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Abstract

My thesis consists of three chapters describing volatility forecasting during periods of fi-

nancial booms and busts, the economic and statistical benefits of flexible data generating

process of index returns, and multivariate model of exchange rate returns and their options.

In the first chapter, I propose a non-linear threshold model for realized volatility of

S&P 500 index, allowing us to obtain a more accurate volatility forecast, especially during

periods of financial crisis. The changes in volatility regimes are driven by negative past

returns, where the threshold equals approximately −1%. This finding remains robust to

different functional forms of volatility and different set of indices from both developing

and developed countries. The additional flexibility of the model allows me to produce a

more accurate one and multiple-days-ahead forecasts compared to the linear specification

and GARCH family models. Finally, I derive an approximated closed form solution for

multiple-step-ahead forecast, which is based on the normal-inverse Gaussian conditional

distribution of returns.

In the second chapter, I develop a novel discrete-time model for the asset return based

on the high-frequency data and mixture of normal (MN) distributions of the latent volatility.

This model accurately replicates distributions of both returns and realized volatility under

the objective measure. To compute option prices, I specify a Radon-Nikodym derivative,

which includes both Gaussian and non-normal innovations, correspondingly. Crucially,

my approach avoids calibration of all model’s parameters. I price European Put options

using Monte Carlo simulations and assess pricing performance of MN and nested Gaus-

sian models during turbulent financial markets in 2008-2011 years. MN model does not

only substantially reduce option pricing errors compared with Gaussian model, but pro-

vides an appealing econometric framework to assess evolution of investors’ risk. Next, I
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show a novel approach for predicting returns distribution by exploiting informational con-

tent of option prices and MN model. Finally, I build a simple quantitative strategy, which

substantially outperforms returns of S&P 500 index (76% compared with 2%) during tur-

bulent 2008-2011 years, while remaining market-neutral and had the same volatility as a

benchmark returns.

In the third chapter, which is a joint work with Chang, Feunou and Fontaine, we pro-

pose a new multivariate factor model of exchange rate returns and their option-implied

variances. This model documents a tight factor structure in the variance of exchange rate

returns and then relate it to the economic factors. In particular, we show that the common

factors driving variances of exchange rate returns include the variances of global factors

and the common factors driving variances of country-specific shocks. We build a tractable

multivariate asset pricing model based on these stylized facts for the underlying exchange

rate returns. Our multivariate model provides a reasonable fit compared with performance

of univariate models estimated for each series separately. Crucially, our model has a num-

ber of appealing benefits which are not attainable in the univariate framework. For example,

this model can be used to devise a better portfolio construction or hedging strategy for a

portfolio containing both currencies and currency options.

keywords: volatility modelling, derivatives pricing, risk management, forecasting
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1

Chapter 1

Volatility Forecast in Crises and

Expansions

1.1 Introduction

Volatility plays an important role in financial econometrics. Measuring, modelling and

forecasting financial volatility are essential for risk management purposes, portfolio allo-

cation and option pricing. Although returns remain unpredictable, their second moment

can be forecasted quite accurately, which generated a lot of research during the last thirty

years motivated by Engle’s seminal paper Engle (1982). The existing literature aiming to

model and forecast financial volatility can be divided into two distinct groups: parametric

and non-parametric models. The former assumes a specific functional form for volatility

and models it as a function of observable variables, such as ARCH or GARCH models

Engle (1982), Bollerslev (1986), Bollerslev et al. (1994), or as a known function of la-

tent variables resulting in stochastic volatility models Hull and White (1987), Melino and
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Turnbull (1990).

The second class defines financial volatility without imposing any parametric assump-

tions hence called realized volatility models Andersen et al. (2003). The main idea of the

latter models is to construct consistent estimators for the unobserved integrated volatility

by summing the squared returns over a very short period within a fixed time span, typically

one day. The availability of high-frequency data allows high precision estimation of the

continuous time pure diffusion processes given the large datasets of discrete observations.

As a result, volatility essentially becomes observable and, in the absence of microstructure

noise, can be consistently estimated by a realized volatility measure. This approach has two

main benefits compared with GARCH and stochastic volatility models. First, researchers

can treat volatility as observable and model it by applying a time series technique, for ex-

ample ARFIMA or autoregressive fractionally integrated moving average models Andersen

et al. (2003). Second, realized volatility models significantly outperform models based on

lower frequency (daily data) in terms of forecasting power; see, e.g., Maheu and McCurdy

(2011), Andersen et al. (2007), McAleer and Medeiros (2008). Indeed, the latter models

adapt new information and update the volatility forecast at a slower daily frequency, while

the former models can incorporate changes in volatility faster due to the more frequent

arrival of intraday information.

Although the literature proposes many different approaches for modelling volatility,

there is still no unique model that explains all of the stylized facts simultaneously. In par-

ticular, there is no consensus on how to model long memory, since there are at least four

approaches: the non-linear model with regime switching McAleer and Medeiros (2008);

the linear fractionally-integrated process Andersen et al. (2001); the mixture of hetero-

geneous run information arrivals Andersen and Bollerslev (1997); and the aggregation of
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short memory stationary series Granger and Ding (1996). Numerous methods have been

developed, since it is hard to distinguish between unit root and structural break data gen-

erating processes Perron (1989), Zivot and Andrews (1992). Choi et al. (2010) show that

structural break models can outperform the long memory model if the timing and sizes of

future breaks are known. Although few academics and practitioners accurately predicted

the timing of the recent financial crises and European sovereign debt turmoil, a model with

structural breaks seems to be more economically plausible than a fractionally-integrated

long memory model. In addition, Choi et al. (2010) recommend relying on economic in-

tuition to choose between smooth transition auto regressive models (STAR) and abrupt

structural break models.

In this chapter, we extend the heterogeneous autoregressive model proposed by Corsi

(2009) to take into account different regimes of volatility. The resulting model is called a

non-linear threshold autoregression model, where regimes are governed by an exogenous

trigger variable. This model provides a better fit of the robust measure of realized volatility

for both in-sample data and out-of-sample forecasting. In addition to an improved perfor-

mance in particular samples, a non-linear model also produces superior multiple-step-ahead

forecasts in population according to the Giacomini and White test (Giacomini and White

(2006)). We also show that the superior performance of a non-linear model is achieved dur-

ing periods of high volatility. This is especially important during times of financial crises,

when investors are in particular need of more accurate forecasts. Finally, we derive an ap-

proximated closed form expression for multiple-step-ahead forecast, where the past returns

govern changes in

volatility regimes.

This chapter finds that changes in the volatility regimes occur when return exceeds
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a −1% threshold, which is in line with previous findings McAleer and Medeiros (2008),

Scharth and Medeiros (2009). However, our model differs in terms of the estimation pro-

cedure and the most recent dataset that includes financial crises. In fact, the superior per-

formance of a non-linear model becomes particularly significant during periods of elevated

volatility, such as recent financial crises. More importantly, we a derive an approximated

closed-form expression of multiple-step-ahead forecasts, whereas other authors either focus

on one-step ahead forecasts McAleer and Medeiros (2008) or using conditional simulations

Scharth and Medeiros (2009).

The remainder of this chapter is organized as follows. The non-linear threshold model

for realized volatility is defined in Section 1.2. Section 1.3 describes preliminary data

analysis and estimation results for the S&P 500 index. Section 1.4 describes one and

multiple-step-ahead forecasts. Finally, Section 1.5 concludes and provides directions for

future work.

1.2 Model

In this section, we introduce two building blocks: the heterogeneous autoregressive model

and the regime switching model. Then, we describe the econometric framework designed

for the estimation and inference of our threshold autoregressive model. Finally, we discuss

the forecasting of our model and how to derive an approximated closed form expression

for its multiple-days-ahead forecasts.
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1.2.1 HAR-RV Model with Regime Switching

In this section, we discuss extensions of the heterogeneous autoregressive model (HAR)

of realized volatility proposed in Corsi (2009). First, let us assume that returns follow a

continuous diffusion process:

dp(t) = µ(t)dt + σ(t)dW(t), (1.1)

where p(t) is the logarithm of instantaneous price, µ(t) is continuous with a finite variation

mean process, σ(t) is instantaneous volatility and W(t) is standard Brownian motion. Given

the process in (1.1), the integrated variance corresponding to day t is defined as:

IVd
t =

∫ t

t−1
σ2(ω)dω. (1.2)

Several authors show that as sampling frequency increases, integrated volatility IVd
t

can be approximated by realized variance defined as a sum of the intraday squared returns

Andersen et al. (2003), Barndorff-Nielsen and Shephard (2002a,b). In essence, volatility

becomes observable and can be forecasted using time series techniques.

The presence of market microstructure noise makes realized variance inconsistent and is

a biased estimator of true integrated voaltility. Therefore, we use the realized kernel esti-

mator developed in Barndorff-Nielsen et al. (2008), which remains consistent under the

presence of market microstructure noise. The realized kernel RKK,δ is an estimator of latent

realized variance and is defined as follows:

RKK,δ = γ0(pt) +

H∑
h=1

k
(
h − 1

H

)
(γh(pt) + γ−h(pt)), (1.3)
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where γh(pt) =
n(δ)∑
i=1

(pi,t − pi−1,t)(pi−h,t − pi−h−1,t), k(·) is a weight function and pi,t is i-th intra-

daily log price sampled at frequency δ and recorded at day t. In other words, i = 1, ..., n(δ)

and n(δ) = nseconds/δ, where nseconds is the number of seconds during the trading day. Thus,

the realized kernel is similar to the HAC (heteroskedasticity and autocorrelation consistent

covariance matrix) estimator of the variance-covariance matrix for some stationary time

series. Throughout this chapter, realized variance will equal the realized kernel measure

defined in (1.3).

The realized kernel has several advantages over other high-frequency proxies of latent

volatility. First, Brownlees and Gallo (2009) show that the realized kernel performs better

(in terms of forecasting Value-at-Risk) than other high-frequency measures, including re-

alized volatility, bi-power realized volatility, two-scales realized volatility and daily range.

Second, the realized kernel is a consistent estimator of latent variance, which is robust to

the market microstructure noise.

The heterogeneous autoregressive model is able to replicate the majority of stylized

facts observed in data: fat tails, volatility clustering and long memory. In particular, HAR

is able to generate hyperbolic decays in the autocorrelation function in a parsimonious way

due to the volatility cascade property, despite the fact that this model does not belong to the

class of long memory models. This model is based on the heterogeneous market hypothesis

Muller et al. (14-15 October, 1993) , which implies that lower frequency volatility (weekly)

affects higher frequency volatility (daily), but not vice versa:

RVd
t+1 = c + βdRVd

t + βwRVw
t + βmRVm

t + εd
t+1, (1.4)

where RVd
t , RVw

t and RVm
t are daily, weekly and monthly realized variance, respectively, at
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period t. The lower frequency, for example weekly, realized variance is computed as:

RVw
t =

RVd
t + ... + RVd

t−4

5
. (1.5)

Similarly, the monthly realized variance is computed as the average of daily variances

over 22 days. Although the HAR model is able to capture long memory and volatility

clustering, it cannot explain abrupt changes in regimes. Indeed, recent subprime mortgage

crises, European debt turmoil and a number of other financial calamities led to significantly

different behaviour in the dynamics of the realized variance during “good” and “bad” times,

as we will discuss in Section 1.3. Therefore, we propose to extend the benchmark HAR

model and allow the possibility of multiple regimes, governed by either endogenous or

exogenous variables. We define the threshold HAR model with two regimes as follows:

RVd
t+1 =


c1 + βd

1RVd
t + βw

1 RVw
t + βm

1 RVm
t + εt+1, if Tt−l < τ

c2 + βd
2RVd

t + βw
2 RVw

t + βm
2 RVm

t + εt+1, if Tt−l ≥ τ

, (1.6)

where Tt−l is a trigger variable with some lag l and τ is the value of a threshold. Recall,

that the threshold model has a very flexible structure and can be defined with different

candidates for the trigger variable. However, we consider only observable trigger in this

chapter based on the empirical analysis discussed in the subsection 1.3.3. In particular, we

build a model with past returns governing the changes in the variance regimes.
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1.2.2 Econometric Framework for the Non-Linear Model

Estimation

Next, we present the econometric techniques designed to model non-linear dynamics of

time series: the self-exciting threshold autoregressive (SETAR) model and the threshold

autoregressive (TAR) model introduced by Tong (1978) and Tong and Lim (1980). The

main difference between these models is that the trigger variable can be either exogenous

(TAR model) or endogenous (SETAR model). The TAR(m) model, where m denotes the

number of regimes, is defined as follows:

Yt+1 = θ
′

1Xt11,t(τ, l) + ... + θ
′

mXt1m,t(τ, l) + εt+1, (1.7)

where Yt+1 is a univariate time series, Xt = (1,Yt, ...,Yt−p)
′

(p+1)×1 vector, τ = (τ1, ..., τm−1)

and τ1 < τ2 < ... < τm−1, 1 j,t(τ, l) = 1(τ j−1 ≤ Tt−l < τ j), 1(·) is an indicator function and

Tt−l is a threshold variable. Let us assume that τ0 = −∞ and τm = ∞, while the error term

εt+1 is conditionally independent on information set It and has a finite second moment:

E[ε2
t+1] = σ2 < ∞

E[εt+1|It] = 0.
(1.8)

In particular, if variable Yt+1 follows the TAR(2) process, then the model (1.7) becomes:

Yt+1 =


θ
′

1Xt + εt+1, if Tt−l < τ

θ
′

2Xt + εt+1, if Tt−l ≥ τ

. (1.9)

Recall that Model (1.9) nests a non-linear HAR specification (1.6) if we put constraints
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on the corresponding AR(22) model in each regime. Now, define the vector of all param-

eters of Model (1.9) as θ = (θ
′

1, θ
′

2, ..., θ
′

m, τ
′

, l)
′

. Under Assumption (1.8), the estimation of

the TAR(m) model is performed using a non-linear least squares approach:

θ̂ = arg min
θ

T∑
t=1

(Yt+1 − θ
′

1Xt11,t(τ, l) − ... − θ
′

mXt1m,t(τ, l))2. (1.10)

Here, the minimization can be done sequentially. In particular, θ = (θ
′

1, ..., θ
′

m)
′

can be

computed through OLS regression of Y on X(τ, l) for fixed parameters d and τ:

θ(τ, l) =
(
X(τ, l)

′

X(τ, l)
)−1

X(τ, l)
′

Y, (1.11)

where Y is the Tx1 vector consisting of observations of Yt+1, while X(τ, l) is the Tx4m

matrix with t-th row Xt(τ, l):

Xt(τ, l) = (Xt11t(τ, l), Xt12t(τ, l), ..., Xt1mt(τ, l))

Now, let us assume for simplicity that the non-linear model has only two regimes or

m = 2. Thus, two parameters τ and l can be estimated through minimization of the residual

sum of squared errors S (τ, l):

(τ̂, l̂) = arg min
τ,l

S (τ, l), (1.12)

where S (τ, l) =
(
Y − X(τ, l)θ̂(τ, l)

)′ (
Y − X(τ, l)θ̂(τ, l)

)
.

The minimization can be performed through a grid search, while noting that l is discrete.

We follow Hansen (1999) approach, which allows speeding up the minimization algorithm.
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In particular, he recommends eliminating the smallest and largest quantiles for the threshold

variable in the grid search. This elimination does not only reduce the computational time,

but also serves as a necessary condition for having enough observations in each regime.

Indeed, asymptotic theory places additional constraints on the optimal threshold level, such

that n j

T ≥ τ as n→ ∞. Although, there is no clear procedure for how to optimally choose τ,

Hansen (1999) recommends to use a 10% quantile for the cut-off procedure.

Testing for Non-Linearity

We start by discussing the testing of the linear model or TAR(1) against the non-linear

model or TAR(m), where m > 1. Under the null hypothesis, all parameters θ1, ..., θm should

be the same:

θ1 = θ2 = ... = θm. (1.13)

Since the threshold parameter is not identified under the null hypothesis, the classical

tests have a non-standard distribution. This problem is called “Davies’ problem” due to

Davies (1977, 1987). Hansen (1999, 2000) overcomes this problem by using empirical

process theory and derived the limiting distribution of the main statistics of interest F jk:

F jk = T
(
S j − S k

S k

)
, (1.14)

where S j and S k are the sum of squared residuals and k > j. Computation of the asymp-

totic distribution is not straightforward, but might be faster than a bootstrap calculation.

Although the literature does not assess the performance of the asymptotic against the boot-

strap distribution in the context of SETAR models, Diebold and Chen (1996) show that the

bootstrap technique performs better in the AR(1) context with Andrews structural change
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test Andrews (1993). Thus, we use the following bootstrap algorithm for testing the linear

model against the non-linear TAR(2) model:

1. Draw residuals with replacement from the linear TAR(1) model.

2. Generate a recursively simulated dataset using initial conditions Y0, ...,Yp and esti-

mates of the TAR(1) model, where p equals 22.

3. Estimate the TAR(1) and TAR(2) models on the simulated dataset.

4. Compute S b
1 and S b

2 on the simulated dataset, where b refers to specific bootstrap

replication.

5. Compute statistics Fb
12 from (1.14).

6. Repeat Steps (1)–(5) a large number of times.

7. The bootstrap p-value (pbootstrap) equals the percentage of times that Fb
12 exceeds the

actual statistic F12.

The algorithm in (1)–(7) can be used to evaluate the distribution of F12 under the as-

sumption of either homoscedastic or heteroscedastic errors. We compute the bootstrap

p-value under the latter assumption, since the residuals of Model (1.4) are heteroscedastic.

This is in line with the literature Corsi et al. (2008).

Testing for Remaining Non-Linearity

The testing for remaining non-linearity is an important diagnostic check for the TAR (m)

model. One way to address this question is to test whether the presence of the additional

regime is statistically significant or not. This test relies on the aforementioned algorithm,

while the bootstrap p-value is computed for statistics F j j+1, where j > 1.
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Asymptotic Distribution of the Threshold Parameter

The existing literature documents that the distribution of the parameter τ is non-standard

if the threshold effect is significant Chan (1993), Hansen (1999). Hansen (1997, 2000)

derives an asymptotic distribution of likelihood ratio statistics:

LR1(τ) =
S 1(τ) − S 1(τ̂)

σ̂2 , (1.15)

where S 1(τ) is the residual sum of squares given parameter τ and σ̂2 is the variance of

residuals of the TAR(2) model and equals S 1(τ̂)
T−4 . Moreover, Hansen (1997, 2000) shows that

the confidence interval for the threshold parameter is obtained by inverting the distribution

function of a limiting random variable. In other words, the null hypothesis H0 : τ = τ0 is

rejected if the likelihood ratio LR1(τ0) exceeds the function of confidence level α:

c(α) = −2log(1 −
√

1 − α). (1.16)

Alternatively, the confidence interval for the threshold parameter is formed as an area

where LR1(τ) ≤ c(α) and is called the “no-rejection region”. We have to interpret the

confidence interval for threshold parameter τ with caution, since it is typically conservative

Hansen (1999, 2000). However, the ultimate test of our non-linear model is the ability to

produce superior out-of-sample forecasts, which requires a tight confidence interval for the

threshold parameter. We provide more discussion on page 27.

Although estimates θ̂1, ..., θ̂m depend on the threshold parameter τ, the asymptotic dis-

tribution remains the same as in the linear model case, since estimate τ̂ is super-consistent

Franses and Dijk (2000). Chan (1993) and Hansen (1999) prove that dependency on the
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threshold parameter is not of first order asymptotic importance, thus the confidence interval

for θ̂ can be constructed as if τ̂ is a known parameter.

Stationarity

The stationarity conditions for our TAR(2) model are not easily derived, and in general,

not much is known about this property for non-linear models with heteroskedastic errors

– see the discussion in Franses and Dijk (2000)(pp. 79-80). The literature does propose

sufficient conditions for a restricted class of non-linear models and typically for models

with homoscedastic errors. In particular, Chan et al. (1985) consider SETAR(2) specifi-

cation with the AR(1) model in both regimes, while Knight and Satchell (2011) establish

necessary and sufficient conditions for the existence of a stationary distribution for TAR(2)

and SETAR(2) models with the AR(1) process.

In contrast, our model has a richer structure within each regime, since the HAR model

is a restricted version of the AR(22) process. Because of this richer structure within each

regime and because neither self-exciting nor exogenous thresholds are used, it is not pos-

sible to use the results from Chan et al. (1985) and Knight and Satchell (2011) to prove

stationarity. In addition, our residuals exhibit volatility clustering, and because of the

heteroscedastic errors, it is not possible to exploit the necessary and sufficient conditions

for strict stationarity, even for the simple HAR model derived by McAleer and Medeiros

(2008).

In conclusion, as is the case in much empirical work, we have to make a trade-off

between the flexibility of the model and the analytical tractability of stationarity conditions.

In this chapter, we choose to design a model aiming at providing more accurate volatility

forecasts, and we leave the question of stationarity for future work.
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1.2.3 Forecasting

One-Step-Ahead Forecast

We assess the forecasting performance of various models by computing the one-step-ahead

forecast of the realized volatility measured by the square root of the realized kernel. These

forecasts are computed through rolling window estimation. First, the parameters of the

model are estimated using an in-sample set, and then the one-step-ahead forecast is com-

puted. Second, the rolling window is moved by one period ahead; the most distant obser-

vation is dropped, and the parameters of the model are re-estimated, while the threshold

parameter τ and optimal lag l are kept time invariant. Finally, the one-step-ahead forecast

is computed again.

