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Figure 2.1 Map showing the location of the Nose Creek watershed, Alberta, Canada. The 

watershed is largely dominated by agricultural activities. 
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Figure 2.2 Total annual precipitation (mm) and mean annual temperature (°C) from 1948 

to 2014 for the Calgary International Airport. 
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Figure 2.3 Time series of annual precipitation (P) minus potential evapotranspiration 

(PET) from 1948 to 2014 for the Calgary International Airport, with PET estimated using 

the Hamon (1961) method. The mean P-PET for the time period is presented by the 

dashed grey line. 
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region in the eastern half of the watershed is characterized by grasses. In ungrazed or 

moderately grazed sites mountain rough fescue, creeping juniper, Parry oat grass, 

bluebunch fescue and June grass can be found (Natural Regions Committee 2006).  

 Agricultural activities occur over approximately 70% of the watershed 

(Agriculture and Agri-Food Canada 2013). The most common agricultural crops include 

canola, spring wheat, barley and alfalfa (Government of Alberta 2012). Where the terrain 

is not favourable to crops, grazing predominates. The dominance of agricultural activity 

in the watershed is appropriate for the development of a method to identify wetlands 

altered due to agricultural activity, namely wetland drainage through surface ditches.   



19 

 

 

 

Chapter 3 

3 Methods  

 An inventory of potential wetlands (i.e., including temporarily lost: with the 

wetland depression remaining; and existing wetlands) was delineated by adapting a 

previously developed technique that maps wetland depressions on the landscape (Serran 

and Creed 2016). Using the power law relationship between area vs. frequency of the 

potential wetlands, an estimate of historical wetlands was obtained, including those that 

have been permanently lost, as estimated by deviations from the power law distribution, 

and temporarily lost, as estimated by differences between the historical wetlands and 

existing wetlands. Restorable wetlands, specifically ditch-drained wetlands, were 

identified by developing a method to identify drainage ditches in the potential wetlands 

using digital terrain analysis of a DEM. The data layers used in this study, including their 

resolution, minimum resolvable unit, year of collection, and source are listed in Table 

3.1.  

3.1 Identifying Potential Wetlands 

 A flow chart of the method used to delineate potential wetlands is shown in 

Figure 3.1 and Figure 3.2. The method consists of four main steps that will be described 

in each of the following four sections, including stochastic analysis, object-based 

segmentation, near-infrared segmentation, and the consolidation of a final potential 

wetland inventory.  

3.1.1 Stochastic Analysis 

 A LiDAR DEM with a horizontal resolution of 1 m and a vertical accuracy of 15 

cm formed the basis of the mapping of potential wetlands. The raw LiDAR point cloud 

data, which had an average point density of 5.5 points per square metre, were pre-

processed by Airborne Imaging Inc. which triangulated the data to form a triangular 

irregular network (TIN) before converting it to a 1 m raster. The LiDAR data were 

captured between October 14 and 17, 2014 during leaf-off period. LiDAR cannot 

penetrate water, therefore, the LiDAR acquisition dates were designed to fall when 

canopy was not present and during the driest part of the year to capture the underlying   
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Table 3.1 List of data layers used in this study including their resolution, minimum 

mapping unit (MMU) or minimum resolvable unit (MRU), time of capture, and source. 

Where a MMU was not provided, it was calculated using the method by Tobler (1987). 

Data Layer Resolution 

Minimum 

Mapping Unit / 

Minimum 

Resolvable Unit 

Source Data 

Year(s) 
Creator/Source 

Canadian 

Wetland 

Inventory 

0.25 m MMU = 0.02 ha 

 

2006 Ducks Unlimited 

DEM 1 m MMU = 0.0009 

ha 

October 14, 

17, 2014 

Airborne Imaging 

Inc. 

Roads 1:20,000 MRU = 0.04 ha 2016 AltaLIS Ltd. 

Rail 1:20,000 MRU = 0.04 ha 2016 AltaLIS Ltd. 

Hydrography  1:20,000 MRU = 0.04 ha 2016 AltaLIS Ltd.  

