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ABSTRACT 

 

P2X7 is a cell-surface nucleotide receptor that plays a critical role in skeletal 

mechanotransduction; however, the signaling pathways mediating these effects are poorly 

understood.  Previous studies showed that the nucleotide analog benzoylbenzoyl-ATP 

induces anabolic gene expression in osteoblastic cells. Our first objective was to 

determine whether this effect was mediated by P2X7. Inhibition of anabolic gene 

expression by a P2X7-specific antagonist established involvement of this receptor.  Our 

second objective was to investigate the role of lipid mediators, lysophosphatidic acid 

(LPA) and prostaglandin (PG), both of which are produced in response to P2X7 

activation. The effect of P2X7 on expression of the anabolic gene Ptgs2 was abolished by 

an LPA receptor antagonist or inhibition of PG synthesis.  Furthermore, in the absence of 

nucleotide, LPA and PGE2 synergistically stimulated Ptgs2 expression.  Thus, LPA and 

PG signaling pathways appear to be necessary and sufficient to mediate the effect of 

P2X7 on Ptgs2 expression.   
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INTRODUCTION

 

1  Orthodontic Tooth Movement 

Orthodontic tooth movement is the result of a complex interaction between an applied 

force and a physiologic response within the periodontal supporting tissues. Prolonged 

forces placed on teeth are responsible for remodeling the adjacent bone.  The cellular 

processes by which orthodontic induced bone remodeling occurs have been well 

described; however, the initial events of mechanotransduction, the process by which 

mechanical stimuli are transformed into biological responses, are unclear. Ultimately, 

understanding mechanisms by which mechanotransduction arises may permit more 

efficient orthodontic tooth movement. 

A theoretical model of tooth movement is comprised of three stages: (1) initial 

compression of tissues, resulting in an alteration in blood flow associated with pressure 

and tension within the periodontal ligament; (2) the initiation and release of chemical 

messengers, such as cytokines and prostaglandins (PGs), and (3) further activation of 

cells mediating osteogenesis and bone resorption (Proffit, 2012).  Within four hours of 

sustained force application, levels of cyclic adenosine monophosphate (cAMP) increase 

significantly (Proffit, 2012).  cAMP is a second messenger that regulates the 

differentiation of osteoclasts (bone removing cells) and osteoblasts (bone forming cells) 

(Roberts, 1989).  In addition, levels of prostaglandins (PGs), interleukin-1 beta (IL-1) 

and nitric oxide (NO) rise in the periodontal ligament (PDL) (Krishnan and Davidovitch, 

2006).   

The “Pressure-Tension Theory” of orthodontic tooth movement was developed following 

classic histologic research in orthodontics (Krishnan and Davidovitch, 2006; Schwarz, 

1932).  The application of a force to a tooth creates both an area of compression and 

tension within the PDL.  This leads to an alteration in blood flow and development of 

chemical signals triggering downstream cellular responses.  On the compression side, 

osteoclastic activity prevails and bone resorption ensues. Immediate precursors of 
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osteoclasts are present in the PDL and are activated to mature once appropriate signals 

have directed them.  Additionally, new osteoclasts can be recruited to the PDL from 

hematopoietic organs via the blood stream and alveolar bone marrow cavities (Proffit, 

2012).  On the tension side, osteoblasts are activated directly and bone deposition results.  

The coordinated coupling of osteoblasts and osteoclasts is essential to orthodontic tooth 

movement (Krishnan and Davidovitch, 2009).  Light orthodontic forces are preferable, 

since they promote frontal resorption and efficient tooth movement through bone, 

whereas heavy forces lead to necrosis of the PDL and undermining resorption (Proffit, 

2012).   Undermining resorption results in delayed tooth movement, since the necrotic 

area must be completely removed by osteoclasts before tooth movement can occur. 

2  Bone cells 

Three main types of bone cells regulate bone metabolism: osteoblasts (bone forming 

cells), osteoclasts (bone resorbing cells) and osteocytes (terminally differentiated 

osteoblasts).  These cells respond to various environmental signals, including biological 

and mechanical stimuli, to elicit specific responses based on the physiologic needs of 

bone.  Receptors on the surface of bone cells bind exogenous signals and transmit this 

information to the nucleus where gene expression is initiated (Feldman, 2013).  

2.1  Osteoblasts 

Osteoblasts are derived from mesenchymal stem cells that can also differentiate into other 

cell types such as chondrocytes and fibroblasts (Minguell et al., 2001).  Osteoblasts carry 

receptors that respond to chemical mediators, which play a central role in bone 

metabolism (Feldman, 2013).   In order to commit to the osteoblast lineage, a complex 

series of transcriptional events must be initiated and maintained by a number of factors 

including: bone morphogenetic proteins (BMPs), transforming growth factor-beta (TGF-

β), Wnt signaling pathways, insulin-like growth factors (IGFs) and parathyroid hormone 

(PTH) (Huang et al., 2007).  Runt-related transcription factor-2 (RUNX2) is a critical 

transcription factor responsible for osteoblast differentiation (Huang et al., 2007).  Early 

and late stages of osteoblast differentiation are controlled by Osterix (OSX), which acts 

downstream of RUNX2.  The combined effects of RUNX2 and OSX lead to the 
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development of a preosteoblast, which expresses type I collagen and bone sialoprotein 

(BSP).  Development of the mature osteoblast is dependent upon stimulation of activating 

transcription factor 4 (ATF-4) with Wnt/β-catenin signaling components.  The mature 

osteoblast expresses type I collagen, alkaline phosphatase and osteocalcin (OCN), which 

are necessary for the formation of osteoid and its subsequent mineralization (Harada and 

Rodan, 2003; Robling et al., 2006).  

Differential gene expression is important in each stage of development for the osteoblast.  

Genes required for the initial activation and proliferation (c-Fos, c-Jun, and c-Myc) and 

cell cycle progression (histones and cyclins) are expressed in pre-osteoblasts (Feldman, 

2013).  Other factors critical to this stage of osteoblast development are: fibroblast 

growth factor (FGF), transforming growth factor- (TGF-), insulin-like growth factor-1 

(IGF-1), BMPs, and collagen type I (COL1) (Feldman, 2013).   

Proliferation of osteoblasts is followed by production and organization of the 

extracellular matrix (ECM).  In this stage, collagen secretion and cross-linking 

predominates.  Genes involved with skeletal ECM mineralization (e.g. ALP) are 

expressed.   

The third stage is characterized by a reduction in genes produced in the proliferation 

stage and an increase in hydroxyapatite (HA) production in the ECM.  Non-collagenous 

proteins with HA-regulating abilities (osteopontin (OPN), osteocalcin (OCN) and bone 

sialoprotein (BSP)) are expressed during this stage of osteoblast development (Feldman, 

2013).   

An organic matrix (osteoid), composed of type I collagen, non-collagenous proteins and 

proteoglycans, is secreted by mature osteoblasts.  Deposition of calcium phosphate 

mineral leads to mineralization of the osteoid.  As bone formation continues, osteoblasts 

become incorporated into the mineralized osteoid and terminally differentiate into 

osteocytes.  Osteocytes communicate with one another and osteoblasts via gap junctions.  

These intercellular connections are thought to be critical for transmitting signals resulting 

from the mechanical stimulation of bone (Bonewald, 1999).  Osteocytes express a distinct 
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group of genes, including sclerostin (Sost), matrix extracellular phosphoglycoprotein 

(Mepe), and dentin matrix protein-1 (Dmp1) (Feng et al., 2003). 

The final stage in osteoblast development serves as an editing function for modifications 

needed in the ECM (Feldman, 2013).  Once bone formation is complete, the majority of 

osteoblasts undergo apoptosis.  The remaining cells join the osteocyte population or 

become bone-lining cells (Clarke, 2008).  

Jones et al. described the first responses in osteoblasts after application of a mechanical 

stress. The first events are an increase in intracellular free calcium concentration and 

hyperpolarization of the membrane potential through the activation of potassium 

channels. Phospholipase C (PLC) is activated to release inositol triphosphate.  PLC is 

thought to allow a positive feedback mechanism in order to keep the mechanosensitive 

channels open by further activation of protein kinase C (PKC).  Phospholipase A2 (PLA2) 

is then activated, acting on the phospholipid membrane to release arachidonic acid, 

leading to the production of prostaglandins (PGs) within about 10 minutes.  This is 

followed by the release of products from the lipooxygenase pathway that ultimately lead 

to an increase in cAMP.  cAMP mediates phosphorylation reactions in the nucleus and 

cytoplasm of the osteoblast, regulating downstream gene expression and bone remodeling 

(Jones et al., 1991). 

More recently, osteoblasts have been shown to release ATP in response to mechanical 

stimulation (Romanello et al., 2001; Romanello et al., 2005; Buckley et al., 2003; 

Genetos et al., 2005). 

