore, the tubes can be directly attached to

these rotary motors without the need of gearboxes or timing belts, eliminating the chances
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Figure 2.6: CAD design of a low-cost and compact CTR drive unit. (a) View of the main
components of the proposed drive unit. (b) View of the overall robot.

of backlash. Three non-captive stepper motors (NC17HS3001-400T84, RobotDigg, China)

with a threaded robot passing through their center axis were used for linear actuation. This

threaded rod was the only mechanical transmission of the entire robot. Stepper drivers

AMIS-30543 (ON Semiconductor, United States) were used to command these motors,

which features 1/128 micro stepping, resulting in 0.014◦ rotary resolution and 0.00031 mm

linear resolution. Each of these drivers can output 3.6 A of current without the need of cool-

ing, and 6 A with forced air cooling. A 32-bit ARM core microcontroller board (Arduino

Due, Arduino, United States) and an Ethernet shield (V2, Arduino, United States) were
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Figure 2.7: Assembly of the third prototype of CTR drive unit (except for the outer case)

used to transmit the position and velocity commands from the main computer to the mo-

tor drivers. In this design, for homing the robot, three photo interrupters (OPB930W51Z,

Optek Technology, United States) were mounted next to the rotary motors and another three

photo interrupters (GP1A51HRJ00F, Sharp Microelectronics, United States) were mounted

next to the linear guide rail. These sensors can also be used for detecting the step(s) miss-

ing in these motors during robot motion control. Four bumper switches (SS-5GL111-3,

Omron Electronic Components, United States) were installed on the aluminum brackets

and at one end of the guide rail to avoid collisions between the actuation modules. Based

on the experimental results of the previous robotic setup, the errors in the low-level motor

control were negligible compared to the total position error, as they mostly came from the

inaccuracy in the kinematics of CTRs. Therefore, installing a high resolution encoder for

each stepper motor was not necessary. Having said this, the errors of the robot’s tip need

to be compensated for either by a position sensor or a human operator in teleoperation.

Finally, the total cost of the entire robot drive unit was under $1200.

In order to access the performance of this prototype in an operating room environment, a

plastic case (textured ABS) was designed to package and seal all the mechanical and elec-

tronic components into one enclosure, as shown in Fig. 2.6. The overall appearance of the

robot was designed to be similar to normal-use medical devices to ease the adaption of this
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technology by clinicians. The fully assembled robotic setup except for the outer case is

shown in Fig. 2.7. One remaining problem is the sterilization process for this robot. After

each use in animal trials, in order to detach tubes from the drive unit, these tubes have to

pass through the hollow center of the stepper motors. This process could contaminate the

motors’ shaft with blood or other body fluids. At this stage of development, this contami-

nation is unavoidable, requiring the motors to be cleaned each time. Future work will focus

on developing a sterilizable version of this robot.



BIBLIOGRAPHY 45

Bibliography

[1] http://www.mmsonline.com/articles/understanding-swiss-type-machining.

[2] Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black,
B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-d needle shape and de-
flection for mri-guided interventions,” IEEE/ASME Trans. Mechatronics, vol. 15, no. 6,
pp. 906–915, 2010.

[3] X. He, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “A submillimetric 3-dof
force sensing instrument with integrated fiber bragg grating for retinal microsurgery,”
IEEE Trans. Biomed. Eng., vol. 61, no. 2, pp. 522–534, 2014.

[4] D.-Y. Lee, J. Kim, J.-S. Kim, C. Baek, G. Noh, D.-N. Kim, K. Kim, S. Kang, and K.-
J. Cho, “Anisotropic patterning to reduce instability of concentric-tube robots,” IEEE
Transactions on Robotics, vol. 31, no. 6, pp. 1311–1323, 2015.

[5] H. Azimian, P. Francis, T. Looi, and J. Drake, “Structurally-redesigned concentric-tube
manipulators with improved stability,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
IEEE, 2014, pp. 2030–2035.



46

Chapter 3

A Fast Torsionally Compliant Kinematic
Model of Concentric-Tube Robots

Concentric-tube robots have the potential to become an important surgical tool for robot-

assisted percutaneous interventions. They can provide dexterous operation in a small con-

strained environment. The kinematic model of a concentric-tube robot has been well de-

veloped in terms of accuracy, but the computational cost places limitations on real-time im-

plementation. In this chapter, we propose a new technique that will substantially improve

the computational efficiency of evaluating the kinematics of a concentric-tube robot in the

context of developing a control strategy without sacrificing the accuracy of the results. The

model is validated by comparing the results obtained by computing the kinematic model

corresponding to an experimental setup of a concentric-tube robot to which a force/torque

sensor has been mounted at its base with those obtained directly from the experimental

setup. The results indicate that it is feasible to compute the kinematics of the concentric-

tube robot fast enough to allow the position/force control loop to be implemented at a rate

of 1 kHz.
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Table 3.1: Nomenclature

{e1, e2, e3} World frame
s Arc length
i Tube index

{d1(s), d2(s), d3(s)} Body frame of the cross-section located at s
r(s) = [x(s), y(s), z(s)]T Position vector of the cross-section located at s

R(s) Rotation matrix between a body frame
and the world frame

n(s) = [nx(s), ny(s), nz(s)]
T Stress vector

ui(s) = [uix(s), uiy(s), uiz(s)]
T Bending curvature and torsion of the ith tube

ûi(s) = [ûix(s), ûiy(s), ûiz(s)]
T Pre-curvature of the ith tube

v(s) = [vx(s), vy(s), vz(s)]
T Shear strains and elongation

f(s) Distributed force vector
l(s) Distributed moment vector
Ki Stiffness matrix of the ith tube

kix, kiy, kiz Bending and torsional stiffness of the ith tube
αi(s) Twist angle difference between the ith and 1st tube

R(αi(s)) Rotation matrix between the body frames of
the ith and 1st tube

L Length of the curved section
l Length of the straight section

θ1(s), θ2(s), θi3(s) Euler angles of the rotation matrix R(s)
of the ith tube

3.1 Introduction

The concentric-tube robots are a new type of continuum robots. A concentric-tube robot

consists of several pre-curved elastic tubes inserted one inside another. By translating and

rotating two consecutive tubes relative to each other, this kind of robot can achieve to

fairly complex 3D shapes. The concentric-tube robot is suitable for surgical environments

because it can offer more than 5-DOF (degrees of freedom) with dimensions as small as

those of a needle (typically less than 3 mm in diameter). In recent years, various kinematic

models of concentric-tube robots have been proposed based on different considerations.

The model proposed in [1] is simple but has limited application, since it requires that the
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stiffness of the outer tubes is nearly infinite compared to that of the inner tubes. Torsionally

rigid models were developed in [2], with the assumption that the tubes only experience

bending. The position and orientation of the robot can be obtained analytically regardless

of the ratios of stiffness between tubes, and the inverse kinematics also exists in closed

form [3]. The importance of introducing torsion effects into the model was shown experi-

mentally in [4]. A kinematic model that contains the torsion of the straight section of robots

was proposed in [4]. Although the solution of this model has to be evaluated numerically,

the Jacobian kinematics can be obtained in closed form [5]. A torsionally compliant model

that includes the torsion effects of both straight and curved sections presents significant

improvement with regard to accuracy [6, 7]. However, this model is computationally very

expensive, because it involves solving a set of nonlinear differential equations with two-

point boundary conditions. Additional calculations are needed because the solutions do not

give the robots position and orientation directly. Other comprehensive models have also

been developed by considering the friction effects in the tubes [8] or external loads [9].

The complexity of these models increases as more mechanical effects are included. Efforts

have been made to achieve a trade-off between computational efficiency and numerical ac-

curacy. In [10] a function approximation method was developed to implement a torsionally

compliant model in real-time for position control with minimum loss of accuracy. How-

ever, the approach requires pre-computation of a large dataset of position and orientation

information over the entire workspace. A Fast Jacobian-based inverse kinematic algorithm

was presented in [11], and it was shown that the computational time can be reduced to 40

ms for a 3-tube robots. In this chapter, we propose a technique which can significantly

decrease the computation time to evaluate a torsionally compliant model in the context of

implementing a kinematic control strategy for a concentric-tube robot. This is achieved by

improving the model in the following three steps:

• Reformulating the torsionally compliant kinematic model with global variables.

• Piecewise-linearization of the reformulated model.
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Figure 3.1: Cosserat rod

• Measuring all the initial conditions to avoid the two-point boundary problems. These

measurements (which are obtained in real-time during the implementation of a kine-

matic control strategy) provide inputs for computing the model used in kinematic

control of the robot.

It is shown from the experiments that the computation time is reduced to less than 1 ms

using this technique (see Section 3.3). At the same time, the accuracy of this model remains

almost equivalent to that of the torsionally compliant models proposed in the literature.

3.2 Kinematic Model

3.2.1 Cosserat Rod

Cosserat rod theory is extensively used in modeling and simulation of slender elastic ob-

jects. The elastic tubes used in concentric-tube robots are actually a very good example
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Figure 3.2: Body frames of tube i and the 1st.

of Cosserat rods in 3-D space. The recent kinematic models of concentric-tube robots,

including our work, also follow the notation and formulation from the Cosserat model.

Therefore, it is necessary to summarize some relevant background concerning Cosserat

rod theory. Fig. 3.1 shows a flexible rod in the world-frame {e1, e2, e3} . A body frame

{d1(s), d2(s), d3(s)}is attached at an arbitrary cross-section of the rod, where s is the arc

length along the center line. The position of this cross-section is represented by the vector

r(s), and the orientation is defined by the rotation matrix R(s) between two frames. When

the rod experiences a distributed force f(s) and moment l(s), the equations of equilib-

rium [12] have the following form:

ṅ(s) + u(s)× n(s) + f(s) = 0 (3.1)

ṁ(s) + u(s)×m(s) + v(s)× n(s) + l(s) = 0 (3.2)

where the vector u(s) = [ux(s), uy(s), uz(s)]
T includes the bending curvature (ux(s), uy(s)),

and the torsional curvature uz(s) ; and v(s) = [vx(s), vy(s), vz(s)]
T denotes the shear strain

(vx(s), vy(s)) and elongation vz(s). Both of these vectors are local variables in body frames.

In Cosserat rod theory, curvatures are interpreted as angular rates of change when the body

frame slides along the center line. So they have the same expressions as the angular velocity
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in rigid-body motion:

[u(s)] = RT (s)Ṙ(s) (3.3)

where [u(s)] is the skew-symmetric matrix corresponding to the vector u(s). Similarly,

the shear strain and elongation are analogous to displacements in rigid-body motion and

formulated as:

[v(s)] = RT (s)ṙ(s) (3.4)

But in our application, these phenomena can be ignored which results in v(s) = [0, 0, 1].

3.2.2 Torsionally Compliant Model

Torsionally compliant models show great improvements on accuracy, compared to previous

models. The equations from this model also play an important role in our method, so a brief

description is exhibited here.

For concentric-tube robots, the following assumptions are made for modeling: 1) At any

point along the robot, all the assembled tubes conform to the same curvature; 2) without an

external force or moment, the net moment at every cross section of the robot is zero; 3) the

bending moment generated by a single tube obeys a linear constitutive equation (arc length

s will be omitted for compact expressions):

mi = Ki(ui − ûi) (3.5)

in which ûi and ui are the curvatures of the ith tube before and after the conformation, re-

spectively. In the rest of this chapter, the subscript i refers to the ith tube. Ki is the stiffness

matrix (Ki = diag[kix, kiy, kiz]). Based on these assumptions, the bending curvature of the

combined tubes can be formulated as:uix(s)
uiy(s)

 =
(( n∑

j=1

Kj

)−1
RT
Z(αi(s))

n∑
j=1

RT
Z(αi(s))Kj

ûjx(s)
ûjy(s)

) (3.6)
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where αi(s) represents the angle difference between the body-frames of tube i and the

1stand R(αi(s)) represents the rotation matrix between those two, as shown in Fig. 3.2.

The formulation of the torsional curvature is achieved by using equations of equilibrium

(Eq. (3.2)) from Cosserat rod theory and the constitutive Eq. (3.4):

u̇iz =

(
kix
kiz

)
(uixûiy − uiyûix) (3.7)

By definition of and , we can also conclude:

α̇i = uiz − u1z (3.8)

Eqs. (3.6), (3.7) and (3.8) comprise the torsionally compliant model in [6], with boundary

conditions αi(0) (known as input) and uiz(L) = 0. More details about this model are given

in [6].

3.2.3 Fast Torsionally Compliant Model

As discussed above, the torsionally compliant model is a set of differential equations with

two-point boundary conditions. These equations consume a large amount of computational

time but only result in a curvature function with respect to the arc length. This function

then requires two integrations to calculate the position and orientation of the robot [6]. In

our new model, we reformulate the torsionally compliant model with global variables. So

the two step calculations can be compressed into one. The bridge between local and global

variables lies in Eqs. (3.3) and (3.4) where the rotation matrix R(s) can be parameterized

with Euler angles:

R(s) = R(θ1(s))R(θ2(s))R(θ3(s)) (3.9)

Substituting (3.9) into (3.3), the expressions of curvatures using Euler angles are obtained [13]
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(arc length s will be omitted for compact expressions):

ux = θ̇1 cos(θ2) cos(θ3) + θ̇2 sin(θ3) (3.10)

uy = θ̇2 cos(θ3)− θ̇1 cos(θ2) sin(θ3) (3.11)

uz = θ̇3 + θ̇1 sin(θ2) (3.12)

In the same manner, the relationship between positions and Euler angles is obtained by

solving (3.4) [13]:

ẋ = sin(θ2) (3.13)

ẏ = − sin(θ1) cos(θ2) (3.14)

ż = cos(θ1) cos(θ2) (3.15)

in which x, y, z are position coordinates in world frame. Applying Eqs. (3.10), (3.11)

and (3.12) on the torsionally compliant model Eqs. (3.6), (3.7) and (3.8), we get:

θ̇1 =
uix cos(θi3)− uiy sin(θi3)

cos(θ2)
(3.16)

θ̇2 = uix sin(θi3) + uiy cos(θi3) (3.17)

θ̇i3 = uiz − θ̇1 sin(θ2) (3.18)

αi(s) = θi3 − θ13 (3.19)uix
uiy

 =
(( n∑

j=1

Kj

)−1
RT
Z(θj3 − θ13)

n∑
j=1

RT
Z(θj3 − θ13)Kj

ûjx
ûjy

) (3.20)

where θi3 represents the 3rd Euler angle of tube i. As shown in Fig. 3.2, all tubes share the

same θ1 and θ2. Equations (3.7), (3.13), (3.14), (3.15), (3.16), (3.17), (3.18) and (3.20) form

the new torsionally compliant model with Euler angles. Solving these equations directly

gives the information of position and orientation. One drawback of this model is that
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Eq. (3.16) has a singular point at θ2 = 90◦, but in most applications that angle is not close

to 90◦. The initial conditions of these equations are directly known from inputs, except one

of which need to be calculated:

uiz(0) =
Torque

kiz
(3.21)

in which Torque is the value measured from Force/Torque sensor attached at the proximal

end of the tubes. This model can be simplified (by piecewise linearization) to a set of

linear differential equations. Considering the new kinematic model as a vector function

(f̄(uiz, θ1, θ2, θi3, x, y, z)), and applying the Taylor series expansion, we get:

[u̇iz, θ̇1, θ̇2, θ̇i3, ẋ, ẏ, ż]T =

a1, a2, a3, a4, a5, a6, a7

b1, b2, b3, b4, b5, b6, b7

T 1

s

 (3.22)

By solving Eq. (3.22), a closed-form kinematic model is obtained for each linear model:

[uiz, θ1, θ2, θi3, x, y, z] = ḡ(s) + C̄ (3.23)

where all entries in ḡ(s) are second-order polynomials, and the vector C̄ denotes the initial

conditions. The accuracy of Eq. (3.23) is very good when s is small. So in the implementa-

tion of full model, it is necessary to divide the whole robot into segments and use the linear

model consecutively.

3.3 Experiments

For verifying the fast kinematic model, experiments were performed on four pairs of elastic

tubes. The material chosen for these tubes was Nitinol, because of its shape setting property

and linear elastic behavior. The specifications of all tube pairs are listed in Table 3.2. The

setup for the experiments is shown in Fig. 3.3. The outer tube was fixed, and the inner

tube was rotated with the motorized stage. The force/torque sensor was installed at the



3.3. EXPERIMENTS 55

Table 3.2: Parameters of Four Tube Pairs

Tube pair (outer/inner) 1 2 3 4
l (mm)a 0/52.8 0/63.5 0/63.5 0/56.4
L (mm)a 152.6/152.6 157/157 157/157 157/157
r (mm)a 250/250 150/150 150/150 150/150

Stiffness ratio 1/1.79 1/1.30 1/0.76 1/1.79
aThe lengths of straight and curved sections of tubes are represented by l and L,

respectively. The radius of curvature is denoted as r.

base of the outer tube. An EM (electromagnetic) tracker was installed on the tip of the

tube pair using a plastic adaptor. The position of the robots tip can be obtained from the

EM tracking system. The effect of gravity as a result of the EM tracker and adaptor was

negligible. Since the field generator has the strongest magnetic field in the middle front,

the tip of the robot was positioned there to obtain the best accuracy. While this tracking

system is accurate to within 1mm, a larger error may occur depending on the accuracy of

the method of registration between the tracker and the robot. It should be noted that the

angles read from the rotary stage are not the inputs of our model. Actually, because of the

torsional effect in the straight part of the tube pair, the inputs need to be calculated as:

θ13(0) = 0 +
Torque

k1z

, θ23 = Angle− Torque

k2z

l2 (3.24)

where Angle is the angular position of the rotary stage. The positions measured in the

experiments are relative to the starting point of the curved section of the robot. In the ex-

periments, the torque at the proximal end was measured and used as the initial condition

for the fast kinematic model. For these tube pairs, the final position was obtained by apply-

ing the linear model on 10 mm length segments consecutively (16 segments in total for a

robot of 157 mm length). The results showed that the loss of accuracy due to linearization

is around 0.1 mm. The difference between the positions predicted by the fast kinematic

model and the corresponding values measured during the experiment denotes the errors

resulting from the model. As shown in Table 3.3, these errors are similar to those in [8].
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Figure 3.3: Experimental setup for evaluating kinematic model.

Table 3.3: Position Errors of Four Tube Pairs (mm)

Rotary Stage Angle (◦) 0 60 120 180 240 300 Average Max
Pair 1 0.7 1.8 1.0 1.7 1.8 1.7 1.5 (1.0%)a 1.9
Pair 2 1.3 0.7 3.1 8.1 3.1 1.8 3.0 (1.9%) 8.1
Pair 3 1.4 1.8 1.9 10.0 4.0 2.6 3.5 (2.2%) 10.0
Pair 4 1.2 4.9 2.8 9.0 5.7 4.4 4.7 (3.0%) 9.0

a Values in brackets are normalized errors (the tip errors divide by the length of robot).

Because the main parameters of the tube pair used here (curvature, length of tube, and stiff-

ness ratio) are almost the same as those in [8], we can conclude that our model possesses

good accuracy. In terms of the computational time, the fast torsionally compliant kinematic

model only takes 0.2∼0.3 ms to solve. For a 3-tube robot, this time will not exceed 1ms.

All the programs were run in MATLAB R2010a, under Windows XP, in a computer with

an Intel Xeon 3.2 GHz processor. In a future implementation, we expect to obtain further

improvement in computational time by coding the algorithm in C++.
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3.4 Conclusion

Concentric-tube robots are a new technology which has excellent potential for applications

in minimally invasive surgery and therapy. Several different kinematic models for this robot

have been developed. However, most models suffer from the problem of computational

cost in evaluation of the models. A new approach has been developed that significantly

reduces the computation cost by avoiding two-point boundary problems and piece-wise

linearization. Experiments for several tube pairs having comparable parameters (lengths of

the tubes, stiffness ratio, etc) as those reported in the literature took a lot less computation

time while giving similar accuracy. Our ongoing work is aimed at extending the approach

for the Jacobian and also designing a model-based robust control scheme that will allow us

to address to some extent the effect of uncertainty due to dynamic changes, sensor noise,

etc.
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Chapter 4

Position Control of Concentric-Tube
Continuum Robots using a Modified
Jacobian-Based Approach

Concentric-tube robots can offer dexterous positioning even in a small constrained environ-

ment. This technology turns out to be beneficial in many classes of minimally invasive pro-

cedures. However, one of the barriers to the practical use of a concentric-tube robot is the

design of a real-time control scheme. In previous work by the authors, a computationally

efficient torsionally compliant kinematic model of a concentric-tube robot was developed.

Using this computationally fast technique and deriving the robot’s Jacobian, a new position

control approach is proposed in this chapter. This mechanism provides computational effi-

ciency as well as good tracking accuracy. To evaluate the performance, experiments were

conducted, and the results obtained demonstrate the feasibility of enabling the robot’s tip

to perform trajectory tracking in real time.
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Table 4.1: Nomenclature

{e1, e2, e3} World frame
s Arc length
i Tube index

{d1(s), d2(s), d3(s)} Body frame of the cross-section located at s
n(s) = [nx(s), ny(s), nz(s)]

T Stress vector of the cross-section located at s
m(s) = [mx(s),my(s),mz(s)]

T Bending moment vector
ui(s) = [uix(s), uiy(s), uiz(s)]

T Bending curvature and torsion of the ith tube
ûi(s) = [ûix(s), ûiy(s), ûiz(s)]

T Pre-curvature of the ith tube
v(s) = [vx(s), vy(s), vz(s)]

T Shear strains and elongation
f(s) Distributed force vector
l(s) Distributed moment vector
Ki Stiffness matrix of the ith tube

kix, kiy, kiz Bending and torsional stiffness of the ith tube
L Length of the curved section

Θ(s) = θ1(s), θ2(s), θi3(s) Euler angles of the rotation matrix R(s)
of the ith tube

X(s) = [x(s), y(s), z(s)]T Position vector of the cross-section located at s
RZ Rotation matrix between the body frames of

the ith and 1st tube
F n Forward kinematics of the nth sub-link
F̃m Forward kinematics of the mth link
F̃ Forward kinematics of the entire robot
pk Position of the proximal end of the kth tube
J iG Jacobian matrix of a sub-link with varying length
J iM Jacobian matrix of a sub-link with fixed length
J iL Jacobian matrix of the last sub-link of the robot
J̃m Jacobian matrix of the mth link
J̃ Jacobian matrix of the entire robot

χ(s) = [uiz(s),Θ(s), X(s)] Vector of kinematic variables

4.1 Introduction and Prior Work

To minimize collateral damage to live tissue and access confined areas in minimally inva-

sive procedures, surgical interventions are required that follow complex curved paths inside

soft tissue. To this end, flexible needles have been widely used [1] as primary tools while
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erroneous guidance reduces the effectiveness of the planned therapy or diagnosis.

As an alternative, a concentric-tube robot as a subset of continuum robots is a new tech-

nology which provides more dexterity compared to a standard bevel-tip flexible needle or

a catheter while having almost the same size [2–10]. This category of instruments has the

potential to facilitate targeting in applications in which a complex 3D curvature is required.

Another advantage of this developing family of tools is safety enhancement due to its in-

herent compliance compared with the traditional rigid surgical tools; so they can offer a

suitable compromise between stiffness and curvature control. Furthermore, the shaft of

the tubes can accommodate cables for controlling articulated tools mounted at the tip. For

more details on design and analysis, please see [2, 5].

Note that compared with traditional robotic arms, this family of robots lacks rigid links and

discrete joints. Thus, their kinematics cannot be represented solely in terms of constrained

motion between rigid bodies, and it must include the deformation of the individual tubes as

well. This fact adds more complexity to the modeling and therefore to the real-time control

problem for this kind of robotic structures. In this regard, various modeling schemes for

concentric-tube robots have been developed over the last few years; however, a variety of

mechanical phenomena, e.g., torsion, nonlinear elasticity, and friction, have been ignored

in order to simplify the modeling steps or accelerate the process time.

Under certain assumptions on the geometry of the tubes, closed-form forward kinemat-

ics can be represented by means of algebraic expressions. Finding the inverse kinematics

is also not straightforward in general due to the nonlinear mapping between relative tube

displacements and tip configuration as well as due to the multiplicity of solutions. In [9],

the tubes were approximated as rigid in torsion and frictionless with piecewise constant

curvatures, and forward and inverse kinematic equations were derived. Sears and Dupont

presented a generalized inverse Jacobian method for solving the inverse kinematics disre-

garding the torsion [3].

The importance of including torsional effects was shown in [2, 5–7]. Dupont et al. [2]
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developed a torsion model that was applicable to any number of tubes whose stiffness and

initial curvature could be arbitrary functions of arc length. In [5], a kinematic model con-

taining only the torsion component of the straight segments was introduced. However, the

authors hypothesized that torsion in the curved sections was the most significant unmodeled

effect. Webster et al. [7], derived the differential kinematics of a general n-tube active can-

nula while accounting for torsional compliance in order to improve tip pose prediction. A

compliant model including the torsional effects in both straight and curved sections signifi-

cantly improved accuracy in [6]; however, this model was computationally very expensive.

Deformation of a concentric-tube robot in response to the external contact forces is an-

other important issue. Lock et al. [4] showed that compared with the unloaded model, tip

loading could increase the mean tip error by almost 50%. Hence, they developed a quasi-

static model relating the externally applied loads to the robot’s shape and tip configuration.

Rucker et al. [8] applied Cosserat-rod theory to model forward kinematics to describe large

deflections as a result of external point or distributed wrench loads.

Towards position control as the main motivation of our study, Dupont et al. [2] developed

a functional approximation method to include torsional compliance and achieve compu-

tational efficiency for position control. However, this approach required pre-computation

of the forward kinematics over the entire workspace and then its approximation using a

truncated Fourier series. The research described in this chapter is in line with our previous

work [10] and focuses on developing a feasible control strategy for concentric-tube robots

without sacrificing accuracy. As is well known, computational cost places limitations on

real-time implementations. To overcome this problem, we introduced a fast torsionally

compliant kinematic model for a concentric-tube robot using Cosserat theory [10]. In the

current study, we exploit this model to control the position of the robot’s tip using the

robot’s Jacobian while the torsional effects for both straight and curved sections are incor-

porated.

The rest of this chapter is organized as follows. Section 4.2 reviews our Cosserat-rod-
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Figure 4.1: (a) Cosserat beam (b) cross section of a concentric-tube robot showing coordi-
nate frames associated with the 1st and the ith tubes.

based model, and introduces the resultant Jacobian. The mechanism utilized for position

control is also described in this section. Section 4.3 presents a simulation study and this is

followed by an experimental evaluation in Section 4.4. Finally, Section 4.5 concludes the

chapter with suggestions for future work.

4.2 A Modified Jacobian-Based Strategy For Position

Control

4.2.1 A Fast Torsionally Compliant Model

Following the procedure outlined in [10], we developed a fast model which included tor-

sional effects along the entire robotic arm. This framework is summarized here to provide

the basis for the rest of the study.