We use the root mean square error (RMSE) and the mean absolute error (MAE) to

compare the forecast performance of four models:

et+1|t = Yt+1 − Yt+1|t

RMS E =

√√√√√ t+N∑
j=t+1

e2
j+1| j

N

MAE =

t+N∑
j=t+1
|e j+1| j|

N
,

(1.17)

where Yt+1|t is the one-step-ahead conditional forecast of the daily realized volatility com-

puted based on the rolling window for one of the four models and Yt+1 is the daily realized

volatility at period t + 1. In addition, we compute R2 of the following Mincer–Zarnowitz

regression:

Yt+1 = d0 + d1Yt+1|t + νt. (1.18)
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Finally, we investigate the forecasting performance of different models in population

using the Giacomini and White (GW) test (Giacomini and White (2006)). The GW test

fits nicely in our framework due to the following reasons. First, it does not favour models

that overfit in-sample, but have high estimation errors. Second, this test is designed to

compare not only unconditional, but conditional forecasts, as well. Finally, the GW test

works with rolling window forecasts, where in-sample size is fixed, while out-of-sample

size is growing.

Conditional Distribution of Returns

In this section, we discuss multiple-step-ahead forecasts for aggregate volatility over pe-

riods of five and 10 days. The extension of the multiple-step-ahead forecast to the linear

model is straightforward, while the non-linear model has one important problem. We de-

scribe formulas used to compute the multiple-step-ahead forecast for the HAR, GARCH(1,1)

and GJR-GARCH(1,1) (proposed by Glosten et al. (1993)) models in Appendix A.1. In par-

ticular, the one-step-ahead forecast remains the same for both non-linear and linear cases,

while the two-step-ahead forecast is different:

Yt+1 = F(Yt, θ) + εt+1

E[Yt+1|It] = F(Yt, θ)

E[Yt+2|It] = E[F(Yt+1, θ)|It] , F(E[Yt+1, θ)|It]),

(1.19)

where It is the information set available at period t, F is a non-linear function, θ is a vec-

tor of estimates and Yt is the realized volatility at period t. Equation (1.19) illustrates

the main problem related to non-linear model: the expected value of a non-linear func-

tion differs from the value of a non-linear function evaluated at the expected value. In the
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literature, several methods have been proposed for the computation of the multiple-step-

ahead forecast, including conditional simulations in Scharth and Medeiros (2009). How-

ever, we choose a different strategy and derive an approximated closed form solution for the

multiple-step forecast. Specifically, we follow an approach similar to Forsberg and Boller-

slev (2002) and Stentoft (2008) to derive the conditional distribution of returns. Given the

diffusion process (1.1), the returns should follow a normal distribution:

rt+1|Yt+1, It ∼ N(µNYt+1, σ
2
NY2

t+1)

Yt+1 =

√
RVd

t+1,

(1.20)

where It = F (rt, rt−1, ...) is information at the period t set generated by the history of returns

and µN is the mean of standardized returns, and µN and σ2
N should be close to zero and

one, correspondingly. See Table 1.1 for details. Meanwhile, the conditional distribution

of realized volatility is closely approximated by the inverse Gaussian distribution with the

following density function:

Yt+1|It ∼ IG(σt+1, αIG),

pd fIG(z, σt+1, αIG) =

(
1

αIGσt+1

)−0.5
z−1.5

(2π)0.5 exp
(
αIG − 0.5

[
αIGσt+1

z
+
αIGz
σt+1

])
αIG =

λIG

σt+1
,

(1.21)

where σt+1 is a conditional mean and λIG is a shape parameter of the inverse Gaussian

distribution. The conditional mean is assumed to be filtered from the non-linear TAR(2)

model as follows:

σt+1 = 1(rt < τ) · X
′

tθ1 + 1(rt ≥ τ) · X
′

tθ2. (1.22)
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Table 1.1: Parameters of normal and inverse Gaussian distributions for standardized returns
and volatility.

Parameters All Sample In-Sample

µN 0.0840 0.0488
σN 1.0907 1.0937
µIG 0.0093 0.0087
λIG 0.0296 0.0369

The first column corresponds to the in-sample period, while the second to the whole sample. µIG is a scale
parameter for the unconditional inverse Gaussian (IG) distribution of realized volatility.

Combining Equations (1.20) and (1.21), the conditional distribution of returns becomes

a normal-inverse Gaussian distribution (NIG) with the probability density function com-

puted as:

pd f (rt+1|It) =

∫
Yt+1

pd f (rt+1|Yt+1, It) · pd f (Yt+1|It) dYt+1

rt+1|It ∼ NIG(µN , σN , σt+1, αIG).
(1.23)

The NIG distribution provides a relatively accurate fit of the unconditional distribution

of returns. The first three graphs in Figure 1.1 demonstrate the very close match between

parametric and non-parametric unconditional distributions of standardized returns and re-

alized volatility, respectively. Table 1.1 shows the corresponding parameters of normal and

inverse Gaussian distributions.

Having the distributional assumption for returns, Theorem 1.2.1 demonstrates how to

obtain the approximated closed form expression for the multiple-step ahead forecast of the

realized volatility.

Theorem 1.2.1 Let {Yt} follow the TAR(2) process defined in (1.6), while returns follow
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Figure 1.1: Comparison of parametric and non-parametric distributions of standardized
returns, realized volatility and returns
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Comparison of parametric (solid blue line) and non-parametric kernel distributions (red dashed line) of stan-
dardized returns, realized volatility and returns. The first graph compares the normal distribution of stan-
dardized returns with the non-parametric distribution, while the second plots the corresponding QQ plot. The
third graph illustrates the comparison between the IG distribution and the non-parametric distribution for
realized volatility. The final graph shows the normal-inverse Gaussian (NIG) distribution for returns and the
corresponding non-parametric distribution.

the NIG distribution with the conditional probability density function defined in (1.23), and

rt+h−1 (h ≥ 2) are independent of ε1,...,εt+h−2. Then, the approximated h-step-ahead forecast

(h ≥ 2) is obtained as follows:

Ŷt(h) = E[Yt+h|It] ≈ c1πt + c2(1 − πt) +
(
βd

1πt + βd
2(1 − πt)

)
Ŷt(h − 1)+

+
(
βw

1πt + βw
2 (1 − πt)

)
Ŷw

t (h − 1) +
(
βm

1 πt + βm
2 (1 − πt)

)
Ŷm

t (h − 1),
(1.24)
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where:

πt = Pr[rt+1 < τ|It] =

∫ τ

−∞

pd f (rt+1|It)drt+1

θ =
(
c1, β

d
1, β

w
1 , β

m
1 , c2, β

d
2, β

w
2 , β

m
2

)′
Ŷw

t (h − 1) =

[
Ŷt(h − 1) + ... + Ŷt(h − 5)

5

]
Ŷm

t (h − 1) =

[
Ŷt(h − 1) + ... + Ŷt(h − 22)

22

]
,

(1.25)

Proof See Appendix A.2.

In essence, Formula (1.24) is similar to the multiple-step-ahead forecast of the GJR-

GARCH(1,1) model — see Appendix A.1 for details. However, the TAR model has an

additional flexibility, since probability πt is time varying, while GJR-GARCH assumes that

the corresponding probability equals to 0.5. To facilitate comparison between these two

models, we compute the unconditional probability of a high volatility regime occurring

based on the NIG distribution (1.23) and from returns data. Here, the probability equals the

frequency of returns occurring, which is lower than the threshold value. The results show

a close match between these two methods: 11.3% (NIG) vs. 13.2% (historical returns) for

in-sample data.

Finally, we describe the multiple-step-ahead forecast using the rolling window ap-

proach. First, the parameters of the model are estimated using in-sample data, and probabil-

ity πt is computed. Second, multiple-step-ahead forecasts for the TAR model are calculated

based on Expression (1.24), while πt remains constant. Probability πt can be computed for

each step of forecast, as well, but this will add additional computational burden, while the

results should change only marginally. In other words, we assume that πt+h|t = πt ∀h, where

πt+h|t = Pr[rt+h < τ|It]. We compute h-step-ahead forecasts for the HAR, GARCH(1,1)
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and GJR-GARCH(1,1) models based on the formulas presented in Appendix A.1. Finally,

the rolling window is moved by one period ahead; the first observation is dropped, and the

parameters of the model, including πt+1, are re-estimated.

1.3 Empirical Analysis

1.3.1 Data

The empirical analysis is based on high-frequency data for the S&P 500 index obtained

through the Realized Library of Oxford-Man Institute of Quantitative Finance (Library

Version 0.2), which is freely available:

“Researchers may use this library freely without restrictions so long as they quote in any

work which uses it: Heber, Gerd, Asger Lunde, Neil Shephard and Kevin Sheppard (2009)

“Oxford-Man Institute’s realized library”, Oxford-Man Institute, University of Oxford.”

The sample covers the period from 3 January of 2000 to 12 June of 2014, overall 3603

trading days. We exclude all days from the sample when the market was closed. Heber et al.

(2009) have created the Realized Library database, which provides daily data for about 11

realized measures for 21 assets. The authors clean the raw data obtained through Reuters

Data Scope Tick History and compute high-frequency estimators from cleaned data. We

use a realized kernel Barndorff-Nielsen et al. (2008) as a proxy for integrated variance.

1.3.2 Preliminary Data Analysis

We start with data analysis of five main time series of interest: standardized returns, re-

turns, realized variance, realized volatility and the logarithm of realized variance. Table 1.2
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Table 1.2: Descriptive statistics

rt√
RVt

rt RVt
√

RVt log(
√

RVt)

Mean 0.08 8.0E-05 1.2E-04 9.3E-03 −9.65
Variance 1.19 1.5E-04 7.5E-08 3.8E-05 1.08
Skewness −3.3E-03 −0.15 14.26 3.32 0.50
Kurtosis 2.57 10.24 381.25 24.58 3.47
D-F test p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.06

Normality test (J-Btest) p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.00
L-Btest 5 lags p = 0.01 p = 0.00 p = 0.00 p = 0.00 p = 0.00

L-B test 10 lags p = 0.08 p = 0.00 p = 0.00 p = 0.00 p = 0.00
L-B test 15 lags p = 0.07 p = 0.00 p = 0.00 p = 0.00 p = 0.00

ARCH effect p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.00

First four rows show unconditional sample mean, standard deviation, skewness and kurtosis of daily stan-
dardized returns, returns, realized variance, realized volatility and the logarithm of the realized variance of
the S&P500 index. Remaining rows depict p-values obtained from Dickey-Fuller, JarqueBera, LjungBox and
Engle ARCH tests for these series.

presents the descriptive statistics, while Figure 1.2 illustrates the time series dynamics of

these variables.

Four of the variables are stationary at 5% according to the augmented Dickey–Fuller

test, while log(
√

RVt) is stationary at 6%. The recent financial crises and European sovereign

debt turmoil affected the volatility pattern and led to several spikes in the realized variance

series. Although these spikes look less pronounced in the logarithm of realized variance,

they remain very distinct from the volatility behaviour observed during calm times. This

observation motivates the introduction of the regime switching model for volatility process.

Daily returns are weakly correlated and follow a leptokurtic and negative skewed distri-

bution. By contrast, the distribution of the standardized returns is much closer to Gaussian,

which is in line with previous empirical findings: Andersen et al. (2001, 2010). Figure 1.3

documents the long memory observed in realized volatility as the autocorrelation function



22

Figure 1.2: Time series dynamics of daily standardized returns, returns, realized variance,
realized volatility and the logarithm of the realized variance
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Daily standardized returns, returns, realized variance, realized volatility and the logarithm of the realized
variance of the S&P500 index. The sample period goes from January 2000 till June 2014 (3603 observations).

decays at a hyperbolic rate. This result is also consistent with the literature: Andersen et al.

(2003), Corsi et al. (2008), Choi et al. (2010).

1.3.3 Benchmark HAR Model

We start with the estimation of the benchmark linear Model (4) for the three specifications

of dependent variable RV ,
√

RV and log(
√

RV), correspondingly. Table 1.3 presents the

estimation results with the standard errors computed based on the HAC variance-covariance

matrix. Despite relatively high R2 for
√

RV and log(
√

RV), the benchmark model fails to

model spikes in volatility during turbulent times on financial markets. Figure 1.4 illustrates

this point and depicts a comparison between the in-sample forecast and the actual realized

kernel.
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Figure 1.3: Sample autocorrelations and partial autocorrelations of returns and real-
ized volatility
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Sample autocorrelations and partial autocorrelations of returns and realized volatility of the S&P500 index.
The sample period goes from January 2000 till June 2014 (3603 observations).

Table 1.3: Heterogeneous autoregressive model (HAR) estimation

RVt
√

RVt log
√

RVt

Estimate SE Estimate SE Estimate SE

c 1.3E-05 ∗∗∗ 4.5E-06 4.6E-04 ∗∗∗ 2.0E-04 −0.44 ∗∗∗ 0.108
βd 0.223 0.146 0.395 ∗∗∗ 0.058 0.336 ∗∗∗ 0.025
βw 0.461 ∗∗∗ 0.165 0.384 ∗∗∗ 0.081 0.440 ∗∗∗ 0.036
βm 0.216 ∗∗∗ 0.073 0.171 ∗∗∗ 0.048 0.178 ∗∗∗ 0.029
R2 50.4% 72.6% 73.2%

Reported are in-sample estimation results of the linear HAR model and corresponding standard errors com-
puted based on the HAC variance-covariance matrix. The in-sample covers the period from February 2000 to
June 2014 (3582 observations). Here, ∗∗∗ means that the corresponding p-value is lower than 0.01.

In particular, benchmark Model (1.24) underestimates volatility by around 40% during

financial crises in 2007–2009. A similar pattern is observed during spikes in volatility in
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Figure 1.4: Comparison of actual realized volatility and model-implied volatility recovered
from the HAR model
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In-sample comparison of actual realized volatility (blue line) and volatility recovered from the HAR model
(red line). The in-sample covers the period from February 2000 to June 2014 (3582 observations).

2010 and 2011. One of the explanations of the poor performance of the HAR model during

turbulent volatility periods is that it fails to take into account changes in volatility regimes.

Indeed, if volatility reacts to negative returns more than to positive returns, then the arrival

of the consequent negative shocks and volatility persistence can substantially increase the

future volatility level. On the other hand, different economic regimes might affect volatility

differently. We choose the TAR over SETAR model based on the higher value of the F12

statistics or, alternatively, the lower value of pbootstrap defined in Subsection 1.2.2. 1

1See Appendix A.3 for details.
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1.3.4 The TAR(2) Model

Next, we estimate the TAR(2) model (Table A.1 and Table 1.5), where past returns govern

changes in the volatility regimes.

Table A.1 shows that regression R2 improves substantially if regimes are driven by

past returns. As a result, high values of the F12 statistics lead to the rejection of the null

hypothesis (1.13) for all specifications at a 5% significance level. In addition, the optimal

value of the threshold parameter remains the same for two specifications: RVt and
√

RVt.

The τ that corresponds to logarithm specification is closely related to the second threshold

of the TAR(3) model. However, the confidence interval for this parameter is very wide,

which leads to the imprecise estimate of the threshold parameter. Not surprisingly, this

model produces a less accurate one-step forecast than TAR(2). In particular, Dacco and

Satchell (1999) document that the imprecise estimate of the threshold parameter leads to

the poor forecasting performance of the simple switching model compared to the random

walk model. In both cases, changes in regimes are driven not only by negative returns

(leverage effect), but by significantly negative returns: −1.3% on a daily scale. McAleer

and Medeiros (2008) also show that the transition between volatility regimes is governed

not by negative past returns, but by “very bad news” or very negative past returns.

The fact that changes in regimes are triggered by “very negative returns” can be ex-

plained by the volatility persistence and higher intensity of shocks during bad times. Al-

though the value of the threshold is not very large (it corresponds to the 11th percentile of

the returns distribution), the increasing number of negative returns can generate a spike in

the volatility. This explanation is similar to the option pricing literature, where researchers

modelled volatility by adding infinite activity jumps to the return’s process Ornthanalai

(2014). Even though the appearance of one small or medium jump is not enough to gener-
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Table 1.4: Comparison of the TAR(1) (or HAR) and TAR(2) models

RVt
√

RVt log(RVt)

R2 of TAR(1) 50.4% 72.6% 73.2%
R2 of TAR(2) 58.0% 74.9% 74.7%

τ −0.013 −0.013 0.001
l 0 0 0

F12 649.6 318.3 214.0
pbootstrap 0.00 0.03 0.00

Reported are in-sample estimation results of the linear HAR model and non-linear TAR(2) model. The in-
sample covers the period from February 2000 to June 2014 (3582 observations). pbootstrap is computed based
on 500 replications using the heteroscedastic bootstrap method. We set the maximum amount of lags equal
to 10 in the TAR estimation.

ate a significant surge in volatility, high volatility persistence can lead to pronounced spikes

in the future volatility. Indeed, Figure 1.5 shows that the frequency of returns that are lower

than the threshold (red line) increased dramatically during recent financial crises. By con-

trast, returns that exceed the threshold (blue line) completely dominated “very negative

returns” during the period of low volatility in 2003–2007.

Table 1.5 shows that parameters βd, βw and βm are very different in high- and low-

volatility regimes. In particular, βw
1 is twice as large as the corresponding estimate in

the low-volatility regime for
√

RVt specification. Although some estimates have nega-

tive signs, they are not statistically significant at 10% for both realized volatility and vari-

ance models. By contrast, intercepts in both regimes are statistically negative for log-

arithmic specifications. Overall, corresponding estimates differ substantially in different

regimes, which highlights the importance of using the regime switching model. Next, Fig-

ure 1.6 shows that the 95% confidence interval for the threshold parameter is quite narrow

(τopt ∈ [−0.014,−0.012]), although it includes two disjoints sets.

Finally, we compare the in-sample performance of the HAR and TAR(2) models for

different indices, including both developing and developed countries: Bovespa (Brazil),
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Figure 1.5: The dynamics of returns in two regimes
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Figure 1.6: The confidence interval of threshold parameter
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Table 1.5: TAR(2) estimation

RVt
√

RVt log
√

RVt

Estimate SE Estimate SE Estimate SE

c1 −2.6E-06 4.1E-05 −9.3E-05 9.5E-04 −0.321 ∗∗∗ 0.138
βd

1 0.331 ∗ 0.189 0.332 ∗∗∗ 0.085 0.347∗∗∗ 0.029
βw

1 1.091 ∗∗∗ 0.372 0.811 ∗∗∗ 0.191 0.475 ∗∗∗ 0.045
βm

1 −0.138 0.275 −0.018 0.128 0.133 ∗∗∗ 0.037
c2 2.1E-05 ∗∗∗ 5.6E-06 0.001 ∗∗∗ 1.8E-04 -0.515∗∗∗ 0.150
βd

2 0.182 0.156 0.340 ∗∗∗ 0.067 0.220 ∗∗∗ 0.038
βw

2 0.260 ∗ 0.139 0.317 ∗∗∗ 0.067 0.498∗∗∗ 0.050
βm

2 0.268 ∗∗∗ 0.097 0.204 ∗∗∗ 0.045 0.243 ∗∗∗ 0.041
τ −0.013 −0.013 0.001
l 0 0 0
R2 58.0% 74.9% 74.7%

Reported are in-sample estimation results of the non-linear TAR(2) model and corresponding standard errors
computed based on the HAC variance-covariance matrix. The in-sample covers the period from February
2000 to June 2014 (3582 observations). The first four rows correspond to the high-volatility, while the last
four rows correspond the low-volatility regime, respectively. Here, ∗∗∗ and ∗ mean that the corresponding
p-values are lower than 0.01 and 0.1, respectively.

DAX (Germany) and IPC Mexico (Mexico). The main findings remain robust to the dif-

ferent sets of indices: the non-linear model with an exogenous trigger is preferred over the

corresponding specification with the endogenous variable.

1.4 Forecast

In this section, we discuss one- and multiple-step-ahead forecasts of realized volatility

based on the TAR(2) model and several competing benchmarks. We assess their forecasting

performance using low- and high-volatility periods.
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Table 1.6: One-day-ahead out-of-sample forecast

January 2008 to January 2009 July 2011 to December 2011 January 2008 to June 2014

T AR HAR GARCH GJR T AR HAR GARCH GJR T AR HAR GARCH GJR
RMS E 7.0 0.96 0.78 0.85 4.9 0.96 0.72 0.73 3.8 0.98 0.77 0.82
MAE 4.1 0.97 0.67 0.76 3.6 0.95 0.63 0.66 2.3 0.99 0.67 0.71

R2 0.70 0.68 0.56 0.64 0.42 0.38 0.24 0.39 0.75 0.74 0.66 0.70
pGW NA 0.54 0.00 0.00 NA 0.12 0.00 0.00 NA 0.71 0.00 0.00

The first four columns correspond to the period of recent financial crises in the U.S. from January 2008 to
January 2009 (247 observations). The next four columns correspond to Eurozone crises from July 2011 to
December 2011 (123 observations). The last four columns correspond to the period from January 2008 to
June 2014 (1614 observations). The performance metrics are root mean square error (RMSE), mean absolute
error (MAE), the R2 of the Mincer–Zarnowitz regression and the p-value of the Giacomini and White test
based on the MAE metric. Two forecasts are identical in population under the null hypothesis, while TAR
beats its competitors under the alternative. We compare TAR against all other models, while NA corresponds
to the TAR vs. TAR case. The TAR column represents the actual value of RMSE and MAE errors, while the
HAR, GARCH and GJR columns, corresponding to the RMSE and MAE rows, equal the ratio of the TAR
model to the following benchmark. Thus, a number below one indicates the improvement of the TAR model
over its competitor. Observations for RMSE and MAE of the TAR model are standardized by 1000.