2.2  Osteoclasts 

Mononucleated precursors of the monocyte/macrophage lineage fuse to form 

multinucleated osteoclasts (Novack and Teitelbaum, 2008).  Two key signaling 

molecules are essential to the formation, resorptive activity and survival of osteoclasts: 

macrophage-colony-stimulating factor (M-CSF) and receptor activator of NF-B ligand 

(RANKL) (Nobuaki et al., 1998).  Both M-CSF and RANKL are produced in membrane-

bound and soluble forms by marrow stromal cells and osteoblasts (Boyce and Xing, 

2008; Boyle et al., 2003).  Osteoprotegerin (OPG), is a decoy protein that binds to 
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RANKL, and thus inhibits the binding of RANKL to its receptor RANK (Boyce and 

Xing, 2008; Boyle et al., 2003).  In binding to RANKL, this decoy protein leads to 

inhibition of osteoclast function and induces osteoclast apoptosis.  The function of 

osteoclasts is further mediated by complex interactions among several signaling pathways 

such as those activated by PTH, calcitonin, vitamin D, tumor necrosis factor (TNF), 

estrogen and several interleukins (Ericksen et al, 1986; Feldman, 2013).  PTH, 

prostaglandin E2 (PGE2), and vitamin D upregulate RANKL on the surface of osteoblasts, 

and thereby stimulate osteoclast activation (Kale et al., 2004; Feldman, 2013). 

In order for the osteoclast to begin resorption, it must attach to the bone surface and 

activate proton pumps along its ruffled border.  In the acidic environment of the 

resorption lacunae, dissolution of bone mineral is possible.  Osteoclasts secrete proteases 

such as cathepsin K to degrade the organic matrix comprised mainly of type I collagen 

(Novack and Teitelbaum, 2008).  Interleukins (IL-1β, IL-6) and PGE2 encourage 

osteoclast resorption (Brough et al., 2003).  Once resorption is complete, the osteoclast 

may migrate to a new site on the bone surface to continue resorbing bone or it may 

undergo apoptosis (Novack and Teitelbaum, 2008). 

2.3  Osteocytes 

Osteocytes are the most abundant bone cells; however, their function is poorly 

understood.  Some osteoblasts become incorporated in the osteoid as it is produced, 

becoming osteocytes.  Since osteocytes are connected to one another by long cell 

processes, they are thought to be involved in receiving mechanical signals and 

transmitting these stimuli to other cells in bone (Feldman, 2013).   

Osteocytes synthesize sclerostin, a protein responsible for acting in a paracrine fashion to 

suppress bone formation.  Sclerostin, a product of the SOST gene, binds to LRP5/LRP6 

receptors to inhibit the Wnt signaling pathway and thus reduces bone formation (Robling 

and Turner, 2009).  Both PTH and mechanical loading inhibit the effects of sclerostin 

(Turner and Pavalko, 1998; Harada and Rodan, 2003; Robling and Turner, 2009). 
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3 Regulation of Bone Remodeling and Mechanotransduction 

Osteoblasts and osteoclasts are responsible for maintaining a fine balance between bone 

formation and resorption in bone remodeling.  Several critical local and systemic factors, 

including PTH, insulin-like growth factors (IGFs), estrogen and bone morphogenetic 

proteins (BMPs), along with mechanical stimuli, coordinate activity of bone cells to 

control skeletal homeostasis (Harada and Rodan, 2003).  Resorption and formation are 

strictly coupled under physiological conditions; an imbalance may contribute to bone loss 

in a variety of skeletal disorders such as osteoporosis and inflammatory diseases 

including periodontitis and rheumatoid arthritis (Novack and Teitelbaum, 2008).  Bone 

remodeling is a necessary element in orthodontic tooth movement.  

Each remodeling cycle is initiated by osteoclast precursors, which form osteoclasts that 

remove old bone over a period of 2-4 weeks.  Preosteoblasts are recruited to the site after 

a reversal phase and bone formation occurs with osteoid secretion and subsequent 

mineralization (Grol et al., 2009).   Bone formation occurs over a period of about 4-6 

months (Baron, 2003).   

Bone homeostasis is regulated by differential gene expression in bone cells.  Local and 

systemic factors regulate bone cell activity by activating specific intracellular signaling 

pathways.  Once exogenous signals have been identified by receptors bound to the cell 

membrane, activation of the receptor and subsequent transduction of the signal to the 

cell’s nucleus occurs.  In the cell nucleus, transcription factor complexes bind to specific 

DNA promotor sequences, resulting in the expression of specific genes. 

Several signal transduction pathways have been implicated in bone formation.  For 

instance, the Ca2+-NFAT signaling pathway has been shown to regulate osteoclast 

formation (Boyle et al., 2003, Novack and Teitelbaum, 2008; Teitelbaum and Ross, 

2003).  In addition, this pathway has a significant role in the regulation of osteoblast 

formation and function (Koga et al., 2005; Sun et al., 2005).  The Wnt/β-catenin signaling 

pathway is important in maintaining a balance between osteoblast and osteoclast activity.  

This pathway induces gene expression to upregulate differentiation of osteoblast 
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precursor cells and it increases the OPG to RANKL ratio, thus inhibiting osteoclast 

formation (Issack et al., 2008; Kubota et al., 2009). 

4 Mechanotransduction and Orthodontic Tooth Movement 

Mechanotransduction is the process by which mechanical stimuli are transformed into 

cellular responses.  For over one hundred years, it has been known that bone remodels in 

response to physical forces (Wolff, 1892).  Mechanical loading increases bone formation, 

resulting in improved skeletal strength. Disuse, conversely, suppresses bone formation 

and accelerates bone resorption (Duncan and Turner, 1995; Robling et al., 2006).  More 

recently, research has shown that mechanotransduction involves nucleotide release and 

downstream P2 receptor activation (Robling et al, 2006; Dixon and Sims, 2000).  

Osteoblasts and osteocytes, communicating via gap junctions, may act as sensors of these 

mechanical signals to initiate bone remodeling.  While the exact mechanism of 

mechanotransduction is poorly understood, it is known that mechanical strain contributes 

to alterations in gene expression (Robling et al., 2006).  It is thought that mechanical 

loading causes bending in bone and stimulates ATP release from osteoblasts, osteoclasts 

and osteocytes.  ATP binds to P2 purinergic receptors on the cell surface of bone cells to 

initiate signaling that results in osteoclastogenesis and osteoblast differentiation to 

stimulate bone remodeling (Robling et al., 2006).   

Orthodontic tooth movement is made possible by skeletal mechanotransduction.  

Orthodontic forces induce cells in the periodontal ligament and alveolar bone to release 

signals that stimulate bone remodeling via alterations in gene expression (Krishnan and 

Davidovitch, 2006).  Since mechanotransduction involves nucleotide release and 

activation of purinergic receptors, these may have important effects on orthodontic tooth 

movement.  

5 P2 Receptors 

P2 receptors are a group of cellular receptors that bind extracellular nucleotide 

messengers, such as ATP and ADP.  The P2 receptors are subdivided into P2X and P2Y 

receptors based on their mechanism of activation and structural differences (Burnstock, 
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1976; Burnstock and Kennedy, 1985; Burnstock, 2004; Burnstock, 2007).  P2X receptors 

are ATP-gated ion channels (non-selective for Na+, K+ and Ca2+).  Adenine nucleotide 

binding activates these receptors and leads to membrane depolarization and influx of 

intracellular Ca2+.  There are seven types of P2X receptors (P2X1-P2X7) that are 

differentially expressed in multiple cell types, including both peripheral and central 

neurons, smooth muscle cells and neuroendocrine cells (Dixon and Sims, 2000).  The 

eight receptors in the P2Y family of receptors (P2Y1, 2, 4, 6, 11-14) are G protein-

coupled receptors that are activated by adenine and/or uridine nucleotides (Dixon and 

Sims, 2000).   

ATP is released from numerous cell types, including osteoblasts, in response to 

mechanical disturbance and hypoxia (Bodin and Burnstock, 2001; Lazarowski et al., 

2011; Lazarowski, 2012).  Released nucleotides may act in an autocrine or paracrine 

manner to influence local P2 receptor signaling (Orriss et al., 2012).  Furthermore, 

nucleotide signaling through P2 receptors may be responsible for mechanotransduction in 

bone remodeling (Burnstock, 2004; Orriss et al., 2010). 

The function of extracellular nucleotides in regulating osteoblastic activity is unclear 

(Dixon and Sims, 2000).  ATP has been found to stimulate proliferation of murine 

calvarial cells, MC3T3-E1 (Suzuki et al., 1993).  Additionally, in MC3T3-E1 cells, ATP 

has been shown to activate phospholipase A2 (PLA2) (Suzuki et al., 1995; Panupinthu et 

al., 2007; Panupinthu et al., 2008), contributing to metabolism of arachidonic acid and the 

subsequent production of prostaglandin E2  (PGE2) (Watanabe-Tomita et al., 1997).   

The elevation of cytosolic free Ca2+ concentration in osteoblasts has been implicated in 

the initial signaling events leading to stimulation of osteoclastic activity (Guggino et al., 

1989).   In addition, our lab has shown that nucleotides may act on cells of the osteoblast 

lineage to enhance the resorptive actions of PTH (Dixon and Sims, 2000).   

