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Abstract 

Despite that many places around the world in general, and North America in particular, were 

glaciated during the last ice age, relatively little is known about rivers that evolved over glaciated 

landscapes once they deglaciated. They are commonly categorized as alluvial with a glacial 

legacy, and often described as simple gravel-bed or sand-bed rivers. Alternatively, they are 

classified as bedrock rivers because the glacial deposits have been eroded and the underlying 

rock is exposed. However, the glacial history of these rivers is important and my research shows 

that classification for them is "semi-alluvial". This work shows that classification is important, 

not only for scientific accuracy but for river management that must be based on a sound 

understanding of river form and process. Poor understanding can be costly (i.e. restoration and 

management that do not achieve their goals; failed infrastructure), leading to wasted resources 

and inefficient functioning of the river.  

    

Two major geomorphologic phases can be discerned in formerly glaciated terrains:  

 

Deglaciation which exposed the landscape to erosion when ponded meltwater was abundant and 

led to outburst flooding. These catastrophic floods cannot occur under the modern climate of 

southern Ontario. Evidence for glacial lakes is found in lacustrine deposits upstream, and on top 

of moraines while spillways indicate where glacial lakes drained and carved deep valleys into the 

terrain. Spillways reveal outburst flooding with boulder lags, terraces, flow scars and possibly 

mounds and berms away from the modern misfit channel.  

 

Postglacial incision and deposition during a single flood event or a single hydrological year. 

Human disturbance over the past two centuries, includes agriculture, channelization, millponds 

and weirs. 

 

 

The dissertation addresses two parallel paradigms in fluvial geomorphology: Which processes 

are responsible for most of the geomorphic work that shapes the landscape - catastrophic flood(s) 

or small-scale erosion and deposition that bit by bit give the channel and valley its present 

morphology? My work will show that the outburst flooding of Glacial Lake London (paper 1) 

sets the stage for the postglacial morphology and small-scale processes we see today (paper 2). 

The third paper attempts to explain these small-scale processes using a 1D hydraulic model that 

can answer dynamic questions like bankfull discharge, water surface slopes of discharges, and 

velocity reversal hypothesis.  

 

The findings show that the outlet of the Thames River near the neighborhood of Byron is a 

deeply-incised spillway channel that formed from the catastrophic drainage of Glacial Lake 

London during deglaciation. The dry lake bed serves today as the baselevel for the upper Thames 

River and its tributaries that incised and exposed the lacustrine and glacial sediments. The till 

exerts a strong control over channel form and resulting processes. Hydrological and sedimentary 

metrics often used to assess a river's condition produce contradictory results, doubting their 

validity without a-priory knowledge of what is the reference till river. With very little research 

done on semi-alluvial rivers in till, we propose that the scientific and engineering community 

focus on these rivers as they are quite abundant in N. America. Even so, evidence from till-

bedded rivers and this study show they are quite different than alluvial and bedrock channels.  
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Introduction 

Brief glacial history of southern Ontario and its landforms 

Southern Ontario is part of the gentler lowlands of the Great Lakes and St. 

Lawrence River, underlain by Paleozoic sedimentary rocks. The Laurentide Ice Sheet 

completely covered southern Ontario twenty thousand years ago at the last glacial 

maximum (LGM). This continental glacier complex covered most of Canada (80%) 

and extended into the northern states of the United States. The Wisconsinan glaciation 

began approximately 115,000 years BP and ended about 10,000 years BP. The 

Wisconsinan is divided into three major parts: Early, Middle and Late Wisconsinan. 

The Early Wisconsinan (115,000 - 60,000 years BP) marks the inception and growth 

of the Laurentide Ice Sheet coupled with a cooling climate. The Middle Wisconsinan 

(60,000 - 30,000 years BP) was warmer and southern Ontario was essentially ice-free. 

During the Late Wisconsinan (30,000 – 10,000 years BP) southern Ontario was ice-

covered again with many advances and retreats of the ice lobes. Ice flow was 

controlled by the broad topographic depressions of the Great Lakes basins. Lobes of 

ice extending beyond the main body of the ice sheet developed in these basins and 

acted at times independently in response to local conditions at the base of the glacier 

rather than, or in addition to, climatic change. By 15,000 years BP the Laurentide Ice 

Sheet front started its final retreat from southern Ontario. While the Late Wisconsinan 

glaciation is the last time southern Ontario was completely glaciated, other earlier 

glaciations during the Quaternary Period as well as during the Precambrian covered 

the region but their geologic records are incomplete due to erosional processes as 

Ontario is located in the center of the North American landmass (Barnett, 1992).  
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The surficial geology of southern Ontario is composed predominantly of tills and 

unconsolidated rock debris deposited during the last glaciation when the Laurentide 

Ice Sheet occupied the region (Fig. 1). The tills are composed of unsorted mixture of 

clay, sand and gravel. The tills are spread over the landscape in a relatively flat terrain 

or sometimes molded into gentle hills called drumlins. Where the ice made temporary 

halts or re-advances, the till was pushed into long, rough ridges and sometimes 

covered with sand and gravel. These areas of rough topography are end moraines and 

are the most common high-relief landform of the region. The moraines are often 

breached by modern rivers and these breaches are either a result of a glacial spillway 

channel or post-glacial incision. The spillway channels carried drainage from the 

melting ice and today's modern rivers flowing through them are clearly smaller, 

making them underfit or misfit channels. Other glacial features of the region are long, 

narrow ridges of sand and gravel termed eskers and irregularly-shaped gravel hills 

called kames (Putnam and Kerr, 1966).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Surficial geology of southern Ontario showing the dominance of tills 

and some bedrock exposures (Ontario Geological Survey).  
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The Thames River, that is the study area of this dissertation together with its 

tributary Medway Creek, can be easily divided into two physiographic parts: 1. The 

upper watershed which is predominantly composed of till moraines, till plains and 

many dissecting spillway channels. 2. The lower watershed southwest of London all 

the way to Lake St. Clair outlet that is composed mainly of clay, sand and till plains 

(Fig. 2.). The transition point between the two watershed parts (around Delaware on 

the map) is a large spillway channel that drained the London Basin (through Glacial 

Lake London) and will be the focal point of the deglaciation process this work 

describes in the first manuscript. The marked differences in landforms are also 

expressed in the Thames River valleys' morphology as the upper watershed is 

generally deeply incised compared to the lower subdued basin (Fig. 3).      

 

 

Figure 2. The Thames River watershed landforms (Upper Thames Conservation 

Authority, 1999).  
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Figure 3. Typical cross-sections of the upper Thames River valley (top) and the 

lower Thames River valley (bottom) showing marked difference in topography 

(Upper Thames Conservation Authority, 1999).  

   

While the tills were formed and deposited during glacial advance or retreat, the ice 

lobes generated considerable volumes of meltwater. There was a cyclical annual 

production of meltwater: summer release of water stored during the fall, winter and 

spring months but there was also a diurnal summer cycle release which was 

associated with rising day temperatures and cooler night temperatures. The diurnal 

cycles were less important in a large continental ice sheet like the Laurentide Ice 

Sheet as their water volumes were much smaller. The meltwater was either ponded in 

lakes close to the ice margins or flowed into streams and rivers draining away from 

the ice mass. The meltwater carried with them large quantities of sediments into the 

local rivers (glacio-fluvial outwash deposits) and lakes (glacio-lacustrine and 

lacustrine sediments) and these sediments overlie the tills.  
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History of catastrophic floods and their evidence 

The field of paleoflood hydrology (i.e. ancient flood reconstruction) is strongly 

linked to an historic divergence between two opposing paradigms originating in 19
th

 

Century geology: uniformitarianism vs. catastrophism. Most scientists believed that 

processes in nature and associated landscape evolution are very slow (100s-1000s of 

years); erosional processes gradually remove sediments and denude the land into the 

present-day landscape and these processes are identical through time. Prominent 

geologists like Charles Lyell and James Hutton supported uniformitarianism and this 

also helped Charles Darwin articulate the revolutionary biological evolution of the 

origin of species in 1859. In contrast, scientists like Georges-Louis Leclerc, Comte de 

Buffon and later Georges Cuvier and Joseph Fourier argued that Earth underwent a 

series of short-term natural sudden catastrophic events (scale of a few minutes to days 

or months) such as violent volcanic eruptions, floods and other upheavals that shaped 

the landscape but these ideas were less common and often rejected (Baker, 1998).  

These two paradigms clashed in fluvial geomorphology when J. Harlan Bretz 

suggested in the 1920s the Channeled Scabland of Eastern Washington was a result of 

a massive cataclysmic flood. The fact that Bretz had no water source to corroborate 

these findings and his discovery relied on peculiar landforms met intense criticism 

from the geologic community that was strongly entrenched in uniformitarianism 

ideas. Only when USGS scientist Joseph T. Pardee published his findings about 

Glacial Lake Missoula drainage in 1945, cataclysmic floods were accepted by the 

geologic community as an important geomorphic agent shaping the landscape almost 

instantaneously. Later, megaflood evidence was found in other breached lakes (i.e. 

Altai floods in Siberia, Bonneville Flood in Idaho, ancestral Great Lakes and Glacial 

Lake Agassiz) and other planetary bodies such as Mars (O'Connor et al., 2013).   
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What is the evidence of a catastrophic flood and what makes it so unusual 

compared to modern-day flood deposits or erosion? The first striking feature about an 

unusual flood is that it might leave behind a spillway morphology and misfit channel, 

(Kehew and Lord, 1986) that seem uncommon for the local river hydrology to create 

during ordinary floods, usually overbank flows that occur during the lifespan of 

humans (i.e. 10-100 years). Secondly, there are deposits or erosion scars high above 

the present-day river and it is quite evident that they originate from a fluvial process 

and not a hillslope or glacial process. Furthermore, if the river is gauged it is possible 

to associate modeled peak discharges with deposits/erosion remnants and check 

whether their elevations match. Paleoflood Geomorphologists divide these 

deposits/erosion remnants into two: Slack water deposits (SWDs; Patton et al., 1979) 

and Paleo stage indicators (PSIs; Jarrett, 1990). SWDs are sandy sediments that are in 

suspension during a large flood and deposit in dead zones or in localities which flow 

velocity decreases (i.e. caves, crevasses, tributary confluences and other irregular 

bank/river valley topography). PSIs are a variety of depositional/erosional features 

such as erosion scars, terraces, benches, boulder bars and boulder lags that mark a 

minimum level of the paleo-flow, usually far from the present-day channel and 

coupled with their large scale are ordinarily preserved for a long time after the flood 

occurrence (Costa, 1983). The hydraulic engineering community, which at first 

completely rejected paleoflood hydrology, adopted the methodology of the field and 

often uses these techniques to predict (hazard risk assessment) or reconstruct dam-

break floods coupled with development of extensive parametric breaching equations 

that are based on physical characters of the reservoir stored behind the dam. 

Consequently, paleoflood hydrology is not only a mature scientific sub-discipline of 

geomorphology but also an applicable science (Baker, 2003).  
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Stream classifications  

In order to define stream types, geomorphologists seek to characterize rivers 

usually according to their general morphology on a variety of scales. The 

classification allows assessing the channel morphology, organizing information about 

specific types as a framework, detecting change over time, comparing to other rivers 

and in many cases allowing determination of what a healthy or impaired river is 

(Kondolf et al., 2003). The earliest and simplest classification was suggested by 

Leopold et al. (1964) and that included straight, meandering, braided and 

anastomosing morphological patterns. Later classifications are more complex relating 

to the supply of sediment and bedforms. For example, the often-used Montgomery 

and Buffingtons' classification (1997) for mountain rivers relates to the substrate the 

channel is made of and the associated bedforms (Fig. 4).  

Figure 4. The Montgomery and Buffington (1997) channel classification for 

mountain rivers with relations to bedforms, transport capacities and sediment 

supply. 

 

The main problems of most channel classifications are that they usually ignore 

processes and are thus very simplistic or that their developers worked in a specific 

region and consequently they cannot be generalized to other localities or 

environments. For example, the controversial Rosgen (1994, 1996) classification (Fig. 

5; also termed Natural Channel Design - NCD), that is presenting very detailed 

channel morphologies of Western US rivers, receives heavy scrutiny from the 
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academic community for its restoration failures (Simon et al., 2007) while the river 

practitioners community enthusiastically adopted this comprehensive classification 

scheme.  

 

 

Figure 5. The complex Rosgen (1994, 1996) classification scheme of Natural 

Channel Design (NCD) often used in river restoration projects.   
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The failure to have an inclusive channel classification leads to an understanding 

that channels within a basin can be several types of rivers even at the same time 

according to changing topography, changes in geology and in the last couple of 

centuries land use changes, climate change and hydrology imposed by humans. 

Furthermore, all channel classifications published to date (2016) do not include semi-

alluvial rivers. These rivers have some kind of geologic constraint (explained in 

manuscript two) and it would therefore be difficult to categorize them properly 

without a new category. For example, Martini (1977) and O'Connor et al. (1986) 

describe bedrock channels with well-developed alluvial bedforms. Looking back at 

Fig. 4 on the Montgomery and Buffington classification shows that bedrock rivers are 

not supposed to have bedforms in the first place and are expected to be devoid of 

alluvium - just plain bedrock. The second and third manuscript of this work show that 

a semi-alluvial river in a formerly glaciated terrain (Medway Creek) is a hybrid 

between alluvial rivers and bedrock rivers and together with the relatively little 

material published about this river type can be classified on its own. Phillips and 

Desloges (2014; 2015a) and Thayer et al. (2016) recently demonstrated the 

contemporary glacial conditioning of several southern Ontario till rivers and there 

were also recent attempts to classify them according to their floodplain (Phillips and 

Desloges, 2015b; Thayer and Ashmore, 2016). Our research adds to these studies by 

using a variety of hydrological and sedimentological indices often used in river 

studies both in academia and practicum of management and restoration.  

Both the long-term instantaneous erosion (i.e. dam-break catastrophism during 

deglaciation) and contemporary short-term form and erosion processes (i.e. 

uniformitarianism) generate a continuum of a deglaciating landscape evolution and 

challenges common notions about how to view and manage these rivers.        
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Background 

Current erosion rates of 19 Ontario rivers (most of them in southern Ontario with 

drainage areas of 3-4000 km
2
) are low: between 0.117 and 0.200 tons km

-2
 yr

-1
 

(average of 0.15 tons km
-2

 yr
-1

) (Church et al., 1999) suggesting contemporary fluvial 

stability. There are at least three mechanisms that could explain the formation of these 

valleys: 1. Gradual post-glacial incision where a new drainage network developed 

within the glacial deposits. 2. These valleys existed before glaciation with an existing 

drainage network, were completely filled, buried and covered by ice during the 

Laurentide Ice Sheet (LIS) and once they deglaciated and became exposed again, 

fluvial erosion resumed.  3. Some of the valleys are spillway channels either formed 

on the edge of the ice lobes as tunnel channels or are a result of catastrophic glacial 

lake drainage.   

Phillips and Robert (2005) have associated river valley evolution in the Humber 

River (a tributary of Lake Ontario in the Toronto area) as post-glacial incision 

following the end of the last glaciation (15-13 Ka 
14

C). Subsequently the Humber 

valley aggraded once its base level rose (~ 6.5 Ka BP) and vertical aggradation has 

been the dominant mode of floodplain formation in the Humber during the past 4000 

years. Lateral channel migration was unlikely because rising base level would have 

reduced the amount of energy available for channel shifting (Weninger and 

McAndrews, 1989). For example, Arbogast et al. (2008), working in the Muskegon 

River in Michigan (a tributary of Lake Michigan that was deglaciated ~ 16Ka BP), 

found four post-glacial river terraces that they related to downcutting as a response to 

a reduction in flow magnitude (the flow geometry was more concentrated). In south-

central New York, Scully and Arnold (1981) studied the Unadilla River and the 

Susquehanna River (deglaciated 14-12 Ka BP, Atlantic drainage) and found two 
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distinct terraces. They linked the channel entrenchment to hydraulic effects or to an 

adjustment to an increase in channel slope caused by postglacial isostatic uplift of the 

region. Both examples are of till-bedded rivers.  

A second mechanism of an incised valley’s formation is inheritance of pre-glacial 

drainage. Several studies suggested that modern rivers of the Great Lakes are imposed 

on ancient bedrock rivers that are now buried under glacial sediments and are 

therefore ‘tectonically predesigned’ (Eyles et al., 1997; Lajeunesse, 2014). The 

Thames River (the river of this study and Medway Creek is one of its tributaries) does 

not exist in Grabau (1901), Spencer (1890; 1907), Karrow (1973), Flint and Lolcama 

(1986) and Gao (2011) studies that reconstructed the regional (bedrock) drainage of 

southern Ontario during glaciation, while today’s modern Thames channel flows into 

Lake St. Clair. Spencer (1907) and later Flint and Lolcama (1986) located the 

London, Ontario, area between the pre-glacial Erigan River to the south and the 

Laurentian River to the north. According to Dreimanis et al. (1998), postglacial 

modern stream courses follow or are blocked by end moraines that determine their 

present paths. This supports the findings of Hack (1965) in Michigan that claimed the 

streams of Glacial Lake Duluth (now Lake Superior) followed existing glacial 

grooves that extended downslope towards the lake. In the much steeper bedrock 

terrains of the Swiss Alps, Montgomery and Korup (2010) suggested that despite 

repeated glaciations, the valleys are preserved and the topography does not start the 

incision again after each glaciation ends as it is persistent over time.  

The third possible mechanism for the formation of incised river valleys is that they 

are catastrophic spillway channels (see Kehew et al., 2012 for a comprehensive 

review). Chapman and Putnam (1984) mapped many of the local rivers of southern 

Ontario as spillway channels, including both our study sites at Medway Creek and the 
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Thames River exiting London. As the LIS retreated it left numerous meltwater glacial 

lakes that then breached underneath the unconsolidated glacial material and ice sheets. 

The works of Shaw and Gilbert (1990) and Brennand and Shaw (1994) in southern 

Ontario support this mechanism of river valley creation. This interpretation of central 

southern Ontario tunnel channels is consistent with the view that the subglacial 

landsystem (drumlins, valleys and s-forms) was eroded by a regional meltwater 

underburst - the Algonquin event - that unsteadily evolved from sheet to a single vast 

channelized flow (e.g. Shaw and Gilbert, 1990). As fan deposits are not observed at 

the ends of channels it is likely that channel formation was contemporaneous with an 

underburst event that eroded drumlins in Lake Ontario and swept away most sediment 

derived from channel erosion. Ice sheet thinning and flattening associated with 

underbursts facilitated deglaciation by regional downwasting and stagnation 

(Brennand et al., 2007). This third mechanism of valley formation stands alone from 

the other two as it implies almost instant shaping of the topography and it brings up 

the argument that catastrophic flood events (cataclysms) dominate the landscape 

(Baker, 1977; Wolman and Gerson, 1978) over the smaller - medium events that do 

much less geomorphic work but are more frequent (Wolman and Miller, 1960).   

According to Costello and Walker (1972), who worked on the sedimentology of 

the Credit River (Niagara Escarpment, Lake Ontario drainage), the post-glacial rivers 

of the area initially resembled braided outwash streams. As sediment amounts 

decreased and channels began to stabilize they achieved a single-thread channel form 

filling the outer valley and the braids that became their floodplain. This initial channel 

evolutionary stage fits the first two forming mechanisms described above but not the 

third that suggests almost instantaneous formation of the glacial valleys. Rivers 

incised into modern valley fill as a result of colonial milldam abandonment (Walter 
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and Merritts, 1998; Merritts et al., 2011) are not comparable to southern Ontario and 

the American Midwest as these areas of the Mid-Atlantic (Pennsylvania) were not 

glaciated during the Wisconsinan. However, there is evidence of Holocene accretion 

of floodplains on the Grand River (Lake Erie drainage, see Walker et al., 1997) and 

Thames River (Stewart and Desloges, 2014) that were used by the native population 

for settlements and agriculture. From these previous studies it is clear that different 

perspectives exist on the evolution of the post-glacial fluvial landscape in southern 

Ontario. What is not clear, however, is how these different perspectives can be 

reconciled or how early post-glacial processes and contemporary processes combine 

in creating the contemporary fluvial geomorphology of southern Ontario. 

This work will investigate the London Ontario area from various fluvial 

perspectives. The work is divided into three parts in a paper format. While each paper 

can stand alone, together they give a comprehensive picture of how rivers in the area 

evolved during two of the most dramatic geomorphic periods: 1. During the end of the 

ice age when the region first deglaciated and meltwater and remaining glacial 

sediments first interacted as fluvial processes (as opposed to earlier glacial processes); 

and 2. In recent times, under present-day fluvial processes following the British-

European Colonial era that drastically modified the landscape by clearcutting of dense 

forests, draining wetlands, artificially channeling small tributaries and turning them 

into a vast agricultural and urban setting. The intervening period was less dramatic as 

braided outwash streams filled and turned into single-thread channels (Costello and 

Walker, 1972) and developed distinct buried soil horizons (Scully and Arnold, 1981).  
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Research questions 

Specifically, this thesis seeks to answer the following research questions: 

1. Do fluvial systems in the London area result from catastrophic floods or are 

today's frequent small to medium floods the main drivers of landscape 

evolution? 

2. Do the geomorphic characteristics and dynamics of fluvial systems incised in 

tills differentiate them from alluvial rivers and bedrock rivers?  

3. Are channel bed stability metrics originally developed for alluvial rivers 

suitable for use in till-bedded channels? 

 

 

Thesis structure 

The thesis is made up of three core papers. The first paper titled "The drainage of 

the last Glacial Lake London, Ontario: Mapping and hydraulic modeling" describes 

the London area during deglaciation, reconstructs Glacial Lake London minimum and 

maximum extents and its catastrophic drainage into what is today's Komoka 

Provincial Park and the Caradoc Delta using conventional paleoflood techniques. 

Paper 2 titled "Semi-alluvial till-bedded stream channel crossing the interlobate Arva 

Moraine, Medway Creek, Southern Ontario, Canada. 1: Sedimentary characteristics 

and morphologic change" shows that small rivers incised into till are different than 

ordinary alluvial rivers and resemble more soft bedrock-controlled channels with 

differing spatial and temporal bed erosion rates. A thin alluvial cover with varying 

sedimentology overlies the till within unorganized bedforms. The third paper titled 

"Semi-alluvial till-bedded stream channel crossing an interlobate moraine in Southern 

Ontario, Canada. 2: Morphometry, hydrology and hydraulics of Medway Creek" 
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further explores the channel, floodplain and valley attributes coupled to the typical 

low, medium to high flow hydrology and simulated by 1D hydraulic modeling. 

Channel morphometry and hydrologic characteristics are compared to similar semi-

alluvial rivers as well as to rivers with alluvial and bedrock channels. They illustrate 

that current classification, understanding, management and restoration of these rivers 

is lacking or flawed and that more research is needed to establish a reliable body of 

knowledge about them.  

Research on semi-alluvial rivers in general, and a till-bedded channel in particular, 

goes beyond the scientific interest of river studies: it has social and economic 

implications as these types of terrains continue to be exposed under a rapidly warming 

climate in glaciated regions. These implications include active management and 

restoration of these rivers and placing housing development and infrastructure on their 

channel/floodplain/river valley.   

While the work is area-specific, its inferences apply to many areas in North 

America that were affected by ice lobes (such as the US Midwest, US North Atlantic 

states, Great Lakes, Northern Great Plains) and other places around the world that 

deglaciated when the ice age ended, but also areas that are currently deglaciating due 

to anthropogenic climate change. The work is comparative and has examples from 

similar studies and other river types to show that these fluvial settings with glacial 

legacies need to be separated and distinguished from the classic alluvial-bedrock 

channel classifications that either ignore them or view them as alluvial or bedrock 

channels with geologic histories that can be dismissed or mentioned briefly.   
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Abstract 

 

Glacial Lake London existed when southern Ontario was deglaciated during Glacial Lake 

Maumee III or Glacial Lake Whittlesey phases - the early ancestral phases of modern 

Lake Erie. Whether one or several lakes, it was an ice-marginal Laurentide Ice Sheet 

meltwater lake which was dammed behind convergent Arva and Ingersoll Moraines and 

was breached in its southwestern part to generate a catastrophic flood. Evidence for this 

high magnitude flood is a large v-shaped spillway channel downstream of the lake outlet, 

where the modern Thames River flows, and which is an underfit channel under the 

current hydro-climatic conditions. This study reconstructs paleolake surface area, depths, 

and volumes for Glacial Lake London based on contemporary topography, lacustrine 

stratigraphy found in Medway Creek’s Arva Moraine bluffs, and the upper lake level 

topographic constraint prior to overtopping.  

 

The resulting flood that drained the lake is also reconstructed using two different 

approaches: 1) applying a variety of published parametric breaching equations to find the 

peak discharge (13,000-241,000 m
3
/s) based on breach geometric characteristics and 

reconstructed maximum lake volume (9.1 km
3
); and 2) field mapping of a series of 

unusual geomorphic features found downstream of the Lake London outlet and attributed 

to the dam-break flood. These features are used for HEC-RAS step-backwater modeling 

of water surface slope profiles to calculate peak discharge. Reconstructed peak flood 

discharges (13,400-75,600 m
3
/s) are in a similar range as other dam-break floods from 

relatively small ice-marginal lakes of the Laurentide Ice Sheet and 20 montane moraine-

dammed lake outbursts. Our results confirm that contemporary hydrology could not have 

formed the Thames River valley downstream of the glacial lake outlet and that its 

formation required extreme discharges one or two orders of magnitude greater than 

historical maximum gauged floods (~1,500 m
3
/s).  
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The study shows that outburst floods and resulting spillway channels originating from 

moraine-dammed lakes are not only typical of ice-marginal lakes in steep montane 

environments, or proglacial lakes in front of a glacier, but also occur in subdued 

deglaciating terrains of a receding ice sheet. Studies of these landforms can better 

determine whether local or regional landscape evolution has resulted from catastrophic 

events or gradual postglacial erosion and incision of the landscape. Furthermore, these 

dramatic events coupled with local deglaciating paleoclimate can inhibit temporary 

development of flora, fauna and human settlement of the region following the transition 

from a harsh cold ecosystem to a warmer habitat.                    

 

Key words: Southern Ontario; Glacial Lake London; outburst moraine dam-break flood; 

peak discharge reconstruction; parametric breach equations; step-backwater modeling 

 

1. Introduction 

The Thames River outside the city of London, southern Ontario, Canada (Fig. 1) flows 

through a deep river valley or canyon called “The Trench” by early French explorers and 

settlers (“La Tranchée”; Historica Dominion Institute Canada, 2015). Earlier studies 

concluded that this river valley is a spillway channel that drained Glacial Lake London 

through the Caradoc Delta near the townships of Komoka and Kilworth Heights into 

Glacial Lake Whittlesey or the earlier Glacial Lake Maumee III (the predecessors of Lake 

Erie; Chapman and Putnam, 1984; Dreimanis et al., 1998) once the Laurentide Ice Sheet 

had retreated northward during the end of the Wisconsinan Stage (Dyke and Prest, 1987). 

The advances and retreats of the Huron and Erie lobes (Chapman and Putnam, 1984) and 

other ice lobes (Teller and Kehew, 1994) left numerous meltwater lakes. It took at least 

17 lacustrine phases until reaching modern Lake Erie, some of them lasting for only a 

few decades (Fullerton, 1980; Calkin and Feenstra, 1985; Totten, 1985; Barnett, 1985; 

Coakley and Lewis, 1985; Karrow et al., 2000). The exact timing of the formation of 

Glacial Lake London and the subsequent outburst flood(s) are currently unknown, 

although Glacial Lake Whittlesey (Hough, 1958; Forsyth, 1959) in the Erie and Huron 
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basins existed during the Port Huron Stadial, about 13,000 radiocarbon years BP 

(Dreimanis, 1966; Barnett, 1979) or earlier during Glacial Lake Maumee III (Leverett 

and Taylor, 1915; Hough, 1958, Forsyth, 1959; Stewart, 1982) about 14,500 BP  

(Barnett, 1985; Calkin and Feenstra, 1985; Barnett, 1992). However, the last drainage of 

Glacial Lake London through the modern Thames River Valley has never been 

thoroughly investigated. Instead it was interpreted as a spillway channel, based on the 

modern underfit Thames River inner channel and surrounding valley dimensions 

(Chapman and Putnam, 1984; Dreimanis et al., 1998), but without corroborating 

evidence. A spillway channel is defined as an outlet of a lake (or dam) into a downstream 

river. The drainage mode can be catastrophic and short-lived (i.e., quick erosion of the 

dike and emptying of the lake within several hours or days) or result from gradual erosion 

of the dike and downstream channel until it achieves some kind of equilibrium in the long 

profile.  

While misfit streams are a prominent feature of formerly glaciated terrains (Dury, 

1960; 1964), the notion that the present-day topography is the result of one or more 

catastrophic high-magnitude low-frequency floods and not of postglacial incision 

(Phillips and Robert, 2005; Arbogast et al., 2008) possibly through channel migration 

(meandering, cutoffs and avulsion) needs corroboration from direct morphologic and 

stratigraphic evidence, hydrology, and hydraulic modeling.  

Geologic evidence from the Quaternary shows that proglacial lakes were important 

landscape features during deglaciation (Blown and Church, 1985; Carrivick and Tweed, 

2013) and their breaching and generation of glacial lake outburst floods (GLOFs, or 

jökulhlaups in Icelandic) are common even today under a rapidly warming climate 
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(Carrivick, 2010; 2011; Worni et al., 2014). GLOFs’ high magnitude and destructiveness 

sometimes pose a natural hazard to downstream communities and infrastructure, so 

understanding these flood processes has both societal (risk preparedness) and academic 

benefits (Laenen et al., 1987; Mathews and Clague, 2000; Vilímek et al., 2005; 

Geertsema, 2013).  

From a regional perspective, GLOFs are especially important because of the complex 

chain of hydrogeomorphic-hydroclimatic events (ice retreats and re-advances; Dreimanis, 

1977; Dyke and Prest, 1987) that formed the modern Great Lakes (Karrow and Calkin, 

1985; Barnett, 1992; Larson and Schaetzl, 2001). Understanding these process can add 

valuable information for the paleoenvironmental reconstruction of the region with further 

implications for local paleoclimate at the end of the ice age during deglaciation 

(Severinghaus and Brook, 1999; Derouin et al., 2007), appearance of flora (Goldthwait, 

1958; Delcourt and Delcourt, 1984; Bartlein et al., 1986; Dreimanis et al., 1989; Jacobson 

et al., 1987; Yu, 2000), local fauna (Adams, 1905; Dreimanis, 1967; Dreimanis, 1977; 

Gibbard and Dreimanis, 1978; Mandrak and Crossman, 1992; Morris et al., 1993; Bajc et 

al., 1997; Yu, 2000; Karrow et al., 2007) and early human settlement of the area by the 

Palaeo-Indians (Jackson et al., 2000; Thieme, 2003; Ellis et al., 2011; Stewart and 

Desloges, 2014).  

This work addresses this knowledge gap about the last Glacial Lake London and its 

drainage and has four main goals:  

1. Establish dimensions (volume, area and depth) of the last Glacial Lake London; 

2. Estimate peak discharge and other flow variables of the flood(s); 
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3. Assess field evidence to support a single catastrophic flood vs. several floods or 

gradual drainage;  

4. Compare this flood with other ice-marginal lakes and outburst floods of the Laurentide 

Ice Sheet and other montane moraine-dammed lakes.  

2. Regional setting and study site 

The Thames River is the second largest basin in southern Ontario, draining an area of 

5,825 km
2
 into Lake St. Clair, the connecting lake between Lake Huron and Lake Erie 

(Fig. 1). Two main tributaries of the Thames, the North and South Thames, converge in 

the city of London. Downstream of London, the Thames River channel is entrenched into 

a deep river valley with relatively steep walls, 60-70 m high above the current channel 

bed for more than 15 km. The channel gradient in this reach is low - only 0.0015. The 

river exits this deep valley at the Caradoc Delta, the downstream limit of the study area.   

The city of London is situated on a dry lake bed overlying tills, whereas the Thames 

River and its two major tributaries are incised into those lacustrine and glacial deposits 

(Dreimanis et al., 1998). Before the construction of Fanshawe Dam in 1952, the city 

suffered from large floods and heavy damages, especially during 1883 and 1937. In 

March 1977, an extreme spring melt reached 0.6 m below the crest of the dam (271.3 m 

asl) and the water released from the reservoir flooded London again (Helsten and 

Davidge, 2005; Upper Thames River Conservation Authority, 2015) demonstrating the 

poor soil drainage of the former lake and the narrow spillway at its outlet which 

presumably restricted drainage of the water across the city area. While it is difficult to 

recognize lacustrine sediments within the city outside of a few non-residential areas, an 

early painting of the city from 1893 clearly shows the flat landscape with the surrounding 
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Arva Moraine (Fig. 2), although this could potentially also reflect artistic license. Glacial 

Lake London was formed between the Arva Moraine and the Ingersoll Moraine on a sand 

outwash plain (Fig. 3). Where these two end moraines met, there was a structural change 

and more sand and gravel was deposited by meltwater than till by ice (seen at the large 

Byron gravel pit - Ontario Geological Survey, 1983) allowing the water to erode a 

spillway (Fig. 4). The two lake-constraining moraines (Arva and Ingersoll) are described 

below.  

2.1 The Arva Moraine 

The Arva Moraine is an end moraine that extends in NEE-SSW direction from SE of 

St. Marys in the north to north London in the south for a total distance of 17 km. Its 

maximum width is 3.2 km near the village of Arva. The moraine is presently breached in 

six different locations but only Medway Creek and the Thames River are possible 

spillway channels for Glacial Lake London. In order for Medway Creek to flow out of 

Glacial Lake London there would have to be drainage reversal of the present channel and 

an abandoned channel between Arva and Komoka Provincial Park but there is currently 

no field evidence to support this notion. Given the fact that the breached Arva Moraine 

on Medway Creek contains lacustrine deposits from Glacial Lake London on top of the 

moraine’s bluffs (Fig. 5), it is ruled out that this river valley is the lake outlet. 

Furthermore, we conclude that the valley was already present when the lake existed and 

was an inlet basin of the lake highstand. The other breach opening occurs at the present 

Thames River course between the Arva Moraine and the Ingersoll Moraine (near the 

neighborhood of Byron) that were connected during the existence of Glacial Lake 

London (Sado and Vagners, 1975; Fig. 3; Fig. 4).  
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The materials composing this Late Wisconsinan moraine are: Huron Lobe sandy-silt 

loam till, sandy lacustrine deposits, sandy ice-contact stratified drift, gravelly ice-contact 

stratified drift, Huron Lobe sand-silt till, deltaic and some complex deposits, sandy 

outwash and gravelly outwash (Sado and Vagners, 1975). Drift is a generic term (that 

includes till) and refers to any glacial sediments whether they were transported, deposited 

or reworked by ice (glacial or glaciofluvial processes) while till was deposited by ice and 

was never reworked by subsequent processes. In general, the tills of the area can be 

associated with Catfish Creek Drift that was deposited during the Nissouri Stade, 23-16.5 

ka BP (de Vries and Dreimanis, 1960; Terasmae et al., 1972). The Arva Moraine formed 

prior to the end of Lake Maumee II (14,200-14,000 BP), but it could have already existed 

during Lake Maumee I (Fullerton, 1980).    

2.2 The Ingersoll Moraine 

The Ingersoll Moraine is an end moraine that was formed during the retreat of the Erie 

Lobe (late Gary substage). The tills of this end moraine, associated ground moraines, and 

stagnant ice moraines range from clayey silt till to silty clay till, and they are classified as 

part of the Port Stanley drift (Dreimanis et al., 1963). The moraine is aligned in a west-

east direction from Byron within London into Oxford County to a point just south of the 

city of Ingersoll, for a total length of 25 km (Fig. 3). Reynold Creek cuts through the 

moraine at Putnam and this valley was another flooded basin of Glacial Lake London. 

Fullerton (1980) noted that Ingersoll Moraine formation is not linked stratigraphically to 

a specific Lake Maumee phase and it may have been formed during Lake Maumee I 

(14500±150 BP, White, 1982). 
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3. Methodology 

3.1 Reconstruction of Glacial Lake London  

The only prior attempt to reconstruct Glacial Lake London was by Dreimanis et al. 