Concentric-tube robots can be considered as a set of elastic rods undergoing distributed

force and torque generated by mechanical interactions. According to the Cosserat theory,
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each single elastic rod satisfies the equilibrium equations

ṅ(s) + u(s)× n(s) + f(s) = 0 (4.1)

ṁ(s) + u(s)×m(s) + v(s)× n(s) + l(s) = 0 (4.2)

where m(s) and n(s) are the moment and stress vectors in the cross-section in terms of the

length variable s. f(s) and l(s) are distributed force and torque along the rod, respectively.

Herein, vector u(s) consists of bending and torsional curvatures, while v(s) includes shear

deformation and elongation. Accordingly, the kinematics of an elastic rod can be com-

pletely defined by the vectors u and v expressed in the body frame {d1(s), d2(s), d3(s)}

shown in Fig. 4.1(a).

Equations (4.1) and (4.2) can be extended to multiple elastic rods [2], and forwards kine-

matics referring to the mapping between joint space and Cartesian space variables can be

represented by the following equations in which the inputs and outputs are both expressed

in Cartesian space [10]. In order to improve computational efficiency, the kinematics is

reformulated using Euler angles as shown below.

θ̇1(s) =
uix(s)cosθi3(s)− uiy(s)sinθi3(s)

cosθ2(s)
(4.3)

θ̇2(s) = uix(s)sinθi3(s) + uiy(s)cosθi3(s) (4.4)

θ̇i3(s) = uiz(s)− θ̇1(s)sinθ2(s) (4.5)

ẋ(s) = sinθ2(s) (4.6)

ẏ(s) = −sinθ1(s)cosθ2(s) (4.7)

ż(s) = cosθ1(s)cosθ2(s) (4.8)
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uiy(s)

 =
(( n∑

j=1

Kj

)−1
RT
Z(θj3(s)− θ13(s))

×
n∑
j=1

RT
Z(θj3(s)− θ13(s))Kj

ûjx(s)
ûjy(s)

) (4.9)

u̇iz(s) =
kix(s)

kiz(s)

(
uix(s)ûiy(s)− uiy(s)ûix(s)

)
(4.10)

in which, the subscript i refers to the tube number. ûi is also the initial curvature value

while ui represents its value after conformation. Here, Ki = diag(kix, kiy, kiz) denotes the

stiffness matrix calculated from Young’s modulus and moment of inertia, and θi3 is the 3rd

Euler angle of the ith tube. The transformation between the body frames of the 1st and the

ith tubes is also represented by a pure rotation denoted by the matrix RZ .

4.2.2 Jacobian Derivation for the Concentric-Tube Robots

Solving Eqs. (4.3)-(4.10), the robot’s position and orientation are directly obtained with

no need to perform extra calculation to convert local curvatures into Cartesian coordi-

nates. However, the reformulated structure includes a nonlinear differential equation; so

linearization is employed to derive the closed-form solution. To this end, let us rearrange

the above kinematic model in a compact form in which Θ(s) = [θ1(s) θ2(s) θi3(s)]T and

X(s) = [x(s) y(s) z(s)]T . Applying the Taylor series expansion and keeping the first-

order terms, we have 
u̇iz(s)

Θ̇(s)

Ẋ(s)

 =


g11 g12

g21 g22

g31 g32


1

s

 (4.11)
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Figure 4.2: Links and sub-links of a concentric-tube robot.

in which, gij = gij(uiz(0),Θ(0), X(0)). Thus, the sought solution is produced by integra-

tion of Eq. (4.11) with respect to s.

F =


uiz(s)

Θ(s)

X(s)

 =


g11 g12

g21 g22

g31 g32


 s

1
2
s2

+


uiz(0)

Θ(0)

X(0)

 (4.12)

Due to linearization, the function approximation in Eq. (4.12) is accurate to within small

intervals so this numerical technique can be considered as a piecewise closed-form solu-

tion. Hence, prior to its use, the entire robotic arm needs to be divided into links and

small sub-links as shown in Fig. 4.2. Successive approximation for each sub-link is then

performed. As a result, forward kinematics of the (m-1)th link is obtained as F̃m−1 =

F n(F n−1(...F 1(u1
iz(0),Θ1(0), X1(0), l1)..., ln−1), ln). Herein, for the jth sub-link (1 ≤ j ≤

n), lj is the corresponding length while the functionF j maps the vector [ujiz(s) Θj(s) Xj(s)]T

evaluated at its proximal end to the same vector evaluated at the sub-link’s distal end using

Eq. (4.12). Moreover, lj = Hj(p1, p2, ..., pk) where k is the number of tubes in the entire

robot, and p is the position of the proximal end. Finally, the forward kinematics of the

entire robot is consecutively obtained in a similar manner, i.e., F̃ = F̃m(F̃m−1(...F̃ 1()...)).

In conjunction with the analytical solution introduced in subsection 4.2.1, the closed-form

forward kinematics is differentiated to produce the Jacobian matrix for each sub-link. It
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will be employed later on for control of concentric-tube robots. Using Eq. (4.12), the

Jacobian is derived as

J jG =

J jg1 J jg2

0 Ik×k

 (4.13)

where

J jg1 =
[

∂F j

∂ujiz(0)

∂F j

∂Θj(0)
∂F j

∂Xj(0)

]
(4.14)

J jg2 =
[
∂F j

∂Hj
∂Hj

∂p1
∂F j

∂Hj
∂Hj

∂p2
... ∂F j

∂Hj
∂Hj

∂pk

]
(4.15)

The last row in Eq. (4.13) was added to J jG so that consecutive Jacobian matrices of the

sub-links can be multiplied together.

Except for the last sub-link, the lengths of the other sections do not change with respect

to time. Only when the length of the last sub-link decreases to zero, the second sub-link

towards the end starts to vary its length. Thus, except for the last sub-link, the Jacobian is

not influenced by the linear motion of the concentric tube which results in J jg2 = 0. This

simplifies the corresponding Jacobian into

J jM =

J jg1 0

0 Ik×k

 (4.16)

For the last sub-link of the entire robot, the last row of the Jacobian matrix in Eq. (4.13)

should be removed so that

J jL =
[
J jg1 J jg2

]
(4.17)

Using the chain rule, the Jacobian for the (m-1)th link J̃m−1 is obtained by multiplication

of individual Jacobians in the following manner.

J̃m−1 = JnJn−1...J2J1 (4.18)
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in which, J j (1 ≤ j ≤ n) is the Jocobian associated with the jth sub-link, and depending

on the configuration, J j is selected from the set {J jG, J
j
M , J

j
L}.

Thus, the relationship between the velocities of the distal and proximal ends is established

as

[u̇iz(L) Θ̇(L) Ẋ(L)]T = J̃ [u̇iz(0) Θ̇(0) Ẋ(0)]T (4.19)

where J̃ = J̃mJ̃m−1...J̃1, and L is the total length of the assembled robot. To control

the tip’s position, only Θ(L) and X(L) are required. However, based on the assumption

of a torsionally compliant model outlined in subsection 4.2.1, uiz(L) equals zero in any

position, which leads to u̇iz(L) = 0. This constraint has to be considered during position

control. From this perspective, the Jacobian derived in this section is actually an augmented

Jacobian with constraint on velocities in Cartesian space.

4.2.3 The Multi-Step Jacobian Method

In surgical robotics, maintaining smooth and safe motion is critical and must be guaranteed.

When the inverse kinematics is implicit, such as in concentric tubes, the tracking accuracy

can be improved by updating the inverse Jacobian at a high rate which in turn increases

computational complexity. Thus, the following approximation is suggested to obtain an

accurate approximation of the robot’s inverse kinematics which can generate a smooth

trajectory even at low control rates. Let us revisit the forward kinematics as following

χ(L) = [uiz(L) Θ(L) X(L)]T = F̃ (χ(0)) (4.20)

Performing a Taylor series expansion on Eq. (4.20), and keeping only the 1st order term,

Eq. (4.20) is converted to Eq. (4.22) which is employed in an inverse Jacobian-based control

scheme.

∆χ(L) =

J̃︷ ︸︸ ︷[
∂F̃

∂χ1(0)
∂F̃

∂χ2(0)
... ∂F̃

∂χi(0)

]
.∆χ(0) +H.O.T (4.21)
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Figure 4.3: Function approximation using a multi-step approach.

∆χ(L) ∼= J̃ .∆χ(0)⇒ ∆χ(0) ∼= J†.∆χ(L) (4.22)

J† is the inverse or pseudo-inverse of the Jacobian matrix that is used as a first order ap-

proximation of inverse kinematics. Inclusion of higher order terms (HOTs) is avoided in

our implementation.

To have a fast approximation of the Jacobian while not sacrificing accuracy, the following

procedure is exploited. Let us assume that the function shown in black in Fig. 4.3 is an

arbitrary element of the Jacobian matrix, e.g., J̃ij , whose value changes with respect to χi.

During each control step, function J̃ij can be estimated using a zero-order hold shown by

the blue line. The area between the black and blue curves corresponds to the approximation

error, and it decreases as a higher control rate is chosen. Using a first-order hold represented

by the purple curve also provides a more accurate solution, but it is avoided here due

to computational issues. Our suggested technique is to introduce a new zero-order hold

function shown in red which covers almost the same area as the first-order hold does, but is
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easier to be evaluated in each control step. The value of the first-order hold evaluated at the

middle point in each iteration is chosen as the value of this new hold function. Therefore,

J̃ij [k +
1

2
] = J̃ij [k] +

J̃ij [k + 1]− J̃ij [k]
χi[k + 1]− χi[k]

× χi[k + 1]− χi[k]

2
(4.23)

At each discrete control step denoted by k, J̃ij[k+ 1] is unknown; so to evaluate J̃ij[k+ 1
2
]

in Eq. (4.23), it is assumed that the changes in the Jacobian is almost the same during two

successive iterations, i.e., J̃ij[k + 1]− J̃ij[k] ∼= J̃ij[k]− J̃ij[k − 1]. Thus,

J̃ij[k +
1

2
] ∼=

3

2
J̃ij[k]− 1

2
J̃ij[k − 1] (4.24)

At each time instant, the following approximation holds for the elements of the Jacobian

matrix which ultimately results in a multi-step Jacobian position control scheme. Due to

the complexity of the J̃ elements, all calculations were performed using Mapler software.

∆χ(0) ∼=
(3

2
J̃ [k]− 1

2
J̃ [k − 1]

)†
.∆χ(L) (4.25)

4.3 Simulation Study

Before the results are presented, it is worth noting that when updating the Jacobian, the

boundary condition acts as an input signal, most of which is known except for uiz(0). One

practical way to resolve this problem is to measure this value using a force/torque sensor

mounted at the robot’s base; however, this approach is not applicable for a simulation study.

Fig. 4.4 illustrates the trend of β = uiz(L) with respect to η = uiz(0) for a given rotation

angle α between the tubes in a two-tube robot. In six simulated configurations, the mapping

turns out to be monotonic and roughly linear. Therefore, a piecewise linear approximation

as in Eq. (4.26) is adopted to find the slope of this mapping. Using Eq. (4.27), uiz(0) can

be obtained iteratively starting from an arbitrary value of uiz(L). Here, k represents the
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Figure 4.4: The relationship between boundary conditions: uiz(L) with respect to uiz(0) as
a function of the rotation angle in a two-tube robot.

iteration number. uiz(s)
αi(s)

 = G(uiz(0), αi(0), s)

⇒

u̇iz(L)

α̇i(L)

 =
[
∂G1..n

∂uiz

∂G1..n

∂αi

]
.

u̇iz(0)

α̇i(0)

 (4.26)

η[k + 1] = η[k]−
(∂G1..n

∂uiz

)−1

.
(
β[k]− 0

)
(4.27)

The diameters, lengths, curvatures, and mechanical properties of the three tubes used for

the simulation of a three-tube robot are listed in Table 4.2 in which the lengths of straight

and curved sections of the tubes are represented by l and L, respectively. The radius of

curvature is also denoted by r. We also simulated a two-tube robot consisting of the middle

and outer tubes defined in Table 4.2. These parameters are the actual parameters of our

two-tube robot that is experimented in Section 4.4.
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Table 4.2: Parameters of the Tubes for Simulations

Tube pair 1 (inner) 2 (middle) 3 (outer)
l (mm) 250 155 12
L (mm) 150 152.6 152.6
r (mm) 100 250 250
Stiffness ratio 0.25 0.85 1
(compared to the 3rd tube)

In the simulation study for the three-tube robot, uiz(0) converged successfully within three

iterations while the calculation time was negligible. This method was initially developed

for a two-tube robot, and it can be extended to any number of tubes. At the next step, the

Jacobian-based control scheme was evaluated by running a trajectory tracking test whose

results are shown in Fig. 4.5. The desired trajectory vector in this simulation was defined

by [uiz(L) ≡ 0 Θtr(L) Xtr(L)]T , and the two-tube and three-tube robots tracked the de-

signed trajectory accurately. In the graphs each sub-link’s length was set to be 10 mm.

We ran the tracking simulation 1000 times. It took total of 1.3 sec to calculate the Jacobian

and the forward kinematics in the two-tube robot case using 10 mm sub-links. The same

calculation for the three-tube robot took less than 3 sec on a desktop computer with a dual-

core 2.4 GHz 32 Bit processor.

To compare the improvement in trajectory tracking using the introduced multi-step Jaco-

bian technique, the two-tube robot was simulated to follow a straight line whose length was

80 mm. First, each Jacobian update size was set to 1mm. The modified Jacobian reduced

the mean tip positioning error from 2.15×10-2 mm to 1.14×10-3 mm compared to the con-

ventional Jacobian matrix. Setting the update step to be 8 mm which corresponds to a low

update rate in a control system, the mean tracking error was reduced from approximately

1.5 mm to 0.6 mm. Corresponding results are shown in Fig. 4.6.
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Figure 4.5: Trajectory tracking using (a) two-tube (blue:outer tube, green: inner tube) (b)
three-tube concentric-tube robots (blue:outer tube, green: middle tube, red: inner tube).

Figure 4.6: Trajectory tracking using conventional Jacobian and modified multi-step Jaco-
bian approach in the two-tube robot.
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4.4 Experimental Validation

4.4.1 Setup Description

The experimental evaluation of the proposed Jacobian-based control approach was carried

out using the concentric-tube robot composed of two superelastic tubes (see Fig. 4.7). The

inset drawing in Fig. 4.7 illustrates the Nitinol tubes each of which has a straight section at

its proximal end followed by a distal section with a constant curvature.

The outer tube was rotated with a rotary T-RS60 stage while the inner tube was respec-

tively inserted and rotated using a linear T-LSR300B stage and another rotary T-RS60 stage

(Zaber Technologies, Canada). The robot was equipped with a Nano43 6-DOF force/torque

sensor (ATI Industrial Automation, United States) located at the base of the inner tube. This

sensor was used to align the tubes knowing the fact that the the torsion is minimized when

the tubes are fully aligned. The angle difference between the two tubes was obtained in

this way as 306.3o. In the setup, an EM (electromagnetic) tracking system (Aurora, North-

ern Digital Inc., Canada) was used for determining position during tracking; however, the

control algorithm was updated using the tip’s position provided by the forward kinematics.

This strategy gave more stable results. A sensor coil of the EM tracker was attached to

the tip of the inner tube by a light plastic adaptor. A multi-threaded application for real-

time control was developed using Microsoftr C++, MATLABr and the QuaRCr Toolbox

(Quanser Consulting Inc., Canada).

We utilized the modified Jacobian approach with damped least-squares method as a clas-

sical approach to avoid singularities during trajectory tracking [11]. However, the main

disadvantage of this singularity-avoidance technique is an increase in positioning error. A

detailed analysis of the singularity and manipulability measures for concentric-tube robots

is part of our ongoing research.
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Figure 4.7: Our concentric-tube robot setup.

4.4.2 Experiments and Results

We now provide some experimental results using the scheme described above for our

concentric-tube robot with two tubes. In our test-bed, three experiments were conducted to

evaluate trajectory tracking. In these cases, the initial rotary angles are set at [0 60o] which

are very close to a singularity of the robot. This enabled us to test the singularity-avoidance

scheme that was implemented since we encountered several singular configurations.

In the first experiment, a straight line in the XY plane of the setup’s coordinate frame

indicated in Fig. 4.7 was required to be followed by the robot’s tip in 40 seconds. The tip is

also expected to remain stationary in the XZ and YZ planes. Fig. 4.8 displays the results.

Accordingly, the root mean squared error in the entire 3D plane and the final positioning

error at the tip’s location were 1.79mm and 3.86mm, respectively. As seen in Fig. 4.8,

singularity avoidance was maintained which generated a small curved path in the vicinity

of the origin in the XY plane subplot. As the next test, a sinusoidal motion profile in the XY

plane was used as the reference trajectory. The desired and experimental paths followed
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Figure 4.8: Desired and experimental trajectories in XY, XZ, and YZ planes (linear trajec-
tory, final tip position = [41.59 37.51 − 0.31]T mm).

by the robot’s tip are presented in Fig. 4.9. The error values in this case were 1.56mm and

1.67mm, respectively. In both cases, the length of the sub-links was chosen to be 10mm.

In the final experiment, a combination of linear and sinusoidal trajectories was utilized to

develop a desired 3D trajectory. The trajectory resulting from the experiment indicates

good tracking performance (see Fig. 4.10).

The results obtained confirm the capability of the suggested scheme to enable the robots

tip to track desired trajectories with an acceptable accuracy. However, there are deviations

from the desired paths which can be attributed to (1) measurement error of the EM tracker

which has been reported to be around 1mm, (2) the forward kinematics error which is

estimated to have an average value of 1.5mm using similar mechanical parameters in a

two-tube robot [10]; and (3) inclusion of the singularity-avoidance technique. Furthermore,

ignoring unmodeled dynamics, such as frictional torques [12], as have done in this study,

may also have contributed to the positioning and tracking inaccuracies.
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Figure 4.9: Desired and experimental trajectories in XY, XZ, and YZ planes (sinusoidal
motion, final tip position = [−0.02 18.76 − 1.12]T mm).

Figure 4.10: Desired and experimental trajectories in 3D (final tip position =
[2.329 47.79 19.65]T mm, final desired position = [0 50 20]T mm).
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4.5 Conclusion

A concentric-tube robot is well-suited for navigation along 3D complex curves since the

robot’s shape is sufficiently flexible. Using computer-assisted techniques, the shape of

this device can be accurately controlled to guide it inside the natural orifices, lumens, and

other anatomical areas in a variety of minimally invasive applications. From the control

perspective, real-time positioning of this type of robots is challenging. However, addressing

some of the computational issues makes it possible to develop a variety of closed-loop

control strategies that can significantly increase the operational accuracy and performance

of these robots.

The control approach presented in this chapter can be implemented efficiently. The pro-

posed Jacobian-based controller was shown to provide reasonable performance without the

need for excessive online or pre-computation. In our implementation, friction compen-

sation was not considered. However, predicting frictional torques as described in [12] is

expected to improve the overall tracking performance. That is left for future work. Another

enhancement for a future study is to incorporate the effect of an external load.
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Chapter 5

Kinematic Instability in
Concentric-Tube Robots: Modeling and
Analysis

In this chapter, the issue of kinematic instability for concentric-tube robots is studied when

the following two conditions are considered: (a) the robot consists of more than two con-

centric tubes, and (b) the tubes consist of straight sections followed by curved sections. In

this chapter, we use the term “kinematic instability” when the tip position of the robot in

the Cartesian domain jumps from one equilibrium point to another while having a constant

joint-space configuration. This implies that in unstable configurations, the “forward kine-

matics” of the robot will have multiple solutions for one set of joint space variables. In the

literature, a stability condition for two-tube robot without straight parts has been developed

using a closed-form solution of the robot kinematics, which is a second-order nonlinear

differential equation with boundary conditions. Considering the robot having more than

two tubes and also with straight sections results in a set of complex high-order nonlinear

ordinary differential equations with boundary conditions. This makes a closed-form so-

lution almost impossible to obtain due to the mathematical complexity. In this chapter, a

novel framework is proposed that can calculate the stability condition for robots consisting
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of multiple tubes with straight sections without solving the nonlinear ordinary differential

equations. The resulting conditions restrict the pre-curvatures and length of the tube, as

a design factor to guarantee kinematic stability within the whole workspace of the robot.

Simulation results are presented in support of the developed theory.

5.1 Introduction

Concentric-tube robots have attracted a great deal of interest during the last five years due

to the high dexterity and articulation that they can provide while having light weight, small

diameter and hollow-shaft design. Since the robot is composed of pre-shaped hollow tubes,

it can be used not only as an independent tool, but also as a host for other interventional

devices. The aforementioned features make concentric-tube robots well-suited for delicate

surgical procedures where dexterity is needed and the surgical environment is sensitive. In

the literature, several surgical procedures have been proposed as applications that can take

advantage of the unique physics of this robot, such as beating-heart tissue removal proce-

dures [1], patent foramen ovale closure [2], and intracerebral hemorrhage evacuation [3].

The actuation of this robot is based on rotation and translation of a set of pre-curved tubes

assembled concentrically. Depending on the mechanical interactions between consecutive

tubes, the tip position and the robot shape are determined in the Cartesian domain. Because

of the specific features of the kinematic chain and the different flow of motion/force/energy

in concentric-tube robots, the conventional theory for classical robotics is not applicable.

As a result, in the literature, several challenges in kinematic modeling for this type of

robots, such as those resulting from bending, torsion [4, 5], friction [6], and external load-

ing [7] have been considered. The complex physics of this robot that involves several me-

chanical couplings makes the computational cost high. Consequently, new quasi-analytical

techniques are being developed to deal with such computational difficulties [8]. In addition

to the modeling challenges, control and navigation of this robot has some unique features
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Table 5.1: Nomenclature

s Arc length
m Tube index

um(s) = [umx(s), umy(s), umz(s)]
T Bending curvature and torsion of the mth tube

ûm(s) = [ûmx(s), ûmy(s), ûmz(s)]
T Pre-curvature of the mth tube

αm(s) Twist angle difference between the mth

and 1st tube
Km Stiffness matrix of the mth tube

kmx, kmy, kmz Bending and torsional stiffness of the mth tube
L Length of the curved section
l Length of the straight section
p Total number of tubes in a robot

qm,m = 2, ..., p Linearizion variables that the kinematic model
is linearized with respected to

qmn Variable defined by qm − qn
v Poisson’s ratio
rmn Constant given by (1 + v)‖ûm‖‖ûn‖
c1, c2 Constants in the solution to a set of ODE
ε Trivial part of the solution to a set of ODE
θm The angle difference between the mth tube

and the 1st tube at the proximal end
E2, E3 Coefficient matrices defined in Eqs. (5.7) (5.24)
D(∗) Determinant of matrix ∗
N Integer number
i Imaginary unit
x Vector of kinematic variables
A Coefficient matrix of the linearized kinematics
B Vector defined in Eq. (5.20)
C Constant vector in the solution to the

linearized kinematics
λj Eigenvalues of A

λ†, λ†† Critical values of the eigenvalues that make
the kinematics unstable

Λ Diagonal matrix consisting of eigenvalues of A
V Matrix of eigenvectors of A

σ, ς, σp Constants given by Eqs. (5.40) (5.47)
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that differ from conventional control techniques in classical robotics. Therefore, currently

several research teams are working on addressing the fundamental control challenges for

this robot namely: motion planning [9], inverse-kinematics-based and Jacobian-based posi-

tion control [4, 10, 11], force disturbance rejection during targeting [12], compliance tuning

in dealing with sensitive areas [13].

The focus of this chapter is a specific phenomenon, which exists in concentric-tube robots

namely kinematic instability or the “snapping” problem. Based on the related literature [4,

5, 14], kinematic instability is when the forward kinematics solution of the concentric-tube

robots loses the uniqueness; as a result the robot will jump quickly from one equilibrium

position (with higher potential energy) to another equilibrium point (with lower potential

energy). This fast and unexpected motion of the tip position cannot be controlled using joint

variables; therefore, it can lead to unsafe interactions between the robot and the operational

environment. Appropriately addressing the issue is vital for surgical applications (such

as in neurosurgery). In [5], kinematic instability is explained from an energy perspective,

when the potential energy function bifurcates to a new minimum. A stability condition is

derived; however, the results only hold for tubes with small curvatures since the torsional

effect in the curved section is ignored. In addition, kinematic instability is also discussed

in [4], where an analytical kinematic model for a robot with two tubes was proposed, and

the instability problem was studied via multiple solutions of the forward kinematics of the

robot. Because this phenomenon does not exist in torsional-rigid models, but appears when

the torsion effect is included in the robot kinematics, it can be concluded that the kinematic

instability of concentric-tube robots is a result of accumulated torsional energy along the

robot. This explains why snapping is more likely to happen when the robot has either high

curvature or long body.

Two directions have been studied in the literature to prevent the occurrence of the men-

tioned instability: (a) modifying the path planned for the robot to avoid passing through

the instability regions in joint-space while traveling within the Cartesian workspace [14];

and (b) tuning the design characteristics based on a stability condition that restricts the
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curvature/length of the tubes [4, 5]. The advantage of the first technique is that, extremely-

curved tubes can be used to enlarge the workspace. However, a redundant number of tubes

is needed because of the constraints in joint space for avoiding the instability region. Us-

ing the second technique kinematic stability will be guaranteed in the whole workspace,

independent of the values of the joint variables. This feature is a crucial need for delicate

applications.

It should be mentioned that in the literature the stability condition for a two-tube robot is

derived while, to the best knowledge of the authors, extension to more complex cases (such

as robots with more than two-tube interactions) have not been addressed yet. In this chapter

the main focus is developing stability conditions for use in designing concentric-tube robots

under the following two considerations: (a) the number of the tubes can be more than two,

(b) the tubes can have straight parts before leading to the curvature. Using the technique

proposed in this chapter, stability conditions for complex concentric-tube robots can be

derived.

The rest of the chapter is organized as follows: Section 5.2 explains the basis for the pro-

posed approach for deriving the stability condition for the two-tube case with and without

straight sections. Section 5.3 modifies and generalizes this method to robots with three and

more tubes. Simulation results are presented in Section 5.4 to demonstrate the application

of the main results.