Both P2X and P2Y receptors have also been identified on osteoclasts.  Activation of 

these receptors through nucleotide binding has shown to increase osteoclast activity 

(Morrison et al., 1998).  In addition, nucleotides regulate osteoclast numbers through the 
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induction of apoptosis as a result of the activation of the P2X7 receptor (Dixon and Sims, 

2000).   

5.1 P2X7 Receptor 

The P2X7 receptor is unique among P2X receptors in both its structure and the fact that it 

requires a 10-fold higher concentration of ATP (>100 µM) to be activated.  Of the P2X 

family, the P2X7 receptor is the largest, with a length of 595 amino acids.  It contains two 

hydrophobic membrane-spanning regions separated by a long glycosylated extracellular 

ATP-binding domain (Suprenant et al., 1996; Chessell et al., 2005).  The P2X7R also has 

a long cytoplasmic C-terminal tail, responsible for mediating its interaction with other 

proteins (North, 2002).  Whereas ATP is the most potent agonist of other P2XR subtypes, 

2’,3’-O-(4-benzoylbenzoyl) ATP (BzATP) is a more potent agonist of the P2X7 receptor 

than ATP (Jacobson et al., 2002).  

The P2X7 receptor is an ATP-gated ionotropic channel that plays an important role in 

inflammation, pain and bone adaptation responses (Volonte et al., 2012; Chessell et al., 

2005; Lister et al., 2007; North, 2002; Labasi et al., 2002; Grol et al., 2009).  P2X7 

become active (opens) after binding extracellular ATP, which can be released from 

adjacent cells under mechanical strain (Bodin and Burnstock, 1998).  Initial activation of 

P2X7 receptors by ATP leads to an opening of non-selective cation channels, resulting in 

an influx of Ca2+ and Na+ and an efflux of K+. Prolonged activation of P2X7 with ATP 

leads to large pore formation that allows for passage of large hydrophilic molecules 

within seconds (North, 2002).  ATP activation also induces downstream signaling events, 

which are dependent upon cell type, extracellular conditions and the concentration of 

extracellular ATP (Burnstock, 2007).    

In humans, several genetic differences in the P2X7 receptor exist and these can affect 

channel function. Single nucleotide polymorphisms (SNPs) of the P2X7 receptor have 

been identified to be associated with various musculoskeletal, inflammatory and 

cardiovascular diseases (Jiang et al., 2013).  Among the effects of loss of function in 

P2X7 is enhanced loss of bone mineral density in post-menopausal women (Gartland et 

al., 2012).  Furthermore, variability in function of the P2X7 receptor may explain 
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individual differences in response to orthodontic forces and may explain why some 

individuals are susceptible to root resorption (Viecilli et al., 2009; Hartsfield, 2009). 

Key mediators of inflammation, such as PGE2, IL-1α, and IL-1β are released in response 

to P2X7 activation.  All of these factors are critical in the maintenance of bone 

physiology (Ferrari et al., 2006; Li et al., 2005).  The release of cytokines, in turn, can 

induce accumulation of neutrophils and lymphocytes (Chen and Brosnan, 2006).  

Neutrophils further assist in mediating the inflammatory response by acting to eliminate 

apoptotic cells from the site and prevent further necrosis.  Labasi et al. showed that 

murine macrophages deficient in P2rx7 (the gene encoding P2X7) do not release IL-1 in 

response to stimulation with ATP, resulting in an attenuated acute inflammatory response 

(Labasi et al., 2002).  

Due to the role of P2X7 in mediating inflammatory pain, several pharmaceutical 

companies have initiated a search for selective P2X7 receptor antagonists.  Systematic 

administration of the selective P2X7 antagonist A438079 reduces thermal hyperalgesia 

(Nelsen et al., 2006; Donnelly-Roberts and Jarvis, 2007).  Progress made recent years 

strongly suggests that receptor-specific P2X antagonists may be useful analgesics in 

humans.  Additionally, such drugs may modulate bone remodeling, such as in orthodontic 

tooth movement.  

Investigating P2rx7 knockout (KO) mice has provided significant insight into this 

receptor’s role in mechanotransduction.  P2X7-deficient mice have reduced sensitivity to 

mechanical loading due to decreased secretion of PGE2 (Li et al., 2005).  Viecilli et al. 

found that lack of the P2X7 contributed to slower removal of hyalinized tissue in P2rx7 

KO mice.  In addition, these KO mice exhibited increased rates of external root 

resorption in orthodontically moved teeth (Viecilli et al., 2009).  Furthermore, P2X7 KO 

mice also show decreased periosteal bone formation and increased trabecular bone 

resorption (Ke et al., 2003).  Collectively, these findings suggest that P2X7 may be 

necessary for skeletal growth and may contribute to physiologic balance between bone 

formation and resorption in response to mechanical force.  Clearly the P2X7 receptor is 

an ideal candidate for mediating orthodontic responses, which involve both the induction 
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of an acute inflammatory response and bone remodeling (Roberts, 1989; Reitan, 1994; 

Roberts et al., 2004).     

A number of cell-type specific signaling pathways are associated with P2X7 receptor 

activation. Because these pathways are cell-specific, it appears that in each cell type 

P2X7 has unique downstream signaling effects.   

5.1.1 P2X7 Receptor Signaling in Osteoblasts 

ATP and BzATP induce opening of the P2X7 non-selective cation channel, leading to an 

increase in intracellular Ca2+.  This then couples to multiple signaling pathways in cells 

of the osteoblast lineage (Grol et al., 2009).   

First, P2X7 receptors have been shown to mediate extracellular signal-regulated kinase 

(ERK) 1/2 activation by fluid shear stress in an osteoblast-like cell line (Liu et al., 2008).  

ERK activation by fluid flow was found to stimulate expression of various osteogenic 

genes including: osteopontin (OPN), c-Fos, cyclooxygenase-2 (COX-2), collagen type I, 

and cbfa1/RUNX2 (You et al., 2001; Okumura et al., 2008; Wadhwa et al., 2002; 

Mehrotra et al., 2006).  Furthermore, Rubin et al. (2003) found that physiologic levels of 

mechanical strain utilized ERK 1/2 kinase to regulate production of NO and RANKL in a 

manner that promotes net bone formation (Rubin et al., 2003).  

Second, the P2X7 receptor is responsible for fluid shear-stress-induced activation of the 

transcription factor nuclear factor kappa-B (NF-κB) (Genetos et al., 2011).  MC3T3-E1 

osteoblasts express the NF-κB inhibitory protein IκBα under static conditions.  Under 

fluid shear stress, IκBα levels decreased and nuclear localization and expression of NF-

κB occurs. Genetos et al. showed that P2X7R-mediated activation of NF-κB occurs 

independently of lysophosphatidic acid (LPA) signaling. Chen and Brosnan demonstrated 

that prostaglandin E2 (PGE2) release requires purinergic signaling and that the NF-κB is 

required for maximal cyclooxygenase-2 (COX-2) induction in response to fluid shear 

stress (Chen and Brosnan, 2006). 

Third, Panupinthu et al. reported that P2X7 receptors signal though phospholipase D 

(PLD) and phospholipase A2 (PLA2).  Two products are the result of PLD and PLA2 
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activity: lysophosphatidic acid (LPA) and arachidonic acid.  Arachidonic acid is 

metabolized to PGs and other eicosanoids.  LPA acts on its receptors on osteoblasts to 

cause membrane blebbing via a pathway dependent on Rho-associated kinase.  The 

P2X7-LPA-PG axis is thought to be of significance to P2X7-mediated osteogenesis 

during mechanotransduction (Figure 1).  Panupinthu et al. proposed that mechanical 

stimuli induce release of ATP, which then acts through P2X7 receptors on osteoblasts, 

leading to the production of prostaglandins and LPA.  Prostaglandins and LPA then act in 

an autocrine or paracrine manner to enhance bone formation, explaining the role of the 

P2X7 receptors in skeletal development and mechanotransduction (Panupinthu et al., 

2007; Panupinthu et al., 2008). 

Dr. Na (Na, 2016) investigated the effects of dexamethasone, a corticosteroid with anti-

inflammatory effects, on gene expression in MC3T3-E1 cells following P2X7 receptor 

activation with BzATP.  She showed that BzATP stimulation of genes Ptgs2 and Dmp1 

was inhibited by dexamethasone.  This finding further exemplifies the role that P2X7 

may play in regulating osteoblast development and eventual bone formation during 

orthodontic tooth movement and shows that dexamethasone may inhibit these processes 

(Na, 2016). 
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Figure 1.  Proposed P2X7-LPA/PG signaling axis promoting osteogenesis. 