(1998) (Fig. 3), who used many unpublished theses at Western University and his own 

personal observations. The map produced by Dreimanis et al. (1998) was used here as a 

base layer map for initial verification of glacial landform features (moraines, till planes, 

lakes, deltas and spillways) after it was digitized and georeferenced into Arc-GIS and 

imposed on the Ontario 10 m resolution DEM (Ontario Ministry of Natural Resources, 

2003). A similar lake reconstruction approach was suggested by Leverington et al. (2002) 

and Curry et al. (2014). Lacustrine silty-clay in Medway valley on top of Arva Moraine 

till (overlying a Huron Lobe till above Erie Lobe deposits - see Whittaker, 1986) at an 

elevation of 265.6 m asl is the highest known lacustrine deposit of Glacial Lake London, 

and therefore, represents the highest evidence of the lake bed (Fig. 5). The lacustrine 

sediments appear on top of all four bluffs along Medway Valley so we can assume they 

form a continuous crest line of the maximum elevation of water. The top DEM elevation 

of the two breached moraines (276.2 m) was the uppermost water surface prior to 

overtopping. Buried beach deposits of Glacial Lake London were found at elevations of 

253-270 m asl, but there is a single anomalous higher shoreline deposit at an elevation of 

280 m asl NW of Fanshawe Reservoir that is associated with drainage to Lake Leverett to 

the southwest (Dreimanis and Packer, 1959). Hence this topographic constraint of 276.2 

m asl is the upper water level limit of the lake draining south (Fig. 4). The lake bed 

maximum (i.e. highest lake sediments) and the highest lake elevation possible constrain 

the elevation range for the lake (10.6 m difference). Evidence of lake elevations are 
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currently limited and a further study focusing on the lake stands and the timing of its 

existence is needed to give a better understanding about the lake. We arbitrarily added 

two equal intervals of elevations of 3.5 m within the minimum and maximum water 

levels to see the gradual expansion of the water over the present topography. Dreimanis et 

al. (1998) suggested there were several Lake London phases, but our work will only 

relate to the last one, for which we have direct field evidence. We assumed the Ontario 10 

m DEM of our study area does not need isostatic rebound correction to account for uplift 

(Lewis and Anderson, 1985; Calkin and Feenstra, 1985). However, it has to be 

acknowledged that no isostatic rebound contrasts an earlier value of 45 m suggested by 

the study of Jensen (1967). Since the lake was relatively small in comparison to the 

nearby vast ancestral Great Lakes we assumed that the London area uplift was 

insignificant or it was homogenous throughout the entire lake. Therefore, crustal 

deformation and rebound is not considered in this study.      

3.2 Field evidence of possible flood features used as paleostage indicators (PSIs) 

Since the London area receives today about 1000 mm of precipitation per year, of 

which about a third occurs as snow (2 m/yr; Thornthwaite and Associates, 1964; Peck et 

al., 2012), the preservation potential of depositional/erosional bedform features after 

thousands of years is low. The best preservation occurs in desert environments where 

erosion processes after the floods occurrences are slow and minimal (Greenbaum et al., 

2006), but southern Ontario never had this climate since deglaciation and it was always a 

humid climate (Edwards and Fritz, 1986). However, the preservation potential is higher 

for bedform features or coarse lags away from the present active channel of the Thames 

River or along the valley walls of Komoka Provincial Park, which are relatively well 
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preserved. 

The distribution of geomorphic features in terms of their elevation and proximity to 

each other allowed us to assess whether the flood was a single flow event or if there were 

multiple floods. The former would generate erosional/depositional features on one top 

level replicating the peak water surface while the latter may generate a variety of forms 

along the valley at different elevations, such as terraces (Arbogast et al., 2008). The 

waning flow of a catastrophic flood may generate additional flood features at lower 

elevations but these are usually of smaller size as shear stress and stream power are 

reduced, and are often destroyed by a combination of subsequent (lower magnitude) 

floods and erosional slope processes. Furthermore, depositional features formed close to 

the modern channel and floodplain have a higher probability of being eroded by medium 

and smaller floods that would entrain the sediments, bury or rework them (Baker, 1984; 

Lewin and Macklin, 2003). However, we also recognize that, in the case of multiple 

floods, a high magnitude flood could have erased all evidence of its smaller lower-level 

predecessors. In selected locations, sediment samples were taken from the bedform 

features.     

3.3 Determining peak discharge of the flood 

We used two approaches to reconstruct the peak discharge of the flood(s): 1. 

Parametric breaching equations based on breach and lake volume dimensions (Wu et al., 

2011). 2. Step-backwater modeling that is based on paleo-stage indicators (PSI; Baker, 

1987) found within Komoka Provincial Park.  

3.3.1 Parametric modeling breaching equations  

The parametric modeling approach uses statistically derived regression equations for 
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estimating the embankment breach characteristics (Costa, 1988; Walder and O’Connor, 

1997; Wahl, 1998; Pierce et al., 2010; Thornton et al., 2011; Wu et al., 2011). Such 

equations for dam breaching have been developed based on data from historic dam 

failures (and occasionally flume experiments) that estimate from certain dam parameters 

the peak outflow discharge (Qp) (MacDonald and Langridge-Monopolis, 1984; Soil 

Conservation Service, 1986; Froehlich, 1995; Walder and O’Connor, 1997; Tahershamsi 

et al., 2003; Thornton et al., 2011). Dam parameters typically include:  

average width of the embankment (W),  

breach shape,  

breach side slope,  

cross-sectional area of the embankment at the breach,  

failure time (tf in minutes or hours),  

water volume released (Vmax) or total water behind the dam (V),  

mode of failure (overtopping, piping or seepage and foundation defects),  

material erodibility (concrete or earthen embankment or a combination of the two),  

the cross-sectional area of the embankment at the breach water surface elevation (A),  

height of water above breach bottom (Hw), and  

height of dam breach (d) (Soil Conservation Service, 1986; Froehlich, 1995; Thornton 

et al., 2011; De Lorenzo and Macchione, 2014). The main problem of the parametric 

approach is that it contains many uncertainties (Wahl, 2004). Hagen (1982) and later 

Walder and O’Connor (1997) claimed that Vmax, d and Hw do not have any particular 

advantage as predictors of Qp. However, the alternate computer modeling approach below 

also contains inherent uncertainties and assumptions that can change the flood routing 
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outcome. Hence we take the view that these two approaches complement each other. A 

similar approach was taken by Clayton and Knox (2008) who obtained a range of values 

spanning two orders of magnitude for the peak discharge for Glacial Lake Wisconsin 

outburst flood. Clark et al. (2008) also used the same method for Glacial Lake Oshkosh 

volumes and its resulting outburst flood. We compare and contrast our findings with both 

these studies. Carling et al. (2010) found that dam failure does not have to occur at a 

maximum lake depth (i.e., 47.4 m deep) but flood routing models favor a scenario that the 

lake emptied by overtopping under conditions of maximum water level. Although an 

over-topping model is favored, collapse of the dam due to piping or high waves when the 

lake was below maximum capacity cannot be ruled out. 

3.3.2 HEC-RAS step backwater modeling, geomorphic features and modern hydrology 

We used the 1D HEC-RAS (Hydrologic Engineering Center - River Analysis System) 

4.1 model, which has dam breaching capabilities. It is based on the Saint Venant 

equations for routing the flood downstream of the lake using channel cross-sections and 

assigned roughness (HEC-RAS, 2015). This engineering program is the most widely used 

1D model for simulating the hydraulics of water flow through natural rivers and artificial 

watercourses and its main advantage is its simplicity, the relatively limited data it 

requires for running steady, unsteady and mixed flow simulations, generating water 

surface profiles and hydraulic parameters for each cross-section with stable runs. HEC-

RAS’ main limitation is that it has no direct modeling of the hydraulic effect of cross-

section shape changes, bends, and other 2D and 3D aspects of the flow. Step-backwater 

modeling of the flood from Glacial Lake London was performed for a reach downstream 

of the breach at Byron (Fig. 4) all the way to the Caradoc Delta head, for a total length of 
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15.3 km of the Thames River (Fig. 6). The upstream part of the reach outside London is 

initially straight, but after 2.8 km there are two large meander bends within Komoka 

Provincial Park. The community of Kilworth Heights (part of Middlesex Township) is 

located on the right bank of the river valley creating some human disturbance but most of 

the development is outside the river valley flood course and has not influenced the 

postglacial cross-sectional shape. Valley cross-sections were extracted from the Ontario 

10 m DEM that has ± 5 m vertical reliability (Ontario Ministry of Natural Resources, 

2003). Farthest downstream spacing of cross-sections was 1.0 km, although much denser 

spacing was used near the paleoflood geomorphic features described in section 3.2 (Figs. 

6 and 7). Larger spacing was used downstream of Komoka Provincial Park approaching 

the Caradoc Delta.  

We are aware that the present DEM topography includes not only postglacial flood 

downcutting, but also subsequent postglacial Holocene incision by the modern Thames 

River. Choosing the correct bed datum of a large flood is a known problem in 

paleohydrology (Williams and Costa, 1988; Carling et al., 2003). Unless there are 

preserved terraces (Hack, 1965, Arbogast et al., 2008) or other clear geomorphic features 

that represent the past river bed from the flood of interest, the paleohydraulic modeling 

uses the contemporary river bed profile (Enzel et al., 1994; House and Baker, 2001; Kite 

et al., 2002; Greenbaum, 2007; Greenbaum et al., 2014). The logic behind this 

assumption is that contemporary discharges and the part of the cross-section they occupy 

are almost insignificant for the calculations of much larger floods (Baker, 1987). 

Channel roughness values can have a large impact on modelled flow properties in 

step-backwater modelling (Fread, 1991a; Greenbaum. 2007), and their estimation 
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requires careful consideration. Form resistance from vegetation is assumed to be 

negligible, as vegetation was not yet established in this newly deglaciated landscape 

which took a long time to shift from barren tundra (or periglacial desert) to tundra 

vegetation (Morris et al., 1993; Yu, 2003). Form resistance of stationary erratics (Ferro, 

1999) were not found along the present-day flood course. However, major flow 

roughness can come from the eroding glacial sediments themselves (till and drift) in the 

form of hyperconcentrated flow (i.e. the flow has high (≥ 60% volume or 80% by 

weight), mostly fine, suspended sediment concentration and the sediment plays and 

integral role in the flow behavior and mechanics; Pierson, 2005; Cao et al., 2006), large 

boulders once the material is transported (Elfstrom, 1987) or possible ice slabs (Prowse 

and Beltaos, 2002) within the lake. We used Manning’s n roughness coefficient values of 

0.07 for the channel and 0.10 close to the banks, as suggested by Matsch (1983) for River 

Warren, the southern outlet of Glacial Lake Agassiz. That flood event also reflects a 

deglaciating environment draining catastrophically. Flume experiments show that bed 

roughness decreases the velocity but not time-to-peak velocity. Also, suspended 

sediments reduce velocity variability (Carrivick et al., 2009) but it does not affect peak 

flow depth and peak flow velocity (Staines and Carrivick, 2015). We performed a 

sensitivity analysis, using a variety of n values to see how the choice of roughness 

parameter affected the simulated peak discharge (Wohl, 1998; Pappenberger et al., 2005; 

Carling et al., 2010). In sensitivity analysis simulations, we chose a Δn of 0.02 between 

the channel and the floodplain n roughness values in order to allow the floodplain to act 

as the main flow path to maintain downstream boundary conditions (Pappenberger et al., 

2005). These selected Δn roughness values are small compared with the Δn values 
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suggested by Horritt and Bates (2002) of 0.04-0.05, but their flood simulations were of a 

modern urban river with large floodplain roughness not a deglaciating one without 

vegetation.  

Starting from a suitable paleo-DEM and using contemporary measured peak 

discharge, the step-backwater approach iteratively increases simulated discharges until 

features of interest are covered by the flow. This topographic approach requires 

identification of relevant bedform features (previous section), as well as a suitable paleo-

DEM and a representative contemporary flood discharge (O’Connor and Webb, 1988). 

The ideal gauging station for our study is at Byron on the Thames River (station number 

02GE001 draining 3,080 km
2
) that is located exactly on the spillway of Glacial Lake 

London. However, the gauging station has been experiencing attenuated peak flow due to 

the existence of Fanshawe Dam and Reservoir since 1952 (drainage area of 1,450 km
2
). 

Pittock Dam on the South Thames River (northeast of Woodstock) and Wildwood Dam 

on Trout Creek (northeast of St. Marys before the confluence with the North Thames 

River) are insignificant in terms of discharge attenuation. Therefore, in order to 

reconstruct modern maximum hydrology of Thames River without the attenuation of 

Fanshawe Dam, we summed up peak discharges of the two main tributaries: North 

Thames River near Thorndale (draining 1,320 km
2
, station number 02GD015) upstream 

of Fanshawe Reservoir and South Thames River (draining 1,340 km
2
 near Eeling, station 

number 02GD001) before the confluence (hydrological data from 1954-2013). When 

available, Medway Creek (draining an additional 203 km
2
, below Fanshawe Dam, station 

number 02GD008) and Stoney Creek (draining an additional 37.3 km
2
, below Fanshawe 

Dam, station number 02GD028) were also added to increase the peak discharge 
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precision. We therefore covered about 86-94% of the total drainage area relative to Byron 

gauging station but with no attenuation. When maximum instantaneous flow was 

available, it was preferred over daily discharge. It is obvious that the timing of the peak 

flows rarely occurs simultaneously in all channels (Khan, 1993), but the combined peak 

flows give theoretical contemporary maximum discharge values that can happen under 

the current climate.  

The HEC-RAS model uses this input discharge which then is iteratively raised in 

equal increments until it yields a water surface profile covering the field evidence 

(O’Connor and Webb, 1988; O’Connor and Baker, 1992; Enzel et al., 1994; D’Urso, 

2000; Kite et al., 2002; Greenbaum, 2007). Besides peak flow, HEC-RAS also calculates 

flow depths, velocities and allows calculation of maximum shear stress and stream 

power. Finally, peak flood values reconstructed using hydraulic modeling are compared 

with four other cases of ice-marginal lakes of the Laurentide Ice Sheet and nineteen 

montane moraine-dammed lake breaching studies.    

4. Results 

4.1 Geomorphological evidence for a large flood  

We identified and mapped 21 landform features along the Thames River valley left 

bank (facing downstream, southern bank) within Komoka Provincial Park (Fig. 7a, b). 

These features are possible paleostage indicators (Patton et al., 1979; Ely and Baker, 

1985; Baker, 1987; Kochel and Baker, 1988; Jarrett, 1990). The most prominent feature is 

a 100 m long and 50 m wide surficial boulder lag (Fig. 7c) with clasts up to 1.2 m (b-

axis) that is unusual compared with the present channel bed grain size distribution (Fig. 

7d) (Costa, 1983; Waythomas and Jarrett, 1994; Fisher, 2004).The boulders are far (150-
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200 m) from the modern channel, scattered, occasionally imbricated and many are 

partially buried within the soil with only their tops exposed. Other bedforms include 

several erosional landforms - three wash terraces (Fig. 7e) (Kehew and Lord, 1986; 

Kozlowski et al., 2005; Carrivick, 2007), six paleo-flow marks (a horizontal scar high on 

the valley wall that is a result of fluvial erosion rather than slope processes; Fig.7f) and 

four benches. The difference between a wash terrace and a bench is the scale: the first is a 

large-area flat surface 100s m long and wide while the second is only a few meters in 

width and length. In addition, two berms (an elongated low-elevation hump in the flow 

direction; Fig. 7g) and five mounds (2.5-3.0 m high and cone-shaped; Fig. 7h) were 

identified. These mounds may not necessarily result from a  large flood and may be 

related to other ice-related processes (Clayton et al., 2008; Curry et al., 2010), although 

they could potentially be flood-deposited bergmounds (Bjornstad, 2014) or pendant bars 

(Malde, 1968). Today there is no apparent obstruction upstream of the berms and mounds 

such as bedrock or resistant glacial deposit. However, since this location was at the edge 

of the flow, the blockage could have been giant ice blocks. Following Bohorquez and 

Darby (2008), we subjectively classified each feature (low, medium and high certainty) as 

to whether or not it originated from a large flood. This uncertainty is important to 

recognize during hydraulic modeling and determination of peak flood and corresponding 

water surface slope. Minimum and maximum flood levels were reconstructed using only 

features identified with high certainty of being of fluvial origin (i.e., the boulder lag, and 

the fluvial terraces). However, these lower and upper profiles constrained all the other 

features (benches, mounds, berms, scars) between them besides one bench.       
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4.2 Reconstruction of Glacial Lake London 

Reconstruction of the lake from minimum level (265.6 m) to maximum level prior to 

overtopping (276.2 m) is presented in Fig. 8 and Table 1. At maximum level, the lake 

was elongated: 45 km long east-west and 16 km wide north-south. The shoreline of 

Glacial Lake London had numerous irregularities, including spits and inlets typical of 

proglacial lakes (Clayton and Attig, 1989; Carrivick and Tweed, 2013). The lake was 

relatively shallow (19.9-26.7 m on average) with the deepest part next to the lake 

spillway at Byron - just below 50 m. At maximum level, Glacial Lake London had five 

major basins (Fig. 8d): London-Dorchester basin (the main body of water at all water 

levels), Medway Creek basin in the NW part of the lake, North Thames River - Fanshawe 

Lake basin in center NW, South Thames River basin in the NE next to the city of 

Woodstock, and Reynolds Creek basin in the SE. The latter three basins are outside of the 

reconstruction by Dreimanis et al. (1998) (Fig. 3), and are therefore newly identified parts 

of the lake. Dreimanis et al. (1998) excluded Medway Creek as being part of the lake, but 

the lacustrine stratigraphic evidence (Fig. 5) suggests the channel was already flooded by 

Glacial Lake London at that time and extended to the NE all the way to the village of 

Arva. Since there are currently no dated sediments and precise chronology of one or 

several lakes, our assumption is that each ice lobe’s (Huron and Erie) readvance erased 

existing lacustrine sediments and thus only the last glacial lake sediments are preserved. 

After the lake drained, Medway Creek further incised into Arva Moraine while adjusting 

to the falling baselevel of the drained lake. There are two known paleodeltas within the 

paleolake: London Delta (seen in Fig. 3) and Medway Creek’s Delta (Winder, 1980). 

Both are submerged and inactive today within Fanshawe Reservoir (Dreimanis et al., 
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1998) and the North Thames River, respectively (Winder, 1980). The South Thames 

River basins and North Thames River basins probably bordered the retreating Laurentide 

Ice Sheet to the north as the Erie and Huron Lobes were separating from the interlobate 

zone (Dreimanis and Goldthwait, 1973; Barnett, 1985). The lake was relatively small 

compared to ancestral Great Lakes that existed at the time in the southern Laurentide Ice 

Sheet region (Eschman and Karrow, 1985; Hansel et al., 1985; Barnett, 1985; Teller and 

Kehew, 1994) and their respective spillways (Clayton and Attig, 1989; Clayton and 

Knox, 2008; Kehew et al., 2009). The total drainage area into the lake, based on present 

topography, was 2,700 km
2
.  

While the reason for dam failure is unknown, moraine dams commonly fail due to 

overtopping and erosion of the outlet (Costa and Schuster, 1988; Clague and Evans, 

1994; 2000; Richardson and Reynolds, 2000; O’Connor and Beebe, 2009; O’Connor et 

al., 2013). However, if the dam breached due to piping or foundation failure (Blown and 

Church, 1985) of the area where Arva and Ingersoll Moraines converged, the highest lake 

elevation was 265.6 m asl. (10.6 m lower than full capacity and about a third of the 

maximum water volume). With current field evidence, it is not possible to define the 

exact lake dimensions and extent at the time of failure.  

Lake volumes presented in Table 1 relate only to liquid water (i.e. the lake was 

proglacial not ice-marginal). If the lake was in contact with receding ice, especially 

during the calving phase (Schomacker, 2010), it is possible that ice was also a major 

component of lake volume (Carrivick, 2011). This condition implies a reduction in peak 

discharge due to obstruction by ice jams near the outlet (Smith and Pearce, 2002) and 

high roughness around stranded ice blocks (Russell, 1993). Consequently, peak 
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discharges could be overestimated by the parametric breaching equations (Table 2) if 

these ice-processes affected discharge close to the breach. On top of the bluffs along 

Medway Creek, lacustrine sediment is massive and homogenous with no apparent 

stratigraphy (Fig. 5). Smith and Ashley (1985) and Ashley (1975; 1995) associated such a 

sedimentation pattern to glacial lakes with underflow circulation, no thermocline and 

with direct contact with the ice margin. If this sedimentologic assumption is correct for 

Glacial Lake London, rhythmites would only be found in the deeper parts of the lake and 

not in beach areas where only homogenous mud would settle (Carrivick and Tweed, 

2013).  

4.2. Peak discharge of the flood 

4.2.1 Parametric breaching equations  

Table 2 presents the results of peak discharge for Glacial Lake London using 21 

selected equations proposed by thirteen authors and agencies. The results span two orders 

of magnitude, with a range of 13,000-241,400 m
3
/s, an average of 64,900 m

3
/s and a 

median of 44,100 m
3
/s. Maximum calculated peak discharges for the Thames River (non-

attenuated; Fig. 9), based on the gauged modern hydrology, range 137-1,493 m
3
/s 

(average of 735 m
3
/s, standard deviation 334 m

3
/s, median 707 m

3
/s). These average and 

median peak discharge values are about the same as modelled hydrographs proposed by 

Cunderlik and Simonovic (2005) for the Thames River. The attenuated bankfull 

discharge of the lower Thames River is 411 m
3
/s (Stewart and Desloges, 2014). The 

highest calculated modern discharge (1,493 m
3
/s) is one to two orders of magnitude 

smaller than any of the peak discharges calculated from parametric equations while the 

average and median flood discharges are three orders of magnitude smaller.  
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4.2.2 Hydraulic modeling 

The maximum calculated modern discharge (1,493 m
3
/s) was rounded to 1,500 m

3
/s 

for incremental iterative increase of flow in the HEC-RAS modeling. When the simulated 

water elevation was close to the target elevation, this was refined to 150 m
3
/s increments 

until the landforms of interest were precisely covered by the peak discharge (O’Connor 

and Webb, 1998). The HEC-RAS modeling results (Fig. 10) show a minimum discharge 

of 13,350 m
3
/s covering the boulder lag, to 75,600 m

3
/s covering the three terraces. The 

medium to low flood-origin features are contained within that range beside Bench 2, 

which is higher (85,000 m
3
/s). The modern peak discharge (~1,500 m

3
/s) is 11% of the 

modeled discharge needed for covering the boulder lag but only 2% of the discharge 

needed to cover the terraces. This suggests that peak paleodischarges of Glacial Lake 

London were 9 to 50 times greater than maximum floods derived from snowmelt runoff 

in the modern Thames River. Comparing the above parametric breaching equations in 

section 4.2.1, they are similar to the lowest peak discharge covering the boulder lag 

(13,350 m
3
/s vs. 13,000 m

3
/s), but differ from the upper elevation peak discharge 

covering the three terraces (75,600 m
3
/s vs. 241,400 m

3
/s).  

It is not unusual to find disparity between peak discharge released from a lake based 

on its given water volume (i.e., parametric breaching equations) and peak discharge based 

on modeling that covers bedforms, paleostage indicators and slackwater deposits (e.g. 

Rathburn, 1993). The discrepancy is associated with the basic assumptions and focus of 

each method: The parametric breaching equations rely on the impounded water (lake or 

reservoir) and breach (or dam) characteristics before they drain downstream into the river 

or watercourse. These equations are often based on real case studies to calculate peak 
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discharge (Wu et al., 2011). In many instances, the equations are clumped into different 

types of materials building the dikes to reduce the uncertainty and increase precision and 

ability to generalize (O'Connor et al., 2013). In contrast, 1D step-backwater modeling 

(such as the HEC-RAS model) relates to river hydraulics and conveying the water 

(energy) between points (cross-sections) while taking into account the friction (Manning's 

roughness) and expansion/contraction as the energy losses. The momentum equation is 

used when the channel is complex and has hydraulic jumps, structures that obstruct the 

flow and intervening water inputs from tributaries. For unsteady flow, the model fully 

solves 1D Saint Venant Equations using an implicit, finite difference method. Even when 

the dam is incorporated into the model and breached during the simulation, the river 

hydraulics remain the focus not the impounded lake.   

The reliability of modeled peak discharges based on subjective choice and uncertainty 

of Manning’s n roughness coefficients deserve scrutiny (Burnham and Davis, 1990; 

Fread, 1991a; Aronica et al., 1998; Pappenberger et al., 2005). The results presented 

above were obtained using an estimated Manning’s n roughness of 0.07 and 0.1 for the 

channel and banks, respectively. Wohl (1998) found that variation of n by ±25% can lead 

to 20% change in discharge. A 20% error margin above or below the actual peak flow is 

considered a good engineering estimate (Trieste and Jarrett, 1987). The literature presents 

contradicting results regarding the effects of roughness on routing a dam-break flood. A 

comparison between a physical model (i.e. based on actual experiments on a reduced-size 

replica of the study area) and numerical dam-break models (SMPDBK and DAMBRK, 

respectively) found that the sensitivity of the latter to bottom friction of the channel is 

responsible for the large discrepancies in water surface slope (Bozkus and Kasap, 1998), 
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similar to Greenbaum's (2007) results that also used the HEC-RAS model. Fread (1991a) 

claimed that the effect of altering n to a higher value is significant in raising the stage. 

O’Connor and Webb (1988) found opposite results, i.e. the peak discharge is not that 

sensitive to choosing Manning’s n. Begnudelli and Sanders (2007) also found that the 

most accurate simulation of the St. Francis dam-break flood is produced when using a 

uniform Manning’s n and that varying it only changes flood wave travel times, not the 

extent of flooding. Carling et al. (2010) found in the Altai Floods that varying Manning's 

n by 30% along the channel in a 1D model results in only an 8% variation in the upstream 

discharge. In 2D modeling the sensitivity was even less due to deep flow depths. Our use 

of a generic roughness for all cross-sections in the HEC-RAS model dam-break 

simulation simplifies this methodologic problem by assuming that till is homogeneous in 

terms of spatial erodibility and the resulting sediment transport. Fread (1991a), developer 

of the DAMBRK (Fread, 1991b) and FLDWAV (Fread and Lewis, 1998) models, 

suggested increasing Manning's n values from past (gauged) floods, especially from large 

ones. In an extensive study of HEC-RAS inundation extent, Pappenberger et al. (2005) 

found that a variety of roughness values may yield identical results in water surface 

profiles.  

We therefore conducted a sensitivity analysis to determine whether our study is 

sensitive or not to Manning’s n choice while running a variety of roughness combinations 

for the lower boulder lag and three higher terraces using the HEC-RAS model. Varying 

the n for the lower limit of the boulder lag results in differences in simulated discharges 

of up to 18% (Table 3), which falls within the 20% tolerance commonly applied in 

engineering design of dam infrastructure to withstand failure during extreme flood 



43 

 

discharges (Trieste and Jarrett, 1987). However, for the upper limit of the flood (three 

terraces) there is a large discrepancy between the various simulations (Table 3).  

We conclude that, considering the lake volume(s) in Table 1, the results from 

parametric breaching equations (Table 2), and our original Manning’s n choices, it is 

improbable that peak discharge exceeded 100,000 m
3
/s. Only four equations out of 

twenty one (19%) in Table 2 exceed that value, while the remaining discharges are all 

within a magnitude smaller. Therefore, the first two simulations in Table 3 for the terraces 

are likely erroneous and it is improbable that low Manning’s roughness n values are 

realistic for a flood of this type and magnitude. Simulations 3-6 fall within the 20% 

permissible error, compared to our original Manning’s n choice. The last simulation (7), 

with extreme high roughness values, also does not seem realistic and yields a discharge 

that is too low, although it somewhat resembles (11% difference) the median discharge 

from the parametric breach equations (49,100 m
3
/s vs. 44,100 m

3
/s). Considering that we 

cannot choose an alternate reach or find other paleostage indicators to verify various 

simulations (O’Connor and Webb, 1988), the upper limit of the flood is highly uncertain, 

unlike the lower boulder lag simulations that yield results with relatively small changes 

for a variety of Manning’s roughness values. Despite the large uncertainty in the upper 

limit of peak discharge, our work provides an initial estimate, using two accepted 

techniques (parametric breach equations and modeling) for a flood downstream of the 

breach.  

4.2.3 Peak flow variables 

The modeled water surface slope of the outburst flood is 0.0027 for the lower boulder 

lag and 0.0031 for covering the higher three terraces (Fig. 10) over the 15.3 km reach. 
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These water surface slopes are steeper than present-day bed slope (0.0017) and maximum 

modern peak discharge water surface slope (0.0021). The differences in slopes can be 

explained by the valley’s heterogeneous geometry with steeper valley slopes in the 

downstream direction next to the geomorphic features and energy losses in moderate 

valley slopes that are typical to terrain with high roughness. Furthermore, from the 

boulder lag to the farthest terrace, elevation loss is highest with a water surface slope of 

0.0089, compared with bed gradient of only 0.0034. As a result of the relative steepness 

of this reach, this was the subreach with highest flood velocities at 10.0-11.4 m/s.  

Calculated stream power for the dam-break flood was 620-1,270 W/m
2
. These values 

are low compared to GLOFs in mountain environments (Cenderelli and Wohl, 2003; 

Staines and Carrivick, 2015) and can be explained by the low bed gradient of the Thames 

Valley. The calculated shear stress range was 760-1,050 N/m
2
. Critical shear stress (c) 

needed to entrain maximum clast size derived from many rivers was proposed by Komar 

(1988) using units of N/m
2
 and mm: 

c = (26.6 (d/10)
1.21

)/10        (1) 

The basic assumption with this method is that the formula is universal and is suitable for 

every river and flood type. Results suggest clasts 1.1-1.4 m could have been entrained 

which fits the largest clasts found within the boulder lag (up to 1.2 m). No other boulder 

erratics were found that could be associated with a large flood along the flood course. 

However, Arva and Ingersoll Moraines do contain larger boulders (b-axis > 2 m) than the 

boulder lag and these are occasionally scattered within modern river courses (Dreimanis 

and Packer, 1959; Bergman et al., 2016), gravel pits (Ontario Geological Survey, 1983; 

Krzyszkowski and Karrow, 2001) and fields upstream of the breach in what used to be 



45 

 

the Glacial Lake London bed. These boulders remained stationary during the lake 

drainage and the local energy was not sufficient to transport them. While this sedimentary 

evidence of flow competence derived from boulder deposits is common in paleohydraulic 

reconstructions (Costa, 1983; Williams, 1983; Fisher, 2004), it is not without problems. 

Wilcock (1992) determined that the use of extreme sediment size values are prone to 

large errors as the sample size is relatively small, heavily biased towards the boulders, 

missing other grain fractions (as in our case) and does not represent the real sediment 

transport during a flood. Consequently, boulders are not reliable predictors of critical 

shear stress or flow magnitude (Wilcock, 1992). However, Carling (1987) associated 

boulder berms with flow separation downstream of an abrupt change in channel 

morphology that is consistent with the transition from the relatively wide lake outlet in 

Byron (Fig. 4) into the deeply incised river valley within Komoka Provincial Park. 

Considering we only use the boulder lag for our lower limit peak discharge, our 

paleohydraulic reconstruction is made more robust by using several geomorphic features 

and methods rather than only this single deposit.   

The Froude number for the same reach is 0.5-0.8, subcritical but still much higher than 

most of the other subreaches with values of 0.1-0.3. The largest flow depth was above the 

boulder lag at 46.0 m. The shallowest flow depth was at Caradoc Delta in the end of the 

reach at 18.2 m.  
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5. Discussion  

5.1 Why a catastrophic flood(s) and not gradual postglacial incision? 

For the deep valley of Thames River (50-70 m high) downstream of London to 

gradually incise since the end of the ice age, a steady rate of 3.8-5.4 mm/yr for 13,000 BP 

time period is needed, or 3.4-4.8 mm/yr for 14,500 BP time period. This postglacial 

gradual incision approach does not fit the classic spillway morphology of the valley as 

described in detail by Kehew (1982) for underfit channels with lag deposits on the upper 

scoured surfaces of the valley. The question arises: was such an incision rate possible in a 

warming postglacial climate for southern Ontario?  

Current local channels are relatively stable with negligible incision and sediment 

production (Ashmore and Church, 2001) and morphologic changes are usually associated 

with modern anthropogenic activities (Campo and Desloges, 1994; Tinkler and Parrish, 

1998; Schottler et al., 2013). During the Holocene, the channels adjusted to Great Lakes 

water levels and isostatic rebound (Phillips and Robert, 2005). The maximum non-

attenuated flood based on the gauged record (Fig. 9) fills only 2-5% of the river valley's 

area. We, therefore, looked for analogue rivers in the Great Lakes area that have an 

established chronology since the end of the ice age and compare their morphology with 

our study site. Arbogast et al. (2008) have shown that in the upper Muskegon River 

valley (Michigan, draining 6000 km
2
 and Lake Michigan drainage) has four distinct 

terraces that were all dated to postglacial incision. They look different than the steep 

Thames River valley walls (Fig. 7a, 7b) with long flat surfaces and minimal elevation 

changes. The river valley is several km wide. Even the inner valley close to the channel 

has no morphologic resemblance to the Thames River. The Humber River (Ontario, 
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draining 900 km
2
 and Lake Ontario drainage) has incised about 30 m since the end of the 

ice age. It is quite similar to the Thames River valley as its headwater starts from the Oak 

Ridges Moraine and flows 21 km to its confluence with East Humber River (Phillips and 

Robert, 2005). However, the Humber River has many terraces and a wide valley 

reflecting gradual postglacial incision. Also, the valley reaches appear relatively straight, 

yet have abandoned meander loops (i.e. ancestral drainage) preserved on either side of the 

valley. This morphology suggests gradual downcutting after abandonment of the meander 

loops as the river hydrology changes from abundant glacial meltwater to predominantly 

rain and snowmelt hydrology. The dating of the valley features of the Humber River 

show that the rate of postglacial incision was highest during the first 4900 years (21 m or 

4.3 mm/yr), then fell over the next 3900 years (8 m or 2.1 mm/yr) and finally in the last 

6200 years changes were minimal (only 1 m or 0.2 mm/yr) (Phillips and Robert, 2005). 

While initial postglacial incision matches Thames River valley incision rates, the other 

two postglacial time periods of the Humber River incision rates are too small. Our 

conclusion is that the Thames River valley was cut by catastrophic lake drainage(s). The 

morphology of unusual features preserved along the valley's left wall (Table 4), lack of 

terraces in the Upper Thames River due to its inundation by a lake and preservation of 

large meander loops suggests rapid rather than gradual incision. Terraces exist in the 

Middle and Lower Thames River but that part of the basin evolved at a later stage when 

the river was diverted to the southwest and was no longer flowing to the nearby 

predecessors of Lake Erie to the south.   
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5.2 Single catastrophic flood vs. multiple floods  

We did not find any deposit along the main Thames Valley that represents multiple 

drainages and backponding that produces repeated rhythmites as found elsewhere in 

outburst floods (Waitt, 1985). The lack of preservation of multiple floods is possibly 

associated with insufficient backwater areas like in some bedrock channels or could be 

due to the last catastrophic flood erasing the evidence of its predecessors. Grain size 

distributions of some of the geomorphic features indicate that the boulder lag is coarser 

than all other valley and lacustrine sediments (Fig. 11); it is completely devoid of any 

gravel < 256 mm, although this could be a result of later erosion and winnowing. None of 

the depositional geomorphic features presented in Table 4 resemble lacustrine silt-clay 

sediments that were found on Medway Creek’s top bluff (Fig. 5). This sedimentary 

outcome could suggest several scenarios: 1) the lacustrine sediment was not evacuated 

from the breached lake, e.g. ‘clear water’ release (Lord and Kehew, 1987); 2) the dam-

break released lake sediments and they mixed with river valley glacial sediments; 3) the 

lake did not have much fine lacustrine sediments since it was short-lived or the incoming 

meltwater was not turbid or 4) the sediment could have originated solely from the 

valley’s glacial deposits (Fig. 7a) and bank till deposits (Fig. 7b) being scoured during the 

outburst torrent leading to numerous debris flows (Maizels, 1997).   

Mound 1 (Fig. 7h) was sampled and contains three distinct layers. The 10-200 cm 

layer contains clasts up to cobble size and negates the idea that this depositional feature is 

a result of reworking of the fine lacustrine sediment as their grain size distributions do not 

match. It also casts doubt on a fluvial origin: how did such coarse particles reach so high 

in the water column as suspended sediment when the valley was flooded unless they are 
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from a local source? The region's Wisconsinan history is complex and characterized by 

several advances and retreats of the local ice lobes (Dreimanis and Goldthwait, 1973) so 

possibly the mounds could be remnants of older glacial processes (Kleman, 1994). Yet, 

the few dam-break studies of similar subdued terrain (see the discussion) do not allow us 

to rule out these geomorphic features as non-fluvial. Consequently all mounds were 

classified as low degree of certainty in the hydraulic modeling (Table 4; Section 4.2.2).     

Since the sedimentology cannot resolve single or multiple flood events in our study, 

the location, elevation and proximity of the features to each other and to the channel may 

provide another clue. Carling et al. (2009) stressed the importance of 'association' 

between geomorphic features where association refers to whether the sedimentary 

landform is contiguous with other landforms, including self-similar forms, which would 

have been formed during the flood. Our peak flood reconstruction relies on the four most 

prominent features: boulder lag and the three wash terraces that have high degree of 

flood-generated certainty. The HEC-RAS simulated upper and lower bound water 

profiles contain all the other features between them, except Bench 2. We used HEC-RAS 

again, specifically for each feature with the assumption that all features are flood-

generated.  