5.2 Kinematic Stability Condition for Two Concentric Tubes

In this section, a framework is implemented to find the kinematic stability conditions for

two-tube robots with and without straight portions; the former result (without considering

the straight parts) is compared to the results presented in the literature for two tubes. In the

next section the conditions for more than two tubes are obtained.
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5.2.1 Kinematic Model for Concentric-Tube Robots

In this chapter, a widely-used torsionally-complaint kinematics model, discussed in [4], is

utilized for analysis of the instability problem. The model is shown in Eq. (5.1), in which,

αm represents the rotational angle difference between the first and mth tube, and the total

number of tubes in the robot is denoted as p. In addition, torsion (around z) and bending

curvature (around x and y) are denoted by umz and um|x,y, respectively. x, y and z are the

axes of the tube’s material coordinate frame [4]. Pre-curvatures of the tubes are denoted as

ûmx, ûmy and ûmz (ûmz is assumed to be zero [4]). Kn is a diagonal matrix consisting of

the tubes’ stiffnesses in different directions namely: kmx for the x direction, kmy for the y

direction, and kmz for the z direction. Note that, in the literature [4], it has been assumed

that the stiffness of the tubes are isotropic in x and y directions (kmx = kmy = kmxy). In

Eq. (5.1), s is the length variable. Note that the tube pre-curvatures, the tube stiffness, the

angle differences, and the curvatures are functions of s which has been omitted in Eq. (5.1)

for simplicity. More details of this kinematics model can be found in [4]. It has been shown

that this model has good accuracy and is capable of mimicking the “snapping” phenomenon

effectively for two-tube robots without straight portions [4].

umz = (−1/k1z)(k2zu2z + · · ·+ kpzupz)

u̇mz =
dumz
ds

= (kmxy/kmz)(umxûmy − umyûmx)

um|x,y =
(( p∑

n=1

Kn

)−1

RT
z (αm)

( p∑
n=1

Rz(αn)Knûn

))∣∣∣
x,y

α̇m =
dαm
ds

= umz − u1z, m = 2, ..., p

(5.1)

Using the above-mentioned model, in order to analyze the instability phenomenon, the con-

dition which ensures uniqueness of solutions of the forward kinematics should be calcu-

lated. The complex physics of interactions between the tubes makes the resulting equations

a set of nonlinear ordinary differential equations (ODEs) with boundary conditions. The

system consists of two equations for two-tube interactions and any addition of one tube to
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the system introduces two more equations to the model. As a result, in most cases, it is

not straight forward to calculate a practical condition of uniqueness that can be analyzed to

evaluate kinematic stability.

5.2.2 Kinematic Stability Condition for Two-Tube Robots without

Straight Parts

To deal with the above-mentioned issue and to obtain the stability condition, in this part,

a linearization framework (along the whole body of the robot) is proposed that calculates

the linearized model of the system when the linearization point is considered as a new vari-

able. The linearized behavior of the system is then analyzed using the standard techniques

for dealing with a set of linear ODEs with boundary-conditions. Finally the uniqueness

condition is determined, which guarantees kinematic stability.

It should be mentioned that the behavior of the linearized system can be a good approxi-

mation of the nonlinear system only in a very small neighborhood around the linearization

point. Also considering the fact that in concentric-tube robots, the kinematics variables can

change significantly along the tubes, the linearization can be inaccurate if it is performed

with respect to only a few points along the robot. In order to address this problem, inspired

by the concept of the Extended Kalman Filter (which is a linear observation technique for

nonlinear systems), first the kinematics model is linearized with respect to the lineariza-

tion variables (qm,m = 2, ..., q) which corresponds to the angle differences between the

tubes. The result of this linearization is a set of ODEs which can behave differently when

different values for the linearization variables (qm) are considered. Then, the behavior of

the linearized system is analyzed, and finally the general uniqueness/stability condition is

achieved, which is valid for all possible qm. This means that if the stability condition is

satisfied then the solution of the set of ODEs will be unique, regardless of the qm value.

It can be seen in Eq. (5.1) that α̇m is already given by a linear equation. u̇mz is a nonlinear
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function of αm, which needs to be linearized around (qm). Assuming that all tubes have

constant pre-curvatures and they are planar tubes (the assumptions are conventional as

pointed out in [4]), the linearized set of ODEs can be achieved as follows:

u̇∗mz = u̇mz

∣∣∣
α2=q2,...,αp=qp

+

p∑
m=2

du̇mz
dαm

∣∣∣
α2=q2,...,αp=qp

(αm − qm)

α̇∗m = α̇m, m = 2, ..., p

(5.2)

where, u̇∗mz and α̇∗m are linearized version of u̇mz and α̇m in Eq. (5.1). For two tubes, since

there is only q2 in the equations (which we set to q in this section), the explicit equations

are:

u̇∗2z =
(1 + v)k1‖û1‖‖û2‖(− cos(q)q + cos(q)α∗2 + sin(q))

k1 + k2

α̇∗2 =
(k1 + k2)u∗2z

k1

, q ∈ {0, 2π}
(5.3)

In Eq. (5.3) kn = knxy; 1 + v = knxy/knz (n = 1, 2). The general solutions to these

equations are:

u∗2z(s) = c1e
s
√

cos(q)r + c2e
−s
√

cos(q)r

α∗2(s) =
(k1 + k2)(−c1e

s
√

cos(q)r + c2e
−s
√

cos(q)r)

k1

√
cos(q)r

+ ε
(5.4)

where,

r = (1 + υ)‖û1‖‖û2‖ (5.5)

In this chapter, ‖ ∗ ‖ denotes the Euclidean norm of a vector or the magnitude of a complex

number. In Eq. (5.4), s is the length variable. ε is the trivial part of the solution, which

will be discussed following equation (5.7). The constant values c1 and c2 are obtained by

applying boundary conditions to the solutions, which are: u∗2z(L) = 0, α∗2(0) = θ, where
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L is the length of the curved section of the robot and θ is the angle difference between the

two tubes at the proximal end [4]. After applying the boundary conditions, we have the

following:

E2

c1

c2

+

0

ε

 =

0

θ

 (5.6)

where:

E2 =

 eL√cos(q)r e−L
√

cos(q)r

k1+k2

k1(
√

cos(q)r)
− k1+k2

k1(
√

cos(q)r)

 (5.7)

Consequently, the uniqueness of the robot kinematics is equal to the uniqueness of the

solution for c1 and c2. This means that the coefficient matrix (E2) should be non-singular

to make the robot stable. It can be seen that ε is not multiplied by any constant variables

(c1, c2), so the value of ε cannot change any part of E2. In other words, ε has no effect on

stability. In order to investigate the stability condition of the kinematics independently of

q, the determinant of the coefficient matrix E2 is needed as given below:

D(E2) =
(k1 + k2)(eL

√
cos(q)r + e−L

√
cos(q)r)

k1(
√

cos(q)r)
(5.8)

It can be seen that if q ≤ π/2 or q ≥ 3π/2, then the determinant, D(E2), is non-negative

and the kinematics has a unique solution. Therefore to find the stability condition, q should

be considered as: π/2 < q < 3π/2, in which case, the determinant can be zero implying

that the kinematics could be unstable. Consequently, considering π/2 < q < 3π/2, the

determinant of E2 can be simplified as follows:

D(E2) = 2
(k1 + k2) cos(L

√
− cos(q)r)

k1(
√
− cos(q)r)

, q ∈ {π/2, 3π/2} (5.9)

In order to guarantee kinematic stability, the determinant D(E2) should not be equal to
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zero. Consequently, the stability condition can be satisfied as follows:

L
√
r
√
− cos(q) 6= (1/2 +N)π (5.10)

where N is an integer number. Since we have π/2 < q < 3π/2, it is true to say that√
− cos(q) is a real scalar and is bounded by unity. Consequently, the stability condition

for all possible q can be stated as follows:

L
√
r < π/2 (5.11)

The achieved result is the same as the result that has been derived directly from the non-

linear equations [4]. This supports the effectiveness of the proposed technique. Since the

method can be extended for more than two tubes, it can be modified to address the general

problem.

5.2.3 Kinematic Stability Condition for Two-Tube Robots including

Straight Parts

The stability condition developed in the previous section assumes that the two tubes have

a non-zero curvature along the whole body. This assumption is not always valid since in

many applications, the tubes have a straight part before the curvature starts. In fact the inner

tube usually has a straight section, extending out of the outer tube for translational motion.

The straight part changes the energy function of the system and can therefore change the

stability condition for the kinematics. As the first step, in this section the formulations for

two tubes (which is a simpler case) are derived and in the next section they will be extended

for multiple tubes. As mentioned earlier, the kinematic instability in concentric-tube robots

is caused by torsion energy stored along the robot. Extra solutions to the forward kinemat-

ics may appear because of the straight section since the maximum torsion happens within

that part.
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To give an intuitive view of the straight part effect, the following example is designed.

Considering Fig. 5.1, two tubes with pre-curvatures satisfying (5.11) are shown. Assuming

that the outer (blue) tube is stationary while the inner tube (red) rotates through an angle

α2(0) < π, the robot will only have one solution and it will be α2(L) < α2(0). In the

next step, imagine that a straight section is added to the inner tube, with the length l =

(α2(0)− π))/u1z(0). This will result in the angle difference between the proximal ends to

be α2(0− l) = π. The kinematic relation will be: α2(0− l) = π, α2(L) < π. In addition,

it is known that there is always a trivial solution α2(L) = π for the same initial condition

α2(0 − l) = π, which is represented by the dashed lines in the figure. Consequently, two

solutions are obtained for the same joint space value. This robot will have instability even

if (5.11) is satisfied. This means that the stability condition will be different in presence of

straight part.

In order to mathematically show the effect of the straight section on kinematic stability, the

boundary condition of the system should be tuned as a result of the straight part as follows:

u∗2z(L) = 0, α∗2(0)− l2u∗2z(0) + l1u
∗
1z(0) = θ (5.12)

where ln (n = 1, 2) represents the length of the straight portion for the nth tube. Conse-

quently, the determinant of the coefficient matrix (D(El
2)) will be:

−(k2l1 + k1l2) tanh(L
√

cos(q)r)
√

cos(q)r − (k1 + k2) (5.13)

As a result, the kinematics will have multiple solutions if Eq. (5.13) equals to zero. Know-

ing that tanh(∗) = −i tan(i∗), where i is
√
−1 and considering D(El

2) = 0, we will have:

Li
√

cos(q)r = arctan

(
k1 + k2

(k1l2 + k2l1)i
√

cos(q)r

)
(5.14)



5.2. KINEMATIC STABILITY CONDITION FOR TWO CONCENTRIC TUBES 93

Figure 5.1: Demonstration of the possible multiple solutions for two tubes with a straight
section. The blue and red arrows represent the rotational angles of the two tubes at that
location.

Taking the Euclidean norm on both sides, the following is achieved:

∥∥∥Li√cos(q)r
∥∥∥ =

∥∥∥∥∥arctan

(
k1 + k2

(k1l2 + k2l1)i
√

cos(q)r

)∥∥∥∥∥ (5.15)

Considering (7.15), and also ‖ arctan(∗)‖ ≥ arctan(‖∗‖), the following can be developed:

L
∥∥∥i√cos(q)r

∥∥∥ ≥ arctan

 k1 + k2

(k1l2 + k2l1)
∥∥∥i√cos(q)r

∥∥∥
 (5.16)

As can be seen in Eq. (5.5), r is a positive real number; as a result we have:
√
r ≥∥∥∥√cos(q)r

∥∥∥ =
∥∥∥i√cos(q)r

∥∥∥. Accordingly, Eq. (5.16) will result in the following:

L
√
r ≥ arctan

(
k1 + k2

(k1l2 + k2l1)
√
r

)
(5.17)
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Consequently, when the kinematics are unstable (D(El
2) = 0), the tube parameters will

satisfy the relation shown in Eq. (5.17). In other words, if the tube parameters are chosen

such that Eq. (5.17) is never satisfied, then kinematic stability will be guaranteed. As a

result, one stability condition for two-tube interaction considering the effects of the straight

sections is as follows:

L
√
r < arctan

(
k1 + k2

(k1l2 + k2l1)
√
r

)
(5.18)

This stability condition exhibits the effect of the straight section. It can be seen that, for

the robot having the same curved sections
√
r, the longer the straight part, the greater the

chances of instability. When l1, l2 → 0 the proposed condition reduces to the original

condition given in Eq. (5.11) since arctan
(

k1+k2
(k1l2+k2l1)

√
r

)
→ π/2.

5.3 Kinematic Stability Condition for Three or More Con-

centric Tubes

In the previous section, stability conditions for two-tube robots were calculated. In this

section, the stability conditions are extended to three-tube robots and finally to multi-tube

robots.

5.3.1 Kinematic Stability Condition for Three-Tube Robots without

Straight Parts

It should be noted that because of significant mathematical complexity, it is neither efficient

nor practical to calculate an explicit solution for the kinematics model when the robot has

more than two tubes. Even if a solution can be obtained, the mathematical complexity

makes it almost impossible to analyze the solution properly and have a stability condition

that can be used in designing robots. Consequently, an indirect technique is proposed in the
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rest of this section, which can calculate a stability condition with no need for an explicit

solution. For this purpose, the linearized model for the three-tube robot (calculated from

Eq. (5.2) when q = 3) can be written as a set of linear first-order ODEs in the form:

ẋ =
dx

ds
= Ax+B (5.19)

where x = [u∗2z, u
∗
3z, α

∗
2, α

∗
3]. Considering Eqs. (5.2) and (5.19), after some algebraic ma-

nipulations, it can be shown that for a three-tube robot, the matrix A is 4 by 4 in dimension

and is always in the anti-diagonal block structure. A and B are shown as below:

A =


0 0 a13 a14

0 0 a23 a24

a31 a32 0 0

a41 a42 0 0

 , B =


b1

b2

b3

b4

 (5.20)

In Eq. (5.20), the elements in A and B (aij, bj; i, j = 1, 2, 3, 4) are dependent on some of

the tubes’ parameters (û, k, L) and linearization variables (qm). The general solution for

this system has the following specific structure:

x(s) = V eΛsC +

∫ s

0

V eΛ(s−τ)V −1Bdτ (5.21)

where,

V =


v11 −v11 v13 −v13

v21 −v21 v23 −v23

v31 v31 v33 v33

1 1 1 1

 (5.22)

In Eq. (5.22), Λ is a diagonal matrix consisting of the eigenvalues (λj; j = 1, 2, 3, 4) of A,

and V represents a matrix of its eigenvectors. It can be shown that because of its structure,
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the matrix A always has four distinct eigenvalues which have the following relationship:

λ2 = −λ1, λ4 = −λ3 (see Appendix II). C = V −1x(0) is a constant vector that is to be

determined. To calculate C, the boundary conditions (u∗2z(L) = 0, u∗3z(L) = 0, α∗2(0) =

θ2, α
∗
3(0) = θ3) are applied to the general solution, which results in:

E3C + xε = [0 0 θ2 θ3]T (5.23)

where,

E3 =


v11e

λ1L −v11e
λ2L v13e

λ3L −v13e
λ4L

v21e
λ1L −v21e

λ2L v23e
λ3L −v23e

λ4L

v31 v31 v33 v33

1 1 1 1

 (5.24)

and the vector xε is calculated from the integral term in Eq. (5.21). As discussed for

Eq. (5.7), the uniqueness of these general solutions, only depends on whether the coef-

ficient matrix E3 is invertible or not. In other words, there is only one solution for the robot

kinematics if the determinant of the coefficient matrix (D(E3)) is not zero. Considering

the relationship between the eigenvalues (λ2 = −λ1, λ4 = −λ3), D(E3) is calculated as

follows:

D(E3) = vε(e
−Lλ1 + eLλ1)(e−Lλ3 + eLλ3) (5.25)

where vε = −(v31− v33)(v11v23− v13v21). Note that vε equal to zero will make at least two

eigenvectors of A linearly dependent (see the structure of V in Eq. (5.22)), which cannot

be true for a 4×4 matrix having four distinct eigenvalues. Consequently, since vε cannot be

zero, the robot kinematics will be stable as long as the following holds:

D(E3) 6= 0⇐⇒ λj 6= ±iπ/2L (5.26)
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We can define the critical value (λ†) for the eigenvalues which makes the kinematics unsta-

ble as:

λ† = ±iπ/2L (5.27)

Up to this point, kinematic stability is established based on the definition of the critical

value (λ†) for the eigenvalues of the matrix A. In order to guarantee kinematic stability,

first the eigenvalues of A should be calculated as functions of tube parameters (û, k, l, L)

using the characteristic polynomial of A; then the stability condition should be calculated

which provides acceptable bounds for the tube parameters that prevent the eigenvalues from

being equal to the critical value (λ†).

However, calculating the relation between λj and tube parameters by solving the charac-

teristic equation of the system (D(λ) = 0) is not straightforward, because of the algebraic

complexity (See Appendix B). The aforementioned issue will become more complicated

when the number of tubes increases. In order to address this, an indirect technique is pro-

posed in this section, which can provide a compact sufficient stability condition that can be

used in selecting tube parameters for designing concentric-tube robots.

For the above-mentioned purpose, a novel inner product of the pre-curvatures of two tubes

is defined:

[ûm, ûn] = rmn cos(qmn) (5.28)

where,

rmn = (1 + v)‖ûm‖‖ûn‖ (5.29)

and qmn = qm − qn, qm1 = qm. In Eqs. (5.28), (5.29) and the rest of this subsection, the

subscripts m,n = 1, 2, 3;m > n. From the definition of the inner product in Eq. (5.28),

the following two inequalities can be obtained:

‖[ûm, ûn]‖ ≤ rmn (5.30)
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∥∥∥ ≤ √rmn (5.31)

Substituting the proposed definition Eq. (5.28), into the characteristic polynomial (D(λ))

results in :

D(λ) =
1∑3
i=1 ki

(
k1([û2, û1]− λ2)([û3, û1]− λ2)

+ k2([û2, û1]− λ2)([û3, û2]− λ2)

+ k3([û3, û1]− λ2)([û3, û2]− λ2)
) (5.32)

The resulting equation provides better insight into the relationships between the tube pa-

rameters and the eigenvalues. From D(λ) = 0, it can be shown that, λ2 always has real

values (See Appendix A). Consequently, the solutions for λ that satisfied D(λ) = 0 are

either purely real or purely imaginary. Considering Eq. (5.32), the solution for λ2 (that can

make D(λ) = 0) will satisfy Eqs. (5.33), and (5.34):

min([ûm, ûn]) ≤ λ2
j ≤ max([ûm, ûn]) (5.33)

‖λj‖ ≤ max
(∥∥∥√[ûm, ûn]

∥∥∥) (5.34)

From Eqs. (5.31) and (5.34), we have:

‖λj‖ ≤ max(
√
rmn) (5.35)

The inequality above shows the bound of the eigenvalues according to the tube parameters.

As a result, the robot kinematics will be stable over the whole workspace if the ‖λ†‖ is not

in this bound:

max(
√
rmn) <

∥∥λ†∥∥ (5.36)
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which can be rewritten as follows by combining with Eq. (5.27):

max(L
√
rmn) < π/2 (5.37)

It should be noted that, since the upper bound of ‖λ‖ is utilized to establish the stability

condition, instead of the exact solution for ‖λ‖, the result is a sufficient condition. In other

words, it is possible that the robot is stable, when using tube parameters outside the range

defined in Eq. (5.37). The stability condition shown in Eq. (5.37) means that for a three-

tube robot (without a straight section) if all of the tube pairs (i.e., tubes 1&2, tubes 2&3,

and tubes 1&3) are stable, the kinematics of the whole robot will be stable.

5.3.2 Kinematic Stability Condition for Three-Tube Robots including

Straight Parts

In this section, the goal is to define the stability condition for three-tube robots with straight

parts, in which the boundary conditions have the following form: umz(L) = 0, αm(0) −

umz(0)lm + u1z(0)l1 = θm. Consequently, the determinant of the coefficient matrix can be

obtained following a similar approach as in Eq. (5.25):

D(El
3) = h1e

L(λ1+λ3) + h2e
L(λ1−λ3)

+h3e
−L(λ1+λ3) + h4e

−L(λ1−λ3)
(5.38)

where, hj (j = 1, 2, 3, 4) consist of the elements in the eigenvector matrix details of which

are omitted due to the space limitations. Considering the definition of the eigenvector

matrix (AV = ΛV ) and Eq. (5.38), it can be seen that D(El
3) is a function of λj and tube

parameters (û, k, l, L). In order to find the critical value (λ††) for the eigenvalues which

makes D(El
3) = 0, the following nonlinear transformation is applied to Eq. (5.38).

Liλj = arctan

(
ξ

iλj

)
(5.39)
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where ξ is the unknown parameter to be solved by substituting Eq. (5.39) into D(El
3) = 0.

After solving ξ, the λ†† (that satisfies D(El
3) = 0) will be achieved in the following format:

Liλ†† = arctan

 k1 + k2 + k3(
1
2
σ + 1

2

√
σ2 − ζ

)
iλ††


σ = l1(k2 + k3) + l2(k1 + k3) + l3(k1 + k2)

ζ = (k1 + k2 + k3)(k1l2l3 + k2l1l3 + k3l1l2)

(5.40)

Up to this point, the critical value (λ††) is achieved for a three-tube robot with straight

parts. As discussed in Eqs. (5.14)-(5.16), the following inequality can be obtained from

Eq. (5.40):

L‖iλ††‖ ≥ arctan

 k1 + k2 + k3(
1
2
σ + 1

2

√
σ2 − ζ

)
‖iλ††‖

 (5.41)

Since ζ is a positive number, Eq. (5.41) results in:

L‖λ††‖ ≥ arctan

(
k1 + k2 + k3

σ‖λ††‖

)
(5.42)

As mentioned before, adding straight parts to the robot design will change the boundary

condition of the kinematics model while the characteristic equation remains the same. As

a result, the conclusion achieved for λj in Eq. (5.35) is valid for a three-tube robot with

straight parts.

This means that the kinematics of a three-tube robot with straight parts will be unstable if

the λ†† is within the bounds of the possible solutions for λ. In other words, considering

Eq. (5.35), if the following holds, then the kinematics will be unstable:

max(
√
rmn) ≥

∥∥λ††∥∥ (5.43)

Combining Eqs. (5.42) and (5.43), it can be concluded that if the kinematics are unstable,
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we have:

Lmax (
√
rmn) ≥ arctan

(
k1 + k2 + k3

σmax
(√

rmn
)) (5.44)

As a result, kinematic stability can be guaranteed if the tube parameters are chosen to

satisfy the following stability condition for a three-tube robot with straight parts:

Lmax (
√
rmn) < arctan

(
k1 + k2 + k3

σmax
(√

rmn
)) (5.45)

The obtained stability condition is different from that for the two-tube case Eq. (5.18) due

to the effect of the third tube. In Eq. (5.45), if the third tube stiffness is set to zero, then the

stability condition reduces to the two-tube condition in Eq. (5.18).

5.3.3 Extension to Multiple Tubes

The approach used in previous subsections can be used for robots with more than three

tubes. It can be shown that the linearized model will always have a block anti-diagonal

structure, which would result in a similar format for the characteristic polynomial corre-

sponding to that in Eq. (5.32). So the conditions obtained in Eq. (5.37) can be extended for

any number of tubes:

max(L
√
rmn) < π/2, (5.46)

where m,n = 1, 2, ..., p;m > n, and p is the total number of tubes. For the robot with

straight sections, when the kinematics are unstable, the critical values for the eigenvalues

satisfy the relationship in Eq. (5.39), which would result in a similar inequality to that in

Eq. (5.42). Following the technique developed in the previous subsection, it can be shown

that the stability condition for the general case (multiple tubes with straight sections) is as
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Table 5.2: Parameters of Concentric-Tube Robots

L(m) û(m−1) k (Nm2) v

tube 1 0.157 1/0.120 0.040 0.3
tube 2 0.157 1/0.150 0.050 0.3
tube 3 0.157 1/0.180 0.060 0.3

follows:

Lmax(
√
rmn) < arctan

( ∑p
m=1(km)

σp max(
√
rmn

)
)

σp = (k2 + ...+ kp)l1 + (k1 + k3 + ...+ kp)l2

+...+ (k1 + ...+ kp−1)lp

(5.47)

5.4 Simulation Validation

In the previous sections, the stability conditions were developed for multi-tube robots with

and without straight parts. In order to show that these conditions are able to predict kine-

matic stability of a concentric-tube robot in its entire workspace, both stability conditions

and forward kinematics are calculated for a robot. By comparing these two results, it can

be seen that when the stability conditions are satisfied, the robot is alway stable. The im-

plementation of the kinematics is achieved using the technique proposed in [12], which has

been shown to provide good accuracy.

In the first test, the stability of a two-tube robot with a straight portion is studied. For this

robot, tube 1 (in Table 5.2) is the inner tube and tube 2 is the outer one. The parameters

of these two tubes, such as the length of the curved sections (L), pre-curvatures (û), the

stiffnesses (k), and Poisson’s ratio (v) are defined as shown in Table 5.2. The length of the

straight part of tube 2 is equal to zero (l2 = 0). In order to study the effect of l1 (the straight

part of tube 1) on kinematic stability, we need to determine at which value of l1 the robot

will be kinematically unstable. One way is to use the stability condition in Eq. (5.18).
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Figure 5.2: Simulation results for a two-tube robot with straight sections. Note that a large
number of different l1 were tested in the program, only a few of them were plotted here. (a)
position of the robot tip in X direction; (b) magnified view of (a) around the snapping area;
(c) position of the robot tip in Y direction; (d) magnified view of (c) around the snapping
area. X and Y axes are defined in Fig. 5.1
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After some calculations, it can be shown that the robot is stable when l1 is smaller than

0.051m. Another way to achieve this result is to calculate the forward kinematics of the

robot via simulation when different values of l1 are considered. As shown in Fig. 5.2, the

tip position of the robot is calculated, when the inner tube rotates a full revolution and the

outer tube remains stationary. This calculation was repeated many times when l1 varies

from 0 to 0.150m. The simulation results shows that the robot is stable when l1 < 0.051m

(blue curves), and critically stable when l1 = 0.051m (red curves). The purple curves

have a discontinuous point in the tip Cartesian position during the continuous movement

of the joint space values. This means that the tip of the robot suddenly jumps from one

position to another in Cartesian domain. So the kinematics of the robot are unstable when

l1 > 0.051m. In conclusion, the simulation results are in an complete agreement with the

derived stability condition.

For a three-tube robot without any straight section, the stability condition becomes con-

servative, because the maximum value of λj in Eq. (5.35) is used for developing the sta-

bility condition. But when the three tubes have the same value of pre-curvatures, i.e.,

max(
√
rmn) = min(

√
rmn) in Eq. (5.33), the exact value of λj will be obtained (since

the radius of the bound around λj converges to zero). In this specific situation, the stabil-

ity condition is not conservative any more. A three-tube robot without straight sections is

studied to verify this result. We assume that the inner, middle, and outer tubes of this robot

have the same pre-curvature û123. The other parameters such as L, k, v are from tube 2.

Using the stability condition in Eq. (5.37), it can be concluded that the robot will be stable

if û123 < 1/0.114(m−1). In the simulation tests, the tip position of the robot is calculated

when the inner tube rotates a full revolution and the other two tubes remain stationary. This

procedure is repeated when û123 equals to a set of different values. As discussed earlier, the

red line in Fig. 5.3. corresponds to the critically stable situation. So the kinematics are criti-

cally stable when û123 = 1/0.114(m−1), which agrees with the result in stability condition.

The last test is designed to validate the stability condition for a general three-tube robot

which has three different pre-curvatures, stiffness and length for the straight parts. For this
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Figure 5.3: Tip position (in Y direction) of a three-tube robot without straight parts. Note
that a large number of different û123 were tested in program, only a few of them were
plotted here.