Activation of P2X7 by endogenous ATP or exogenous BzATP leads to production of 

lysophosphatidic acid (LPA) and prostaglandin (PG).  LPA is synthesized from 

membrane lipids following the activation of phospholipase D (PLD) and phospholipase 

A2 (PLA2).  Activation of PLA2 also leads to the production of arachidonic acid that is 

converted to PGs by the action of cyclooxygenase (COX).  LPA and PG may act in an 

autocrine or paracrine manner to induce expression of anabolic genes and subsequently 

promote osteoblast differentiation and mineralization (osteogenesis).  Image modified 

with permission from Panupinthu et al., 2008. 
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5.1.2  P2X7 signaling in osteoclasts 

Initial studies revealed that P2X7 may be involved in osteoclast fusion and up-regulating 

osteoclast differentiation (Gartland et al., 2003).  However, further investigation into 

P2X7R KO mice revealed that P2X7 in osteoclasts has a role in initiating apoptosis and 

thus inhibits osteoclast-induced bone resorption (Ke et al., 2003; Grol et al., 2009).  

These conflicting results have led to the explanation that the timing and degree of P2X7 

receptor activation may govern its effects on osteoclasts. 

 

 

 

 

Figure 2.  Effects of ATP stimulation of P2X7 receptors in osteoblasts and 

osteoclasts. 

This figure illustrates potential roles for P2X7 signaling in osteoblasts and osteoclasts.  

Nucleotides, including ATP, released from osteoblasts in response to mechanical 

stimulation signal through P2 receptors to mediate bone remodeling.  P2X7 activation in 

osteoblasts results in bone formation, whereas its activation in osteoclasts promotes 

apoptosis.  Image reprinted with permission from Purinergic Signaling, Grol et al., 2009; 

Appendix B. 
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6 Lysophosphatidic Acid 

Lysophosphatidic acid (LPA) is a potent bioactive phospholipid produced by several 

cells such as activated platelets.   LPA is present in low levels in the plasma under 

resting conditions and becomes elevated in inflammation and tissue injury.  LPA acts on 

six G protein-coupled receptors (LPA1-6) (Yung et al., 2014; Sheng et al., 2015).  

Activation of LPA receptors can lead to elevation of intracellular Ca2+ concentration, 

activation of ERK and stimulation of phosphatidylinositol 3-kinase signaling (PI3K) 

(Sims et al., 2013).  LPA is also involved in regulating cell migration and chemotaxis 

(Sugimoto et al., 2006). 

LPA induces the production of cytokines in osteoblasts, which are known to regulate 

osteoclast function.  Our lab has shown that osteoblasts produce LPA, which may be 

involved in the pathogenesis of bone diseases, such as in rheumatoid arthritis (Sims et 

al., 2013).  Activation of P2X7 receptors on osteoblasts leads to the production of LPA, 

through the sequential activation of PLD and PLA2.  LPA may act on osteoblasts in an 

autocrine manner to regulate osteoblastic activity.  Osteoblast-derived LPA may also act 

in a paracrine manner to regulate osteoclasts (Sims et al., 2013). 

LPA has a stimulatory effect on osteoclastogenesis. However, it is not known if this 

effect is direct or if LPA affects other cell types that may in turn alter osteoclast 

behavior.  Lapierre et al. showed that LPA enhances the survival of osteoclasts in vitro, 

promotes their fusion and suppresses their apoptosis (Lapierre et al., 2010). LPA acts 

though several receptor types on osteoclasts to induce an increase in intracellular Ca2+ 

and activate the critical transcription factor NFATc1, which is associated with RANKL-

stimulated osteoclast differentiation (Pereverzev et al., 2008).  LPA also has a direct 

effect on osteoclast motility, specifically by retraction of osteoclast pseudopodia 

(Lapierre et al, 2010).  Effects of LPA on osteoclast resorption has produced conflicting 

results, as some studies have shown a slight decrease in resorption by osteoclasts 

(Lapierre et al, 2010) and others have shown an increase (McMichael et al., 2010). 

In summary, LPA may be partly responsible for the coordination of osteoblast and 

osteoclast activity in bone.  Nucleotide signaling through the P2X7 receptors and 
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subsequent production of LPA reveals a new signaling axis that may play a role in 

skeletal mechanotransduction.  In addition to the physiological roles LPA plays in 

regulation of osteoblast and osteoclast activity, LPA may contribute to the progression 

of bone diseases.   

7 Prostaglandins  

Prostaglandins (PGs) are important regulators in the inflammatory response and skeletal 

metabolism.  PGs are lipids that stimulate G protein-coupled receptors in multiple areas 

of the body in an autocrine or paracrine manner. PGE2 is produced in response to several 

factors that regulate bone metabolism, such as growth factors (PDGF), hormones (PTH) 

and interleukins (Flanagan and Chambers, 1992; Blackwell et al., 2010).   

There are three major steps in the production of PGs such as PGE2; each are subject to 

regulation and each step can be rate limiting (Figure 3).  First, phospholipids (PL) are 

metabolized to arachidonic acid at the cell membrane, through the enzymatic action of 

PLA2.  Second is the conversion of arachidonic acid to PGH2 by cyclooxygenase 

(COX), also known as prostaglandin-endoperoxide synthase (PTGS).  COX is 

responsible for the formation of prostanoids, such as thromboxane and prostaglandins 

(Blackwell et al., 2010).  Two types of COX enzymes exist: COX-1 and COX-2.  The 

gene encoding COX-1 (PTGS1) is constitutively expressed and COX-1 responsible for 

protecting the gastrointestinal mucosa, kidney hemodynamics and platelet 

thrombogenesis.  On the other hand, the gene encoding COX-2 (PTGS2) is expressed at 

low levels under basal conditions and is rapidly induced in response to inflammation 

(Rouzer and Marnett, 2009).    
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Figure 3:  Conversion of phospholipids to prostaglandin (PGE2). 

Membrane phospholipids (PL) are metabolized by PLA2 to arachidonic acid (AA).  This 

action is inhibited through the action of corticosteroids, such as dexamethasone.  COX 

metabolizes AA to prostaglandin H2 (PGH2).  Non-steroidal anti-inflammatory drugs 

(NSAIDs), such as ibuprofen, inhibit COX.  Next, prostaglandin E synthase (PGE 

synthase) metabolizes PGH2 further into PGE2, as shown above.  

 

In bone, PGs play a role in remodeling by stimulating both resorption and formation.  

Application of an orthodontic force induces the production of PGs, which induces 

alveolar bone remodeling to promote tooth movement (Davidovitch et al., 1988; Lee, 

1990; Leiker et al., 1995).  Local injection of PG into the paradental tissues of rodents 

causes an increase in osteoclast numbers (Yamasaki et al., 1984).  Reduction in the rate 

of orthodontic tooth movement has been shown with administration of non-specific 

COX inhibitors, such as indomethacin (Chumbley and Tuncay, 1986).  The increase in 

bone resorption observed with addition of PGE2 is thought to occur via an upregulation 

of receptor activator of NF-κB ligand (RANKL) expression and inhibition of 

osteoprotegerin (OPG) expression in osteoblast cells (Blackwell et al., 2010).  

Furthermore, PGE2 is thought to stimulate cells to produce the intracellular second 

messenger, cAMP, which is an important regulator for bone resorption (Klein, 1970; 

Raisz et al., 1974).  Although PGE2 was initially recognized for its effects on bone 
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resorption, it became evident that it also stimulates bone formation.  Similar to PTH, 

continuous administration of PGE2 has shown to have resorptive effects on bone, 

whereas intermittent administration is anabolic (Tian et al., 2008).  PGE2 stimulates 

osteoblastic differentiation in murine marrow stromal cell cultures deficient in 

endogenous PG due to deletion of Ptgs2 (Zhang et al., 2012).   

Elevated PG production associated with inflammatory diseases, such as rheumatoid 

arthritis, can cause bone loss.  Selective inhibition of COX-2 can reduce bone loss 

associated with inflammatory joints in rodent models (Anderson et al, 2009) and can 

reduce osteoclast numbers (Taketa et al., 2008). 

PGs are thought to induce bone formation in response to mechanical loading and stress 

(Blackwell et al., 2010).  Numerous studies have shown that mechanical loading 

increases production of COX-2 and PGs.  Inhibition of COX by non-steroidal anti-

inflammatory drugs (NSAIDs) has been shown to have an inhibitory effect on bone 

formation in response to loading (Blackwell et al., 2010).  Recent work in our lab has 

shown that activation of P2X7 stimulates expression of Ptgs2 (COX-2) in osteoblasts 

within 3 hours of BzATP treatment (Grol et al., 2013; Na, 2016).   

8 Rationale, Hypothesis and Objectives of the Research 

Since purinergic signaling is known to be important in osteoblast differentiation and 

function, the aim of this project was to further investigate the signal transduction 

pathways that operate downstream of P2 receptor activation in cells of the osteoblast 

lineage.   

Objective 1: To determine if P2X7 is the receptor activated by BzATP to induce 

anabolic gene expression by osteoblasts.   

Previous studies by Dr. Na showed that BzATP induced anabolic gene expression by 

osteoblasts (Na, 2016); however, the receptor(s) mediating this effect were not 

identified. Considering the important role that P2X7 plays in mechanotransduction, we 

hypothesized that P2X7 is the receptor responsible for inducing anabolic gene 

expression.  To test this hypothesis, we used a specific antagonist to P2X7 receptor, 
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A438079, and examined its effects on BzATP-induced expression of the anabolic genes 

(Ptgs2, Dmp1, c-Fos) (Figure 4).   