5.3 Comparison to other moraine dam-break floods 

Evidence for the occurrence of outburst floods from glacial lakes in the Great Lakes 

region at the end of the Wisconsinan is quite extensive (Breckenridge and Johnson, 

2009). However, it would be wrong to compare a small ice-marginal or proglacial lake 

like Glacial Lake London with the ancestral Great Lakes outlets (Bretz, 1951; Bleuer and 

Moore, 1979; Karrow and Calkin, 1985; Fraser and Bluer, 1988; Rea et al., 1994; 
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Rayburn et al., 2005; Kehew et al., 2009; Curry et al., 2014) or Glacial Lake Agassiz 

spillways (Fisher 1993; 2003; Colman et al., 1994; Leverington and Teller, 2003) that 

were associated with Laurentide Ice Sheet decline. These were megalakes on a regional 

scale, and their resulting outburst megafloods caused global climatic change and sea level 

rise (Broecker et al., 1989; Barber et al., 1999; Clarke et al., 2003; 2004). Megalakes are 

defined as exceptional for their extent and/or their volume (Baker, 2009), far greater than 

Glacial Lake London extent and volume. Outburst floods from megalakes are 

‘megafloods’, with peak discharge exceeding 10
6
 m

3
/s (Baker, 2002; Clarke et al., 2003). 

We, therefore, compare Glacial Lake London with four proglacial lakes that were below 

the megaflood threshold: Glacial Lake Wisconsin (in Wisconsin; Clayton and Attig, 

1989; Clayton and Knox, 2008), Glacial Lake Oshkosh (Wisconsin; Clark et al., 2008), 

Glacial Lake Watts and Glacial Lake Edmund (Pennsylvania; D’Urso, 2000). The 

criterion was a peak discharge < 1 million m
3
/s, which is one order of magnitude larger 

than peak discharge generated by Glacial Lake London.  

We also included twenty moraine-dammed montane lakes from data compiled by 

O’Connor and Beebee (2009) and two other moraine dam-break case studies of Lake 

Zurich (Strasser et al., 2008) and Lake Ventisquero Negro (Worni et al., 2012). The 

reason for inclusion of these montane lakes is that they are all dam-break floods that 

occurred within glacial sediments which reduces the geologic uncertainty (i.e., parent 

material and failure mechanism of the moraine-dammed lake) when looking for a 

correlation between the peak discharge released during the outburst flood vs. lake volume 

(O’Connor et al., 2013). However, glacier lake outburst may be caused by different 

mechanisms and might not be fully comparable to moraine dam-break outbursts. The 
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results (Fig. 12) suggest that there is a medium correlation (0.50 < R
2 

< 0.80; Doornkamp 

and King, 1971) between peak discharge and lake volume for montane lakes (R
2
=0.68), 

but only a weak connection for proglacial lakes of the Laurentide Ice Sheet (R
2
=0.36). 

Combined, a medium correlation is obtained (R
2
=0.72). Most montane lakes are at least 

an order of magnitude smaller than the Laurentide Ice Sheet ice marginal lakes. Since 

most (77%) of the data points were obtained from the montane moraine-dammed lakes, 

which exhibit a large scatter around the best-fit line, it would be wiser to wait until more 

data are gathered from the Laurentide Ice Sheet ice-marginal lakes to better address the 

peak discharge vs. lake volume correlation of this flat glaciated terrain.  

For Glacial Lake London, Fig. 12 shows that for both data points, there is notable 

variability (at least one order of magnitude) within the proglacial lake data. This gap can 

be explained by two possible reasons: 1) spatial erodibility of the glacial material that is 

highly variable among lodgement till (Kamphuis et al., 1990; Shugar et al., 2007; Khan 

and Kostachuk, 2011; Mier and Garcia, 2011) or softer deformation till (Hicock and 

Dreimanis, 1992) that was easier for the water to erode than other glacial deposits; 2) the 

flood route was ‘tectonically predesigned’ and followed an older lineament or glacial 

groove (Hack, 1965; Eyles et al., 1997), or even a preferential path of an older Glacial 

Lake London flood that was infilled by glacial readvance thus reducing the roughness the 

flood had to overcome. Despite the low bed gradient of the Thames River channel bed, 

the river valley spillway is deeply incised into a complex glacial landscape, a spatial 

phenomenon termed ‘glacial conditioning’ (Phillips and Desloges, 2014). Marren and 

Toomath (2014) claimed that topographic forcing of moraine-confined reaches of 

proglacial rivers is the major cause for their channel course/pattern, and that other factors 
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such as hydrology and sediment supply play a minor role. This condition suggests that the 

flood peak released during a dam-break is strongly associated with the parent material(s) 

arrangement (topography and fluvial erodibility) and lake volume and dam height (such 

as used in the parametric breaching) are not the only factors in accurate prediction and the 

breaching process is more complex (Wu et al., 2011).          

D’Urso (2000) addressed the large discrepancy between a HEC-RAS simulation fitting 

paleostage indicators (4,900 m
3
/s) and the Slippery Rock Gorge constriction through 

which the outburst flood was routed and claims the actual discharge might have been less 

than an order of magnitude smaller if there was no overflow, similar to modern gauged 

peak discharges. This anomaly exemplifies the complexity of paleoflood reconstruction 

in a humid climate where preservation of paleostage indicators is uncertain, while the 

postglacial topography remains highly active (including further channel incision, bank 

erosion and hillslope mass wasting).  

6. Conclusions 

Glacial Lake London was reconstructed based on Dreimanis work, present-day 

topography, and lacustrine sediments found on top of the Arva Moraine bluffs in 

Medway Creek. For the first time, the lake is presented in its entirety at a variety of 

possible water levels. Catastrophic drainage was reconstructed based on breach 

dimensions, and geomorphic features found in the Komoka spillway area. Both of these 

approaches suggest that modern peak hydrology generated by snowmelt or rain-induced 

floods is 1-2 orders of magnitude less than the discharge generated by an outburst flood 

from a glacial lake. Furthermore, modern Thames River occupies a small area during 

large floods and is clearly a misfit river channel. However, with current field evidence we 
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cannot determine whether drainage was a single event of repeated lake fill and drain 

cycles. Moraine-dammed lakes typically drain once and do not refill unless there is 

progressive lowering of the basin, which favors a single flood event. Following the many 

uncertainties, this work needs further expanding by conducting a thorough dating 

program of lacustrine sediments, mapping of beaches and dating the downstream flood 

deposits in order to have a better chronology of events.   

Comparison of the Glacial Lake London breach to four other outburst floods from ice-

marginal lakes of the Laurentide Ice Sheet and 20 montane moraine-dammed lakes show 

there is a link between lake water volume and discharge released from the montane lakes 

(R
2
=0.68). However, unlike montane moraine-dammed lakes, there is not enough data for 

ice-marginal lakes of the Laurentide Ice Sheet (R
2
=0.36) and a comparison to any of the 

megalakes spillways such as the ancestral Great Lakes or Glacial Lake Agassiz would be 

erroneous, due to the highly different magnitudes of water volumes (megalakes) and the 

resultant energetic release (megafloods).  

 The inclusion of this proglacial lake into the regional chronology is important from a 

variety of perspectives. 1) It offers an alternative explanation to gradual postglacial 

incision of Great Lakes rivers into glacial deposits and shows that proglacial lakes played 

a major role in landscape evolution of the Great Lakes and the American Midwest. 2) It 

proves that dramatic spillway topography can develop within low-relief moraine 

topography and complements the tunnel channel mechanism of rapid erosion and incision 

of the landscape that also occurs at receding ice margins, especially in mountainous 

terrains. 3) The deglaciation process was not only characterized by slow retreats of ice 

lobes but also by rapid removal of meltwater and ice by flowing water, thus allowing flora, 
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fauna and humans to encroach on the exposed deglaciating landscape or disappear when 

the ice readvanced. 4) It is important to put rivers in formerly glaciated terrains in the right 

context as catastrophic landscape-shaping flood events still affect them and in most 

instances these rivers cannot be treated as ordinary self-formed alluvial channels. 
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Figures and Tables 

 

Figure 1. Location of Thames River watershed, major cities and locations mentioned 

in text. Major moraines within the watershed are indicated: 1. Arva Moraine, 2. 

Ingersoll Moraine and adjoining Westminister Moraine to the south, 3. St. Thomas 

Moraine, 4. Blenheim Moraine and 5. Charing Cross Moraine. Adapted from 

Chapman and Putnam (1984) and Goff and Brown (1981).     
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Figure 2. An early drawing of the city of London Ontario from 1893. View is from 

south to north. Thames River tributaries and main stem incise into lacustrine 

sediments of former Glacial Lake London. Arva Moraine is in the background. 

Artist was probably sitting on a high point of the Ingersoll Moraine. Source: 

Toronto Lithographing Company.  
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Figure 3. The glacial landscape of London, Ontario by Dreimanis et al. (1998). 

Reproduced with permission of Geological Association of Canada.    
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Figure 4. The cross-section of the breach of Glacial Lake London where the Arva 

and Ingersoll moraines were connected near the London neighborhood of Byron 

and associated water levels of the lake (see text), downstream geomorphic features 

(see text) and gauged hydrology. The difference between the top and bottom water 

surface elevations was used as the height of the moraine dam (Hw = 46.8 m) in the 

parametric breaching equations. 
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Figure 5. Arva Moraine tills and overlying lacustrine sediments of Glacial Lake 

London on a right bank bluff of Medway Creek, next to Brescia University College, 

London. This is the highest known deposit of the lake bed at 265.6 m. Note that 

lacustrine sediment does not show evident stratigraphic layering. View from north 

to south. Yannick Rousseau peeking on top of bluff for scale - bluff is 18 m high 

above river bed. 
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Figure 6. SW part of Glacial Lake London imposed on an aerial photograph, 

Thames River spillway channel into Komoka Provincial Park, Caradoc Delta at 

bottom left and cross-sections used in HEC-RAS modeling (black dots indicate 

location of landforms).  
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Figure 7. Some landforms in Komoka Provincial park (a) Top of valley bluff (view 

downstream), (b) Till bank of  Thames River (view upstream), (c) Boulder lag 

beginning more than 150 m away from Thames River channel (d) Pointbar of 

Thames River with boulders up to 600 mm, (e) Wash Terrace 3 with featureless 

topography (view upstream), (f) Paleo erosional flow mark scar at the forefront of 

the photograph (delineated by a black line) exposed from vegetation well above 

modern channel floods on the valley wall, (g) Longitudinal Berm 1 with grassy top 

and (h) Mound 1 (view downstream).   

c 
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Figure 8. Reconstruction of Glacial Lake London. (a) smallest reconstruction, based 

on lacustrine stratigraphic evidence from Medway Creek; (d) largest 

reconstruction, based on highest elevation of Arva and Ingersoll Moraines’ 

convergence where the breach occurred; (b, c) lake elevations at 33% and 67% 

between minimum and maximum levels.  
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Figure 9. Reconstructed non-attenuated peak flows for Thames River in London 

during six decades (1954-2013). Average and median are 735 m
3
/s and 707 m

3
/s, 

respectively. Highest peak flow (1493 m
3
/s) occurred in 2000.   

 

Figure 10. Calculated water surface profiles of Thames river flood course based on 

HEC-RAS modeling for modern peak discharge and minimum (boulder lag) and 

maximum (terraces) paleo discharges.  
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Figure 11. Grain size distributions of various landforms within Komoka Provincial 

Park, illustrating the diverse nature of sediments along the flood course. Lacustrine 

sediment from Medway Creek’s highest bluff (265.6 m) was added. Note that coarse 

boulder lag is completely devoid of grain size fractions < 256 mm but this may be 

due to post-flood erosion and reworking of the deposit in this humid continental 

climate.  

 

 
 

Figure 12. Peak discharges of dam-break floods of montane moraine-dammed lakes 

and ice-marginal lakes of the Laurentide Ice Sheet and their flood volumes. Glacial 

Lake London has lower and upper peak discharges from modeling vs. minimum 

and maximum lake volumes.  
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Table 1: Paleohydrographic characteristics of Glacial Lake London.   

            
 Elevation, Lake surface area, Lake perimeter, Maximum depth, Average depth, Lake volume, 

 m asl km
2
 km m m km

3
 

 265.6a 130.0 340.6 36.9 19.9 2.6 
 269.1 191.1 613.0 40.4 23.1 4.4 
 272.6 242.5 690.3 43.9 23.8 5.8 
 276.2b 339.7 815.3 47.4 26.8 9.1 
      
   
 

       Notes: a. Lower bound: elevation of lacustrine sediments on top of Arva Moraine 

           b. Upper bound: elevation of overtopping of Ingersoll and Arva Moraines 
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Table 2: Summary of parametric breach equations for Glacial Lake London. 1 
 2 

  

# Reference/Source 
Relation proposed for peak discharge, 
Qp 

Qp for Glacial 
Lake London

*
, 

m
3
/s Comments 

     1 Kirkpatrick (1977) Qp = 2.297(Hw+1)
2.5

 19,300 Transformed from cubic feet per second. 

          

     

2 Price et al. (1977) Qp = 8/27g
0.5

Hw
1.5

(0.4b+0.6T) 44,100 

g is the acceleration due to gravity, b is 
width of breach base, T is top width of 
breach at initial water level. Ignores 
frictional and turbulent resistance and 
therefore tends to be larger than slope-
area and drawdown rate methods. 

                    

     

3 Soil Conservation Service (1981) Qp = 65Hw
1.85

 20,400 
Based on 13 dam failures. Transformed 
from cubic feet per second. 

          

     

4 Hagen (1982) Qp = 370(HwVmax)
0.50

 23,300 
Based on seven dams, transformed from 
cubic feet per second. 

          

     

5 MacDonald and Langridge-Monopolis (1984) Qp = 1.175 (Vmax Hw) 
0.41   

 68,900 

Includes concrete dam failures which are 
larger than embankment dams so 
probably overpredicts peak flows for 
earth dams.    

          

     

6 Singh and Snorrason (1984) Qp = 1.776Vmax
0.47  

 85,200 
Based on 20 dam failures and 8 
simulations. Qp based on the 
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simulations. 

  
Qp = 13.4Hw

1.89
 19,200 

 
          

     
7 Costa (1985) Qp = 10.5Hw 

1.87   
 13,900 

r
2
=0.8 and standard deviation error is 

82%. 

  
Qp = 325(HwVmax)

0.42
 75,200 

Regression equation using 29 dam 
failures, r

2
=0.75 and standard deviation 

error is 95%. 

          

     

8 Soil Conservation Service  (1986) Qp = 0.00042 Br
1.35

 where Br = VmaxHw/A  36,300 

Br is the breach factor and A is the cross-
sectional area of the embankment at the 
breach water surface elevation. The 
discharge range is 1.77 Hw

2.5
 < Qp < 

16.6 Hw
1.85

 or 26,521-248,727 m
3
s

-1
. 

          

     

9 Evans (1986) Qp = 0.72 Vmax
0.53

    136,700 

Based on the relationship proposed by 
Clague and Mathews (1973) for 
jökulhlaups. 

          

     

10 U.S. Bureau of Reclamation (1988) Qp = 19.1 Hw 
1.85

 23,500 
This is an envelope equation based on 
21 case studies. 

          

     

11 Froehlich (1995) Qp = 0.607 Vmax
0.295

 Hw 
1.24   

   62,000 

Provides good agreement between 
measured and computed peak outflows 
over entire range of values according to 
the author.   

          

     12 Walder and O'Connor (1997) Qp = 1.16Vmax
0.46

 44,200 
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Qp = 2.5d

2.34
 20,200 

d is drop in lake level, assumed as dam 
height 

  
Qp = 0.61 (HwVmax)

0.43
 61,100 

 
          

     13 Pierce et al. (2010) Qp = 0.784 Hw 
2.688

 24,200 Linear 

  
Qp = 2.325 lnHw 

6.405
 13,000 Curvelinear 

  
Qp = 0.00919 Vmax

0.745
   241,400 

 

  
Qp = 0.0176 (HwVmax)

0.606
 196,300 

 

  
Qp = 0.038 Vmax

0.475
Hw

1.09
 135,200 

 
          

* 
Hw is dam height, Vmax is reservoir's maximum volume  

  **  
Values used for Glacial Lake London: Hw = 46.8 m (153.5 ft), Vmax = 9100*10

6
 m

3
 

   3 

 4 
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Table 3: Roughness value combinations and resultant peak discharge variables for Glacial Lake London drainage using HEC-5 

RAS model simulations.  6 

    

Boulder Lag 

                      

HEC-RAS Manning's n roughness Peak discharge Max velocity WSS Max shear stress Max stream power Froude # 

Simulation Channel  Banks m3/s m/s   N/m2 W/m2 range 

1 0.04 0.06 14,000 12.8 0.0026 1140 680 0.1-0.5 

2 0.05 0.07 13,800 10.0 0.0027 790 660 0.1-0.7 

3 0.06 0.08 13,600 10.0 0.0027 790 640 0.1-0.6 

4 0.07 0.09 13,400 10.0 0.0025 780 580 0.1-0.5 

5 0.08 0.10 13,100 8.7 0.0028 650 610 0.1-0.8 

6 0.09 0.11 12,300 7.4 0.0028 510 570 0.1-0.7 

7 0.10 0.12 11,500 6.5 0.0028 420 530 0.1-0.6 

        Terraces         

HEC-RAS Manning's roughness Peak discharge Max velocity WSS Max shear stress Max stream power Froude # 

Simulation Channel  Banks m3/s m/s   N/m2 W/m2 range 

1 0.04 0.06 145,000 19.5 0.0028 2160 1810 0.2-0.8 
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2 0.05 0.07 121,400 16.3 0.0028 1666 1600 0.2-0.8 

3 0.06 0.08 94,500 12.7 0.0030 1160 1430 0.2-0.8 

4 0.07 0.09 76,700 11.1 0.0031 956 1290 0.1-0.8 

5 0.08 0.10 63,700 9.8 0.0031 796 1190 0.1-0.7 

6 0.09 0.11 61,600 9.0 0.0032 703 1140 0.1-0.6 

7 0.10 0.12 49,100 7.8 0.0032 568 1010 0.1-0.6 

 7 

 8 
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Table 4: 21 geomorphic features found on the left bank in Komoka Provincial Park. 

          

 

# Feature UTM Easting Northing 
Elevation 

m 
Degree of 
certainty 

Discharge 
m3/s 

 

 

1 Boulder lag 17 468533 4756848 243 High 13,350 

 

 

2 Bench 1 17 468453 4756033 249 Medium 50,000 
 

 

3 Bench 2 17 468437 4755888 250 Medium 85,000 
 

 

4 Bench 3 17 468448 4756090 240 Medium 18,000 
 

 

5 Bench 4 17 468431 4756350 242 Medium 18,000 
 

 

6 Flow mark 1 17 468394 4756011 239 Medium 18,200 

 

 

7 Flow mark 2 17 468422 4756050 240 Medium 19,000 

 

 

8 Flow mark 3 17 468417 4756052 243 Medium 25,300 

 

 

9 Flow mark 4 17 468440 4756105 244 Medium 25,800 

 

 

10 Flow mark 5 17 468426 4756100 244 Medium 25,800 

 

 

11 Flow mark 6 17 468433 4756248 244 Medium 21,500 

 

 

12 Berm 1 17 468395 4755832 244 Low 50,000 

 

 

13 Berm 2 17 468358 4755804 244 Low 50,000 

 

 

14 Mound 1 17 468332 4755799 243 Low 46,700 

 

 

15 Mound 2 17 468343 4755792 242 Low 43,000 

 

 

16 Mound 3 17 468328 4755791 239 Low 30,000 

 

 

17 Mound 4 17 468321 4755794 239 Low 30,000 

 

 

18 Mound 5 17 468310 4755780 239 Low 30,000 

 

 

19 Terrace 1 17 467525 4755528 234 High 55,000 
 

 

20 Terrace 2 17 467594 4755537 237 High 75,600 
 

 

21 Terrace 3 17 467689 4755534 238 High 75,600 
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Abstract 

 

We describe a detailed study of an incisional till-cobble-bed river reach of a small 

channel crossing a moraine, including the boundary till characteristics, bare till patch 

features, and for the first time their annual erosion rates, bedform dimensions and 

spacing, and grain size distributions of bedforms. Results show that the boundary till is 

predominantly fines (silt and clay) with some sand, while gravel contribution to the 

alluvium is relatively small. There is evidence of some clast in situ and transport 

rounding. Till exposures constitute a relatively small portion of the bed and till erosion 

rates are relatively high compared to bedrock rivers although highly variable between till 

patches and within patches. Bedforms consist of flats, pools, riffles, bars and a couple of 

cobble-boulder steps. The bedforms are not well organized in terms of spacing and show 

high morphologic variability. The sediment forming the bed is poorly sorted, and grain 

sizes of the bedforms show high variability ranging from fines to large boulders beyond 

channel competence. As expected, riffles and steps are coarser while flats and pools are 

finer-grained.  

 

Sedimentary stability metrics show that riffles are unstable, while pools and flats are 

more stable. Grain size distributions of three additional fine-rich rivers demonstrate 

bimodal or polymodal distributions, with poorly sorted beds, suggesting all these 

channels can be defined as unstable. We conclude that till-bedded channels differ from 

their alluvial and bedrock counterparts in a variety of ways. Consequently, we 

recommend that semi-alluvial rivers be differentiated from their alluvial and bedrock 

counterparts in future channel classifications. Such a practice will not only be holistic in 

nature, but will also be useful for the river research and practitioners’ community to gain 

the appropriate research tools needed for assessment, management and restoration 

practices for these rivers.   
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1. Introduction 

Channels incised into till are a characteristic of the landscape in southern Ontario 

(Campo and Desloges, 1994; Foster, 1998; Thayer, 2010; Hrytsak, 2012; Phillips and 

Desloges, 2014; 2015a, b: Thayer et al., 2016) and the Great Lakes region in general 

(Hack, 1965; Arbogast et al., 2008). Further, the large areal extent of the continental 

Laurentide Ice Sheet (LIS) during the last Wisconsinan glaciation (Clark et al., 1993) and 

its consequent melting (Teller, 1990) exposed glacial sediments in many Atlantic 

watersheds (Brakenridge et al., 1988; Marchand et al., 2014), northern-draining Hudson 

Bay rivers (Nielsen et al., 1986), and northern Mississippi-Missouri drainage 

watercourses (Bhowmik, 1979; Gran et al., 2009, Stout et al., 2014), which many contain 

in their underlying bed and bank boundaries. A semi-alluvial channel incised into till can 

be defined as “a channel that cannot substantially widen, lower or shift its bed without 

eroding till”, an analogue borrowed from the bedrock literature (e.g. Turowski et al., 

2008; Meshkova et al., 2012). Once alluvium enters a till channel it becomes a mixed 

channel setting, i.e. a till-alluvial system, if the channel is either till constrained (the bed 

is till), till confined (the banks are till), or both. Again, the definition is adapted from the 

bedrock literature (Meshkova et al., 2012).  

These till-bedded rivers initially evolved after the retreat of the LIS following the end 

of the last glaciation and are still responding to base level fall (and sometimes rise) of the 

Great Lakes (Thornbush and Desloges, 2011), the Mississippi River (Belmont, 2011; 

Shen et al., 2012; Gran et al., 2013; Wickert et al., 2013), Hudson Bay (Fraser et al., 

2005) and the Atlantic Ocean (Clark and Fitzhugh, 1992), in addition to glacial-isostatic 

rebound of the landscape from the ice sheet loading (Lewis et al., 2005) and water 
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deformation (i.e. the large water mass also deforms the crust; Clark et al., 2007). 

Furthermore, modern human-induced climate change (Ashmore and Church, 2001; Kling 

et al., 2003; Novotny and Stefan, 2007) and drastic land modification (Annable et al., 

2011; 2012; Woltemade, 1994; Campo and Desloges, 1994; Miller and Nudds, 1996; 

Fitzpatrick et al., 1999; Belmont et al., 2011) have made these streams much more 

erosive than in the past because of increasingly flashy discharge from urban land surfaces 

and quick agricultural drainage with minimal water retention (Knox, 1989; Schottler et 

al., 2013), adding a major human stressor to the landscape. In many cases, these streams 

no longer resemble natural watercourses, and have altered geometries, low water quality, 

no floodplain, high sediment loads (Dickinson and Green, 1988), and tile drainage. Many 

do not function according to common geomorphic principles, such as forming discharge 

and bankfull discharge that link morphology to process (Powell, 2006). The expected 

fluvial outcome when the hydrology, climate and sediment delivery ratios are altered is 

geomorphic instability that is often expressed in extensive channel widening (i.e. bank 

collapse) and deep incision of the beds. However, the geomorphic instability is not 

always conclusive in southern Ontario (Campo and Desloges, 1994; Annable et al., 2012) 

and the American Midwest (Doyle et al., 2000; Stout et al., 2014), as sediment sources of 

these channels are highly variable and site-specific (Wilkin and Hebel, 1982; Wilcock et 

al., 2009). Nevertheless, under certain circumstances, when bed alluviation is sufficient, 

semi-alluvial channels may behave as regular alluvial rivers as was shown in Irvine 

Creek, a bedrock tributary of the Grand River, Ontario  (Martini, 1977). 

Compared to the vast literature on alluvial and bedrock river, the understanding of 

how semi-alluvial channels incised into till (or other glacial deposits) function and evolve 
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is quite limited. Other than the limited literature directly investigating them, information 

has been derived from studies conducted for a different purpose, such as rivers with some 

kind of substrate forcing (MacVicar and Roy, 2011), channelization (Landwehr and 

Rhoads, 2003; Ward et al., 2008), habitat quality (Wang et al., 1997; Blann et al., 2009; 

Marchildon et al., 2011), bedforms (Hartley, 1999), archeology (Stewart and Desloges, 

2014)  or sediment contamination (Rhoads and Cahill, 1999; Wilcock et al., 2009). Direct 

work focusing on the subject of glacial legacy on river/valley form was recently done in 

mountainous terrains (Brardinoni and Hassan, 2006; 2007; Amerson et al., 2008; Addy et 

al., 2011; Gomez and Livingstone, 2012; Prasicek et al., 2014; Addy et al., 2014; Hassan 

et al., 2014), and occasionally in lowland alluvial settings (Collins and Montgomery, 

2011; Phillips and Desloges, 2014, 2015a, 2015b).  

Recent anthropogenic change has resulted in altered hydrology which leads to more 

frequent extreme flood events (Diffenbaugh et al., 2005), changes in sediment delivery 

rates (Syvitski and Milliman, 2007; Belmont et al. 2011) and modifications in land use 

(Taylor, 1977; Matson et al., 1997; Knox, 2006; Ellis, 2011). Hence, there is a need to 

establish a systematic, scientific understanding of semi-alluvial rivers, similar to our 

understanding of alluvial (Bridge, 2003) and bedrock channels (Tinkler and Wohl, 1998a, 

b) and within a framework similar to the channel classification proposed by Montgomery 

and Buffington (1997) for mountain streams, by Turowski et al. (2008) for bedrock 

channels and Sutfin et al. (2014) for ephemeral rivers.  

New till-bedded rivers are currently evolving around the world, as new landmass is 

deglaciated and exposed to fluvial erosion processes as the climate warms. However, in 

urban and suburban areas the relative lack of scientific understanding of how these 
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streams operate negatively affects management, modern conservation practices and river 

restoration techniques (Hassan et al., 2014). Using the controversial Natural Channel 

Design (NCD; Rosgen, 1996), often applied in alluvial river restoration practices in North 

America (Wilcock, 2012), to semi-alluvial till channels may yield disastrous results that 

do not reflect natural form and process of these streams (Ness and Joy, 2002; 

Geomorphic Solutions, 2009). These results include unnatural stability as a result of 

using very large boulders to stabilize the channel bed and banks (i.e., boulder armoring), 

erroneous use of bankfull discharge values and a mismatch between design (form) and 

hydrological and sedimentary processes (Ness and Joy, 2002). Champoux et al. (2003) 

investigated long-term restoration of a small stream in Wisconsin and found that the 

morainic section of the channel is highly unstable (i.e. rapid bank collapses and bed 

incision), further highlighting that restoration schemes should be based on local 

geomorphic context rather than on an unsuitable restoration design.  

This work is intended to add new information by exploring contemporary channel 

form and processes in a formerly glaciated terrain and comparing it to other semi-alluvial, 

alluvial and bedrock channels. Ordinarily such studies were done on a large basin-scale 

(Hack, 1965; Campo and Desloges, 1994; Phillips and Robert, 2005; Arbogast et al., 

2008; Wilcock et al., 2009; Gran et al., 2009; 2011; 2013; Belmont, 2011; Belmont et al., 

2011; Stout et al., 2014; Phillips and Desloges, 2014; Hassan et al., 2014; Phillips and 

Desloges, 2015a, b), but our work focuses on a smaller scale, i.e. a 1.5 km reach of a 

channel crossing a till-cored moraine and affected by intense upstream agricultural 

practices, local urbanization and an historic millpond upstream of the study site. The 

advantage of our study is its ability to detect short-term (single hydrological years) spatial 
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details and temporal changes that are overlooked or cannot be identified when working 

on a larger basin-scale.  

One of the main issues when looking at till-bedded rivers is the boundary control 

which till exerts on channel form and processes. The till boundary erodibility or tensile 

strength was investigated under controlled conditions using a variety of techniques such 

as laboratory flume or deploying geotechnical instruments in the field (Kamphuis, 1983; 

Kamphuis et al., 1990; Shugar et al., 2007; Mier and Garcia, 2011; Khan and Kostaschuk, 

2011; Pike, 2014) and many studies investigated the till properties itself such as its cracks 

and fractures (Grisak and Cherry, 1975). However, very few studies looked at till 

erodibility under natural conditions. For example, Hill (1973) looked at till banks and 

found high annual erosion rates (30-60 mm/yr) associated with high shear stress and frost 

action, although the erosion distribution was highly variable. The question that arises is: 

Can small-scale reach data aid in categorizing semi-alluvial rivers in formerly glaciated 

terrain in broader scientific context and consequently help in deploying management and 

restoration protocols? 

2. Study area 

2.1. Regional setting 

Medway Creek drains 205 km
2
 and is a typical 3

rd
 order tributary flowing into the 

North Thames River, the larger confluent of the Thames River (5830 km
2
) that flows 

southwest across southern Ontario into Lake St. Clair. The channel has two main 

headwater branches (Fig. 1). The West Fork begins east of the town of Lucan and flows 

in south-south east direction. The East Fork starts south of Elgenfield Rd. and flows first 

in a southwest and then a southeast direction.  At their headwaters, the two channel forks 
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resemble shallow ditches, with extensive tile drainage from the surrounding agricultural 

land. The watershed is confined to the west and northwest by the Lucan Moraine and the 

channels flow through a vast till plain. The East and West Forks converge just north of 

the village of Arva, after which the main stem flows south along the western toe of the 

Arva Moraine and enters a millpond at Arva Dam. Below Arva Dam the channel starts to 

incise and meander in a distinct glacial valley. About 3 km south of Arva, Medway Creek 

crosses the Arva Moraine into the basin in which the city of London is located. 

According to Chapman and Putnam (1984), this glacial valley is a spillway but there is 

insufficient geomorphic evidence to support this (Bergman et al., 2016a). Such evidence 

would include a dry, ephemeral, abandoned channel that is detached from the Medway 

watershed, a misfit stream or a tributary connecting to the Thames River near Arva. It 

needs to be acknowledged such drainage could be buried under postglacial sediments and 

farmed land. Assuming there was no flow reversal due to isostatic rebound, the Arva 

Moraine breach of Medway Creek was spilling into Glacial Lake London. If there was 

drainage reversal, Medway Creek might have been Glacial Lake London's secondary 

outlet together with the Thames River. Presently, Medway Creek meanders 12 km from 

the Arva Dam to its confluence with the North Thames (Dreimanis et al., 1998).  

Medway Creek below Arva Dam has incised into several stratigraphic sedimentary 

units described by Dreimanis et al. (1998). The oldest unit is Devonian bedrock of 

limestone and shale (Dreimanis et al., 1998). The second unit from the bottom is 10 m of 

glacial drift and the third unit from the bottom is the Dorchester Till from the Erie Lobe 

where the river bed is currently situated. An additional small till unit exists below on the 

eastern part of the river valley, but is completely missing on the western side. The fourth 
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unit from the bottom is Tavistock Till from the Huron Lobe (Dreimanis et al., 1998) 

while the fifth unit from the bottom is silt and clay from an unspecified source. The top 

unit is the Arva Moraine till of the Huron Lobe. This unit is thicker to the east and is 

almost missing in the western part of Medway Valley. On the four bluffs of Medway 

Valley there are lacustrine sediments from Glacial Lake London (Bergman et al., 2016a). 

These sedimentary units were derived from generalized cross-sections (Dreimanis et al., 

1998); they thin, thicken or disappear upstream or downstream through the valley due to 

the competing Huron and Erie Lobes of the LIS (Hicock and Dreimanis, 1992). It is also 

possible to treat the entire study area as Catfish Creek Till that is prevalent on the north 

shore of Lake Erie and was partly formed beneath a floating, overriding ice shelf by basal 

melting (Gibbard, 1980). The Catfish Creek Drift was deposited during the Nissouri 

Stade (23-16.5 ka BP, Terasmae et al., 1972).  

Soils in the London area are moderately to poorly-drained with a tendency to gley 

when wet. Boulders, cobbles and pebbles are common. Low-lying land along stream 

courses is subject to flooding and is quite variable in texture (i.e. grain sizes). Hillsides 

along stream courses are frequently eroded with numerous cobbles and boulders. Soil 

orders that have been noted in the London area are Luvisolic, Brunisolic, Gleysolic, 

Regosolic and organic (O.A.C., 1931; Hagerty and Kingston, 1992) with Gleysolic 

(poorly drained and prolonged saturation) and Luvisolic (under forested canopy) 

dominating the river and stream corridors.  

The climate of the Medway Creek basin is affected by the Great Lakes which surround 

it on three sides (Fig. 1a). Climate is temperate, with warm summers, mild winters and 

reliable precipitation. Local variations in climatic conditions are created by topography, 
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the proximity to the Great Lakes and prevailing wind. Annual variations on the other 

hand, depend on the nature and frequency of the weather systems that cross the local 

area. Monthly precipitation ranges from 800-1000 mm (Brown et al., 1968). Mean annual 

runoff ranges from less than 200 mm to greater than 450 mm. Streams carry about a third 

of the total precipitation (Chapman and Putnam, 1984). Medway Creek is located in the 

Great Lakes snow belt, and snowfall occurs from October until April with strong lake-

effect snowstorms (Niziol et al., 1995). During winter, occasional warm air masses from 

the Gulf of Mexico bring rains and warmer temperatures that create moderate 

temperature and melt events.  

During the European-American settlement, the natural forests were removed and 

replaced by agricultural land and urban development. Current land use of Medway Creek 

watershed is 83% agricultural (all types of crops; seasonal, permanent and livestock), 

11% natural and 6% urban (Upper Thames Conservation Authority, 2013). Total 

vegetation cover on Medway Creek is 11.3%, of which 9.6% is forest (Upper Thames 

Conservation Authority, 2013). The main vegetative cover is deciduous forest, followed 

by meadow. 34% of the riparian zone (a 30 m buffer on both sides of a watercourse) is in 

permanent vegetation (forest + meadow). Forest cover surrounds the river valley from 

Arva all the way to the confluence with the North Thames River. Sugar maple and 

American beech are the main tree species with silver maple and white elm hardwood in 

swamps and several species of hickory on well drained sites (City of London Corporate 

Services Department, 2000).  
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2.2. Hydrology 

The 5-year mean annual flow of Medway Creek is 2.9 m
3
/s (Upper Thames 

Conservation Authority, 2013), and the largest peak flow recorded was 147 m
3
/s in 1977. 

The natural hydrologic regime follows strong seasonal trends associated with local 

climate and inherent geologic controls. Richards (1990) classified small streams in the 

London area as hydrologically ‘variable’, referring to their rapid response times to 

rainstorms or snowmelt events.  Land use and soil type appear to be more important than 

watershed size in determining the runoff characteristics of a given stream or river in 

southwestern Ontario (Richards, 1990).  

As precipitation is fairly evenly spread over the year and periodic thaws occur 

throughout winter at many locations, classic snowmelt hydrographs are rare (Allan and 

Hinz, 2004). The rain-on-snow events generated from warm air masses arriving from the 

Gulf of Mexico during late winter decrease the magnitude of the following spring flood. 