Figure 5.4: Tip position (in Y direction) of a three-tube robot with straight parts. Note that
a large number of different l1 were tested in the program, only a few of them were plotted
here.

purpose, tube 1, tube 2 and tube 3 are chosen as the inner, middle and outer tubes of the

robot, respectively. The straight parts of tube 2 and tube 3 were set to l2 = 0.010m, l3 = 0.

Using the stability condition in Eq. (5.45), the robot is stable as long as l1 < 0.030m. In

simulation, the forward kinematics of the robot are calculated when tube 1 is rotated 360

degrees and the other two remain stationary. This calculation was repeated when l1 equals

a series of different values. As shown in Fig. 5.4, compared to previous simulations, the

robot did not show critical stability at l1 = 0.030m, but at a higher value l1 = 0.048m.
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This result shows that the stability condition is conservative.

5.5 Conclusions

In this chapter, a framework was proposed for analyzing the kinematic stability of concentric-

tube robots, in presence of (a) straight sections at the proximal ends and (b) multi-tube body

architecture. It was mathematically shown that the proposed stability conditions are related

to the tube parameters including pre-curvatures, stiffness, length of straight sections, and

length of curved sections. Simulation results (for two-tube and three-tube robots) were

given in support of the theory. In the simulations, it was shown that changing the length

of the straight sections and/or increasing the number of tubes can directly affect the robot’s

kinematic stability. A good agreement was observed between the proposed theory and the

simulated forward kinematics.
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Chapter 6

Real-time Trajectory Tracking for
Externally-Loaded Concentric-Tube
Robots

Concentric-Tube robots can offer a suitable compromise between force and curvature con-

trol. In a previous study by the authors, a real-time trajectory tracking scheme for an

unloaded concentric-tube robot was developed. One of the practical barriers to the use

of a concentric-tube robot in medical applications is compensation for the impact of en-

vironmental forces which can cause drastic deterioration in tracking performance. In this

chapter, by modifying the robots forward kinematics and Jacobian, a new method is de-

veloped to facilitate tip tracking in real-time while accounting for an external load at the

robots tip. By considering the tip deflection resulting from the external load, a novel dual-

layer control architecture is proposed to compensate for this deflection during trajectory

tracking. In order to measure the force exerted on the tip position of the robot, a new tech-

nique is proposed that can move the sensing system from the distal tip to the proximal base.

Experimental results are given to illustrate the effectiveness of the proposed method.
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Table 6.1: Nomenclature I

{e1, e2, e3} World frame
s Arc length
i Tube index

{d1(s), d2(s), d3(s)} Body frame of the cross-section located at s
n(s) = [nx(s), ny(s), nz(s)]

T Stress vector represented in the body frame
m(s) = [mx(s),my(s),mz(s)]

T Bending moment vector represented
in the body frame

ui(s) = [uix(s), uiy(s), uiz(s)]
T Bending curvature and torsion of the ith tube

which are represented in the body frame
ûi(s) = [ûix(s), ûiy(s), ûiz(s)]

T Pre-curvature of the ith tube
v(s) = [vx(s), vy(s), vz(s)]

T Shear strains and elongation represented
in the body frame

f(s) Distributed force vector represented
in the body frame

l(s) Distributed moment vector represented
in the body frame

Ki Stiffness matrix of the ith tube
kix, kiy, kiz Bending and torsional stiffness of the ith tube

L Length of the curved section
Θ(s) = θ1(s), θ2(s), θi3(s) Euler angles of the rotation matrix R(s)

of the ith tube
r(s) = [x(s), y(s), z(s)]T Position vector of the cross-section located at s

represented in the world frame
M(s) Bending moment vector represented

in the world frame
αi(s) Twist angle difference between the ith tube and

the 1st tube
RZ(αi(s)) Rotation matrix between the body frames of

the ith and the 1st tube
Fext External point force at the tip of the robot

represented in the world frame
Pi Position of the proximal end of the ith tube
H Mapping between Pi to each sub-link’s length
J̃ Jacobian matrix of a sub-link

6.1 Introduction

A concentric-tube robot as a subset of continuum robots is composed of a sequence of

telescoping pre-curved elastic tubes inserted one inside the next. In this flexible robotic
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Table 6.2: Nomenclature II

X Position of robot’s tip in the Cartesian space
Xmeas Measured position of robot’s tip in the Cartesian space
q Joint variables of the robot
qdes Desired trajectory in joint space
w External point wrench at the tip of the robot

F (q, w) Forward kinematics of the robot
J(q, w), C(q, w) Jacobian and Compliance matrices of the robot

∆ Deflection of the robot under loading
∆̂ Estimated deflection of the robot under loading
Uint Controller’s input signal
S Laplace variable

structure, axial rotation and translation of individual tubes with respect to each other can

generate 3D curvatures. Thus, the shape of the robot can be controlled in order to guide it

inside lumens, natural orifices, and other anatomical organs in a variety of medical appli-

cations specially involving unreachable or confined surgical sites.

Accurate position control of surgical instruments is a vital need in Robotics-Assisted Min-

imally Invasive Surgery (RAMIS); however the small size of the incision reduces the robot

rigidity and, as a result, challenges positioning accuracy. As is known, flexible surgical

tools (such as surgical needles [1]) have been widely used in percutaneous minimally

invasive interventions. However, complex and inaccurate kinematics modeling of flex-

ible/continuum mechanisms has imposed limitations on accurate control of the tip mo-

tion in RAMIS. This topic has been the subject of recent publications for concentric-tube

robots [2, 3], and is explored further in this study.

Modeling the shape of concentric-tube robots has evolved over the last few years. Histor-

ically, a variety of mechanical phenomena, e.g., bending [4], torsion [2] [5], and friction

between the tubes [6] have been gradually taken into account to improve modeling accu-

racy. It has been shown that the assumption of zero external load in kinematic modeling

can cause considerable error in estimating the robot configuration [7]. To deal with this
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issue, in [7] and [8] the forward kinematics of the robot are modified to include the effects

of external loading. However, most of the developed models are mathematically complex

and computationally expensive. To achieve a good balance between computational effi-

cacy and numerical accuracy, the authors proposed a fast torsionally-compliant model [9],

which was later utilized to develop a feasible strategy for real-time tip tracking in free mo-

tion [3]. Human-in-the-loop architecture was developed in [2], and [10] respectively using

an inverse kinematics scheme and an inverse Jacobian technique (with singularity avoid-

ance) as local controllers. Implementation of Magnetic Resonance Imaging based position

control (utilizing inverse kinematics) is given in [11]. In addition, more advanced control

architectures such as stiffness control [12] have been recently studied in the literature.

In this chapter, the problem of real-time position control in the presence of undesirable

robot deflection is studied. The deflection is caused by: (a) variations in external loading,

and (b) alteration of kinematic behavior of the robot in the presence of external forces.

The ultimate goal is to navigate the robot accurately regardless of external disturbances.

This feature is important in medical applications, where the targeting accuracy strongly

correlates with the performance of the administered therapy. For this goal, deflection of

a concentric-tube robot in the presence of external disturbances is estimated; then, the

desired trajectory is reshaped using the estimated robot deflection in order to compensate

for the effect of varying loading. For this purpose, the interaction force between the robot

tip position and environment should be used in the proposed control architecture. In this

chapter a new scheme is proposed that uses force sensors at the proximal end (close to the

driving unit) of the robot. This removes the need for measuring the force at the distal end

(close to the robot’s tip position) while compensating for the internal forces between the

tubes. This feature is motivated by the fact that having a sensor close to the robot’s tip is

not very feasible in practical application.
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6.2 Forward Kinematics and Jacobian in the Presence of

an External Point Load

Modeling of a concentric-tube robot under an external load has been the subject of sev-

eral research papers [7, 8]. Existing models include distributed wrench to mimic robot-

environment interaction, and apply lumped wrench as boundary conditions to the govern-

ing set of equations. However, due to the limitations of sensing technologies, it is not

feasible to obtain accurate force and torque information along the robot’s shaft, and update

the equations. Computational complexity is also a barrier to real-time implementation in

existing techniques. In the following section, fast forward kinematics and the resulting Ja-

cobian [3] are introduced so as to incorporate the impact of the external load for real-time

trajectory tracking.

6.2.1 Fast Torsionally Compliant Model for the Loaded Robot

According to Cosserat rod theory, a single elastic rod obeys the equations of equilib-

rium [8]:

ṅ(s) + f(s) = 0 (6.1)

ṁ(s) + ṙ(s)× n(s) + l(s) = 0 (6.2)

where m(s) and n(s) are the moment and stress vectors in the cross-section in terms of the

length variable s; f(s) and l(s) are respectively the distributed force and torque along the

rod; and r(s) = [x(s) y(s) z(s)]T is the position vector for a given cross-section repre-

sented in the world frame as shown in Fig. 6.1(a). For an assembly of q tubes, equations

Eqs. (6.1) and (6.2) are extended as follows in which the subscript i denotes the tube num-

ber:
q∑
i=1

(
ṅi(s) + fi(s)

)
= 0 (6.3)
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q∑
i=1

(
ṁi(s) + ṙi(s)× ni(s) + li(s)

)
= 0 (6.4)

Defining Ṁ(s) =
∑q

i=1 ṁi(s) as the derivative of the net moment, and knowing that in the

absence of the external torque, we have
∑q

i=1 li(s) = 0, equation Eq. (6.4) is rewritten as:

Ṁ(s) = −ṙ(s)× Fext (6.5)

where Fext =
∑q

i=1 ni(s) represents the external point force. Thus, the modified forward

kinematics which accounts for the external point load is obtained by adding Eq. (6.5) to the

unloaded structure introduced in [3]. The new model is formulated as shown below:

u̇iz(s) =
kix(s)

kiz(s)

(
uix(s)ûiy(s)− uiy(s)ûix(s)

)
(6.6)

θ̇1(s) =
uix(s)cosθi3(s)− uiy(s)sinθi3(s)

cosθ2(s)
(6.7)

θ̇2(s) = uix(s)sinθi3(s) + uiy(s)cosθi3(s) (6.8)

θ̇i3(s) = uiz(s)− θ̇1(s)sinθ2(s) (6.9)

ẋ(s) = sinθ2(s) (6.10)

ẏ(s) = −sinθ1(s)cosθ2(s) (6.11)

ż(s) = cosθ1(s)cosθ2(s) (6.12)

Ṁ(s) = −ṙ(s)× Fext (6.13)

in which, ûi is the initial curvature value while ui represents its value after conformation.

θ1 and θ2 are the first and second Euler angles shared by all tubes; θi3 stands for the 3rd

Euler angle of the ith tube’s cross-section.

For modeling the kinematics of unloaded concentric-tube robots [9], it was assumed that at

any cross section, bending moment from all tubes were balanced, and so the net moment
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Figure 6.1: (a) A loaded concentric-tube robot consisting of q links or tubes each of which
is composed of p sub-links [3]; (b) the robot’s cross section showing coordinate frames
associated with the 1st and the j th tubes [9].

was zero. To add the impact of the external load to the model, the curvatures in the X and

Y directions are updated in the following manner:uix(s)
uiy(s)

 =
( q∑
j=1

Kj

)−1
(
RT
Z

(
θi3(s)− θ13(s)

)

×
q∑
j=1

RT
Z

(
θj3(s)− θ13(s)

)
Kj

ûjx(s)
ûjy(s)

+RT
i M(s)

) (6.14)

in which, Kj = diag(kjx, kjy, kjz) refers to the stiffness matrix calculated from Young’s

modulus and moment of inertia. The transformation between the body frames of the 1st

and the jth tubes is also represented by a pure rotation denoted by the matrix RZ(αj(s)) in

Eq. (6.14). Herein, αj(s) = θj3(s) − θ13(s) in which 1 ≤ j ≤ q. In addition, Ri is the

rotation matrix between the body frame of the ith tube with respect to the world frame. For
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more details, see Fig. 6.1(b).

Finally, equations Eqs. (6.6)-(6.14) describe the forward kinematics of the concentric-tube

robot in the presence of an external point load on the shaft. Note that except for the curva-

ture variables which are expressed in the body frame {d1(s), d2(s), d3(s)}, other variables

are represented in the world frame shown in Fig. 6.1. A linearization technique is employed

at this point to derive a closed-form solution for the robot’s forward kinematics. Applying

a first-order Taylor series expansion to this nonlinear mapping, we have:
u̇iz(s)

Θ̇(s)

ṙ(s)

Ṁ(s)

 =


g11 g12

g21 g22

g31 g32

g41 g42


1

s

 (6.15)

in which Θ(s) = [θ1(s) θ2(s) θi3(s)]T . The sought piece-wise solution is therefore ob-

tained by integration of Eq. (6.15) with respect to s.
uiz(s)

Θ(s)

r(s)

M(s)

 =


g11 g12

g21 g22

g31 g32

g41 g42


 s

1
2
s2

+


uiz(0)

Θ(0)

r(0)

M(0)

 (6.16)

Subsequently, the robot’s arm is divided into links and small sub-links (see Fig. 6.1(a)), and

the kinematic equations for each segment are derived as described in this section. Succes-

sive approximation is eventually employed to find the forward kinematics of the full robot,

namely, F . The entire procedure has been outlined in detail in [3].
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6.2.2 A Modified Jacobian for the Loaded Robot

Once the closed-form solution of each sub-link is obtained, the forward kinematics F̃ are

differentiated to derive the associated Jacobian matrix J̃ . Compared with the unloaded

concentric-tube robot [3], in the presence of the external point load, one more vector vari-

able, i.e., M , is introduced in the vector Θ. Let us define,

J̃g1 =
[

∂F̃
∂uiz(0)

∂F̃
∂Θ(0)

∂F̃
∂P (0)

∂F̃
∂M(0)

]
(6.17)

J̃g2 =
[
∂F̃
∂H

∂H
∂P1

∂F̃
∂H

∂H
∂P2

... ∂F̃
∂H

∂H
∂Pq

]
(6.18)

where Pj represents the position of the proximal end of the j th tube along the z-axis. More-

over, H is the mapping which projects the Pj elements to each sub-link’s length. Except

for the last sub-link in each link, we have:

J̃ =

 J̃g1 0

0 Iq×q

 otherwise,

 J̃g1 J̃g2

0 Iq×q

 (6.19)

Finally, the relationship between the velocities of the robot’s distal and proximal ends is

established as shown below in which L is the length of the assembled robot:

[u̇iz(L) Θ̇(L) ṙ(L) Ṁ(L)]T =

J [u̇iz(0) Θ̇(0) ṙ(0) Ṁ(0)]T
(6.20)

In Eq. (6.20), the robot’s Jacobian J is obtained by multiplication of individual Jacobians J̃ .

This equation is part of an inverse Jacobian-based scheme for position/orientation control.
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6.3 The Effect of External Loading and a Dual-Layer Con-

trol Approach

In this section, the effect of external loading on the tip position is studied and a dual-layer

control approach is proposed to minimize the impact of external disturbances on trajectory

tracking. Needless to say, the forward kinematics of the robot are not only a function of

the joint variables q but also of the external wrench w. The effect of external loading in the

position domain is called ”deflection” in this chapter. It should be noted that the analytical

inverse kinematics in the presence of an external wrench has not yet been developed for

concentric-tube robots, due to the computational complexity. As a result, it is not possible

to utilize a conventional inverse-kinematic controller in order to eliminate the effect of

external loading and minimize the associated deflection.

In this section, a dual-layer controller consisting of an inner loop and an outer loop is

developed for trajectory tracking in Cartesian space. In brief, the objective of the inner

control loop is to make a new inverse model of the robot in the differential domain and

remove the effect of deflection on the tip velocity. Then, the outer controller transforms

the tracking from the velocity domain to the position domain, and alleviates the impact of

system uncertainties.

6.3.1 The Inner Control Loop

Let us consider the forward differential model of the robot as shown below [13]:

Ẋ = J(q, w)q̇ + C(q, w)ẇ (6.21)

Here, C is the compliance matrix which correlates the derivative of the external wrench

to the robot’s tip velocity. Thus, the tip motion in Cartesian space Ẋ is expressed by

Eq. (6.21) in which the dot denotes the time derivate and C = ∂F
∂w

. This shows that the
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external wrench influences the tip motion through two different mechanisms, namely, the

Jacobian and compliance terms. In order to design a proper control scheme for rejecting

the total effect of the external loading and to have a better insight over the kinematics of

the deflection, the total deflection ∆total can be calculated as:

∆total = ∆1 + ∆2

where, ∆1 =

∫
C(q, w)ẇ dt

∆2 =

∫ (
J(q, w)− J(q, 0)

)
q̇ dt

(6.22)

Therefore, equation Eq. (6.21) is rewritten as Eq. (6.23) which is called the Standard Total

Deflection (STD) model. This representation is close to the standard conventional defini-

tion of arm flexibility in flexible-link manipulators [14, 15].

Ẋ = J(q, 0)q̇ + ∆̇total (6.23)

In the next step, the STD model is employed to design an inverse model-based scheme for

the inner loop controller. To this end, the following alternatives (Type-I and Type-II) are

proposed:

1) Kinematics-based Deflection Estimation and Cancellation (Type-I): Considering the

proposed STD representation, the Type-I control rule Eq. (6.24) can be used to reject the

external load.

q̇des = J(q, 0)−1(Uint − ˆ̇∆total) (6.24)

where Uint represents the controller’s input signal and ˆ̇∆total is an estimation of the rate

of change of the total deflection. ˆ̇∆total is calculated through numerical derivation of the

robot’s forward kinematics considering the loaded and unloaded conditions using the fol-

lowing relationship:
ˆ̇∆total =

d

dt

(
F (q, w)− F (q, 0)

)
(6.25)
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Applying the Type-I control scheme, the robot’s tip velocity Ẋ will converge to the input

of the inner loop Uint which can be considered equal to the desired velocity in the velocity

tracking mode. Consequently, the known nonlinear terms of the robot’s model are elimi-

nated, and the resulting dynamics will be an input-to-output linearized system, shown in

Eq. (6.26).

Ẋ = Uint (6.26)

It is worth mentioning that due to several sources of uncertainty in the system, namely,

those due to the erroneous forward kinematics model ∆F , force measurement errors ∆ω,

and the robot’s unmodeled dynamics, the actual tip velocity ˙̃X does not exactly match the

modeled tip velocity Ẋ . This mismatch is denoted by δ as shown below:

˙̃X = Uint + δ (6.27)

This relationship will be used to design the outer-loop controller which will be introduced

later in this section. The proposed Type-I controller is considered as the inner-layer con-

trol scheme. Note that to benefit from this technique, a numerical derivation of the total

deflection is required which might amplify the noise level. Thus, a Kalman filter is used to

suppress the noise signal.

2) Tip Velocity Measurement for Deflection Cancellation (Type II): Revisiting Eq. (6.21),

the deflection caused by the wrench derivative ∆̇1 can be directly estimated without taking

a numerical derivative and measuring the robot’s tip velocity Ẋmeas as shown below:

C(q, w)ẇ = ∆̇1
∼= Ẋmeas − J(q, w)q̇ (6.28)

Consequently, taking Eqs. (6.28) and (6.21) into account, the Type-II inner-loop is realized

by the following control law.

q̇des = J(q, w)−1
(
Uint −

(
Ẋmeas − J(q, w)q̇

))
(6.29)
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Figure 6.2: Control block diagram for the proposed tracking algorithm.

Using the Type-II controller, the tip velocity measurement is used to cancel out the known

nonlinearity of the robot which yields the same dynamics as those represented by Eq. (6.27).

However, to realize this controller and reject the impact of a varying external disturbance, it

is required to have access to the tip velocity at a sufficiently high sampling rate. In medical

interventions, it is not always feasible to accurately register the tip velocity at a high rate.

Electromagnetic tracking [9, 12], MRI [11], and ultrasound [16] have been widely utilized

for position sensing. However, in most cases, neither accuracy nor the sampling rate is

adequate to estimate velocity for accurate force rejection that has fast dynamics.

6.3.2 The Outer Control Loop

Using the inner control loop, an inverse model-based approach in the velocity domain was

presented to deal with the deflection caused by the external load. In order to a) take ad-

vantage of the proposed technique in position domain and b) alleviate the effect of existing

uncertainties, an outer control loop was added to shape the desired trajectory so as to ad-

just Uint toward tip positioning. It should be noted that since the majority of the system’s

nonlinearity was eliminated through implementing the inner loop at a high update rate, the

proposed outer loop could be run at a low control rate. Consequently, an electromagnetic

tracker providing the position information at a relatively low rate was used in the outer
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loop to reject the undesirable effects of uncertainties while controlling the robot in position

domain. The proposed outer loop controller is designed as follows:

Uint = −K1X̃ +K2Xdes (6.30)

where, K1 and K2 are the design factors for tuning the performance of the closed-loop

system, and will be introduced later in this section. Combining Eqs. (6.27) and (6.30), the

system dynamics are rewritten as:

X̃ =
K2

S +K1

Xdes +
δ

S +K1

(6.31)

in which, S is the Laplace operator. Considering the achieved first-order linear dynamics

between the desired input Xdes and the robot’s tip position X , the outer loop can be de-

signed such that the closed-loop behaves as a fast and stable system. SettingK1 = K2 = k,

the tip tracking system acts as a low-pass filter which has a tunable bandwidth using the pa-

rameter k as well as a unity gain in steady-state. Increasing the value of k makes the system

faster but more susceptible to high-frequency uncertainties and unmodelled dynamics rep-

resented by δ in Eq. (6.31). However, it will in turn increase the magnitude of the applied

input signal to the inner loop Uint, and adversely influence the tracking performance by

saturating the actuators. In summary, Fig. 6.2 depicts the block diagram for the two-layer

closed-loop control system for tip tracking while rejecting or minimizing the impact of the

external force.

6.4 Simulation Study: Trajectory Tracking in the Pres-

ence of a Tip Load

We simulated a two-tube robot whose geometrical parameters and mechanical properties

used for the study are listed in Table 6.3. The lengths of the straight and curved sections of
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Table 6.3: Parameters of the Two-Tube Robot

Tube pair inner outer
l (m) 0.150 0.012
L (m) 0.153 0.153
r (m) 0.250 0.250
Absolute stiffness 0.0413 0.048
value (Nm2)

Figure 6.3: Simulation of the tip position X = [Xx Xy Xz]
T tracking using four control

strategies: (a) unloaded Jacobian, (b) loaded Jacobian J , (c) loaded Jacobian J plus ∆̇total,
and (d) the dual-layer approach.

the tubes are represented by l and L, respectively, and the radius of curvature is denoted by

r. These listed values correspond to the actual parameters of the robotic setup that is used

in the experiments discussed in Section 6.5. The length of each sub-link was also assumed

to be 10 mm.

Fig. 6.3 illustrates the results of our simulation study in which a sinusoidal motion pro-

file with an amplitude of 15 mm and a frequency of 0.05 Hz was applied as the de-

sired trajectory to move the robot in the z direction. In this test, the robot remained

stationary along other axes, and the tip load was also set to have the functional form

fx = 0.2sin(2π × 0.05t)N. Four different control strategies were examined here: (a) the
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Figure 6.4: Simulation of the tip deflection: comparison between the total deflection and
the Jacobian-related component.

inverse Jacobian approach with no load compensation [3] where q̇des = J(q, 0)−1Ẋdes, (b)

the inverse Jacobian approach with only load inclusion where q̇des = J(q, w)−1Ẋdes. The

compliance component, C(q, w)ω̇, is neglected in this architecture. (c) the inverse Jacobian

approach using the inner loop controller defined in Eq. (6.24). The external load is fully

considered and the total deflection is compensated for in velocity mode. (d) the dual-layer

control approach realized by combining Eqs. (6.24) and (6.30). Here, the effects of load-

ing, transformation from velocity mode to position mode, and uncertainties are taken into

account.

As shown in Fig. 6.3, the pure Jacobian-based techniques, i.e., strategies (a) and (b), ex-

hibited poor performance with a maximum tracking error of 7.9 mm along the x-axis.

Inclusion of the inner loop in the controller (strategy (c)) reduced the tracking error to a

great extent. However, there was still a small drifting error which could be a result of the

numerical uncertainties in integration and quantization. Finally, adding the outer loop to

the control structure improved the performance, and demonstrated accurate tip tracking in

the presence of the tip load. Fig. 6.4 shows the total deflection ∆total, and the deflection

component associated with the Jacobian part, ∆2. As can be seen, ∆1 dominates ∆2; so

most of the tip deflection in the case of loading is attributed to the compliance component,
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Figure 6.5: A view of our concentric-tube robotic system.

and that was why ignoring the term C(q, w)ω̇ in the force rejection algorithm led to poor

tracking performance (see (a) and (b) in Fig. 6.3).

6.5 Experimental Study

6.5.1 Setup Description

The experimental evaluation was performed using a concentric-tube robot which consists

of two superelastic Nitinol tubes (see Fig. 6.5). The inset plot in this figure shows the tubes

each of which has a straight section at its proximal end followed by a distal section with a

fixed curvature.

The outer tube was rotated with a rotary T-RS60 stage (Zaber Technologies, Canada) while

the inner tube was respectively inserted and rotated using a linear T-LSR300B stage and

another rotary T-RS60 stage. An Aurora EM (electromagnetic) tracker (Northern Digital
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Inc., Canada) was used for position sensing and validating the forward kinematics. For this

purpose, a sensor coil of the EM tracker was attached to the robot’s tip by a light plastic

adaptor. Also, a metal weight (0.2-0.5 N) was hung from the adapter using a rubber band

to represent the external load. By lifting and dropping the weight, a varying force can be

exerted on the robot. A multi-threaded application was developed using Microsoftr C++,

MATLABr and the QuaRCr Toolbox (Quanser Inc., Canada). The inner control loop was

updated at 500 Hz, while the outer loop was sampled at 40 Hz to measure tip position using

EM tracking.

In order to update the force vector Fext used in the model, a force sensing scheme is needed

that provides inputs to the force rejection controller. Due to practical considerations and

implementation issues (such as limited space on the tip of the robot, need for sensor ster-

ilizability in an actual clinical application, etc.), it is not preferable to install conventional

force sensors, such as strain gauges, directly on the distal end. In this chapter, it is pro-

posed to fuse the measurements of two 6-DOF (degrees-of-freedom) sensors (a two-tube

configuration) mounted at the base of the two tubes. As a result, each sensor measures the

forces acting on the corresponding tube. By fusing these measurements, the friction and

internal interaction forces will cancel each other out and the residual will be the tip force.

In this project two Nano43 ATI sensors were utilized.

6.5.2 Experimental Results

In the first study, the forward kinematics model proposed for the loaded model was vali-

dated. For this purpose, the outer tube was rotated a full turn at 3 o/sec while the external

tip load was set to be fx = 0.5 N. The measured tip position as well as the predicted values

using the loaded model and the unloaded scheme (i.e., based on not considering the exter-

nal load) [3] are shown in Fig. 6.6. The mean-squared errors (MSEs) using the loaded and

unloaded schemes were 1.4 mm and 9.5 mm, respectively.