Crop Map 30 m MMU = 0.81ha 2013 Agriculture and 

Agri-Food 

Canada 
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Figure 3.1 Flow chart of steps to delineate wetland depressions, including (A) stochastic 

analysis and (B) object-based segmentation. The flow chart continues in Figure 3.2 with 

steps (C) and (D).  
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Figure 3.2 Flow chart of steps to delineate wetland depressions, continued from Figure 

3.1, includes (C) object-based segmentation of near-infrared imagery to produce (D) a 

final inventory of wetland depressions and inundated areas. 
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topography of seasonally inundated areas. Both a bare earth and full feature DEM were 

provided. 

 The 1 m bare earth DEM was resampled using bilinear interpolation to a 3 m 

resolution, a resolution that was optimal for potential wetland mapping (i.e., the 1 m 

resolution produced artifacts; data not shown). Potential wetland depressions were 

identified by low lying topographic depressions surrounded by uplands. Digital terrain 

analysis in the form of stochastic modelling was used to identify the probability of a 

depression (pdep) (Lindsay and Creed 2005). Using a Monte Carlo simulation, a random 

error term selected from the standard deviation of the distribution of random error terms 

equal to the 15 cm vertical accuracy of the DEM was added to the DEM. The Planchon 

and Darboux (2001) depression filling algorithm was then applied to the error-added 

DEM, and those pixels that were filled were flagged as depressions. This process of 

adding a random error to the DEM and subsequently applying a depression filling 

algorithm was iterated 1,000 times, and the final output was the probability of occurance 

of a depression, calculated as the proportion of times each pixel was identified as a 

depression. This probabilistic approach takes into account uncertainty from DEM error 

and distinguishes true depressions on the landscape as opposed to artifacts in the data 

(Lindsay and Creed 2006). Similar stochastic analyses have been used to identify 

wetlands in a variety of landscapes, including landscapes covered with forests and 

shallow (< 2 m in depth) soils (Creed et al. 2003), as well as landscapes covered with 

sparse forests and much deeper soils (Serran and Creed 2016). Stochastic analysis was 

performed using the Terrain Analysis System version 2.0.9 software (Lindsay 2005).  

3.1.2 Object-based Segmentation 

 The pdep map underwent object-based segmentation and classification. Object-

based segmentation grouped similar pixels to create objects, which were then classified 

based on user-defined rules. Object-based segmentation has been successfully used in 

wetland mapping (Serran and Creed 2016), and is found to better detect the complexity of 

natural wetland boundaries compared to pixel-based approaches (Dronova 2015). 

Definiens eCognition Developer software (Trimble Navigation Limited 2009) was used 

for object-based segmentation.   
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 During segmentation, pixels were merged into objects to minimize heterogeneity 

within the object. Segmentation occurred at two scales, termed multi-resolution 

segmentation, using scale parameters of 2 and 20. The scale parameters served as the 

heterogeneity thresholds, with objects halting growth when the scale parameter was 

surpassed (Benz et al. 2004). A scale parameter which produces small objects, essentially 

pieces of wetlands, is commonly used as the generated objects can be later joined 

together (Dronova 2015). However, using only one small scale parameter can result in 

fragmented wetland objects (Serran 2014). Therefore, multi-resolution segmentation was 

used as it aids in capturing the complexity of wetland sizes across landscapes (Serran 

2014; Knight et al. 2015).  

 The change in heterogeneity gauged by the scale parameter was calculated as a 

function of spectral heterogeneity and shape heterogeneity. Spectral heterogeneity refers 

to the heterogeneity of the input layer, in this case, the pdep values. The change in spectral 

heterogeneity was calculated by comparing the standard deviation of the pdep values 

within the objects before and after potential merging (Benz et al. 2004). Shape 

heterogeneity refers to the smoothness and compactness of an object’s shape, which was 

calculated using the object’s perimeter and area (Benz et al. 2004). The relative 

importance of spectral heterogeneity and shape heterogeneity in the calculation of the 

total change in heterogeneity were adjusted by assigning them different weights. Spectral 

heterogeneity was assigned 100% of the weight for heterogeneity calculations. 