As temperatures warm during April-May, the (remaining) snow begins to melt and the 

spring flood (freshet) ensues. Spring flood duration and magnitude depend on the amount 

of snow on the ground and the rate of increase in temperature. A gradual increase yields a 

moderate peak discharge and long duration rising limb, while a sharp increase in 

temperatures may yield a high peak flow and short duration rising limb. If temperatures 

fluctuate, the flow may contain many sub-peaks, piggy-back bores and the major peak 

discharge is relatively subdued (Fig. 2). An additional hydrologic situation that needs to 

be acknowledged is that the river conveys large ice slabs, either in winter or early spring 

when the ground is still frozen. While these float on the water surface, an obstruction 

(such as a large fallen log or bridge foundations) or just the intensity of ice flow 
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collisions can create a massive ice jam. Once the snow completely melts during late 

spring, the freshet recession limb wanes, the rain amounts generally increase during 

summer but river discharge decreases due to the high evaporative losses and the drying of 

soils in the watershed. During this time the entire river discharge is based on groundwater 

outflow (baseflow) with occasional urban floods, direct rain above the channel and no 

significant overland flow is generated from the catchment. Consequently, the upper parts 

of the basin become disconnected after the spring flood until late September or October 

when the basin’s soils become saturated again by rain. Flow is only sustained year-round 

in the lower incised reach below Arva Dam. The Arva Mill occasionally uses the 

millpond water during the summer low flows and pulses the downstream channel for a 

few hours but it is almost insignificant to the concurrent discharge. In rare cases, 

antecedent high moisture ground conditions coupled with high rainfall may generate a 

large summer flood (Fitzpatrick et al., 2008). As temperatures drop during late summer 

into fall, autumn rains wet the catchment’s bare soils and reconnect the upper basin to the 

river - generating flash floods after almost every significant rainfall.  

2.3. Medway Creek study site 

The study site is a 1.5 km long, full meander of Medway Creek (~7
th

 meander of the 

main stem, with a drainage area of 200 km
2
) (Figs. 1b and 1c), which runs through the 

Medway Heritage Forest and is located just upstream of the confluence with the North 

Thames River. Medway Creek has been gauged since the 1940s by Environment Canada. 

The gauging station (# 02GD008) is currently operated by the Upper Thames 

Conservation Authority (UTRCA). There are two steep (almost vertical) bluffs, one in the 

center of the meander (right bank) and one next to the upstream part of the reach (left 
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bank), that contribute large quantities of sediment to the channel during precipitation 

events and after the snowmelt. Elevations range between 242 m (river bed) to 265.4 m 

(top of the right bank Arva Moraine bluff). The top of the valley is 272.8 m. Medway 

Creek’s bed is about 5 m above Devonian limestone and shale bedrock and separated 

from it by Catfish Creek Till (Dreimanis et al., 1998). 

Bedforms along the reach include pools, riffles and flats (Fig. 3), point bars, one braid 

bar and two steps that are surprising for a reach with such a low slope (0.003%). Bed till 

exposures vary in length from a few cm to several channel widths. The main channel 

does not preserve any bed knickpoints or waterfalls within the erodible till although till 

benches and ledges usually exist next to bank toes. However, small tributaries and gullies 

without sufficient stream power to scour the till do have exposed till waterfalls that imply 

channel evolution. There are scattered coarse boulders (> 1024 mm) along the reach that 

are beyond the channel’s competence. Large woody debris (LWD) plays a key role in 

channel morphology as it protects the banks from erosion when logs are parallel to the 

flow below the bank’s toe, but also causes complex flow patterns when they are 

perpendicular or diagonal to the flow direction, causing localized scour or aggradation of 

sediments.   

3. Methods 

A comprehensive survey of channel morphologies (mapping and bedforms) and 

sedimentology (of alluvium and till) was performed on the full 1.5 km meander of the 

Lower Medway Valley (Figs. 1b and 1c). Analyses included: 1. Description of till 

sediment characteristics based on 44 clasts collected from the river bed; 2. Topographic 

and morphologic mapping and bedform analysis of the reach; 3. Mapping of till patches; 
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4. , Grain size distribution analysis of all bedforms and alluvium character, and 5. Annual 

monitoring of till erosion. Details of the methods are provided in the Appendix. The 

results were compared to other semi-alluvial rivers of the region, alluvial and bedrock 

channels in order to give a broader context to similarities and differences. In the 

discussion we relate our findings to geomorphic stability using a variety of sedimentary 

metrics. Geomorphic stability is defined as a channel being adjusted to its hydrology and 

sedimentology meaning that bank and bed erosion rates are within natural variability for 

that area and the river has the capability to transport incoming sediments from hillslopes 

and upstream without going through major deposition or scour.   Finally, we argue for 

classifying semi-alluvial channels as a separate river type between alluvial and bedrock 

channels.  

4. Results  

4.1 Till sediment characteristics 

There is a size limit to the till clasts we collected - ~ 200 mm (a-axis). Clasts larger 

than 200 mm picked up from the river bed and exposed to air were found to be very 

unstable: first cracking, then breaking into many smaller fractions and consequently 

could not be analyzed properly in the lab. Even when kept in river water or tap water, 

the > 200 mm till clasts crumbled and broke down into a slurry. Therefore, the clasts 

analyzed range from 60-210 mm (a-axis), b-axis from 50-140 mm, and c-axis from 20-

110 mm. This size limit biases our sample collection as it cannot contain large stones that 

occasionally occur in the till banks and in the bed of Medway Creek.  Sphericity of the 

clasts ranges between 0.12-0.32 (average 0.17, mean 0.16), which falls into the bladed 

shape category. The roundness values of the till clasts (range 0.1 to 0.8, average and 
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median 0.3) imply some rounding in place or actual transport of the entire till clasts as 

bedload during floods. The color of the 44 dry till clasts collected from the river bed 

alluvium are light grey (10YR7/1 Munsell color) and grey (10YR5/1) when the clasts are 

submerged and saturated. The amounts of sand (8-32%, average of 18%, median of 17%) 

and gravel (2-17%, average and median of 6%) are highly variable, with fines (silt and 

clay; < 0.063 mm) the dominant size fraction (57-89%, average of 76%, median of 77%) 

(Fig. 4a; Table 1). 

Bulk density of the till ranges from 1.32 to 2.54 g/cm
3
 (average 1.62 g/cm

3 
and 

median 1.52 g/cm
3
). These average values are slightly higher than Ohio tills (range of 

1.86-2.02 g/cm
3
) reported by Fausey et al. (2000) for the London Moraine Darby Till and 

higher than the Kalamazoo River bed cores (Lake Michigan drainage) -  1.05-1.97 g/cm
3
 

(average 1.39 g/cm
3
) (McNeil and Lick, 2004), but similar to Sunnybrook Till (from 

Highland Creek) - 1.7-2.2 g/cm
3
 and Halton Till (from Fletcher’s Creek) with 1.5-2.2 

g/cm
3 

in southern Ontario reported by Khan and Kostaschuk (2011). Porosity values 

range from 0.5-12% (average 2.6%, median 1.5%).  

Twenty-three of the till clasts (52%) were bioturbated (Fig. 4b) and 21 (48%) showed 

no macro-biological activity (Fig. 4c). The holes' diameters range from 2 to 8 mm in the 

bioturbated clasts and up 10 mm deep. The bioturbation is the first step in the breakdown 

of the clast to smaller fractions and removal of the outer layer although the till is massive 

and does not show apparent bedding. Till that was not bioturbated had a wet to dry mass 

ratio close to 1.0 (1.01-1.05, average 1.02) suggesting the till was heavily consolidated 

with no significant voids or cracks that allow water into the material. However, 

bioturbated clasts had a lower wet to dry mass ratio (0.88-0.99, average 0.97), indicating 
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that some till clasts endured breakdown and erosion. In some cases burrowing 

chironomids (blood worms) were seen within till clasts when removed from the water 

(Fig. 4d).     

Four borehole (BH) drillings done during July 2013 for a proposed development on 

top of the downstream left bank bluff included SPT (Standard Penetration Test) in the 

field and Atterberg limits in the lab. Seventeen tests were conducted in the Medway 

Valley till with sediment taken from the boreholes (Fig. 5). We excluded the topsoil and 

overlying lacustrine silt-clay layers of Glacial Lake London from analysis as these are not 

relevant to our study. The N-value (standard penetration resistance) for the SPT range is 

8-24 blows, average and median of 16 blows to penetrate 15 mm using 63.5 kg hammer 

and 50 mm cone. There was no difference with elevation (Fig. 5). The till contained 

intermittent wet sand layers. The Atterberg limits (Plasticity Index – PI) of the till range 

is from 9-29 PI (slightly plastic to medium plastic), average of 18 and median of 17 PI 

(both medium plasticity) suggesting high clay content (Tridon Properties Limited, 2014). 

Using the SPT N-values, it is possible to calculate the undrained shear strength of the 

tested till: 

                                                          cu = f1 N        (1) 

where cu is the undrained shear strength in kN/m
2
, N is the SPT blow count (N-value), 

and f1 is a factor depending on till plasticity (actual PI can be used as f1 for each sample 

instead of average PI). The undrained shear strength ranges from 99 to 483 kN/m
2
 

(average and median are 280 kN/m
2
) which are very high values. Trenter (1999) 

suggested that the best use of this approach is site-specific when only SPT N-values are 

available in some boreholes and other complementary in situ geotechnical tests (such as 
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CPT; Cone Penetration Test, a piezocone penetrometer probe, helical probe test; HPT and 

vane shear test) were not performed. Furthermore, this SPT method can only be used in 

tills that contain gravels while many geotechnical tests require that the sample will be 

devoid of gravel. For comparison, Shugar et al. (2007) and Khan and Kostaschuk (2011) 

tested the Sunnybrook till using jet testing and found a critical shear stress range of 

0.001-63.3 kN/m
2
 (average of 12.9 kN/m

2 
and median of 6.01 kN/m

2
); much lower than 

Medway Creek’s till. Flume work on the St. Joseph Till from the St. Clair River bed 

(Mier and Garcia, 2011) is a better representative of shear strength of the till as it 

replicates horizontal water shearing rather than vertical shearing that the SPT and jet-

testing induce on the till. Their study found that turbid water, once critical shear stress is 

attained, is much more erosive on the till than clear water. This result corroborates earlier 

work which showed that sand acts as a grinding agent on the till when it saltates or moves 

over the bed (Kamphuis, 1983; Kamphuis et al., 1990). Mier and Garcia (2011) also 

found that the erosion of the till has uncovered, to some extent, the embedded materials 

inside the clay mixture, which appear to comprise a wide range of particle sizes. Under 

flow conditions achieved at the critical point, those particles would be entrained if the 

material was cohesionless but till particle cohesion elevates the shear stress needed to 

erode them. Mier and Garcia (2011) shear stress values in the flume are 4.14-4.32 kN/m
2 

with an average of 4.23 kN/m
2
, which are low compared to most studies but similar to 

bed values of shearing of the Grand River (in Michigan) - 0.4 to 3.2 kN/m reported by 

Jepsen et al. (2000) using bed cores. The comparison between different sites and different 

types of till is difficult because of the different geotechnical techniques utilized by 

various researchers.  
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Pike (2014) recently examined till erosion in a unidirectional flume of samples 

collected from the area downstream of the right bank bluff in our study. Her results 

showed that mass erosion of till dominated and occurred around natural planes of 

weakness and irregularities, such as gravel particles, within the material and average 

shear stress of about of 8 kN/m
2
. However, when the samples were air-dried and 

reintroduced into water the shear stress needed was only 1 kN/m
2
 with complete 

disintegration of the till. Addition of an alluvium into the flume increased the erodibility 

of the till through direct particle impacts. Pike's (2014) results demonstrate that the 

different conditions the till is exposed to can lead to heterogeneous spatial erodibility. 

Furthermore, the tools and cover effect (Turowski and Rickenmann, 2009) depend on 

sediment supply from upstream, and till patch exposures tend to erode whether the water 

is clear or turbid. The complete cover effect of the alluvium protecting the till can only 

happen when the sediment is thick enough that even if some of the alluvium is in motion 

the till does not come into contact with any moving particles or the shearing action of the 

flow. It is worth noting that the above flume experiments/cores were done under 

controlled laboratory conditions with no alluvial cover/partial alluvial cover to protect or 

erode the till (i.e. enough to transport grains but not enough to cover); the till/clay 

samples are all disturbed to some extent when removed from their original location (the 

importance of shear stress). Temperature changes were relatively minor during the tests 

but the erosion/preservation processes are complex in a natural river setting. An 

experimental low strength boundary material channel mimicking bedrock by Finnegan et 

al. (2007) showed the complexity of interplay of sediment supply, river incision, and 
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channel morphology that all the above mentioned geotechnical tests were not set up to 

test.  

4.2 Till exposures, boulders and erosion of the boundary till 

Similar to bedrock, till (of subglacial or supraglacial origin) is not spatially 

homogenous and contains different architectural elements and associated lithofacies 

(Boyce and Eyles, 2000). For example, these properties include different ratios of sand-

silt-clay and rock fragments, grain size distributions, grain sorting, rock shapes, carbonate 

content and cementation, lamination, bulk density and void ratios (Dreimanis and 

Reavely, 1953; Dreimanis, 1959; Arneman and Wright, 1959; Easterbrook, 1964; 

Evenson et al., 1977; Hicock and Dreimanis, 1992). Tills are also known to contain 

cracks and fractures that are potential weak spots as water moves within them (Grisak 

and Cherry, 1975). An example of cracked till from Medway Creek’s bed can be seen on 

Fig. 6b and Fig. 7a.    

We detected and measured 24 patches of till which have at least ≥ 1 m of exposure as 

one of their dimensions (width or length). Such exposures are visible while walking along 

the channel at almost all flow conditions as their color is quite distinct from neighboring 

gravels (Fig. 6c, 6d and Fig. 7a-c). Till patches of this size constitute 598 m
2
 of the bed 

which is 0.03% of the study reach. However, we estimate that 5-10% of the bed is devoid 

of alluvium (i.e. till exposures) and the smaller estimate is due to the mapping technique 

that "misses" very small exposures and is highly subjective. These values of alluvium 

coverage (90-95% by area) are higher than Hrytsak's (2012) estimate of 70% on Medway 

Creek but these can be explained by different sampling procedures, different sampling 

locations, and different time of sampling.   
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In places where alluvium is thin it is enough to remove a single clast to expose the till 

substrate. Till patches appear in any of the bedforms (pools, riffles and flats) except steps 

and bars. In many cases, the till patch is a continuation of the bank till and forms a ledge 

and complex cross-section with an inner terrace-like shape. In cases where there is a 

steep gradient between the ledge and bed below, the till patch cannot alluviate from 

bedload transport as it is disconnected from the nearby deeper bed (Fig. 6b and 6c). Often 

the till is partially alluviated (i.e. it has gravel on top) from in situ gravel that is 

embedded within the till matrix (Fig. 7c), as was found by Mier and Garcia (2011) when 

they eroded a till slab in a flume. Occasionally, loose coarse material covering the till 

surface can originate from collapsed bank material.  

In bedrock channels the assumption is that coarse stationary material, especially 

boulders that occupy a large portion of the cross-section and create high roughness and 

turbulence, is responsible for alluviation and protection of the boundary from incision 

(Chatanantavet and Parker, 2008). We identified 275 boulders (≥ 500 mm) along the 

study reach and correlated their distance to the 24 till patch exposures, expecting a 

negative correlation (e.g. an exposed till patch will not be close to a boulder and the areal 

size of the patches will not be correlated to the nearest boulder upstream). The results 

presented in Fig. 8a and 8b show that boulders are not the direct cause for the boundary 

exposures, neither in terms of distance, nor in size.  

Our observations over four years have shown that in many instances the top 1-2 cm of 

the till bed becomes soft with time, while the underlying till remains highly consolidated. 

Broadly speaking, this observation corresponds to the proposal by Chatanantavet and 

Parker (2009) to a bedrock “battering layer” overlying an aging layer. We did not observe 
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any plucking processes (Whipple et al., 2000a). Nor did we observe the variety of 

bedforms that appear in bedrock channels (Richardson and Carling, 2005), besides ledges 

next to banks (Fig. 6b and 6c). Bioturbation of the till by chironomid larvae (blood 

worms) occurred only when they appeared in till ‘clasts’ (Figs. 2b and 2d) but not when 

the till was part of the bed or banks (Figs. 6b, 6c, 7a and 7c). 

Recovery rates of the erosion pins during four years were 57-100% with an average of 

65%. During two of the hydrological years (HY 2011-2012 and HY 2012-2013), the 

largest erosion pin patch (53 pins) next to the right bank was buried by a massive collapse 

of the till bank (estimated initially at 15 m
3
) that merged into the bed so recovery of pins 

by the end of the hydrologic year was calculated as zero. The patch was re-exposed 

during HY 2013-2014 after the removal of the reworked till, about half each year. There 

are two to six different patches per year and a total of eleven patches (Table 2). Bed 

lowering erosion rates range from 6-260 mm, average 61 mm and median of 39 mm. The 

260 mm lowering value of one of the pins seems unusually high but this can be explained 

by its location in a pool that was possibly heavily scoured and a chunk of till around the 

erosion pin was removed. Another possibility is that once the erosion pin was protruding 

into the flow it served as an obstacle to moving grains and it was impacted by them time 

and again further increasing the bed till erosion.  Spatial autocorrelations using Moran i 

reveal that there is no dependence of neighboring erosion pins within each patch, nor 

between the patches. Fig. 9a presents HY 2013-2014 results, when we had the most 

monitored patches, and exemplifies the variability of observed erosion rates. 

Unfortunately, there are currently no published erosion rates for bed lowering in till 

channels to which we can compare our results. Erosion of till banks in two Irish rivers 
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found erosion rates of 30-60 mm also with high variability within a site and between sites 

(Hill, 1973). The spatial heterogeneity in erosion within patches and between patches 

rates is probably associated with the till tensile strength. The more consolidated the till is 

the harder it is for the flow and particle abrasion to erode it and vice versa. An alternative 

explanation is that at this patch-scale the bed relates to the till patch as a local baselevel 

within the bedform it is in. Once the thin alluvium is removed or part of it is in motion 

the particles accelerate over the till due to the sudden change in boundary roughness and 

continue downstream. As the flow wanes the thin alluvium settles again but the till patch 

remains bare and lower than before. Thus, there is a positive feedback mechanism in 

which the till patch "attracts" bedload particles, those particles erode the till through 

rolling and sliding over the relatively smooth surface, they lower it further and continue 

downstream. This mechanism of till patch differential lowering due to serving as local 

baselevel can be seen in Figs. 6d, 7a and 7b where the till patch is a few centimeters 

lower than the nearby surrounding alluvium.     

Comparison of Medway Creek to erosion studies of bedrock channels indicates that 

Medway Creek’s maximum erosion rates are higher than all of the reported bedrock 

channels, but not by much (Fig. 9b). Relative to the till geologic erosion rate (2.6 mm/yr), 

our short term values are very high. However, other studies in bedrock channels also 

found similar results (Stock et al., 2005). This could be explained by periods of rapid 

valley incision and periods of relaxation when the channel reaches a hard substrate or is 

climate-induced (i.e. less precipitation and flows). It may also indicate that the incision is 

not homogenous in space and time over the river valley and it occurs in a patchy manner 

depending on local hydraulic/sedimentary conditions.  
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4.3 Bedform dimensions and spacing 

We identified a total of 38 continuous bedforms, excluding the 5 bars (4 pointbars and 

one braid bar). Bars were excluded because, besides the braid bar, they are forced 

(meander) pointbars and lack downstream connectivity to the upstream and downstream 

bedforms, except during high flows when they are activated. Therefore, they will only be 

discussed in section 4.4 regarding their grain size distributions. Of the 38 continuous 

bedforms, the most common were riffles (39.5%), then pools (34.2%), flats (21.1%) and 

2 cobble-boulder steps (5.3%). Table 3 and Fig. 10 present the bedform characteristics.  

Although we followed the detailed bedform classification of Montgomery and 

Buffington (1997), the distinction between pools and flats, which are both scour features 

and have some similar dimensional characteristics (Figs. 3 and 10c), is problematic and 

prone to observer bias and considerable error in forested channels (Wood-Smith and 

Buffington, 1996), especially when the determination criteria is visual. The bed boundary 

exposures of till can be considered separate from bedforms, so they appear below 

independently.  

 The spatial bedform arrangement is quite inconsistent. The intervening bedforms 

between identical bedforms can be of different kinds or can be repeated more than once. 

Therefore, the typical alluvial rivers bedform coupling of pools-riffles, flats-riffles and 

steps-pools does not apply to the study reach as in many instances there are intervening 

bedforms that disrupt this organization. Spacing between the 15 riffles ranges from 12 to 

321.5 m (average of 84.1 m, median of 47.3 m). Nine of the intervening bedforms are 

pools, three are flats and two are a variety of bedforms. Spacing between the 13 pools 

ranges from 5.1 to 195 m (average of 33.5 m, median of 14.5 m), of which the 



107 

 

intervening bedforms are eight riffles, one flat and three are a variety of bedforms. 

Spacing between the 8 flats range from 0.5 to 369.3 m (average of 121.3 m, median of 67 

m). The intervening bedforms are two riffles, one step, one pool and the other three are a 

variety of bedforms.  

The two boulder steps (the downstream one is seen in Fig. 6a) were termed by Martini 

(1977) as “small scale riffle bars” or “large scale transverse ribs”. While they are very 

distinct and unusual for such a low gradient channel (0.003 on average), the distance 

between them in the study reach is more than 1 km, so we can neither relate to spacing of 

other bedforms nor to any relations between them. Both boulder steps span the whole 

channel width: the upstream one is 10.4 m wide and the downstream one 13.3 m wide. 

However, these unusual bedforms do appear in other nearby rivers and were observed on 

the North Thames River, Maitland River and the Bayfield River to the north that are also 

semi-alluvial channels incised into till (authors’ personal observations). Martini (1977) 

described these coarse steps on Irvine Creek as perpendicular to the flow imbrications 

either isolated or in sets of two or three. In order for them to form, the channel needs to 

have strong convergent flow during floods and the steps separate steep reaches into a 

series of riffles and pools. The upstream step separates two flats and the downstream one 

is between a pool and flat. Despite their coarse size, the steps are not a stagnant 

sedimentary body and they break down and re-form during high flows (see grain size 

distributions below).  

4.4 Grain size distributions, alluvium structure and thickness 

Downstream fining is a main sedimentary feature in alluvial rivers that is often 

investigated and infers channel competence reduction (Ashworth and Ferguson, 1989) or 
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sediment attrition (Adams, 1979). While downstream fining usually occurs over long 

distances when the channel changes its gradient and stream power (Knighton, 1980), 

other factors such as bimodality (Wolcott, 1988), tributary disruption (Rice, 1998) and 

patchiness (Paola and Seal, 1995) can also cause the opposite effect of downstream 

coarsening (Brummer and Montgomery, 2003). Using this rationale, we hypothesize that 

the channel expansion and contractions along Medway Creek (discussed in Bergman et 

al., 2016b) and the till boundary forcing (i.e. till control) will also exhibit some kind of 

sedimentary pattern (Sklar et al., 2006), despite the relatively short distance of the study 

reach. Ferguson et al. (1996) also used this approach in the Allt Dubhaig (Scotland) for a 

2.5 km reach. Gran et al. (2013) attributed downstream coarsening on the Le Sueur River 

(Minnesota) to break-up of the till which leaves behind coarse lags and strongly affects 

the longitudinal profile. A study by Renwick (1977) in a small channel in New York has 

shown that very coarse material originating from glacial deposits is introduced into the 

main channel during extreme storms.  

On Medway Creek, benches and ledges (Figs. 4b, 4c and 5c) are the only sculpted 

forms that are preserved within the till geometry and the abundant forms described for 

bedrock channels (Richardson and Carling, 2005) are absent. We did observe a boulder 

lag at the toe of the right bank bluff, almost bar-like in shape (Fig. 6d). Since the bluff is 

an outer meander cut bank, it leads us to believe this is a result of the channel’s inability 

to transport these boulders during most flows, as there are till exposures nearby that 

suggest high shear stress during floods (Fig. 6d).  

The grain size distributions of 43 bedforms (pools, riffles, flats, bars and steps) are 

presented in Fig. 11a. Most of the grain size distributions (GSDs) are bimodal (65%). Of 
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the fifteen riffles, eleven (73%) distributions are bimodal and four (27%) are unimodal. 

Three of the bars are bimodal (60%) and two are unimodal. Ten of the pools (77%) are 

bimodal and three (23%) are unimodal distributions. The eight flats have the highest 

unimodal distributions with five (63%) and the other three are bimodal (37%). By 

bedform, most of the bed is poorly sorted (84%) while the remaining bedforms are 

moderately sorted. By bed area, 77% of the bed is poorly sorted while the rest is 

moderately sorted. It is quite difficult to observe any trends as the grain sizes of the 

bedforms overlap both in the fine and coarse tails, except for pointbar 3 which is much 

finer than the rest. It is noteworthy that both the fine and coarse tails of GSDs are prone 

to large errors associated with sampling procedures. Furthermore, the connection of the 

tails to the main curve using sometimes completely different sampling techniques (i.e. 

Wolman pebble count and sieving) is also problematic. To minimize the errors all GSDs 

in this study were done by one individual and with identical sampling program for all 

bedforms.  

To overcome this difficulty, we average the GSDs of all bedforms by their type (Fig. 

11b). This shows that pools are finest, followed by bars, flats are intermediate while the 

riffles and steps are coarsest. The pools and flats are almost identical in their coarse tail 

(d70 and above). The steps show a much coarser distribution than all other bedforms but, 

considering this GSD is based only on two bedforms and their limited total area of the 

bed, it would be wrong to draw any major conclusions about the whole bed from them. 

However, the steps’ GSDs changes with time are a good indicator of the behavior of the 

coarse bedload fractions and whether boulders of certain sizes are mobile or not (see 

below).  
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There are two types of bars along the reach: four pointbars and one braid bar just 

below the downstream step. The bars' sedimentary importance lies in the fact that they 

are slightly elevated above the immediate channel and dry most of the time, i.e. they 

represent the sediment composition that is transported as bedload during high flows 

(Leopold, 1994) although the sand fraction can be entrained in suspension (Nunally, 

1967). They constitute < 1.0% of the total area of the reach. Looking at their coarse tails 

shows that they contain few large cobbles and small boulders (256-512 mm). Pointbar 3 

is significantly finer than its counterparts and is entirely composed of sand.  

Selected percentiles of gravels along the study reach are presented in Fig. 11c. Very 

slight downstream fining trend is observed within d5 to d75 (trend line slope range is from 

-0.0175 to -0.0028). However, there is a slight coarsening trend for the d95 percentile and 

the dmax, (trend line slope of 0.012 and 0.041, respectively) possibly suggesting that the 

very coarse boulder tail is non-fluvially controlled (Wolcott, 1988; Brummer and 

Montgomery, 2003). It is possible that our 1.5 km study reach is not long enough to 

capture such subtle sedimentary changes and lies within natural variability, but the fact 

that only two coarse percentiles are different than their finer counterparts is indicative of 

supply external control (exposure of boulders from the till bed and banks) rather than 

competence and those boulders being transported from upstream. Thayer et al. (2016) 

found downstream fining on the Little Rouge River (115 km
2
, Lake Ontario drainage) 

correlated to slope and disturbed by coarse cobble-boulder lags generated by the till but 

their study was done over a 45 km long reach where such differences are pronounced, not 

on a reach-scale. The sorting index (SI) of all bedforms ranges from 1.7 to 4.4 (average 

of 2.9, median of 2.8) conforming to poorly sorted to very poorly sorted gravels. If 
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partitioned into bedform types the average and median sorting of the riffles (1.9-3.7 

range) and flats (1.7-3.6 range) are identical at 2.7, lower and better than the pools' 

average and median sorting of 3.5 (2.6-4.4 range). The four pointbars have an average 

sorting of 2.4 (range 1.7-4.0, median 2.0). The two steps containing mainly cobbles and 

boulders are best sorted at 2.2 average (range 2.1-2.3) together with the braid bar at 1.9.  

The sand fraction of the distributions (≤ 2 mm) that is known to be a destabilizing 

component of the bed when appearing in high values (Wilcock et al., 2001) shows that 

despite the till's predominantly fine-grained composition it is not directly reflected in the 

bedforms. As expected, pools have the highest sand representation of 4.2-39.4% (average 

15.5%, median 11.1%) followed by flats with 1.7-13.8% (average 6.9%, median 5.3%). 

Riffles have 0.7-11.4% (average 5.5%, median 4.5%) while the steps have the lowest 

sand fractions of 2.6-2.7% (average and median 2.7%). Besides one pointbar that was 

entirely made of sand (Pointbar 3), the other three pointbars together with the braid bar 

were devoid of any sand during the sampling survey. These results require further 

analysis to define bedform and reach stability of the study site. Such a stability analysis 

using a variety of accepted metrics appears in the discussion section below.   

As stated above, steps are the coarsest bedform (Fig. 11b) and they were stationary 

during the study period, i.e. did not change location or migrate, somewhat like a steady 

local baselevel (Bowman, 1977). However, comparing their annual GSDs reflects the 

behavior of the mobile coarse fraction of the entire channel, similar to higher elevation 

pointbars in alluvial channels (Nunally, 1967). Peak discharges during the four year study 

period ranged 26-64 m
3
/s, discharges that are sub-bankfull to bankfull depending on 

which cross-section in the reach is chosen (see Bergman et al., 2016b). Figure 11d 
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demonstrates that there were sedimentary changes in the steps' GSDs over four years. 

The d50 of the upstream and downstream steps fined (from 159 down to 118 mm and 

from 182 down to 178 mm, respectively). On the other hand, the coarser tails of the 

GSDs, from d84 and above, show that the upstream step coarsened while the downstream 

one fined (dmax of 770 went up to 920 mm and 840 declined to 700 mm, respectively). 

Hence, boulders of certain sizes were mobile. Blair and McPherson (1999) classified this 

sediment fraction as "medium boulders" (512-1024 mm). There are "coarse boulders" 

(1024-2048 mm) in the study reach (the largest one with a b-axis of 2000 mm can be seen 

in the background of Fig. 6a upstream of the step), but we have no GSD indication or 

visual observation that any of these boulders had moved during our study. Out of 275 

boulders sampled, only 10 (3.6%) fall into this category and we conclude this is an 

immobile fraction of the bed, originated from the local bed and banks till rather than 

fluvially transported from upstream. The fine tails of gravel and sands in both steps were 

non-existent in the early sampling and are not a result of sampling truncation or error. 

This suggests the steps can trap the finer bed fractions in large voids between the cobbles 

and boulders. Mobility of this coarse bedform relies on sampling accuracy being done by 

the same individual, is reproducible, and incorporates all material present in the steps as 

its transverse and narrow alignment is easily characterized as one grain population, as 

suggested by Kondolf (1997).     

A key sedimentary feature that implies sediment availability from banks and hillslopes 

(or river valley) and extent of the mobility of the alluvium during floods is the bed 

vertical structure, i.e. stratigraphic armoring of the bed (Parker and Klingeman 1982; 

Dietrich et al., 1989) or its absence (Laronne et al., 1994). Whereas armoring of the bed 
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suggests low sediment supply from upstream or lateral sediment inputs leaving a coarse 

lag at the surface when the fines are transported and diminished and consequently 

minimal bed mobility occurs (Parker, 1990), a thick non-graded alluvium (often with 

upward grain coarsening) implies a vast supply of sediment and high sediment mobility 

(Powell, 1998). However, moving in the upstream-downstream direction can also yield 

variations in armoring even if sediment supply is high (Lisle and Madej, 1992) as the 

river bed is patchy and contains a very wide grain size distribution (Paola and Seal, 

1995). In order for any bed structure to form, a certain alluvium thickness is needed 

unless the boundary is exposed and there is not enough sediment to cover the entire 

channel bed. Analysis of 26 random locations along the study reach thalweg, alongside 

213 m downstream of the downstream right-bank bluff, revealed that alluvium thickness 

ranges from 0 (i.e. no alluvium at all and exposure of the boundary till) to 62 cm at 

riffles' tails (average depth 20 cm, median 10 cm). In the same river, Hrytsak (2012) 

found in two reaches an average alluvium depth of 24 cm, which is quite similar to our 

results. In many pools, flats and riffles' heads the thickness is only one grain thick 

suggesting that the boundary is highly erodible if the protecting alluvium is removed 

during sediment transport (cover becoming tools effect; Turowski and Rickenmann, 

2009), almost like a thin veneer. In contrast, in the riffles' centers and tails the alluvium 

thickens and the cobbles are highly interlocked with sandy fines filling the matrices. 

These sedimentary structures are, therefore, much more difficult to break. However, in 

these alluvium deposits there is no classic two-layered armor (Dietrich et al., 1989), but 

rather a more homogenous (non-censored) vertical structure from the surface all the way 

down to the till boundary's subsurface. This finding of no bed armor corresponds to the 
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extensive GSDs survey of Annable (1996) that found that none of the local rivers were 

armored using the d50 armor ratio (d50Surface/d50Subsurface <  2). Even when using d84 for the 

armor ratio, only six streams of 47 (13%) were found to be armored (ratio > 2). 

Specifically relating to six streams classified like Medway Creek (E4 type), armor ratios 

were very low (≤ 1) using d50 ratio but even when using d84 ratio, none passed the armor 

threshold of 2. Two rivers (33%) were very close to the armor threshold but the other 

four (67%) were with a ratio equal to or about 1 (Annable, 1996). If the armor ratio 

metric is valid for rivers like Medway Creek as it is for alluvial rivers, there is no 

shortage of sediment supply from upstream, till banks and bed. This notion is highly 

important as it implies that till exposures are not a direct result of sediment supply 

shortage (i.e. there is enough within-reach sediment to blanket the entire bed) but rather a 

result of local hydraulics. 

5. Discussion - Channel (in)stability  

The fact that local river practitioners use the Natural Channel Design (NCD) method 

(Ashmore, 1999; Annable, 1999) borrowed from the alluvial literature and its consequent 

failure (Ness and Joy, 2002; Annable, 2003) exemplifies the need for a more robust, 

quantitative approach based on actual field measurements transformed into stability 

indices. We therefore look for indices that are solely based on quantitative measured 

geomorphic attributes. The use of bankfull discharge as a stability metric (Olsen et al., 

1998) seems inappropriate for our study reach (Annable et al., 2011; Floresheim et al., 

2013; Hassan et al., 2014). This metric of bankfull discharge is addressed in Bergman et 

al. (2016b).  
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5.1 Channel stability based on sedimentary attributes 

We apply three different indicators of channel stability: the Log Relative Bed Stability 

(LRBS
*
) index of Kaufmann et al. (2008; 2009), Kappesser’s (2002) Riffle Stability 

Index (RSI), and fine sediment abundance (Lisle and Hilton, 1992, 1999). The LRBS
*
 

method describes the tendency of the bed particles to resist erosion relative to the 

reference bankfull discharge. The essential reach-wide field data are a systematic particle 

count, a longitudinal profile of thalweg depth, bankfull width and height above present 

water level, and reach-wide bed slope: 

RBS
*
 = 1.66θdgm /(RS)       (2) 

where θ is the critical dimensionless Shields number (see below), dgm is geometric mean 

bed surface particle diameter (m), R is hydraulic radius (m) and S is bed slope 

approximated to water surface slope. dgm is calculated by: 

dgm = (d84d16)
0.5

       (3) 

θ range is 0.04-0.5 and is calculated from the Reynolds particle number: 

Rep = [(gRS) 0.5dgm] /v     (4) 

g is gravitational acceleration (m/s
2
), v is the kinematic viscosity of water (1.02 10

-6
  m

2
⁄s 

at 20˚C). When Rep ≤ 26 θ is 0.04 and when Rep ˃ 26 θ is 0.5. The difference in θ values 

is associated with the gradient of the streams, where for high gradient streams Shields 

numbers are large while small θ values represent mobility under conditions with form 

roughness absent (i.e. assigning θ values according to GSDs). The reference bankfull 

discharge values (width and height above present water level) we used were the actual 

measured values for each bedform. In order to simplify the results, Kaufmann et al. 

(2009) suggested to add a log to RBS
*
 so the results will have a narrow range for 
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comparison purposes and be termed LRBS
*
. The higher the LRBS

*
 value the higher the 

stability and the closer it is to zero or even negative the bed is unstable and prone to scour 

and induce high rates of sediment transport.  

The results of this analysis are highly unexpected in the sense that the pools, which 

would be expected to scour during high flows, are the most stable bedforms (range = 

0.16-1.96; average = 1.12; median = 0.96) followed closely by flats (range = 0.43-1.85; 

average = 1.09; median = 1.13) (Fig. 12a). The depositional riffles are the least stable 

bedform in the reach (range = -0.03-1.28; average = 0.38; median = 0.24) (Fig. 12a). The 

LRBS
*
 of the whole reach equals 0.8. While there is no absolute LRBS

*
 value which 

distinguishes a functioning and impaired river system, LRBS
* 

does give a robust measure 

of the bed stability for comparison. For example, Pahl (2006) found much lower stability 

values than we report for 13 alluvial reaches of the Carson River in Nevada (range = -

1.89-0.26; average = -0.96; median = -0.85). Although Medway Creek is an incised 

channel, and its stability results are higher than the Carson River values, it would be 

wrong to make assumptions about instream habitat quality based on 

sedimentary/hydraulic criteria without actual measurement of biological inventory 

(Duncan et al., 2011).   