1.4.1 One-Day-Ahead Forecast

We start with the one-day-ahead forecast of the realized volatility, which is measured as

the square root of the realized kernel. The in-sample period covers 1968 days from Jan-

uary 2000 to January 2008. In addition to the HAR model, we choose several GARCH

specifications as benchmarks, including symmetric GARCH(1,1) and asymmetric GJR-

GARCH(1,1). Hansen and Lunde (2005) show that it is extremely hard to outperform a

simple GARCH (1,1) model in terms of forecasting ability. Meanwhile, TAR(2) is a non-

linear model; therefore, we need to add asymmetric GARCH specification to guarantee a

“fair” model comparison. Figure 1.7 and Table 1.6 assess the forecasting performance of

high- and low-frequency models.2

Next, we investigate whether the TAR forecast remains superior in population or not

2Although realized volatility ignores overnight returns, the superior performance of the high-frequency
models is unlikely to be affected.
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Figure 1.7: One-step-ahead forecast in 2008-2014
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Comparison of actual and one-day-ahead forecasts based on the TAR(2), HAR, GARCH(1,1) and GJR-
GARCH(1,1) models from January 2008 to June 2014 (1614 observations). The red line indicates the one-
step forecast, while the blue line the actual data.

using the Giacomini and White test. Recall that the GW test is designed for the situation

where in-sample size is fixed, while out-of-sample size is growing. Thus, we assess the

forecasting performance of different models using the GW test only for the period from

January 2008 to June 2014 and not for U.S. and Eurozone financial crises. In the latter

cases, the GW test is likely to perform poorly, since we have a relatively short period of

sample periods: 247 and 123 observations, correspondingly.

The main results of this comparison are the following. First, high-frequency mod-

els significantly outperform lower frequency symmetric (GARCH) or asymmetric (GJR-

GARCH) daily models. This result highlights the importance of more accurate volatility

measuring based on the intra-daily data. Second, non-linear TAR(2) specification domi-

nates the linear HAR model thanks to an additional flexibility to capture changes in regimes
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according to the first three metrics. Surprisingly, TAR(2) does not outperform the HAR

model according to the GW test.

Finally, we assess the performance of volatility forecasts during times of financial tur-

moil: the U.S. financial crises in 2008 and the Eurozone crises in 2011. Although high-

frequency models continue to dominate GARCH specifications, the benefits of using the

non-linear TAR(2) model become substantial compared to linear specification: the latter’s

MAE is higher by 3% (U.S. crises) and 6% (Eurozone crises). By contrast, the MAE of the

HAR model is only 1% higher during the whole out-of-sample period. Figure 1.8 shows

that TAR(2) better captures spikes in volatility than linear specification during the recent

U.S. financial crises. Finally, both RMSE and MAE are lower for Eurozone crises and

whole out-of-sample periods compared with recent U.S. financial crises, which reflects the

learning process of the model, where recent volatility spikes help to improve the models’

performance.

To sum up, the benefits of using the non-linear TAR(2) model are most evident during

periods of elevated volatility. In addition, the model is able to predict spikes in volatil-

ity, even when we use a relatively calm period for in-sample estimation, since changes

in regimes are driven by moderately low returns. As a result, we do not rely on extreme

market events to forecast volatility.

1.4.2 Multiple-Step-Ahead Forecast

This section describes multiple-step-ahead forecasts for aggregate volatility. Specifically,

the object of interests is the h-step forecast of aggregate realized volatility
h∑

i=1
Yt+ j|t. Table

1.7 compares TAR(2) and other benchmark models during recent U.S. financial crises,

Eurozone crisis and the out-of-sample period in 2008–2014. Figure 8 plots five-step-ahead
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Figure 1.8: One-step-ahead forecast in 2008-2009
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Comparison of actual and one-day-ahead forecasts based on the TAR(2) and HAR models during U.S. fi-
nancial crises from January 2008 to January 2009 (247 observations). Red and green lines indicate one-step
forecasts based on the TAR(2) and HAR models, correspondingly, while the blue line the actual data.

forecasts for all models.

The main findings remain similar to the one-step-ahead forecasts. First, high-frequency

models continue to dominate daily models at the five and 10 days’ ahead forecast. Sec-

ond, TAR(2) performs better than the linear HAR model according to RMSE, MAE and

R2. More importantly, the non-linear model outperforms linear specification, not only in

a particular sample, but also in population: we reject the null hypothesis of the GW test

that two forecast are identical at the 5% significance level. We based our conclusion on

the results of the GW test for the 2008–2014 years to take into account the growing size

of the out-of-sample dataset, as discussed in the Section 1.2.3. The GW test is based on

the MAE metric. In addition, the U.S. financial crises have substantially higher RMSE

and MAE compared with other periods, since periods of elevated volatility allow one to

produce more accurate forecasts.
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Table 1.7: Multiple-days-ahead out-of-sample forecast

January 2008 to January 2009 July 2011 to December 2011 January 2008 to June 2014

T AR HAR GARCH GJR T AR HAR GARCH GJR T AR HAR GARCH GJR
5-days-ahead forecast

RMS E 33.5 0.98 0.56 0.55 23.1 0.99 0.60 0.59 17.3 0.99 0.53 0.55
MAE 22.2 0.98 0.49 0.47 14.5 0.96 0.46 0.45 10.1 0.98 0.43 0.44

R2 0.67 0.67 0.61 0.64 0.27 0.26 0.16 0.20 0.76 0.75 0.71 0.75
pGW NA 0.13 0.00 0.00 NA 0.06 0.00 0.00 NA 0.03 0.00 0.00

10-days-ahead forecast
RMS E 69.2 0.98 0.48 0.48 47.6 0.98 0.50 0.50 35.2 0.98 0.44 0.45
MAE 47.0 0.97 0.41 0.40 30.6 0.96 0.36 0.35 20.6 0.97 0.33 0.33

R2 0.63 0.63 0.61 0.61 0.15 0.15 0.16 0.14 0.73 0.73 0.71 0.74
pGW NA 0.21 0.00 0.00 NA 0.31 0.00 0.00 NA 0.01 0.00 0.00

The first four columns correspond to the period of recent financial crises in the U.S. from January 2008
to January 2009 (247 observations). The next four columns correspond to Eurozone crises from July 2011
to December 2011 (123 observations). The last four columns correspond to the period from January 2008
to June 2014 (1604 observations). The performance metrics are the root mean square error (RMSE), mean
absolute error (MAE), the R2 of the Mincer–Zarnowitz regression and the p-value of the Giacomini and White
test based on the MAE metric. Two forecasts are identical in population under the null hypothesis, while TAR
beats its competitors under the alternative. The TAR column represents the actual value of RMSE and MAE
errors, while the HAR, GARCH and GJR columns, corresponding to the RMSE and MAE rows, equal the
ratio of TAR model to the following benchmark. Thus, a number below one indicates the improvement of
the TAR model over its competitor. Observations for RMSE and MAE of the TAR model are standardized
by 1000. Finally, the first four rows correspond to the 5-step-ahead, while the next four to the 10-step-ahead
forecast, respectively. Observations from RMSE and MAE are standardized by 1000.

Finally, we compare TAR(2) and its competitors during recent financial crisis. The

improvement in the MAE and RMSE metrics is comparable for crisis and longer out-of-

sample periods and equal to approximately 2%. Although the GW test indicates that the

TAR(2) and HAR model have the same forecasting errors, this can be explained by the

relatively short size of the out-of-sample for both U.S. and Eurozone crises.

To sum up, our non-linear model outperforms its competitors thanks to its ability to

capture different regimes in volatility and to measure volatility much more accurately than

daily models. In addition, our model achieves approximately the same rate of improve-

ment over the HAR model as much more complicated non-liner models, but with lower

computational costs, since the TAR(2) model has only two regimes. For example, Scharth

and Medeiros (2009) modelled realized volatility with five regimes and achieved an im-
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Figure 1.9: Multiple-step-ahead forecast in 2008-2014
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Comparison of aggregate volatility over five days and corresponding forecasts based on the TAR(2), HAR,
GARCH(1,1) and GJR-GARCH(1,1) models from January 2008 to June 2014 (1604 observations). The red
line indicates the aggregate five-step forecast, while the blue line the actual data.

provement in forecasting performance over the HAR model of around 3%. This feature is

essential for practical applications.

1.5 Conclusions

This chapter develops a non-linear threshold model for RV (realized volatility), allowing

us to obtain a more accurate volatility forecast, especially during periods of financial crisis.

The changes in volatility regimes are driven by negative past returns, where the threshold

equals approximately −1%. This finding remains robust to different functional forms of

volatility and different set of indices from both developing and developed countries. The

additional flexibility of the model allows one to produce a more accurate one-day-ahead
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forecast compared to the linear HAR specification and GARCH family models. More im-

portantly, the superior multiple-step-ahead forecasting performance of TAR is achieved not

only in particular samples, but also in population according to the GW test for the out-of-

sample period from 2008 to 2014. Finally, we derive an approximated closed form solution

for multiple-step-ahead forecast, which is based on the NIG conditional distribution of re-

turns. The non-linear threshold model primarily outperforms its competitors during periods

of financial crisis.

The superior forecasting performance of TAR over other high-frequency models, as

well as inter-daily GARCH specifications might warrant further examination. First, while

the option pricing literature primarily relies on GARCH-type models, very few works ex-

ploit the availability of high-frequency data (e.g., see Stentoft (2008), Corsi et al. (2013),

Christoffersen et al. (2014)). Thus, it might be useful to incorporate the TAR model into the

option pricing framework, especially during periods of elevated volatility. We conjecture

that a more accurate volatility model should result in lower hedging costs and, therefore,

produce economic gains.

Second, the extension of the univariate to the multivariate models remains an important

area of research given significant demand from practitioners. However, non-synchronicity

is the key problem of estimating the covariance matrix despite the abundance of high-

frequency data. Alternatively, a copula-based approach allows one to avoid this problem

and to estimate the joint distribution of many assets. It would be interesting to incorporate

the non-linear TAR model into the copula framework, since the current literature focuses

either on the GARCH or HAR models (Patton and Salvatierra (2015) and Oh and Patton

(2016)).
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Chapter 2

Uncovering a Data Generating Process

of Returns with Application to the

Derivatives’ Pricing, Risk Management

and Strategy Development

2.1 Introduction

The importance of volatility for risk management and pricing of financial derivatives is

well established in the academic literature and among practitioners. The option pricing lit-

erature is primarily dominated by continuous time processes with stochastic volatility after

the seminal works of Black and Scholes (1973) and Merton (1973). Although the con-

tinuous time models often provide tractable semi-closed form expressions of the security

prices in a quite general framework — see for example Heston (1993), Duffie et al. (2000),
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their estimation is not straightforward.3 Meanwhile, time-series models with time-varying

volatility were primarily developed in the GARCH discrete-time framework motivated by

Engle (1982) work. Estimation of these models relies only on historical returns data and

thus avoids the filtering problem, where volatility is treated as unobserved state variable.

The availability of high frequency data has generated a lot of research aiming at more

accurate measuring, modeling and forecasting latent volatility. As volatility becomes essen-

tially observable, researchers have applied time-series techniques for forecasting purposes.

These have been shown to outperform daily models such as different GARCH specifi-

cations — Andersen et al. (2007), McAleer and Medeiros (2008). Despite their superior

performance, the option literature primarily relies either on stochastic volatility or GARCH

specifications — Heston and Nandi (2000), Christoffersen et al. (2006), Christoffersen et al.

(2013a). Surprisingly, there are very few papers that exploit model-free measures of volatil-

ity, exceptions are Stentoft (2008), Majewski et al. (2015), Christoffersen et al. (2014) and

Christoffersen et al. (2015a). Motivated by the superior performance of volatility models

based on high frequency data we incorporate it into our option pricing framework.

The goal of this chapter is to build a model of the equity index return, which is (1)

consistent under physical and risk-neutral measures, (2) can be easily estimated using daily

returns, realized volatility, options data and is convenient for the option valuation, (3) has

an economic intuition and (4) document both statistical and economic gains. To achieve

these goals, we propose a novel discrete time stochastic volatility model based on avail-

able high frequency data, which uses mixture of normal (MN) distribution for the realized

3The literature proposes several approaches to estimate continuous time models using
non(semi)parametric approaches (Jiang and Knight (1997), Conley et al. (1997)); empirical character-
istic functions (Jiang and Knight (2002), Singleton (2001)); Markov Chain Monte Carlo (Eraker (2001),
Eraker (2004)); simulated method of moments (Duffie and Singleton (1993)); and efficient method of
moments (Andersen et al. (2002)).
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volatility. First, our model addresses Bates (1996) critique, that an accurate model should

be able to fit both returns under two measures, thus avoiding overfitting option data and si-

multaneously providing poor fit of returns data. Second, this flexible distribution is able to

produce non-Gaussian dynamics of index returns, while it remains tractable enough for op-

tion valuation purposes. Third, we provide economic intuition for our model and relate the

mixing structure of our distribution with several theories that explain volatility formation

process. Finally, we document both statistical gains under objective and risk-neutral mea-

sures compared with nested benchmarks, and translate them into economic gains measured

by superior performance of a simple quantitative trading strategy.

Our model essentially corresponds to a mutlifactor volatility framework, where con-

stant, daily, weekly and monthly volatility, respectively, serve as factors. Thanks to a mix-

ture of normal distribution it has semiparametric flavour and can approximate unknown

distribution of realized volatility, while avoiding tight parameteric specification proposed

in a number of affine models (Christoffersen et al. (2015a), and Majewski et al. (2015)).

In addition, mixture of normal distribution has an appealing economic intuition and can

be generated by either heterogeneity in information arrival (Cont (2007)) or evolutionary

models (LeBaron et al. (1999)). We also incorporate volatility in volatility effect in our

framework, which generates time-varying dynamics of high order moments. We document

that this property has important applications to capture time-varying dynamics of both re-

turns and realized volatility and assess statistical gains associated with the volatility of

volatility effect.

Having established the key drivers of the data generating process under the objective

measure we continue to study its benefits under the risk-neutral measure. For this purposes,

we derive the risk-neutral dynamics of our model based on the approach of Christoffersen
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et al. (2010) (henceforth CEFJ), which relies on the no-arbitrage principle and the equiva-

lent martingale measure. We document the importance of the multivariate structure in the

realized volatility’s distribution by assessing gains of MN compared with nested Gaussian

distribution. In particular, former achieves twice lower pricing errors for out of the money

Put options, including short, medium and long term contracts. The lower option pricing er-

rors of the short out of the money options highlights the ability of MN to generate ”jumps”

in returns or/and volatility processes.

Finally, we show the importance of market expectation embedded in the option prices

for more accurate risk assessment and quantitative strategy development. We assess former

by forecasting realized volatility’s conditional mean and computing Value-at-Risk (VaR)

and compare with models based on the historical data. We document a significant improve-

ment in the VaR prediction based on the MN and Gaussian risk-neutral models compared

with physical competitors. This result highlights the importance of forward-looking infor-

mation embedded in the option prices, especially during periods of financial crises. We also

translate statistical gains into economic benefits by building an algorithmic trading strategy,

which is market-neutral, has the same volatility as a S&P 500 returns, while significantly

outperforms benchmark index (76% compared with 2%) during 2008-2011 years.

The remainder of this chapter is organized as follows. Section 2.2 defines the model

under the physical measures, discusses estimation procedure and provides risk neutraliza-

tion. Section 2.3 presents estimation results and diagnostic checks of the mixture of normal

model. The option valuation is described in Section 2.4, while Section 2.5 presents appli-

cation of our model for predicting returns distribution and conditional mean of realized

volatility. Section 2.6 describes our algorithmic strategy, while Section 2.7 concludes.
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2.2 Model

In this section we specify our new model for return and conditional volatility under the

physical measure. Next, we discuss estimation of the mixture of normal model using the

maximum likelihood approach and expectation maximization algorithm. We derive the

risk neutral distribution of volatility and innovations given a specific choice of a Radon-

Nikodyn derivative. Finally, we discuss several identification strategies of a Radon-Nikodym

derivative using option prices.

2.2.1 Model of DGP for returns under the objective measure P

We assume that the return is driven by the daily volatility
√

RVd
t and i.i.d. innovations zt

under the objective measure P:

Rt = ln
(

S t

S t−1

)
= µt +

√
RVd

t zt, (2.1)

where Rt is log return at period t, µt is its conditional mean,
√

RVd
t is the realized volatility,

and zt is an innovation at period t. This modelling framework is common in the discrete-

time literature (see Christoffersen et al. (2012) for overview) and reflects the fact that re-

turns are uncorrelated, but not independent. Indeed, the second moment of returns exhibits

persistent behavior, which we capture through the dynamics of realized volatility.

Although there are numerous ways of modeling the conditional mean of realized volatil-

ity (Maheu and McCurdy (2011), Andersen et al. (2003)), we choose a heterogeneous au-
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toregressive model (HAR) introduced by Corsi (2009) with augmented leverage effect:

√
RVd

t = β0 + β1

√
RVd

t−1 + β2

√
RVw

t−1 + β3

√
RVm

t−1 + c · 1[Rt−1 < 0]
√

RVd
t−1 + εt. (2.2)

Here
√

RVd
t−1,

√
RVw

t−1 and
√

RVm
t−1 are daily, weekly and monthly realized volatilities,

and c captures leverage effect.4 The error term of realized volatility εt determines the con-

ditional distribution at time t. We define lower frequency volatility component, for example

weekly realized volatility as:

√
RVw

t =

√
RVd

t + ... +
√

RVd
t−4

5
, (2.3)

The monthly realized volatility is computed as average of daily volatilities over 22 days.

The HAR model and its extensions have proved to be quite successful in modeling and

forecasting volatility in a parsimonious way using only few volatility components — Corsi

et al. (2008) and Andersen et al. (2007). In particular, the HAR structure is able to replicate

the main empirical properties of realized volatility, including volatility clustering and long

memory. At the same time, our modelling framework can incorporate other processes for

conditional mean of realized volatility, for example regime-switching models (McAleer

and Medeiros (2008), Pypko (2015)).

Next, we specify the conditional distribution of both return and realized volatility. Our

model has two sources of uncertainty at period t − 1, which affect daily returns — inno-

vations zt and error term in realized volatility εt, which follow bivariate mixture of normal

4In other words, positive value of c implies that negative return at period t − 1 leads to a higher realized
volatility at period t compared with positive return of the same magnitude.
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(MN) distributions:

pd f (εt, zt|It−1) =

K−1∑
k=0

πkN

(0, 0)
′

,

σ
2
kt 0

0 1




K−1∑
k=0

πk = 1, K = 4

σ2
kt = σ2

kRV (k)
t−1 : RV (0)

t−1 = 1, RV (1)
t−1 = RVd

t−1, RV (2)
t−1 = RVw

t−1, RV (3)
t−1 = RVm

t−1,

(2.4)

where K is a number of mixtures, πk is a probability of each mixing distribution and It−1 is

and information set available at period t−1. Although, volatility is observable at t−1, it re-

mains stochastic next period and follows mixture of normal (MN) distributions. In essence,

volatility becomes ”observable” at period t−1 given availability of the high frequency data

to construct its non-parametric estimator. Specifically, we choose realized kernel developed

by Barndorff-Nielsen et al. (2008) as proxy for the unobservable volatility since it is robust

to the market microstructure noise and it performs better than other realized measures in

terms of the Value-at-Risk forecasting (Brownlees and Gallo (2009)). In contrast, daily

discrete time GARCH models assume that innovations are the only source of randomness,

while latent volatility is filtered out from daily returns. Meanwhile, innovations zt follow

the standard normal distribution, since we choose variances within each mixtures equal to

one.

We assume that our MN distribution has four components and they are related to the

same volatility component as in HAR model: constant, daily, weekly and monthly volatil-

ity, respectively. This assumption allows to generate time-varying volatility of volatility

σ2
kt, which is proportional to the current volatility level. This stylized fact of realized
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volatility is called ”volatility in volatility effect” and is important for both statistical analy-

sis under objective (Section 2.3) and risk-neutral measures (Sections 2.4 and 2.6). In other

words, volatility of volatility tends to be high (low) during financial crises (expansions)

when current level of volatility is high (low). We deliberately do not employ more elabo-

rate processes for volatility in volatility as proposed by Bollerslev et al. (2009) due to the

following reasons. First, our parsimonious specification is able to match quite accurately

unconditional distribution of both returns and volatility, which we discuss this in more

details in Section 2.3. Second, the more sophisticated dynamics of volatility in volatility

process makes the estimation procedure and risk-neutralization much more complicated.