 These segmentation parameters (the scale parameters and heterogeneity weights) 

were previously determined heuristically for a 3 m LiDAR DEM of the Beaverhill 

watershed located in the PPR, approximately 270 kilometers (km) north of the Nose 

Creek watershed (Serran and Creed 2016). In object-based image analyses, the most 

common method for parameter selection is through trial and error (Dronova 2015). Given 

that an objective method for choosing segmentation parameters has not yet been 

established (Dronova 2015), the segmentation parameters from this other related study 

were applied. 

 A road vector layer buffered 15 m on each side served as an additional input in 

segmentation to prevent wetland objects from crossing roads (i.e., if a wetland was 
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intersected by a road, it was treated as two separate wetlands). A 15 m buffer was used 

because most roads (e.g., gravel roads, paved roads, multi-lane highways, etc.) fell 

entirely within this buffered area.  

 Following segmentation, the objects were classified as potential wetlands using a 

rule set. For smaller objects (scale parameter 2) to be classified as a wetland depression, 

the mean pdep value within the object was 0.52 (52%) or greater, and the object could not 

fall within the road buffer. For larger objects (scale parameter 20), the mean pdep value 

within the object was 0.45 (45%) or greater, and the object could not fall within the road 

buffer. These classification thresholds for the objects were selected based on previous 

work in the Beaverhill watershed, where the thresholds were calibrated to an established 

wetland inventory (Serran and Creed 2016).   

3.1.3 Near-infrared Segmentation  

 Following the multi-resolution segmentation of the pdep layer, the potential 

wetland inventory was improved by an object-based segmentation of NIR imagery to 

automatically delineate inundated areas within wetland depression boundaries (Figure 

3.2, part C). This object-based segmentation was introduced to improve wetland 

delineation in areas where topography alone was not sufficient to capture wetland 

boundaries, namely very flat areas (i.e., slope < 2.5 degrees) and developed areas. In 

undeveloped areas, large flat areas including riparian zones and wetland complexes were 

sometimes included as one single object. In developed areas, which includes residential, 

commercial, and industrial areas, stretches of flat areas such as subdivisions and parking 

lots were included as depressions, areas which are not appropriate to include as wetland 

depressions.   

 Before proceeding with NIR segmentation, the potential wetlands were first 

checked and then cleaned. Following the multi-object (pdep) segmentation, some potential 

wetlands included “tails” where drainage ditches existed. The clean tool from the ET 

Geowizards extension (Tchoukansi 2012) for ESRI ArcGIS served to simplify wetland 

depression boundaries, removing the tails (i.e., drainage ditches) which were not part of 

the potential wetland. The clean tool was only run on non-riparian wetland depressions to 

prevent narrow riparian features from being broken up or eliminated.    
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 NIR segmentation was applied across the watershed to identify inundated areas 

within potential wetlands. The potential wetlands were segregated into two groups: those 

that fell within developed areas and those that did not. Developed area boundaries were 

manually delineated to include commercial, industrial, and high-density residential areas. 

The potential wetlands were segregated because in developed areas NIR boundaries 

served to replace pdep boundaries, whereas in undeveloped areas inundated areas served 

as supplementary information to the topographically-based (pdep) boundaries.  

 A pansharpened orthomosaic of the NIR band (760-890 nm) of a SPOT 6 satellite 

image consisting of four scenes collected between April 29 and July 9, 2014 with a 

resolution of 1.5 m was received from BlackBridge Geomatics Corp. NIR is appropriate 

for mapping inundated areas as water strongly absorbs in the NIR range, resulting in low 

reflectance values that distinguish these areas from other land cover and land use classes. 

The NIR imagery was captured in spring 2014, as leaf-off imagery is optimal for 

identifying inundated areas (Ozesmi and Bauer 2002). The NIR imagery was resampled 

to 3 m to align with the pdep layer and ensure the created inundated area objects fall 

within the wetland depressions.  