 Kappesser’s (2002) Riffle Stability Index (RSI) is defined by calculating the 

geometric mean (dgm) of the riffle of interest and then checking on its cumulative GSD 

what the corresponding percentile for that value is. The resulting RSI value is unit-less. 

The higher the RSI value, the higher the loading of fines. The main assumption behind 

this index is that the amounts of fines reflect the degree of landscape disturbance. An 

abnormally eroding landscape would choke the channel with large amounts of fine 
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sediments that it cannot evacuate during sediment-carrying flows. Medway Creek’s 

riffles fall within a relatively narrow RSI range of 31-48 (average and median 38) (Fig. 

12b). These low values indicate that riffles possess similar attributes, with relatively low 

textural variability. For comparison, streams of Idaho have higher median RSI values of 

58 and 80 for natural and managed rivers respectively (Kappesser, 2002). Virginia 

streams have a mean and median of 70, with low values of 40 and high values 

approaching 100 (Kappesser, 2002). The riffle stability results of Medway Creek also 

corroborate the GSDs minor changes in the upstream – downstream direction, seen in 

Fig. 11c, without any significant textural changes. However, due to lack of research on 

till channels, it is hard to determine whether these low RSI values are normal, indicate 

another control exerted by the local till textural composition, or reflect disturbance from 

land uses within the basin upstream of the study site.      

Since LRBS
*
 and RSI are not enough to indicate conclusive results, we applied a third 

stability metric. Fine-sediment abundance can indicate a reduction in transport capacity 

without a compensating decrease in sediment supply. This assumption comes from the 

graded river concept of Mackin (1948) - if the river maintains equilibrium conditions 

over time, no bed deposition or scour occur – although the GSDs can change as a 

function of sediment supply. However, it is expected that, if the bed is starved of 

sediment, a coarse surface layer of armor will develop once the fines are winnowed out 

(Dietrich et al., 1989). Conversely, if sediment supply exceeds transport capacity, the 

river will supply no armor and the fines will dominate the surface layer (Laronne et al., 

1994; Bergman et al., 2010). Ecologically, excess fines in a river bed are perceived as a 

negative component of the GSD, as they block gravel pores, smooth the surface, reduce 
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roughness and consequently affect habitat quality and spawning of fish (Everest et al., 

1987). Fines also increase bed instability by reducing the shear stress needed to entrain 

coarser fractions (Wilcock et al., 2001). The question is: is fine sediment abundance a 

reliable stability metric in a river where the boundary material produces large amounts of 

fines? Pools are usually the best indicator for fine sediment abundance because: 1) this 

fraction is deposited within them during the waning stage of floods; 2) it is the first 

fraction to be winnowed out of the pool; 3) the residence time is therefore relatively short 

(Lisle, 1995); and 4) it reaches full fractional mobility during a typical flood season 

(Church et al., 1991). To test an abundance of fines metric on Medway Creek we 

implement the technique proposed by Lisle and Hilton (1992, 1999) of relative volume of 

fine bed material on the 13 pools of the study reach. Dimensionless relative volume of 

bed material V
*
 is represented by: 

V
*
 = Vf/(Vf + Vr)     (5) 

where Vf and Vr are respectively the fine sediment pool volume and residual pool volume 

for each pool. The scoured pool volume (Vf + Vr) is the residual volume of a pool if the 

fine sediment were removed (Lisle and Hilton, 1992). On a channel like Medway Creek 

that has a wide GSD from silt-clay till patches up to medium boulders, choosing a coarser 

truncation point for fines than the traditional sand-gravel transition (2 mm) is fitting to 

reduce the sampling bias of the fine tail of the distribution. Since we conducted the GSD 

sampling with 32 mm truncation between Wolman pebble counts and sieved fractions 

(coarse gravel to very coarse gravel transition), we used this clear boundary to define the 

finer material (Vf). Results show that the relative volume of fine sediment in pools is not 

high (ranging = 0.01-0.15; average = 0.04; median = 0.03; Fig. 12c). The fifth pool (V
*
 = 
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0.15) is unusually high compared to other pools. This pool is just downstream of the right 

bank bluff, which might be the cause for fines loading, although the first pool 

downstream of the left bank bluff does not show the same fines loading. If compared to 

the results from Bear Creek, California, a river rich in fines with granites and 

metasediments as parent material (Lisle and Hilton, 1992), our results are quite similar to 

undisturbed pools of Bear Creek, but significantly lower than Bear Creek pools that were 

disturbed by illegal mining activity (values up to 0.55; Fig. 12c). Lisle and Hilton (1999) 

differentiated between river channels with fines from poor parent material and fines from 

rich parent materials. The latter, of interest to our study, show values ranging from 0.01-

0.50, average 0.2 and median 0.19 (n =22). The pools’ relative volumes of fine sediment 

on Medway Creek support the previous stability analysis of Kaufmann et al. (2008; 2009) 

that pools are the most stable bedform of the study reach (Fig. 12a).  

If the three methods are a robust viable measure of stability in till channels, as they are 

for alluvial ones (Rathburn and Wohl, 2003; Pahl, 2006), they show that the bed is stable 

as the riffles, which present instability, only constitute 15% of the total bed area of the 

study reach. However, in a recent paper Lisle et al. (2015) cast doubt on the ability of 

stability metrics to adequately describe channel impairment, especially with human 

interference (anthropogenic sources). Geomorphic channel impairment is generally 

defined as a river that has a constant imbalance between its hydrology and sedimentology 

(process and form) and thus it is not functioning properly. This negative state contrasts 

natural variability in which the river's channel form and process maintain quasi-

equilibrium. Lisle et al. (2015) suggest having a two tiered evaluation where tier one uses 

rapid assessment to provide a coarse analysis (such as the stability metrics above) while 
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for tier two an historical contextual assessment is needed. Presently it is not possible to 

conduct the tier two phase as there is no “template” or “reference” till river that 

sufficiently describes form and process. Considering that the till parent material produces 

large amounts of fines (Fig. 4a; Tables 1 and 2) and that there has been human 

disturbance in the upstream catchment for more than two centuries, the use of the phrase 

“sediment impairment” needs scrutiny to distinguish normal levels of fines 

("background" or ambient sediment) from unusual amounts of fines loading (Belmont et 

al., 2011). Wilkin and Hebel (1982) worked on the Middlefork River (Illinois, 

Mississippi River drainage) that, like Medway Creek, is deeply incised into glacial 

sediments. They found that sediments are predominantly eroding from in-channel 

sources (bed, banks and farmed floodplains) rather than farmed uplands.  

From an ecological point of view, Medway Creek (and specifically our study site 

that is annually sampled) has the highest fish biodiversity in any southern Ontario 

stream with 44 species (John Schwindt, Upper Thames River Conservation Authority, 

personal communication). The high fish biodiversity would imply a healthy and stable 

river system making the geomorphic-sedimentary stability metrics inadequate at this 

stage to make decisions on assessing channel state, especially for habitat quality use 

for which these sedimentary metrics were designed. The sedimentary metrics are also 

disconnected from water quality parameters (i.e. it does not matter to the results if the 

river is polluted or not) so connecting channel sedimentology and biological attributes 

without proper context is flawed.  
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5.2 Channel stability based on GSDs of fine-rich rivers   

It is accepted that in gravel-bed rivers the presence or absence of abundant bed fines is 

a reliable indicator of channel stability determining its bed mobility (Lisle and Hilton, 

1992, 1999; Wilcock et al., 2001; see previous section). The increase in fines destabilizes 

the coarser bed particles and reduces the shear stress needed to entrain them while the 

fine particles themselves (usually sand up to pebbles) are easily mobilized at relatively 

low shear stress flow events. Thus, an armored bed (i.e. the upper layer of the bed is 

coarse-grained and overlies finer particles) is much harder to entrain than a mixed bed 

dominated by fines. By comparing Medway Creek's generalized GSD to other river beds 

where the local geology produces rapid sedimentary breakdown and high supply of fines, 

it is possible to put these bed characteristics in a wider context. By giving each GSD of 

the bedforms a weighted percentage of the channel area it occupies, we are able to 

transform all the GSDs of Medway Creek (Fig. 11a) into a single GSD representing the 

entire study reach (Fig. 11b).  

We compare Medway Creek's bed to three other rivers with very high fine sediment 

supply: Nahal Eshtemoa of the northern Negev Desert (Israel) (Powell et al., 1999), a 

semi-alluvial semiarid gravel-bed channel incised into late Pleistocene loess deposits; 

Nahal Me’arot in NW  Israel (Greenbaum and Bergman, 2006), a watershed with 

Mediterranean climate draining an ancient volcanic valley with eroded tuffs and 

limestone clasts; and the West Walker River flowing out of formerly glaciated Sierra 

Nevada in California into a rain-shadow desert with eroded granites (Bergman et al., 

2010). We caution that Medway Creek and the West Walker River are perennial rivers 

dominated by spring snowmelt hydrographs, while Nahal Me'arot and Nahal Eshtemoa 
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are flashflood-prone ephemeral wadis. While the common notion is that bed structure and 

composition are mainly controlled by sediment supply (Parker and Klingeman, 1982; 

Dietrich et al., 1989; Laronne et al., 1994), hydrograph shape and duration effects on bed 

stability producing similar sedimentary stability outcome cannot be ruled out (Hassan et 

al., 2006).  

Our analysis shows that Medway Creek falls between ephemeral rivers and the 

perennial desert river, with Medway Creek’s GSD finer than the West Walker River but 

coarser than the Mediterranean volcanic and semiarid GSDs (Fig. 13). There does not 

appear to be an unusual amount of fine sediment loading (< 2 mm), although if the 

truncation of fines is increased to 32 mm (medium gravels) it constitutes about a third of 

the bed. This value possibly suggests that shear stress needed to entrain a large portion of 

the bed is not high indicating bed instability.    

We look at four different sedimentary attributes of these four rivers: modality, sorting, 

skewness and kurtosis of their GSDs. Sediment modality is important for bed stability as 

bimodal sediment is less stable than unimodal sediment and consequently results in 

higher transport rates and sediment yields (Wang et al., 2015). Furthermore, bimodal 

beds may represent a distinct threshold between gravel-bed and sand-bed states 

(Sambrook Smith, 1996). This could reflect the parent material composition as each peak 

represents a distinct population of different material supplied to the stream, or material of 

the sizes between the peaks could be structurally unstable and, therefore quickly breaks 

down to sand-size particles (Wolcott, 1988). All four rivers have bimodal or polymodal 

distributions, with very poorly sorted beds, the fine tails dominate with negative skew (as 

expected) and besides the West Walker River that is very leptokurtic, the other three 
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rivers are quite similar and mesokurtic (Table 4; Fig. 13). The reason that West Walker 

River is leptokurtic may be the proximity of sampling sites to the Sierra Nevada (i.e. 

relatively short distance downstream from the narrow mountainous canyon reach), 

explaining the presence of very coarse bed material in the channel, while for other rivers 

the distributions are possibly linked to some downstream fining and better sorting 

processes. In order to quantify each GSD's ability to resist flow shear, some measure of 

modality is needed. If the sediment mixture is weakly bimodal, the critical shear stress of 

individual fractions will show little variation in grain size and will depend only on the 

mean grain size of the mixture (i.e. d50). For strongly bimodal sediments, fractional 

critical shear stress increases with grain size, an apparent result of lateral segregation of 

the finer and coarser fractions on the bed surface that causes fractional critical shear 

stress to deviate from size independence in the direction of unimodal (Shields) values. 

Wilcock (1993) suggested a bimodality parameter B to quantify the effect of bimodality 

on critical shear stress of the bed:   

                                                      B = (dc/df)
0.5

∑Pm               (6) 

where dc is the coarse mode, df is the fine mode and Pm is proportional to the bimodal 

sediments. A mode is assumed to have a width of one Φ unit (factor of two). Each mode 

is defined as the four contiguous 1/4Φ units containing the largest proportion. Therefore, 

∑Pm can take a maximum value of unity for a purely bimodal mixture. If the B ratio 

presents low values (B < 1.0) modality is weak, while high values (B > 1.0) indicate 

strong modality. When the modes (dc and df) are close, the GSD is narrow and tends to 

behave like a unimodal sediment mixture (Wilcock, 1993) with higher bed stability 

(Wang et al., 2015). We use d16 and d84 for dc and df, respectively. Results show that all 
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four river beds are high and consequently unstable: the two ephemerals (loess and 

volcanic sediments) have an identical B (4.2), the West Walker River (granites) produces 

the lowest B (2.3), while till from Medway Creek presents the highest value of B (5.9). 

Interestingly, the sum proportion in mode (∑Pm) divides the ephemeral channels and the 

perennial channels into two distinct groups with values of 0.6 and 0.8 respectively. We 

conclude that loading of fine sediments in Medway Creek is not abnormal. However, 

when dealing with rivers that have unique geology, then sedimentary metrics should be 

used in context with background bed fine levels or as part of a long-term monitoring 

program in which changes can be detected and cause and effect distinguished. More 

sedimentary datasets are needed from fine-rich channels to isolate the non-

alluvial/geologic control or signature from ordinary fluvial process variability typical of 

alluvial channels free of non-fluvial constraints (Wolcott, 1988; Sklar et al., 2006).       

6. A case for a new channel classification category 

In all historic channel classifications in humid-climate environments (e.g. Leopold and 

Wolman, 1957; Kellerhals et al., 1976; Rust, 1977; Rosgen; 1994; Kondolf, 1995; 

Montgomery and Buffington, 1997; Newson and Newson, 2000; Church, 2002), semi-

alluvial channels in general and till-bedded channels in particular do not receive specific 

treatment. The river researcher or practitioner needs to assume they are a hybrid between 

bedrock channels and alluvial channels, often just treated as low gradient, sinuous gravel-

bed rivers (Hartley, 1999; MacVicar and Roy, 2011; Marchildon et al., 2011). This lack 

of attention to till-bedded rivers is surprising as vast areas of North America were 

glaciated by the Laurentide and Cordilleran Ice Sheets (Ehlers and Gibbard, 2004a), and 

it is also relevant to Europe (Trenter, 1999; Ehlers and Gibbard, 2004b; Prasicek, 2015), 
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and other continents (Ehlers and Gibbard, 2004c, Prasicek, 2015). Furthermore, as 

climate warms, more and more areas will be deglaciated and glacial deposits will be 

exposed (Marren and Toomath, 2014).  

Our extensive dataset and anecdotal research from other till-bedded rivers show that 

semi-alluvial till-bedded channels are different from both alluvial channels and bedrock 

channels in many aspects: 1) till erodibility within the same till and between tills; 2) 

bedform arrangement; 3) lack of one dominant discharge such as bankfull or effective 

discharge; 4) anomalous grain sorting processes that are a mix of fluvial and non-fluvial 

controls; 5) large spatial variation in alluvium thickness; and 6) alluvium structure that 

does not resemble the 2-layered armor structure typical of perennial alluvial rivers. We 

therefore argue that semi-alluvial till-bedded channels deserve a category of their own 

between bedrock channels and alluvial channels in all future channel classifications. The 

differentiation of a new category has three main implications: 

1. The geologic constraint, conditioning or legacy of semi-alluvial rivers should be 

explicitly considered rather than merely an overlooked background detail. 

Specifically for till-bedded channels, to date (2016), the entire literature consists 

of less than twenty papers that focus on glacial conditioning. The historical 

context may better explain form and processes and reveal the non-fluvial 

component of the landscape. Such a legacy exerting some control on river 

evolution is not necessarily tills or other glacial deposits as discussed in this 

study but could also be incised loess channels (Seginer, 1966; Schumm et al., 

1984; Simon and Hupp, 1986; Simon, 1994; Rozin and Schick, 1996; Hanson 

and Simon, 2001; Craddock et al., 2010; Bergman et al., 2014) or channels 
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loaded with eroded volcanic materials such as tuff, pumice, tephra and ash 

(Collins et al., 1983; Major et al., 2000; Hayes et al., 2002; Greenbaum and 

Bergman, 2006).     

2. The degree of control that non-alluvial material exerts might be associated with 

time scale and changing climate - if the material was completely exhumed the 

channels may behave as ordinary alluvial or bedrock channels. For example, in 

the Great Lakes region, both Hack (1965) and Martini (1977) describe channels 

that incise into bedrock, i.e. the glacial deposits were completely removed since 

the end of the last ice age. In contrast, in this study and the studies of Phillips 

and Robert (2005), Arbogast et al. (2008), Wilcock et al. (2009), Gran et al. 

(2009; 2011 and 2013), Belmont (2011), Belmont et al. (2011), Khan and 

Kostaschuk (2011) and Phillips and Desloges (2014; 2015a, b); Thayer et al., 

(2016), rivers encounter tills or other glacial deposits. The early work of Ruhe 

(1952) identified age as a crucial factor in drainage density and drift exhumation 

- the younger moraine tills of the De Moines Lobe are less eroded than those that 

were uncovered earlier thus creating distinct topographic surfaces with various 

degrees of incision, even though they are all from the last Wisconsinan 

glaciation. On a shorter time scale in a tropical climate, Hayes et al. (2002) 

described extreme fine sediment loading following the eruption of Mount 

Pinatubo in 1991 on the Pasig-Potrero River (Philippines) which was covered by 

33% of pyroclastic flows. In the same river, Gran and Montgomery (2005) 

showed the rapid evacuation of those volcanic sediments and the change from 

braided pattern with massive sediment transport to single-thread armored 
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channel with clear water indicating the recovery and return to geomorphic 

stability.  

3. Once semi-alluvial channels become their own category, it will be possible to 

implement appropriate management and restoration schemes instead of using 

practices borrowed from alluvial rivers, such as Rosgen's NCD that proved to be 

inadequate (Ness and Joy, 2002), or from river ecology such as fish habitat 

enhancement using installation of in-stream structures that also failed to improve 

habitat (Champoux et al., 2003). Specifically, it will be possible to reconstruct an 

official archetypal river model or to design a handbook that managers and 

practitioners will be able to use and focus their actions based on sound river 

science.  

The establishment of a theoretical framework coupled with real case studies that 

identify the uniqueness of semi-alluvial till-bedded rivers needs to be supported by 

appropriate metrics as used in this work. However, rapid assessment protocols are not 

enough to judge the immediate state of a river (Lisle et al., 2015) and deeper 

understanding based on long-term monitoring of a variety of effective variables is needed 

to supplement such a program done every few years. Presently, the sources of till within 

channels are poorly understood and it would be beneficial to understand these sources by 

fingerprinting (Belmont et al., 2011), as was also recently done for mountainous bedrock 

channels (Riebe et al., 2015). Understanding where the sediments originate from, whether 

from the watershed (ultimate source) or simply the till lining the channel bed and banks 

(local source), is a crucial step in any management program that allows river personnel to 

understand what are normal levels of sedimentation (within natural variability) and what 
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rates indicate degradation and impairment that might need artificial intervention to 

restore the channel to a healthy state.        

7. Conclusions and recommendations 

A comprehensive data set of a glacially-conditioned 1.5 km long meander on Medway 

Creek, London, southern Ontario, Canada is presented. The study reach does not have 

any significant external water and sediment inputs from tributaries which makes it an 

ideal site for characterizing a semi-alluvial cobble-bed channel incised into till. The data 

set includes till characteristics, till erosion rates, bedform features and bed stability 

analysis using a variety of sedimentary metrics and a comparison to other rivers with 

abundant fines. Bed till exposures constitute a relatively small portion of the total bed 

area. Nearby upstream boulders of various sizes do not seem to be directly related to till 

patch area regardless of their position. Erosion rates are comparable to channels incising 

into soft bedrock and are very high compared to the local incision rate. Bedforms are 

highly disorganized and show no regular spacing that is typically found in stable 

autogenic bedrock and alluvial rivers. The channel does not show typical alluvial sorting 

processes such as downstream fining; there is slight downstream coarsening, implying 

some non-fluvial control. Alluvium thickness is also highly variable from non-existent 

(exposed till substrate) or one grain thick up to 60 cm deep at riffle tails where they 

plunge into a subsequent pool or flat. The typical two-layered armor structure ordinarily 

seen in perennial alluvial rivers is completely missing. The sand fraction that is a known 

destabilizing fraction of the bed in alluvial channels is not as dominant along the various 

bedforms as one would expect. Channel (in)stability analysis, using three different 

sedimentary attributes, does not yield conclusive results.  
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We recommend that research of till rivers receive more attention from the fluvial 

scientific and practitioners’ communities as knowledge about them is currently lacking. 

While till rivers cover vast extents of formerly glaciated areas around the world, they are 

completely ignored in present river classifications. Based on our study and other 

investigations of similar channels within glacial deposits, semi-alluvial channels deserve 

to be a category on their own. This is not only relevant for river classification, but this 

knowledge gap also has implications for everyday management and restoration practices 

and whether current indices such as channel geometry and stability metrics are suitable 

and adequate to determine impairment and river health.  
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Appendix 

Methods 

a. Till sediment characteristics: Sediment bulk properties (Roberts et al., 1998; McNeil 

and Lick, 2001), particle size properties (Aberle et al., 2004), sediment cohesion 

properties and biological activity (Grabowski et al., 2011) determine material erodibility, 

in addition to other factors that interact with them in traction or impact (e.g. sand and 

gravel as bedload or particle saltation hits, air/water temperature that causes freeze-thaw 

cycles, its desiccation and cracking; Culley, 1971; Hill, 1973; Pike, 2014). Till was 

characterized by randomly collecting 44 till clasts of various sizes from the river bed. 

Each clast was air dried, color determined according to Munsell system, measured for 

size along its three axes (short, intermediate and long), sphericity calculated from the 

axes, precisely weighed with an analytical scale, volume determined (the sample within a 

nylon bag was inserted into a water container with known volume and the water 

displacement was recorded), as well as its submerged weight (clast weighed under water), 

bulk density (mass/volume) and porosity. Subsequently, each clast was disintegrated in 

water and when fully dispersed, passed through 2 mm and 63 micron sieves to separate 

the gravel, sand and fines and get their percentages after drying in an oven at 105°C. 

Each sample was photographed and described morphologically (cracks, borings of 

aquatic insects leading to bioturbation and roundness). Material strength was obtained 

from four borehole drillings, which were done at the top of the valley (above the left bank 

downstream for a proposed development) which included SPT (Standard Penetration 

Test) in the field and Atterberg limits for plasticity index in the lab (Tridon Properties 
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Limited, 2014). This technique is similar to the CPT (Cone Penetration Test) technique 

used by Dasenbrock et al. (2010) to characterise tills and other glacial deposits in 

Minnesota. 

b. Topographic and morphological mapping: The 1.5 km reach of Medway Creek was 

mapped for bed, bank and floodplain elevations using a differential GPS (5500 points) 

during low flow (~ 1m
3
/sec). The resulting topographic DEM (Digital Elevation Model) 

was used to extract a channel longitudinal profile. The profile was corrected for noise 

(Phillips and Desloges, 2014), after which precise subunits (~ 1 m resolution) were 

identified based on dominant bedforms (pools, riffles, flats, bars and steps) and exposed 

patches of till. Bedforms were identified from the DEM based on local slope and 

curvature of the long profile (Church and Jones, 1982 for bars; O’Neill and Abrahams, 

1984 for pools and riffles; Chin, 1989 for step-pools and general bedform definition from 

Montgomery and Buffington, 1997). This bedform classification was visually verified in 

the field at low water level. Foster (1998) has shown this method is an effective 

procedure of bedform identification in three other semi-alluvial till-bedded streams of the 

area (Dingman Creek, Nissouri Creek and Oxbow Creek).  

Both bank heights were measured in the field at 5 meter intervals using a stadia rod 

(307 points for the left bank, 309 for the right bank). These bank elevations were later 

corrected relative to the thalweg datum (i.e. the height between bank toe and thalweg 

elevation were added) and imposed on it to create two additional long profiles of the 

reach. This approach proved more precise than extraction of bank elevations from the 

DEM (or LiDAR) as it allowed finding a precise break in the cross-sectional slope into 

the floodplain according to high flow marks, top of a bar or lack of vegetation when the 
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exposed till/soil topography was highly complex (and bankfull discharge was hard to 

determine). Channel widths were determined with a measuring tape in the field at 25 m 

intervals (62 points) to account for the cross-sectional complexity that cannot be 

accurately extracted from a DEM for reasons mentioned above. These data aided in 

developing the channel morphometry parameters, especially downstream hydraulic 

geometry, width-depth ratios and determining bankfull discharge.      

c. Till patch mapping: Unlike channel bedforms, for which identification protocols exist 

(see b), there is currently no established procedure to identify and extract till exposures 

from a topographic map. Consequently, a separate GPS survey of the channel was 

conducted in the field to map all till patch exposures. This survey gave information 

about: how many patches exist, their size, their areal percentage of the total bed, spacing 

between them and relationship to other bedforms and large boulders. In addition, since 

till patches have varying degrees of exposures, they were visually classified to account 

for how much alluvium covers them (in percent). This classification helped in 

determining the annual erosion rates of till patches and their sampling strategy to 

represent the entire study site (see h). While b and c complement each other, the reason 

for separating them during the mapping phase is the bedforms and till patches do not 

always coincide (in terms of their borders and sizes). This allows better distinction and 

scale delineation of the till patches.  

d. Morphologic analysis: Once the bed-feature map was created, it was analyzed in 

ArcGIS 10.1 (ESRI, 2012) and verified in the field to determine the spatial and 

morphologic characteristics (dimensions, spacing and distribution) of the dominant 

channel bedforms. A similar analysis of bedform morphology from a DEM (or long 
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profile) was developed for step-pool channels by comparing it to visual measurements of 

the bedforms (Zimmermann et al., 2008). This determines the accuracy of the DEM. 

e. Surface alluvium grain size distribution surveying: Each bedform (see b) underwent 

a grain size distribution (GSD) survey in order to characterize the alluvial cover. Each 

GSD survey of a bedform included at least three cross-sections of Wolman (1954) pebble 

counts (upstream, center and downstream) with at least 300 clast measurements of the b-

axis per bedform as a minimum (Rice and Church, 1996). Due to the tendency to sample 

coarse material rather than finer sediment (Fripp and Diplas, 1993), and to avoid the 

misrepresentation of the fine tail, every time a clast smaller than 32 mm was encountered 

it was recorded as ‘fines’. Once the GSD cross-section was complete, 2-5 kg of fines (< 

32 mm) bulk sample from several locations in that bedform were bagged, taken to the 

lab, the silt-clay fractions were washed in a 63 micron sieve to avoid particle cohesion, 

air-dried and subjected to sieve analysis. The Wolman pebble counts (grid by number) 

and the bulk sieve analysis (volume by weight) can be combined into a single GSD for 

each bedform, without requiring conversion (Kellerhals and Bray, 1971). Such hybrid 

procedure was utilized successfully by Rice and Haschenburger (2004), as the larger 

samples of < 0.1% dmax criteria (Church et al., 1987) are impractical to sample due to 

their large size (~5 tons for a dmax > 128 mm; Haschenburger et al., 2007) and the 

disturbance such an invasive procedure would have on the bed structure. Relating the 

grain size distributions to the bedform map (see b) using statistical sedimentary attributes 

such as selected grain percentiles (d5, d25, d50, d75, d84, d95) and dmax also enabled 

detecting spatial trends, such as downstream fining/coarsening and deploying bed 
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stability indices (Kaufmann et al., 2008; 2009; Kappesser, 2002; Lisle and Hilton, 1992; 

1999).  

f. Statistical grain size analysis: Statistical attributes (percentiles, sorting and types of 

distributions) were calculated for each bedform’s GSD (see e). These statistics allowed 

comparison among similar bedforms and between different bedforms in the same 

channel.  

g. Alluvial cover thickness and stratigraphy: In 26 random locations along the thalweg 

the alluvium (or its lack thereof) was characterized by measuring its depth to the 

boundary till by picking up clasts. In locations where alluvium was thick enough, pits 

were hand-dug. These pits revealed the vertical sedimentary structure of the alluvium 

(e.g. armor existence, framework or censored gravel stratigraphy).  

h. Erosion measurement: To identify annual erosion rates of the till on a local scale, 94 

erosion pins 25-30 cm long and 0.5 cm in diameter were inserted into three exposed till 

patches (between 25 and 35 pins per site): at the right bank of the channel (in 2010), at 

the center of the channel (in 2010), and in a riffle (in 2012). Using a 5 kg sledgehammer, 

erosion pins were carefully inserted, i.e. without visibly cracking the surface till 

(although subsurface cracks and micro-cracks may have developed due to the erosion 

pin’s insertion), until flush with the bed. At the end of each hydrologic year, the exposure 

of each pin was precisely measured with a ruler, after which the pin was reinserted until it 

was again flush with the bed. Preliminary results indicated high erosion rates and 

substantial within-patch erosion variability. Consequently, the sampling strategy for the 

much larger scale of the entire study site was adapted. During hydrologic year 2013-

2014, three additional sites were added on Medway Creek. The results were compared to 
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longer term (geologic) incision rate from a topographic map (valley-scale) with the top of 

the valley serving as reference level divided by the time since the end of the last ice age. 

Results from the erosion analysis were compared to short-term channel incision rates for 

bedrock channels (Tinkler and Wohl, 1998a and references within; Stock et al., 2005). 

This comparison should account for the fact that Medway Creek is by not a natural river 

and accelerated incision is often associated with land clearance (Elliot, 1998), agriculture 

(Knox, 1989; Campo and Desloges, 1994; Woltenmade, 1994; Fitzpatrick et al., 1996) 

and particularly the construction of impervious surfaces in urban areas (Taylor and Roth, 

1979; Fitzpatrick et al., 1999; Annable et al., 2012).  

i. Stability analysis: Hydrologic systems, including rivers, bedforms (Chin, 1998) and 

reaches (Kaufmann et al., 2009), are often investigated for their current stability or over a 

longer time scale if historic data is available. Such resilience can be hydrologic (Peterson 

et al., 2012) or geomorphic (Doyle et al., 2000), and can be defined as: 1) steady state 

(equilibrium), 2) quasi-equilibrium, or 3) instability due to some kind of internal or 

external perturbation (Schumm, 1973). Since natural river systems are non-linear 

(Phillips, 2003) and could exhibit self-organized criticality (Coulthard and Van De Wiel, 

2007), it is possible for a system to have several steady and unsteady states which require 

crossing of thresholds to move from one state to the next (Church, 2002). In 

geomorphology, at least three distinct notions of stability are used. Most commonly 

stability/instability is used as general shorthand to distinguish landscapes and landforms 

that are static (exhumed and no longer going through erosion or deposition), slowly 

changing, or in steady state (quasi-equilibrium - changes are within natural variability), 

vs. those that are undergoing rapid change. A second notion is that of mechanical 
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stability, which concerns the conditions under which change occurs. Finally, there is 

dynamic stability which determines resilience of geomorphic systems and whether they 

are sensitive to small perturbations or minor variations in initial conditions (Phillips, 

2014). We relate to the first only, as our data set is too short to detect longer term 

changes.  

On the reach-scale, stability is generally defined as the ability of the stream to 

transport water and sediment of its watershed while maintaining its dimension, pattern 

and profile over time, i.e. without either aggrading or degrading (Pfankuch, 1975). 

Although stability changes in space and time (Myers and Swanson, 1996), the fact that 

each bedform repeats itself several times within the study reach allows stability 

determination at a specific point in time of that bedform, of all bedforms of that type and 

the generalization of the entire reach stability by combining all of them. Since different 

stability methods use different metrics, results might not be conclusive, and could even 

be contradictory to common assumptions (Doyle et al., 2000; Jordan et al., 2010; 

Annable et al., 2012). 

There are two approaches to asses channel stability: qualitative and quantitative. A 

qualitative approach is based on professional judgment in the field of observed mass 

wasting of channel banks, riparian vegetation condition and bank profiles (Simon, 1994). 