We choose four component in mixing disrtibution to convey economic intuition about

the heterogeneous structure of volatility’s distribution in the financial markets.5 Specifi-

cally, its shape is driven by the interaction of heterogenous agents with different investment

horizons and risk appetites — daily (e.g. high frequency traders), weekly (e.g. banks) and

monthly components (e.g. pension funds), correspondingly. Meanwhile, the probabilities

of mixing distribution reveal the contribution of each agent’s type to the overall volatility of

volatility. This mechanism is similar to two types of models proposed in literature, which

explain the formation and evolution of volatility: heterogeneous arrival rates of informa-

tion and evolutionary models. The heterogenous news approach models volatiltiy cluster-

ing and its long memory by assuming heterogeneity in investors time’s horizons (Andersen

and Bollerslev (1997), Cont (2007) and LeBaron (2001)). Meanwhile, evolutionary models

replicate volatility dynamics by simulating artificial financial market populated by different

agents, which have specific set of rules (LeBaron et al. (1999) and Arthur et al. (1997)).

5It is possible to consider model with more mixtures and either estimate their optimal number as an ad-
ditonal parameter or use statistical criteria to test whether addional component improves a data fit. However,
once we add more than four mixtures we loose an appealig economic interpretation of our model.
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In addition to economic intuition, our MN model has several appealing statistical prop-

erties. First, it is flexible enough to approximate conditional distribution of realized volatil-

ity. Although, the unconditional distribution of realized volatility or variance can be closely

approximated by Inverse Gaussian distribution (Forsberg and Bollerslev (2002) and Stentoft

(2008)), the conditional distribution can be very different from unconditional. In contrast,

MN distribution is immune to this problem and able to match conditional distribution of

latent volatility given the substantial amount of mixtures. This is an important distinc-

tion between this chapter and the affine models literature, which makes a specific distribu-

tional assumption to generate an affine structure. In contrast, our framework assumes more

flexible distribution of both returns and realized volatility. Not surprisingly, discrete time

non-affine models specified at daily frequency outperfroms affine models in terms of more

accurate option valuation (Christoffersen et al. (2012)). We conjecture that our non-affine

model based on the flexible time-varying distribution of returns and realized volatility will

continue to outperform high frequency affine models, but leave their systematic compari-

son beyond the scope of this chapter. Second, multiple factor stochastic volatility models

perform reasonably well for option valuation purposes (Christoffersen et al. (2009), which

motivates us to include several factors. As a result, we use constant, daily, weekly and

monthly volatilities as the corresponding factors in the MN(4) model. Third, basis func-

tions contain only one parameter to estimate within each Gaussian component (σk), which

allows to include many mixing distributions. An opposite approach is to use more sophis-

ticated model within regime, like NGARCH in Rombouts and Stentoft (2015).

To sum-up, our novel discrete-time model generates flexible distribution of returns and

realized volatility, while preserving an appealing economic intuition regarding the volatility

formation. Our approach does not require a volatility filtering as in GARCH type models,
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while discrete time framework allows its straightforward estimation, which we discuss in

the next subsection. Finally, volatility of volatility effect combined with MN distribution

allows to generate high order time-varying moments, which are important for both option

valuation (Section 2.4) and strategy development (Section 2.6).

2.2.2 Estimation of MN

We estimate the vector of parameters θ = (β0, ..., βK−1, c, σ0, ..., σK−1, π0, ..., πK−2, λ)
′

by

specifying the conditional mean in the following way:

µt = r f
t + λ

√
RVd

t , (2.5)

where r f
t is risk free rate and λ is a price of volatility risk. By definition, the conditional

log-likelihood for bivariate mixtures of normal distributions is defined as:

l(θ) =

T∑
t=22

ln

K−1∑
k=0

πk

2πσkt
exp

(
−

1
2

(Xt − Mkt)
′

Σ−1(Xt − Mkt)
) , (2.6)

where Xt = (εt, zt)
′

, Mkt = (0, 0)
′

, Σ =

σ
2
kt 0

0 1

, while innovations zt are filtered out from

model (2.1):

zt =
Rt − r − λ

√
RVd

t√
RVd

t

. (2.7)

After simplification the log-likelihood becomes:

l(θ) =

T∑
t=22

ln

K−1∑
k=0

πk

2πσkt
exp

(
−

1
2σ2

kt

[
ε2

t + z2
tσ

2
kt

]) . (2.8)
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The main obstacle with estimation of MN models is that direct maximization is chal-

lenging due to the sum inside the logarithm. As a result, the mixture log-likelihood function

is not well behaved, which might produce local instead of global maximum and unstable

estimates (Wirjanto and Xu (2009)). These problems are especially acute when we in-

crease the number of mixtures. Therefore, we use an alternative approach, which is robust

to the above mentioned issues — expectation maximization algorithm (EM) proposed by

Dempster et al. (1977).

The idea behind the EM algorithm is to swap logarithms and sums and therefore maxi-

mizing lower bound of log-likelihood function. For this purposes, we introduce a distribu-

tion of hidden variable, which specifies the evolution of each normal distribution. The EM

algorithm consists of two part: expectation (E) and maximization (M), correspondingly. At

the first step (E), we compute the probability that random variable is drawn from specific

normal distribution given some initial guess for θ. Next at the M step, we maximize the ex-

pected value of log-likelihood given these probabilities with respect to the hidden variable

and find a new set of parameters. Note that maximization of the expected value of log-

likelihood is much easier than original likelihood since we interchange logarithm and sum.

Finally, we iterate until estimates at the previous step converges to estimates at the next

step. Despite the advantages of using EM algorithm there are several major drawbacks,

including slow speed of convergence and absence of standard errors. The former problem

does result in significant computation time for our model, while we alleviate latter’s by

computing asymptotic standard errors for MLE estimates. Appendix B.1 provides more

details about EM algorithm.

Having discussed the main benefits of Expectation Maximization approach we proceed

with estimation of model (2.1) in two steps. First, we estimate parameters (β0, ..., βK−1, c),
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which are constant for all mixtures by ordinary least squares. Next, we derive EM estima-

tors for the remaining parameters (σ2
0, ..., σ

2
K−1, π0, ..., πK−2, λ) in Appendix B.1 as follows:

σ̂2
k =

T∑
t=22

qK(k) ε2
t

RV (k)
t

T∑
t=22

qK(k)

π̂k =

K−1∑
k=0

qK(k)

T

λ̂ =

T∑
t=22

Rt−r f
t√

RVd
t

T − 22

qK(k) =

πk
2πσkt

exp
(
− 1

2σ2
kt
·
[
ε̂2

t + ẑ2
tσ

2
kt

])
K−1∑
k=0

πk
2πσkt

exp
(
− 1

2σ2
kt
·
[
ε̂2

t + ẑ2
tσ

2
kt

]) ,

(2.9)

where qK(k) is a probability that error term εt is drawn from the kth Normal distribution.

Meanwhile, vectors X
′

−kt and β−k include all volatility components except of those corre-

sponding to the kth frequency. Finally, we iterate parameters for EM algorithm till conver-

gence given our initial guess and estimates (β̂0, ..., β̂K−1, ĉ) obtained from the least-squares.6

2.2.3 Risk neutralization

In this section we derive the joint distribution of errors εt and innovations zt under the

risk neutral measure Q. We follow the approach developed by CEFJ, which uses the no-

arbitrage principle and the equivalent martingale measure (EMM). Specifically, we define

a Radon-Nikodym derivative and derive conditions under which the risk neutral measure

Q becomes an EMM. This framework does not make any explicit assumptions about the

6The estimates for λ is identical to the OLS estimates obtained from (2.5), where zt is an error term.
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underlying economy or investors preferences, while assuming only the existence of the

conditional joint moment generating function (MGF).

We define a Radon-Nikodym derivative as:

dQ
dP
|It = exp

− t∑
i=1

(
ν1,iεi + ν2,izi + Ψi(ν1,i, ν2,i)

) , (2.10)

where Ψi(ν1,i, ν2,i) is the logarithm of the joint conditional MGF of the vector Xt = (εt, zt)
′

,

{ν1,t} and {ν2,t} are some deterministic sequences at period t − 1. The MGF of bivariate MN

vector Xt is given by:

Ψt(t1, t2) = log

K−1∑
k=0

πkexp
(
t2
1σ

2
kt

2
+

t2
2

2

) . (2.11)

Theorem 2.2.1 derives the conditional MGF under the risk neutral distribution Q.

Theorem 2.2.1 Let returns follow (2.1), while conditional volatility and innovations are

distributed according to bivariate mixture of normal distributions. Given Radon-Nikodym

derivative (2.8) the log of conditional MGF under risk neutral measure are obtained as

follows:

Ψ
Q
t (t1, t2) = log

[∑
π̃ktexp

(
−t1µ̃kt − t2M̃t +

1
2

(t2
1σ

2
kt + t2

2)
)]
, (2.12)



49

where:

µ̃kt = −ν1tσ
2
kt,

M̃t = −ν2t,

π̃kt =

πkexp
(
ν2

1tσ
2
kt+ν

2
2t

2

)
K−1∑
k=0

πkexp
(
ν2

1tσ
2
kt+ν

2
2t

2

) ,
(2.13)

Proof See Appendix B.2.

Note that change of measure from the objective to the risk-neutral affects both condi-

tional mean and probabilities, while the variance of volatility remains unchanged within

each Gaussian component. This result is in line with the literature — Rombouts and

Stentoft (2015) derive similar result for univariate MN distribution of innovations. Mean-

while, the joint distribution under physical and risk neutral measure belong to the same

family of distributions, but with different parameters. Given the results of Theorem 2.2.1

we are ready to derive risk-neutral probability measure for the model (2.1).

Theorem 2.2.2 Let returns follow (2.1), while conditional volatility and innovations are

distributed as bivariate mixture of normal distributions. Given Radon-Nikodym derivative
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(2.8) the risk neutral probability measure becomes:

Rt = ln
(

S t

S t−1

)
= r f

t − γt +

√
RVd

t z∗t

γt = −ν2tMt + 0.5M2
t + log


K−1∑
k=0

π̃kt

exp
(

(Mt−ν2t)2σ2
kt+2(Mt−ν2t)µ̃kt+µ̃kt

2)
2(1−σ2

kt)

)
√

1 − σ2
kt

√
RVd

t = β0 + β1

√
RVd

t−1 + β2

√
RVw

t−1 + β3

√
RVm

t−1 + c · 1[Rt−1 < 0]
√

RVd
t−1 + ε∗t

pd f (ε∗t , z
∗
t |It−1) =

K−1∑
k=0

π̃ktN

(µ̃kt, M̃t)
′

,

σ
2
kt 0

0 1




µ̃kt = −ν1tσ
2
kt,

M̃t = −ν2t,

π̃kt =

πkexp
(
ν2

1tσ
2
kt+ν

2
2t

2

)
K−1∑
k=0

πkexp
(
ν2

1tσ
2
kt+ν

2
2t

2

) ,
K−1∑
k=0

π̃kt = 1

σ2
kt = σ2

kRV (k)
t−1, RV (0)

t−1 = 1, RV (1)
t−1 = RVd

t−1, RV (2)
t−1 = RVw

t−1, RV (3)
t−1 = RVm

t−1.

(2.14)

Proof See Appendix B.3.

Recall that γt is an adjustment term to make expected value of return equals to the risk

free rate under the risk neutral measure. Our next step is to specify deterministic sequences

{ν1t} and {ν2t} using conditions when risk neutral measure Q becomes EMM:

Theorem 2.2.3 Given Radon-Nikodym derivative (2.11) the risk neutral probability mea-
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sure becomes EMM if and only if:

K−1∑
k=0

πkexp
(
ν2

1tσ
2
kt

2
+
ν2

2t

2
− λMt

)
=

K−1∑
k=0

πk√
1 − σ2

kt

exp
(
c2

tσ
2
kt + b2

t + 2ctbtσ
2
kt)

2

2(1 − σ2
kt)

)
,

Mt = β0 + β1

√
RVd

t−1 + β2

√
RVw

t−1 + β3

√
RVm

t−1 + c · 1[Rt−1 < 0]
√

RVd
t−1,

bt = Mt − ν2t,

ct = λ − ν1t.

(2.15)

The approximate solution for {ν2,t} is defined as:

ν2t ≈
Mt + 2λ

2
. (2.16)

Proof See Appendix B.4.

Theorem 2.2.3 does not provide unique solutions for the deterministic sequences {ν1,t}

and {ν2,t} since market is incomplete. In other words, we have only one condition for EMM

and two unknowns variables each period, therefore we can not identify both sequences

using returns and realized volatility data only.7 Thus, we have to identify the remaining

parameter ν1t from both physical (returns and realized volatility) and risk neutral measure

(option prices), correspondingly.

2.2.4 Identification of ν1t sequence

We propose to identify the unknown sequence ν1t by calibrating our model to the price of

the longest maturity at the money (ATM) option for each week. In addition, we consider

7EQ
[

S t
Bt
|It−1

]
= S t−1

Bt−1
, where Bt is a price of zero-coupon risk free bond at period t.
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alternative identification strategy to assess robustness of our results and minimize relative

RMSE for each day and assume that ν1t ≡ ν1:

%RMS Et =

√√√
1

NO

NO∑
i,t

(
Ci,t(θ, νt) −Ci,t

Ci,t

)2

, (2.17)

where NO is a number of options, Ci,t and Ci,t(θ, νt) are actual and simulated option prices

for a day t, νt is a vector of sequences ν1t and ν2t. We choose a calibration approach since

it does not require the choice of minimization metric and computationally faster since we

use only one option instead of panel options for each week. Meanwhile, both approaches

lead to qualitatively similar results.

Our approach continues to work even for new market such that market prices of options

do not exist. However, in this case our original identification procedure does not work

since we can not identify pricing kernel. We solve this problem by assuming that Radon-

Nikodym derivative depends only on the Gaussian shock by assuming that ν1,i ≡ 0 ∀i:

dQ
dP
|It = exp

− t∑
i=1

(
ν2,izi + Ψi(0, ν2,i)

) . (2.18)

We compare option valuation performance of the model with original pricing kernel

(2.8) and its nested specification (2.16) and assess gains of including the additional source

of risk.

Having established identification strategy, we are ready to price options. We proceed as

follows. First, we use rolling window estimation of length 1988 days (which corresponds

to 2000-2007 period) to estimate all physical parameters. Second, we identify parame-

ter ν1t from option data for a given week. Third, we risk-neutralize our model, compute
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sequence ν2t and obtain option prices using Monte-Carlo simulations. Finally, we assess

option performance during 2008-2011 years.

2.3 Empirical analysis

In this section we first introduce high frequency data for realized volatility and daily data

for returns, which is used in the empirical analysis. Then we describe our option data

set. Next, we provide estimation results of parameters under physical measure obtained

through the EM-OLS algorithm and maximum likelihood procedure. Finally, we discuss

several diagnostic checks of our model by using simulations.

2.3.1 Data

Returns and realized volatility data

We use high frequency data for S&P 500 index for the empirical analysis. We collect this

data from the Realized Library of Oxford-Man Institute of Quantitative Finance (Library

version 0.2) designed by Heber et al. (2009), which is freely available.

The authors clean raw data obtained through Reuters Data Scope Tick History and

compute high frequency estimators from cleaned data. The sample covers period from

January 3 of 2000 to June 12 of 2014, overall 3603 trading days.8 We use the realized

kernel as a proxy for the integrated variance.

8We exclude all days from the sample when market was closed.
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Option data

We evaluate performance of our models using data for European Put options on the S&P

500 index for the period from 2008 to 2011. We obtain data set from the Option Metrics,

which includes 21,759 European Put contracts. We apply standard filtering techniques

adopted in the literature:9

1. We consider only options traded on Wednesdays to eliminate weekend effect.

2. We consider only options with time to expiration (tenor) more than 6 and less than

252 days, correspondingly.

3. We exclude options with traded volume less than 100 contracts.

4. We exclude all options with ask prices below 0.5$ U.S. dollars.

5. We consider only options whose implied volatility can be computed.

Table 2.1 shows descriptive statistics of our option data set, divided into several matu-

rity and moneyness categories, correspondingly. We define moneyness category as M =

S
Kexp(−r f T ) , where S is an index level, K is a strike, r f is a risk free interest rate, T is a

tenor or time to expiration of the option. We observe the implied volatility smile in our

data, that is volatility of out-of-the money (OTM) and in-the-money (ITM) options exceeds

corresponding volatility of at-the-money (ATM) options, which is in line with the previous

studies — Christoffersen et al. (2012) and Rombouts and Stentoft (2015). Overall, we con-

clude that our sample contains a large number of contracts and corresponds to the period of

both financial stability and financial crises. The latter feature is important for our analysis

9See Rombouts and Stentoft (2015) and Heston and Nandi (2000) for details.
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Table 2.1: Summary of the S&P 500 index options data

Maturity
ST MT LT VLT All

IVol % 36.37 40.01 37.55 37.12 38.04
Price 12.58 16.53 28.85 46.49 23.34
Number 5156 7360 6151 3092 21579

Moneyness
OTM ATM ITM All

IVol % 40.68 28.22 33.30 38.04
Price 12.87 41.64 94.75 23.34
Number 16560 3727 1472 21759

Reported are implied volatility (Vol), option price (Price) computed as an average between bid and ask, and
the number of contracts (Number). The maturity category is divided into short term (S T ) with T < 21,
medium term (MT ) with 21 ≤ T < 42, long term (LT ) with 42 ≤ T < 84 and very long term (VLT )
with T ≥ 84. The moneyness category is divided into out of the money (OT M) with M < 0.98, at the
money (AT M) with 0.98 ≤ M < 1.02 and in the money (IT M) with M ≥ 1.02. The moneyness is defined
as M = S

Kexp(−r f T ) , where S is index level, K is strike, r f is risk free interest rate, T is a tenor or time to
expiration.

of option valuation, when periods of financial turmoil present the biggest challenges for

academics and practitioners.

2.3.2 Estimation results

Estimation of MN models

Table 2.2 provides estimates of the mixture of normal model introduced in Section 2.2.

First column presents results of the combined EM-OLS algorithm. Second column shows

MLE estimates, where EM-OLS estimates were chosen as staring points. We also compute

MLE asymptotic standard errors, since EM algorithm is an iterative procedure, which does

not produce standard errors. Finally, last two columns show MLE estimates and their
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Table 2.2: Estimations results

EM MLE(4) S.E. MLE(1) S.E.
β0 0.000 0.000∗∗∗ (0.000) 0.001∗∗∗ (0.000)
β1 0.285 0.210∗∗∗ (0.020) 0.206∗∗∗ (0.023)
β2 0.424 0.512∗∗∗ (0.028) 0.502∗∗∗ (0.033)
β3 0.169 0.150∗∗∗ (0.021) 0.170∗∗∗ (0.024)
c 0.136 0.117∗∗∗ (0.009) 0.119∗∗∗ (0.010)
σ0 0.024 0.026∗ (0.013)
σ1 0.227 0.226∗∗∗ (0.024)
σ2 0.237 0.221∗∗∗ (0.009) 0.292∗∗∗ (0.001)
σ3 0.640 0.602∗∗∗ (0.039)
π0 0.001 0.001 (0.001)
π1 0.360 0.245∗∗∗ (0.063)
π2 0.577 0.671∗∗∗ (0.064)
π3 0.062 0.083
λ 0.077 0.083∗∗∗ (0.016) 0.078∗∗∗ (0.016)
Loglik 11424 11458 11205
BIC -22751 -22818 -22344

Reported are in-sample estimation results and corresponding standard errors of the mixture of normal models.
The first column represents the estimation result obtained from EM algorithm (7) and OLS estimates of the
remaining parameters. The second column provides MLE estimates of the whole model (6). The third
column shows asymptotic standard errors of the MLE estimates. Here ∗∗∗, ∗ and ∗, means that corresponding
p-values are lower than 0.01, 0.05 and 0.1, respectively. The standard errors are MLE asymptotic standard
errors. The in-sample covers period from January 2000 to June 2014 (3581 observations). The optimal
value of log-likelihood is labeled as Loglik. The Bayesian Information criterion is computed as BIC =

−2 · Loglik + p · log(n), where p is a number of parameters of the model and n is a number of observations.

asymptotic standard errors of Gaussian model with weekly volatility component only.10

The main conclusions from Table 2.2 are the following. First, all MLE estimates are

statistically different from 0 at 1% significance level. Second, daily (36%) and weekly

(58%) volatility components have the biggest impact on the variance of error term εt. Put

in other words, the volatility in financial markets is primarily driven by high and medium

10We choose volatility component with the biggest probability weight and the highest value of likelihood
among all Gaussian models with one component.
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frequency agents, e.g. high frequency traders and commercial or investment banks. In con-

trast, agents with longer investment horizons, like pension funds or university endowments,

have substantially lower impact on a market’s volatility. Third, we can interpret the con-

stant term as a very rare jump with big magnitude in realized volatility, which might happen

with 0.1% chance. To sum-up, MN model contains very different volatility components,

which produce fat-tailed and asymmetric distribution of stochastic volatility as depicted in

Figure 2.3.