 During object-based segmentation of the NIR data, a scale parameter of 20 was 

used. Two scale parameters were not necessary, as inundated areas were spectrally 

homogeneous resulting in similar objects regardless of the scale parameter. A larger scale 

parameter was favoured for computational efficiency. Given the varying shapes of 

inundated areas, there was no one desired shape that was sought, therefore the spectral 

heterogeneity was set to 100% influence in heterogeneity calculations. 

 Following NIR segmentation, the resulting objects were then classified using a 

NIR threshold. Single band thresholding models have been used successfully to 

distinguish between water and non-water objects (Frazier et al. 2003; Jain et al. 2005; 

Sass et al. 2007; Sun et al. 2012). An object was classified as inundated if it fell within a 

potential wetland and the object’s mean reflectance value fell under a specified NIR 

threshold. Two different NIR thresholds were used. For developed areas, objects were 

classified as inundated if they had a mean NIR reflectance value equal to or less than 29. 

For undeveloped areas, objects were classified as inundated if they had a mean NIR value 
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equal to or less than 40. The NIR classification thresholds were determined using training 

data. Seventy-five training objects representing inundated areas were manually delineated 

in the developed and undeveloped areas. The NIR threshold represents the mean 

reflectance plus one standard deviation for the training objects in each area. The 

difference in NIR threshold between the two areas is likely due to differences is the depth 

and turbidity of the waterbodies that are present. Based on visual inspection within the 

watershed, open water bodies such as relatively deep and clear storm water ponds were 

more common in developed areas, whereas water bodies such as relatively shallow and 

turbid natural wetlands were more common in undeveloped areas.  

 In developed areas, additional post-processing of the inundated objects was 

required to remove shadows that had been misclassified as inundated areas. In the NIR 

range, shadows have a similar spectral response as water, commonly leading to 

misclassification. To distinguish shadows from true inundated areas, two criteria were 

used: the size of the object, with the assumption that shadows will be small; and the 

surrounding height, with the assumption that shadows are usually caused by surrounding 

buildings. In developed areas, the smallest 50% by area inundated objects were further 

analyzed for their surrounding height to filter out likely shadows.   

 Surrounding height was determined by subtracting the bare earth DEM from the 

full feature DEM creating a layer of the height above ground level. The focal statistics 

tool was used to calculate the mean height in a 9 × 9 pixel kernel. The zonal statistics tool 

was then used to extract the range of the heights in the inundated or shadowed objects. If 

an inundated object exists in a flat area, the surrounding changes in height will be 

minimal, while if an object exists near a tall building, the surrounding change in height 

will be greater. The appropriate height threshold to distinguish between inundated and 

shadowed objects was selected after testing a range of options (i.e., 0.5, 1.0 and 2.0 m). 

For example, using the threshold of 1.0 m, if the range of mean heights of an inundated 

object was greater than 1.0 m, the object was flagged as a shadow. The accuracy of the 

objects flagged as shadows was then individually assessed using SPOT 6 color imagery 

for 2014. Two metres was chosen as the threshold, which removed the large majority of 

shadows while minimizing the removal of true inundated areas. In a similar assessment in 
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undeveloped areas, objects identified as inundated were rarely (< 0.5% of the time) found 

to be shadows, and therefore removal of these shadows using surrounding height would 

have resulted in a large removal of actual inundated objects.   

 For the final potential wetland inventory, the boundaries of wetlands were 

represented by the classified wetland object boundaries from pdep segmentation in 

undeveloped areas, and the classified inundated area objects from NIR segmentation in 

developed areas. In developed areas, due to anthropogenic interference, the 

topographically-based classified wetland object boundaries from pdep segmentation were 

not successful at identifying wetlands, and were therefore replaced by the classified 

inundated area objects. In undeveloped areas, the classified wetland object boundaries 

were appropriate, and classified inundated area objects were also mapped to serve as 

supplementary information when needed (e.g., large riparian areas). Any objects below 

0.0081 ha were removed, an area equivalent to a 3 × 3 window of 3 m pixels, an estimate 

of the MMU.  