The main advantage of this technique is its simplicity. Its major flaws are user bias and 

for our case also a lack of established protocol for a “healthy” stable reference reach to 

compare to, as these till channels have been disturbed for about two centuries (Campo 

and Desloges, 1994). For example, the six stage model of incised channel evolution by 

Schumm et al. (1984), based entirely on channel morphology, would classify our study 
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reach as Stage I. This stage conforms to disequilibrium, sediment transport capacity 

exceeds sediment supply, bank height that is less than critical bank height, a U-shaped 

cross-section and W/D ratios at bankfull that are highly variable (discussed in Bergman et 

al 2016b). Phillips and Desloges (2014) recently described parts of southern Ontario large 

rivers as “glacially conditioned” but their work is hard to apply on a smaller, short reach-

scale like our case study as they looked into entire watersheds long profiles and 

concurrent stream powers. Fitzpatrick et al. (1996) ranked twenty sites in agricultural 

areas of eastern Wisconsin as part of stream habitat characteristics in order to create 

benchmark streams. However, this complex classification (80 parameters) aimed at 

determining habitat quality according to the Michigan Department of Environmental 

Quality, Great Lakes Environmental Assessment Section (GLEAS) Procedure 51 

(Michigan Department of Natural Resources, 1991), found no relation between GLEAS 

scores and relatively homogeneous units (RHU's) or the percentage of agricultural land in 

the drainage basins above the benchmark-stream sites. One of the RHU's they used 

included clayey surficial deposits like till on carbonate bedrock. 
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Figures  

 

 
 

 

Figure 1. (a) Great Lakes, (b) The watershed of Medway Creek and (c) View of the 

study area with length along the thalweg profile and bed coloration according to 

elevation.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



153 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Average and median hydrographs for Medway Creek showing the flashy 

nature of the flows with a spring freshet peak discharge. Data is based on gauged 

data from 1945-2014.  
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Figure 3. The three most common bedforms on Medway Creek: pool (top), riffle 

(center) and flat (bottom).  
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Figure 4. Till clasts from Medway Creek bed. (a) Fractional breakdown of sediment 

sizes among all collected clasts (n = 44). The boxes indicate 25
th

 and 75
th

 percentiles 

as well as the median; the whiskers indicate 5
th

 and 95
th

 percentiles. (b) Sample dry 

clast showing bioturbation. (c) Sample dry clast showing protruding stones of the 

gravel fraction, covered by algae. (d) Sample wet clast, immediately following 

recovery from channel bed, showing burrowing chironomids (blood worms). 
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Figure 5. Penetration resistance (N blows) using Standard Penetration Test (SPT) 

into the local Medway Creek till conducted within four boreholes for a proposed 

development above the river valley. The topsoil and lacustrine layers are not 

included (Source: Tridon Properties Ltd., 2014).     
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Figure 6. Morphologic features along Medway Creek. (a) The downstream cobble-

boulder step (view is upstream). Similar features were observed in other till rivers of 

the area. Note a giant 2 m boulder in the background. (b) Bed till ledge connected to 

the bank. During summer low flows the till is partially dry, cracks and breaks down 

into block-like clasts of various sizes that are incorporated into the channel bed 

alluvium (view is downstream). (c) Submerged bed till ledge during winter high 

flow. The ledge is smoothed and a new layer of till is exposed (view is upstream). (d) 

A planar view from the top of the right bank bluff into the channel (flow direction is 

left to right.). The most apparent features are the bed till exposures and the coarse 

boulder lag in the center-right of the photo. 
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Figure 7. Till exposures along Medway Creek. (a) Submerged bed till exposure with 

cracks and irregularities that are potential weak spots for erosion by the flow and 

surrounding gravels (flow direction is from top to bottom). (b) Center-channel till 

patch surrounded by much coarser stones with distinct coloration differences 

during low flow conditions (flow direction is from right to left). The boulders on the 

center right might be responsible for the boundary exposure which is located 

directly in their wake. (c) Till exposure with in situ gravel-sized stones (flow 

direction is from left to right). Note the large differences in grain sizes from few 

cobbles and boulders down to numerous granules that dot the till. 
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Figure 8.  Relation between boulder size and till patch area (a) and between till 

patch area and distance to upstream boulder (b). These results show that the till 

patches are not controlled by the size and location of boulders.  
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Figure 9. (a) Annual values for till erosion rates for HY 2013-2014 for all six patches 

using erosion pin measurements. The boxes indicate 25
th

 and 75
th

 percentiles as well 

as the median; the whiskers indicate 5
th

 and 95
th

 percentiles. Note the low average 

geologic rate in comparison. (b) A comparison of all Medway Creek’s erosion pin 

data with other short-term rates of bedrock channel incision based on direct 

measurements.  
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Figure 10. Bedform characteristics: (a) Slope. (b) Length. (c) Channel widths along 

the study reach.   
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Figure 11. (a) Grain size distributions (GSDs) of all bedforms in the study reach. (b) 

Generalized bedform GSDs. (c) Selected percentiles of the GSDs along the reach 

showing slight downstream fining for d5-d75 while d95 and dmax show slight 

coarsening. (d) Changes in the steps’ GSDs. 
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Figure 12. Three indices used to describe bed stability of the study reach. (a) The 

Kaufmann et al. (2008; 2009) LRBS* method. (b) Riffle Stability Index (RSI) 

according to Kappesser (2002). (c) relative volume of fine sediment in pools (Lisle 

and Hilton, 1992; 1999). Data from Lisle and Hilton (1992) of disturbed and 

undisturbed pools on Bear Creek California for comparison. The boxes indicate 25
th

 

and 75
th

 percentiles as well as the median; the whiskers indicate 5
th

 and 95
th

 

percentiles.   
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Figure 13. Comparison of Medway Creek GSD to three other streams that have an 

abundance of fines originating from their parent material.  
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Tables 1 

 2 

Table 1.  Till characteristics of selected clasts collected from the river bed.   3 
 4 

 5 

Dry mass

Submerge

d mass a-axis b-axis c-axis

Volume 

equivalent 

 in water

Bulk 

density Porosity Gravel % Sand %

Silt and 

clay % Bioturbated

# gr gr mm mm mm Sphericity Roundness cm3 p, gr/cm3
% gr Gravel gr Sand gr Silt and clay

1 190 199 90 80 20 0.23 0.3 139 1.37 4.52 6 3.16 15 7.89 169 88.95 No

2 238 254 80 60 70 0.12 0.2 137 1.74 6.30 5 2.10 24 10.08 209 87.82 Yes

3 323 336 105 80 60 0.15 0.5 217 1.49 3.87 12 3.72 38 11.76 273 84.52 Yes

4 1340 1375 160 120 50 0.21 0.4 666 2.01 2.55 33 2.46 109 8.13 1198 89.40 Yes

5 734 814 120 90 110 0.12 0.2 289 2.54 9.83 34 4.63 131 17.85 569 77.52 Yes

6 384 397 90 80 50 0.14 0.2 181 2.12 3.27 15 3.91 61 15.89 308 80.21 No

7 753 827 140 100 50 0.20 0.4 469 1.61 8.95 51 6.77 115 15.27 587 77.95 Yes

8 869 884 130 120 50 0.17 0.5 598 1.45 1.70 99 11.39 276 31.76 494 56.85 No

9 1385 1409 210 140 30 0.32 0.4 1020 1.36 1.70 102 7.36 212 15.31 1071 77.33 Yes

10 1209 1370 160 120 80 0.16 0.2 785 1.54 11.75 114 9.43 336 27.79 759 62.78 Yes

11 445 452 110 90 80 0.13 0.6 336 1.32 1.55 32 7.19 97 21.80 316 71.01 Yes

12 287 303 100 70 70 0.14 0.4 216 1.33 5.28 16 5.57 60 20.91 211 73.52 Yes

13 238 252 80 60 60 0.13 0.3 169 1.41 5.56 10 4.20 59 24.79 169 71.01 Yes

14 922 953 130 90 60 0.18 0.4 528 1.75 3.25 37 4.01 226 24.51 659 71.48 Yes

15 598 620 130 70 50 0.22 0.2 251 2.38 3.55 61 10.20 141 23.58 396 66.22 No

16 207 209 100 60 40 0.20 0.5 140 1.48 0.96 18 8.70 26 12.56 163 78.74 No

17 984 989 170 100 80 0.19 0.5 642 1.53 0.51 52 5.28 152 15.45 780 79.27 No

18 405 408 100 70 60 0.15 0.2 262 1.55 0.74 20 4.94 68 16.79 317 78.27 No

19 303 306 110 100 30 0.20 0.5 216 1.40 0.98 8 2.64 50 16.50 245 80.86 No

20 1087 1103 140 90 80 0.16 0.1 566 1.92 1.45 62 5.70 164 15.09 861 79.21 Yes

21 400 404 110 90 60 0.15 0.4 180 2.22 0.99 22 5.50 48 12.00 330 82.50 No

22 202 207 70 60 50 0.13 0.2 126 1.60 2.42 12 5.94 32 15.84 158 78.22 Yes

23 454 459 100 100 70 0.12 0.5 218 2.08 1.09 28 6.17 74 16.30 352 77.53 Yes

24 1575 1576 170 120 90 0.16 0.4 648 2.43 0.06 78 4.95 184 11.68 1313 83.37 No

25 385 387 100 70 60 0.15 0.4 250 1.54 0.52 30 7.79 76 19.74 279 72.47 No

26 1488 1490 170 110 100 0.16 0.6 906 1.64 0.13 128 8.60 208 13.98 1152 77.42 No

27 426 430 100 80 60 0.14 0.3 256 1.66 0.93 32 7.51 72 16.90 322 75.59 No

28 390 393 110 80 60 0.16 0.1 246 1.59 0.76 30 7.69 62 15.90 298 76.41 Yes

29 1318 1334 170 120 90 0.16 0.4 792 1.66 1.20 104 7.89 216 16.39 998 75.72 No

30 847 852 140 130 70 0.15 0.5 432 1.96 0.59 70 8.26 192 22.67 585 69.07 No

31 173 177 70 60 50 0.13 0.3 124 1.40 2.26 10 5.78 32 18.50 131 75.72 Yes

32 244 247 90 80 60 0.13 0.3 182 1.34 1.21 13 5.33 44 18.03 187 76.64 Yes

33 309 311 100 80 20 0.25 0.4 218 1.42 0.64 35 11.33 88 28.48 186 60.19 No

34 219 222 100 60 40 0.20 0.1 120 1.83 1.35 10 4.57 41 18.72 168 76.71 Yes

35 117 121 70 50 30 0.18 0.2 83 1.41 3.31 3 2.56 20 17.09 94 80.34 No

36 210 212 100 60 40 0.20 0.5 155 1.35 0.94 27 12.86 40 19.05 143 68.10 No

37 138 139 80 70 30 0.17 0.1 96 1.44 0.72 23 16.67 34 24.64 81 58.70 No

38 341 344 90 90 40 0.15 0.8 257 1.33 0.87 12 3.52 66 19.35 263 77.13 Yes

39 295 298 100 90 30 0.19 0.3 198 1.49 1.01 11 3.73 40 13.56 244 82.71 Yes

40 90 92 60 50 50 0.12 0.1 66 1.36 2.17 4 4.44 16 17.78 70 77.78 Yes

41 100 101 70 60 40 0.14 0.2 66 1.52 0.99 4 4.00 16 16.00 80 80.00 No

42 198 199 80 70 40 0.15 0.2 134 1.48 0.50 18 9.09 46 23.23 134 67.68 No

43 118 119 80 60 30 0.19 0.1 80 1.48 0.84 4 3.39 18 15.25 96 81.36 Yes

44 431 440 110 90 60 0.15 0.3 269 1.60 2.05 43 9.98 79 18.33 309 71.69 Yes

Minimum 90 92 60 50 20 0.12 0.1 66 1.32 0.06 3 2.10 15 7.89 70 56.85

Maximum 1575 1576 210 140 110 0.32 0.8 1020 2.54 11.75 128 16.67 336 31.76 1313 89.40

Average 531 546 111 85 56 0.17 0.3 317 1.64 2.40 35 6.38 93 17.80 403 75.82

Median 385 390 100 80 55 0.16 0.3 218 1.54 1.28 25 5.64 64 16.85 289 77.37
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Table 2. Erosion rates of till patches during the study period. 6 

 7 

 8 
 9 

 10 

 11 

 12 

 13 

 14 

Hydrological 

 year

Peak 

discharge Site Location in channel

Erosion 

pins Configuration Recovered Recovery

Average 

erosion 

rate

Median 

erosion 

rate

Minimum 

erosion 

rate

Maximum 

erosion 

rate

m3s-1
# W*L # % mm mm mm mm Moran I Moran I P-value

2010-2011 84 1 Flat (center channel) 20 4*5 19 95 143 134 106 225 0.019737 0.621129

2 Pool (next to right bank) 53 5*10+3 48 91 80 78 44 143 0.399527 0.000116

2011-2012 23 1 Flat (center channel) 20 4*5 19 95 70 66 19 125 -0.01319 0.80719

2 Pool (next to right bank) 53 5*10+3 Buried 0 - - - -

2012-2013 68 1 Flat (center channel) 20 4*5 20 100 32 32 19 53 -0.07054 0.914024

2 Pool (next to right bank) 53 5*10+3 Buried 0 - - - -

3 Riffle (next to right bank) 24 6*4 24 100 48 39 13 111 0.203058 0.102673

2013-2014 33 1 Flat (center channel) 20 4*5 20 100 16 16 10 26 -0.04184 0.937087

2 Pool (next to right bank) 53 5*10+3 30 57 125 114 44 260 0.408976 0.000731

3 Riffle (next to right bank) 24 6*4 24 100 24 20 6 55 0.203058 0.102673

4 Pool (center downstream log) 16 4*4 16 100 40 34 8 108 0.137664 0.238612

5 Pool (next to left bank) 12 3*4 11 92 59 64 32 84 -0.0569 0.845384

6 Riffle (next to left bank) 18 4*4+2 18 100 30 28 16 61 0.314021 0.028285

Total 386 249 65 61 39 6 260

* In Moran's I Values range from −1 (indicating perfect dispersion) to +1 (perfect correlation). A zero value indicates a random spatial pattern. 

For statistical hypothesis testing, Moran's I values can be transformed to Z-scores in which values greater than 1.96 or smaller than −1.96 indicate spatial autocorrelation that is significant at the 5% level.

Inter-patch erosion spatial 

autocorrelation 
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 15 

 16 

Table 3. Bedform characteristics. 17 
 18 

 19 
 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

# Min Max Average Min Max Average Min Max Average Min Max Average Median

Pools 13 12 20 16 13 279 70 0.9 15.3 4.7 0.0001 0.0075 0.0021 0.0009

Flats 8 12 18 15 19 186 62 1.3 12.4 4.1 0.0003 0.0056 0.0029 0.0027

Riffles 15 12 21 15 5 31 12 0.3 2.1 0.8 0.0031 0.0346 0.0142 0.0106

* Using an average channel width of 15 m for the whole reach

Width, m Length, m Channel widths* Channel slope
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Table 4. Bed characteristics of streams with abundance of fines originating from the parent material.  35 
 36 

 37 
 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

Medway Creek Nahal Me'arot Nahal Eshtemoa West Walker River

Bed type (d50) Cobbles (67 mm) Medium gravel (11 mm) Coarse gravel (28 mm) Cobbles (171 mm)

Modality Bimodal Trimodal Polymodal Bimodal

Sorting Very poorly sorted (2.8) Very poorly sorted (2.5) Very poorly sorted (2.2) Very poorly sorted (2.8)

Skewness Very fine skewed (0.51) Very fine skewed (0.33) Fine skewed (0.16) Very fine skewed (0.61)

Kurtosis Mesokurtic (1.07) Mesokurtic (1.07) Mesokurtic (1.02) Very leptokurtic (1.69)
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Abstract 

 

In the first paper we focused on semi-alluvial till channel characteristics from a static 

perspective, including: lithology of the local till, till exposures, bedform morphology and 

sedimentology, and the alluvium they contain. The only dynamic aspect was the annual 

erosion rate of the till. We argued for classifying such semi-alluvial channels as a stand- 

alone category, separate from other river types, by distinguishing their differences 

induced by past glacial activity. Here we add the dynamic perspective of channel 

morphometry coupled to hydrologic and hydraulic processes. We then compare our 

results and analyses to other river types.  

The study reach contains rapid width contractions and expansions, which are associated 

with till control and erodibility as there are no significant water and sediment inputs from 

tributaries. The incised channel is confined with poor connection to the overlying 

floodplain. Width/depth (W/D) ratios oscillate along the reach and are higher than 

another till-bedded river when measured on a reach-scale. However, when compared to 

other alluvial, semi-alluvial and bedrock rivers on a basin scale, it is evident that Medway 

Creek's average W/D value is in the middle of the range and till control is negatively 

related to drainage area – it decreases as drainage size increases. Bankfull discharge, 

whether determined by hydrological statistical equations or numerical modeling for each 

cross-section, yields many different values due to hydrological flashiness or varying 

downstream hydraulic geometry, respectively. Even the highest flood that filled the 

floodplain and nearby river valley shows rapid expansions and contractions due to 

incision into the Arva Moraine and constraining by steep bluffs. Bedform morphologies 

maintain identical patterns at a range of discharges and no modeled channel velocity 

reversals are detected in pools and riffles as in some alluvial rivers. Channel stability 

(based on bedform downstream hydraulic geometry; DHG) suggests that most riffles are 

well adjusted to DHG, while the few that are not are anomalous. The majority of pools 

have poorly developed DHG and flats are generally in between riffles and pools. These 

results contrast with sedimentologic stability analysis of the DHG, indicating the 

complexity of this type of channel in a formerly glaciated terrain. Thus there is a need to 
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improve hydrologic metrics in order to better manage these rivers and implement proper 

restoration procedures for them.   

1. Introduction 

Alluvial rivers have been investigated for more than a century for a variety of practical 

reasons such as engineering and dam works (Alexander et al., 2012), river restoration 

practices (Palmer et al., 2010) and general scientific understanding (Bridge, 2003). 

During that time, research on bedrock rivers was quite rare (Baker, 1984; Ashley et al., 

1988), although these rivers have received a lot of attention from the earth science-

engineering research community in the last two decades (Tinkler and Wohl, 1998; 

Turowski, 2012 and references within). In contrast to these two river types, semi-alluvial 

channels in general, and till-bedded channels in particular, are only now receiving  

research interest  (Arbogast et al., 2008; Gran et al., 2009; Merten et al., 2010; Mier and 

Garcia, 2011; Gran et al., 2011; Khan and Kostachuk, 2011; Phillips and Desloges, 2014, 

2015a, 2015b; Thayer et al., 2016). This is despite their abundance in formerly glaciated 

North America and other regions around the world that are currently deglaciating due to 

modern anthropogenic climate change. Earlier work identified the importance of former 

glaciation on modern (post-glacial) geomorphic fluvial processes and form (Holmes, 

1937; Ruhe, 1952; Hack, 1965; Hill, 1973; Brakenridge et al., 1988; Campo and 

Desloges, 1994; Ashmore and Church, 2001; Phillips and Robert, 2005; Brardinoni and 

Hassan, 2007) and the sedimentary difference between semi-alluvial and alluvial 

channels (Davis, 1958).  

Many conceptual models and empirical equations have been developed to investigate 

or explain the relationship between flow and form in river channels; most relate to 

different environments with different climate and lithology, ordinarily with the 
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watershed-scale serving as the analysis unit (Leopold and Maddock, 1953; Annable, 

1996; Wohl, 2004; Eaton and Church, 2007) while others seek to explain transitions 

between different bedforms on a reach-scale (Keller and Melhorn, 1978). Flow-form 

relations (regime theory) and hydraulic modeling have been extensively applied to 

alluvial channels (Leopold and Maddock, 1953; Nicholas, 2013, respectively). However, 

there have been few attempts to look into the channel morphometry of semi-alluvial 

channels incised into till and their downstream hydraulic geometry (DHG). The limited 

modeling attempts have focused mainly on a large river (St. Clair River between Lake 

Huron and Lake St. Clair) subjected to intense human shipping disturbance (Czuba et al., 

2011; Liu et al., 2012) and do not represent the abundant, smaller till channels with an 

agricultural-urban setting typical to the Great Lakes region in general and SW Ontario in 

particular (Campo and Desloges, 1994; Annable, 1996). Thayer et al. (2016) recently 

looked at the Little Rouge River, a low relief till channel, and found basin-scale relations 

for the DHG despite the fact that glaciation legacy disrupts it on a reach-scale. Phillips 

and Desloges (2014) investigated 22 large southern Ontario rivers (also basin-scale 

analysis) and found that glaciation effects are expressed in the bed slopes where reaches 

are over-steepened or under-steepened. The over-steepened reaches with high stream 

powers are moderated by very coarse sediment caliber originating from glacial sediments 

or high bank strength that does not allow the channel to widen.  

The goals of this paper are to investigate the hydrogeomorphic metrics of a semi-

alluvial till channel that crosses a moraine and to compare it with other till rivers, as well 

as alluvial and bedrock rivers. This analysis includes width/depth ratios, bankfull and 

maximal discharge using a variety of techniques, peak discharge, modeled channel flow 
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velocities for each bedform and finally a stability analysis of bedforms based on a 

downstream hydraulic geometry discriminator by bedform types.  

2. Study area 

The complete description of the regional setting of southern Ontario, Medway Creek's 

watershed and study area appear in Bergman et al. (2016). Briefly, Medway Creek is a 3
rd

 

order tributary of the Thames River (5830 km
2
) in southern Ontario and drains 205 km

2
 

of a predominantly agricultural catchment (83%) while the lower basin part is a deep 

glacial valley flowing mainly within the city of London and incised through the Arva 

Moraine, where the study site is located. The channel's alluvium is a cobble-bed; 

bedforms consist of pools, riffles, flats, and occasional steps and till exposures while the 

floodplain has thin soils overlying the till. The local climate is humid temperate typical of 

the Great Lakes with warm summers, mild winters, 800-1000 mm precipitation, and 

about a third of the precipitation is translated to surface flow. During the European-

American settlement, the natural forests were removed and replaced by vast agricultural 

land and urban development. However, the main vegetative cover in the study area is 

deciduous forest and meadow.  

The mean annual flow of Medway Creek is 2.9 m
3
/s (Upper Thames Conservation 

Authority, 2013), and the largest peak flow recorded was 147 m
3
/s in 1977. Flow is only 

sustained year-round in the lower incised reach below Arva Dam. The study site is a 1.5 

km long, full meander of Medway Creek (Fig. 1). Medway Creek has been gauged since 

the 1940s by Environment Canada and by the Upper Thames Conservation Authority. 

There are two steep bluffs, one in the center of the meander (right bank) and one next to 
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the upstream part of the reach (left bank), that contribute large quantities of sediment to 

the channel during precipitation events and after snowmelt.  

3. Methods 

Detailed data-collection procedures of this study are presented in the appendix of 

Bergman et al. (2016). Data presented here are based on morphometric mapping of the 

channel and floodplain/river valley DEM as well as field measurements, assigned 

roughness based on the grain size distributions (GSDs) and till exposures coupled to the 

gauged hydrology to produce a variety of metrics such as bankfull discharge and the 

largest flow on the measured record. Equations from the literature and data from other 

studies from a variety of fluvial environments (semi-alluvial, alluvial and bedrock 

channels) were used and compared to our results.  

Modeling was done using the HEC-RAS 4.1 software model (U.S. Army Corps of 

Engineers, 2016), using 94 cross-sections that represent the reach's bedform division 

(Fig. 1). In places where the bedform was very long (especially pools) additional cross-

sections were automatically interpolated by the program. Manning's roughness values 

were calculated according to the d84 of the GSD of bedforms (Cheng, 2016; see the GSDs 

in Bergman et al., 2016). In places where a till patch occurred in part of a cross-section, a 

roughness value of 0.013 of smooth concrete was assigned to it (Wong and Lim, 2006). 

Flows were calculated using iterations for a specific cross-section in a similar repetitive 

technique often used in paleoflood studies for covering flood deposits (O'Connor and 

Webb, 1988) or for the entire reach using all the cross-sections with a single value 

discharge. 
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4. Results and discussion 

4.1 Channel geometry and inferred hydrologic and hydraulic characteristics 

4.1.1 Width/depth ratios 

The right bank heights of Medway Creek in the study reach range from 0.4 to 20.4 m 

(downstream Arva Moraine bluff; average 2.8, median 2.0; n = 62 field measurement 

points). If the bluff is excluded from the analysis, maximum bank height is 6.5 m 

(average 2.2, median 1.9). The left bank heights range from 0.3 to 18.0 m (upstream Arva 

Moraine bluff; average 2.5, median 1.8; n = 62). If the left bank bluff is excluded from 

the analysis, maximum bank height is 5.6 m (average 1.9, median 1.7), similar to the 

right bank values (Fig. 2a, 2b).   

Channel width was defined as a measurement between two opposite points, one on 

each bank, where the gradient of the bank changes and above it the river would burst into 

the floodplain (i.e. the channel is at maximum capacity - similar to bankfull discharge 

determination in alluvial rivers; Williams, 1978). While this is trickier in an incised 

channel, in cases there was a high vertical bank or steep bluff, only the opposite bank 

point was used for measuring width as an imaginary horizontal line. Channel widths (W) 

vary from a minimum of 10.0 to a maximum of 22.9 m (average 15.4, median 15.0; Fig. 

2a, b; n = 62). Considering that there are only two small tributaries entering the study 

reach (from the right bank) with negligible flow and sediment contributions to the main 

stream, local channel width oscillations do not result from downstream changes in water 

discharge or tributaries' sediment flux, but can be attributed to till control, the two bluffs' 

mass wasting processes, and perhaps within-reach scour and deposition. Human 

disturbance could affect channel width (Faustini et al., 2009) but is not directly relevant 
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for the 1.5 km Medway Creek study reach as the millpond dam is 12 km upstream. There 

are three tributaries entering the right side of Medway Creek (Snake Creek + two smaller 

creeks downstream), but they are all upstream of the study reach. There are three more 

tributaries entering the left side (two above the study reach and one downstream of it). 

All these small tributaries drain heavily urbanized areas, and which, after heavy 

rainstorms, contribute a substantial discharge on a timescale of hours. Two gully 

tributaries within the meander study site, one upstream and one downstream of the right 

bluff, do not contribute any unusual water inputs or sedimentary input that may influence 

channel geometry, and there are no direct excavations or reinforcements of the channel 

banks or valley walls. However, channel width might be associated with larger basin-

scale changes induced by human activity.    

Although the study reach’s sinuosity of 3.14 is a tortuously meandering value for 

incised E type streams, its width/depth (W/D) ratios range from 4.4 to 45.0 (average 16.2, 

median 13.9; Fig. 3a), which covers the entire range from low (< 12) to high (> 12) W/D 

ratios of the Rosgen classification (Rosgen, 1994). The question that arises is: are the 

W/D ratios of Medway Creek highly unusual for formerly glaciated terrain (FGT) rivers? 

The main problem is to find suitable comparison data sets that look at channel geometry 

on a similar short reach-scale rather than a whole basin-scale, as most DHG work is done 

on the latter (Leopold and Maddock, 1953; Schumm, 1963). We compare Medway Creek 

to Kaskaskia River (Illinois, Mississippi drainage) that also has a data set with two short 

reach-scale sections (Bhowmik, 1979; Fig. 3a). We also compare the basin-scale of the 

W/D ratios of 66 alluvial rivers and 126 FGT rivers from different physiographic regions 

(Fig. 3b; Appendix Table 1). The regularity in the behavior of the width and depth both 
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at-a-station (reach-scale) and in the downstream direction (basin-scale) implies quasi-

equilibrium conditions in the channel (Wolman, 1955).  

Medway Creek does have relatively high W/D ratios compared to the two reaches of 

the Kaskaskia River (Fig. 3a) although the latter is a much larger river (draining 3445 

km
2
 and 7045 km

2
). In general, small FGT rivers have on average relatively low basin-

scale W/D ratios (e.g. Bhowmik, 1979; McCandless and Everett, 2002, McCandless, 

2003; Mulvihill et al., 2009; Medway Creek - this study) although there's considerable 

scatter (Fig. 3b). Large FGT rivers, such as the Scioto River Ohio and the St. Lawrence 

River (Leopold and Maddock, 1953), and probably the Kaskaskia River from the reach-

scale analysis, are capable of scouring their valleys and consequently have higher W/D 

ratios. The most extreme W/D ratios appear on desert alluvial rivers (Pelletier and 

DeLong, 2004), while sandy prairie rivers present the lowest W/D ratio values (Schumm, 

1963). Schumm (1960) attributed the W/D ratio of sand-bed streams outcome to the fine 

content (silt and clay) content of the cohesive banks' material - the higher the fines 

content the harder it is for the channel to adjust to the forming flows (i.e. negative 

relationship) so the channels deeply incise instead of widen.  

Variable W/D ratios are usually associated with unstable river systems (see Chapter 

2). Phillips (1990) suggested that variability in channel geometry is entirely consistent 

with the concept of an unstable system, as an unstable system would not be expected to 

maintain a constant relationship between hydraulic and geometric variables. Repetto et al. 

(2002), using 2D and 3D models and flume experiments, found that width oscillations 

lead to planimetric instability, although they related this mainly to bifurcations of braided 

rivers with an assumption that the channel is laterally stable. Pelletier and DeLong (2004) 
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described and modelled an oscillating pattern of narrow, deeply incised reaches and wide, 

shallow reaches with a characteristic wavelength in arid desert rivers and attributed them 

to width, depth and slope instabilities. Dodov and Foufoula-Georgiou (2004) postulated 

that variation in the channel cross-sectional shape under preservation of the momentum, 

water and sediment is a result of systematic increase of channel asymmetry downstream 

induced by scale-dependent fluvial instability. Finnegan et al. (2005) asserted that, in 

bedrock channels, the W/D ratios and roughness are a function of the boundary material 

composition and that W/D ratios (and roughness) can be assumed constant, a claim not 

valid for till of our study. However, they also demonstrated that using conventional 

scaling relationships for channel width can result in underestimation of stream-power 

variability in channels incising bedrock and their model improves estimates of spatial 

patterns of bedrock incision rates.   

In a channel like Medway Creek, these oscillations would most likely relate to the 

local strength of the till boundary material as the elevated forest floodplain vegetation is 

somewhat disconnected from the channel. However, vegetation effects on W/D ratios 

cannot be completely ruled out (Trimble, 1997). Shugar et al. (2007) and Khan and 

Kostaschuk (2011) investigated two local tills (Halton Till and Sunnybrook Till) of two 

southern Ontario rivers using a variety of geotechnical methods and found that, similar to 

glacially-derived loess deposits in the US Midwest (Hanson and Simon, 2001), the 

material composition (silt-clay and organic ratios with negligible sand and gravel 

content) determines the cohesive material erodibility (Grabowski et al., 2011). Khan and 

Kostaschuk (2011) found that the upper layer of tills (Sunnybrook till and the Halton till) 

is weaker than its underlying parts because it is exposed to water action and bioturbation. 
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Their results corroborate the assertion by Chatanantavet and Parker (2009) for bedrock 

channels that the exposed top layer of the boundary is much weaker (has less 

compressive strength) than the underlying submerged bedrock creating a vertical strength 

variation in addition to the material spatial variability. This creates a certain period of 

boundary exposure, during which the water and sediments gradually weather the till until 

it becomes more prone to erosion and the flow can incise into it and expose the harder 

substrate.  The boundary till has spatial and temporal cohesive strength properties and 

internal architecture (Menzies et al., 2006) that determine the fluvial erodibility 

(Grabowski et al., 2011). These lithologic controls are expressed in Medway Creek’s 

cross-sectional morphology and consequent W/D ratios and bedform long profile (i.e. 

enlargement, incision or both), similar to eroding soft bedrock channels (Allen and 

Narramore, 1985; Stock et al., 2005; Annandale, 2006).   

4.1.2 Bankfull discharge and floodplain characteristics  

Bankfull discharge (QBf) that is reflected in a given cross-section morphology (at-a-

station) is dependent on local W/D ratio and basin-scale longitudinal downstream 

hydraulic geometry (DHG) as the discharge varies (usually increases as tributaries join 

the main stem). Therefore, it is often assumed that the bankfull discharge concept that is 

applicable to alluvial channels (Leopold and Maddock, 1953; Leopold et al., 1964; 

Williams, 1978) does not apply to deeply incised channels that have lost their connection 

to the floodplain due to differential lowering of the bed relative to the banks (Schumm et 

al., 1984; Darby and Simon, 1999). If the bankfull discharge is not reflecting the river's 

hydrology, climate and sediment erodibility, one would expect that W/D ratios and the 

DHG would also not follow power-law relationships between discharge, width, depth and 
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slope. However, not all researchers agree that channel downstream hydraulic geometry is 

irrelevant to entrenched streams and width-depth ratios are ordinarily reported for incised 

bedrock channels (Baker, 1984; Wohl and Merritts, 2001; Wohl, 2004). Furthermore, 

Montgomery and Gran (2001) suggested that the classic hydraulic geometry parameters 

used for alluvial rivers are the same for bedrock channels despite the rock boundary 

control, as was shown by Wohl (2004) for a variety of river material types unless the 

boundary control exceeds stream power. Thayer et al. (2016) recently showed that for 

another till-bedded river (Little Rouge River) in southern Ontario, despite the glaciation 

legacy, there are very good hydraulic geometry relations on a basin-scale.  

Hassan et al. (2014) proposed that in formerly glaciated terrains, in order to determine 

the effective discharge, sediment mobility allows discrimination between three types of 

streams: 1) streams in which gravel (defined as sediment > 8 mm diameter; Hassan et al., 

2014) moves frequently and effective discharge occurs during gravel transport 

(Frequently Mobile Gravel); 2) streams in which gravel moves infrequently but effective 

discharge nonetheless occurs during gravel transport (Infrequently Mobile Gravel); and 

3) streams in which sand (defined as sediment < 8 mm diameter; Hassan et al., 2014) 

moves over largely immobile gravel and effective discharge occurs frequently during 

sand-phase transport (Sand over Immobile Gravel). Only the Infrequently Mobile Gravel 

streams have large, rare effective discharges that approximate the bankfull discharge; in 

Frequently Mobile Gravel and Sand over Immobile Gravel streams the effective 

discharge is much more frequent and smaller than bankfull. Only in the Infrequently 

Mobile Gravel streams does the effective discharge approximate a channel-forming 

discharge. In Frequently Mobile Gravel and Sand over Immobile Gravel streams, the 
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effective discharge bears little relation to the size or dimensions of the channel and is at 

best a channel-maintaining flow (Hassan et al., 2014).  

The sedimentary characteristics of the bedforms allow us to find the corresponding 

geometric characteristics along the study reach where the increase in drainage area is 

minor, lateral sediment and water inputs from tributaries are negligible and therefore the 

channel should maintain its form, unless the till control (e.g. erodibility) plays a major 

role. According to the commonly used Rosgen (1994) channel classification, Medway 

Creek is an entrenched, single thread channel type E4 (channel slope < 2%, with d50 of 

cobbles). This type of channel is not considered a high ratio bedload stream (sediment 

supply in relation to stream discharge) suggesting that most sediment transport is 

washload and suspended load, not bedload. This type of classification received heavy 

scrutiny as it is entirely based on morphology and sedimentology but does not integrate 

and quantify the channel process and their responses to these changes (Simon et al., 

2007). Annable (1996) analyzed 47 rural rivers in southern Ontario and classified six 

(13%) of them as type E4 so Medway Creek general morphology is not unusual for this 

area, although it is not the most common channel type. He suggested the following 

relationship: 

              QBf  = 0.52Ad
0.75

              (1) 

where Ad is the basin’s area (in km
2
), which translates to 28 m

3
/s. Using the channel 

width and assuming (cohesive) bank material it is also possible to extract bankfull 

discharge from a width-bankfull discharge relationship (Anderson et al., 2004) from 

rivers with high silt-clay bank content (> 10%): 

QBf  = 3.87W
0.5

              (2) 
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giving Medway Creek a bankfull discharge of 32 m
3
/s (based on a maximum width of 23 

m in our study reach). If we use Thayer et al. (2016) bankfull widths discharge relations 

from their case study of the Little Rouge River, the bankfull discharge on Medway Creek 

yields 7 m
3
/s (for 10 m width) to 40 m

3
/s (for 23 m width). By measuring bedload 

transport using a large Helley-Smith bedload sampler (76 mm x 76 mm opening) on 

Medway Creek's spring flood, we found that at a discharge of ~32 m
3
/s there is incipient 

motion of the bed, mainly of the sand fraction but some clasts up to 60 mm were also in 

motion (authors' unpublished data).  

An alternative to using channel dimensions for finding bankfull discharge in such a 

problematic non-alluvial river setting is using the 2-year flood (Q2yr) recurrence interval 

(RI; Wolman and Leopold, 1957) or 1.5-year flood event (Q1.5yr; Leopold et al., 1964) 

and correlating these discharges to actual flow elevations. The 2-year flood on Medway 

Creek is 76 m
3
/s and the 1.5-year flood is 60 m

3
/s based on the maximum instantaneous 

discharge recorded by the Environment Canada gauging station downstream of the study 

site. The use of maximum instantaneous discharge is advantageous to the use of average 

daily maximum discharge values, which is likely to result in underestimation of the flows 

associated with various return periods. This is because the daily data used to perform the 

flood frequency analysis are averaged over a 24-hour period and as such have smoothed 

out the extreme values unlike the maximum daily discharge. A continental-scale 

relationship (for the US) between bankfull width and drainage area for single-thread 

channels by Wilkerson et al. (2014) gives Medway Creek a bankfull width of 10 m which 

translates to a discharge of ~10 m
3
/s but it is worth mentioning that semi-alluvial 

channels affected by the Laurentide Ice Sheet are treated as regular alluvial channels in 
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their analysis. This analysis underestimates bankfull discharge as maximum width is 23 

m, more than double this estimate but it does fit well with the smaller widths cross-

sections. The continental scaling is averaging a variety of geologies, topographies, river 

histories and human disturbance, hydrology and climate and thus is less accurate, 

especially for a river that has gauged data.   

The entrenchment ratio and degree of incision cannot be easily calculated for it 

without a priori knowledge of the bankfull discharge as in many localities the flow is 

contained within the channel cross-section and cannot overspill into the high 

disconnected floodplain. An example of the problematic metric of bankfull discharge in 

this river setting is taken from the spring flood of 2011 with a peak discharge of 37.5 m
3
/s 

(Fig. 4a). While one section of the channel experiences bankfull discharge covering the 

inner point bar (Nunally, 1967), the nearby upstream section of the channel contains the 

entire flow and is well below the top elevation of both banks. This observation of the 

ability of the channel to contain most floods with very little spillage into the floodplain 

caused Knox (1989) to describe such till channels as “flume-like” with efficient flood 

routing through considerable velocity and erosive force. The floodplain would therefore 

be considered a low energy environment with very little accretion of fine suspended 

sediment during high magnitude floods that exceed the high banks. Coarser sediments (> 

sand) cannot reach the floodplain unless they originate from the underlying till and 

lacustrine sediments of the floodplain or the topsoil or deposit during rare floods of high 

magnitude and low frequency.  

The genetic channel floodplain classification of Nanson and Croke (1992) would term 

the floodplain of Medway Creek as Class C Order C1 - laterally stable single-channel 
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floodplain. The dense deciduous Carolinian forest on the banks ensures that even if a 

high flow reaches the floodplain the topsoil will remain intact and not erode, making this 

a poorly-developed floodplain as there is minimal river-floodplain sediment exchange. 

This finding corroborates earlier observations by Ritter (1975) and Patton (1988) in 

lowland rivers of formerly glaciated terrains of New England and Illinois, respectively. 

During large floods the floodplain experiences very few localities of erosion or 

deposition but natural weathering processes (such as valley hillslope processes during 

snowmelt) erase these evidences. If deposition of coarse material remains in place it is 

expressed as gravel lenses underneath the topsoil so is not visible on the surface (Ritter, 

1975; Patton, 1988). The Nanson and Croke (1992) classification for Medway Creek 

contradicts the recent findings from the nearby Rouge River that found that soil profiles 

in the floodplain often suffer from overbank sedimentation producing pedostratigraphic 

successions. On the Rouge River, active erosion across these surfaces insures that soils 

lack sufficient weathering time to produce B horizons even on distal reaches of the 

floodplain (Mahaney et al., 2016). Another recent classification with four types of 

floodplain developed specifically for low-relief formerly glaciated channels (Phillips and 

Desloges, 2015a), does not fit the study reach of Medway Creek: it would be a C type 

according to till grain sizes (predominantly silt and clay, some sand with little gravel and 

cobbles; see Bergman et al., 2016), according to the high W/D ratios of the channel 

(section 4.1) it would be a B type, and strictly by channel morphology visualization it 

would be a combination of S and M types. Thayer (2010; Thayer and Ashmore, 2016) 

investigated the floodplain of Medway Creek, including our study site, and proposed two 

competing mechanisms for its formation: 1) Low relief, vertically accreted floodplain 
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through slow meander extension and avulsion, and  2) Floodplain is formed through 

meander translation, extension, and chute cut-offs. The difference between the floodplain 

formation mechanisms are not only the processes but the energy required to create them 

with 2) more energetic. We suggest the difficulty of assigning a classification type or its 

anomalous categorization results from our reach incising the interlobate Arva Moraine. 

Since bankfull discharge changes from one cross-section to the next and is highly 

variable between different methods, for our study and other similar incised till-bedded 

channels, the solution might be to use a fuzzy number rather than a single deterministic 

value (Johnson and Heil, 1996). While this approach is useful for engineers basing 

designs on a range of possible values, it is less useful when using metrics that require a 

single discharge value for scientific purposes (Wilcock, 1997). Sholtes and Bledsoe 

(2016) recently compared bankfull discharge from a morphologic perspective (field-

based evidence) to process-based predictors (sediment transport data) from gauged sites 

across the United States including coarse, bed load-dominated channels and fine, 

suspended load-dominated channels with varying drainage areas. They found the best 

bankfull discharge estimate was associated with 50% of cumulative sediment yield based 

on the flow record (Qh). This Qh has the lowest relative error in predicting bankfull 

discharge for coarse and fine bed sites when compared with the statistical approach (Qeff, 

Q1.5yr and Q2yr). Specifically for coarse-bed sites like our study, Qeff and Qh both perform 

well in predicting bankfull discharge, followed by Q1.5yr (Sholtes and Bledsoe, 2016). 