Objective 2: To investigate the role of the PG and LPA signaling pathways in 

mediating the effects of BzATP on anabolic gene expression by osteoblasts.   

Previous studies in our lab by Panupinthu et al. showed that P2X7 activation in 

osteoblasts led to rapid production of the lipid mediators PGE2 and LPA (Panupinthu et 

al., 2007; Panupinthu et al., 2008).  Moreover, Dr. Na investigated the effects of 

dexamethasone (Na, 2016), which is known to suppress PLA2 activity and therefore 

block production of both PGE2 and LPA.  Dr. Na found that dexamethasone abolished 

the effects of BzATP on Ptgs2 and Dmp1 expression, consistent with the possible 

involvement of PGE2 and/or LPA.  Therefore, we hypothesized that PGE2 and/or LPA 

mediate the stimulatory effect of BzATP on Ptgs2 expression.  

We first assessed whether PG, LPA or both are necessary for inducing expression of 

Ptgs2. We used a COX inhibitor (that blocks PG synthesis) and/or an LPA receptor 

antagonist to assess the effect of loss of PG and LPA signaling on BzATP-induced gene 

expression (Figure 5).  Next, we assessed whether PGE2, LPA or both are sufficient for 

inducing expression of Ptgs2 in osteoblastic cells. To do this, we introduced PGE2 

and/or LPA (in the absence of exogenous nucleotides) and assessed their effect on Ptgs2 

expression (Figure 6).   

In achieving the above objectives, we hoped to gain insight on how each of these 

elements influences gene expression in osteoblastic cells (Figure 7). 
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Figure 4:  Schematic showing the potential effects of a P2X7 antagonist, A438079, 

on BzATP-induced gene expression at the P2X7 receptor. 

 

BzATP has previously been shown to induce anabolic gene expression in MC3T3-E1 

cells (Na, 2016).  Since BzATP is an agonist for multiple P2 receptors, it is not known if 

P2X7 is the receptor responsible for inducing anabolic gene expression.  Using a P2X7 

specific antagonist, A438079, we aimed to clarify the role of P2X7 in mediating 

BzATP-induced gene expression in MC3T3-E1 cells.  
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Figure 5:  Investigating the roles that PG and LPA may play downstream of P2X7 

receptor activation. 

 

In using ibuprofen (IBP), a COX inhibitor, we examined the effects of BzATP on gene 

expression in the absence of PGs.  Similarly, using an LPA receptor antagonist, VPC-

32183, we explored the role of LPA in P2X7-driven Ptgs2 gene expression in MC3T3-

E1 cells.   
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Figure 6:  Effect of PG (PGE2) and LPA on gene expression in osteoblastic cells. 

 

By exposing MC3T3-E1 cells directly to PG, LPA or a combination of the two 

mediators, we assessed their individual or combined effects on Ptgs2 gene expression. 

No exogenous nucleotides were added in these experiments. 
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Figure 7:  The proposed P2X7-PG-LPA axis and its effects on gene expression in 

osteoblast precursor cells.   

At least three pathways are activated by P2X7 stimulation in osteoblastic cells by 

endogenous ATP or exogenous BzATP.  First, activation of P2X7 leads to formation of 

prostaglandin (PG).  Second, activation of P2X7 leads to production of   

lysophosphatidic acid (LPA).  PG and LPA then bind to their receptors (PGR and 

LPAR) on the same or adjacent cells to induce gene expression.  Lastly, P2X7 may act 

through additional pathway(s) to regulate gene expression (centre arrow).  Our overall 

objective was to explore which of these three pathways or combinations thereof, are 

important for anabolic gene expression in osteoblasts.  

  

? ? 
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MATERIALS AND METHODS 

1 Materials and Solutions 

α-Minimum essential medium (α-MEM), heat-inactivated fetal bovine serum (FBS), 

antibiotic solution (10,000 U/ml penicillin, 10,000 mg/ml streptomycin, and 25 mg/ ml 

amphotericin B), trypsin solution, Dulbecco’s phosphate-buffered saline (DPBS) were 

obtained from GIBCO (Life Technologies Inc., Burlington, ON, Canada). TRIzol 

reagent and UltraPure distilled water (DNase/RNase-free) were obtained from 

Invitrogen (Life Technologies). RNeasy Mini Kit was from QIAGEN (Toronto, ON, 

Canada). qScript XLT One-Step RTqPCR Toughmix was purchased from Quanta. 

Primers and probes for Ptgs2 (COX2, Mm00478374_m1), Dmp1 (Mm01208363_m1), 

c-Fos (Mm00487425_m1), and 18S rRNA were obtained from Applied Biosystems 

(Life Technologies).  2’-3’-O-(4-benzoylbenzoyl) adenosine 5’-triphosphate 

triethylammonium salt (BzATP) and lysophosphatidic acid (LPA) was obtained from 

Sigma-Aldrich (St. Louis, MO, USA). Ibuprofen, A438079 and PGE2 were obtained 

from Tocris Bioscience (Bristol, UK).   VPC-32183 was from Avanti Polar Lipids 

(Alabaster, AL, USA).   

2 Cell Culture 

A mouse calvarial pre-osteoblast cell line, MC3T3-E1 (subclone 4), was obtained from 

the American Type Culture Collection (Rockville, MD, USA). These cells were cultured 

every 72 hours and maintained in α-MEM, supplemented with 10% FBS and 1% 

antibiotic solution (culture medium) at 37C and 5% CO2.  

3 RNA Isolation 

TRIZOL® reagent (Invitrogen, Paisley, UK) and RNeasy were used to extract total 

RNA, according to the manufacturer's instructions.  Quantification of RNA was 

determined spectrophotometrically by measuring absorbance at 260 nm. In order to 

normalize RNA samples, the RNA was diluted to a final concentration of 25 ng/l in 

RNase free water and was stored at −80 °C until amplification by Real-Time RT-PCR.  
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4 Real-Time RT-PCR Analyses 

In the first series of experiments (Objective 1), MC3T3-E1 cells were plated at a density 

of 1.5x104 cells/cm2 on Falcon 6-well plates in supplemented culture medium. After 48 

hours, cells were placed in serum-free medium and incubated overnight. On the day of 

the experiment, cells were pretreated with A438079 (10 M) or its vehicle (ddH20) for 

20 minutes.  After 20 minutes (t = 0), BzATP (300 M) or its vehicle (divalent cation 

free buffer, DCFB) was added and the cells were incubated for the indicated times (0, 

0.5, 1 and 3 hours) (Figure 8).  Total RNA was then isolated from each sample as 

mentioned above. Real-time PCR, using the ABI Prism 7900 HT Sequence Detector 

(PerkinElmer), was performed with a 15 L final reaction volumes containing 25 ng 

RNA sample, qScript XLT One-Step RTqPCR Toughmix, and one of Ptgs2, c-Fos, 

Dmp1, or 18S rRNA primers and probes. Reverse transcription was performed at 50 °C 

for 10 min followed by 40 cycles of amplification at an annealing temperature of 60 °C. 

Reactions for each sample were performed in triplicate. All samples were normalized to 

18S rRNA, and time zero or vehicle-treated controls using the delta-delta cycle 

threshold (Ct) method.  

In the second series of experiments (Objective 2a), MC3T3-E1 cells were plated at a 

density of 1.5x104 cells/cm2 on Falcon 6-well plates in culture medium. After 48 hours, 

cells were placed in serum-free medium and incubated overnight. On the day of the 

experiment, cells were pretreated with ibuprofen (10 M) or its vehicle (DMSO) and 

VPC-32183 (1 M) or its vehicle (3% BSA) for 20 minutes.  After 20 minutes (t = 0), 

cells were incubated with BzATP (300 M) or its vehicle (divalent cation-free buffer, 

DCFB) and total RNA was isolated as mentioned above (Figure 9). Real-time PCR was 

performed to assess Ptgs2 gene expression using the techniques previously mentioned 

and samples were normalized using the Ct method.  

In the third series of experiments (Objective 2b), MC3T3-E1 cells were plated at a 

density of 1.5x104 cells/cm2 on Falcon 6-well plates in culture medium. After 48 hours, 

cells were placed in serum-free medium and incubated overnight. On the day of the 

experiment, cells were incubated with PGE2 (1 M) or its vehicle (DMSO) and LPA (1 
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M) or its vehicle (3% BSA) for three hours and RNA was isolated as previously 

described (Figure 10).  Real-time PCR was completed as previously described, 

examining Ptgs2 gene expression in each sample.  Again, reactions for each sample 

were performed in triplicate. All samples were normalized to 18S rRNA, and time zero 

or vehicle-treated controls using the delta-delta cycle threshold (Ct) method. 