At this stage, experimental results for pure force rejection (regulation) and trajectory track-
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Figure 6.6: Model validation: comparison between measured and predicted tip positions
using loaded and unloaded schemes.

Figure 6.7: Regulation using the inverse unloaded Jacobian approach [3].

ing are presented. In the first experiment, a time-varying external tip force with an ampli-

tude smaller than 0.5 N along the x-axis was applied. Our first objective was to regulate the

robot so as to reject the external force while maintaining the same tip position. As observed

in Fig. 6.7, the maximum positioning error was reported to be 15.5 mm along the x-axis

while only the robot’s Jacobian was incorporated [3] in the control loop. The maximum
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Figure 6.8: Regulation using the proposed dual-layer control approach.

Figure 6.9: Estimated tip force components during trajectory tracking using the proposed
dual-layer control approach Fext = [Fx Fy Fz]

T .

Figure 6.10: Tip tracking error using the proposed dual-layer control approach.

tracking errors along the y- and z- axes were obtained as 2.3 mm and 1.1 mm, respectively.

Next, the proposed control scheme was examined under the same test conditions in terms

of tip force characteristics. Fig. 6.8 clearly demonstrates the capability of the two-layer

approach to regulate the robot while the tracking error E was limited to [2.2 2.8 0.8]Tmm

during the entire motion.

To perform trajectory tracking under a time-varying tip load, a sinusoidal reference signal

with an amplitude of 10 mm and frequency of 0.05 Hz was applied to move the robot in
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the z direction. The tuning parameter of the outer loop k was set to be 2.5. The estimated

tip force components, Fext, from 100 s to 200 s are shown in Fig. 6.9, and Fig. 6.10 plots

the tracking errors along the three axes. In this experiment, the maximum tip positioning

error in the z direction was approximately 1.7 mm. Since the external load had the largest

magnitude along the x-axis, the robot was initially prone to considerable deflection in this

direction; however, because of the proposed control scheme, perfect regulation limited Ex

to ±1 mm .
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Chapter 7

FBG Sensing in Continuum Robots

Due to their small size and flexibility, fiber Bragg grating (FBG) sensors are very well

suited for integration into needle-sized continuum robots for shape estimation and force

measurement. Two main challenges in extending previous shape and force sensing tech-

nologies to pre-curved continuum robots, such as concentric-tube robots, are measuring

torsion information for accurate shape estimation, and protecting FBG sensors from the

surrounding environment. In this chapter, first, a novel helically-wrapped FBG sensor de-

sign and the corresponding force-curvature-strain model are developed to provide simul-

taneous curvature, torsion and force measurements. To validate this design and modeling

technique, sensorized Nitinol tubes were fabricated and tested in an experimental setup.

The results showed that accurate and sensitive curvature, torsion and force measurements

can be obtained at a 100Hz sampling rate. Secondly, in order to protect the FBG sensors

from the cutting force when used in concentric-tube robots, the manufacture and assem-

bly techniques of a sensorized tube were further improved by putting a protective sleeve

on top of the previous structure. Experimental results showed that the FBG sensor was

well protected and can provide accurate measurements. Finally, the criterion for designing

continuum robots with optimal 3D force sensing capability is studied using mathematical

models and simulations.
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Table 7.1: Nomenclature I

l Length of a helical fiber
lε Length of a strained helical fiber
ls Length of the FBG in a helical fiber
r Radial offset from the fiber to the center of the tube
h Pitch of the helix

εa, εt, εl Axial, shear and total strains in a helical fiber
ε̄a Average axial strain along a helical fiber

w1, w2 Weight of axial and shear strains in εl
Rb Bend radius of a curved tube
τ Torsion in a curved tube
κxy Curvature vector with a magnitude of 1/Rb

αb Direction of the curvature vector κxy
δT Change in temperature
β Thermal sensitivity
b Bend radius of a helical fiber

rs, αs Position vector and orientation angle of the
middle point of the FBG sensor

ru, rl, αu, αl Position vectors and orientation angles of the
start and end points of the FBG sensor

A Matrix that represents the linear mapping between
curvatures and strains

s Arc length
i Tube index

ui(s) = [uix(s), uiy(s), uiz(s)]
T Bending curvature and torsion of the ith tube

ûi(s) = [ûix(s), ûiy(s), ûiz(s)]
T Pre-curvature of the ith tube

Ki Stiffness matrix of the ith tube
kix, kiy, kiz Bending and torsional stiffness of the ith tube

v Poisson’s ratio
Θ(s) = θ1(s), θ2(s), θi3(s) Euler angles of the rotation matrix R(s)

of the ith tube
X(s) = [x(s), y(s), z(s)]T Position vector of the cross-section located at s

M(s) Bending moment vector
RΘ Rotation matrix between the body frames of

the ith and 1st tube
Fext External point force at the tip of the robot

represented in the world frame
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Table 7.2: Nomenclature II

L Total length of the robot
Ltran Length of the straight section of the robot
Lc Length of the curved section of the robot
Ls Arc length from the proximal end of the robot to the location

of the FBG sensor
JM Jacobian matrix of M(L) with respect to M(0)
JC Compliance matrix of [u(Ls),M(L)]T with respect to [M(0), Fext]

T

JCε Compliance matrix of [ε(Ls),M(L)]T with respect to [M(0), Fext]
T

JCX Compliance matrix of ε(Ls) with respect to Fext
d Distance vector from the location of FBG sensor to the robot’s tip
D Skew-symmetric matrix of vector d
n Normal vector of a plane
ε̃l Measured strain in a helical FBG sensor
B Augmented matrix consisting of D and n

7.1 Introduction

Continuum robots are suitable for surgical interventions because of their small size and

flexibility, as well as high dexterity in comparison to conventional minimally invasive tools.

By incorporating curvature and force sensing into the design of a continuum robot, the robot

shape and tissue-robot interaction can be controlled to enhance the efficacy of the treatment

administered and improve patient safety [1–5].

Fiber Bragg grating (FBG) sensors have a high strain sensitivity, signal-to-noise ratio and

sampling rate, and are immune to electromagnetic interference. These sensors also meet

the size constraints imposed by continuum robots in minimally-invasive surgery and for

these reasons have been used in sensing applications for continuum robots.

The 3D shape of needle-based continuum robots is reconstructed from curvature measure-

ments using FBG sensors embedded into the robot’s shaft [6, 7], or a flexible sheath that

can be inserted into the robot’s hollow center [8]. Using this shape information, a flexible

needle can be steered through soft tissue [9], and a cable-driven robot can be positioned
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accurately [10]. For applications that involve large deflections, shape sensing has also been

studied [11]. These works assume that negligible torsion is applied to the flexible robot

during the operation; however, during needle steering and tissue manipulation tasks, the

applied torsion can affect the accuracy of 3D shape reconstruction and the orientation of

the tool tip becomes unknown [12].

Pre-curved tools can enhance directional control and have been used in many applica-

tions, such as CT-guided aspiration biopsy, radiofrequency ablation (StarBurstr, AngioDy-

namics), discography (Pakterr), vertebral body access and infusion during vertebroplasty

(Osteo-Rxr, Cook Medical). In addition, a special type of continuum robot, consisting of

a set of concentrically assembled pre-curved needles, was proposed to provide surgeons

with multiple DOFs in constrained environments [13–16]. The curved structure of these

tools can experience considerable torsion under both force and torque loading. Twisting

FBG sensors in a helical pattern provides both the amplitude and direction of torsion [17],

but the multi-core design gives low sensitivity and is difficult to manufacture. This chapter

proposes a novel technique to provide high sensitivity, accurate torsion measurement on

straight and pre-curved surgical tools and continuum robots.

Force sensing in continuum robots has been studied in [18–20], where the applied force is

estimated from tip deflection or joint-level force information. These works show that the

sensing capabilities of continuum robots are highly dependent on the inherent compliance

of the robot body. For robots that are laterally flexible and axially incompressible it is

difficult to have high quality force measurements in all three dimensions. FBG-based 3D tip

force sensors have been developed for catheter ablation [5] and vitreoretinal surgery [4] by

modifying the axial stiffness of the sensing structures; however, these structures do not have

a hollow center for passing micro-surgical instruments or delivering therapy. A lateral force

sensing system based on FBG sensors was developed for a continuum robot with a hollow

center [3], but the method proposed requires that the sensing structure be initially straight.

Our system focuses on developing high accuracy lateral force measurement on pre-curved

continuum robots, embedding FBG sensors into the robot body to provide dynamic force
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measurement and protect the fibers.

To address the challenge of simultaneously measuring curvature, torsion and applied lat-

eral force on straight and pre-curved continuum robots, the design and manufacture of a

novel helically-wrapped FBG sensing technology is proposed (as shown in Fig. 7.1) and a

force-curvature-strain model is developed. A high-precision custom engraving technique

is designed, and used to create the desired helical grooves on a super-elastic cylindrical

structure. To measure the curvature and torsion in the robot from the strain in the helically-

wrapped fibers a curvature-strain model is developed. Further, a force-curvature-strain

model is derived, incorporating a nonlinear mapping between the tip force and strain in the

FBG sensors. The calculation of the inverse of this model is then proposed to obtain ac-

curate force measurements from the FBG readings with minimal computational cost. The

novel sensing technology and calculation techniques proposed are evaluated experimentally

by embedding three FBG sensors into a pre-curved Nitinol tube at the same cross-section.

The results demonstrate that this technology can provide accurate and sensitive curvature,

torsion and force measurement for continuum robots.

7.2 Design of Helically-Wrapped FBG Sensor

In this section the design of a helically-wrapped FBG sensor is proposed and the criteria for

determining proper FBG sensing elements and helical patterns are described. The model

for accurately measuring curvature, torsion and force from FBG strain values, for pre-

curved continuum robots that are flexible in bending and axially stiff to compression, is

then obtained. In this chapter, torsion will be referred to as the twist angle per unit length

(i.e. rad/m) as defined in differential geometry of curves.



7.2. DESIGN OF HELICALLY-WRAPPED FBG SENSOR 137

7.2.1 Selection of FBG Sensors

There are many parameters to consider when selecting FBG sensors for an application and

the most pertinent parameters to this helical pattern design are the sensor length, reflec-

tivity, maximum strain and minimum bend radius. For flexible robots, the curvature and

torsion continuously change along the robot body, especially when the robot is exposed

to large bending. It is known that FBG sensors may output distorted or split-peak spectra

under uneven strain distribution. For this reason, the FBG sensor should be short enough

that it behaves as a point-strain sensor; however, the sensor’s Full-Width-Half Maximum

bandwidth increases as the sensor length shortens, causing a decrease in the signal-to-noise

ratio. Generally speaking, optical fibers with FBG segments cannot survive a bending ra-

dius under 10 mm without signal loss. Draw Tower Gratings (DTG), which are formed by

writing the FBGs during the fiber drawing process, are an exception as the fiber can sup-

port higher strain such that the bend radius can be approximately 3 mm without noticeable

loss of signal strength. The drawback of this technology is that the reflectivity for short

DTGs (1 mm) is only 0.5%. For this work, an FBG sensor (Technica S.A., China) with a

1 mm length, 50% reflectivity, 17 mm minimum bending radius, 125 um diameter, and 1%

strain range was chosen, based on the requirements of the application and the analysis of

the experimental results shown below.

7.2.2 Curvature-Strain Model for Helical FBG sensors

In a helical layout, the strain in the FBGs is not in the same direction as the axial or shear

strain in the tube. As such, a new model must be derived that relates the bending curvatures

and torsion in the tube to the strain in the FBG sensors. In this chapter this relationship is

termed the curvature-strain model.

In Fig. 7.1(a), the helical fiber is flattened into a right triangle on a plane. The width equals

the circumference at radius r, where r represents the radial offset from the fiber to the
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Figure 7.1: Demonstration of the curvature-strain model for helical-wrapped FBG sensors.
κxy is the curvature vector commonly used for representing the bending radius and the
direction of bending. uxy is the curvature vector used for deriving the curvature-strain
model presented in this work. Note that ||uxy|| = ||κxy|| = Rb.

center of the tube and h is the pitch of the helix.

The length of the helical fiber can be calculated as:

l =
√

(2πr)2 + h2 (7.1)

When the tube has an axial strain εa, and shear strain εt, the height and the width will

become (1 + εa)h, (2πr + εth), respectively. The resulting strain in the fiber is shown in
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Eq. (7.2), where the length of the strained fiber is denoted by lε.

εl = (lε/l)− 1 (7.2)

lε =
√

(2πr + εth)2 + (1 + εa)2h2 (7.3)

Eq. (7.2) reveals the nonlinear relationship between the strain in the tube and those in the

FBG sensors, but this nonlinearity complicates the derivation of the curvature-strain model

and makes the inverse calculation difficult. In practice, the effective strain measurement

range of an FBG sensor is within 1%, which means both εa and εt are always small values

(< 0.01). Therefore, Eq. (7.2) can be linearized with respect to (εa, εt) at the point (0, 0):

εl ≈ w1εa + w2εt (7.4)

w1 = h2/l2, w2 = 2πrh/l2 (7.5)

w1 andw2 can be interpreted as the weight of εa and εt in the resultant εl. The ratio between

w1 and w2 represents the axial to shear sensitivity of the FBG sensor:

w1/w2 = h/(2πr) (7.6)

It can be seen that when h = 2πr, the helical FBG sensor will be equally sensitive to

axial and shear strain. By changing the pitch of the helix h for a given tube diameter, the

sensitivity of the sensor in each direction can be tuned. Eq. (7.7) gives the bend radius of a

helix, and h should be chosen to guarantee that the bending radius b is always larger than

the minimum bending radius of the FBG sensor.

b = (r2 + (h/2π)2)/r (7.7)

Eq. (7.4) relates strain in FBG sensors to the axial and shear strain in a tube. To complete

the curvature-strain model, a mapping from the bending curvatures and torsion in the tube
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to the axial and shear strain are needed:

εa = ||(uxy − ûxy)× rs|| (7.8)

εt = (uz − ûz)r (7.9)

where

uxy =

ux
uy

 , ûxy =

ûx
ûy

 , rs =

r cos(αs)

r sin(αs)

 (7.10)

ûx and ûy are the bending pre-curvatures and ûz is the pre-torsion within the tube. ux, uy

and uz are the curvatures and torsion under deformation. rs and αs are the position vector

and orientation angle of the FBG sensor. These variables are defined in the body frame at

a cross-section along the centerline, as shown in Fig. 7.1(b). A detailed explanation of ux,

uy and uz, as well as the coordinate system used can be found in [16].

In the curvature-strain model above, uxy is defined using the bending curvature convention

of the Cosserat rod theory. This is suitable for force estimation in large deflecting beams,

but not convenient for use with current shape reconstruction algorithms. Fig. 7.1(b) shows

the bend radius Rb, and direction of curvature αb, which are the commonly used definitions

for bending curvature in shape reconstruction. Following this convention, the axial and

shear strain can be calculated as:

εa = r

(
sin(αb)

Rb

− sin(α̂b)

R̂b

)
= r

sin(αb)

Rb

− ε̂a, εt = (τ − τ̂)r (7.11)

where τ is the torsion with respect to the centerline, and 1/R̂b and τ̂ are the pre-curvature

and pre-torsion. The relationship between the two sets of bending curvature and torsion

conventions is:

τ = uz, Rb =
1

‖uxy‖
, αb = αs − arctan

(
uy
ux

)
(7.12)
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ux = cos(αs − αb)/Rb, uy = sin(αs − αb)/Rb (7.13)

Combining Eqs. (7.4), (7.8) and (7.9) or Eqs. (7.4) and (7.11) results in the curvature-

strain model for each FBG sensor. A set of linear equations can be formed to give the

relation between curvature and torsion, and the strain in the three helically-wrapped FBG

sensors, as shown in Eq. (7.14):

εil = w1ε
i
a + w2ε

i
t, i = 1, 2, 3 (7.14)

where i represents the index number of each FBG sensor. By solving these equations, the

curvature and torsion measurements are obtained. For example, if Eq. (7.11) is substituted

into Eq. (7.14):

ε1
l = w1(r sin(α1

b)/Rb − ε̂1
a) + w2(τ − τ̂)r

ε2
l = w1(r sin(α2

b)/Rb − ε̂2
a) + w2(τ − τ̂)r, α2

b = α1
b + 120◦ + ε21

ε3
l = w1(r sin(α3

b)/Rb − ε̂3
a) + w2(τ − τ̂)r, α3

b = α1
b + 240◦ + ε31

(7.15)

The equations above assume three helically-wrapped FBG sensors, spaced 120◦ apart, are

used for measuring the bending curvatures and torsion. However, due to difficulties in

placing each FBG at an exact orientation, error terms ε21, and ε31 should be introduced,

and estimated more accurately through calibration. Solving Eq. (7.15) gives an analytical

expression for α1
b , Eqs. (7.16) and (7.17). Rb and τ can then be found through substitution

into Eq. (7.14):

α1
b = − arctan

(
Rbεr(ε̂

3
a − ε̂1

a) +Rb(ε̂
1
a − ε̂2

a)− sin(α3
b − α1

b)εr + sin(α2
b − α1

b)

− cos(α3
b − α1

b)εr + cos(α2
b − α1

b) + εr − 1

)
,

(7.16)

εr =
ε2
l − ε1

l

ε3
l − ε1

l

(7.17)

Strain sensors are also influenced by temperature, and a temperature term can be added

to Eq. (7.14) to provide a temperature-compensated curvature-strain model, as shown in
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Eq. (7.18):

εil = δTβ + w1ε
i
a + w2ε

i
t, i = 1, 2, 3, 4 (7.18)

where δT is the change in temperature and β represents the thermal sensitivity. It is pro-

posed that a fourth fiber with a helical pitch different from the pitch of the other three fibers

be added to measure temperature through coupled sensor calculations.

7.2.3 FBG Sensors under Uneven Strain Distribution

For applications that require high resolution measurements, the assumption that a helically-

wrapped FBG experiences the same strain along the sensing segment will not hold any

more. To deal with this situation, the effects of the strain variations in a FBG sensor is

modeled in this subsection. ε̄a is defined as the average strain along the hellically-wrapped

FBG sensor, which can be formulated as follows:

ε̄a =

∫ αu

αl

εa(α)dα

/
(αu − αl) (7.19)

In which,

αu − αl =
2πls
l

(7.20)

where αu and αl are the orientation angles of the start and end points of the FBG sensing

segment. ls is the length of the FBG. By solving Eq. (7.19), the analytical expression of the

bending strain is obtained:

ε̄a =
(uxy − ûxy) · (rl − ru)l

2πls
(7.21)

The torsion of the shaft remains almost the same along the FBG sensing segment, so the for-

mulation for calculating torsional strain is still valid. Combing Eqs. (7.4), (7.9) and (7.21)

results in the improved curvature-strain model. It can be seen that this model still presents

a linear relationship between the curvature of the robot and strain of FBGs, thus can be
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Figure 7.2: (a) The dashed lines are the strain values calculated from the previous model
in subsection 7.2.2; the solid lines are from the new model; (b) the time-varing force that
applied at the tip of the robot.

summarized as a simple algebraic equation:

εl = A(u− û) (7.22)

where u = [ux, uy, uz] is the vector that contains curvatures and torsion values and A is the

matrix that converts them into strain values.

To visualize the differences between the previous and the improved models, simulations

were performed using a planar tube with 1/0.15 m−1 bend radius, and 0.040 m−1 bending

stiffness. A sinusoidal force [Fx = sin((t−π/2)π/18), Fy = sin(tπ/18), Fz = 0.5 sin((t+

π)π/18)]T was applied at the tip of the robot and the strain outputs from the two proposed

curvature-strain models were calculated and plotted in Fig. 7.2. The FBG sensor was at

0.020 m along the robot shaft, and the total length of the tube was 0.157 m. The dashed

lines are the values from the previous model and the solid lines are from the new model. In

this chapter, since all the experiments used FBG sensors with 1 mm sensing segment, the

differences between these two models are negligible.
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7.2.4 Force-Curvature Model of a Single Super-Elastic Tube

The curvature-strain model derived in subsection 7.2.2 relates the strain in the FBG sensors

to the bending curvatures and torsions in the continuum robot. To model the relation-

ship between the force at the tip of the robot and the strain in each FBG, it is necessary

to develop a force-curvature model that can be used in conjunction with the curvature-

strain model. Kinematic models of concentric-tube robots have been proposed to calcu-

late the positions, orientations, curvatures and torsion of any points along the super-elastic

robot [13, 14, 16]. In the authors’ previous work, a computationally efficient kinematic

model was proposed [16], and presented as follows for a single tube:

θ̇1(s) =
ux(s) cos θ3(s)− uy(s) sin θ3(s)

cos θ2(s)
(7.23)

θ̇2(s) = ux(s) sin θ3(s) + uy(s) cos θ3(s) (7.24)

θ̇3(s) = uz(s)− θ̇1(s) sin θ2(s) (7.25)

ẋ(s) = sin θ2(s) (7.26)

ẏ(s) = − sin θ1(s) cos θ2(s) (7.27)

ż(s) = cos θ1(s) cos θ2(s) (7.28)

Ṁ(s) = −ṙ(s)× Fext (7.29)

where X(s) = [x(s), y(s), z(s)] is the position and Θ(s) = [θ1(s), θ2(s), θ3(s)] is the

orientation for a given cross-section along the centerline of the tube. M(s) consists of the

bending and torsional moments attributed to the point force Fext applied at the tip of the

robot. The four above mentioned variables are defined with respect to the world frame. The

space variable s represents the arc length measured from the proximal end of the tube. The
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bending curvatures and torsion of the robot under loading can be calculated as follows:

uxy(s) =

ux(s)
uy(s)

 = k−1
x

(
kx

ûx(s)
ûy(s)

 +RT
ΘM(s)

∣∣∣
xy

)
(7.30)

uz(s) = k−1
z [0 0 1]TRT

ΘM(s)
∣∣∣
z

(7.31)

where kx and kz = kx/(1 + v) are the bending and torsional stiffness defined in the body

frame and their values are coupled through Poisson’s ratio v. RΘ is the rotation matrix of

the body frame relative to the world frame. More details about this model can be found

in [16]. A piece-wise linearization technique is applied and leads to a quasi-analytical

solution for the robot’s forward kinematics (denoted by Kine):

[Θ(s) M(s)]T = Kine(Θ(0),M(0), Fext) (7.32)

The two-point boundary conditions Θ̃(0) and M̃(L) = 0 (L is the total length of the robot

body), and tip force Fext are the inputs of this kinematic model. The solutions [Θ(s)

M(s)]T are iteratively solved using the shooting method. The updating strategy in each

step is:

∆M(0) = J−1
M

∥∥∥ M̃(L)−M(L)

∥∥∥ (7.33)

JM =
∂M(L)

∂M(0)
(7.34)

JM is derived and evaluated in the same fashion as the Jacobian matrix discussed in the

authors’ previous paper [16]. Combining Eqs. (7.32), (7.33) and (7.34), the curvature and

torsion at any point along the centerline of the robot can be calculated. By setting the

arc length equal to the location of the FBG sensors Ls, the curvature and torsion at that

position u(Ls) is obtained. Connecting the force-curvature and curvature-strain models

together results in a complete force-curvature-strain model.
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7.2.5 Strain-Force Calculation

The force-curvature-strain model is a ”forward” calculation. In other words, it provides

the amount of strain in each FBG given the tip force. To calculate the tip force from the

FBG strain readings, the ”inverse” calculation needs to be developed. The inverse of the

force-curvature model is found by altering the boundary conditions of Eq. (7.32) such that

the input to the model consists of curvatures and the output is the force measurement.

Specifically, the boundary conditions become Θ̃(0), M̃(L) = 0 and ũ(Ls), and the outputs

are [Θ(s),M(s)], u(s) and Fext. In this way, solving Eq. (7.32) is a three-point boundary

value problem, and the updating strategy becomes:

∆M(0)

∆Fext

 = J−1
C

 ũLs − u(Ls)

M̃(L)−M(L)

 (7.35)

where JC is the Compliance matrix of [u(Ls),M(L)]T with respect to [M(0), Fext]
T , which

can be derived as follows:

JC = [JCu JCM ]T (7.36)

JCu =
[
∂u(Ls)
∂Θ(Ls)

∂u(Ls)
∂M(Ls)

] ∂Θ(Ls)
∂M(0)

∂Θ(Ls)
∂Fext

∂M(Ls)
∂M(0)

∂M(Ls)
∂Fext

 (7.37)

JCM =
[
∂M(L)
∂M(0)

∂M(L)
∂Fext

]
(7.38)

It is also possible to merge the strain-curvature calculation into this procedure such that

the strain-curvature-force relationship can be solved at once. Assuming that the measured

strain values are ε̃l, the updating strategy becomes:

∆M(0)

∆Fext

 = J−1
Cε

 ε̃l − ε(Ls)

M̃(L)−M(L)

 (7.39)

JCε =

[
∂εl
∂u

JCu JCM

]T
(7.40)
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Figure 7.3: Signal flow digram for Strain-Force Calculation. The boundary conditions in
red blocks are the inputs of the model chain. One of the outputs of this calculation is the
tip force measurement (the blue block).

where ∂εl/∂u is derived from Eq. (7.4) and JCε is the Compliance matrix of [ε(Ls),M(L)]T

with respect to [M(0), Fext]
T . The complete force-curvature-strain model and its inverse

calculation are shown in a signal diagram in Fig. 7.3.

7.3 Engraving Helical Grooves on Super-elastic Nitinol Tubes

Embedding helically-wrapped strain sensing fibers into continuum robots is an effective

solution for obtaining curvature, torsion and force measurement. However, there are many

challenges in engraving precision grooves into the surface of flexible tubes including work-

piece fixation, accurate depth of cut control, precision profiling and smooth surface fin-

ishing. Straight surface slots have been created using micro-milling, laser cutting and

electrical-discharge machining (EDM) but each of these methods have deficiencies in heli-

cal and patterned slot formation for FBG fixation. Micro-milling requires the workpiece to

be rigidly constrained as the forces required to remove material bend the tube and straight-

slot reinforcement techniques cannot be applied for helical cutting. Laser etching elimi-

nates cutting force concerns and six-axis systems can be used to make various patterns,

though the laser needs to be quite powerful to penetrate deep enough into Nitinol to make
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FBG slots, making the depth of cut difficult to control and the surface finish quite rough.

These deficiencies create strain measurement inaccuracy, and safety concerns when in-

stalling the micron-scale fibers. Wire-EDM can meet the accuracy and surface finish spec-

ifications, and is also a low force machining method; however, the need to pass the wire

from one end of the workpiece to the other restrains pattern design. The degrees of freedom

offered by commercial systems further limits grooving to straight configurations.

The limitations of current machining techniques motivated the design of a novel three-axis

engraving system for machining patterns on cylindrical structures, such as rods and tubes.

