The Role of GABA Signalling in Lung Macrophage Immune Response

Jacob W. Poirier
The University of Western Ontario

Supervisor
Dr. Wei-Yang Lu
The University of Western Ontario

Graduate Program in Physiology and Pharmacology
A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science
© Jacob W. Poirier 2016

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Cellular and Molecular Physiology Commons

Recommended Citation
https://ir.lib.uwo.ca/etd/4154

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.
ABSTRACT

Lung macrophages (LMϕs) play a key role in pulmonary innate immunity. They polarize into different phenotypes adapting to the needs of the immediate pulmonary environment, and adjust their functional responses via autocrine signalling. Previous studies in our laboratory suggest that murine LMϕs are endowed with an autocrine gamma-aminobutyric acid (GABA) signaling system. My honors thesis study found that antagonizing the autocrine GABA signaling in alveolar macrophages (AMϕs) increased the secretion of the M1 cytokine tumor necrosis factor-alpha (TNF-α), suggesting a role for GABA signaling in immune response. This thesis project explored whether GABA signaling plays a role in LMϕ polarization. As previously reported, results from this study confirmed that bacterial toxin lipopolysaccharide (LPS) and the Th1 cytokine interferon gamma (IFNγ) shifted LMϕs to the pro-inflammatory M1 phenotype, marked by increased expression of inducible nitric oxide synthase (iNOS). On the other hand, the Th2 cytokines interleukin (IL)-4 and IL-13 shifted LMϕs toward the M2 phenotype marked by increased arginase-1. Importantly, in both RAW 264.7 cell line and primary LMϕs, LPS and IFNγ treatment increased iNOS expression while decreasing glutamic acid decarboxylase (GAD) and A-type GABA receptor α2-subunit (α2-GABA_AR). Conversely, treatment with IL4/13 induced an upregulation of arginase-1, GAD, and α2-GABA_AR. Moreover, treatment of primary LMϕs with IL4/13 and GABA_AR antagonist picrotoxin decreased arginase-1 and GAD expression, and increased iNOS levels. These results suggest that the autocrine GABA signaling system in LMϕs dynamically changes along with their phenotypic polarization. This signaling system functions to limit the M1 response but facilitate M2 responses, and thus a change in the GABA signaling may alter the inflammatory responses of these cells.
KEYWORDS

Macrophage polarization

iNOS

Arginase-1

GABA signalling

Pulmonary inflammation
CO-AUTHORSHIP

Dr. Sean Gill graciously provided all CD45+ lung macrophages used for immunocytochemistry and Luminex analysis. Cynthia Pape provided assistance in surgical removal of the lung as well as lung tissue digest procedures. Furthermore, my colleague Matthew Maksoud performed patch-clamp experiments on hippocampal neurons using media from my RAW 264.7 cell cultures.

Otherwise, Jacob Wilson Poirier performed all experiments conducted as part of this thesis under supervision of Dr. Wei-Yang Lu in the department of Physiology and Pharmacology at Western University.
Completing this thesis project over the past two years has been a challenging, yet rewarding experience. I would like to thank Dr. Wei-Yang Lu for pushing me to my limits as a young scientist, allowing me to grow and learn to my fullest potential. Without your many motivational talks I could not have made it this far. I would also like to thank Dr. Yun-Yan Xiang for her assistance in lab techniques, especially with troubleshooting my experiments. Thank you to my lab mates over the years, Allen, Allison, Amy, Matt, and Dong for providing a relaxed and friendly lab environment. Special thanks to Matt for performing patch clamping studies for my thesis.

I must also give thanks to my advisory committee, Drs. Gregory Dekaban, Sean Gill, and Sean Cregan. Your valuable input helped to shape my experiment and make me think more critically about the details of my experiments. Furthermore, I would like to thank Dr. Gill and Cynthia Pape for providing me with primary lung macrophages for my studies.