5 Statistical Analysis 

Data are shown as means ± standard error of the mean (SEM) for the number (n) of 

experiments indicated, each performed in triplicate. Differences among three or more 

groups were evaluated by one-way or two-way analysis of variance (ANOVA) followed 

by a Bonferroni post hoc multiple comparisons test. Differences were accepted as 

statistically significant at p < 0.05. Data analysis was performed using GraphPad Prism 

6.0 (GraphPad Software, San Diego, CA). 
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Figure 8. Timeline of the first series of experiments. 

A) MC3T3-E1 cells were plated at a density of 1.5x104 cells/cm2 in Falcon 6-well plates 

in culture medium (day 0). After 2 days, cells were placed in serum-free medium.  

B) On the day of the experiment (day 3), cells were pretreated with A438079 (10 M) or 

its vehicle (ddH20) for 20 minutes.  After 20 minutes (t = 0), BzATP (300 M) or its 

vehicle (DCFB) was added. Total RNA was then isolated using Trizol at 0, 0.5, 1, and 3 

hours.   
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Figure 9. Timeline of the second series of experiments. 

A) MC3T3-E1 cells were plated at a density of 1.5x104 cells/cm2 in Falcon 6-well plates 

in culture medium (day 0). After 2 days, cells were placed in serum-free medium.   

B) On the day of the experiment (day 3), cells were incubated with ibuprofen (10 μM) or 

its vehicle (DMSO) and VPC-32183 (1 μM) or its vehicle (3% BSA) for 20 minutes.  At 

time 0, BzATP (300 μM) or its vehicle (DCFB) was added in the continued presence of 

ibuprofen, VPC-32183 or vehicle. Total RNA was then isolated using Trizol at 3 hours.   
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Figure 10.  Timeline of the third series of experiments. 

A) MC3T3-E1 cells were plated at a density of 1.5x104 cells/cm2 in Falcon 6-well plates 

in culture medium (day 0). After 2 days, cells were placed in serum-free medium.   

B) On the day of the experiment (day 3), cells were incubated with PGE2 (1 μM) or its 

vehicle (DMSO) and LPA (1 μM) or its vehicle (3% BSA) for 3 hours. Total RNA was 

then isolated using Trizol at 3 hours.   
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RESULTS 

 

1 BzATP-induced stimulation of Ptgs2 (COX-2) expression was inhibited by the 

P2X7 antagonist, A438079  

Ptgs2 encodes prostaglandin-endoperoxide synthase 2, also known as cyclooxygenase-2 

(COX-2), which mediates the synthesis of PGs (Blackwell et al., 2010). 

 

Changes in Ptgs2 expression were examined in MC3T3-E1 cells following treatment 

with vehicle (DCF Buffer) or BzATP (300 μM) in the presence or absence of the 

specific P2X7 antagonist, A438079 (10 μM).  Similar to results previously shown in our 

lab (Grol et al., 2013), BzATP induced peak Ptgs2 expression at three hours (342  52 

fold increase relative to vehicle-treated cultures at time 0) (Figure 11, blue).  Significant 

Ptgs2 expression (320  47 fold) was also observed at one hour, a similar time point to 

previous studies done in our lab (Na, 2016).  BzATP had a significant effect on Ptgs2 

gene expression at both 1 and 3 h (p < 0.05).  A438079 alone did not significantly affect  

Ptgs2 expression; however, A438079 significantly blocked BzATP-induced Ptgs2 

expression at 1 h and 3 h (p < 0.05) (Figure 11, green).  Taken together, these data 

indicate that P2X7 is the receptor responsible for BzATP-induced Ptgs2 expression in 

MC3T3-E1 cells. 

2 BzATP-induced stimulation of Dmp1 expression was inhibited by A438079 

Dmp1 encodes dentin matrix acidic phosphoprotein 1, which is present bone and dentin, 

and has been shown to be necessary for their mineralization (George et al., 1993; 

MacDougall et al., 1998; Feng et al., 2006). Bone cells, including osteocytes and 

osteoblasts, express Dmp1 (Feng et al., 2003; Toyosawa et al., 2012).  BzATP 

stimulation of Dmp1 expression, which was greatest at 3 h (6070  2014 fold increase), 

was completely inhibited by treatment with A438079 (p < 0.05) (Figure 12, compare 

blue and green lines).  Maximal expression of Dmp1 at 3 hours was consistent with 

previous findings in our lab (Na, 2016).  
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3 BzATP-induced stimulation of c-Fos expression was inhibited by A438079 

c-Fos is an immediate early gene, which has been implicated in osteoblast proliferation, 

differentiation and survival (Dixon and Sims, 2000).  In osteoblast precursor cells, FOS 

protein expression is high during proliferation, but levels decline during further 

maturation and differentiation (McCabe et al., 1995).  

 

Significant c-Fos expression was seen at 30 minutes (63  21 fold) and one hour (67  

18) following BzATP stimulation (Figure 13, blue).  Expression was transient, returning 

to a basal level by 3 hours.  Similar results were seen previously in our lab with peak c-

Fos expression seen at 30 minutes (Na, 2016).  Again, treatment with A438079 

completely inhibited c-Fos expression induced by BzATP (Figure 13, green) (p < 0.05).  

Thus, the effects of BzATP on expression of Ptgs2, Dmp1 and c-Fos appear to be 

mediated by P2X7.   

4 BzATP-induced stimulation of Ptgs2 expression was inhibited by treatment with 

VPC-32183 and ibuprofen 

For Objective 2, we chose to focus our studies on Ptgs2 expression for several reasons.  

First, COX-2 inhibitors have received an abundance of attention in recent years with 

respect to their effects on bone healing and remodeling, and their possible actions on 

orthodontic tooth movement (Cottrell and O-Connor, 2010; Fang et al, 2016; Proffit, 

2012). Additionally, we had previously observed dramatic stimulation of Ptgs2 in 

response to BzATP stimulation in osteoblastic cells (Grol et al., 2013; Na, 2016). 

 

Ibuprofen is a non-selective inhibitor for COX.  At the 3 h time point, ibuprofen 

significantly reduced BzATP-induced expression of Ptgs2 (p < 0.05) (Figure 14).   

 

VPC-32183 is a selective antagonist of LPA receptors LPA1 and LPA3 (Heasley, 2004).  

In MC3T3-E1 cells, the LPA1 receptor is the most abundant receptor for LPA, with 

LPA3 expression virtually undetectable (Masiello et al., 2006).  When MC3T3-E1 cells 
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were harvested at 3 h, VPC-32183 significantly reduced BzATP induced expression of 

Ptgs2 (p < 0.05) (Figure 14). 

 

The combined effect of VPC-32183 and ibuprofen on MC3T3-E1 cells at 3 hours was 

virtually complete inhibition of Ptgs2 expression (p < 0.05) (Figure 14).  Thus, both PG 

and LPA signaling appear to be necessary for mediating the effects of P2X7 activation 

on Ptgs2 expression.  

5 PGE2 and LPA had a synergistic stimulatory effect on Ptgs2 gene expression in 

MC3T3-E1 cells 

Previously published dose-response data for both PGE2 (Suda et al., 1998) and LPA 

(Nochi et al., 2008) led us to select 1 M concentrations for both factors, as this 

concentration resulted in maximum anabolic gene expression in osteoblastic cells.  

Interestingly, in our experiments, PGE2 or LPA alone did not significantly stimulate 

Ptgs2 gene expression in MC3T3-E1 cells. However, their combined effect was a 

significant increase in Ptgs2 expression after 3 h of incubation (739  500 fold 

compared to vehicle-treated cultures, p < 0.05, Figure 15).  Thus, in combination, PGE2 

and LPA appear to be sufficient to mimic the effect of P2X7 activation on Ptgs2 

expression. 

 

NB: Please refer to Appendix A for data presented as relative gene expression without 

normalization as percentage of the maximum value. 
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Figure 11:  BzATP-induced stimulation of Ptgs2 expression was completely 

inhibited by the P2X7 antagonist A438079. 

MC3T3-E1 cells were pretreated with A438079 (10 M) or its vehicle for 20 minutes 

and then incubated with BzATP (300 μM) or its vehicle at time 0 (in the continued 

presence of A438079 or its vehicle).  Total RNA was isolated at the indicated times.  

Real-time RT-PCR was performed to assess expression of Ptgs2.  Data were normalized 

to levels of 18S ribosomal RNA, and relative to values for vehicle-treated cultures at 

time 0.  Data are shown as percentages of the maximum value in each individual 

experiment and are presented as means ± S.E.M. (n = 3 independent experiments, each 

performed in triplicate). The mean maximum value (100%) for these 3 experiments was 

342 ± 52 fold increase relative to vehicle-treated cultures at time 0.  Data were analyzed 

by two-way ANOVA followed by a Bonferroni post hoc multiple comparisons test.   

indicates a significant difference between BzATP and vehicle at each time point;  

indicates a significant effect of the P2X7 antagonist, A438079; p < 0.05.  
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Figure 12:  BzATP-induced stimulation of Dmp1 expression was completely 

inhibited by A438079. 

MC3T3-E1 cells were pretreated with A438079 (10 M) or its vehicle for 20 minutes 

and then incubated with BzATP (300 μM) or its vehicle at time 0 (in the continued 

presence of A438079 or its vehicle).  Total RNA was isolated at the indicated times.  