Fourth, the risk premium parameter λ is significantly different from 0, which implies

that investors demand premium for holding risky financial assets. In this case, the volatility

risk is priced, therefore justifying change of physical measure P, discussed in subsection

2.2.3, for the option valuation purposes. Finally, the direct comparison of our combined

EM-OLS approach and MLE shows very little latter’s improvement — only 0.3% increase

in the value of Log-likelihood. In addition, the majority of estimates are very close in both

methods, which motivates us to use combined EM-OLS approach for the option valuation

purposes.11 In contrast, Mixture of Normal model does not only improve overall likelihood

compared with nested Gaussian specification, but also achieves lower BIC criterion.

Analysis of innovations

Next, we inspect the time series dynamics and distribution of innovations zt filtered from

(2.5). First graph of Figure 2.1 shows that these innovations do not cluster over time, while

second graph illustrates that they are uncorrelated according to the sample auto correlation

function. Meanwhile, third graph and fourth graphs compare non-parametric distributions

of innovations with Gaussian distribution. Both graphs — unconditional distribution and

11The difference between EM-OLS and MLE estimates are statistically insignificant for 10 out of 13 esti-
mates at 5% significance level.
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Figure 2.1: Analysis of innovations
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ary 2000 till June 2014 (3581 observations). Second graph plots sample auto correlation function of squared
innovations(solid blue line) and 95% confidence band. Third graphs compares normal distribution of innova-
tions (solid blue line) with non-parametric distribution (dash red line), while fourth graph plots corresponding
QQ plot.

QQ (Quantile-Quantile) plot — establish the close match between these distributions and

highlight the importance of using Gaussian distribution as an approximation.

Overall, we conclude that distribution of zt can be approximated by i.i.d. Normal dis-

tribution, though their second moments are dependent.
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Table 2.3: Comparison of actual and simulated moments for returns and realized volatility

MEAN STD SKEW KURT
Rt 8.0E-05 1.2E-02 -0.2 10.2
MN(4) w VOL 7.2E-04 1.0E-02 0.2 9.4
Gaussian w VOL 6.8E-04 9.4E-03 0.2 8.8
MN(4) 7.6E-04 1.1E-02 0.1 6.4
Gaussian 7.5E-04 1.0E-02 0.1 6.0
√

RVt 9.3E-03 6.1E-03 3.3 24.6
MN(4) w VOL 8.7E-03 4.8E-03 1.8 9.6
Gaussian w VOL 8.3E-03 4.5E-03 1.8 8.9
MN(4) 9.6E-03 4.9E-03 0.9 8.0
Gaussian 9.0E-03 5.1E-03 0.4 2.9

Reported are comparison of actual and simulated under P measure sample moments for returns and realized
volatility. The former is computed as an average based on 100 simulations. Each simulation contains 40,000
observations, but we keep only the last 3603 observations to match the size of the actual data. The four
columns represent mean, standard deviation, skewness and kurtosis, respectively. First two columns compares
moments of simulated and actual returns, while last two columns — of realized volatility.

MN(4) model simulations

In the previous sections we have discussed a trade-off between flexibility of mixture of

normal model and its econometric tractability. Next, we inspect model’s ability to replicate

stylized facts by using simulations. If the model does a good job in describing actual

data then model-implied moments and probability density functions should be similar to

the actual values. For this purposes, we simulate 40,000 observations for daily returns

and realized volatility based on model (2.1) and (2.3). Then we keep only the last 3603

observations to match the size of our data set, while the previous observations serve as

burn-in sample. Finally, we repeat our simulations 100 times and compute averages of all

simulated moments presented in Table 2.3.
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Overall, Table 2.3 highlights the importance of volatility in volatility effect in the under-

lying data generating process. Although, first two moments of returns and realized volatil-

ity are very similar across four models, the benefits of this effect become evident once we

compare higher order moments. In particular, MN with volatility in volatility effect model

generates unconditional kurtosis, which is very close to actual return’s kurtosis. This result

is impressive, since we do not add jumps in either returns or/and volatility process, but

model is still able to generate fat tailed distribution. Similarly MN model produces signif-

icantly higher skewness and kurtosis in realized volatility, while models without volatility

effect unable to match fat tails and positive skewness. Meanwhile, all models generate

slightly positive skewness in returns, with actual returns are negatively skewed.

Figures 2.2 and 2.3 illustrate the benefits of volatility in volatility effect by plotting

probability distribution functions of actual Returns and realized volatility compared with

model implied distributions. As we discussed before, the mixture of normal (solid blue line)

and Gaussian model (solid magenta line) with volatility in volatility effect produce much

closer fit of unconditional distribution (dash red) compared with corresponding nested mod-

els — MN (solid green line) and Gaussian specification (solid yellow line), respectively.

To sum-up, MN and Gaussian specifications with volatility in volatility effect outper-

form nested models based on a number of metrics, including comparison of moments,

probability density functions and autocorrelation functions. At the same time, the differ-

ence between MN and Gaussian model is relatively small, which suggests that we can not

rank them based on assessment of their unconditional distributions. However, the benefits

of MN distribution become more evident once we move to the option valuation, which re-

quires accurate fit of conditional (rather than unconditional) distribution of returns. Thus,

we consider option valuation of only those models, which incorporate volatility in volatility
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Figure 2.2: Comparison of actual and simulated returns
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Comparison of actual (top graph) and simulated (bottom graph) daily returns. We simulated 40,000 observa-
tions and then keep only last 3603 observations to match the size of actual data. We repeat these simulations
100 times and compute average of corresponding parameters. This graph compares pdf of model-simulated
and actual data using non-parametric kernel estimator. We consider the following models: MN(4) with
volatility effect (solid blue), MN(4) (solid magenta), Gaussian model with volatility effect (solid green),
Gaussian (solid yellow) and actual (dash red) data.

effect in the next section.

2.4 Option valuation

In this section, we discuss valuation of the European Put options using Monte Carlo simu-

lations. First, we consider markets with available market prices and therefore we are able

to identify unknown sequence ν1t. Next, we consider valuation of new derivatives such
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Figure 2.3: Comparison of actual and simulated realized volatility
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Comparison of actual (top graph) and simulated (bottom graph) realized volatility. We simulated 40,000
observations and then keep only last 3603 observations to match the size of actual data. We repeat these
simulations 100 times and compute average of corresponding parameters. This graph compares pdf of model-
simulated and actual data using non-parametric kernel estimator. We consider the following models: MN(4)
with volatility effect (solid blue), MN(4) (solid magenta), Gaussian model with volatility effect (solid green),
Gaussian (solid yellow) and actual (dash red) data.

that market prices do not exist, which impedes our identification procedure. We solve

this problem by considering nested pricing kernel, which includes only Gaussian type of

risk. Next, we discuss an implications of our model to analyze time-varying uncertainty

in the financial markets during 2008-2011 years using model-implied variance, skewness

and kurtosis. Finally, we assess performance of MN and nested Gaussian models across

different moneyness and maturity categories defined in the Section 2.3.
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2.4.1 Option pricing in the existent markets

The flexible mixture of normal distributions do not allow to obtain closed form expression

for the option prices. In contrast, assuming specific parametric assumption researchers de-

rived ”semi-closed” solution for the option price — examples are Heston and Nandi (2000),

Christoffersen et al. (2006) and Corsi et al. (2013). These studies obtained expression for

the conditional MGF of returns and then used Fourier method to compute price of European

call option. Meanwhile, we use Monte Carlo simulations to price securities while simulat-

ing returns and realized volatility paths. While semi-closed form expression seems to be

more appealing for option valuation, Barone-Adesi et al. (2008) argue that computational

time required by either semi-closed approach or simulations is approximately the same.12

In addition, we avoid computationally extensive filtering techniques exploited in contin-

uous time models (Bakshi et al. (1997)), since our model relies only on the returns and

realized volatility data. Finally, simulation methods work for both exotic and plain vanilla

options, while ”semi-closed” form expression is available primarily for the European calls

and puts options. The price of European call is computed as follows:

C(t,K) = e−r f (T−t) 1
MC

MC∑
m=1

max(S m
T − K, 0), (2.19)

where r f is a risk free rate, T is an option’s tenor, MC is a number of simulated paths

(MC = 20, 000), S m
T is a value of index given mth simulated path. We set risk-free interest

rate at a fixed level for each day for all simulated paths.13

We use implied volatility root mean square error (IVRMS E) to assess option pricing

12Both methods are based on running for-loop either for simulating paths (Monte Carlo) or for computing
coefficients used for Fourier transformation (”semi-closed” solution).

13In fact, Bakshi et al. (1997) show that stochastic interest rate is not a first-order importance for the
security pricing.
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performance as advocated by Renault (1997):

IVRMS E =

√√√
1

NO

NO∑
i,t

(
IVi,t(θ, νt) − σBS

i,t

)2
, (2.20)

where NO is a number of options, IVi,t(θ, νt) and σBS
i,t are implied volatilities of simulated

and actual prices, Ci,t and Ci,t(θ, νt) are actual and simulated option prices for a day t, νt is

a vector of sequences ν1t and ν2t.

While we use ”crude” Monte Carlo method to price options, several approaches can be

applied to reduce variance and improve efficiency — see Boyle et al. (1997) for an overview

of such techniques. In addition, Duan and Simonato (1998) propose a modification of

Monte Carlo, which does not only ensure Martingale property for the discounted simulated

prices under Q measure, but also leads to lower price errors. Recall that all aforementioned

techniques are important to improve security pricing of the specific option. In contrast, we

assess performance of our model based on the averaging of aggregate errors across time

and cross section of options, which in essence leads to reduction of pricing errors. Thus,

we select the simplest simulation technique to price options.

Table 2.4 shows option valuation performance for European calls of our MN model and

compares it with Gaussian model, where all model incorporate volatility in volatility effect.

Panel A displays implied volatility pricing errors across different moneyness and matu-

rity dimensions, respectively. Panel B shows relative improvement of MN model compared

with Gaussian model. The benefits of MN model are especially evident for OTM options,

and equal to 43%, 56%, 58% and 65% for short, medium, long term and very long matu-

rities, respectively. The superior performance in terms of pricing short term OTM options

reveals an important benefit of MN specification to generate ”jumps” in returns or/and
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Table 2.4: Option valuation I

Panel A: IVRS ME of MN(4) w VOL model

S T MT LT VLT
OTM 7.93 7.94 6.71 4.14
ATM 4.75 4.47 3.64 1.21
ITM 5.19 4.77 4.92 2.99

Panel B: Relative performance of MN compared with Gaussian model

S T MT LT VLT
OTM 0.57 0.44 0.42 0.35
ATM 1.06 0.92 0.77 0.56
ITM 1.06 0.87 0.83 0.97

Panel C: Number of options

S T MT LT VLT
OTM 3723 5816 4624 2397
ATM 1055 1098 1121 453
ITM 378 446 406 242

Panel A reports implied volatility root mean square errors (IVRMS E) of MN model measured in percentage
points sorted by moneyness and maturity. The maturity category is divided into short term (S T ) with T < 21,
medium term (MT ) with 21 ≤ T < 42, long term (LT ) with 42 ≤ T < 84 and very long term (VLT ) with
T ≥ 84.The moneyness category is divided into out of the money (OT M) with M < 0.98, at the money (AT M)
with 0.98 ≤ M < 1.02 and in the money (IT M) with M ≥ 1.02. The moneyness is defined as M = S

Kexp(−r f T ) ,
where S is index level, K is strike, r f is risk free interest rate, T is a tenor or time to expiration. Panel B
displays ratio of IVRMS of MN and Gaussian model, correspondingly. The number below unity implies
the lower pricing errors of MN model. Panel C shows number of options in each moneyness and maturity
category. The out-of-sample option data set includes European Calls recorded every Wednesdays from 2008
to 2011 years.

volatility. This is especially important since pricing of short OTM puts remains challeng-

ing for all models proposed in the literature (Christoffersen et al. (2013b), Christoffersen

et al. (2015a)) and reflects precautionary motives of investors to buy short term insurance

policy.
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2.4.2 Analysis of model-implied higher order moments

Having established superior performance of MN compared with Gaussian model, we study

the reason behind this improvement. Recall, that MN model is able to generate time-

varying higher-order moments, while Gaussian distribution has constant skewness and kur-

tosis.14 Figure 2.4 illustrates this point by plotting aggregated dynamics (over 10 days) of

the first four moments obtained from MN and Gaussian specifications, correspondingly.

Although, conditional mean and standard deviations are almost identical for both models,

the evolution of higher order moments is very different. In other words, the ability of MN

model to generate time-varying skewness and kurtosis allows to capture more accurately

the evolution of tails of the returns distribution, and therefore translated into lower option

pricing errors.15 In addition, MN model is able to generate negative skewed returns under

risk-neutral measure, which is consistent with findings in the previous studies (Christof-

fersen et al. (2015b)).

Once we document the importance of the time-varying risk-neutral moments for option

valuation, we study next their implications for the assessment of financial risk. Several

conclusions emerge from the analysis of Figure 4 during turbulent 2008-2011 years. First,

market participants did not anticipate incoming US housing crises as both skewness and

kurtosis did not fluctuate substantially in the first half of 2008 year. In contrast, we observe

a dramatic shift in the fear of both negative (skewness) and fat-tails returns (kurtosis) in the

aftermath of 2008-2009 US housing crises. This change was primarily driven by European

debt crises and reflected both positive and negative news for the investors. In particular,

14We can derive both closed-form expression for higher moments or aternatively use simulations.
15Gaussian model also generates time-varying skewness and kurtosis due to aggregation of time property

even though one day ahead moments are zero and three, correspondingly. However, these moments are
substantially less volatile than MN moments.
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Figure 2.4: Comparison of MN(4) and Gaussian model-implied moments of returns under
the risk-neural measure
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This figure plots mean, standard deviation, skewness and kurtosis of aggregated returns over 10 days under
the risk-neutral measure obtained from MN (blue line) and Gaussian model (red line), respectively. The time
span covers periods from 2008 till 2011, overall 208 weekly observations.

a surge in volatility of the high order moments started after appearance of news regarding

revision of Greek budget and country’s potential bankruptcy (November of 2009), followed

by uncertainty and approval of first Greek (April of 2010), Irish (October of 2010), Por-

tuguese (April of 2011) bailouts, respectively. After that investors expected that US debt

ceiling turmoil in August of 2011 would constitute a significant threat to the stability of

financial system – as kurtosis surged almost threefold. Similarly, overall uncertainty re-

lated to the shut-down of government for several weeks measured by conditional volatility

surged in the beginning of August.
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The above-mentioned analysis emphasizes the difference between two types of risk:

level of current uncertainty (volatility) and future fear of negative and large returns (skew-

ness and kurtosis), respectively. In contrast to rapid swings in higher order moments during

European debt turmoil, a conditional volatility achieved its peak in the fall 2008 amidst

Lehman collapse, AIG bailout and liquidity crunch. In other words, time-varying volatility

has limited potential to detect early warning signals of financial vulnerability, but it rather

measures a current level of uncertainty. Not surprisingly, a model-free measure of risk neu-

tral volatility or VIX is called a ”fear index” and widely used by academics, practitioners

and policy makers. Therefore, the analysis of higher order moments has a special interest

for the central banks, with an application to the development of the early warning system

of financial vulnerability.

Although, we provide a qualitative analysis of the time-varying moments and relate it

to the recent development in the international financial markets, the natural question arises

regarding quantitative assessment of the model-implied moments. Indeed, we do not ob-

serve them in the data and rely instead on the model to compute mean, volatility, skewness

and kurtosis. One approach is to compare our time-varying moments with others methods

proposed in the literature (Audrino et al. (2015)). This chapter recovers both physical and

risk-neutral moments in a model-free way from the derivatives prices over longer time-

horizon, but report similar latter’s dynamics in 2008-2011 years. Finally, we show how to

exploit the information content of risk-neutral moments in terms of development quantita-

tive trading strategy, which we discuss in the Section 2.6.
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Table 2.5: Option valuation II

S T MT LT VLT S T MT LT VLT

OTM

MN(4) 7.93 7.94 6.71 4.14 0.50 0.38 0.34 0.21
Gaussian 13.97 18.07 16.11 11.90 0.88 0.87 0.80 0.60
MN(4) with one risk 14.40 18.87 17.76 18.06 0.91 0.91 0.89 0.90
Gaussian with one risk 15.91 20.83 20.02 19.98 1.00 1.00 1.00 1.00

S T MT LT VLT S T MT LT VLT

ATM

MN(4) 4.75 4.47 3.64 1.21 0.82 0.60 0.39 0.11
Gaussian 4.47 4.85 4.73 2.17 0.77 0.66 0.50 0.19
MN(4) with one risk 5.67 7.21 9.04 10.51 0.98 0.97 0.96 0.93
Gaussian with one risk 5.80 7.40 9.38 11.26 1.00 1.00 1.00 1.00

S T MT LT VLT S T MT LT VLT

ITM

MN(4) 5.19 4.77 4.92 2.99 0.85 0.67 0.25 0.28
Gaussian 4.92 5.49 5.95 3.09 0.80 0.78 0.30 0.29
MN (4) with one risk 6.14 12.70 9.97 10.48 1.00 1.79 0.50 0.99
Gaussian with one risk 6.13 7.08 19.76 10.63 1.00 1.00 1.00 1.00

This table reports implied volatility root mean square errors (IVRMS E) and corresponding ratios of IVRMS E
sorted by moneyness and maturity. IVRMS Es are presented in columns 3-6th, while their ratios computed
with respect to Gaussian model with one source of risk are displayed in columns 7-10th. The number below
unity implies the lower pricing errors of any other model compared to Gaussian specification with one source
of risk. The out-of-sample option data set includes European Calls recorded every Wednesdays from 2008 to
2011 years.

2.4.3 Option pricing in new markets

Our approach continues to work in new market where option prices do not exist, once we

shut down a fat-tail risk and focus only on the Gaussian source of risk. Recall, that in

this case a Radon-Nikodym derivative is identified under historical measure alone, thus we

can assess gains of MN model compared with its nested Gaussian specifications. Table

2.5 compares option valuations of these two models and shows IVRMSE (3-6th columns)

and relative performance MN specification measured by its ratio to Gaussian model’s loss

metrics (7-10th columns).
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Table 2.5 show that MN continues to dominate Gaussian model in terms of lower pric-

ing errors for the most liquid OTM options, where they are lower by 10% across all maturity

categories. The improvement decreases once we move to the pricing of ATM option and

occasionally Gaussian model provides more accurate valuation of ITM options (medium

term contract), which is explained by their lower liquidity and volume. At the same time,

we document the importance of an additional source of risk, as Gaussian model with full

pricing kernel improves option valuation compared with nested MN specification incorpo-

rating one Gaussian risk only. Although, they have comparable performance for short and

medium term OTM options, an additional source of risk starts to play more prominent role

once we move to the pricing of long term options. Similarly, the performance of model

with two sources of risk is substantially better for ATM and ITM options, but it is again

driven by lower liquidity and volume. This result is not surprising since we force model to

price ATM options accurately by calibrating sequence ν1,t on a weekly basis.

2.5 Forecasting volatility and returns distributions

In this section, we highlight the importance of forward-looking information embedded in

the option prices and its application for risk management purposes. Specifically, we docu-

ment an improvement in forecasting of left tails of returns distribution by computing Value

at Risk using both risk-neutral and physical models, correspondingly. Finally, we show how

to improve forecasting of realized volatility’s conditional mean using risk-neutral models

compared with specifications based on the historical data only.
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2.5.1 Forecasting Value at Risk

Having built a joint model of S&P 500 options and its underlying index we investigate next

the information content of option prices in more details. In particular, we show how to

improve forecast of the left tail of returns distribution by combining market expectations

embedded in option prices with our MN model. For this purposes, we compute Value at

Risk (VaR) using both risk-neutral and physical models and conduct corresponding back-

testing procedure. This is especially important for risk management since our sample in-

cludes three recent periods of financial calamities: US financial crisis in 2008, Euro debt

turmoil in 2010 and US debt ceiling crisis in 2011.

The literature proposed several approaches to model time-varying distribution of returns

by specifying different dynamics of underlying volatility: GARCH (Engle (1982), Boller-

slev (1986)), stochastic volatility (Hull and White (1987), Melino and Turnbull (1990)) and

high frequency models (Andersen et al. (2003), Corsi (2009)). These specifications suc-

cessfully capture a number of stylized facts, including volatility clustering, long memory

and asymmetric responses to the past shocks (leverage effect). However, all of them rely

on historical data and can not predict structural breaks or regime switching associated with

financial crises, which dramatically affect VaR computations. In contrast, we propose a

novel approach to improve modelling of returns distribution by exploiting forward-looking

expectations embedded in the option prices. These prices reflect options traders’ future be-

liefs about market outcome and might be useful for the forecasting purposes. Indeed, Roll

et al. (2010) and Pan and Poteshman (2006) show that option traders’ activities contain

important information about future market outcomes and can predict future returns.

At the same time, a risk-neutral distribution is different from physical distribution due

to presence of the risk premia. As a result, risk-neutral forecast of left tail differ from
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desired prediction under the objective measure. Ideally, we want to separately identify both

pricing kernel and objective distribution using derivative prices, which was recently done

under specific assumptions in discrete time framework (Ross (2015)) and continuous time

framework (Carr and Yu (2012)), respectively. However, Borovicka et al. (2016)) argue that

this recovery might be misleading and it is still impossible to uniquely identify physical

distribution of returns from the derivatives prices under more general set of assumptions.