I must also give thanks to my family and friends. Thank you to Andre, Candace, Darci, and Don for your constant positivity and support. Thank you Ruth for being a great friend and TA buddy, your stories never fail to entertain. Thank you to my partners in the accelerated MSc program, Alvin and Mandy, I couldn’t have picked better people to share this unique experience with. Finally, thank you Robyn for supporting me and being so understanding through this entire experience, and putting up with all my late nights at the lab.
Table of Contents

Abstract ... i
Keywords ... ii
Co-authorship .. iii
Acknowledgements .. iv
Table of contents .. v
List of figures ... viii
List of abbreviations ... x

1.0 INTRODUCTION .. 1

 1.1 Preface .. 1
 1.2 Macrophage lineage ... 2
 1.2.1 Macrophage hematopoiesis ... 2
 1.2.2 Monocytes .. 3
 1.3 Macrophages ... 4
 1.3.1 Resident macrophages ... 4
 1.3.2 Lung macrophages ... 6
 1.4 Macrophage polarization .. 8
 1.5 M1 polarization .. 10
 1.5.1 IFNγ and IFNGR ... 10
 1.5.2 LPS and TLR4 .. 13
 1.6 M2 polarization .. 15
 1.6.1 IL-4 and IL-13 receptors ... 17
 1.6.2 IL-4/IL-13 downstream signalling .. 18
 1.7 GABA signalling in macrophages ... 18
 1.7.1 GABA synthesis, release, and uptake ... 18
 1.7.2 GABA receptors ... 19
 1.7.3 GABAA R signalling in neural development ... 21
 1.7.4 GABAA Rs in immune cells ... 22
 1.8 GABA signalling in AMϕs .. 23
 1.9 Rationale, hypothesis, aims ... 29
1.9.1 Rationale ... 29
1.9.2 Hypothesis ... 30
1.9.3 Aims .. 30

2.0 MATERIALS AND METHODS ... 32
 2.1 RAW 264.7 cell culture .. 32
 2.2 AMϕ isolation and culture ... 32
 2.3 LMϕ isolation and culture ... 33
 2.4 Cell treatments ... 34
 2.5 Western Blot ... 35
 2.6 Immunocytochemistry .. 36
 2.7 Luminex assay ... 38
 2.8 Patch-clamp recording .. 40
 2.9 Statistical analysis ... 41

3.0 RESULTS ... 42
 3.1 Determining if GABA signalling plays a role in LMϕ polarization 42
 3.1.1 Blockade of GABAAR caused an opposite change in the expression
 of iNOS and arginase-1 in macrophages 42
 3.1.2 Blockade of GABAAR distinctively altered cytokine secretion
 from macrophages depending on their phenotypic polarization 46
 3.1.3 RAW 264.7 cells secrete GABA 56
 3.2 Studying whether LMϕ polarization alters GABA signalling components 56
 3.2.1 IFNγ and LPS lowered expression of GABA signalling proteins 56
 3.2.2 IL-4 + IL-13 increased expression of GABA signalling proteins 62

4.0 DISCUSSION .. 71
 4.1 Multifaceted macrophage polarization 71
 4.1.1 M1 phenotype ... 72
 4.1.2 M2a phenotype ... 73
 4.1.3 M2b phenotype ... 74
 4.2 Macrophage polarization alters autocrine GABA signalling 75
 4.2.1 Decreased GABA signalling is associated with M1/M2b phenotype .75
 4.2.2 M2a polarization is associated with increased GABA signalling 76
4.3 Autocrine GABA signalling regulates macrophage polarization76
 4.3.1 Blockade of endogenous autocrine GABA signalling alters the
 phenotypic markers and cytokines ..76
 4.3.2 Potential mechanism by which autocrine GABA signalling
 regulates macrophage polarization78
4.4 Future studies ...81
4.5 Limitations ...83
4.6 Conclusion and significance ..84
5.0 REFERENCES ..87
LIST OF FIGURES