This process-based approach might be the solution for predicting bankfull discharge in a 

problematic setting like ours, but its main disadvantage is that it requires prior knowledge 

about sediment yield resulting from the collection of data for several hydrologic years. 
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Alternatively, it is possible to use a computational fluid dynamic (CFD) model (Van De 

Wiel et al., 2007) or a simpler program with sediment transport capabilities (Pitlick et al., 

2009) or a sediment transport equation (Barry et al., 2004) to predict the sediment 

transport rates. Nevertheless, results would be more realistic if some of them could be 

calibrated against measured field data to reduce the modeling uncertainty and explain 

variability based on qualitative observations and assumptions.  

4.1.3 Hydraulic modeling of the bankfull discharge 

The bankfull discharge (Qbf) is a major geometric and design metric (Williams, 1978) 

that needs to be predicted in the most accurate way possible, especially when managing 

or restoring a river (Shields et al., 2003; Doyle et al., 2007). Here we use the HEC-RAS 

model (U.S. Army Corps of Engineers., 2016) to determine for each cross-section the 

exact discharge that just fills the channel before spilling onto the floodplain. The model 

was calibrated against high flow marks of the spring flood of 2013 (peak discharge of 52 

m
3
/s) that were flagged on the floodplain. For the channel, we used bedform grain 

roughness (d84) and lower values for smooth till patches (Bergman et al., 2016). The 

roughness value used for till was 0.013 - similar to smooth concrete (Wong and Lim, 

2006; Chow, 1959). For the floodplain we used a generic Manning's n roughness of 0.08 

to account for trees and the thick vegetation of the river valley. The results presented in 

Fig. 4b show that there is not a single bankfull discharge but rather 44 different values 

(for 94 cross-sections, not including extrapolated ones) starting as low as 7 m
3
/s up to 99 

m
3
/s (median 33, average 36 m

3
/s). The significance of this finding is that one would 

expect to have a narrow discharge range (few values) reflecting small changes in 

proximal cross-sections (i.e., width and depth) of the reach but instead the rapid 
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fluctuations in bankfull discharge imply downstream hydraulic geometry is strongly 

controlled by till tensile strength and erodibility. Due to this large variability in bankfull 

discharge values, all the scaling correlations between depths and widths to bankfull 

discharges are weak, whether looking at the whole reach or by bedform type (Table 1).  

Unlike a basin-scale analysis that can mask glacial conditioning on the DHG by 

increasing discharge downstream (Thayer et al., 2016), it is apparent that reach-scale 

analysis with no sediment or water inputs exposes the control exerted by the moraine and 

cohesive till. Eaton and Church (2007) claimed that the widespread similarity of 

downstream scaling form of equations suggests that they express some important 

underlying regularities in the morphology of stream channels through the drainage 

network. But in environments in which bank strength varies greatly, scaling relationships 

fail to capture the rapid changes in widths and depths. Hydrologic response often exhibits 

considerable scatter that is difficult to interpret when working with a small number of 

observations, although this scatter disappears when increasing the number of 

observations (Zehe et al., 2007). The scatter thus is not measurement error but is related 

to the scale of analysis.  

The modeled average and median bankfull discharges are almost identical to 

extraction of bankfull discharge from maximum channel width (23 m) proposed by 

Anderson et al. (2004) that gives 32 m
3
/s, and slightly higher than the bankfull discharge 

equation proposed by Annable (1996) that gives 28 m
3
/s for southern Ontario rural 

streams. The localities that produce a very high bankfull discharge are areas where a 

former meander loop enters the channel creating a compound cross-section with a large 

area, while localities with very low bankfull discharge values are in places where the 
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Arva Moraine is not constraining the channel; incision into the till banks is small and 

consequently both banks are relatively low, allowing the flow to easily expand into the 

floodplain.   

Large and variable values of bankfull discharge in our study reach, unlike graded and 

stable alluvial rivers (Mackin, 1948; Lane, 1955), show the channel is not in quasi-

equilibrium (Stevens et al., 1975) but rather reflects a history of many flows with the 

combination of local till properties and its erodibility. Vertical incision and bank collapse 

widening are not compensated by deposition and opposite bank advancement and the 

channel records numerous local geometry adjustments that even the perennial shrub and 

forest of the floodplain cannot stabilize. The DHG measurement uncertainty (Harman et 

al., 2008) in our cross-sections was reduced by the mapping methodology. The mapping 

was not only based on the GPS-produced DEM but supported by bank heights and 

channel widths measured in the field and an assigned bed roughness for each cross-

section that actually reflects local bed sediments and till exposures (Fig. 2a). The 

accuracy of measuring the exact points of bankfull discharge inflection (i.e. where the 

slope breaks from the channel into the floodplain) is especially important as flat areas are 

less accurate in the DEM and that could expand the floodplain at the expense of the 

channel. It is estimated that the DEM threshold vertical inaccuracy is 0.25 m while for 

the width it is 2.0 m (Borgniet et al., 2003).  

The bankfull modeling results support Thayer's (2010) and Thayer and Ashmore 

(2016) first formation mechanism: vertical accretion of suspended sediment as a result of 

annual overbank flooding. Meanders are extended during overbank flows, they migrate 

and neck-cutoffs leave behind abandoned channels. These newly inactive channels fill 
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and are buried with time and therefore the alluvium above them is thicker than the nearby 

floodplain that is a result of incision and is overlain by a thin soil layer. This mechanism 

negates the second mechanism of lateral accretion of bars and vertical accretion on the 

channel margins as there are only 5 bars (Bergman et al., 2016); only one is a medial bar 

while the rest are forced (pointbars), but many bankfull discharge values surpass them in 

elevation besides the small discharge that remain in-channel. Since overbank flow can 

occur at a range of discharges (Fig. 4b), local floodplain sedimentation rates can account 

for  up to 1.5 m of sediment in buried channels but only a few cm of sandy fines in the 

flatter floodplain that is topographically higher (Thayer, 2010; Thayer and Ashmore, 

2016). Thornbush and Desloges (2011) and Oliva et al. (2016) showed that oxbow lakes 

hold key hydrologic and stratigraphic evidence for overbank flows (using archeological 

artifacts and paleofloods, respectively) in a temperate humid climate. However, the 

relatively confined morphology of Medway valley incised into the Arva Moraine does 

not allow these oxbow lakes to develop as the abandoned channels are filled and their 

only signature is seen either in the floodplain stratigraphy (Thayer, 2010; Thayer and 

Ashmore, 2016) or when bankfull discharge is modeled and the cross-sectional area is 

unusually large (the site of avulsion).  

In larger rivers like the Lower Grand and Lower Thames, the floodplain's vertical and 

lateral accretion are better recorded (Walker et al., 1997; Stewart and Desloges, 2014) 

and it is possible to build a long term chronology of overbank flow events and associate 

them with sedimentation. Bankfull discharge models confirm the W/D ratios’ variability 

(section 4.1.1, Fig. 3a, b) and that boundary till and the Arva Moraine (and the associated 

width constriction) control local channel morphometry on a reach-scale. These results 
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will probably be opposite in a much larger till river (Leopold and Maddock, 1953) or 

when conducting basin-scale analysis on a small till channel (Thayer et al., 2016), 

implying bankfull flow (or other effective discharge) is scale-dependent.     

4.1.4 Maximum discharge and 100 year flood for Medway Creek 

Southern Ontario does not have an established envelope curve for peak discharges 

(Qp) as unlike regional Qbf there are many missing values. We therefore look for similar 

channels in the American Midwest and bordering US states that were also previously 

glaciated during the late Wisconsinan. Patton and Baker (1976) investigated 

morphometric relationships for small drainage basins across the US, including ten in 

Indiana (4-329 km
2
 in size) that were all formerly glaciated by the LIS (Mickelson and 

Colgan, 2003) and have a similar flat topography like southern Ontario. They suggested a 

maximum discharge of 222 m
3
/s for a channel with a drainage area like Medway Creek, 

i.e. about 7 times average bankfull discharge.  

The modern flow record for Medway Creek is too short (71 years, but the early years' 

record is seasonal and incomplete) and the construction of probable maximum flood 

(PMF) and probable maximum precipitation (PMP) will need large extrapolations that 

will yield very large errors. Alternatively, the 100 year flood (Q100) can be calculated 

using a proposed USGS method related to climatic and watershed properties: 

                                           Q100 = 0.471 Ad
0.715 

* E
0.827 

* Sh
0.472

               (3) 

where E is elevation (in m) and Sh is the basin shape factor, defined as the drainage area 

divided by the square of the main channel length. This gives a Q100 of 195 m
3
/s for 

Medway Creek. A flood of this magnitude has not occurred on record (largest measured 

flood was 147 m
3
/s in 1977). When nonparametric frequency analysis was performed on 
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183 gauging stations from Ontario and Quebec, unimodal and multimodal maximum 

annual flood density functions were discovered (Gingras et al., 1994). The stations with a 

unimodal density were subject to the spring snowmelt, while the multimodal densities 

were subject to snowmelt or to rainfall-only events. Gingras et al. (1994) suggested the 

following equation for southern Ontario: 

                                   log Q100 = 0.873 log Ad – 0.032              (4) 

This yields Q100 = 99 m
3
/s, which was exceeded twice since records started (1977 and 

2007).  

The wide range of discharge metrics (QBf, Q2yr, Q1.5yr, Qp and Q100) demonstrates the 

inherent problem of applying alluvial river channel theory (DHG of Leopold and 

Maddock, 1953) to an incised channel that has a cohesive boundary. While DHG theory 

works quite well on a basin-scale (Thayer et al., 2016), on a much smaller reach-scale it 

is inadequate. Its geometry and dimensional analysis (Strahler, 1958) do not necessarily 

reflect the contemporary hydrology and climate (Rodriguez-Iturbe and Escobar, 1982), 

but a longer deglaciation legacy (Wilcock et al., 2009; Gran et al., 2009; Phillips and 

Desloges, 2014; 2015a; 2015b) intertwined with modern short-term anthropogenic 

processes (Campo and Desloges, 1994; Novotny and Stefan, 2007; Schottler et al., 2013). 

There are similarities between till channels (Kamphuis 1983; Kamphuis et al., 1990; 

Pike, 2014) and soft bedrock channels (Stock et al., 2005) in terms of tensile strength of 

the boundary material while active tectonic uplifting in bedrock rivers is replaced by 

isostatic rebound in young till (Lewis et al., 2005) but channel dimensions on a reach-

scale are not enough to infer and solely explain DHG. In addition, the reach-scale and 

basin-scale comparisons are sometimes incompatible as the amount of intervening factors 
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and internal complexity are quite different. Hence, a variety of methods and metrics 

might be needed to understand the complex channel morphometry of till channels, 

especially when working on a reach-scale.    

This discharge variability is important during continuous active river management and 

especially when implementing restoration practices that are often based on hydrologic 

metrics that assume the various flow variables (often width, depth, their resulting cross-

sectional area and bankfull discharge) are reflecting channel adjustment to discharge and 

sediment supply (Mackin, 1948; Lane, 1955), but do not account for excessive control by 

the boundary material (Wohl, 2004). Foster (1998) worked on 3 semi-alluvial streams 

crossing or in between moraines in the London area (Dingman Creek, Oxbow Creek and 

Nissouri Creek) and concluded that Natural Channel Design (NCD) and habitat 

restoration need to incorporate differences in the bedform features in order to succeed. 

For example, when prescribing flow releases from an upstream dam and the volume of 

water to be released downstream, determining the hydrograph shape (i.e. peak discharge, 

duration of the rising limb and the recession) is crucial in achieving geomorphic work 

rather than releasing a monotonic flow which has limited flushing effects (Kondolf and 

Wilcock, 1996). Such complex design eco-hydraulic models with different scenarios are 

already available in order to maintain pool-riffle morphology of gravel-bed rivers 

(Schwartz et al., 2015; Brown et al., 2016), but are lacking for till-bedded rivers.        

4.1.5 Modeling largest flood on the measured record 

Once the classic bankfull discharge concept fails for the study reach, a new question 

arises: is there another single discharge that shaped the floodplain and river valley? In 

many channels, there is an effective discharge (Qeff; Andrews, 1980) or dominant 
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discharge (Carling, 1988) which is not necessarily the bankfull discharge; this is 

especially true for formerly glaciated terrains (Hassan et al., 2014). The idea to use the 

largest flood on record stems from desert rivers’ geometry (Graf, 1988), where often 

there are two separate morphologies: 1) The outer morphology formed by a very large 

high-magnitude low-frequency rare flood, and 2) The inner channel where most of the 

ordinary flows occur and that morphology is distant from the external one. The internal 

morphology occupies a small area of the external valley morphology due to its cohesive 

bed and banks and thus the external morphology can be preserved for a long time (i.e. 

control of rare floods of overall valley geometry). We use the largest flood on the 

measured record (147 m
3
/s) to model if there is an external morphology that maintains 

any geometric relations. We use two different parameters to test this: widths (ASCE Task 

Committee on Hydraulics, Bank Mechanics, and Modeling of River Width Adjustment, 

1998) and cross-sectional area (Bagnold, 1960). The cross-sectional area’s main 

advantage is that it ignores each cross-section's simple (i.e. rectangular or trapezoidal) or 

compound shape but inherently includes widths and depths. If any of these do not show 

significant change along the Medway reach since the largest flood took place almost four 

decades ago (1977), it is possible that it is the only recorded geometry (Baker, 1977; 

Wolman and Gerson, 1978) while the classic bankfull discharge(s) only reflects relatively 

small-scale erosional processes (Wolman and Miller, 1960), not only of the flows but till 

erodibility (Kamphius, 1983; Khan and Kostachuk, 2011). Therefore it is not bankfull 

discharge but rather a rare flood event that we are considering here. 

Results of maximum channel widths for the flood of record are presented in Fig. 5a. 

Widths were normalized relative to channel center in order to better visualize their 
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changes without the effect of meander morphology (Fig. 1). As with non-constant 

channel bankfull discharges (Fig. 4b), outer widths of floodplain and river valley also 

show variability. Bank width irregularities are exaggerated within the river floodplain and 

valley floor, with a minimum channel width of 59 m, and a maximum flow width of 175 

m. The widest channel areas are opposite the two bluffs while the narrowest are 

downstream of them, where flow converges back towards the channel. This results from 

channel width expansion in places where the channel is cutting through the Arva 

Moraine. The moraine's steep constraining bluff forces the floodplain flow on that side to 

converge back into the river, expand to the opposite side of the channel deep into the 

floodplain and river valley and possibly have major flow losses and backponding on the 

forest floor.  

The river valley and floodplain are affected by the long-term glacial legacy (Gran et 

al., 2011; Phillips and Desloges, 2014; Thayer et al., 2016) and shorter term non-fluvial 

processes such as bluff mass wasting (Day et al., 2013) and sediment erosion due to 

freeze-thaw processes (Isard and Schaetzl, 1998). The cross-sectional areas are therefore 

expected to reflect these spatial changes for this low gradient channel even though forest 

and shrub vegetation (e.g. roughness and holding the soil) are homogenous. Fig. 5b 

presents the cross-sectional area of the largest flood on record. The largest flow area is 

before the right bank bluff (283 m
2
), while the smallest area is exactly between the left 

bank bluff and the right bank bluff (62 m
2
; average 140, median 137). The bluffs, 

representing river incision through the Arva Moraine, thus play a major role in 

determining flow structure during high flows as they serve as obstructions to flow and are 

the highest relief of the floodplain such that no natural flood can reach or exceed their 
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tops. Furthermore, in places the cross-sectional area is relatively small and the flow 

converges into a confined section and cannot expand; energy, slope and velocity have to 

be compensated and rise dramatically (Froehlich, 1994; Phillips and Desloges, 2014). We 

did not observe terraces or outer floodplain/valley incision that supports a larger external 

morphology formed by a large flood although it is possible it was not preserved and 

removed with time, unlike other cases of till channels that preserve their erosional history 

well (Phillips and Robert, 2005; Arbogast et al., 2008). Thayer et al. (2016) showed that 

moraines play a major role in determining channel slope and stream power in southern 

Ontario, thus strengthening our modeling results from Medway Creek. Furthermore, 

moraine reaches are different not only in coarser sediments and geomorphic instability 

that characterizes them, compared to low-gradient channel reaches, but need a different 

approach when conducting channel rehabilitation (Champoux et al., 2003; Merten et al., 

2010).  

It seems that, for Medway Creek, both widths and cross-sectional areas of the largest 

flood are not reflected in external valley morphology, and that the Arva Moraine bluffs 

are the major control for constraining larger floods. Furthermore, the bluffs' steep high-

relief topography means that there are raised floodplain/river valley patches that cannot 

be inundated by high discharge under the current climate and they are unrelated to 

modern fluvial processes. Internal morphology of the channel is controlled not only by 

Arva Moraine bluffs but also by cohesiveness/erodibility of the local till. There is, 

therefore, no single formative discharge that can be assigned to Medway Creek as with 

alluvial gravel-bed rivers that all conform to a regular range of formative discharges 

(Parker, 1978; Parker, 1979).    
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4.1.6 Modeling channel velocities  

As seen in section 4.1.2, bankfull discharge is a key metric to describe channel form 

and function, although we found it challenging to determine a single value in our study 

reach. Here we simulate and compare the reach's average bankfull flow velocities (Qbf = 

36 m
3
/s) to minimum bankfull velocities (Qbf = 7 m

3
/s) for each of the bedforms (Fig. 

6a). Results indicate that velocities increase in an identical pattern for pools and riffles 

(slope a equals 1.18 and 1.15, respectively) and faster for flats (a = 1.61). Thus it is 

possible that flats might be the only bedform to experience velocity reversal according to 

Keller's (1971) concept at higher discharges. Using the classic Keller (1971) graph from 

minimum bank-full discharge (7 m
3
/s) to the largest flood on record (147 m

3
/s), using 5 

m
3
/s discharge modeling increments, shows this is not the case (Fig. 6b). Riffles maintain 

highest velocities at all discharges (a =0.010), pools have almost an identical trend 

increase (a = 0.011) while the flats are exactly identical to riffles (a = 0.010) and remain 

the lowest. However, at 67 m
3
/s riffle and pool velocities almost intersect and are 

identical until 97 m
3
/s, when riffle velocities rise quickly again. The rise in velocities in 

all three bedforms starts rapidly then flattens.  

Despite Arva Moraine's topographic constrictions, pools and flats do not develop the 

expected velocity reversals (Keller, 1971; Thompson et al., 1999), as in most cross-

sections the channel has one lower bank to spill into the floodplain and river valley. In a 

few cross-sections constrictions are on both banks and the flow is completely contained 

(Fig. 2a) and modeling allows us to see the hydraulic response. Examining the velocity 

profiles for three selected discharges (7, 36 and 147 m
3
/s) shows that the two bluffs are 

associated with sharp rises in velocity while a third, just downstream outside the study 
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reach, is responsible for another spike in flow acceleration (Fig. 7). Velocity patterns are 

identical at all discharges, with sharp fluctuations. Even though the largest flow on record 

(147 m
3
/s) is 21 times the minimum bankfull discharge (7 m

3
/s), and more than 4 times 

the average bankfull discharge (36 m
3
/s), average velocities maintain a consistent pattern 

(R
2
 of 0.6 and 0.8, respectively). This can be explained by rigid morphology of the 

channel exerted by till control and in general the inability of the flow to modify that 

cohesive moraine morphology aside from a few localities where weathered till is weaker 

and more erodible. The representative grain size roughness of d84 (Cheng, 2016) 

associated with each bedform (Bergman et al., 2016) is greatest just upstream of each 

bluff, while downstream there is a sharp drop in bed roughness values after the flow 

widened.  

To summarize, simulated reach channel velocities are strongly associated with bluff 

constrictions and cross-sectional variability in widths and depths. Velocity oscillations 

maintain identical flow patterns at a range of flow magnitudes including overbank flows. 

When analyzing the bedforms, pools and riffles have an identical increase in velocity as 

the flow magnitude rises while flats have much faster rate of flow accelerations. 

However, this does not imply velocity reversal for any of the three bedforms whether the 

flow is contained in-channel or during overbank flows. At a flood range of 67 to 97 m
3
/s 

pools' and riffles' velocities almost converge suggesting the bottom friction of the channel 

is less important as depth increases. This is not the case for flat velocities that remain 

lower than pools and riffles at all discharges. Bed roughness and velocities are high just 

before the bluffs constrain the flow on one bank and force it to expand towards the other 

lower bank and floodplain but that changes immediately downstream of the bluffs as the 
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flow is no longer limited (except by local till banks). Therefore, the moraine exerts a 

strong and permanent lithologic reach-scale control of the velocity.       

4.2 Channel stability based on bedform downstream hydraulic geometry  

Wohl (2004) suggested a simple equation to discriminate whether a channel has poor 

DHG or developed DHG regardless of type of channel (including formerly glaciated 

rivers and bedrock channels). Wohl’s (2004) method can also be tested on the bedform 

scale, which makes this method highly suitable for our study. The equation is based on a 

ratio of stream power to coarse percentile sediment size, Ω/d84, which proved to be an 

effective discriminator between rivers with poorly developed DHG and well developed 

DHG (Wohl, 2004). The stream power, Ω (in kg m/s
3
), is defined as:   

Ω = γQS     (5) 

where γ is specific weight of water (9800 N/m
3
), Q is annual high flow (in m

3
/s) (we used 

32 m
3
/s, see reasoning in section 4.1.2) and S is reach slope (unitless or m/m). When 

Ω/d84 is larger than 10,000 kg/s
3
, DHG is well-developed; when below, it is poorly 

developed. The strength of the Ω/d84 ratio is that it takes into account the discharge and 

the grain size just like the RBS
*
 (Relative Bed Stability, see adjoining paper Bergman et 

al., 2016; Kaufmann et al., 2008; 2009). The annual high discharge reflects the 

contemporary climate. The grain size reflects the control of parent material in terms of 

climate and erosion regime (e.g. what grain sizes it breaks down to) and hillslope 

coupling and bank stability. If the channel has a very coarse tail GSD beyond the 

competence of the channel, it will be difficult for the channel to adjust the DHG. In order 

to interpret the results, we defined the following criteria: DHG is considered well 

developed when Ω/d84 ratio > 10,000 kg/s
3
, poorly developed when Ω/d84 ratio < 9000 
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kg/s
3
 and marginal when 9000 kg/s

3
 ≤ Ω/d84 ≤ 10000 kg/s

3
. Most riffles are well adjusted 

to the DHG, while the few that are not are somewhat marginal (Fig. 8; Table 2). The 

majority of pools are with poorly developed DHG and flats are generally in between (Fig. 

8; Table 2).  

A possible explanation to bedforms adjustment is time-scale. Since pools are a scour 

bedform, we associate their poor DHG adjustment with strong till lithologic control. 

Conversely, for the depositional riffles, till control has less impact as sediment overlays 

the till and flow is not incising into it (i.e. alluvium is thickest; Bergman et al., 2016) thus 

they can better adjust to bed-moving discharges. This notion of longer (millennial) time-

scale bears similarity to the observation by Carling et al. (2009) that "…while in alluvial 

channels the amplitude of both pools and riffles may adjust at the same time scale, in a 

bedrock river over a relatively short time scale there is a better opportunity to construct 

an alluvial riffle but excavation of a pool requires a longer time period.". Although 

Medway Creek's till is softer than bedrock, its erodibility (Pike, 2014; Bergman et al., 

2016) might control the location of bedforms and their lack of cyclic organization and 

regular spacing (i.e. they are forced bedforms as a result of till control; Bergman et al., 

2016). This notion fits with Ruhe's (1952) observation that on millennial time scales the 

differential incision and drainage densities of morainic channels are a function of time 

since deglaciation (i.e. corresponds to the Davisian theory of young and mature landform 

development). Very few cases of bedrock pool-riffle sequences are reported in the 

literature (Patton and Baker, 1978; Keller and Melhorn, 1978; Baker, 1984; O'Connor et 

al., 1986; Baker and Pickup, 1987; Carling et al., 2009) and thus formation/controlling 

mechanisms that we could use as analogues for semi-alluvial till channels are poorly 
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understood relative to the vast alluvial channel architecture literature (Chartrand and 

Whiting, 2000). An interesting study by O'Connor et al. (1986) explained bedform 

formation in a small bedrock channel as a result of high discharges; bouldery riffles form 

where stream power drops, i.e. downstream of canyon expansions and upstream of 

canyon bends and constrictions. On Medway Creek we cannot use channel widths as a 

forming mechanism, as the average widths of the different bedforms is essentially 

identical and only bedform lengths and slopes vary between bedforms (see Bergman et 

al., 2016; Fig. 10 and Table 3). The largest boulders in the study reach are randomly 

positioned in places where till produced them (either from banks or the bed) and they 

appear in all three bedform types. We have no direct evidence that Medway Creek has 

ever had the competence to move them, although Carling et al. (2009) stated they might 

be associated with a longer time-scale of extreme discharges.  

Since pools constitute most of the channel bed's area (55%) we conclude that channel 

form is in most instances poorly adjusted to discharge and coarse sediments in the bed. 

The results of the Wohl (2004) method (presented above) shows pools have a poorly 

developed DHG, which contradicts the Lisle and Hilton (1992, 1999) stability method. It 

also contradicts the LRBS
*
 and RSI analyses which suggest that riffles are not stable 

(Bergman et al., 2016). The Wohl (2004) method does align well with the ecological fish-

biodiversity assessment. Consequently, one would expect Medway bedforms to be rich in 

fine sediment to induce that instability (Wilcock et al., 2001), but this is not the case 

(Bergman et al., 2016).  

To summarize, the downstream hydraulic geometry discriminator formula proposed 

by Wohl (2004) was implemented in order to analyze the ability of the 3 major bedform 
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types to adjust to the control the moraine and till exert over the reach. Pools that are a 

scour bedform feature and occupy most of the channel's area (55%) are poorly adjusted. 

In contrast, most riffles are hydraulically well adjusted, perhaps because their sediment 

overlies till rather than cutting into it as with pools. The flats are a transitional bedform 

between pools and riffles. These results suggest that different bedform types operate on 

different time scales depending on the local erodibility/resistance of the till, implying that 

the channel is operating within strong glacial conditioning and has not yet reached a state 

of quasi-equilibrium that is seen in alluvial rivers and expressed as rhythmic spacing of 

bedforms. Our results are supported by a study by Livers and Wohl (2015) that compared 

alluvial valley rivers to rivers in formerly glacial valleys in low-order mountain streams 

of the Colorado Front Range. They found that formerly glacial valleys display much 

more variability in channel geometry, the DHG is not distinct and when looking on a 

smaller local reach bedform-scale (10
1
-10

3
 m) the local control (or process domains) 

overrides the larger drainage basin downstream relationships.   

5. Conclusions  

Bank incision into till and Arva Moraine bluffs is highly variable, creating a variety of 

bank elevations. Similarly, channel widths vary considerably, resulting in a wider range 

of width/depth (W/D) ratios relative to larger till-bedded channels on a reach-scale. When 

conducting a similar analysis on a basin-scale, the average W/D ratio of Medway Creek 

falls in between other river types in a variety of environments, and specifically for 

formerly glaciated terrains it seems that till control is associated with the scale of 

analysis. Bankfull discharge, a key metric in any hydrologic analysis, is found to produce 

a range of values when using equations or gauged statistics. Furthermore, precise 
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modeling of bankfull discharge for each cross-section shows that there is not a single 

value discharge on a reach-scale or smaller bedform-scale. Maximum discharge also does 

not show clear geometric relations nor preserves an external morphology. The steep 

bluffs of the Arva Moraine are the dominant geomorphic feature of the reach. The 

velocity reversal hypothesis was not detected at a range of simulated in-bank and 

overbank flows.  

Because of these hydrogeomorphic irregularities resulting from a strong glacial 

legacy, till channels cannot be classified as ordinary self-forming alluvial gravel-bed 

rivers. The lack of compatibility between sedimentologic stability (adjoining paper) and 

bedform DHG stability (the Wohl method) demonstrates that current metrics often used 

by fluvial scientists and river managers and practitioners are inadequate for a semi-

alluvial channel with strong lithologic control. Similar to rapid assessment protocols and 

sedimentary metrics, hydrologic metrics used to detect channel stability or change must 

be used in fluvial context of a vast body of knowledge about similar rivers or as part of a 

long-term monitoring program which gives a reference for comparison. Alternatively, 

hydrologic and sedimentary metrics can be coupled to a biologic survey such as the Index 

of Biotic Integrity (IBI) when investigating semi-alluvial till channels. This is especially 

important when actively managing or restoring morainic semi-alluvial rivers that differ 

from their alluvial river counterparts. The distinction between temporal 'natural' processes 

and morphologic variability such as long-term glacial legacy and short-term hydrologic 

and morphologic changes linked to human activities over the landscape might prove 

difficult to separate. There are few rivers that can be considered completely natural and 

pristine. It is the responsibility of river scientists and practitioners to manage and restore 
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these semi-alluvial rivers in adequate ways that take into account the complexity of 

intertwined long-term glacial legacy and modern short-term anthropogenic modifications.    
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Figures  

 

 

 
 

Figure 1. The 1D modeling setup of 94 cross-sections overlying Medway Creek's 

channel DEM and surrounding floodplain-valley aerial photograph.  
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Figure 2. (a) The bed long profile, the right and left bank long profiles and channel 

widths along the study reach. Three selected long profiles of the minimum bankfull 

discharge, the average bankfull discharge and the largest flood on the measured 

record show that flow can be contained in many localities. The spike in elevation on 

each bank indicates a bluff from incision into the Arva moraine. (b) Channel width 

and bank heights comparison (n = 62). Boxes indicate 25
th

 and 75
th

 percentiles as 

well as the median; error bars indicate 5
th

 and 95
th

 percentiles. Dots indicate 

maximum values. Left and right bank heights (with and without bluffs heights) are 

similar.  
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Figure 3. (a) Reach-scale W/D ratios for Medway Creek and a comparison with a 

channel with similar till boundary material – the Kaskaskia River in Illinois 

(Bhowmik, 1979). (b) Basin-scale W/D ratios of alluvial channels and formerly 

glaciated terrain (FGT) channels. Alluvial prairie rivers and alluvial desert rivers 

represent the two extremes of the W/D spectrum.  
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Figure 4. (a) An example of the problematic use of bankfull discharge during the 

March 18, 2011 spring melt flood (37.5 m
3
/s) on a Medway Creek pool. Flow is 

overbank and covering the pointbar on the bottom left, while simultaneously 

upstream (top-center of the photo) the flow is entirely contained within the deep 

channel and is about half the right bank elevation. (b) Bankfull discharge for each 

cross-section derived using HEC-RAS simulations.  
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Figure 5. (a) Modeled channel widths during the largest flood on the measured 

record (147 m
3
/s) normalized relative to the channel center and banks. (b) Cross-

sectional area along the study reach. The minimum and maximum flow areas are 

associated with Arva Moraine bluffs.  
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Figure 6. Comparison of modeled flow velocities of bedforms. (a) The average 

bankfull discharge velocities for all cross-sections (36 m
3
/s) of the entire reach vs. 

the minimum bankfull flow velocities (7 m
3
/s) for each bedform. (b) Average flow 

velocity of all three bedform types vs. incremental discharge increases of 5 m
3
/s.  
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Figure 7. Average modeled velocities along the study reach coupled with bed 

roughness represented by d84. Steep bluffs in the beginning, center and downstream 

(outside the study reach) are responsible for sharp velocity spikes at all discharges.  

 

 

 
Figure 8. Bedform downstream hydraulic geometry discriminator according to the 

method proposed by Wohl (2004) for stream power vs. the 84
th

 grain percentile. All 

values above 10,000 kg/s
3 

(dashed grey line) are well developed while below it is 

undeveloped.  
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Tables 

 

Table 1. Hydraulic geometry relations for width and depth, for the whole reach and 

per bedform.   

 

 

                Width relations                Depth relations 

 Equation R
2
  Equation R

2
 

Reach Wreach = 16.907Qbf
-0.03

 0.0173  Dreach = 2.2058Qbf
0.0217

 0.0011 

Pool Wpools = 15.164Qbf
-0.012

 0.0032  Dpools = 2.7683Qbf
-0.047

 0.0085 

Riffle Wriffles = 15.761Qbf
0.0101

 0.0022  Driffles = 1.5642Qbf
0.1955

 0.0637 

Flat Wflats = 21.091Qbf
-1.071

 0.0899  Dflats = 1.7401Qbf
0.0381

 0.0023 

 

 

 

 

Table 2. DHG adjustment for all the bedforms in the study reach based on the Wohl 

(2004) method.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hydraulic adjustment 

degree Pools Flats Riffles All* All*

By count By area

Well developed 1 (8%) 2 (25%) 10 (67%) 13 (36.1%) 19%

Marginally developed 3 (23%) 2 (25%) 2 (13%) 7 (19.4%) 11%

Poorly developed 9 (69%) 4 (50%) 3 (20%) 16 (44.4%) 70%

* Excluding the steps
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Appendix  

Table 1. W/D ratios for alluvial and formerly glaciated terrain (FGT) rivers.