Having discussed the distortions of the objective distribution caused by the risk premia we

continue computation of the VaR using risk-neutral model.

The Value at Risk is defined as αth quantile of returns distribution over l time period:

VaRt(α) = in f {x|FR(x) ≥ α}, (2.21)

where VaRt(α) is a αth quantile of the returns distribution, FR(x) is a CDF of aggregate

returns from period t to t + l. Despite several critics of this measure, including the inability

to predict returns distribution behind αth quantile16 and the fact that VaR is not a coherent

measure,17 it is still widely used among practitioners.18

To backtest our models first we compute hit sequences defined as:

It+l(α) =


1, if Rt:t+l < VaRt(α)

0, if Rt:t+l ≥ VaRt(α)
, (2.22)

where Rt:t+l are actual aggregate returns over period l, while the VaR values are obtained

16For these purposes, reseachers use expected shortfall measure defined as an expected returns in the worst
αth cases or ES = 1

α

∫ α

0 VaRt(x)dx.
17The coherent measure should satify three preporties: monotonicity, sub-addivity, homgeneity and trans-

lation invariance.
18Basel III regulatory framework is based on VaR measure (on Banking Supervision (2011)).
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from either physical or risk neutral models using Monte Carlo simulations. Next, we follow

Christoffersen (1998) approach and verify two properties of hit functions:

1. Unconditional coverage property: The probability of returns that are lower than

VaRt(α) should equal to α · 100% or Pr(It+l(α) = 1) = α. If probability is less

than α then model is over conservative and overestimates risk, while opposite leads

to the underestimation of the risk level.

2. Independence Property: any two elements of It+l(α) sequence should be independent.

Put in other words, clustering of hit sequences implies that model can not properly

adjust to capture time-varying risk.

Table 2.6 presents results for the unconditional coverage property and highlights more

accurate risk assessment captured by the risk-neutral models. Gaussian and MN risk-

neutral models substantially improve VaR assessment judging by their closer match of

probabilities α. In addition, these models do not have systematic bias towards under or

overestimation of volatility, while all physical models underestimate risk. This finding has

important application for the risk management during period of financial turmoils, when

investors are especially interested in accurate assessments of riskiness of their positions.

Meanwhile, the difference between MN and Gaussian model is much less substantial, how-

ever former still matches probability α more accurately.

Figure 2.5 sheds more light on comparison between two types of models, by plotting

VaR of physical and risk neutral MN models. The key difference between risk-neutral and

physical models is the former’s ability to react faster to the changing markets conditions

thanks to ability to incorporate future market beliefs. Put differently, the wedge between

physical and risk-neutral models is not constant and reflects changes in financial markets,
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Table 2.6: Unconditional coverage property

α = 1%

1 day 5 days 10 days 20 days
MN(4) w VOL under Q 3.8 1.0 1.0 1.0
Gaussian w VOL under Q 3.8 1.0 1.4 1.9
MN(4) w VOL 3.8 1.0 2.9 3.8
Gaussian w VOL 3.8 1.4 2.9 4.3
MN(4) 3.4 1.0 2.9 3.8
Gaussian 3.4 1.0 2.9 4.3

α = 5%

1 day 5 days 10 days 20 days
MN(4) w VOL under Q 11.5 6.3 3.8 5.8
Gaussian w VOL under Q 11.1 6.3 3.8 6.7
MN(4) w VOL 11.5 9.6 8.7 8.2
Gaussian w VOL 11.5 9.6 8.7 8.2
MN(4) 11.5 8.7 9.1 8.2
Gaussian 11.5 8.7 8.7 8.7

α = 10%

1 day 5 days 10 days 20 days
MN(4) w VOL under Q 14.9 12.5 9.6 9.6
Gaussian w VOL under Q 13.9 11.5 9.6 9.6
MN(4) w VOL 15.4 15.4 13.9 15.4
Gaussian w VOL 15.9 15.4 13.5 13.9
MN(4) 15.4 14.9 13.0 14.9
Gaussian 15.9 14.9 13.0 14.9

Reported are comparison of values of hit functions for Mixture of Normal model with volatility effect under
risk neutral measure, Gaussian model with volatility effect under risk neutral measure, Mixture of Normal
model with volatility effect under objective measure, Gaussian model with volatility effect under objective
measure, Mixture of Normal model under objective measure and Gaussian model under objective measure.
The first, second and third panels display values of hit functions for 1%, 5% and 10% levels, correspondingly.



75

Figure 2.5: Value at Risk for 10 days at 5%
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Analysis of Value at Risk measures generated by MN models. We plot aggregate returns over 10 days (red
line), Value at Risk at 5% obtained from MN models with volatility effect under objective (blue line) and risk
neutral (cyan line) measures, correspondingly.The time span covers periods from 2008 until 2011, overall
208 weekly observations.

while physical model react with lag to surging volatility.

Finally, we check the independence property by plotting hit functions of two models in

Figure 2.6. Both models allows clustering of hit functions in the late 2008, which suggests

models misspecification. At the same time, this result is not surprising since all our models

are linear and do not allow for regime switching which is apparent during financial crises.

More importantly, the timing of structural break is extremely hard to identify in out-of-

sample exercise.
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Figure 2.6: Hit functions over 10 days at 5%
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Analysis of the hit functions generated by the risk-neutral and physical MN models. We plot hit functions
obtained from MN models with volatility effect under risk neutral (cyan line) at the top graph, and under
physical measures (blue line) on the bottom graph, correspondingly.The time span covers periods from 2008
till 2011, overall 208 weekly observations.

To sum-up, our risk-neutral models outperform physical models in terms of uncondi-

tional coverage property due to ability to incorporate future beliefs, while the benefits of

MN model are less evident compared with Gaussian model. Meanwhile, all models can

not successfully reproduce independence property, which might be resolved with regime-

switching model. We leave this opportunity for the future research.
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2.5.2 Forecasting conditional mean of realized volatility

Next, we assess forecasting performance of risk-neutral and physical models in terms of

predicting conditional mean of realized volatility. As we discussed before, our risk-neutral

prediction is impeded by the presence of risk premia, which leads to the biased estimate

of realized volatility’s conditional mean. Thus, we have to make a bias-variance tradeoff:

risk-neutral model produces lower variance (due to potenital ability to predict structural

breaks in volatility), but also leads to the bias caused by risk premia. As a result, our

choice of the most accurate model depends on the forecasting horizon as illustrated in

Table 2.7. It compares aggregate forecast of realized volatility based on physical MN

and Gaussian models with and without volatility effect, together with risk-neutral MN and

Gaussian specifications. We use simulations to compute multiple-steps ahead forecast since

the closed form expression becomes cumbersome. We assess forecasting performance of

different models by computing the root mean square error (RMSE) and mean absolute error

(MAE):

et+τ|t = Yt+τ − Yt+τ|t

RMS E =

√√√√√ t+N∑
j=t+1

e2
j+τ| j

N

MAE =

t+N∑
j=t+1
|e j+τ| j|

N
,

(2.23)

where Yt+τ|t is the τ day-ahead conditional forecast of the aggregate realized volatility com-

puted based on either physical or risk-neutral model, and Yt+τ is the value of aggregate

realized volatility over period τ.



78

Table 2.7: Comparison of volatility forecasts

MN(4) w VOL Q Gaussian w VOL Q MN(4) w VOL P Gaussian w VOL P MN P Gaussian P
RMSE 1 day 1.00 1.00 1.00 1.01 1.00 1.00
RMSE 5 days 0.97 0.98 1.00 0.99 1.00 1.00
RMSE 10 days 0.97 0.98 1.00 0.98 1.00 1.00
RMSE 20 days 0.98 0.99 1.00 0.97 0.99 1.00
MAE 1 day 0.99 1.01 1.00 1.01 1.00 1.00
MAE 5 days 0.99 1.01 1.00 0.99 1.00 1.00
MAE 10 days 1.03 1.04 1.00 1.00 1.00 1.00
MAE 20 days 1.10 1.08 1.00 0.98 1.01 1.00

Reported are comparison of root mean square error (first and second rows) and mean absolute error (third
and fourth rows). The time span covers periods from 2008 till 2011, overall 208 weekly observations. Q
model column represents the actual value of loss function, while P model column shows ratio between P and
Q model forecasts. Thus, the number greater than unity implies an improvement in forecast any model over
Gaussian model without volatility effect under physical measure.
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Table 2.7 illustrates some benefits of using risk-neutral model in terms of aggregate

volatility forecast for short time forecasting horizons – one and five days (one week) ahead.

Although, risk-neutral MN model is the best specification for one, five and ten days ahead

according to RMSE metric, it is not translated into superior performance judging by MAE

metric. Nevertheless, this result reflects the benefits of using forward-looking beliefs and

support previous findings, which document that physical HAR model is a tough benchmark

to ”beat” even with non-linear models— see Scharth and Medeiros (2009), McAleer and

Medeiros (2008) for details. In contrast to these studies, we assume the same functional

form of realized volatility (linear) model, but incorporate market expectation of the op-

tion traders. Thus, we consider our approach as a complement to the standard non-linear

specifications, and conjecture that combining them together can achieve more accurate

forecast. Meanwhile, risk-neutral model become less accurate (according to MAE metric)

compared with physical models as forecasting time horizons rises to ten and twenty days

due to stronger affect of risk premia. Interestingly, Gaussian model with volatility effect

dominates MN model in terms of forecasting accuracy and remains the best model for long

term horizon prediction (for 20 days ahead).

2.6 Simple quantitative trading strategy

In this section we propose an algorithmic strategy that exploits the evolution of the risk-

neutral moments discussed in subsection 2.4.2. We follow a similar idea proposed by Au-

drino et al. (2015) and build three strategies related to the risk-neutral volatility, skewness

and kurtosis, respectively. We go long if the absolute value of either volatility, skewness

or kurtosis is larger than last week, and go short if it is lower. The economic intuition be-
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hind these strategies reflects the preference of investors. In particular, the investor expects

to get higher expected return if financial risk measured by either volatility, skewness or

kurtosis increases, which is in line with economic theory (Kimball (1993)). We compare

risk-neutral moments and therefore make a portfolio allocation decision (long or short) on

a weekly basis, which leads to 135 transactions or 2.7% trading costs by assuming 2 basis-

points for transactions costs. Figure 2.7 plots the performance of our strategy (grey shaded

area) and compare it with benchmark cumulative returns of the S&P 500 index (blue line)

over 2008-2011 years.

Figure 2.7 highlights several appealing features of our strategy. First, it is market neutral

as correlation with S&P return is less than 1%. Second, our strategy has the same volatility

over 2008-2011 years measured by sample standard deviation as S&P 500 returns. Third, it

delivers 76% growth over four years from 2008 to 2011 years, while index was essentially

flat (2%). In contrast, Audrino et al. (2015) recovered aggregated moments over fixed

interval (30 days) given the structure of the option data set. Although our approach is

model-implied we can generate any term structure of implied moments, while model-free

method is restricted by options availability, especially for the short time horizon.

Fourth, our strategy generated positive returns during challenging times in the end of

2008 and early 2009, while S&P 500 returns plunged. Meanwhile, it continued to work

during market rally started in 2009, while skewness strategy performed poorly in late 2010

and 2011. Fifth, we consider strategy based on the risk-neutral skewness only, because

volatility and kurtosis strategies deliver much lower and more unstable returns. The latter

result is consistent with findings of Audrino et al. (2015) and might reflect the imprecise

estimates of the fourth moment due to the presence of outliers. Finally, we might consider

several approaches to improve the performance of our strategy by adding higher leverage in
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Figure 2.7: Trading strategy based on a risk neutral skewness
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This graph compares cumulative returns of our trading strategy based on risk neutral skewness (shaded area)
and buy and hold S&P 500 index strategy (blue line), correspondingly. The risk-neutral skewness is computed
over 10 days (2 weeks). The time span covers periods from 2008 till 2011, overall 208 weekly observations.

the position once trading signal becomes stronger, e.g. measured by large increase/decrease

in the skewness dynamics. Alternatively, we might combine skewness strategy with other

moments or S&P 500 index to avoid negative performance during second half of 2010 and

early 2011 years.

To sum-up, we propose simple algorithmic strategies, which delivers substantial returns

over the most turbulent years in the recent history. Our strategy is consistent with economic

theory and demonstrates the importance of forward looking information embedded in the
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option prices.

2.7 Conclusion

This chapter develops a novel discrete-time model for the asset return based on the high-

frequency data and mixture of normal distributions of the latent volatility. We use ex-

pectation maximization algorithm to avoid problems with direct maximization of mixing

likelihood, which allows us to obtain robust estimates. Our model accurately replicates

distributions of both returns and realized volatility under physical measure as we demon-

strated in our simulation exercise. To compute option prices, we specify a Radon-Nikodym

derivative, which includes both Gaussian and non-normal innovations, correspondingly.

We identify one parameter of the pricing kernel from EMM condition, while obtain an-

other parameter by fitting option prices for each week. Crucially, our approach avoids

calibration of all model’s parameters. We price European Put options using Monte Carlo

simulations and assess pricing performance of MN and nested Gaussian models during

turbulent financial markets in 2008-2011 years.

Our MN model does not only substantially reduce option pricing errors (by around

50% for out of the money Put options) compared with Gaussian model, but provides an

appealing econometric framework to assess evolution of investors’ risk. Specifically, we

distinguish between level of the current uncertainty (volatility) and fear of future financial

crash (skewness and kurtosis) and show how dynamics of these measures differ in several

financial turmoil episodes. Next, we show a novel approach for predicting returns distribu-

tion measured by VaR and forecast of realized volatility’s conditional mean by exploiting

informational content of option prices and MN model. Finally, we build a simple quanti-
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tative strategy, which substantially outperforms returns of S&P 500 index (76% compared

with 2%) during turbulent 2008-2011 years, while remaining market-neutral and has the

same volatility as a benchmark returns.

The promising performance of the mixture of normal model might warrant further ex-

amination. First, we might consider non-linear Radon-Nikodym derivative suggested by

Byun et al. (2015) or non-linear pricing kernel proposed by Christoffersen et al. (2013a),

and Babaoglu et al. (2014). These studies showed that option pricing models based on

daily GARCH specifications outperform corresponding models with linear pricing kernels.

Thus, it would be interesting to incorporate non-linear Radon-Nikodym derivative in our

framework and study its effect on the option pricing errors.

Second, mixture of exponential power distributions allows to improve volatility mod-

eling compared with mixture of normal distributions (Rombouts and Bouaddi (2009)). In

addition, the former requires less components, which is important for econometric tractabil-

ity. The interesting question is how to translate superior statistical volatility forecast into

economic gains measured either by lower option pricing errors or higher returns of the

quantitative strategy.

Finally, the application of our model in predicting realized volatility should deserve

further investigation. One extension is to produce density forecast of realized volatility and

compare it with corresponding forecast based on the physical model. We conjecture that

combining high frequency data and flexible mixture distribution with market expectations

should lead to more accurate density forecast. This is especially important for predict-

ing structural breaks in realized volatility associated with financial crises. We leave this

question for future research.
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Chapter 3

Global Factors and Common

Idiosyncratic Variance

in Exchange Rates Volatility

3.1 Introduction

Verdelhan (2015) documents that two factors, dollar and carry, can summarize contempora-

neous variations across a wide range of foreign exchange rates. The dollar and carry factors

have meaningful economic interpretations (see Lustig et al. (2011, 2014)). The dollar fac-

tor is a return on the equally-weighted portfolio of all currencies relative to the U.S. dollar.

The carry factor is a return on a portfolio of high interest rate currencies minus return on

a portfolio of low interest rate currencies. This decomposition implies that the volatility of

exchange rate returns should be driven by the volatility of the dollar and carry factor returns

or by the volatility of country-specific (idiosyncratic) returns.
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The first part of the chapter establishes stylized facts about the volatility of exchange

rate returns. We find that two distinct but related components summarize 77% of the varia-

tions of exchange rate volatility. The first common component corresponds to the volatility

of the dollar factor. The second component drives common variations in the volatility

of country-specific returns. Country-specific returns are largely idiosyncratic, but nothing

prevents closer linkage between their volatility. Indeed, we find that the cross-sectional

average of the volatility of idiosyncratic returns plays a significant role. This is closely

related to results by Herskovic et al. (2016) for equities. We confirm that the same factor

structure is found in the exchange rate volatility implied from option prices.

The second part of the chapter introduces a new multivariate factor model of exchange

rate returns that is consistent with the evidence. First, exchange-rate returns and their

volatility are driven by common factors. Hence, we can include a large number of exchange

rates, avoiding the curse of dimensionality. This factor representation can be derived from a

parsimonious construction of the international stochastic pricing kernel. Second, the inno-

vations to expected returns and volatility processes are derived from observable exchange

rate returns–including dollar and carry. Hence, we bypass the need to filter latent stochastic

volatility factors (Diebold and Nerlov, 1989, Mahieu and Schotman, 1994).

The final section of the chapter brings our model to the data. We estimate our model in

two ways. First, we estimate the model under physical measure based on the exchange rate

returns of 22 countries between November 2005 and November 2014. We compare filtered

variances from our multivariate model and univariate Heston and Nandi (2000) GARCH

models for each country. Results are very close, except for four countries: Columbia, Chile,

Israel and Switzerland. For these countries, we show that exchange rate returns volatility

is mostly uncorrelated with global shocks.
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A joint factor model of exchange rate returns and option-implied variances has several

important applications. First, the model allows us to decompose the risk premium contri-

bution to exchange rate returns. In addition, we can link the risk premium with the variance

premium generated by volatility risk in the exchange rate markets.

The rest of the chapter is organized as follows. Section 3.2 establishes systematic vari-

ations in exchange rate volatility and its linkages with the volatility of common factors

driving exchange rate returns. Section 3.3 introduces a multivariate dynamic no-arbitrage

model of exchange rate returns and variances. Section 3.4 discusses estimation methodol-

ogy, while Section 3.5 presents estimation results under objective measure. Finally Section

3.5.3 concludes.

3.2 Global and idiosyncratic variance factors

This section documents how global and idiosyncratic components in FX returns generate

common volatility across currency and generate low-dimensional risk-returns tradeoffs. We

start from the well-known linear factor model for FX returns proposed in Verdelhan (2015):

∆si,t+1 = αi + β
ᵀ
i ft+1 + εi,t+1, (3.1)

where ∆si,t+1 is a log change in the nominal exchange rate of currency i at time t + 1, ft+1

includes global dollar and carry factors, βi are factor loadings, and εi,t+1 it the idiosyncratic

or country-specific shock. The conditional variance of ∆si,t+1 follows:

vart[∆si,t+1] = β
ᵀ
i vart[ ft+1]βi + vart[εi,t+1], (3.2)
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where vart is the conditional variance given the information available at time t, and where

we assume covt[ ft+1, εi,t + 1] = 0 for simplicity. This equation shows that the conditional

variance of dollar and carry vart[ ft+1] are global factors driving the variances of FX returns.

The last term vart[εi,t+1] suggests that the conditional variance can be largely idiosyncratic

across countries. By contrast, we show that vart[εi,t+1] is highly correlated in the cross-

section of currencies. The fact that the country-specific shock εi,t+1 are uncorrelated has no

bearing on this. Put it differently, these shocks are only uncorrelated but dependent through

their second moments.

3.2.1 Data

We use daily financial data obtained from Bloomberg include data from 22 currencies:

Australia, Brazil, Canada, Chile, Columbia, Czech Republic, Denmark, Euro, Hungary, Is-

rael, Japan, Mexico, New Zealand, Norway, Poland, Singapore, South Africa, South Korea,

Sweden, Switzerland, Turkey, United Kingdom. We compile the following data for these

currencies:

1. bilateral exchange rates with respect to the U.S. dollar (Jul. 2005–Nov. 2014),

2. 3-month LIBOR rates (Jul. 2005–Nov. 2014),

3. 3-month forward exchange rates (Nov. 2005–Nov. 2014),

4. 3-month at-the-money implied volatility (Jul. 2005–Nov. 2014) and

5. 3-month 25 delta risk-reversals (Jul. 2005–Nov 2014).
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3.2.2 Common variance of country-specific Innovations

Next, we document that the variances of country-specific innovations (vart[εi,t+1]) share

a common factor structure. For this purpose, we compute the innovations εi,t + 1 from

Equation (3.1), estimated with OLS with daily data. These innovations are essentially

uncorrelated. The first three components (PCs) of εi,t+1 across 22 currencies explain only

19%, 13%, and 8% of the variations, respectively (first column of Table 3.1).

We estimate the conditional variances vart[εi,t+1] of country-specific shocks using an

EGARCH(1,1) specification combined with an AR(1) process:

εi,t+1 = a + bεi,t + νi,t+1

νi,t+1 =
√

vart[εi,t+1]zi,t+1

log
(
vart[εi,t+1]

)
= ωi + bilog

(
vart−1[εi,t]

)
+ ai

[
|νi,t|

vart−1[εi,t]
−

√
π

2

]
+ ζi

νi,t

vart−1[εi,t]

Principal component analysis reveals a strong factor structure (Table 3.1). The first

PC summarizes 72% of total variations. This PC is essentially the average of vart[εi,t+1]

across countries: its loading are spread more or less uniformly across exchange rates. The

correlation between the first PC and the cross-sectional average is 0.98.