Figure 1.1 Arginine metabolism pathways ... 11
Figure 1.2 GABA_{AR} expression is decreased following LPS treatment 24
Figure 1.3 GABA_{AR} expression is increased in OVA-treated mice 25
Figure 1.4 AM_ϕs express GABA signalling molecules .. 26
Figure 1.5 Activation of murine AM_ϕs with LPS reduces GABA_{AR} expression 27
Figure 1.6 GABA_{AR} blockade increased TNF-α secretion from control, but not LPS treated AM_ϕs ... 28
Figure 2.1 Illustration of delineating stained cells for immunofluorescence analysis 39
Figure 3.1 Inducible expression of iNOS is increased by picrotoxin 43
Figure 3.2 Picrotoxin increased iNOS expression in LM_ϕs treated with Th2 cytokines ... 44
Figure 3.3 Picrotoxin decreases arginase-1 expression in RAW 264.7 cells 45
Figure 3.4 IFN_γ decreases arginase-1 in primary LM_ϕs .. 47
Figure 3.5 Picrotoxin decreases arginase-1 expression in primary LM_ϕs 48
Figure 3.6 LPS and IFN_γ increase TNF-α secretion .. 49
Figure 3.7 IL-4 + IL-13 decrease TNF-α secretion .. 51
Figure 3.8 LPS and IFN_γ decrease IL-4 secretion ... 52
Figure 3.9 IL-4 + IL-13 increase IL-4 secretion, which is inhibited by picrotoxin 53
Figure 3.10 LPS increases IL-10 secretion .. 54
Figure 3.11 IL-4 + IL-13 decrease secretion of IL-10 ... 55
Figure 3.12 RAW 264.7 cell media induced bicuculline-sensitive transmembrane current in cultured hippocampal neurons ... 57
Figure 3.13 RAW 264.7 cells exhibit lower protein levels of α2-GABA_{AR} and GAD65/67 in response to LPS and IFN_γ ... 59
Figure 3.14 M1 polarization reduces expression of α2-GABA_{AR} and GAD65/67 in primary LM_ϕs .. 60
Figure 3.15 LPS induced reduction and relocation of α2-GABA_{AR} and gephyrin were reversed by inhibition of iNOS ... 61
Figure 3.16 LPS treatment relocated LAMP-1 together with α2-GABA_{AR} in RAW 264.7 cells ... 63
Figure 3.17 NF-κB inhibition reverses effects of LPS on arginase-1 and iNOS expression in RAW 264.7 cells ..64

Figure 3.18 NF-κB inhibition reverses LPS-mediated GAD65/67 and α2-GABA_AR downregulation in RAW 264.7 cells ..65

Figure 3.19 NF-κB inhibition reverses LPS-induced TNF-α and IL-10 secretion in RAW 264.7 cells ..66

Figure 3.20 Th2 cytokines increase expression of α2-GABA_AR and GAD65/67 in RAW 264.7 cells ..67

Figure 3.21 IL-4 + IL-13 increases expression of α2-GABA_AR in primary LMΦs69

Figure 3.22 IL-4 + IL-13 increases expression of GAD65/67 in primary LMΦs70

Figure 4.1 Changes in GABA_AR-mediated autocrine signalling and its role in macrophage polarization ...77