Source River and location Scale Drainage area, km2
W/D ratio Type of river

This study Medway Creek (Ontario) Reach 205 13.9 Formerly glaciated terrain

Leopold and Maddock (1953) Mobile River Basin (Mississippi and Alabama) Basin 5723.9 12.3 Alluvial

2131.6 11.7 Alluvial

11629.1 22.7 Alluvial

1333.8 13.3 Alluvial

40144.8 20.5 Alluvial

49468.8 23.6 Alluvial

Scioto River Basin (Ohio) 660.4 23.7 Formerly glaciated terrain

1478.9 52.1 Formerly glaciated terrain

2558.9 46.5 Formerly glaciated terrain

4206.1 71.8 Formerly glaciated terrain

6824.6 25.9 Formerly glaciated terrain

9963.7 21.7 Formerly glaciated terrain

Tennessee River Basin 175.9 38.5 Alluvial

266.8 51.1 Alluvial

30.3 27.8 Alluvial

104.6 34.4 Alluvial

1750.8 105.7 Alluvial

4058.5 32.2 Alluvial

4812.2 65.3 Alluvial

235.2 35.6 Alluvial

35.7 15.8 Alluvial

23139.0 64.8 Alluvial

St. Lawrence River Basin 955.7 33.9 Formerly glaciated terrain

5306.9 55.7 Formerly glaciated terrain

1150.0 15.0 Formerly glaciated terrain

1983.9 21.8 Formerly glaciated terrain

875.4 35.7 Formerly glaciated terrain

435.1 38.1 Formerly glaciated terrain

815.8 50.0 Formerly glaciated terrain

888.4 36.1 Formerly glaciated terrain

1665.4 21.1 Formerly glaciated terrain

1939.9 22.2 Formerly glaciated terrain

6032.1 77.0 Formerly glaciated terrain

14322.6 104.8 Formerly glaciated terrain

16353.2 331.8 Formerly glaciated terrain

Kansas River Basin 3781.4 90.0 Alluvial

27453.9 150.0 Alluvial

53871.8 135.3 Alluvial

63636.1 136.0 Alluvial

9207.4 68.3 Alluvial

14581.6 75.0 Alluvial

18039.3 94.5 Alluvial

19632.1 64.3 Alluvial

20349.6 43.8 Alluvial

21004.8 33.3 Alluvial

49727.8 14.2 Alluvial

117171.1 90.0 Alluvial

143071.0 128.0 Alluvial

146878.3 104.6 Alluvial

151307.2 158.3 Alluvial

155114.5 95.4 Alluvial

Missouri River Basin 482774.1 197.0 Alluvial

630662.6 105.7 Alluvial

1098932.8 75.0 Alluvial

1267023.1 93.4 Alluvial

1368032.7 108.8 Alluvial

Mississippi River Basin 444183.3 94.1 Alluvial

1815583.0 56.6 Alluvial

2415942.7 38.2 Alluvial

2964243.6 65.1 Alluvial

Schumm (1963) Arikaree River (Nebraska) Basin 3,781 23.0 Alluvial

White River (Nebraska) Basin 906 4.7 Alluvial

Powder River (Montana) Basin 33,411 53.3 Alluvial

Solomon River (Kansas) Basin 17,534 16.6 Alluvial

North Fork Republican (Nebraska) Basin 12,354 27.4 Alluvial

Sappa Creek (Nebraska) Basin 9,946 5.3 Alluvial

Prairie Dog Creek (Kansas) Basin 1,867 10.0 Alluvial

Red Willow Creek (Nebraska) Basin 1,839 6.3 Alluvial

Bhowmik (1979) Kaskaskia River (Illinois) Reach 3,445 11.4 Formerly glaciated terrain, downstream of a dam

Reach 7,045 14.3 Formerly glaciated terrain, downstream of a dam

Trimble (1997) Coon Creek (Wisconsin, Driftless Area) Reach 360 18.0 Grassy alluvial

Reach 360 12.0 Grassy alluvial

Reach 360 12.0 Grassy alluvial

Reach 360 11.0 Grassy alluvial

Reach 360 20.0 Forested alluvial

Reach 360 18.0 Forested alluvial

Reach 360 17.0 Forested alluvial

Reach 360 16.0 Forested alluvial

McCandless and Everett (2002) Baisman Run (Maryland) Reach 4 11.39 Alluvial

Basin Run (Maryland) Reach 14 27.04 Alluvial

Beaver Run (Maryland) Reach 36 15.49 Alluvial

Beaverdam Run (Maryland) Reach 54 11.52 Alluvial

Bennett Creek (Maryland) Reach 163 17.41 Alluvial

Big Elk Creek (Maryland) Reach 136 17.57 Alluvial

Big Pipe Creek (Maryland) Reach 264 14.32 Alluvial

Cranberry Branch (Maryland) Reach 9 11.72 Alluvial

Deer Creek (Maryland) Reach 244 21.54 Alluvial

Hawlings River (Maryland) Reach 70 11.2 Alluvial

Jones Falls (Maryland) Reach 65 15.74 Alluvial

Little Falls (Maryland) Reach 137 13.79 Alluvial

Little Patuxent River (Maryland) Reach 98 9.88 Alluvial

Long Green Creek (Maryland) Reach 24 22.95 Alluvial

Morgan Run (Maryland) Reach 73 16.35 Alluvial

Northeast Creek (Maryland) Reach 63 17.01 Alluvial

NW Br Anacostia River (Maryland) Reach 55 8.32 Alluvial

Patuxent River (Maryland) Reach 90 13.37 Alluvial

Piney Creek (Maryland) Reach 81 17.41 Alluvial

Seneca Creek (Maryland) Reach 262 11.11 Alluvial

Slade Run (Maryland) Reach 5 9.11 Alluvial

Western Run (Maryland) Reach 155 18.13 Alluvial

Winters Run (Maryland) Reach 90 15.19 Alluvial

McCandless (2003) Bear Creek (Maryland) Reach 27 15.6 Alluvial

Bear Creek (Maryland) Reach 127 23.0 Alluvial

Big Piney Run (Pennsylvania) Reach 63 23.0 Alluvial

Casselman River (Maryland) Reach 162 39.3 Alluvial

Crabtree Creek (Maryland) Reach 43 17.8 Alluvial

Ditch Run (Maryland) Reach 12 17.1 Alluvial

Evitts Creek (Pennsylvania) Reach 78 18.6 Alluvial

North Branch Potomac River (Maryland) Reach 189 22.4 Alluvial

Savage River (Maryland) Reach 127 22.2 Alluvial

Savage River (Maryland) Reach 4 12.5 Alluvial

Sawpit Run (Maryland) Reach 13 30.1 Bedrock

Sideling Hill Creek (Maryland) Reach 264 23.9 Alluvial

Toliver Run trib. (Maryland) Reach 1 12.8 Alluvial

Youghiogheny River trib. (Maryland) Reach 1 13.0 Alluvial

Pelletier and DeLong (2004) Bouse Wash (Arizona) Basin 4364 101.0 Desert alluvial entrenched and braided

Wild Burro Wash (Arizona) Basin 21 410.0 Desert alluvial entrenched and braided

Cottonwood Wash (Arizona) Basin 47 450.0 Desert alluvial entrenched and braided

Hassayampa River (Arizona) Basin 3807 362.5 Desert alluvial entrenched and braided

Vamori Wash (Arizona) Basin 6185 70.0 Desert alluvial entrenched and braided

Dead Mesquite Wash (Arizona) Basin 10 130.0 Desert alluvial discontinuous

North Airport Wash (Arizona) Basin 18 170.0 Desert alluvial discontinuous

Vail Wash (Arizona) Basin 10 155.0 Desert alluvial discontinuous

Vail-DM Wash (Arizona) Basin 16 195.0 Desert alluvial entrenched and braided

E La Quituni Valley A (Arizona) Basin 13 1100.0 Desert alluvial distributary with channel fan

E La Quituni Valley B (Arizona) Basin 13 1100.0 Desert alluvial distributary with channel fan

Cananda del Oro (Arizona) Basin 660 92.9 Desert alluvial entrenched and braided

Sycamore Creek (Arizona) Basin 425 650.0 Desert alluvial entrenched and braided

Peñitas Wash (Arizona) Basin 101 190.0 Desert alluvial entrenched and braided

Centennial Wash (Arizona) Basin 4706 9.3 Desert alluvial entrenched and braided

Bobaquivari Wash (Arizona) Basin 52 136.7 Desert alluvial entrenched and braided

Vamori Wash (Arizona) Basin 1997 150.0 Desert alluvial entrenched and braided

Mulvihill et al. (2009) Archer Creek (New York) Reach 1.3 21.9 Formerly glaciated terrain

Buck Creek Reach 3.3 10.2 Formerly glaciated terrain

Tributary to Mill Creek Tributary Reach 4.3 38.1 Formerly glaciated terrain

Vly Brook Reach 8.5 24.5 Formerly glaciated terrain

North Creek Reach 16.9 32.7 Formerly glaciated terrain

Hopkinton Brook Reach 51.8 28.6 Formerly glaciated terrain

Glowegee Creek Reach 67.3 12.4 Formerly glaciated terrain

Plum Brook Reach 113.7 16.0 Formerly glaciated terrain

Little Hoosic River Reach 145.3 21.1 Formerly glaciated terrain

Independence River Reach 229.7 26.9 Formerly glaciated terrain

West Branch Au Sable River Reach 300.4 16.7 Formerly glaciated terrain

Sandy Creek Reach 354.8 19.6 Formerly glaciated terrain

East Branch Au Sable River Reach 512.8 51.7 Formerly glaciated terrain

Bouquet River Reach 699.3 28.9 Formerly glaciated terrain

Moose River Reach 940.2 24.7 Formerly glaciated terrain

Batten Kill River (New York) Reach 1025.6 26.8 Formerly glaciated terrain

North Branch of Foulertons Brook (New Jersey) Reach 1.1 9.7 Formerly glaciated terrain

Stony Brook Reach 5.0 17.2 Formerly glaciated terrain

Horse Pound Brook Reach 10.2 29.7 Formerly glaciated terrain

Hunter Brook Reach 19.2 22.6 Formerly glaciated terrain

Valatie Kill Reach 24.6 18.6 Formerly glaciated terrain

Mahwah River Reach 31.9 16.1 Formerly glaciated terrain

Kisco River Reach 45.6 16.5 Formerly glaciated terrain

Roeliff Jansen Kill Reach 71.2 16.6 Formerly glaciated terrain

Fishkill Creek Reach 148.4 12.6 Formerly glaciated terrain

Ramapo River Reach 225.1 33.6 Formerly glaciated terrain

Tenmile River (Connecticut) Reach 525.8 17.0 Formerly glaciated terrain

Kinderhook Creek Reach 852.1 24.4 Formerly glaciated terrain

Sage Brook Reach 1.8 16.0 Formerly glaciated terrain

Cold Spring Brook Reach 3.9 19.9 Formerly glaciated terrain

Shackham Brook Reach 7.6 23.0 Formerly glaciated terrain

Little Elk Creek Reach 9.7 12.9 Formerly glaciated terrain

Merrill Creek tributary Reach 13.8 30.6 Formerly glaciated terrain

Albright Creek Reach 17.6 20.8 Formerly glaciated terrain

Mink Creek Reach 26.9 20.4 Formerly glaciated terrain

Trout Creek Reach 52.3 19.4 Formerly glaciated terrain

Steele Creek Reach 67.9 14.3 Formerly glaciated terrain

Little Delaware River Reach 129.0 23.1 Formerly glaciated terrain

Butternut Creek Reach 154.6 17.4 Formerly glaciated terrain

Otselic River Reach 380.7 18.0 Formerly glaciated terrain

Otselic River Reach 562.0 29.8 Formerly glaciated terrain

Tioughnioga River Reach 756.3 34.4 Formerly glaciated terrain

West Branch Delaware River Reach 859.9 53.0 Formerly glaciated terrain

Little Tonawanda Creek Tributary Reach 2.6 34.0 Formerly glaciated terrain

Stony Brook Tributary Reach 8.2 27.0 Formerly glaciated terrain

Ischua Creek Tributary Reach 13.3 19.8 Formerly glaciated terrain

Cuthrie Run Reach 14.0 20.7 Formerly glaciated terrain

Big Creek Reach 16.4 10.7 Formerly glaciated terrain

Ball Creek Reach 23.5 53.0 Formerly glaciated terrain

Little Tonawanda Creek Reach 57.2 21.0 Formerly glaciated terrain

Cayuga Inlet Reach 91.2 17.7 Formerly glaciated terrain

Catherine Creek Reach 106.4 22.8 Formerly glaciated terrain

Fivemile Creek Reach 173.0 38.8 Formerly glaciated terrain

Cayuga Creek Reach 249.7 37.7 Formerly glaciated terrain

Cazenovia Creek Reach 349.6 36.7 Formerly glaciated terrain

Catatonk Creek Reach 391.1 92.3 Formerly glaciated terrain

Conewango Creek Reach 751.1 54.0 Formerly glaciated terrain

Second Creek Tributary Reach 2.8 7.4 Formerly glaciated terrain

Canandaigua Outlet Tributary Reach 7.6 8.6 Formerly glaciated terrain

East Branch of Allen Creek Reach 24.6 8.7 Formerly glaciated terrain

Northup Creek Reach 26.2 15.2 Formerly glaciated terrain

Butternut Creek Reach 83.4 53.7 Formerly glaciated terrain

Irondequoit Creek Reach 101.5 15.6 Formerly glaciated terrain

Flint Creek Reach 264.2 23.1 Formerly glaciated terrain

Irondequoit Creek Reach 367.8 14.0 Formerly glaciated terrain

Oatka Creek Reach 518.0 56.6 Formerly glaciated terrain

Tonawanda Creek Reach 903.9 28.2 Formerly glaciated terrain
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Source River and location Scale Drainage area, km2
W/D ratio Type of river

This study Medway Creek (Ontario) Reach 205 13.9 Formerly glaciated terrain

Leopold and Maddock (1953) Mobile River Basin (Mississippi and Alabama) Basin 5723.9 12.3 Alluvial

2131.6 11.7 Alluvial

11629.1 22.7 Alluvial

1333.8 13.3 Alluvial

40144.8 20.5 Alluvial

49468.8 23.6 Alluvial

Scioto River Basin (Ohio) 660.4 23.7 Formerly glaciated terrain

1478.9 52.1 Formerly glaciated terrain

2558.9 46.5 Formerly glaciated terrain

4206.1 71.8 Formerly glaciated terrain

6824.6 25.9 Formerly glaciated terrain

9963.7 21.7 Formerly glaciated terrain

Tennessee River Basin 175.9 38.5 Alluvial

266.8 51.1 Alluvial

30.3 27.8 Alluvial

104.6 34.4 Alluvial

1750.8 105.7 Alluvial

4058.5 32.2 Alluvial

4812.2 65.3 Alluvial

235.2 35.6 Alluvial

35.7 15.8 Alluvial

23139.0 64.8 Alluvial

St. Lawrence River Basin 955.7 33.9 Formerly glaciated terrain

5306.9 55.7 Formerly glaciated terrain

1150.0 15.0 Formerly glaciated terrain

1983.9 21.8 Formerly glaciated terrain

875.4 35.7 Formerly glaciated terrain

435.1 38.1 Formerly glaciated terrain

815.8 50.0 Formerly glaciated terrain

888.4 36.1 Formerly glaciated terrain

1665.4 21.1 Formerly glaciated terrain

1939.9 22.2 Formerly glaciated terrain

6032.1 77.0 Formerly glaciated terrain

14322.6 104.8 Formerly glaciated terrain

16353.2 331.8 Formerly glaciated terrain

Kansas River Basin 3781.4 90.0 Alluvial

27453.9 150.0 Alluvial

53871.8 135.3 Alluvial

63636.1 136.0 Alluvial

9207.4 68.3 Alluvial

14581.6 75.0 Alluvial

18039.3 94.5 Alluvial

19632.1 64.3 Alluvial

20349.6 43.8 Alluvial

21004.8 33.3 Alluvial

49727.8 14.2 Alluvial

117171.1 90.0 Alluvial

143071.0 128.0 Alluvial

146878.3 104.6 Alluvial

151307.2 158.3 Alluvial

155114.5 95.4 Alluvial

Missouri River Basin 482774.1 197.0 Alluvial

630662.6 105.7 Alluvial

1098932.8 75.0 Alluvial

1267023.1 93.4 Alluvial

1368032.7 108.8 Alluvial

Mississippi River Basin 444183.3 94.1 Alluvial

1815583.0 56.6 Alluvial

2415942.7 38.2 Alluvial

2964243.6 65.1 Alluvial

Schumm (1963) Arikaree River (Nebraska) Basin 3,781 23.0 Alluvial

White River (Nebraska) Basin 906 4.7 Alluvial

Powder River (Montana) Basin 33,411 53.3 Alluvial

Solomon River (Kansas) Basin 17,534 16.6 Alluvial

North Fork Republican (Nebraska) Basin 12,354 27.4 Alluvial

Sappa Creek (Nebraska) Basin 9,946 5.3 Alluvial

Prairie Dog Creek (Kansas) Basin 1,867 10.0 Alluvial

Red Willow Creek (Nebraska) Basin 1,839 6.3 Alluvial

Bhowmik (1979) Kaskaskia River (Illinois) Reach 3,445 11.4 Formerly glaciated terrain, downstream of a dam

Reach 7,045 14.3 Formerly glaciated terrain, downstream of a dam

Trimble (1997) Coon Creek (Wisconsin, Driftless Area) Reach 360 18.0 Grassy alluvial

Reach 360 12.0 Grassy alluvial

Reach 360 12.0 Grassy alluvial

Reach 360 11.0 Grassy alluvial

Reach 360 20.0 Forested alluvial

Reach 360 18.0 Forested alluvial

Reach 360 17.0 Forested alluvial

Reach 360 16.0 Forested alluvial

McCandless and Everett (2002) Baisman Run (Maryland) Reach 4 11.39 Alluvial

Basin Run (Maryland) Reach 14 27.04 Alluvial

Beaver Run (Maryland) Reach 36 15.49 Alluvial

Beaverdam Run (Maryland) Reach 54 11.52 Alluvial

Bennett Creek (Maryland) Reach 163 17.41 Alluvial

Big Elk Creek (Maryland) Reach 136 17.57 Alluvial

Big Pipe Creek (Maryland) Reach 264 14.32 Alluvial

Cranberry Branch (Maryland) Reach 9 11.72 Alluvial

Deer Creek (Maryland) Reach 244 21.54 Alluvial

Hawlings River (Maryland) Reach 70 11.2 Alluvial

Jones Falls (Maryland) Reach 65 15.74 Alluvial

Little Falls (Maryland) Reach 137 13.79 Alluvial

Little Patuxent River (Maryland) Reach 98 9.88 Alluvial

Long Green Creek (Maryland) Reach 24 22.95 Alluvial

Morgan Run (Maryland) Reach 73 16.35 Alluvial

Northeast Creek (Maryland) Reach 63 17.01 Alluvial

NW Br Anacostia River (Maryland) Reach 55 8.32 Alluvial

Patuxent River (Maryland) Reach 90 13.37 Alluvial

Piney Creek (Maryland) Reach 81 17.41 Alluvial

Seneca Creek (Maryland) Reach 262 11.11 Alluvial

Slade Run (Maryland) Reach 5 9.11 Alluvial

Western Run (Maryland) Reach 155 18.13 Alluvial

Winters Run (Maryland) Reach 90 15.19 Alluvial

McCandless (2003) Bear Creek (Maryland) Reach 27 15.6 Alluvial

Bear Creek (Maryland) Reach 127 23.0 Alluvial

Big Piney Run (Pennsylvania) Reach 63 23.0 Alluvial

Casselman River (Maryland) Reach 162 39.3 Alluvial

Crabtree Creek (Maryland) Reach 43 17.8 Alluvial

Ditch Run (Maryland) Reach 12 17.1 Alluvial

Evitts Creek (Pennsylvania) Reach 78 18.6 Alluvial

North Branch Potomac River (Maryland) Reach 189 22.4 Alluvial

Savage River (Maryland) Reach 127 22.2 Alluvial

Savage River (Maryland) Reach 4 12.5 Alluvial

Sawpit Run (Maryland) Reach 13 30.1 Bedrock

Sideling Hill Creek (Maryland) Reach 264 23.9 Alluvial

Toliver Run trib. (Maryland) Reach 1 12.8 Alluvial

Youghiogheny River trib. (Maryland) Reach 1 13.0 Alluvial

Pelletier and DeLong (2004) Bouse Wash (Arizona) Basin 4364 101.0 Desert alluvial entrenched and braided

Wild Burro Wash (Arizona) Basin 21 410.0 Desert alluvial entrenched and braided

Cottonwood Wash (Arizona) Basin 47 450.0 Desert alluvial entrenched and braided

Hassayampa River (Arizona) Basin 3807 362.5 Desert alluvial entrenched and braided

Vamori Wash (Arizona) Basin 6185 70.0 Desert alluvial entrenched and braided

Dead Mesquite Wash (Arizona) Basin 10 130.0 Desert alluvial discontinuous

North Airport Wash (Arizona) Basin 18 170.0 Desert alluvial discontinuous

Vail Wash (Arizona) Basin 10 155.0 Desert alluvial discontinuous

Vail-DM Wash (Arizona) Basin 16 195.0 Desert alluvial entrenched and braided

E La Quituni Valley A (Arizona) Basin 13 1100.0 Desert alluvial distributary with channel fan

E La Quituni Valley B (Arizona) Basin 13 1100.0 Desert alluvial distributary with channel fan

Cananda del Oro (Arizona) Basin 660 92.9 Desert alluvial entrenched and braided

Sycamore Creek (Arizona) Basin 425 650.0 Desert alluvial entrenched and braided

Peñitas Wash (Arizona) Basin 101 190.0 Desert alluvial entrenched and braided

Centennial Wash (Arizona) Basin 4706 9.3 Desert alluvial entrenched and braided

Bobaquivari Wash (Arizona) Basin 52 136.7 Desert alluvial entrenched and braided

Vamori Wash (Arizona) Basin 1997 150.0 Desert alluvial entrenched and braided

Mulvihill et al. (2009) Archer Creek (New York) Reach 1.3 21.9 Formerly glaciated terrain

Buck Creek Reach 3.3 10.2 Formerly glaciated terrain

Tributary to Mill Creek Tributary Reach 4.3 38.1 Formerly glaciated terrain

Vly Brook Reach 8.5 24.5 Formerly glaciated terrain

North Creek Reach 16.9 32.7 Formerly glaciated terrain

Hopkinton Brook Reach 51.8 28.6 Formerly glaciated terrain

Glowegee Creek Reach 67.3 12.4 Formerly glaciated terrain

Plum Brook Reach 113.7 16.0 Formerly glaciated terrain

Little Hoosic River Reach 145.3 21.1 Formerly glaciated terrain

Independence River Reach 229.7 26.9 Formerly glaciated terrain

West Branch Au Sable River Reach 300.4 16.7 Formerly glaciated terrain

Sandy Creek Reach 354.8 19.6 Formerly glaciated terrain

East Branch Au Sable River Reach 512.8 51.7 Formerly glaciated terrain

Bouquet River Reach 699.3 28.9 Formerly glaciated terrain

Moose River Reach 940.2 24.7 Formerly glaciated terrain

Batten Kill River (New York) Reach 1025.6 26.8 Formerly glaciated terrain

North Branch of Foulertons Brook (New Jersey) Reach 1.1 9.7 Formerly glaciated terrain

Stony Brook Reach 5.0 17.2 Formerly glaciated terrain

Horse Pound Brook Reach 10.2 29.7 Formerly glaciated terrain

Hunter Brook Reach 19.2 22.6 Formerly glaciated terrain

Valatie Kill Reach 24.6 18.6 Formerly glaciated terrain

Mahwah River Reach 31.9 16.1 Formerly glaciated terrain

Kisco River Reach 45.6 16.5 Formerly glaciated terrain

Roeliff Jansen Kill Reach 71.2 16.6 Formerly glaciated terrain

Fishkill Creek Reach 148.4 12.6 Formerly glaciated terrain

Ramapo River Reach 225.1 33.6 Formerly glaciated terrain

Tenmile River (Connecticut) Reach 525.8 17.0 Formerly glaciated terrain

Kinderhook Creek Reach 852.1 24.4 Formerly glaciated terrain

Sage Brook Reach 1.8 16.0 Formerly glaciated terrain

Cold Spring Brook Reach 3.9 19.9 Formerly glaciated terrain

Shackham Brook Reach 7.6 23.0 Formerly glaciated terrain

Little Elk Creek Reach 9.7 12.9 Formerly glaciated terrain

Merrill Creek tributary Reach 13.8 30.6 Formerly glaciated terrain

Albright Creek Reach 17.6 20.8 Formerly glaciated terrain

Mink Creek Reach 26.9 20.4 Formerly glaciated terrain

Trout Creek Reach 52.3 19.4 Formerly glaciated terrain

Steele Creek Reach 67.9 14.3 Formerly glaciated terrain

Little Delaware River Reach 129.0 23.1 Formerly glaciated terrain

Butternut Creek Reach 154.6 17.4 Formerly glaciated terrain

Otselic River Reach 380.7 18.0 Formerly glaciated terrain

Otselic River Reach 562.0 29.8 Formerly glaciated terrain

Tioughnioga River Reach 756.3 34.4 Formerly glaciated terrain

West Branch Delaware River Reach 859.9 53.0 Formerly glaciated terrain

Little Tonawanda Creek Tributary Reach 2.6 34.0 Formerly glaciated terrain

Stony Brook Tributary Reach 8.2 27.0 Formerly glaciated terrain

Ischua Creek Tributary Reach 13.3 19.8 Formerly glaciated terrain

Cuthrie Run Reach 14.0 20.7 Formerly glaciated terrain

Big Creek Reach 16.4 10.7 Formerly glaciated terrain

Ball Creek Reach 23.5 53.0 Formerly glaciated terrain

Little Tonawanda Creek Reach 57.2 21.0 Formerly glaciated terrain

Cayuga Inlet Reach 91.2 17.7 Formerly glaciated terrain

Catherine Creek Reach 106.4 22.8 Formerly glaciated terrain

Fivemile Creek Reach 173.0 38.8 Formerly glaciated terrain

Cayuga Creek Reach 249.7 37.7 Formerly glaciated terrain

Cazenovia Creek Reach 349.6 36.7 Formerly glaciated terrain

Catatonk Creek Reach 391.1 92.3 Formerly glaciated terrain

Conewango Creek Reach 751.1 54.0 Formerly glaciated terrain

Second Creek Tributary Reach 2.8 7.4 Formerly glaciated terrain

Canandaigua Outlet Tributary Reach 7.6 8.6 Formerly glaciated terrain

East Branch of Allen Creek Reach 24.6 8.7 Formerly glaciated terrain

Northup Creek Reach 26.2 15.2 Formerly glaciated terrain

Butternut Creek Reach 83.4 53.7 Formerly glaciated terrain

Irondequoit Creek Reach 101.5 15.6 Formerly glaciated terrain

Flint Creek Reach 264.2 23.1 Formerly glaciated terrain

Irondequoit Creek Reach 367.8 14.0 Formerly glaciated terrain

Oatka Creek Reach 518.0 56.6 Formerly glaciated terrain

Tonawanda Creek Reach 903.9 28.2 Formerly glaciated terrain
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Conclusions 

Main findings 

This work describes landscape evolution in a formerly glaciated terrain of low 

relief in southern Ontario. While the three papers concentrate on case studies of two 

streams (Thames River and Medway Creek), they are relevant to the entire Great Lakes 

region, the American Midwest and other North American areas affected by the Laurentide Ice 

Sheet and resulting glacial deposits. The work also addresses two contrasting themes in 

fluvial geomorphology: Do fluvial systems result from catastrophic floods (Baker, 1977; 

Wolman and Gerson, 1978) or are today's frequent small to medium floods (Wolman and 

Miller, 1960) the main drivers of landscape evolution? Instead of proving which theme 

dominates, this thesis shows that they can not only operate together but complement each 

other and represent a continuum of two different scales of erosion. Catastrophic floods leave a 

lasting legacy for smaller scale present-day erosion processes (i.e., the larger external 

morphology and glacial conditioning (Phillips and Desloges, 2014) set the stage for the 

modern landscape. Furthermore, in today's fluvial landscape it is difficult to distinguish 

between 'natural' erosion processes linked to glacial legacy and modern anthropogenic erosion 

associated with a variety of human activities.  

Q1. Do fluvial systems in the London area result from catastrophic floods or are 

today's frequent small to medium floods the main drivers of landscape 

evolution?  

The first paper sets the stage for a deglaciating environment. Glacial Lake London 

was a meltwater lake formed behind the Arva and Ingersoll Moraines. While it was a 

small lake compared to the ancestral Great Lakes, it dominated the area of what are 

now the City of London and the London Basin both of which are located on its dry 

bed. The former lake outlet begins near the neighborhood of Byron and flowed into a 

deep river valley within Komoka Provincial Park making the modern Thames River a 
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misfit channel in this unusual spillway. Using local DEM, stratigraphic evidence, and 

topographic constraints, Glacial Lake London was fully reconstructed for the first 

time - expanding on the work of Dreimanis et al. (1998). This reconstruction 

determined peak discharge of lake drainage using parametric breach equations (Wu et 

al., 2011) as well as step-backwater HEC-RAS dam-break modeling based on unusual 

landforms found in Komoka Provincial Park. Various parameters of lake drainage 

were compared to other moraine-dammed lakes. Reconstruction of the lake and its 

catastrophic drainage reveal that geomorphic events and evolution of the landscape 

outside the ice margins were rapid and did not involve gradual erosion typical of 

postglacial fluvial incision (Hack, 1965; Phillips and Robert, 2005; Arbogast et al., 

2008). Besides reconstructing local and regional chronology of deglaciation, the 

draining of Glacial Lake London has implications for allowing flora, fauna and 

humans to encroach on the exposed deglaciating landscape (Delcourt and Delcourt, 

1984; Mandrak and Crossman, 1992; Yu, 2000; Elias, 2013) or even disappear when 

the ice readvanced (Dreimanis, 1967; Ellis et al., 2011).  

But the lake and its drainage do not only affect the modern Thames River but have 

much wider implication for present-day Thames River tributaries too. Local 

tributaries of the Thames River incise into the lacustrine and underlying glacial 

sediments. The dry lake bed of the London Basin and the incising Thames River serve 

as their baselevel. Medway Creek discussed in papers 2 and 3 was a flooded inlet 

during Glacial Lake London existence; it was gradually incised into the lacustrine and 

till sediments after deglaciation and has a stagnant paleodelta at its outlet with the 

North Thames River suggesting it was probably a more powerful river after 

deglaciation. However, unlike the Thames River, there is no field evidence to support 

a spillway or flow reversal as Dreimanis et al. (1998) suggested. The London 
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landscape was therefore shaped by a combination of a catastrophic flood(s) first and 

continued erosion of numerous small – medium floods as the climate warmed. The 

Arva Moraine that served as Glacial Lake London's western rim is still a prominent 

control on Medway Creek's channel evolution but it is a remnant of glacial processes 

not a catastrophic fluvial one.       

Q2. Do the geomorphic characteristics and dynamics of fluvial systems incised in 

tills differentiate them from alluvial rivers and bedrock rivers?  

The second paper documents a 1.5 km reach of Medway Creek - a small 

agricultural channel that cuts through the interlobate Arva Moraine within London. 

The channel incised into lacustrine sediments (seen on top of bluffs) and into till. The 

study reach lacks significant external water and sediment inputs from tributaries 

which makes it an ideal site for characterizing a semi-alluvial cobble-bed channel 

incised into till. Analyses of till samples collected from the channel bed showed that 

the till is not homogenous suggesting it has spatial and temporal erodibility, a result 

corroborated by geotechnical tests (SPT and plasticity) and till patch erosion rates 

using erosion pins placed in the bed over several years. Short-term erosion rates are 

comparable to channels incising into soft bedrock (Tinkler and Parrish, 1998; Stock et 

al., 2005) and are very high compared to the local (geologic) incision rate. However, 

till exposures constitute a small portion of the total bed area. Nearby upstream 

boulders of various sizes do not seem to be directly related to till patch area regardless 

of their position. Alluvium thickness varies from 0 (full till exposure) to 60 cm in 

riffle tails but in many flats and pools it is only one grain thick. Bedforms are highly 

disorganized and show no regular spacing typically found in stable autogenic bedrock 

and alluvial rivers. The channel lacks typical alluvial sorting such as downstream 

fining; there is slight downstream coarsening, implying some non-fluvial control. The 
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typical two-layered armor structure normally seen in perennial alluvial rivers is 

completely missing. The sand fraction that is a known destabilizing fraction of the bed 

in alluvial channels is not as dominant along the bedforms as one would expect from a 

channel incised into fine sediments.  

The third paper expands the second paper and investigates the morphometry, 

hydrology and hydraulics of Medway Creek. Bank incision into till and Arva Moraine 

is highly variable, creating a variety of bank elevations. Similarly, channel widths 

vary considerably, resulting in a wider range of width/depth (W/D) ratios relative to 

larger till-bedded channels on a reach-scale. When conducting a similar analysis on a 

basin-scale, the average W/D ratio of Medway Creek falls between other river types 

in a variety of environments, and specifically for formerly glaciated terrains it seems 

that till control is associated with drainage area and scale of analysis. Bankfull 

discharge has a range of values based on equations or gauged statistics. In fact, 

modeling of bankfull discharge for each cross-section shows that there is not a single 

value discharge on a reach-scale or smaller bedform-scale. Similarly, maximum 

discharge also does not show clear geometric relations nor does it preserve external 

morphology. The steep bluffs of Arva Moraine are the dominant geomorphic feature 

of the reach. The velocity reversal hypothesis was not detected at a range of simulated 

in-bank and overbank flows.  

Together papers two and three reveal that because of hydrogeomorphic 

irregularities resulting from a strong glacial legacy (Phillips and Desloges, 2014; 

Phillips and Desloges, 2015a), till-bedded channels cannot be classified as ordinary 

self-forming alluvial gravel-bed rivers. Instead, they are semi-alluvial channels falling 

between the alluvial and bedrock channel continuum, in most instances are ignored 
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(Montgomery and Buffington, 1997), and are only now receiving attention (Phillips 

and Desloges, 2015b).  

Q3. Are channel bed sedimentary, hydrologic and hydraulic stability metrics 

originally developed for alluvial rivers suitable for use in till-bedded channels? 

In papers 2 and 3 we used a variety of quantitative sedimentary and hydraulic 

metrics to test whether Medway Creek is a stable channel. The stability determination 

is important because it answers whether the channel is in (quasi-) equilibrium state or 

adjusting to short or long-term perturbation. The short-term perturbation is on the 

scale of annual-decadal-century such as land use changes and forest clearing since the 

British-European settlement (Schottler et al., 2013) while the longer term perturbation 

is on millennial scale since the area deglaciated and encountered base level fall (Gran 

et al., 2011). Furthermore, the metrics results are inferring river health and degree of 

impairment therefore it is the first step in any channel assessment.    

We first applied three different sedimentary attribute indicators of channel 

stability: the Log Relative Bed Stability (LRBS*) index of Kaufmann et al. (2008; 

2009), Kappesser’s (2002) Riffle Stability Index (RSI), and fine sediment abundance 

(Lisle and Hilton, 1992, 1999). Results were inconclusive. The LRBS* gave 

unexpected results that pools are the most stable bedforms while riffles are the least 

stable bedform. In Kappesser’s (2002) Riffle Stability Index Medway Creek’s riffles 

fall within a relatively narrow RSI range indicating that riffles possess similar 

sedimentary attributes, with relatively low textural variability. The technique 

proposed by Lisle and Hilton (1992, 1999) of relative volume of fine sediment in 

pools does not show high loading of these grain fractions. The pools’ relative volumes 

of fine sediment on Medway Creek support the previous stability analysis of 

Kaufmann et al. (2008; 2009) that pools are the most stable bedform of the study 
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reach. The conclusion from the three sedimentary stability metrics is that without a 

series of textural surveys that allows comparison to some kind of historic reference 

values it is difficult to determine whether the channel is in a healthy state or not. 

Additionally, the sedimentary metrics are relying on the fine fractions to indicate 

impairment while the till parent material is not taken into account although it is 

predominantly fine-natured in the first place. 

The hydrologic stability of a river is best expressed in its cross-sectional 

morphology (i.e. graded river concept; Mackin, 1948) either reflecting bankfull 

discharge or another effective or dominant discharge. I used literature equations, 

hydrologic statistics and regional curves of similar till rivers but none gave 

satisfactory results with high degree of certainty that this is the correct value. When 

the reach cross-sections were modeled using a 1D step-backwater HEC-RAS model, 

similar to a method used in paleoflood hydrology, it was also found that there are 

numerous values of bankfull discharge proving that this important metric is 

problematic in this non-self-forming channel. While width contractions and 

expansions are typical of alluvial rivers when transitioning from one bedform to the 

next, drastic changes in cross-sectional area with minor change in slope suggests 

strong channel instability and that local till erodibility sometimes overcomes the 

ability of the flow to scour it. In order to determine this metric in a channel with 

strong till control, it might be necessary to determine a range of flows rather than a 

single value like is ordinarily determined for alluvial rivers.   

In order to investigate the bedforms ability to adjust to till erodibility, climate and 

flow regime, we used a downstream hydraulic geometry (DHG) metric proposed 

by Wohl (2004). This equation is used as a discriminator: where the ratio of stream 

power to sediment size (Ω/d84) exceeds 10,000 kg/s
3
, downstream hydraulic geometry 
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is well developed; where the ratio is 9000 - 10,000 kg/s
3
 it is marginal and when the 

result falls below 9,000 kg/s
3
, downstream hydraulic geometry relationships are 

poorly developed. Most riffles are well adjusted to the DHG, while the few that are 

not are somewhat marginal. The majority of pools are with poorly developed DHG 

and flats are generally in between. Since pools constitute most of the channel bed's 

area (55%) it's implied that channel form is in most instances poorly adjusted. The 

results of the Wohl (2004) method shows pools have a poorly developed DHG, which 

contradicts the Lisle and Hilton (1992, 1999) stability method. It also contradicts the 

RBS
*
 and RSI analyses which suggest that riffles are not stable.  

The inconsistency between different alluvial channels' stability metrics 

(sedimentary, hydrologic and hydraulic) casts doubt on the simplicity and suitability 

to use them without a concurrent long-term monitoring program that can differentiate 

between inherent instability of till channels (i.e. glacial conditioning) and impairment 

or river health associated with human activities. Considering that in southern Ontario 

the monitoring is in most instances concentrating on stream hydrology, limited data 

on water quality and some biological inventory (for example, the 5-year Report Cards 

of UTRCA), the current use of stability metrics could lead to erroneous management 

and river restoration decisions that could be more damaging than beneficial. It is 

therefore recommended not to use stability metrics as a reliable methodology until the 

knowledge about till-bedded channels reaches a more advanced mature state of 

understanding of form and process. Furthermore, river practitioners in formerly 

glaciated regions should be aware that they cannot automatically use alluvial channel 

practices although these ordinarily seem cost-effective in terms of time and finances.      
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Recommendations  

This work recommends that research of till rivers receive more attention from the 

fluvial community as knowledge about them is currently lacking. One major 

implication is that management and restoration of these rivers cannot be simply 

borrowed from practices used on alluvial rivers but require careful consideration of 

the strong till control based on monitoring and sound science. This is crucial when 

these rivers experience human intervention coupled with climate warming. While till 

rivers cover vast extents of formerly glaciated areas in North America and around the 

world, they deserve a classification of their own and should not be assumed to be 

some kind of hybrid river between alluvial and bedrock channels with a history of 

glacial conditioning. Based on our study and other investigations of similar channels 

in glacial deposits, semi-alluvial channels deserve to be classified separately, as we 

propose in Fig. 1 based on the Montgomery and Buffington (1997) classification. This 

is not only relevant for river classification, but this knowledge gap also has 

implications for everyday management and restoration practices and whether current 

indices such as channel geometry and stability metrics are suitable and adequate to 

determine river impairment and health.  

 
 

Figure 1. A revised Montgomery and Buffington (1997) channel classification 

with a new semi-alluvial category.  

 

While till exerts a permanent geologic control on rivers in formerly glaciated 

terrains, its heterogeneity both in terms of different types of tills (Fig. 1 in the 
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introduction) and even within the same type of till (as seen in paper 2 from the erosion 

pins), is expressed in channel form and processes. The spatial and temporal variability 

in till erodibility is what differentiates till rivers from alluvial rivers that are ordinarily 

easily shaped by fluvial erosion of their sediments. In that respect, tills resemble more 

soft bedrock that produces similar bedforms but their adjustment to channel 

hydrology and hydraulics operate on different time scales.   
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