To ensure repeatability, accuracy and quality surface finishing the main focus of this system

was to constrain a flexible rotating and translating cylindrical workpiece while minimizing

the force required in removing material. To meet these objectives a fixed block with a

hollow bore was created to provide constant support to the workpiece and a machining

system incorporating milling and turning techniques was designed for low-force material

removal, as shown in Fig. 7.4. The system removes material by advancing the workpiece

through the precision bore in the block and onto a depth-controlled spinning end mill,

while rotating the workpiece along its longitudinal axis as desired for patterning. The end

mill is inserted through a separate hole in the block with a wide-angle entry that is used

for the application of pressurized air and lubricating coolant throughout the machining

process. This reduces tool wear and workpiece torsion, improving cutting accuracy and

surface finish. A conical extrusion was added to the block to observe the tool-workpiece

interface in real-time through a microscope as shown in Fig. 7.4(b) and (c). The block

was made from 3D-printed ABS to damp vibrations, create a low friction surface and ease

manufacturing as a new block should be used when changing the tube diameter. Although

the ABS block provided satisfactory support to bending, it was still important to reduce the

cutting force required to prevent torsion, local tube deformation and vibration so a spinning

end mill (944215-C6, Harvey Tool, United States) with ideal feed rate and RPM parameters

was used. The machining apparatus itself was constructed from modular aluminum base

plates from which two high accuracy, large workspace linear stages (T-LSR300B, Zaber
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Figure 7.4: (a) The CAD model of the engraving system. (b) A magnified view of the
support block. (c) The 3D-printed support block. (d) The actual customized engraving
system.

Technologies, United States), and the workpiece support platform were mounted. A rotary

stage (T-RS60A, Zaber Technologies, United States) and a rotary spindle (200 series rotary
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tool, Dremel, United States) were then mounted to the linear stages to create a portable

system. To ensure depth of cut accuracy equal to the linear stage resolution a multimeter

continuity test was used to probe for contact between the end mill and workpiece. After

machining the workpiece the surface finish was found to be smooth from visual and tactile

inspection, and the pitch of the helical slots and the distance between the slots were accurate

as validated using digital calipers. Fig. 7.4(b) and (d) show the results of the engraving

process.

7.4 Experimental Validation on a Single Tube

To validate the proposed embedded sensing technology and modeling techniques described

above, a series of experiments were performed on both straight and pre-curved Nitinol tubes

with embedded FBG sensors.

Three helical slots are engraved on the surface of both Nitinol tubes using the customized

engraving system. Both tubes have dimensions of 90 mm (length) x 2 mm (outer diameter)

x 1 mm (inner diameter) to meet general size constraints for needle-based therapies. The

wall thickness was chosen to safely embed the optical fibers into grooved slots. The opti-

cal fibers were bonded into each helical slot with Cyanoacrylate adhesive (10810, Elmers

Products Inc., United States). The grooves are 0.35 mm deep, and 0.4 mm (1/64′′) wide

for the straight tube and 0.8 mm (1/32′′) wide for the curved tube to accommodate enough

space for the adhesive to secure the fiber. The liquid adhesive provides a thin film bond

between the glass fiber and Nitinol tube to ensure the two materials of similar elastic mod-

ulus (or greater for Nitinol), strain by the same amount. The pitch of each helical slot is

23 mm, resulting in a bending radius of 21 mm for each optical fiber when the tube is not

under deformation.

As shown in Fig. 7.5, the proximal end of each tube was fixed to a rotary stage to evaluate

the resolution and accuracy of curvature, torsion and force measurements for the sensorized
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robot at all possible orientations. A commercial FBG interrogator (SM130, Micron Optics,

United States) was used to obtain the reflected wavelength of each FBG at a 100 Hz sam-

pling rate.

7.4.1 Validation on Straight Tubes

The Nitinol tube in the first set of experiments is initially straight, and the tube is fitted with

a 5 mm FBG segment bonded into one of the helical slots.

Measuring Torsion

To demonstrate the effectiveness of the helical design for torsion sensing, as shown in

Fig. 7.5(a), the distal end is attached to a rigid fixture while the proximal end is rotated

by the motorized stage at a constant speed. The strain values, calculated from the FBG

sensor wavelengths, are plotted as the stage is rotated clockwise from its neutral position

(Fig. 7.6(a)) and then counter-clockwise from its neutral position (Fig. 7.6(b)). A linear

best-fit line is plotted on top of the strain-torsion measurements to show that the strain in

the FBG sensor is proportional to the torsion as described in Eq. (7.9). The strain/torsion

ratio is 0.0185 and 0.0196 for clockwise and counter-clockwise rotation and the small dif-

ferences are due to the asymmetrical nature of the helical structure.

Spectrum Distortion under Large Bending

Helically-wound fibers with long FBG segments are prone to peak-distortion under large

bending due to the uneven distribution of strain within the FBG segment. There is no ac-

curate model, to date, that can relate this phenomenon with the parameters of the FBG

sensor and helical pattern. Experiments were performed to conduct a qualitative analysis

for choosing the appropriate FBG sensor length based on the resolution required and cur-

vature experienced. The rigid fixture at the distal end of the tube was removed and several
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Figure 7.5: (a) Experimental setup for straight-tube torsion validation. (b) Magnified view
of fiber embedded in grooved tube. (c) Experimental setup for pre-curved tube analyses.
The robot base denoted (Xr, Yr), and is rotated −45◦ with respect to the world frame (Xw,
Yw). (d) Magnified view of the pre-curved tube with helical grooves.

calibration weights were placed at the tube tip to generate various bending curvatures at

the FBG sensor location. The tube was rotated through one full rotation and showed a

smooth trigonometric signal for weights under 40g. At weights above 40g, the peak began

to broaden causing signal distortion, as can be seen in Fig. 7.7(a) and (b). A short FBG

sensor can be used to avoid this problem, but the signal-to-noise ratio decreases since the

Full-Width-Half-Maximum bandwidth of the FBG sensor is related to the length of the
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Figure 7.6: The torsion measurements (blue) when the motorized stage rotates in a clock-
wise direction (a) and a counter-clockwise direction (b). The red lines are the linear best-fit
to the measurement data.

sensing segment. As shown in Fig. 7.7(c), when both sensors were bonded to a flat static

structure, the noise from a 1mm FBG sensor (blue) is significantly larger than that of a

5mm sensor (red). From the discussions above, it can be concluded that long FBG sensors

will provide better resolution, but short sensors will allow for larger curvature and force

measurement.

7.4.2 Validation on Curved Continuum Robots

The Nitinol tube in the second set of experiments was heat-treated into a planar curved

shape (ûx = 0, ûy = 1/0.15 rad/m, ûz = 0). Three optical fibers, each with a 1mm FBG

segment, were hand-laid into the machined slots at the same cross-section, 50 mm from the

distal tip. The angular position αis and radial offset ri of each FBG sensor, as well as the

Poisson’s ratio of the manufactured tube, were identified using the calibration technique

explained below.

Calibration Method

A 120 g calibration weight was placed on a 2.6 g pulley at the tip of the curved tube while

the motorized stage rotated 360◦, as shown in Fig. 7.5. The wavelength sampled from the

FBG sensors was compared with the wavelength calculated by the force-curvature-strain



7.4. EXPERIMENTAL VALIDATION ON A SINGLE TUBE 154

Figure 7.7: (a) Demonstration of the effects of increased bending on the distortion of the
FBG sensor output signal. (b) An example of a reflected spectrum with peak distortion. (c)
Comparison between the noise from a 1 mm FBG (blue line) and a 5 mm FBG (red line).

Table 7.3: Parameters of the Helically-Wrapped FBG Sensors

h (mm) ri, i = 1, 2, 3 (mm) αis, i = 1, 2, 3 (◦) v

23 0.75, 0.75, 0.72 115, 235, 347 0.6

model to account for inaccuracies in the FBG sensor hand lay-up. The desired FBG sensor

angular positions (120◦ apart) and radial offset (0.73 mm) were reasonably well met after

tuning between the sampled data to calculated data. After tuning, the overall Poisson’s

ratio was higher than that of Nitinol, and can be attributed to the machined helical grooves.

The resulting parameter values are presented in Table 7.3, and the sampled and calculated

wavelengths for each sensor are displayed in Fig. 7.8.

It can be seen that the maximum and minimum values for the blue curve, as well as the

green curve, do not have the same amplitude, the peak-to-peak amplitude varies between

fibers, and the phase difference between the fibers does not fully correlate with the specified
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Figure 7.8: The solid lines are the wavelengths reflected from three FBG sensors that are
helically-embedded in a curved tube. The wavelength output of each FBG was biased at
the beginning of the test. The dashed lines are the corresponding values from the force-
curvature-strain model using the calibrated parameters listed in Table 7.3.

angular position values. This anisotropic behavior is caused by pre-curvature and torsional

loading, which motivated the development of our nonlinear force-curvature-strain model

for accurate measurements.

Measuring Curvature and Torsion

To generate continuously-varying bending curvatures and torsions in the shaft of the Nitinol

tube, a series of weights were placed on the pulley on the distal end of the tube, while the

proximal end rotated one full revolution. Finite element analysis showed the proximal end

of the tube could yield at 200 g, so a maximum weight of 150 g was used. The curvature-

strain model was then used to obtain curvature and torsion measurements from the FBG

sensor strain data sampled at 100 Hz.

There was not a straightforward way to directly validate the torsion and bending measure-
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Figure 7.9: The solid lines represent the measured curvature and torsion values using
helically-wrapped FBG sensors. The dashed lines are the theoretical values calculated from
the model described in subsection 7.2.4. (a) plots the measured and theoretical values of
(ux− ûx) under a series of loading; (b) and (c) display (uy− ûy) and (uz− ûz), respectively.
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Figure 7.10: Demonstration of the accuracy and repeatability in bending curvature and
torsion measurement. A weight of 100 g was used at the distal tip of the pre-curved Nitinol
tube for (a), (b) and (c). A weight of 50 g was used for (d), (e), and (f). The red, blue, and
green solid lines are the measurements of ux, α1

b , and τ , divided by the theoretical value. A
ratio of 1 between the measured and theoretical value is denoted by a dashed line.

ments at arbitrary cross sections of the pre-curved tube, so an evaluation method similar

to [7] was used to calculate these values. The Cosserat modeled curvature and torsion val-

ues were compared with the measured values provided by the FBG sensors and the results

are shown in Fig. 7.8. The errors for curvature and torsion measurement (exu, e
y
u, e

z
u) under

each weight are summarized in Table 7.4. It can be seen that the RMS errors of curvature

measurements are 2% − 4% of the total range measured. The bending curvature measure-

ments show less noise than the torsional measurements because of the pitch chosen, which

is limited by the sensor minimum bend radius.

To assess the hysteresis of bending curvatures and torsion measurement in the pre-curved

Nitinol tube, the proximal end was rotated through a full revolution, with a 100 g weight,

then a 50 g weight, suspended by the pulley at the distal end. The measurements of ux, uy,

uz, αb, Rb and τ were collected. These curvature and torsion values were compared with
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Table 7.4: Errors in Curvature and Torsion Measurements

Weights (g) Max exu, e
y
u, e

z
u (rad/m) RMS exu, e

y
u, e

z
u (rad/m)

20 + 2.6 0.0170, 0.0183, 0.0457 0.0057, 0.0084, 0.0104
50 + 2.6 0.0252, 0.0321, 0.0386 0.0096, 0.0140, 0.0131
100 + 2.6 0.0485, 0.0788, 0.0575 0.0178, 0.0324, 0.0230
130 + 2.6 0.0647, 0.0921, 0.0555 0.0288, 0.0398, 0.0227
150 + 2.6 0.0753, 0.1115, 0.0616 0.0326, 0.0470, 0.0278

the theoretical values from the mechanics-based model discussed in subsection 7.2.4. The

ideal ratio of experimental to theoretical values is 1. This procedure generated large vari-

ations in ux, uy, τ (uz), and αb, and minimal variation in Rb. The resulting measurements

are plotted in Fig. 7.10 for ux (a, d), α1
b (b, e), and τ (c, f). The measurements for ux and

uy are quite similar, and the performance of Rb will be evaluated in the next experimental

set. The bending curvature measurements show high accuracy and repeatability using both

curvature-strain models, and torsion measurements show reasonable accuracy and repeata-

bility and are affected mostly by hysteresis and noise. Based on the specific application

of this technology, the helical pitch, sensor location, and pre-curvature can be modified to

improve torsion accuracy, and resolution. The hysteresis may be due to nonlinearities in

the shear moduli of this Nitinol tube caused by in-house heat treatment, which was not

included in the mechanics-based model.

The resolution of this sensing technology was evaluated by suspending a series of weights

incrementally at the distal tip of the Nitinol tube and observing the smallest distinguishable

measurements for curvature and torsion. The base of the tube was orientated at 45◦ from

the direction of gravity such that tip loading would cause both bending and torsion at the

sensing location. The Nitinol tube was kept stationary during this experiment to avoid

vibrations from the motor or weights. First, a set of weights with small increments (120 g,

130 g, 135 g, 137 g, and 138 g) were used for testing the resolution of bending curvatures,

shown in Fig. 7.11(a, b), and torsion, shown in Fig. 7.11(c). The smallest distinguishable

bending curvature measurements are 0.012 rad/m for ux, and 0.016 rad/m for 1/Rb. A
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Figure 7.11: Demonstration of the resolution in bending curvature and torsion measure-
ments. The pre-curved Nitinol tube was positioned at 45◦ relative to gravity and weights of
120 g, 130 g, 135 g, 137 g, and 138 g were suspended at the tip in (a), (b) and (c). Weights
of 70 g, 100 g, 120 g, and 137 g were used for (d), (e), and (f). The red and blue lines show
the measured bending curvatures, ux, 1/Rb. The green lines show the measured torsion, τ .
The yellow line denotes the mean value at each incremental load over 5 seconds.

second set of weights with larger increments (70 g, 100 g, 120 g, and 137 g) was used to

increase the torsion signal, since the resolution of torsion could not be clearly seen with

the first weight set. The bending curvatures are plotted in Fig. 7.11(d, e), and the torsion

is plotted in Fig. 7.11(f). The smallest distinguishable torsion measurement, τ , is 0.022

rad/m.

Measuring Lateral Forces

In addition to obtaining curvature and torsion measurements during the above experiments,

the lateral tip force was calculated based on the force-curvature-strain model. Force mea-

surement is accurate to within 5% of the total range measured throughout all configurations

of the pre-curved Nitinol tube, as shown in Fig. 7.12. The small errors, especially near 220◦,
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Figure 7.12: The red lines represent the amount of gravity force applied at the tube tip while
the motorized stage rotates a full revolution. The blue lines are the force measurements in
the direction of gravity (Fx) while the green lines are the force measurements in the other
direction (Fy).

Figure 7.13: Two set of weights were put on the tube tip to test the resolution of the pro-
posed force sensing technolgoy. In (a), the weights are 120g, 130g, 135g, 137g, 138g. In
(b), the weights are 70g, 80g, 85g, 87g, 88g. The blue lines are the measured forces using
FBG sensors and the red lines are the theoretical gravity values.

can be attributed to unmodeled nonlinearites and inaccuracies in calibrated parameters and

tool fabrication. Similar error amplitudes are found in both lateral directions (exF , eyF ) and

the weights used and the errors exF are presented in Table 7.5.

To demonstrate the resolution of this sensing technology, a series of weights was incre-



7.5. DESIGN OF A SENSORIZED CONCENTRIC-TUBE ROBOT 161

Table 7.5: Errors in Force Measurements

Weights (g) 22.6 52.6 102.6 132.6 152.6
Max exF (gf) 2.12 2.23 5.13 5.47 7.07
RMS exF (gf) 0.87 0.92 1.97 2.07 2.62

mentally added to the pulley at the distal tip of the robot, with the robot at a fixed angle of

45◦. It can be seen from Fig. 7.13(a) that the resolution is better than 0.01N as the system

clearly distinguish between 1g weights. A separate series of weights was then used for this

experiment and Fig. 7.13(b) shows the consistency in performance.

7.5 Design of a Sensorized Concentric-Tube Robot

In the previous sections, a single tube continuum robot was sensorized to measure force

and torque by embedding FBG sensors in a helical slot on the outer surface of the shaft.

This section presents an enhanced design that extends this technique to Concentric-Tube

Robots (CTR) with multiple tubes. The proposed design fully protects the fiber from being

severed by cutting forces (the force present at the edge of the outer tube as it moves across

the surface of the inner tube). Experimental results are presented that demonstrate the

sensitivity and accuracy of force measurements of a sensorized CTR.

7.5.1 Design and Fabrication of a Sensorized Tube Assembly

The general design concept of a sensorized CTR is shown in Fig. 7.14. FBG sensors are

sandwiched in a sensorized tube assembly, to provide shape and force measurements dur-

ing the robot motion without getting damaged. The sensorized tube assembly has five

components: FBG sensor, sensor carrier, protective sleeve, protective housing, and mount-

ing plate. These components and their assembly are shown in Fig. 7.15. The sensor carrier
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Figure 7.14: Demonstration of the design concept of a sensorized concentric-tube robot.

is a pre-curved Nitinol tube with engraved helical slots. The protective sleeve is a thin-

walled Nitinol tube that protects the FBGs from cutting forces and pressure points without

significantly increasing the robot diameter as compared to alternatives such as plastic tubes

or polytetrafluoroethylene (PTFE) heat shrinks. In addition, using the same material as the

other tubes simplifies the mechanics-based strain-force model. To avoid discontinuities in

the sensing signal and minimize pretension, the protective sleeve is made with the same pre-

curvature as the sensor carrier. The sleeve diameter is also slightly larger than the carrier

diameter to avoid damaging the fibers during assembly. Based on previous experiments, we

chose a clearance of 0.15 mm (diameter) between these tubes. A draw tower grating FBG

sensor (FBGS Technologies, Germany) with a 3 mm sensing segment and 125 m diameter

is bonded into the helical slots of the sensor carrier with cyanoacrylate adhesive (10810,

Elmers Products Inc., United States). The protective housing is rapid prototyped from ABS

plastic and is used to hold the protective sleeve and to protect the exposed section of the

fiber. The mounting plate uses set screws to holds the sensor carrier in the desired orienta-

tion and connects the assembly to the drive unit. The CTR used in the experiments consists
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Figure 7.15: The sensorized tube assembly and components.

of the sensorized tube assembly shown in Fig. 7.15 and a straight outer tube, as shown in

Fig. 7.17(a). The drive unit uses commercial linear stages (MXE, Tolomatic, United States)

and rotary stages (FHA-mini, Harmonic Drive, United States). As presented in [5], the lo-

cation of the FBG sensor, the stiffness of the outer tube and sensorized tube, and the overall

Poisson’s ratio were calibrated by attaching a 50g weight to the robots tip, and rotating the

sensorized tube over a full 360 revolution as shown in Fig. 7.17(b).
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Figure 7.16: Illustration of the sensitivity of the sensorized CTR in force sensing

7.5.2 Experimental Validation on a Concentric-Tube Robot

To demonstrate the sensitivity of the developed sensorized CTR, a piece of printing paper

was used to gently press the robot’s tip several times. From the signals shown in Fig. 7.16, it

can be seen that the reflective wavelength response strongly to the paper touching force. To

assess the effect of the cutting force on the FBG sensor, the sensorized tube was moved in

and out by a linear stage at a speed of 3 mm/s, while the outer tube was held stationary. The

reflected wavelength of the FBG sensor was recorded during this time for further analysis.

To assess the performance of the proposed sensing technology, vertical and horizontal loads

were applied at the tip of the robot in two consecutive tests as shown in Figs. 7.17(b)

and (c). In the vertical loading tests, a series of weights (30g, 40g, 45g, 47g, 48g) were

applied incrementally at the robots tip. The reflected wavelength from the FBG sensor was

recorded and converted to force values. The strain-force calculation used in this work is

an extension of the algorithm presented in [5], so as to make applicable to CTR with more

than a single tube. The accuracy in the horizontal direction was evaluated by manually

pulling the tip of the robot using a string attached to a commercial force/torque sensor
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Figure 7.17: (a) The experimental setup for force sensing calibration and validation; (b)
vertical loading senario; (c) horizontal loading scenario.

(Nano17, ATI Industrial Automation, United States). The force measurements from the

sensorized robot and commercial sensor were recorded simultaneously. For both tests, the

robot was stationary (with the orientation shown in Figs. 7.17(b), (c)) and the FBG sensor

was sampled at a rate of 100 Hz.

7.5.3 Results and Discussion

Fig. 7.18 shows the FBG sensor response when the sensorized tube was moved in and out

of the outer tube. During the movement, the FBG response is continuous and smooth, in-

dicating that the cutting force and pressure from the tube interactions are well distributed
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Figure 7.18: The wavelength output when the inner tube translates relative to the outer tube
(biased at the beginning).

Figure 7.19: Comparision of the theoretical force values (red) and the measured force
values from the sensorized CTR (blue).

by the protection sleeve. It is important to note, that the reflected wavelength shows large

changes before the FBG is fully inside the outer tube. This behavior seems to contradict

the usual assumption that a CTR will have a discontinuous change in curvature at the distal
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Figure 7.20: Comparision of the force values measured using Nano17 (red) and the sen-
sorized CTR (blue).

edge of the outer tube. This finding suggests the need for a further investigation in mod-

eling CTR. Fig. 7.19 shows the performance of the proposed sensing technology when the

robot is under vertical loading. It can be seen that the force resolution is better than 1 gf.

The maximum and RMS error were 0.05 N and 0.03 N, respectively. Under horizontal

loading, the force measurements calculated from the FBG signal match the force/torque

sensor readings accurately, as shown in Fig. 7.20. The maximum errors occurred at the

peak force values (Fig. 7.20, detail view), where some high frequency disturbances were

introduced by hand tremor during manual manipulation of the force/torque sensor. The

magnitude of these errors does not jeopardize the application of this technology for med-

ical interventions. The maximum and RMS errors in this test were 0.06 N and 0.02 N,

respectively. This technology is currently being used in our lab for haptics enabled CTR.

7.6 3D Force Sensing in Pre-curved Continuum Robots

For axially stiff robotic tools, such as da Vinci instruments and interventional needles, 3D

force sensing has remained a big challenge, since the deformations in the axial direction
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under loading are mostly below the measurement range of strain sensors. On the other

hand, in pre-curved robots, the axial forces (defined in the tip frame) can generate bending

effects on the robot shaft in the same way as lateral forces. This feature makes it possible to

obtain 3D force sensing in this particular type of robot. In this section, the problem of 3D

force sensing in pre-curved continuum robots is modeled mathematically and studied using

numerical simulations. The results of the study consists of a design criterion for choosing

the locations where strain sensors need to be placed in order to achieve optimal sensing

performance.

7.6.1 An Alternative Method for Strain-Force Calculation

An alternative strain-force calculation approach is developed, which decomposes the three-

point boundary value problem into two two-point boundary value problems. This new

method is compatible with the majority of the forward kinematic models proposed for con-

tinuum robots in the literature and not only limited to the author’s previous models. More

importantly, this method provides an explicit force-curvature-strain relationship, which is

the key knowledge in analyzing 2D and 3D force sensing problems discussed in the fol-

lowing subsections.

The alternative method is built on the assumption that the robot is quasi-static at any mo-

ment during the deflection caused by an external force. Since the force-curvature model

proposed in subsection 7.2.4 does not consider any dynamic effects of the continuum robot

either, this assumption will not decrease the accuracy of the results compared to the previ-

ous method. Following this assumption, the bending moment at a certain sensorized cross-

section should be equal to the torque generated by the tip force, which can be described as

follows:

RT
Θ(Ls)K(u− û) = d× Fext = DFext (7.41)

d = X(L)−X(Ls) (7.42)
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D =


0 −dz dy

dz 0 −dx
−dy dx 0

 (7.43)

in which u and û are the curvature and pre-curvature vectors. RT
Θ(Ls) is the rotation matrix

between the body frame at the sensorized cross-section and the world frame. d is the

distance vector starting at the location of the FBGs and ending at the robot tip.

Eq. (7.41) presents an explicit expression of the relationship between the tip force and

the curvatures and torsion of the robot at the sensorized cross-section, which can be used

for curvature-force calculation when combined with the forward kinematics of continuum

robots as shown in Fig 7.21(a). Due to the cross product on the right side of Eq. (7.41),

the curvature-force calculation has infinite number of solutions. Hence, the curvature and

torsion values from a single cross-section are not enough to calculate 3D forces. This

conclusion could not be obtained directly from the previous strain-force model presented in

subsection 7.2.5, since all the formulas are implicit; however, simulation and experimental

results based on that method strongly support this conclusion.

Given Fz = 0, Fx and Fy are solvable, which results in the following updating strategy for

solving Fext in each iteration:

∆Fext

∣∣∣
xy

= D†1,2R
T
Θ(Ls)K(ũLs − u(Ls)) (7.44)

where D1,2 denotes the first and second rows of D. The updating strategy for strain-force

calculation becomes:

∆Fext

∣∣∣
xy

= J†CX(ε̃l − ε(Ls)) (7.45)

JCX = A−1K−1RΘ(Ls)D1,2 (7.46)

It should be noted that D is calculated from the forward kinematics as shown in Eqs. (7.42)

and (7.43) . The signal flow of the two strain-force calculation methods are presented
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Figure 7.21: Signal flow diagram for two strain-force calculation methods. (a) Previous
strain-force calculation method. (b) Alternative Strain-force calculation method. The red
blocks represent the inputs of these calculations and the blue ones are outputs.

in Fig. 7.21. It can be seen that the first method has only one step, where three boundary

conditions are used together to solve Fext. On the other hand, the second method consists of

two steps, boundary conditions θ(0) and M̃(L) are used to obtain the intermediate variables

X(L) and X(Ls), then the boundary conditions θ(0) and ε̃l are brought into the calculation

to finally solve Fext. The computational cost of the latter method will be higher because of

the two-step architecture.
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Simulations were designed to assess the performances of the two proposed strain-force

calculation methods. The signal flow of these simulations are shown in Fig. 7.22(a). At

first, sinusoid forces were applied on a continuum robot, causing strains in two FBG sen-

sors installed on a single cross-section. These strain values of the FBGs were calculated

from the forward force-strain model in subsection 7.2.4 and are plotted in Fig 7.22(b). The

parameters of this continuum robot and the locations of the FBG sensors are listed in Ta-

ble 7.6 (tube 1). Then based on the FBG strain values, force measurements were obtained

by using the two proposed strain-force calculation methods, as presented in Fig 7.22(c).

White noise was added to the strain signals (after 18 seconds in Fig. 7.22(b, c)), to eval-

uate the performance of strain-force calculations under disturbances. The sinusoid forces

used for testing the first and second strain-force calculation methods were Fext = [sin((t+

2π/3)π/18), sin(tπ/18)] and [0.5 sin((t+2π/3)π/18), 0.5 sin(tπ/18)], respectively. From

Fig. 7.22(c), it can be seen that both methods can obtain accurate force measurements. It

also shows that the signal-to-noise ratio of these force measurements was similar to that

of the FBG signals. In other words, the noise of FBG sensors was not amplified in force

measurements.