Real-time RT-PCR was performed to assess expression levels of Dmp1.  Data were 

normalized to levels of 18S ribosomal RNA, and relative to values for vehicle-treated 

cultures at time 0.  Data are shown as percentages of the maximum value in each 

individual experiment and are presented as means ± S.E.M. (n = 3 independent 

experiments, each performed in triplicate). The mean maximum value (100%) for these 

3 experiments was 6070 ± 2014 fold increase relative to vehicle-treated cultures at time 

0. Differences were evaluated by two-way ANOVA followed by a Bonferroni multiple 

comparisons test.  indicates a significant difference between BzATP and vehicle at 

each time point;  indicates a significant effect of the P2X7 antagonist, A438079; p < 

0.05. 
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Figure 13: BzATP-induced stimulation of c-Fos expression was completely 

inhibited by A438079. 

MC3T3-E1 cells were pretreated with A438079 (10 M) or its vehicle for 20 minutes 

and then incubated with BzATP (300 μM) or its vehicle at time 0 (in the continued 

presence of A438079 or its vehicle).  Total RNA was isolated at the indicated times.  

Real-time RT-PCR was performed to assess expression levels of c-Fos.  Data were 

normalized to levels of 18S ribosomal RNA, and relative to values for vehicle-treated 

cultures at time 0.  Data are shown as percentages of the maximum value in each 

individual experiment and are presented as means ± S.E.M. (n = 3 independent 

experiments, each performed in triplicate). The mean maximum value (100%) for these 

3 experiments was 67 ± 18 fold increase relative to vehicle-treated cultures at time 0. 

Differences were evaluated by two-way ANOVA followed by a Bonferroni multiple 

comparisons test.  indicates a significant difference between BzATP and vehicle at 

each time point;  indicates a significant effect of the P2X7 antagonist, A438079; p < 

0.05. 
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Figure 14:  BzATP-induced stimulation of Ptgs2 expression was inhibited by the 

COX inhibitor ibuprofen and the LPA receptor antagonist VPC-32183. 

MC3T3-E1 cells were pretreated with ibuprofen (10 μM) or its vehicle (DMSO) and 

VPC-32183 (VPC) (1 μM) or its vehicle (3% BSA) for 20 minutes.  After 20 minutes, 

BzATP (300 M) or its vehicle (DCFB) was added (in the continued presence of 

ibuprofen, VPC-32183, or vehicle).  Total RNA was isolated at 3 hours for all treatment 

groups.  Real-time RT-PCR was performed to assess the expression of Ptgs2.  Data were 

normalized to levels of 18S ribosomal RNA, and relative to values for cultures treated 

only with vehicles.  Data are shown as percentages of the maximum value in each 

individual experiment and are presented as means ± S.E.M. (n = 3 independent 

experiments, each performed in triplicate).  The mean maximum value (100%) for these 

3 experiments was 59 ± 7 fold increase relative to vehicle-treated cultures.  Differences 

were evaluated by two-way ANOVA followed by a Bonferroni multiple comparisons 

test.   indicates a significant difference between BzATP and vehicle at each time point; 

 indicates a significant effect of ibuprofen and/or VPC-32183; p < 0.05. 
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Figure 15: PGE2 and LPA combined induced Ptgs2 gene expression in MC3T3-E1 

cells. 

MC3T3-E1 cells were incubated with PGE2 (1 μM) or its vehicle (DMSO) and LPA (1 

μM) or its vehicle (3% BSA) at time 0.  No exogenous BzATP was added. Total RNA 

was isolated at 3 hours for all treatment groups.  Real-time RT-PCR was performed to 

assess expression levels of Ptgs2.  Data were normalized to levels of 18S ribosomal 

RNA, and relative to values for vehicle-treated cultures.  Data are shown as percentages 

of the maximum value in each individual experiment and are presented as means ± 

S.E.M. (n = 3 independent experiments, each performed in triplicate). The mean 

maximum value (100%) for these 3 experiments was 739  500 fold increase relative to 

vehicle-treated cultures at time 0.  Differences were evaluated by one-way ANOVA 

followed by a Bonferroni multiple comparisons test.   indicates a significant difference 

between PGE2, LPA or both and vehicle; p < 0.05. 
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DISCUSSION 

 

1 Summary and Conclusions 

 

Objective 1: To determine if P2X7 is the receptor activated by BzATP to induce anabolic 

gene expression by osteoblasts.  

 As shown previously by Dr. Na, BzATP stimulated expression of Ptgs2, Dmp1 

and c-Fos. We found that the specific P2X7 antagonist, A438079, inhibited 

expression of all three genes. These data indicate that P2X7 is the receptor 

activated by BzATP to induce expression of these genes in MC3T3-E1 

osteoblastic cells. 

 

Objective 2: To investigate the role of the PG and LPA signaling pathways in mediating 

the effects of BzATP on anabolic gene expression by osteoblasts. 

 BzATP-induced stimulation of Ptgs2 expression was reduced by treatment with 

the LPA1/3 receptor antagonist VPC-32183. 

 BzATP-induced stimulation of Ptgs2 expression was reduced by treatment with 

the COX inhibitor ibuprofen. 

 VPC-32183 and ibuprofen combined abolished Ptgs2 gene expression in 

BzATP-stimulated MC3T3-E1 cells. 

 Individually, PGE2 or LPA had little effect on Ptgs2 gene expression in MC3T3-

E1 cells.  

 Combined, PGE2 and LPA displayed a dramatic synergistic effect on Ptgs2 gene 

expression. 

 Taken together, LPA and PG signaling pathways appear to be both necessary and 

sufficient to mediate the effect of P2X7 on Ptgs2 expression in MC3T3-E1 

osteoblastic cells. 
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2 P2X7 regulates expression of anabolic genes 

In Objective 1, we aimed to determine if P2X7 is the receptor activated by BzATP that 

induces anabolic gene expression in osteoblasts.  BzATP is not a specific agonist for the 

P2X7 receptor. BzATP has previously been shown to activate a number of other 

receptors including P2Y11, P2X1, and P2X4 with similar potency (Bianchi et al., 1999; 

Communi et al., 1999; Naemsch et al., 1999; North, 2002). Using a specific P2X7 

antagonist, we were able to show that BzATP stimulates expression of Ptgs2, Dmp1 and 

c-Fos by activating P2X7. 

Previously, Dr. Na examined changes in Ptgs2, Dmp1 and c-Fos expression following 

BzATP activation of P2X7 in osteoblastic cells (Na, 2016). Furthermore, Dr. Na showed 

that dexamethasone has an inhibitory effect on BzATP-induced expression of Ptgs2 and 

Dmp1. Interestingly, Dr. Na found that BzATP-induced expression of c-Fos was not 

affected by treatment with dexamethasone, indicating the potential for specificity in 

dexamethasone action. 

Ptgs2 encodes prostaglandin-endoperoxide synthase-2 (COX-2) and is important for PG 

production.  PGs are imperative in regulation of bone metabolism, by inducing both 

bone formation and resorption, and they are necessary in fracture healing (Blackwell et 

al., 2010).   Previous studies have shown that osteoblast mechanotransduction may 

involve the production of prostaglandins, such as PGE2 (Li et al., 2005).  With this in 

mind, we examined changes in Ptgs2 expression following application of BzATP with 

and without the addition of the P2X7 selective inhibitor, A438079.  A438079 is a 

recently developed antagonist that has been shown to specifically block P2X7 (Nelsen et 

al., 2006; Donnelly-Roberts and Jarvis, 2007).  We confirmed that BzATP activation of 

P2X7 leads to significant increases in Ptgs2 expression at similar time points as 

previously observed in our past studies (Grol et al., 2013; Na, 2016).   Furthermore, we 

showed that BzATP-induced expression of Ptgs2 is inhibited by A438079 and therefore 

mediated through activation of P2X7.  
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Dmp1 encodes dentin matrix acidic phosphoprotein 1, which is found in bone, dentin 

and cementum (George et al., 1993).  Dmp1 is expressed by both osteoblasts and 

osteocytes and is critical in bone mineralization.  In this study, we saw significant Dmp1 

expression at 3 hours as observed in our previous studies (Na, 2016).  Again, A438079 

completely inhibited Dmp1 expression, implicating P2X7 in this effect. 

 

c-Fos is an immediate early gene, which encodes a transcription factor that plays a 

critical role in regulating differentiation and proliferation of bone and cartilage cells 

(Hipskind and Bilbe, 1998).  Overexpression of c-Fos has been found to be associated 

with the development of osteosarcomas and chondrosarcomas in mice, whereas failure 

to express c-Fos leads to lack of osteoclasts and development of osteopetrosis in mice 

(David et al., 2005; Wang et al., 1992).  These findings suggest that c-Fos plays an 

important role in the regulation of bone cells.  In the present study, we confirmed Dr. 

Na’s previous observation that BzATP leads to an increase of c-Fos expression at 30 

minutes (Na, 2016).  Again, A438079 completely abolished c-Fos expression 

implicating P2X7.  