3.2.3 Dollar and carry conditional variance

Next, we ask whether the variance of global factors vart[ ft] explains a large proportion of

variations in vart[∆si,t+1]. Again, we use a simple EGARCH(1,1) model combined with an

AR(1) process to estimate the variance vart[ ft+1] and vart[∆si,t+1] for each currency.19

19We computed these variances in the same way as variances of the country-specific shocks.
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Table 3.1: First component explains most of the total and country-specific variances

εi,t+1 vart[εi,t+1] vart[∆si,t+1]
PC1 19% 72% 77%
PC2 13% 6% 9%
PC3 9% 5% 4%

Shares of variations explained by the first three principal components of country-specific shocks εi,t+1,
country-specific variances vart[εi,t+1] and total variances vart[∆si,t+1]. Daily sample between November 2001
and November 2014 and includes 22 countries: Australia, Brazil, Canada, Chile, Columbia, Czech Republic,
Denmark, Euro, Hungary, Israel, Japan, Mexico, New Zealand, Norway, Poland, Singapore, South Africa,
South Korea, Sweden, Switzerland, Turkey, United Kingdom.

Principal component analysis reveals a strong factor structure across currencies: the

first two components explain 77% and 9% of the variations, respectively (See third col-

umn of Table 3.1). In turn, these components are closely related to the variance of global

FX variance factors. Together, the variances of the dollar factor and the average variance

of country-specific shocks capture 93% the variations of the first principal component of

vart[∆si,t+1] and capture 77% of the total variations in vart[∆si,t+1] .20

Figure 3.1 compares the first (top) and second (bottom) principal components with

our two economic factors. The principal components are plotted in solid blue lines and

the regression fits of the principal components on dollar factor are plotted in dashed red

lines.21 The comparison of the two lines shows a strong co-movement between statistical

and economic factors, especially for the first principal component.

We find a very similar factor structure in 3-month at-the-money implied variances of 27

currencies. Principal component analysis reveals that the first two components explain 87%

and 5% of the variations, respectively. Moreover, Figure 3 shows that the first component

20We compute contribution as a sum of regression’s R2 weighted by the percentage of the total variance
explained by each principal component.

21In other words, dash line is a fitted value obtained from regression principal component on variance of
dollar factor and constant.
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Figure 3.1: PCA1 of exchange rate returns variances, and variances of global and domestic
factors
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The time-series dynamics of first principal component of FX returns variances(top graph) and first principal
component of variances of domestic factors (bottom graph). The time period starts from November 2001 to
November 2014.

is highly correlated with the variance of the dollar factor as shown in Figure 3.2.

Common factors in other option-implied measures of risk

We also document the presence of similar factor structure in volatility skew and volatility

term structure across different currencies.22 Note that volatility skew and volatility term

structure are not the main focus of our study. As a proxy for volatility skew, we use 3-

month 25-delta risk reversal which is the difference between implied volatility of call and

put options with deltas of 0.25 and -0.25, respectively. As a proxy for the volatility term

structure, we use the difference between at-the-money implied volatilities with 9-month

22Christoffersen et al. (2013) find a factor structure in the level of option-implied volatility, volatility skew,
and volatility term structure across U.S. equities.
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Figure 3.2: PCA1 of implied variances of exchange rate returns, and variances of global
and domestic factors
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Time series dynamics of first principal component of implied variance (solid blue line) and variance of dollar
(red dash). The variance of dollar is available from November 2001 to November 2014, while implied
variances are plotted from July 2005 to November 2014.

and 3-month terms.

Table 3.2 reports result from the principal component analysis. The results show that

the first principal components explain 71% and 84% of the variations in the volatility skew

(risk reversals) and in the volatility term structure, respectively. Although PCA analyses

reveal strong factor structures in both volatility skew and volatility term structure of FX

options, their formal link is beyond the scope of this chapter.
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Table 3.2: Factor Structure in Equity and Exchange Rate Markets

Equity FX
Implied volatility 77% 87%
Skewness 77% 71%
Term structure 60% 84%
Idiosyncratic Variance 72%

Share of variations explained by the first principal component of implied volatility, skewness, slope and
idiosyncratic variance for equity options and exchange rate options, respectively. The shares of variations for
equities are obtained from Christoffersen et al. (2015). The term structure is the difference between implied
volatility of 9-months ATM Call options and 3-months ATM Call options.

Robustness

Our main findings remain qualitatively the same after several robustness checks. In par-

ticular, the majority of the variations in physical and risk-neutral FX return variances are

driven by the variance of the dollar factor and the average variance of country-specific

shocks. Specifically, we perform the following checks.

• We consider a sub-sample of only developed countries: Australia, Canada, Denmark,

Euro Zone, Israel, Japan, New Zealand, Norway, Sweden, Switzerland, United King-

dom.

• We use squared regression residuals as a model-free proxy of conditional variance of

country-specific shocks. PCA documents weaker factor structure in the variances of

country-specific shocks, which can be attributed to noisy nature of squared residuals.

• We add the first principal component of the country-specific shocks to the model (1)

to capture possible omitted factors. This additional factor is meant to absorb all of

the co-movement in country-specific news εi,t+1.
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3.3 No-arbitrage dynamic exchange rate model

In this section, we specify a dynamic no-arbitrage model of FX returns and their variance.

Our approach combines well-known components. First, FX returns share systematic vari-

ations due to their exposure to carry and dollar factors. Second, carry and dollar volatility

evolves according to Heston and Nandi (2000) model. Third, idiosyncratic variance across

countries share a strong factor structure, that also evolves according to a Heston-Nandi

specification.

3.3.1 Individual exchange rate dynamics

We model the FX return of currency i based on the factor structure discussed in the previous

section but with time-varying volatility:

∆si,t+1 = αi + f ᵀt+1βi +

√
γi

(
σε + hεt

)
zPi,t+1 (3.3)

hεt+1 = ωε + bεhεt + cε
(
aᵀε zPt+1 −

√
σε + hεt

)2
, (3.4)

where ∆si,t+1 is the log-return at time t + 1, ft+1 is a N × 1 vector of FX risk factors, βi are

the factor loadings, zPi,t ∼ N(0, 1) and denoting zPt = [z1,t, . . . , zJ,t]. The country-specific

components of FX returns share the same conditional variance factor hεt+1 but scaled by

the loading γi. The conditional variance has standard dynamics but based on the enlarged

information set aᵀε zPt . The J × 1 vector aε aggregates information from all country-specific

innovations to update the conditional variance from t to t + 1.23

23From a technical standpoint, this generalization does not introduce any difficulty relative to the Heston-
Nandi base-case, since the linear combination aᵀε zPt+1 is conditional Gaussian.



94

3.3.2 Exchange rate factor dynamics

The dynamics of the factors ft+1 are given in terms of the N × 1 conditional mean mt and

conditional variance ht:

ft+1 = mt +
√

(σ + ht) Σ uPt+1, (3.5)

with uPt+1 ∼ N(0, IN) and the following dynamics:

mt = φ0 + φ1mt−1 + Ψ ( ft − mt−1) (3.6)

ht+1 = ω + bht + c
(
aᵀuPt+1 −

√
σ + ht

)2
. (3.7)

The conditional mean mt has auto-regressive dynamics with innovations ( ft − mt−1).

3.4 Estimation

3.4.1 Benchmark univariate model

We define a well-known univariate time-varying volatility model as a benchmark to assess

the performance of our encompassing specification. We consider the case where each cur-

rency has its own independent Heston-Nandi volatility dynamics. Of course, this greatly

expands the number of latent volatility process and provides substantial flexibility in fit-

ting the particular volatility process of each currency. Nonetheless, the results show that a

parsimonious model based on common risk factors provides a similar fit. The benchmark
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dynamics are given by

∆si,t+1 = αi + f ᵀt+1βi +
√

hi,t zPi,t+1 (3.8)

hi,t+1 = ωi + bihi,t + ci

(
aizPi,t+1 −

√
hi,t

)2
, (3.9)

which is estimated based on standard routines for each currency individually.

3.4.2 Exchange rate likelihood

Our sample has 22 currencies (J = 22) and we use the dollar and carry factors as observable

risk factors (N = 2). We estimate parameters of exchange rate dynamics based on the joint

conditional likelihood of the data:

ln LP =
∑

t

ln
[
lt(∆st+1, ft+1

∣∣∣It)
]

l(∆st+1, ft+1

∣∣∣It) = l(∆st+1

∣∣∣ ft+1, It) × l( ft+1

∣∣∣It), (3.10)

where ∆st+1 stacks the J exchange rate returns and where the information set It contains the

history of ∆st and ft until time-t. The first term in the conditional likelihood is given by:

l(∆st+1

∣∣∣ ft+1, It) = (2π)−
J
2
∣∣∣Σ∆s

t

∣∣∣− 1
2

× exp
[
−

1
2

(
∆st+1 − E

[
∆st+1| ft+1

])ᵀ (
Σ∆s

t

)−1 (
∆st+1 − E

[
∆st+1| ft+1

])]
,

(3.11)
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with E
[
∆st+1| ft+1

]
= A + B ft+1 and Σ

∆st+1
t = (σε + hεt )Γ1 where B and Γ stacks the corre-

sponding loadings βi and γi. The second conditional likelihood is given by:

f ( ft+1

∣∣∣It) = (2π)−
N
2 |Σt|

− 1
2 × exp

[
−

1
2

( ft+1 − mt)′ (Σt)−1 ( ft+1 − mt)
]
, (3.12)

with Σt = (σF + hF
t )Σ1.

3.4.3 Targeting unconditional moments

The parameters to be estimated for each currency are αi, βi, γi. The additional common

parameters are σε , ωε , bε , cε and aε . Parameters of the factor dynamics are σ, Σ, φ0, φ1, φ f ,

φε , Ψ. Parameters of the factor variance are ω, b, c and a. For each currency, starting value

of αi, βi can be obtained from OLS since carry and dollar factors are observable. Start-

ing values of country-specific variance parameters can also be obtained based on the OLS

residuals εi,t. Similarly, starting values for parameters of the risk factors, since carry and

dollar returns are observable. Convergence of the joint likelihood appears robust to vary-

ing these starting values. Nonetheless, we target some of the parameters to the following

unconditional moments of the data.

Factors mean

From the factor dynamics, and taking unconditional expectation, we obtain

E[mt+1] = φ0 + φ1E[mt]

φ0 = (IN − φ1)E[ ft+1], (3.13)



97

where the unconditional mean of hεt and ht are given by

E[hεt ] =
ωε + cε(a

ᵀ
ε aε + σε)

1 − (bε + cε)

E[ht] =
ω + c(aᵀa + σ)

1 − (b + c)
, (3.14)

and where and estimate of E[ ft+1] is given by the sample mean of ft+1.

Country-specific variance

From the volatility of country-specific innovations, and taking unconditional expectations,

we have

γi =
var[εi,t+1]
σε + E[hεt ]

, (3.15)

and substituting for the unconditional mean of hεt we obtain:

γi =
var[εi,t+1]

σε +
ωε+cε (a

ᵀ
ε +σε )

1−(bε+cε )

, (3.16)

where an estimate of var[εi,t+1] is easily obtained from the sample variance of the residuals

in a regression of ∆si,t+1 on the factors ft+1.
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Factors variance

Applying law of total variance we have

var[ ft+1] = var[Et( ft+1)] + E[vart( ft+1)]

≈ E[vart( ft+1)] = (σF + E[hF
t ])ΣP

1 , (3.17)

where var[Et( ft+1)] is of second-order importance in practice. We obtain:

ΣP
1 =

var[ ft+1]

σF +
ω+c(aᵀa+σ)

1−(b+c)

, (3.18)

where an estimate of var[ ft+1] is easily obtained from the sample variance of the factors

ft+1, which guarantee that ΣP
1 is positive definite.

3.5 Results

Overall, the performance of our multivariate model is comparable to that of the benchmark.

In particular, a factor structure allows us to closely replicate filtered univariate variances

with the exception of few emerging countries.

3.5.1 Volatility dynamics

We compare the volatility dynamics between the benchmark model and our specification.

We filter the conditional volatility for each currency separately based on the benchmark

model. Next, we compute the conditional variance implied from our factor model based

on the filtered volatility factors ht and hεt . Figures 3.3-3.6 show the results. Overall, our
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specification does an excellent job in terms of matching the variances. A few stand out:

Columbia, Israel, Chile and Switzerland. This result is consistent with the stylized facts

documented before, including low persistence of variance process for Columbia (see Table

3.3) and low share of individual country-specific variances attributed to the common factor

(see Figure 3.7).
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Figure 3.3: Comparison of multivariate and univariate variances. Part I
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Comparison of univariate variance (solid blue line) and variance implied from multivariate model (dash green) The former is obtained from
HN-GARCH model fitted separately for each FX return, while the latter is computed from our factor model. The time period starts from July
2005 to November 2014, overall 2356 observations. The following countries are included: Australia, Euro Zone, United Kingdom, New Zealand,
Brazil, Canada.
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Figure 3.4: Comparison of multivariate and univariate variances. Part II
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Comparison of univariate variance (solid blue line) and variance implied from multivariate model (dash green) The former is obtained from HN-
GARCH model fitted separately for each FX return, while the latter is computed from our factor model. The time period starts from July 2005 to
November 2014, overall 2356 observations. The following countries are included: Switzerland, Chile, Columbia, Czech Republic, Denmark and
Hungary.



102

Figure 3.5: Comparison of multivariate and univariate variances. Part III
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Comparison of univariate variance (solid blue line) and variance implied from multivariate model (dash green). The former is obtained from
HN-GARCH model fitted separately for each FX return, while the latter is computed from our factor model. The time period starts from July
2005 to November 2014, overall 2356 observations. The following countries are included: Israel, Japan, South Korea, Mexico, Norway and
Poland.
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Figure 3.6: Comparison of multivariate and univariate variances. Part IV
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Comparison of univariate variance (solid blue line) and variance implied from multivariate model (dash green). The former is obtained from
HN-GARCH model fitted separately for each FX return, while the latter is computed from our factor model. The time period starts from July
2005 to November 2014, overall 2356 observations. The following countries are included: Sweden, Singapore,Turkey and South Africa.
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Figure 3.7: Share of individual country-specific variance attributed to common factor
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November 2001 to November 2014 and includes 22 countries: Australia, Brazil, Canada, Chile, Columbia,
Czech Republic, Denmark, Euro, Hungary, Israel, Japan, Mexico, New Zealand, Norway, Poland, Singapore,
South Africa, South Korea, Sweden, Switzerland, Turkey, United Kingdom.

3.5.2 Persistence

A small number of emerging countries stand out and do not seem to be captured well.

To better understand this challenge, Table 3.3 reports the correlation between volatility

estimates. The low-correlation countries (correlation below 70%) are the expected culprits

given the results above: Columbia, Chile, Israel and Switzerland. In case of Columbia, the

low correlation appears caused by the much lower persistence in the benchmark volatility

(second column of Table 3.3). This poses a challenge to our specification where assume
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Figure 3.8: The link between univariate model’s persistence and correlation between
model-implied and univariate variances
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This scatter plot compares correlation between model-implied and univariate variances (horizontal axis) and
persistence of univariate model (vertical axis). The time period starts from November 2001 to November
2014 and includes 22 countries: Australia, Brazil, Canada, Chile, Columbia, Czech Republic, Denmark,
Euro, Hungary, Israel, Japan, Mexico, New Zealand, Norway, Poland, Singapore, South Africa, South Korea,
Sweden, Switzerland, Turkey, United Kingdom.

that the volatility persistence variance is the same across currencies (see Figure 3.8 for

details). The Columbian Peso appears to truly stand out due to the large spikes in volatility

during 2007-2008 years driven by peso depreciation.

3.5.3 Diagnostic checks

Finally, we check whether our multivariate and each univariate models are able to get rid

off any remaining conditional volatilities in the standardized returns. For this purpose, we

test whether second moments of innovations have any remaining autocorrelations. Table
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Table 3.3: Comparison of multivariate and univariate variances

Correlation Persistence Sensitivity to factor’s variance (γi)
Australia 0.91 0.94 3.82
Euro Zone 0.84 0.97 1.20
United Kingdom 0.82 0.97 2.11
New Zealand 0.87 0.95 4.21
Brazil 0.79 0.91 7.30
Canada 0.87 0.95 2.41
Switzerland 0.66 0.96 3.34
Chile 0.61 0.94 3.61
Columbia 0.49 0.86 4.64
Czech Republic 0.80 0.96 2.67
Denmark 0.84 0.97 1.21
Hungary 0.89 0.96 3.68
Israel 0.63 0.93 2.37
Japan 0.72 0.95 5.00
South Korea 0.87 0.92 6.56
Mexico 0.74 0.90 4.11
Norway 0.88 0.97 2.51
Poland 0.87 0.95 3.33
Sweden 0.84 0.97 2.53
Singapore 0.75 0.96 0.55
Turkey 0.75 0.91 4.55
South Africa 0.78 0.94 7.36

The second column of Table 3.3 displays correlation between univariate variance and variance implied from
factor model, correspondingly. Third column shows persistence of each univariate model computed as b + c.
Fourth column shows sensitivity of each FX variance to the common idiosyncratic variance and scaled by
10−6. The time period starts from July 2005 to November 2014, overall 2356 observations. Countries with
correlation less or equal than 70% between univariate and multivariate models are bolded.

3.4 shows p-values of Ljung-Box test for squared returns (columns 1 and 2), squared re-

turns standardized by either univariate (columns 3 and 4) or multivariate (columns 5 and

6) variances. Both univariate models and our joint specification successfully remove con-

ditional variations in the standardized returns approximately for half of all currencies. By

contrast, all exchange rate returns exhibit conditional variations in their second moments.
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Table 3.4: Ljung-Box test for remaining autocorrelation in squared exchange rate returns
and standardized returns

∆s2
i,t

(
∆si,t

huniv

)2 (
∆si,t

hmult

)2

1 lag 5 lags 1 lag 5 lags 1 lag 5 lags
Australia 0.00 0.00 0.00 0.00 0.00 0.00
Euro Zone 0.00 0.00 0.66 0.21 0.94 0.61
United Kingdom 0.00 0.00 0.14 0.00 0.71 0.02
New Zealand 0.00 0.00 0.00 0.00 0.00 0.00
Brazil 0.00 0.00 0.01 0.00 0.00 0.00
Canada 0.00 0.00 0.06 0.00 0.00 0.00
Switzerland 0.01 0.00 0.35 0.28 0.43 0.09
Chile 0.00 0.00 0.41 0.45 0.01 0.00
Columbia 0.00 0.00 0.00 0.00 0.00 0.00
Czech Republic 0.00 0.00 0.04 0.00 0.07 0.00
Denmark 0.00 0.00 0.63 0.26 0.87 0.66
Hungary 0.00 0.00 0.73 0.00 0.50 0.00
Israel 0.00 0.00 0.01 0.00 0.00 0.00
Japan 0.00 0.00 0.90 0.91 0.07 0.01
South Korea 0.00 0.00 0.00 0.00 0.00 0.00
Mexico 0.00 0.00 0.06 0.00 0.00 0.00
Norway 0.00 0.00 0.00 0.00 0.03 0.27
Poland 0.00 0.00 0.00 0.00 0.00 0.00
Sweden 0.00 0.00 0.49 0.00 0.30 0.00
Singapore 0.00 0.00 0.39 0.00 0.42 0.00
Turkey 0.00 0.00 0.00 0.00 0.00 0.00
South Africa 0.00 0.00 0.71 0.02 0.13 0.00

This table shows p-values of Ljung-Box test for squared exchange rate returns (second and third columns),
squared exchange rate returns standardized by univariate (fourth and fifth columns) and multivariate (sixth
and seventh columns) volatilities.

Conclusion

We propose a new multivariate factor model of exchange rate returns and their option-

implied variances. This model starts from a simple linear factor model for exchange rate

returns whose factors have economic underpinnings such as Verdelhan (2015), then es-



108

tablish a factor structure in their variances. We show that the common factors driving

variances of exchange rate returns include the variances of global factors (e.g. variance

of dollar factor in Verdelhan (2015) model) and the common factors driving variances of

country-specific shocks.

Our model has several appealing features. First, we can include a large number of ex-

change rates, avoiding the curse of dimensionality, which is crucial for a portfolio construc-

tion. Second, the innovations to expected returns and volatility processes are derived from

observable exchange rate returns without relying on filtering of latent stochastic volatility

factors. We find that our joint model produces very similar dynamics of objective variance

comparing with individual univariate models, with exception of few countries.

The promising performance of our multivariate model might warrant further examina-

tion. First, it allows us to decompose the risk premium contribution to the exchange rate

returns. In other words, by providing the model’s specification under both physical and

risk-neutral measures, we open the door for examining risk premia in the currency spot

and option markets. However, detailed theoretical and empirical investigation of this is-

sue is left for future research. Second, our model can be used to devise a better portfolio

construction or hedging strategy for a portfolio containing both currencies and currency

options. This has an important application for currency traders, who lost around 30% on

their carry trades due to the common depreciation of the majority of currencies against US

dollar in the late 2008. By contrast, our model provides an interaction among different cur-

rencies, which should be helpful to avoid such losses. We conjecture that it will outperform

competing univariate benchmarks during periods of financial crises. We leave its empirical

examination of our model’s performance for the future research.
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Appendix A

Chapter 2 Appendix

A.1 m-step-ahead forecast

First, the GARCH(1,1) model is defined as:


rt = µ + εt

εt = zt
√

ht, zt ∼ i.i.d. N(0.1)

ht = ω + α1ε
2
t−1 + β1ht−1.