3.1.4 Accuracy Assessment 

 To assess the accuracy of the potential wetland inventory, historical and 

contemporary imagery were evaluated to determine whether there was evidence that 

actual wetlands were present. Twenty-one different sources of aerial and satellite imagery 

from 16 different years were assessed, as summarized in Table 3.2. The accuracy of 

wetland boundaries can be very difficult to determine, as wetland size and shape varies 

with climate, therefore only the presence of a wetland at any point in time was 

considered. 

 Two discrete classes were considered: wetland and other. One hundred random 

potential wetland polygons and 100 random non-wetland polygons were assessed, for a 

total sample size of 200. The sample size follows general recommendations for 75-100 

samples per class (Congalton and Green 2008). In a two-case scenario, such as wetland 

and non-wetland, binomial distributions can also be used to estimate sample size 

(Congalton and Green 2008). The sample size of 100 is also in line recommendations 

based on the binomial distribution, which for an expected accuracy of 85% and 5% 

allowable error, suggests a total sample size of 203 (Ginevan 1979). Random polygons  
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Table 3.2 List of aerial and satellite imagery used for accuracy assessment, listed in 

reverse chronological order. 

Data Layer 
Resolution 

(m) 
Spectral bands (nm) 

Acquisition 

Date 

Creator / 

Source 

2014 

orthophotos 

0.3 m Color July 2014 Rocky View 

County 

2014 SPOT 6 

Pansharpene

d 

orthomosaic 

imagery 

1.5 m Near-infrared: 760-

890 nm 

Red: 625-695 nm 

Green: 530-590 nm 

Blue: 450-520 nm 

April 29 – July 9 

2014 

BlackBridge 

Geomatics 

Corp. 

2013 SPOT 6 1.5 m Red: 625-695 nm 

Green: 530-590 nm 

Blue: 450-520 nm 

July 31 - 

September 17, 

2013 

Government 

of Alberta 

2012 

orthophotos 

0.3 m Color Spring 2012 Rocky View 

County 

2012 SPOT 5 2.5 m Panchromatic:  

480-710 nm 

August 28 – 

October 15, 

2012 

Government 

of Alberta 

2011 SPOT 5 2.5 m Panchromatic: 

480-710 nm 

July 24 – 

September 20, 

2011 

Government 

of Alberta 

2010 

orthophotos 

0.3 m Color Fall 2009 Rocky View 

County 

2010 SPOT 5 2.5 m Panchromatic:  

480-710 nm 

April 17 – 

October 21, 

2010 

Government 

of Alberta 

2009 SPOT 5 2.5 m Panchromatic: 

 480-710 nm 

May 24 - 

November 2, 

2009 

Government 

of Alberta 

2008 SPOT 5 2.5 m Panchromatic:  

480-710 nm 

Sept 28 – Oct 2 

2008 

Government 

of Alberta 

2007 

orthophotos 

0.3 m Color Spring/Summer 

2007 

Rocky View 

County 

2007 SPOT 5 2.5 m Panchromatic: 

 480-710 nm 

October 15, 

2007 

Government 

of Alberta 

2006 SPOT 5 2.5 m Panchromatic:  

480-710 nm 

May 24 – 

August 5, 2006 

Government 

of Alberta 

2005 

orthophotos 

0.5 m Color May 2005 Rocky View 

County 

2005 SPOT 5 2.5 m Panchromatic: 

480-710 nm 

May 30, 2005 Government 

of Alberta 

2003 

orthophotos 

1.0 m Panchromatic October 2003 Rocky View 

County 
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2000 

orthophotos 

1.0 m Panchromatic 2000 Rocky View 

County 

1999 

orthophotos 

1.0 m Color 1999-2001 Valtus 

Imagery 

Services Ltd. 

1966 

georectified 

aerial 

imagery 

1:31,680 

(0.64 m) 

Panchromatic August 1 – 

September 4, 

1966 

Alberta 

Environment 

and Parks 

1962 

georectified 

aerial 

imagery 

1:31,680 

(0.64 m) 

Panchromatic June 8 - 

September 25, 

1962 

Alberta 

Environment 

and Parks 

1949-1951 

orthophotos 

1:63,360 

(1.6 m) 

Panchromatic 1949-1951 Alberta 

Biodiversity 

Monitoring 

Institute 

(ABMI) 

  