Thus, we have shown that in osteoblastic cells activation P2X7 stimulates expression of 

Ptgs2, Dmp1 and c-Fos, which should lead to anabolic effects in bone.  Our findings are 

consistent with evidence from others implicating P2X7 in osteogenesis, including 

reduced alkaline phosphatase activity in osteoblasts from P2X7 KO mice (Panupinthu et 

al., 2008), decreased periosteal bone formation in P2X7 KO mice (Ke et al., 2003), and 

their attenuated anabolic response to mechanical loading (Li et al., 2005).  Furthermore, 

an increased risk of osteoporosis in humans is associated with several polymorphisms in 

P2X7 linked to impaired receptor function (Gartland et al., 2012; Jorgensen et al., 2012; 

Ohlendorff et al., 2007).  Our findings provide further evidence of a role for P2X7 in 

stimulating bone formation.   

3  Role of lipid signaling pathways in mediating effects of P2X7 

Lysophosphatidic acid (LPA) is a lipid mediator that interacts with G protein-coupled 

receptors and has been shown to be involved with osteoblast differentiation and 
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chemotaxis (Blackburn and Mansell, 2011; Sims et al., 2013; Sheng et al., 2015). There 

are several receptors for LPA; LPA1 is the predominant receptor for LPA on osteoblastic 

cells (Masiello et al., 2006).  Several studies have shown that LPA1 plays a role in bone 

formation. For example, Gennero et al. found that LPA1 KO mice displayed significant 

bone defects and low bone mass, indicating that LPA1 may play an important role in 

osteogenesis (Gennero et al., 2011).  Another study found that inhibition of LPA1 in 

human mesenchymal stem cells decreased LPA-induced rise in intracellular Ca2+ and 

cAMP signaling as well as subsequent osteogenesis (Liu et al., 2010).  LPA-treated 

MC3T3-E1 cells show alterations in their cytoskeleton and elevations in Ca2+, effects 

that resemble the osteoblastic cells’ response to fluid shear (Waters et al., 2007). Waters 

et al. found that LPA-treated MC3T3-E1 cells expressed genes necessary for skeletal 

repair, including several inflammatory mediators (Waters et al., 2007).  

Prostaglandins (PGs) are important in inflammation and are instrumental in mediating 

the effects of mechanical stress (Blackwell et al., 2010).  In orthodontics, PGs have been 

found to stimulate both osteoclastic bone resorption and osteoblastic bone formation 

(Davidovitch et al., 1988; Yamasaki et al., 1984).  PGE2 has four receptor subtypes that 

it binds to: EP1-EP4 (Funk, 2001).  MC3T3-E1 cells express both EP1 and EP4 receptor 

subtypes (Suda et al, 1998).  The stimulatory effects of PGE2 on osteoblast 

differentiation and subsequent bone formation are thought to be mediated by the EP4 

receptor (Yoshida et al., 2002).    

Previous results from our lab and others show that P2X7 activation is linked to the 

production of lipid mediators, which may have osteogenic effects in bone.  Li et al. 

showed that response to mechanical loading and PGE2 release was impaired in P2X7 

receptor deficient mice (Li et al., 2005). In our lab, Panupinthu et al. showed that 

signaling through P2X7 induces production of LPA and PGE2, and enhances 

osteogenesis (Panupinthu et al., 2007; Panupinthu et al., 2008).  Panupinthu et al. found 

that the LPA1/3 antagonist VPC-32183 abolished the effect of BzATP on mineral 

deposition in rat calvarial cell cultures.  Furthermore, Panupinthu et al. used ibuprofen to 

block the effects of BzATP on PG synthesis.  Similar to the actions of VPC-32183, 

ibuprofen abolished the effects of BzATP on mineralization (Panupinthu et al., 2008).   
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We examined the role of PGs and LPA in BzATP-induced Ptgs2 expression by 

inhibiting PGE2 production and/or blocking the LPA receptor.  In treating MC3T3-E1 

cells with ibuprofen, an inhibition of Ptgs2 expression was seen. VPC-32183 also had an 

inhibitory effect on BzATP-induced Ptgs2 expression.  In combination, ibuprofen and 

VPC-32183 completely abolished Ptgs2 expression.  

 

Lastly, we examined the effects of PGE2 and LPA on Ptgs2 expression in MC3T3-E1 

cells. We found that the addition of either lipid mediator individually did not have a 

significant effect on Ptgs2 expression; however, the combined addition of PGE2 and 

LPA significantly increased in Ptgs2 expression.  We show for the first time that PGE2 

and LPA have a synergistic effect that simulates BzATP-induced P2X7 activation.  This 

finding indicates that both lipid mediators are necessary and sufficient in combination to 

mimic BzATP-induced P2X7 activation. Thus, they may play important roles in P2X7-

mediated osteogenesis and mechanotransduction. 

4 Limitations of the study and suggestions for future studies 

There are a few limitations of this study as outlined below. 

 

a) Our study was limited to investigation of specific genes, but this was necessary 

as a preliminary step to determine the types of genes being expressed in response 

to various treatments administered.  In addition, time constraints precluded us 

from examining protein levels and in vitro mineralization. 

b) In using a mouse osteoblast precursor cells line, we limit translation of our 

results to human osteoblasts, as there are inherent species-specific differences 

between mouse and human osteoblasts. 

c) While our study was in vitro in nature, it provides a useful model for 

understanding the effects of P2X7 receptor activation.  These results may be 

translatable to in vivo effects, but future studies will be needed to determine this. 

A number of future studies would be useful to address these limitations and answer 

questions that have arisen as a result of this study.  These include:   
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a) Other genes, including genes not regulated by dexamethasone (e.g. c-Fos), which 

we would expect are regulated by pathways downstream of P2X7 other than PG 

and LPA pathways.    

b) Examine protein levels with a similar experimental design. 

c) We expect that dexamethasone should inhibit P2X7-activated production of LPA 

and PGE2.  Future studies should directly measure the effects of dexamethasone 

on the release of these lipid mediators.   

d) Determine how PG and LPA interact synergistically. This would include 

identifying: which LPA and PG receptors are involved, which signaling 

pathways are activated downstream of the receptors, and how these pathways 

interact to stimulate Ptgs2 expression.  

e) A study done in a primary osteoblast cultures looking at an extended timeline 

post BzATP treatment should clarify whether the expression of anabolic genes in 

osteoblasts translates to increased matrix mineralization. 

f) Others have shown that PG inhibitors block mechanically induced bone 

formation in animal models (Cottrell and O-Connor, 2010). It would be 

interesting to determine whether dexamethasone or LPA1/3 receptor antagonists 

have similar effects.  Similarly, it would be interesting to assess the effects of 

these agents on orthodontic tooth movement in an animal model. 

5 Relevance of the study in orthodontic tooth movement 

Although the cellular mechanisms underlying orthodontic tooth movement (OTM) have 

been clearly outlined, the precise pathways mediating mechanotransduction remain to be 

elucidated.   In our study, we aimed to establish the role of P2X7 in anabolic gene 

expression in osteoblastic cells.  In expanding our basic science knowledge and 

understanding molecular mechanisms involved in OTM, we may design more 

physiologic and efficient methods to achieve better orthodontic results.  Any mechanism 

involved with inhibiting or delaying the events contributing to mechanical stimulation 

and subsequent bone remodeling may have negative consequences to OTM.  Here we 

show that the non-selective COX inhibitor ibuprofen has a negative effect on osteoblast 

activation and potentially bone formation via its inhibition of Ptgs2 expression.  This 
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finding may assist in explaining why other studies have found that COX inhibitors, such 

as indomethacin, have an inhibitory effect on OTM (Chumbley and Tuncay, 1986).  

Since OTM is dependent upon the coordinated activity of osteoblasts and osteoclasts, 

disruption in the activity of one of these cell types may inhibit efficient tooth movement.  

Further implicating NSAIDs in altered bone remodeling, numerous studies have 

indicated that NSAIDs may impair bone healing and repair (Cottrell and O-Connor, 

2010).  This is believed to occur due to inhibition of prostaglandin production, which 

reduces osteoclast and osteoblast activation necessary for bone healing.  Although 

evidence exists to suggest that low dose and short-term use of NSAIDs may not have a 

significant effect on the rate of OTM clinically (Proffit, 2012; Fang et al., 2016), further 

studies are needed to clarify future recommendations.   
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Figure 16: Summary of the findings. 

In conclusion, we show that P2X7 is the receptor activated by BzATP to induce anabolic 

gene expression in osteoblasts.  Genes such as Ptgs2, Dmp1 and c-Fos are up regulated 

through BzATP stimulation and are abolished through inhibition with a P2X7-specific 

antagonist, A438079.  Furthermore, we show that a P2X7-LPA-PGE2 axis may have a 

regulatory role in osteogenesis.  
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APPENDICES 

Appendix A: Results presented without the normalization as percentage of 

maximum gene expression. 

 

Data are shown as relative gene expression of respective genes 
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Appendix B: Permission to use Figure 2.  
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