The m-step-ahead forecast is computed according to:

ĥt+m|t = ω + α1ε̂
2
t+m−1|t + β1ĥt+m−1|t

ε̂2
t+m|t = ĥt+m|t i f m > 0

ε̂2
t+m|t = ε2

t+m, ĥt+m|t = ht+m, i f m ≤ 0.

(A.1)
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Second, the GJR-GARCH(1,1) model is defined as:


rt = µ + εt

εt = zt
√

ht, zt ∼ i.i.d. N(0.1)

ht = ω + α1ε
2
t−1 · [1 − 1(εt−1 > 0)] + γ1ε

2
t−1 · 1(εt−1 > 0) + β1ht−1.

The recursive formula for the multiple-step-ahead forecast of the GJR-GARCH(1,1)

model is calculated as:

ĥt+m|t = ω +

(
α1 + γ1

2
+ β1

)
ĥt+m−1|t. (A.2)

A.2 Proof of Theorem 1.2.1

Recall that process Yt+1 is described as:

Yt+1 = F(Yt) + εt+1

F(Yt) = 1(rt < τ)X
′

tθ1 + 1(rt ≥ τ)X
′

tθ2,

(A.3)

where X
′

t =
[
1,Yt,

Yt+...+Yt−4
5 , Yt+...+Yt−21

22

]
and θ = (θ

′

1, θ
′

2)
′

. The one-step-ahead forecast is

obtained as:

Ŷt(1) = E[Yt+1|It] = F(Yt). (A.4)
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Next, consider the the-step-ahead forecast from Equation (1.19):

Ŷt(2) = E[Yt+2|It] =

= E[F(Yt+1) + εt+2|It] = E[F(Yt+1)|It] =

= E[1(rt+1 < τ)X
′

t+1θ1 + 1(rt+1 ≥ τ)X
′

t+1θ2|It] =

= E[1(rt+1 < τ)X
′

t+1θ1|It] + E[1(rt+1 ≥ τ)X
′

t+1θ2|It] =

= S 1 + S 2.

(A.5)

Simplifying the first summand S 1, we obtain:

S 1 = E
[
1(rt+1 < τ) · X

′

t+1θ1|It

]
=

= E
[
1(rt+1 < τ) ·

(
1,Yt+1,

Yt+1 + ... + Yt−3

5
,

Yt+1 + ... + Yt−20

22

)′
θ1|It

]
=

= E

1(rt+1 < τ) ·
(
1, F(Yt) + εt+1,

F(Yt) + εt+1 + ... + Yt−3

5
,

F(Yt) + εt+1 + ... + Yt−20

22

)′
θ1|It

 =

= [θ1 = (c1, β
d
1, β

w
1 , β

m
1 )
′

] =

≈ E[(1(rt+1 < τ)|It)] · E[(c1 + βd
1(F(Yt) + εt+1) + βw

1

(
F(Yt) + εt+1 + ... + Yt−3

5

)
+

+ βm
1

(
F(Yt) + εt+1 + ... + Yt−20

22

)
|It] =

= E
[
(1(rt+1 < τ)|It) · (c1 + βd

1F(Yt|It) + βw
1

(
F(Yt|It) + ... + Yt−3

5

)
+ βm

1

(
F(Yt|It) + ... + Yt−20

22

)]
.

(A.6)

Note that we obtain an approximated expression for the expected value S 1 since rt+1 and

εt+1 are only uncorrelated,24 but not independent. Thus, Expression (A.6) can be simplified

24Recall from (1.20) that rt+1 = zt+1
√

RVt+1, where zt+1 is i.i.d. N(0, 1) random variable, while zt+1 and
√

RVt+1 are independent. Then correlation between rt+1 and εt+1 is close to zero since µn is small, see table
1.1.
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as follows:

E
[
(1(rt+1 < τ)|It) · (c1 + βd

1F(Yt|It) + βw
1

(
F(Yt|It) + ... + Yt−3

5

)
+ βm

1

(
F(Yt|It) + ... + Yt−20

22

)]
=

= Pr(rt+1 < τ|It) ·
(
c1 + βd

1F(Yt|It) + βw
1

(
F(Yt|It) + ... + Yt−3

5

)
+ βm

1

(
F(Yt|It) + ... + Yt−20

22

))
.

(A.7)

Using πt = Pr(rt+1 < τ|It), Expression (A.7) becomes:

Pr(rt < τ|It) ·
(
c1 + βd

1F(Yt|It) + βw
1

(
F(Yt|It) + ... + Yt−3

5

)
+ βm

1

(
F(Yt|It) + ... + Yt−20

22

))
+

+ (1 − Pr(rt < τ|It)) ·
(
c2 + βd

2F(Yt|It) + βw
2

(
F(Yt|It) + ... + Yt−3

5

)
+ βm

2

(
F(Yt|It) + ... + Yt−20

22

))
=

= c1πt + c2(1 − πt) +
(
βd

1πt + βd
2(1 − πt)

)
Ŷt(1) +

(
βw

1πt + βw
2 (1 − πt)

) [ Ŷt(1) + ... + Yt−3

5

]
+

+
(
βm

1 πt + βm
2 (1 − πt)

) [ Ŷt(1) + ... + Yt−20

22

]
(A.8)

where Ŷt(s) = Yt+s is s < 0. Finally, the formula for the multiple-step-ahead forecast

Ŷt(h) with h > 2 is extended recursively from Result (A.8).

Q.E.D.
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A.3 Comparison of HAR and SETAR(2) models.

Table A.1: Comparison of the TAR(1) (or HAR) and SETAR(2) models

RVt
√

RVt log(RVt)

R2 of TAR(1) 50.4% 72.6% 73.2%
R2 of SETAR (2) 51.1% 72.9% 73.5%

τopt 0.016 0.014 0.007
l 9 1 1

F12 53.8 43.9 44.0

Reported are in-sample estimation results of the linear HAR model and non-linear SETAR(2) model. The
in-sample covers the period from February 2000 to June 2014 (3582 observations). We set the maximum
amount of lags equal to 10 in the TAR estimation.
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Appendix B

Chapter 3 Appendix

B.1 Expectation Maximization algorithm

The Expectation Maximization algorithm consists on two parts: Expectation and Maxi-

mization. The idea is to introduce a hidden variable Kt, which governs the choice of par-

ticular normal distribution. For instance, if Kt = 1 then mixtures of normal distribution

becomes N(0, σ2
1RV (d)) at day t, which corresponds to the daily factor.

At the first step (Expectation), we have to compute the posterior distribution for the

hidden variable Kt given some initial guess of parameters. The posterior probability that

Kt = 1 is computed from Bayes’ Theorem:

Pr(Kt = 1|Xt = xt; θ0) =

πk
2πσkt

exp
(
−ε2

t −z2
t σ

2
kt

2σ2
kt

)
Pr(Xt = xt; θ0)

= qK(1)

Pr(Xt = xt; θ0) =

K−1∑
k=0

πk

2πσkt
exp

(
−ε2

t − z2
tσ

2
kt

2σ2
kt

)
,

(B.1)

where vector Xt contains Rt,RVt, r
f
t , while θ0 is an initial guess for parameter θ. At the
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second step (Maximization), we optimize parameters given the choice of the posterior dis-

tribution defined in the Expectation step. Since direct maximization of the log-likelihood

is infeasible, we introduce the new distribution of the hidden variable Kt:

log (Pr(x; θ)) = log

K−1∑
k=0

PrX,K(x, k; θ)

 =

= log

K−1∑
k=0

qK(k)
PrX,K(x, k; θ)

qK(k)

 =

= log
(
EqK

[
PrX,K(x, k; θ)

qK(k)

])
≥

≥ EqK

[
log

(
PrX,K(x, k; θ)

qK(k)

)]
.

(B.2)

The last result follows from Jensen’s inequality, which allows us to swap logarithm and

sum. As a result, the maximization of the last expression in (B.2) can be done in the closed

form. In essence, we maximize lower bound of the log-likelihood and therefore there is no

guarantee that EM estimators will be the same or converge to the MLE estimator. Despite

the lack of evidences regarding asymptotic efficiency and consistency, several studies in-

vestigate performance of EM algorithm via simulations. Nityasuddhi and Bohning (2003)

compute bias and RMSE of EM algorithm and find that resulting estimates are quite close

to the true parameters. In addition, Arcidiacono and Jones (2003) show that their sequen-

tial EM algorithm is asymptotically well-behaved, but it does not converge to the MLE

estimator.

To sum-up, EM algorithm is a very pragmatic way to estimate MN model without

substantial computational costs. However, the asymptotic efficiency and consistency can

not be established. Having discussed the intuition behind EM algorithm we can proceed

and derive corresponding estimators.
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First, we split the last expression from (B.2) in two parts:

EqK

[
log

(
PrX,K(x, k; θ)

qK(k)

)]
= EqK

[
log(PrX,K(x, k; θ))

]
− EqK (log[qK(k))

]
. (B.3)

Note that second term does not contain vector of parameters θ, and thus can be ignored.

As a result, EM estimator θ̂ is given by:

θ̂ = arg max
θ

EqK

[
log(PrX,K(x, k; θ))

]
. (B.4)

Now, we derive EM estimator for our mixtures of normal distributions:

EqK

[
log(PrX,K(x, k; θ))

]
= EqK

log

 T∏
t=22

K−1∏
k=0

πk

2πσkt
exp

(
−ε2

t − z2
tσ

2
kt

2σ2
kt

)1(Kk=k) =

= EqC

 T∑
t=22

K−1∑
k=0

1(Kk = k)
(
log(πk) + log

(
1

2πσkt

)
−

(ε2
t + z2

tσ
2
kt)

2σ2
kt

) =

=

T∑
t=22

K−1∑
k=0

EqC [1(Kk = k)]
(
log(πk) + log

(
1

2πσkt

)
−

(ε2
t + z2

tσ
2
kt)

2σ2
kt

)
.

(B.5)

Recall that probability of occurring regime k equals to the expected value of the cor-

responding indicator EqK [1(Kk = k)]. As a result, we are ready to derive closed form
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expression of EM estimates:

L̃ =

T∑
t=22

K−1∑
k=0

qK(k)
(
log(πk) + log

(
1

2πσkt

)
−

(ε2
t + z2

tσ
2
kt)

2σ2
kt

)

dL̃
dσ2

kt

= 0 =⇒ σ̂2
k =

T∑
t=22

qK(k) ε2
t

RV (k)
t

T∑
t=22

qK(k)

dL̃
dπk

= 0 =⇒ π̂k =

K−1∑
k=0

qK(k)

T

qK(k) =

πk
2πσkt

exp
(
− 1

2σ2
kt
·
[
ε̂2

t + ẑ2
tσ

2
kt

])
K−1∑
k=0

πk
2πσkt

exp
(
− 1

2σ2
kt
·
[
ε̂2

t + ẑ2
tσ

2
kt

]) ,

(B.6)

where qK(k) is a probability of occurring regime k.

B.2 Proof of Theorem 2.2.1

First, we compute the risk-neutral MGF using Radon-Nikodym derivative (2.10):

EQ[exp(−t1εt − t2zt)|It−1] = EP

 dQ
dP |It

dQ
dP |It−1

exp(−t1εt − t2zt)|It−1

 =

= EP [
exp(−ν1tεt − ν2tzt − Ψt(ν1t, ν2t)) · exp(−t1εt − t2zt)|It−1

]
=

= exp [Ψt(ν1t + t1, ν2t + t2) − Ψt(ν1t, ν2t)] .

(B.7)

Recall that conditional MGF is defined as:

EQ[exp(−t1εt − t2zt)|It−1] = exp(ΨQ(t1, t2)). (B.8)
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By combining (B.7) and (B.8), we obtain the link between risk-neutral and physical

log-MGF:

ΨQ(t1, t2) = Ψ(ν1t + t1, ν2t + t2) − Ψ(ν1t, ν2t). (B.9)

Next, the logarithm of conditional MGF under risk-neutral measure is given by:

ΨQ(t1, t2) = Ψ(ν1t + t1, ν2t + t2) − Ψ(ν1t, ν2t) =

= ln

K−1∑
k=0

πkexp
[
(ν1t + t1)2σ2

kt

2
+

(ν2t + t2)2

2

] − ln

K−1∑
k=0

πkexp
[
ν2

1tσ
2
kt

2
+
ν2

2t

2

] =

= ln


K−1∑
k=0

π̃kt

exp
[

(ν1t+t1)2σ2
kt

2 +
(ν2t+t2)2

2

]
exp

[
ν2

1tσ
2
kt

2 +
ν2

2t
2

]
 =

= ln

K−1∑
k=0

π̃ktexp
[
−(−ν1tσ

2
kt)t1 − (−ν2t)t2 +

1
2

(t2
1σ

2
kt + t2

2)
] ,

(B.10)

where time-varying probability π̃kt, mean of innovation z∗t and error term ε∗t under risk-

neutral measure are computed as follows:

π̃kt =

πkexp
(
ν2

1tσ
2
kt+ν

2
2t

2

)
K−1∑
k=0

πkexp
(
ν2

1tσ
2
kt+ν

2
2t

2

) ,
µ̃kt = −ν1tσ

2
kt,

M̃t = −ν2t.

(B.11)

Q.E.D.
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B.3 Proof of Theorem 2.2.2

From the Theorem 2.2.1 we know that physical and risk-neutral distributions belong to

the same family of distributions — mixture of normal, albeit with different parameters. In

addition, we have already computed all risk-neutral probabilities except of the correction

term γt. Under risk-neutral measure the conditional expected returns equals to risk free

rate:

EQ

[
S t

S t−1
|It−1

]
= er f

t = EQ
[
er f

t −γt+
√

RVd
t z∗t |It−1

]
eγt = EQ

[
e
√

RVd
t z∗t |It−1

]
.

(B.12)

We calculate expression (B.12) using MGF of the non-central chi square random vari-

able. Indeed, since
√

RVd
t and z∗t follow mixtures of normal distributions their product

is distributed as mixtures of non-central chi-squared random variables with the following

MGF defined for fixed mixture k:

MGF(t) =
exp

(
λk ·t
1−2t

)
√

1 − 2t
, (B.13)
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where λk is non-centrality parameter. Now, we can derive expression for γt:

EQ
[
e
√

RVd
t z∗t |It−1

]
= EQ

[
e(Mt+ε

∗
t )z∗t |It−1

]
=

= EQ
ε∗t

[
EQ

z∗t

[
e(Mt+ε

∗
t )z∗t |It−1

]]
=

= EQ
ε∗t

[
exp

(
−ν2t(Mt + ε∗t ) +

1
2

(Mt + ε∗t )2
)
|It−1

]
=

= exp
(
−ν2tMt +

1
2

M2
t

)
EQ
ε∗t

[
exp

(
ε∗t bt +

1
2

(ε∗t )2
)
|It−1

]
=

= exp
(
−ν2tMt +

1
2

M2
t −

b2
t

2

)
EQ
ε∗t

[
exp

(
1
2

[ε∗t + bt]2
)
|It−1

]
,

(B.14)

where bt = Mt − ν2t. Note that [ε∗t + bt]2 is a mixture of non-central chi squared random

variables with non-centrality parameters equal to:

λk =

(
bt + µ̃kt

σkt

)2

µ̃kt = −ν1tσ
2
kt.

(B.15)

To finish derivation we need to compute MGF of non-central chi-squared random vari-

able defined in (B.15). After rearranging terms we obtain:

EQ
[
e
√

RVd
t z∗t |It−1

]
= exp

(
−ν2tMt +

1
2

M2
t −

b2
t

2

) K−1∑
k=0

π̃kt

exp
(
λk ·

σ2
kt
2

1−2
1σ2

kt
2

)
√

1 − 2σ2
kt

2

=

= exp
(
−ν2tMt +

1
2

M2
t

) K−1∑
k=0

π̃kt

exp
(

b2
t σ

2
kt+2btµ̃kt+µ̃kt

2

2(1−σ2
kt)

)
√

1 − σ2
kt

.

(B.16)
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We finish proof with the explicit expression for the correction term γt:

γt = −ν2tMt + 0.5M2
t + log


K−1∑
k=0

π̃kt

exp
(

(Mt−ν2t)2σ2
kt+2(Mt−ν2t)µ̃kt+µ̃kt

2)
2(1−σ2

kt)

)
√

1 − σ2
kt

 . (B.17)

Q.E.D.

B.4 Proof of Theorem 2.2.3

We need to obtain EMM condition EQ
[

S t
Bt
|It−1

]
= S t−1

Bt−1
or EQ

[
S t/S t−1
Bt/Bt−1

/|It−1

]
= 1 :

EQ

[
S t/S t−1

Bt/Bt−1
/|It−1

]
= EP

 dQ
dP |It

dQ
dP |It−1

S t

S t−1
/

Bt

Bt−1
|It−1

 =

= EP

[
exp(−ν1tεt − ν2tzt − Ψ(ν1t, ν2t) − r f

t )
S t

S t−1
|It−1

]
=

= exp(−Ψ(ν1t, ν2t)) · EP

[
exp

(
−ν1tεt − ν2tzt + λ

√
RVd

t +

√
RVd

t zt

)
|It−1

]
=

= exp(λMt − Ψ(ν1t, ν2t)) · EP
zt

[
EP
εt
exp (εt(−ν1t + λ + zt)) exp(ztb)|It−1

]
=

= exp(λMt − Ψ(ν1t, ν2t)) ·
K−1∑
k=0

πkEP
zt

[
exp

(
1
2

(λ − ν1t + zt)2σ2
kt + ztbt

)
|It−1

]
.

(B.18)

Note that expression within the expectation is a function of z2
t . Thus, we obtain expec-

tation with respect non-central chi-squared random variable, which is its MGF defined in
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(B.18). Rearranging terms we obtain:

EQ

[
S t/S t−1

Bt/Bt−1
/|It−1

]
= exp(λMt − Ψ(ν1t, ν2t)) ·

K−1∑
k=0

πkEP
zt

[
exp

(
1
2

(λ − ν1t + zt)2σ2
kt + ztbt

)
|It−1

]
=

= exp(λMt − Ψ(ν1t, ν2t))×

×

K−1∑
k=0

πkEP
zt

exp

σ2
kt

2

(
zt +

ctσ
2
kt + bt

σ2
kt

)2

+

(
−b2

t − 2ctσ
2
ktbt

2σ2
kt

) =

= exp(λMt − Ψ(ν1t, ν2t)) ·
K−1∑
k=0

πk


exp

(
c2

t σ
2
kt+b2

t +2ctσ
2
ktbt

2(1−σ2
kt)

)
√

1 − σ2
kt

 .
(B.19)

Recall that conditional log-MGF under physical measure is:

Ψt(t1, t2) = log

K−1∑
k=0

πkexp
(
t2
1σ

2
kt

2
+

t2
2

2

) . (B.20)

Next, we take logarithm of the above expression and rearrange terms using (B.14) we
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obtain:

exp(λMt − Ψ(ν1t, ν2t)) ·
K−1∑
k=0

πk


exp

(
c2

t σ
2
kt+b2

t +2ctσ
2
ktbt

2(1−σ2
kt)

)
√

1 − σ2
kt

 = 1

λMt − Ψ(ν1t, ν2t) + log


K−1∑
k=0

πk


exp

(
c2

t σ
2
kt+b2

t +2ctσ
2
ktbt

2(1−σ2
kt)

)
√

1 − σ2
kt


 = 0

log

K−1∑
k=0

πk

[
exp

(
ν2

1tσ
2
kt

2
+
ν2

2t

2
− λMt

)] = log


K−1∑
k=0

πk


exp

(
c2

t σ
2
kt+b2

t +2ctσ
2
ktbt

2(1−σ2
kt)

)
√

1 − σ2
kt




K−1∑
k=0

πk

[
exp

(
ν2

1tσ
2
kt

2
+
ν2

2t

2
− λMt

)]
=

K−1∑
k=0

πk


exp

(
c2

t σ
2
kt+b2

t +2ctσ
2
ktbt

2(1−σ2
kt)

)
√

1 − σ2
kt

 .

(B.21)

The last part of equation (B.21) is a non-linear equation of ν2t. However, we can obtain

approximate solution using the fact that σ2
kt ≈ 0 :

K−1∑
k=0

πk

[
exp

(
ν2

1tσ
2
kt

2
+
ν2

2t

2
− λMt

)]
≈

K−1∑
k=0

πk


exp

(
c2

t σ
2
kt+b2

t +2ctσ
2
ktbt

2(1−σ2
kt)

)
√

1 − σ2
kt


K−1∑
k=0

πk

[
exp

(
ν2

2t

2
− λMt

)]
≈

K−1∑
k=0

πkexp
[
b2

t

2

] (B.22)

ν2t ≈
Mt + 2λ

2
. (B.23)

Q.E.D.
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