7.6.2 Multi-Plane 2D Force Sensing

The definitions of lateral and axial forces are clear for a straight robotic tool as shown in

Fig. 7.23(a). In this case, forces in the axial direction do not generate enough strains for the

current sensing technology to detect. However, for a pre-curved robotic tool, the direction

of its axis continuously changes, making the definitions of lateral and axial forces to be

dependent on the particular cross-section. Furthermore, forces in all three directions Fx, Fy

and Fz can generate enough strain signals on FBG sensors. Hence, FBG sensors installed

on a single cross-section of a pre-curved robotic tool can measure 2D forces that are not

contained in the (x, y) plane.

To address the problems of measuring arbitrary 2D forces (out of the (x, y) plane) for pre-
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Figure 7.22: Demonstration of the performances of the two proposed strain-force calcula-
tion methods with and without added noise. (a) The signal flow of the simulations. (b) The
strain values of the FBG sensors when the robot is under load. (c) Force measurements
using these strain-force calculation methods developed.

Table 7.6: Parameters of the Tubes for Simulation Studies

Ltran L1
s (mm) L2

s (mm) Rb Lc (mm) k (1/m)
Tube 1 0 20 N/A 150 150 ∗ pi/4 0.040
Tube 2 0 20 80 150 150 ∗ pi/4 0.020
Tube 3 100 0 100 50 50 ∗ pi/2 10
Tube 4 100 0 100 50 50 ∗ pi 10

Ltran is the length of the straight section of the tube; Lc is the length of the curved
section of the tube; Lis is the location of the ith FBG sensor on the tube.

curved robotic tools, the strain-force calculation proposed in subsection 7.6.1 is further

generalized. A force vector in a plane that is defined by a normal vector n is presented as:

< n, Fext >= 0 (7.47)
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Figure 7.23: Lateral and axial forces for straight robotic tools (a) and pre-curved robotic
tools (b).

where <> represents the inner product of two vectors. Fext is a 3D vector but we use it

to represent a 2D force since its elements are constrained by Eq. (7.47). By adding this

equation into Eq. (7.41), it is possible to solve for all three components of Fext. Based on

this modification, the updating strategy for the strain-force calculation becomes:

∆Fext = J†CX(ε̃l − ε(Ls)) (7.48)

JCX = A−1K−1RΘ(Ls)B (7.49)

where,

B =


0 −dz dy

dz 0 −dx
−dy dx 0

nx ny nz

 (7.50)

In order to have an unique solution of ∆Fext, the rank of the matrix B should be three,

which requires that there is at least one set of three linearly independent rows. Considering

rows 1, 2 and 4 as an example of a set of linearly independent rows, the determinant of the
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matrix:

B1,2,4 =


0 −dz dy

dz 0 −dx
nx ny nz

 (7.51)

is:

dz(dxnx + dyny + dznz) (7.52)

In order for the determinant to be non-zero, the following relationship should hold:

< d, n > 6= 0 (7.53)

If a different set of three rows is used such as 1, 3 and 4 or 2, 3 and 4, the same result as in

(7.53) is obtained. Note that rows 1, 2 and 3 are linearly dependent - they form a 3×3 skew-

symmetric matrix of rank 2. The inequality (7.53) indicates the observability conditions of

force sensing, when a single sensorized cross-section is used. Specifically, when the force

vector is in a plane parallel to the distance vector d, the force cannot be decoupled, or

observed. In the rest of this chapter, we define the term ”unobservable planes” to denote

the planes containing or being parallel to the plane containing the vector d. There is an

infinite number of unobservable planes for each d.

A graphical representation of unobservable forces is shown in Fig. 7.24. In all three figures,

both force components Fx and Fy can generate exactly the same bending and torsional

effects on the sensor cross-section. It is impossible to uniquely decouple the force vector

into two directions.

7.6.3 Robot Design for Optimal 3D Force Sensing

In order to solve the 3D force sensing problem in a pre-curved continuum robot, a method

for decoupling the unobservable 2D forces must be developed, because a 3D force vector

always has a projection on at least one of the unobservable planes. In this subsection, we
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Figure 7.24: Three examples of unobservable forces. In these cases, the force vector cannot
be decoupled into two elements by using strain sensors on a single cross-section.

will discuss the technique of using FBG sensors on multiple cross-sections to decouple

unobservable forces, and achieve 3D force sensing.

Inequality (7.53) demonstrates that the observability of force sensing is purely determined

by the position vector between the sensorized cross-section and robot’s tip (d). This vector

exists in the force-curvature relationship but not in the curvature-strain model. Hence, in

the following derivations for 3D force sensing, only the force-curvature model is used,

omitting the curvature-strain model for simplicity.

The feasibility of calculating 3D force from the curvature information of two sensorized
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cross-sections was studied in simulations, as shown in Fig.7.25, where a periodic 3D force

(Fext) was applied on a flexible robot (tube 2 in Table 7.6). The signal flow of this sim-

ulation is illustrated in Fig. 7.25(a). Firstly, the curvatures at two cross-sections of this

robot were calculated by using the force-curvature model presented in subsection 7.2.4

(Fig. 7.25(b, e)). Then these curvatures were mixed with a certain amount of noise and

converted back to the force measurements (F̃ext) using the proposed curvature-force cal-

culation methods discussed in subsections 7.2.4 and 7.6.1. Since these two methods gave

similar results, only the outputs of the second method were plotted (Fig. 7.25(c, f)). It can

be seen that when the magnitude of noise is zero (Fig. 7.25(b, c, d)), the inverse calcu-

lation can achieve accurate force measurements. This indicates that it is possible to use

sensors on two cross-sections to obtain 3D tip forces. However, when a small amount of

noise (compared to the magnitude of the curvature signals) is added on top of the curva-

ture signals (shown in Fig. 7.25(e)), the force measurements contains a large amount of

noise which significantly reduces their resolution and accuracy. Furthermore, as shown in

Fig. 7.25(f, g), the noise level was correlated to the condition number of JCX in Eq. (7.46).

The relationship between the noise amplification and condition number will be modeled

and analyzed in detail in the following paragraphs.

A pre-curved tube with sensors installed on two cross-sections is used to analyze the above

mentioned noise amplification, as shown in Fig. 7.26(a). The curvatures of the robot at the

sensorized cross-sections have the following relationship with the tip force:u1 − û1

u2 − û2

 = JCXFext (7.54)

JCX = K−1

−dy1 dx1

−dy2 dx2

 (7.55)

In this example, ui is a scalar that represents the bending curvature; ûi indicates the cor-

responding pre-curvature; Fext and d are 2D vectors that represent the tip force and the
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Figure 7.25: Simulation studies for 3D force sensing, using curvature measurements of
two sensorized cross-sections. (a) Simulation signal flow. (b, c, d) Simulation results when
the noise level is zero. (e, f, g) Simulation results when the noise level is around 2% of
the curvature signals. (d, g) Condition numbers of JCX in Eq. (7.46), which is the update
strategy for the strain-force calculation.



7.6. 3D FORCE SENSING IN PRE-CURVED CONTINUUM ROBOTS 178

Figure 7.26: Pre-curved continuum robots with multiple sensorized cross-sections for 2D
or 3D force sensing. The red marks represent the sensorized cross-sections.

tip-sensor distance, respectively. The subscript i is the index of the cross-section. All the

variables are defined with respect to the world frame.

The condition number of JCX is the dominant factor in determining the noise amplification

of the curvature-force calculation. Two simulation studies were performed to demonstrate

the relation between the condition number of JCX and the noise level in force measure-

ments. The signal flow of these simulations is shown in Fig. 7.25(a). A time-varying force

is applied to tube 2 and tube 3 (Table 7.6), which share the same stiffness and sensor loca-

tions, but with different condition numbers of the matrix JCX . It can be seen that in both

cases noise signals are amplified compared to the noise level of the curvature signals, but

the one with the higher condition number (5.8) amplifies the noise signal much more than

the one with the lower condition number (2.6).

To reduce noise amplification, the relative distance between robot’s tip and the sensorized

cross-sections (represented by vector di) should be designed carefully, such that the condi-
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Figure 7.27: Demonstration of the relation between condition number and noise amplifi-
cation in curvature-force calculations. (a) The condition number is 2.6; (b) the condition
number is 5.8.

tion number of JCX is close to one. When JCX is an orthogonal matrix, i.e.,

JTCXJCX = I (7.56)

then the condition number of JCX is one. Substituting Eq. (7.55) in Eq. (7.56), results in

the following condition for the optimal tip-sensor configuration:

||d1|| = ||d2||, < d1, d2 >= 0 (7.57)

The equation above shows that if the locations of the robot’s tip and the two sensor cross-

sections can form an isosceles right triangle with the robot’s tip as the apex, then the noise

amplification can be eliminated. Eq. (7.57) can be used as a design criterion for sensorized
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Figure 7.28: Condition number map for designing the shape of a sensorized continuum
robot; (a) two sensorized cross-sections for measuring 2D unobservable forces; (b) two
sensorized cross-sections for 3D force sensing; (c, d, e) three sensorized cross-sections for
measuring 2D unobservable forces.

pre-curved continuum robots if 3D forces sensing is necessary for the targeted application.

This criterion is obtained from 2D force measurements, but can be generalized into the

condition for 3D force, in which di is a 3D vector.

Eq. (7.57) gives the optimal tip-sensor configuration for 3D sensing, but in many appli-

cations, a certain amount of noise amplification is acceptable, depending on the required

resolution. Hence, a map of condition numbers was numerically calculated and plotted as a

reference tool for designing the shape of a sensorized robot, based on the condition number.

As shown in Fig. 7.28, the white dots are the positions of sensorized cross-sections, and

the color at each point in space represents the condition number of JCX when the tip of the

robot is at that location. The colors in this map vary from dark blue to red, corresponding

to the condition numbers varying from 1 to 10.

From Fig. 7.28(a, b), it can be seen that the 3D map is the result of the rotation of a 2D
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map with respect to the centerline connecting two sensorized cross-sections. In order to

measure 3D forces (or unobservable 2D forces) without high noise amplification, the shape

of the continuum robot needs to be curved more than 180 degrees. Continuum robots such

as needles or concentric-tube robots usually do not have a bending curvature as big as the

one shown in Fig. 7.28(a), but for many cardiac ablation catheters this is quite common.

Fig. 7.28(c, d, e) show that adding more sensing points along the body of the robot does not

necessarily improve the condition number or reduce the noise level. In the sensor layouts

presented in Fig. 7.28(c, d, e), the third sensorized cross-section actually makes the dark

blue region become smaller, which means that the robot’s body has to bend more to obtain

reasonable signal-noise ratio.

7.7 Conclusions

In this work a sensing technology was proposed for simultaneous curvature, torsion, and

force measurement of continuum robots for surgical applications. The sensing structure

designed is composed of FBG sensors embedded into helical grooves in the robot shaft.

A novel engraving system was developed, which provided high accuracy for a wide range

of helical patterns. A nonlinear relationship (termed the force-curvature-strain model) was

derived to obtain measurements from FBG strain readings. The sensing technology was

validated using experimental setups for straight and pre-curved tubes under torque and lat-

eral loading conditions that resulted in large bending and torsion. The results obtained

showed that this novel sensing technology provides real-time, simultaneous curvature, tor-

sion and force information with high precision, resolution and sampling rate throughout all

robot configurations.

This technology is generalized to a concentric-tube robot by adding a protective layer be-

tween the inner and outer tubes, such that the cutting forces generated from robot’s move-

ments cannot damage the FBG sensors. Experimental results showed that the sensorized
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concentric-tube robot is able to provide high speed and resolution force measurements.

The problem of 3D force sensing in pre-curved continuum robots was studied via math-

ematical modeling and simulations. The results showed that when the body of the robot

has a significant amount of bending, it is possible to decouple force measurements in all

three dimensions. A design criterion and a condition number map were obtained, which are

essential tools in designing continuum robots with high quality 3D force sensing abilities.
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Chapter 8

Conclusion and Future Work

8.1 Concluding Remarks

This thesis started with a review of the state of art in the field of concentric-tube robots,

with a focus on modeling, control and sensorization problems. It was noted that many fun-

damental theoretical problems for CTRs such as, kinematic modeling, position control and

intrinsic sensing had not been sufficiently well addressed in the literature on CTRs. This

has prevented CTRs from being used effectively in practical medical applications. There-

fore, in the author’s opinion, solving the problem of kinematic modeling should have top

priority since the development of various control and sensing algorithms depend on it. In

this thesis, first, a computationally efficient kinematic model of CTRs was proposed. This

then enabled us to make theoretical contributions in a number of research topics on CTRs,

including position control, kinematic instability analysis and strain-force modeling for in-

trinsic force sensing. In addition, this thesis presented our contributions in technological

advancements in CTRs, including shape setting, engraving, sensorization of Nitinol tubes

and drive unit prototyping. These novel technologies could play an important role in the

future design of CTRs for practical applications. The following paragraphs summarize the

contributions and provide concluding remarks for each chapter:
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• Chapter 2 presented the design and fabrication of CTRs and its drive units. It was

shown that for shaping Nitinol tubes in a laboratory environment, a 1/2 inch thick

low-carbon steel plate can be used as the mold material. The design of a desktop

micro-engraver capable of making helical patterns on thin-walled Nitinol tubes with

high precision was also presented. Three robotic prototypies were designed for driv-

ing CTRs in different applications. The third design achieved a good combination of

cost efficiency, compactness, and functionality.

• Chapter 3 showed that piecewise linearization was an effective method in solving

the kinematics of CTRs. Using this method, our proposed kinematic model can be

implemented at 1 kHz using MATLAB and the QuaRC tool box [1, 2]. A higher com-

putation speed can be achieved by programing this model in C++. In general, the loss

of accuracy lost for our model was less than 0.1 mm compared to the most accurate

models in the literature [3, 4]. The high accuracy and computational efficiency of

our model is especially useful in real-time applications, such as teleoperation, online

motion planning, and interactive robot design for CTRs.

• Chapter 4 described the Jacobian matrix derived from the forward kinematic model

proposed in the Chapter 3. This Jacobian inherits the computational efficiency of the

kinematic model. As a result, the proposed Jacobian-based position controller can

be implemented at a high servo rate as well. A robot prototype with four motorized

stages was used to test the position control algorithm in experiments. The results

showed that the robot can follow pre-defined trajectory accurately in 3D space while

also avoiding singularity regions. The fast forward kinematics and the corresponding

Jacobian matrix will be particularly useful in future developments of complex con-

trol algorithms for CTRs, such as impedance control, force control and redundancy

resolution.

• Chapter 5 modeled and analyzed the property of kinematic instability in CTRs. By

analyzing the uniqueness of the solutions to the forward kinematics of CTRs, a set of
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close-formed stability conditions were obtained. A few CTRs with different param-

eters (curvature, length, stiffness, etc.) were used in simulation studies to evaluate

the effectiveness of the proposed conditions. The results showed that when the robot

did not satisfy the stability conditions, the tip of the robot could jump from one posi-

tion to another with very little motion of the motors. These conditions have explicit

expressions which provide an intuitive interpretation of stability in relation to the

robot parameters. Using these conditions as inequality constraints, an optimization

algorithm can be developed for designing CTRs with optimal stability for a given

workspace.

• Chapter 6 proposed a loaded kinematic model of CTRs and a force-rejection con-

troller for position tracking under a time varing force disturbance. Two sets of con-

trol experiments were performed to assess the proposed model and controller. The

first one was tip position regulation and the second one was trajectory tracking. In

both tasks, the errors were less than ±1 mm. The disturbance forces were gener-

ated by moving a weight up and down, which was attached at the tip of the robot.

The frequency of the external forces was still quite low, less than 0.5 Hz, limited by

the speed of the drive unit and the accuracy of the force sensors. Further evaluation

of this method is needed for medical applications with high frequency disturbances,

such as thoracic and beating heart surgeries.

• Chapter 7 presented the design of a sensorized CTR using helically-wrapped FBG

sensors. This special sensor layout can provide simultaneous curvature, torsion, and

force measurements for CTRs. This design was first implemented on a single pre-

curved tube robot to evaluate its feasibility. Three helically slots were engraved on

the surface of a Nitinol tube for embedding FBG sensors. A series of bending and

torsional loading tests were performed in experiments. The results showed that the

curvature and torsion of this tube can be measured accurately. These curvature and

torsion values can be related to the tip force through the kinematic model developed
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in Chapter 6. This curvature-force calculation was formulated as solving a three-

point boundary-value problem for the loaded kinematic model. Experimental results

demonstrated that this force sensing technique provided a resolution of 0.1 N at 100

Hz sampling rate on a single-tube robot. The proposed sensorization technique was

generalized to CTRs with multiple tubes. In order to protect the FBG sensors from

the “cutting forces” resulting from other tubes, a protection sleeve was slid on top

of the FBG sensors. Experiment showed that a sensorized CTR consisting of two

tubes had similar sensing performance as the above mentioned single-tube robot. 3D

force sensing for continuum robots was discussed in the last part of this chapter. It

was shown that 3D force sensing is feasible, but often results in poor accuracy due to

noise amplification in the strain-force calculation. A design criterion was developed

for designing robots with an optimal force sensing capability. The simulation results

showed that 3D force sensing can be achieved with high accuracy for robots designed

using this criterion.

With regard to the research topics covered in this thesis, the following are the main contri-

butions:

1. Kinematic modeling of CTRs: We developed a computationally efficient torsionally

compliant kinematic model and its associated Jacobian matrix for CTRs. This ap-

proach enables researchers to adapt control algorithms from rigid-link robotics to

CTRs without worrying about the computational cost.

2. Stability analysis for CTRs: A general design criterion was developed that can guar-

antee stability of a CTR in its entire workspace. This stability condition is valid for

CTRs having an arbitrary number of tubes, with or without transmission segments.

3. Position control under time-varying loading: A force-rejection control scheme based

on a loaded kinematic model was developed. Using this approach, CTRs can be used

in applications involving tool-tissue interactions.
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4. Micro-machining of thin-walled Nitinol tubes: A specialized Swiss-type desktop

micro-engraver was developed, which can generate helical patterns on flexible thin

tubes. Creating complex 2D/3D patterns is also possible using this machine.

5. FBG-based shape and force sensing for continuum robots: Helically-wrapped FBG

sensors were embedded into the walls of continuum robots in order to obtain simul-

taneous curvature, torsion, and force information.

6. A sensorized concentric-tube robot: FBG sensors were integrated into a multiple

tube CTR for force sensing. These sensors were well protected from the cutting

forces between the moving tubes in a CTR. 2D and 3D force sensing problems of

continuum robots were addressed.

7. Drive Unit designs for CTRs: three prototypes were built for different applications

of CTRs. The most recent prototype is one of the most cost effective and compact

CTR designs in the literature. This portable device is low-cost (less than $1200) and

can be easily integrated with other robotic platforms.

8.2 Suggested Future Work

Since CTRs are at an early stage of development, there are many directions that future

research can take to improve the technology. A brief overview of several interesting topics

is as follows:

8.2.1 Modeling and Control

• Nonlinear elasticity modeling: Current torsionally compliant kinematics present poor

accuracy when the tubes have high curvatures. This is mainly because one of the most

important mechanical effects is missing in the model, which is nonlinear elasticity.
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By including this feature into our previously developed fast model, we will be able

to substantially improve the accuracy of the kinematics, while still ensuring the real-

time performance.

• Shape control of CTR: In several CTR applications, not only the tip position of the

robot is important, but also the entire shape. For this situation, a control algorithm

that can command the positions of multiple points along the shaft of the robot will

be required. This has not been reported in literature so far. A large number of tubes

may be used in a CTR for shape control, depending on the complexity of the desired

shape for the specific application.

• Distributed force control: For some surgical tasks, the effectiveness of the treatment

is directly influenced by the amount of force applied over time, for example, cardiac

ablation. This requires the tip force to be well regulated to a constant value. At the

same time, the force along the robot body should be as small as possible to avoid

tissue damage. A control scheme that can regulate the contact force at the tip and

along the robot body should be developed.

• Needle insertion: Previous studies have ignored the interaction forces between tubes

and tissue when inserting a CTR as a steerable needle. This is not valid when the

tubes are very flexible or the tissue is relatively stiff. Since the mechanical behavior

of biological tissues is time-varying and highly nonlinear, advanced control algo-

rithms should be developed for proper deployment of the robot.

8.2.2 Technological Improvements

• An electric tube shaping setup: To date, there are no conclusive results on the optimal

design of a CTR for a given clinical application. This means that several iterations

of building a CTR may still be needed to find a reliable design rule. Until then, the

demand for shaping Nitinol tubes will increase with time. Therefore, a reliable device
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Figure 8.1: Conceptual design of an electric tube shaping setup.

that quickly and repeatedly shapes Nitinol tubes will be important for a research lab

to succeed in CTR research. An electric shaping method will be a better choice

than traditional methods such as air ovens and sand baths, in terms of the cost and

flexibility. A conceptual design of an electric tube-shaping setup is shown in Fig. 8.1.

• 3D printed tubes: 3D printing would be an ideal option for making patient-specific

CTRs. It also gives the possibility to add complex geometric features on the surfaces

of the tubes to enhance their functionality. However, commercially available printers

cannot build thin tubes with the strength required for CTRs. With the current devel-

oping speed of 3D printing technologies, it can be foreseen that 3D printed CTRs

will be developed in the near future.

• Patterned concentric tubes: Cutting well designed patterns on the surface of Nitinol

tubes will give the robot many extra features. It would have the potential to reduce

friction between the tubes, increase flexibility in certain directions to avoid damage,

and change the overall stiffness by matching or mismatching the patterns on different

tubes.
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• Further development of the CTR drive unit: As mentioned in Chapter 2, very few

designs of the CTR drive unit have considered the sterilization problem. But it is

one of the most important features for a medical device designed for clinical use.

Designing a drive unit that can detach the tubes and associated mechanisms for the

sterilization process will be a necessary step for bringing CTRs into the operating

room.

• Shape and force sensing for CTR with complex curvatures: In this thesis, only one

cross-section of the CTR was sensorized for curvature, torsion and force sensing.

For CTRs with complex shapes, to obtain accurate shape information or distributed

force measurements, FBG sensors have to be embedded into three or four different

cross-sections. The performance of a sensorized CTR with numerous FBG sensors

will need further evaluation.

• Interventional OCT imaging probe: OCT (Optical Coherence Tomography) provides

high quality images with resolution similar to histology. But interventional applica-

tions are still limited to vascular systems because the probe is often designed as a

catheter. OCT technology combined with CTRs could give clinicians access to deep

lesions inside organs, thereby helping in diagnostic procedures. Surgeons may not

need to perform traditional biopsies in some cases. Instead, visual biopsies could be

done through OCT imaging since the image quality is good enough for diagnosis.

• Virtual Operating Room (VOR): A virtual environment could be useful as a visual-

ization tool for demonstrating the potentials of CTRs in medical applications. Using

a VOR, surgeons can be included in the initial phase of the robot design, to ensure

that the robot can be seamlessly integrated into the workflow of the operating room.

An example of a VOR is shown in Fig. 8.2. This VOR was developed in Unity, which

is becoming the main platform for Virtual Reality (VR) or Augmented Reality (AR).

A CAD model of our CTR prototype was added in this environment, as shown in

Fig. 8.2(b). This VOR can be projected onto VR or AR glasses to give an immersive
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Figure 8.2: (a) Full size virtual operating room developed in Unity (purchased from Unity
Asset Store). (b) Magnified view of the virtual CTR developed by our group.

experience to the user, which could be helpful for both robotic research and surgical

training purpose.

8.2.3 Clinical Applications

• Bronchoscopic biopsy and Radio Frequency (RF) ablation: RF ablation is a suitable

treatment for lung cancer because of its ability to neutralize the tumor inside the

lung, eliminating the need for lobectomy. Bronchoscopic RF ablation is less invasive

than inserting the needle from the chest, such that the procedure does not require an
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Figure 8.3: Needle-tipped catheter for intramyocardial injection

operating room. By incorporating CTRs in conventional bronchoscopes, even the

peripheral tumors can be reached under video/CT guidance. In addition, umbrella-

shaped RF needles can be carried by CTRs and inserted into the tumor to enlarge the

ablation region.

• Intramyocardial injection (for treating reversible myocardial ischemia): percutaneous

cardiac catheterization methods and devices are being actively investigated as a means

to deliver cellular products. Current research in this area is focused primarily on

the development of cardiac catheters and methods that can provide targeted delivery

of high concentrations of cell suspensions to specific regions of the myocardium.

One example of needle-tipped catheters for intramyocardial injections is shown in

Fig. 8.3. CTRs will performance much better than catheters for repeated multiple

injections.
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Appendix A

Sensorization of a Surgical Robotic
Instrument for Force Sensing

A surgical robotic system could substantially benefits from force sensing technologies,

especially for applications that require high performance position and force control. In

Chapter 7, it can be seen that Fiber Bragg Grating (FBG) sensors have many advantages

over commercial force/torque sensors (Nano43, ATI Industrial Automation, United States)

for sensorizing concentric-tube robots. In this appendix, as an extension of Chapter 7,

we present the development and application of FBG sensors for a general purpose robotic

instrument (Large Needle Driver, Intuitive Surgical, United States). This sensorized instru-

ment showed a resolution of 0.05 N at 1 kHz sampling rate. It is compatible with the da

Vinci Surgical System and can be used for skills assessment and force control in specific

surgical tasks. The performance of the sensorized instrument was evaluated by performing

three surgical tasks on phantom tissue, using the da Vinci Research Kit (dVRK): tissue

palpation, knot tightening during suturing and Hem-O-Lok tightening during knotless su-

turing. The tasks were designed to demonstrate the robustness of the sensorized force

measurement approach. The results of further evaluation by a group of expert and novice

surgeons performing the three tasks mentioned above are also presented in this appendix.
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A.1 Introduction

Over the past 25 years, hospitals worldwide have shifted from open surgery to minimally

invasive surgery (MIS) for many procedures. MIS has been shown to reduce mortality, de-

crease blood loss, decrease pain, and shorten the length of hospital stays [1–7]. Although

MIS has had improved results when compared to open surgery, many studies have shown

that MIS procedures take significantly more time [1–7]. This is mainly a result of the high

level of psychomotor skills needed to perform MIS safely [8], which has resulted in a longer

learning curve in MIS training [9]. Robotic-assisted minimally invasive surgery (RAMIS)

has reduced some of the difficulties present in conventional MIS, leading to improved surgi-

cal outcomes and shorter operating times and training periods [10–12]. Currently, the most

widely used surgical robot is the da Vinci Surgical System by Intuitive Surgical, which is

used daily in RAMIS procedures worldwide. These improved outcomes are mainly a result

of enhanced vision of the surgical site, innovations in tool design to increase dexterity, and

increased precision through automatic movement transformations [13, 14]. On the other

hand, current RAMIS takes away the force sensation that surgeons need to manipulate tis-

sue accurately and safely. Further, force information is useful for assessing the skill of

novice surgeons and can reduce training times. In literature, multiple designs of sensorized

robotic systems have been proposed to provide force feedback in RAMIS. A tele-operated

robotic system consisting of two PHANTOM haptic devices and customized laparoscopic

tools was proposed to provide haptic sensation to the surgeon during RAMIS [15]. A pair

of sensorized da Vinci instruments were integrated with a pair of 7-DOF industrial robots

within a RAMIS testbed [16–18], and has shown improved surgical performance in suture

tightening with visual force feedback (VFF) and direct force feedback (haptics). Using a

modified da Vinci system with a sensorized instrument tip, researchers were able to vali-

date the performance of surgeons with the help of lateral force feedback in a realistic sce-

nario [19]. The designs referenced above made use of strain gauges, which can be difficult

to miniaturize, sterilize and integrate into surgical tools with high measurement accuracy.
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FBG sensors are an effective alternative for force sensing in medical applications due to

their high sensitivity, low signal-to-noise ratio, minimal size, biocompatibility, sterilizabil-

ity and EM isolation. These sensors have been successfully incorporated into hand-held

tools [20–22] and various surgical robotic systems [23–27]. These custom-designed in-

struments have demonstrated the capabilities of FBGs in surgical force sensing, and work

that focusses on integrating this sensing technology into commercially available surgical

robots will allow for more immediate use. This appendix proposes a novel lateral 2-DOF

force sensing instrument that incorporates FBG sensors onto the tool shaft of the com-

mercially available da Vinci Large Needle Grasper for use in RAMIS. The sensing system

demonstrated high accuracy and resolution throughout the experiments was independent

of the wrist orientation, and disturbances due to axial force and force coupling. The in-

strument was assessed by comparing the calculated force reading from the sensors with

those from a commercial force and torque (F/T) sensor. The sensorized RAMIS instrument

was then used in specific simulated surgical tasks on a da Vinci Surgical Robot by a group

of four novices and two expert surgeons. The subjects’ performance with and without vi-

sual force feedback is discussed, as well as the instrument’s potential capabilities in skills

assessment.

A.2 Design of the Sensorized Surgical Instrument

This section introduces the design and modeling of a novel 2-DOF lateral force sensing

technology for commercially available surgical instruments. The proposed sensor layout

and model provides force information from strain sensors attached along a cylindrical shaft,

which is common in commercial surgical tools, without modification to the tool itself.

Since FBG sensors have a small diameter and provide high resolution and high sensitivity

strain measurements, these sensors can be placed near the tool tip to measure tool-tissue

interaction forces without interference from the surgical trocar commonly used in RAMIS.
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Figure A.1: (a) A 3D view of the sensorized da Vinci instrument (b) A cross-sectional view
of the sensorized tool with two FBG sensors located with an angular difference of γ.

A.2.1 Two Cross-Section Design

In previous lateral force sensing designs, strain gauges were placed at a single cross-section

along the tool shaft to measure the lateral forces at the tip [24, 28, 29]. This configuration

assumes the contact force is at the same location throughout the surgical task, although

this is not the case in complex tissue-tool manipulation tasks where wristed tools are em-

ployed. Placing sensors further from the tool tip could reduce errors due to unknown force

locations; however, the surgical trocar would compromise the ability to measure tool-tissue

forces accurately. A further issue with the single cross-section design is that secondary

bending moments will be generated when the orientation of the grasper is not in line with

the tool axis. The proposed design, shown in Fig. A.1(a) with the da Vinci Large Needle

Driver, uses four strain sensors placed at two cross-sections to measure the true contact

force irrespective of the location of the force along the tool body and the grasper orienta-

tion. The design also compensates for axial and torsional disturbances caused by tool-tissue

interaction and cable tension. Incorporating FBG strain sensors allows for a minimized

distance between the two cross-sections and the distance from the sensors to the tool tip.

Trade-offs between the force sensing resolution and proximity of the sensors to the tool tip

can be optimized by properly choosing the sensor locations of the two cross-sections. A

detailed force-strain model of this sensing method is discussed in the following subsection.
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Figure A.2: A side view of the sensorized da Vinci Instrument.

A.2.2 Force-Strain Model

A force-strain model is proposed to calculate the 2-DOF lateral force in a surgical tool

from the four FBG sensors in a two cross-section layout. A formula is then derived to

calculate the resolution of this sensing technology, based on the sensor locations and noise

characteristics.

As shown in Fig. A.2, FBG 1 and 2 form a line parallel to the axis of the tool, and these two

FBGs are used to calculate the 1-DOF lateral force FY . FBG 3 and 4 are offset 90◦ from

FBG 1 and 2, and are used to calculate the orthogonal 1-DOF lateral force FX . Assuming

the da Vinci instrument behaves as a linear cantilever beam, the stress and strain in the

RAMIS instrument at FBG 1 & 2 can be obtained from Eq. A.1:

σ =
FZ
A
− r(FZLY + FYLZ)

I
, ε =

σ

E
(A.1)

where F = [FX , FY , FZ ] is the force applied to the tip of the instrument, L = [LX , LY , LZ ]

is the translation vector between of the tip of the robot and the FBG sensor location; r is the

radial offset between the centers of the instrument crosssection and a FBG sensor. A and

I are the area and area moment of inertia and E represents the Youngs modulus. All the

variables are defined in the frame shown in Fig. A.2, of which the Y -axis is the central axis

of the first pin in the instruments wrist and the Z-axis is the central axis of the instrument

shaft.
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The relationship between the strain in the FBG sensor, and the shift in the reflected wave-

length is given in Eq. (A.2) where λ, λ̂, ε and ∆T represent the shifted wavelength, original

wavelength under zero-loading, strain, and temperature change, respectively. The sensitiv-

ity coefficients of the strain and temperature variables are noted as kε and k∆T , respectively.

Substituting ε from Eq. (A.1) into Eq. (A.2), the wavelength of an FBG sensor under force

loading (F ) can be obtained, as shown in Eq. (A.3).

λ− λ̂ = kεε+ k∆T∆T (A.2)

λ = kε

(
Fz
AE
− r(FZLY + FYLZ)

EI

)
+ k∆T∆T + λ̂ (A.3)

The lateral force, FY , is a function of the reflected wavelength from FBG 1 and FBG 2, as

shown in Eq. (A.4). Ld is the distance in between FBG 1 and FBG 2 in z direction. k12 is

the force-wavelength coefficient of FBG 1 and 2. By solving Eq. (A.4), FY is obtained as

shown in Eq. (A.5).

λ1 − λ2 = kε

(
rLd
EI

)
FY − (λ̂2 − λ̂1) = k12FY − (λ̂2 − λ̂1) (A.4)

FY = k−1
12

(
(λ1 − λ2) + (λ̂2 − λ̂1)

)
(A.5)

The formula for calculating FX can be derived in the same way as FY . Combining these

two formulas results in Eq. (A.6), which gives the 2-DOF lateral force.

~FTheo =

FX
FY

 =

k−1
12

(
(λ1 − λ2) + (λ̂2 − λ̂1)

)
k−1

34

(
(λ3 − λ4) + (λ̂4 − λ̂3)

)
 (A.6)

The resolution of the sensorized RAMIS instrument is dictated by the noise, wavelength

stability, and layout of the FBGs. The strain sensitivity of the FBG is very high so will

not be the limiting factor. By orienting the two FBG pairs perpendicular to each other,
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Figure A.3: Illustration of the 3D printed installation guide for FBG alignment.

the 2-DOF force readings are decoupled. This gives a condition number of one for the

strain to force calculation matrix, which eliminates noise amplification. Assuming the FBG

noise is normally distributed, Eq. (A.7) defines the theoretical resolution of the sensorized

instrument, where λnoise is the FBGs noise.

resolution =
√

2k−1
12 λnoise (A.7)

Eq. (A.6) assumes the two pairs of FBGs are 90◦ apart, which cannot be guaranteed due to

manufacturing inaccuracies. As a result, the theoretical FBG force needs to be transformed

to obtain the actual lateral 2-DOF force, ~FLat, as shown in Eq. (A.8). γ is the angle between

FBGs 3 and 4 and FBGs 1 and 2. γ is illustrated in Fig. A.1(b).

~FLat =

 1 0

− cot γ csc γ

 ~FTheo (A.8)

A.3 Experimental Validation of the Sensorized Surgical

Instrument

To assess the accuracy and precision of the proposed sensing technology in lateral force

sensing during surgical tasks, a sensorized RAMIS instrument was constructed and evalu-

ated under various loading conditions.
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Figure A.4: The experimental setup for calibrating and evaluating the sensorized instru-
ment.

A.3.1 Experimental Setup

The sensing technology is mounted on to a da Vinci Large Needle Driver for use in many

RAMIS procedures. The FBGs selected are 125 m in diameter and 10 mm in length

(os1100, Micron Optics, US). The minimum distance between the FBG cross-sections to

attain 0.05 N resolution was determined to be 90 mm using Eq. (A.7), where k−1
12 is 17

N/nm and λnoise was empirically obtained as ±2 pm.

A.3.2 Calibration

A 3D printed rapid prototyped (RP) guide was used to facilitate accurate positioning and

orientation of the FBGs on the tool shaft during the hand lay-up process using cyanoacry-

late adhesive. As shown in Fig. A.3, two optical fibers were passed through the inner

channels of the RP guide and placed onto the tool shaft, parallel to the tool axis and 90

degrees apart from each other. Since the fibers used only have one FBG on each, another

two fibers were again laid onto the shaft in the same fashion. The end-points of the 10 mm

FBGs along the fiber were difficult to locate precisely and the fiber laying process could

not guarantee a specific separation distance, therefore, the FBGs were laid at two cross-

sections 100 mm apart. The experimental setup, shown in Fig. A.4, was used to calibrate
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for uncertainties in the mechanical structure and sensor integration, and evaluate the per-

formance of the force-sensing instrument. The setup includes a mounting apparatus to fix

the base of the da Vinci instrument and lock the internal cables, and a second mounting ap-

paratus to fix a commercial force sensor (Nano17 F/T, ATI Industrial Automation, United

States) to the shaft and lock the wrist joint. A RP handle was attached to the other side of

the ATI sensor, from which various force and torque loadings could be applied by hand.

The data from both the F/T sensor and the FBG interrogator (SM130, Micron Optics, US)

were recorded simultaneously in a C++ program running on a Windows 7 laptop computer.

To accurately measure lateral forces in the manufactured instrument, various torque and

force loads were exerted on the RP handle and the force readings from the FBG sensing

technology (~FLat) and the commercial force sensor (~Fnano) were compared to determine

empirical constants. Eq. A.8 was rewritten in the form of Eq. A.9 to isolate the empirical

constants a, b, c, d and ewhich relate to the mechanical properties of the RAMIS instrument

and the structural layout of the FBG sensors. Eq. A.10 was used to align the coordinate

frame ~Fnano with ~FLat, where θ is the angle between the X-axis of the sensorized instru-

ment and the commercial sensor. The constants a, b, c, d and e were then determined using

the Levenberg-Marquardt algorithm, and are presented in Table A.1.

~FLat =

a 0

c d

λ1 − λ2

λ3 − λ4

+

b
e

 (A.9)

~FNano =

FNanoX
FNanoY

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)

−1

~FLat (A.10)

A.3.3 Evaluation

To evaluate the accuracy and resolution of the proposed sensing technology, the sensorized

RAMIS instrument was loaded along the X-axis with a series of weights (0g, 100g, 150g,
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Figure A.5: (a) Force values measured from the FBG and Nano17 sensors in response to a
series of weights applied to the sensorized instrument (b) Error histogram of the FBG force
measurement.

Figure A.6: Demonstration of the performance of the two cross-section FBG sensing under
different loading disturbances. (a) FX values measured from FBG and Nano17 sensors
under a varying axial loading (b) FX values measured from FBG and Nano17 sensors
under varying force coupling about the Y axis.

Table A.1: Calibrated Parameters

a b c d e θ

-20.52 11.54 -5.41 28.95 20.11 193.1◦

170g, 180g, 185g, 187g, 188g) at the F/T handle (Fig. A.4) and then unloaded. The sensing

technology shows high measurement accuracy and rapid response throughout the trial, as

shown in Fig. A.5(a), with FLatX (blue) and FNanoX (red) sampled at 1 kHz. To attain

accuracy specifications, the error (blue bars) between FLatX and FNanoX throughout this

35 second period is shown in Fig. A.5(b). From this data, the sensorized RAMIS instru-
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ment is determined to have accuracy to ±0.05 N within a 95% confidence interval in each

of its 1-DOF sensing directions. To investigate the performance of the sensorized RAMIS

instrument in the presence of axial loading disturbances, varying lateral forces (FLatX in

blue, FNanoX in red), and axial forces (FNanoZ) were applied to the F/T handle. As can

be seen in Fig. A.6(a), the sensorized instrument maintains its high level of performance

independent of any axial disturbance (FZ). The rejection of force coupling disturbances

was also assessed, by twisting the RP handle, as a wristed instrument may do while ma-

nipulating tissue. Force coupling causes the same increase in the bending moment in the

two sensorized cross-sections, which is compensated for in Eq. (A.4). The force measure-

ments (FLatX in red, FNanoX in blue) maintain close correlation when this force coupling

(Torque NanoY in green) is applied as displayed in Fig. A.6(b).

A.4 Experimental Evaluation in Surgical Tasks

To assess the ability of the sensorized instruments in various surgical tasks, a group of

four novice and two expert surgeons performed three surgical tasks: suture knot tightening,

Hem-O-Lok tightening and tumor localization by palpation using a commercial surgical

robot.

A.4.1 Surgical Task Setup

The surgical task setup consists of the lateral force-sensing surgical instrument, the da

Vinci surgical robot and surgeon console, and three surgical test-beds for: knot tighten-

ing, Hem-O-Lok tightening and palpation. The surgical robot was integrated with the da

Vinci Research Kit (dVRK), and the force information from the sensorized Large Needle

Driver was overlaid on the right eye viewer of the surgeons console using a frame grabber

(Epiphan DVI2USB3.0, Canada). This VFF was provided as a changing color bar with

the numeric force information. Custom-made interchangeable surgical test-beds, shown
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in Fig. A.7, were mounted on a commercial F/T sensor (Gamma, ATI Industrial Automa-

tion, United States), and the force readings were logged simultaneously with the sensorized

instrument force readings. The suture knot tightening task required subjects to tighten pre-

tied square suture knots with one-hand. The one-handed suturing setup made for shorter

training periods, and allowed the F/T sensor to read suture tension values. The Hem-O-Lok

tightening task required subjects to slide Hem-O-Lok clips across a suture thread and into

the phantom tissue wall using one hand. The tumor localization by palpation task used a

soft phantom tissue with a 15 mm diameter phantom tumor made from a stiffer material

embedded in it. This testbed was then covered with an opaque phantom skin.

A.4.2 Evaluation

Task 1: Suture Knot Tightening

The subjects were instructed to tighten knots to a desired force, and to try to consistently

apply this force throughout the tests. The subjects were given six practice knots with VFF

to adjust to the system. Following the training period, subjects completed four sets of

the task, each time tightening three knots. Two sets were completed with VFF and two

were completed without VFF, in a randomized, alternating order. The force information

from the sensorized tool was used for VFF. Because only one hand is used in the suturing

knot tightening, the tension in the suture thread can be measured and recorded using the

commercial force torque sensor, as showing in Fig. A.7. An example of the suture tension

applied over time is shown in Fig. A.8(a), with a mean peak force illustrated by the dotted

line. For a sample size of 72 knot tightening tasks (6 subjects, 12 knots each, half with

VFF), the mean peak forces were recorded of the subjects’ force, with and without VFF,

and the error of the applied force from the target force is shown in Fig. A.8(b). It can be

seen that the error of the forces applied within the suturing task are more consistent with

VFF.
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Figure A.7: Demonstration of custom made testbeds for three surgical tasks. (a) One-
handed suture knot tightening testbed (b) Hem-O-Lok tightening testbed (c) Tumor local-
ization by palpation testbed.

Task 2: Hem-O-Lok Tightening

It was hypothesized that the skill level of a surgeon could be differentiated in Hem-O-Lok

by assessing the force profile provided by the sensorized RAMIS instrument. Hem-O-Loks
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Figure A.8: Illustration of the definition of the mean peak force, representing the applied
tension to the suture. (b) Histogram of the force error measured from a group of six subjects
performing one-handed suturing tasks with and without VFF.

are plastic clips used in a range of surgeries for knotless suturing. This process saves sur-

geons significant amounts of time which is particularly critical in partial nephrectomies.

Subjects were not given VFF, and were asked to perform two sets of four Hem-O-Lok

tightening exercises using the Hem-O-Lok testbed, with one set performed first as practice.

Two data sets were generated, differentiated according to expertise, with experts having for-

mal training using the da Vinci Surgical robot, and novices having little to no experience

in surgery or in using the da Vinci robot The difference in the force profiles of surgeons

and novices is mainly characterized by novices gradually increasing the force they applied

throughout their movement, as is evident in Fig. A.9(a), and experts applying a steadier

force and completing the task quicker, as shown in Fig. A.9(b). The force information,

although not quantitatively analyzed, shows that novice and surgeon subjects can be differ-

entiate through Hem-O-Lok tightening force profiles.

Task 3: Tumor Localization by Palpation

Tumor localization by palpation is the process of pressing on tissue with the objective of

finding a tumor. Subjects practiced the palpation task with and without VFF on tissue

with visible, and then covered, tumors. Once familiar with the tissue behavior the subjects

were tasked with finding a tumor with and without VFF. The testbed used for the VFF and
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Figure A.9: The force profiles of one novice (a) and one expert surgeon (b) when perform-
ing Hem-O-Lock tightening, measured by the FBG sensors.

without VFF task was randomized, as was the order in which the VFF or without VFF

task was performed. From the data for the six subjects, only one tumor was successfully

located with VFF and no tumors were located correctly without VFF. The system is still

under development, with an emphasis on improving performance in this task.

A.5 A Method for Installing FBG Sensors inside Surgical

Robotic Instruments

Metallic foil strain gauges are widely used in sensorizing robotic surgical instruments

for research applications, due to their small size with respect to commercially available

force/torque sensors [1], [2]. However, these gauges offer poor signal-to-noise ratio, re-

quire constant calibration and cannot survive sterilization procedures without specialized

protective coating. Fiber Bragg Grating (FBG) sensors overcome these problems and have

become a good alternative to metallic foil strain gauges in surgical robotic applications

[3], [4]. The authors have previously sensorized a da Vinci surgical instrument with FBG

sensors [30] that provides force measurements at a rate of 1 kHz with high resolution. A

drawback of this design is that the sensors are prone to damage as they are mounted on the

outer surface of the instrument. In [31], it is suggested to embed the FBG sensors into en-

graved slots on the instrument shaft. This method provides better protection to the sensors;
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Figure A.10: Sensorized instrument mounted on a da Vinci robot

however, it modifies the mechanical design of the instrument, reduces its structural rigidity,

and adds machining costs. Furthermore, the interaction between the trocar and the instru-

ment shaft may scrape off the adhesive or protective coating used in installing the FBG

sensors. In this section, a novel method for installing FBG sensors on the interior of a da

Vinci surgical instrument (Intuitive Surgical, United States) is proposed and validated. Four

FBG sensors (Technica S.A, China) were installed on the inner surface of the instrument

using a custom template. These sensors are well protected, capable of providing accurate

force sensing and do not interfere with the functioning of the instrument. Fig. A.10 illus-

trates the sensorized instrument mounted on the da Vinci surgical system. The proposed

technique does not require expensive components or special manufacturing facilities, and it

therefore ideal for use in research labs in order to sensorize existing instruments for projects

related to robot control, surgical training and skills assessment.
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Figure A.11: (a) Disassembled da Vinci instrument; (b) paper template; (c) folded paper
template (d) rear view of the sensorized instrument after reassembly.

A.5.1 Materials and Methods

This section describes the method for sensorizing a da Vinci instrument without major

modifications to the tool. A Large Needle Driver da Vinci instrument was disassembled as

shown in Fig. A.11(a). The grasper and the pull rods were removed from the tool shaft to

allow the installation of the sensors. Two cross-sections of the tool shaft were sensorized

with optical fibers that both contained two FBGs. Previous work demonstrated the use of

this sensor layout for accurate measurement of lateral forces applied on an instrument, in-

dependent of the location of the forces and orientations of the instrument tip [7]. A template

was designed as a key component to facilitate the installation process (Fig. A.11(b)). This

template has three main functionalities: 1) A sensor alignment guide: to measure forces
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in orthogonal directions, the optical fibers should be installed 90 apart around the instru-

ment shaft. This template aligns the FBGs and separates the fibers for a certain distance

in order to place the sensors could be placed at the desired locations on the inner surface

(Fig. A.11(b)); 2) An adhesive carrier: to ensure proper bonding of the fibers to the in-

ner surface, an adequate amount of adhesive (10810, Elmers Products Inc., United States)

needs to be applied. The template provides a flat and wide area allowing for insertion of the

fibers in the shaft while keeping the adhesive in place (Fig. A.11(c)). Once the fibers are in

the desired location, a rigid rod is used to push the paper against the inner surface, ensuring

the fibers are in full contact with the shaft. 3) Protective layer: the template permanently

covers the FBG sensors inside the tool shaft, preventing damage from the pullrods during

instrument reassembly and robotic manipulation. Calibration of the parameters for force

sensing uses the same procedure as that described in [7]. Two experiments were conducted

to assess the performance of the sensorized instrument. The first experiment assessed the

effectiveness of the sensors to measure force. A force/torque sensor (Nano17, ATI Indus-

trial Automation, United States) was mounted on the tip of the instrument (Fig. A.12).

Time varying forces were manually applied on the handle and the readings from both sens-

ing modalities were recorded. The second experiment determined the resolution of the

sensor. A set of weights were hung at the tip of the instrument to determine the smallest

distinguishable increment that can be measured.

A.5.2 Results

Fig. A.13 shows the force measurements from the force/torque sensor and the FBG sensors.

For the x and y directions (in the frame of the force/torque sensor), both sensing modalities

presented very similar measurements at low and high frequencies. The RMS errors were

0.09 N in the x direction and 0.08 N in the y direction. The resolution of this sensing

technology is shown in Fig. A.14. The minimal distinguishable increment is 10 gf (0.098

N) at 1 kHz sampling rate (Fig. A.14(a)). This resolution can be improved to 5 gf (0.049
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Figure A.12: Experimental setup for evaluating the performane of force sensing.

Figure A.13: Comparision of the force measurements from the force/torque sensor (dot)
and the sensorized instrument (solid).

N) using the built-in averaging filter (10 times) of the interrogator (SM130, Micron Optics,

Atlanta, GA, USA) as shown in Fig. A.14(b).
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Figure A.14: Comparision of the theoretical force values (red) and the measured values
from the sensorized instrument (blue).

A.6 Conclusion

In this appendix, first, a sensorized robotic instrument was proposed for 2-DOF lateral force

sensing. The force-strain model and sensing capabilities of this technology were validated

by the construction and testing of a sensorized da Vinci Large Needle Driver. Experimental

results demonstrated the instruments high resolution and accuracy, and compensation for

disturbances such as axial force and force coupling. The sensorized instrument was fur-

ther evaluated in three surgical tasks using the dVRK operated by a group of novice and

expert surgeons. The tasks consisted of suture knot tightening, Hem-O-Lok tightening and

tumor localization via tissue palpation. The performance of the subjects in the suture knot

tightening task was improved with the help of VFF. In the Hem-O-Lok tightening task, the

subjects level of expertise was distinguishable from their recorded force profiles. In the

palpation task, VFF added minimal improvement and requires further investigation.

Secondly, a novel technique for integrating FBG sensors on the interior of robotic surgical

instruments was presented. A custom template allows accurate placement of the FBG

sensors and protects them from damage during re-assembly of the instrument and also
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during normal instrument use. The proposed technique was demonstrated on a standard da

Vinci instrument, showing that only minor modifications are necessary that do not affect

how the instrument is interfaced with and controlled by a da Vinci robot. Furthermore,

validation experiments with this instrument show that accurate force measurements can

be achieved at a sampling rate of 1 kHz. Our ongoing research focuses on using this

force sensing technology for hybrid position and force control, impedance control, haptics-

enabled tele-operation and approaches for surgical skills assessment.
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Appendix B

Mathematical Derivations for Chapter 5

In this part, the eigenvalues of the linearized three-tube kinematic model are discussed.

From (5.20), the characteristic equation for A is:

λ4 + w2λ
2 + w0 = 0

⇒λ2 =
1

2
(−w2 ±

√
w2

2 − 4w0)
(B.1)

where,w0 andw2 are calculated from the elements in the matrix A (see the linearized model

of the robot):

w2 =
(1 + v)∑3
j=1 kj

(k1(‖û1‖‖û2‖ cos(q2) + ‖û1‖‖û3‖ cos(q3))

+ k2(‖û1‖‖û2‖ cos(q2) + ‖û2‖‖û3‖ cos(q3)

+ k3(‖û1‖‖û3‖ cos(q2) + ‖û2‖‖û3‖ cos(q3))

w0 =
(1 + v)2‖û1‖‖û2‖‖û3‖∑3

j=1 kj
(k1‖û1‖ cos(q2) cos(q3)

+ k2‖û2‖ cos(q2) cos(q32) + k3‖û3‖ cos(q3) cos(q32))

(B.2)

From (B.1), it can be seen that there are four distinct solutions for the eigenvalues of the

linearized robot kinematics which have the following relationships: λ2 = −λ1, λ4 = −λ3.
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We now show that λ2
j is a real number, which results in having purely real or purely imag-

inary values for λj . This is true when w2
2 − 4w0 ≥ 0. Using (B.2) we can write w2

2 − 4w0

as follows:

W/(k1 + k2 + k3)2 (B.3)

where,

W = W0 +W1 +W2 +W3 (B.4)

with

W0 = (1 + v)2(k2
1(‖û1‖‖û2‖ cos(q2)− ‖û1‖‖û3‖ cos(q3))2

+k2
2(‖û1‖‖û2‖ cos(q2)− ‖û2‖‖û3‖ cos(q32))2

+k2
3(‖û1‖‖û3‖ cos(q3)− ‖û2‖‖û3‖ cos(q32))2

W1 = (1 + v)2(k2‖û1‖‖û2‖ cos(q2) + k3‖û1‖‖û3‖ cos(q3)

−k2‖û2‖‖û3‖ cos(q32)− k3‖û2‖‖û3‖ cos(q32))2

W2 = (1 + v)2(k1‖û1‖‖û2‖ cos(q2)− k1‖û1‖‖û3‖ cos(q3)

−k3‖û1‖‖û3‖ cos(q3) + k3‖û2‖‖û3‖ cos(q32))2

W3 = (1 + v)2(k1‖û1‖‖û2‖ cos(q2) + k2‖û1‖‖û2‖ cos(q2)

−k1‖û1‖‖û3‖ cos(q3)− k2‖û2‖‖û3‖ cos(q32))2

(B.5)

Noting that W is a summation of four non-negative terms, which ensures W ≥ 0. As a

result, λ2
j is a real number, and λj is either real or purely imaginary.
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