Figure 4.2 Proposed mechanisms by which the GABA_AR mediated autocrine signalling regulates phenotypic polarization and function of macrophages80
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMϕ</td>
<td>alveolar macrophage</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>BAL</td>
<td>bronchoalveolar lavage</td>
</tr>
<tr>
<td>CCR</td>
<td>C-C chemokine receptor</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CRAC</td>
<td>calcium-release activated channels</td>
</tr>
<tr>
<td>CXCL</td>
<td>C-X-C ligand motif</td>
</tr>
<tr>
<td>Cy3</td>
<td>cyanine 3</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′,6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EMP</td>
<td>erythro-myeloid progenitors</td>
</tr>
<tr>
<td>FCγR</td>
<td>Fc gamma receptor</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FIZZ1</td>
<td>found in inflammatory zone/resistin-like molecule alpha</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GABA<sub>A</sub>R</td>
<td>A-type GABA receptor</td>
</tr>
<tr>
<td>GABA<sub>B</sub>R</td>
<td>B-type GABA receptor</td>
</tr>
<tr>
<td>GABA<sub>C</sub>R</td>
<td>C-type GABA receptor</td>
</tr>
<tr>
<td>GABA-T</td>
<td>GABA transaminase</td>
</tr>
<tr>
<td>GAD</td>
<td>glutamic acid decarboxylase</td>
</tr>
<tr>
<td>GAT</td>
<td>GABA transporter</td>
</tr>
</tbody>
</table>
GPCR G-protein coupled receptor
GR-1 granulocytic marker
HBSS Hank’s balanced salt solution
IFNγ interferon gamma
IFNGR interferon gamma receptor
IkB nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor
IKK IkB kinase
IL interleukin
IL-1ra IL-1 receptor antagonist
IL-4Rα interleukin 4 receptor alpha
IL-13Rα interleukin 13 receptor alpha
IMφ interstitial macrophage
iNOS inducible nitric oxide synthase
JAK Janus kinase
KCC2 K⁺-Cl⁻ co-transporter
KLF Krüppel-like factor
LAMP lysosomal associated membrane protein
LMφ lung macrophage
LPS lipopolysaccharide
Lys-EGFP-kil lysozyme M-enhanced green fluorescent protein-knock in
MD-2 lymphocyte antigen 96
MHC major histocompatibility complex
Mrc1 mannose receptor
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyD88</td>
<td>myeloid differentiation primary response gene 88</td>
</tr>
<tr>
<td>NDS</td>
<td>normal donkey serum</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NKCC</td>
<td>Na(^+)-K(^+)-Cl(^-) transporter</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>OVA</td>
<td>ovalbumin</td>
</tr>
<tr>
<td>PAMP</td>
<td>pathogen-associated molecular pattern</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PRR</td>
<td>pattern recognition receptor</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute Medium</td>
</tr>
<tr>
<td>SOCE</td>
<td>store-operated calcium entry</td>
</tr>
<tr>
<td>STAT</td>
<td>signal transducer and activator of transcription</td>
</tr>
<tr>
<td>TBS-T</td>
<td>tris-buffered saline and tween 20</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor beta</td>
</tr>
<tr>
<td>Th</td>
<td>T helper cell</td>
</tr>
<tr>
<td>TIRAP</td>
<td>TIR domain-containing adaptor protein</td>
</tr>
<tr>
<td>TLR</td>
<td>toll-like receptor</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor-alpha</td>
</tr>
<tr>
<td>TRAF</td>
<td>TNF receptor-associated factor</td>
</tr>
<tr>
<td>TRAM</td>
<td>TRIF-related adaptor molecule</td>
</tr>
<tr>
<td>TRIF</td>
<td>TIR domain-containing adaptor inducing IFN-β</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 Preface

Macrophages are a primary mediator of the innate immune system, and exist in almost every tissue of the body. While all parts of the mammalian body require protection from pathogens, perhaps the most important loci for host defence are organs that are exposed to the external environment including the gastrointestinal tract and the lungs. In these tissues macrophages are the predominant type of immune cell. In order to adapt to the needs of the immediate pulmonary environment, alveolar macrophages (AMϕs) polarize in response to infectious pathogens as well as cytokines secreted from nearby T cells. For example, bacterial toxin lipopolysaccharide (LPS) and T helper (Th) 1 cytokines such as interferon gamma (IFNγ) stimulate AMϕs to shift to the pro-inflammatory M1 phenotype, marked by the upregulation of inducible nitric oxide synthase (iNOS). M2 polarization is typically characterized by upregulation of arginase-1 and can be prompted by parasite infection and/or Th2 cytokines such as interleukin-4 (IL-4) and IL-13. More detailed descriptions of M1/M2 polarization may be found in section 1.4.

Studies in my lab suggest that AMϕs are endowed with an autocrine gamma-aminobutyric acid (GABA) signalling system. More specifically, AMϕs express the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD) and A-type GABA receptors (GABAARs). However, whether the autocrine GABA signalling plays a role in AMϕ polarization remains to be investigated. My thesis focuses on the role of GABA signalling in the regulation of AMϕ polarization.
1.2 Macrophage lineage

1.2.1 Macrophage hematopoiesis

Hematopoiesis is the process of generating blood cells from stem cell origins. The genesis of the blood cells is complex, with shifting sites of hematopoiesis occurring during development. There are two waves of macrophage hematopoiesis: primitive and definitive (McGrath et al., 2015). Primitive hematopoiesis occurs before birth in the ectoderm of the yolk sac and results in macrophages populating the tissues without the need of monocyte progenitors (Italiani and Boraschi, 2014). In the murine embryo, examination of embryonic macrophage and monocyte populations reveals that the first wave of macrophage hematopoiesis arises in the yolk sac (Gomez Perdiguero et al., 2015; Hoeffel et al., 2015). These macrophage progenitors are the source of early macrophages throughout the embryonic tissues including the brain, where macrophage progenitors develop into microglia (Ginhoux et al., 2010). These macrophages bypass the monocytic intermediate stage.

The second wave of hematopoiesis, also in the yolk sac, gives rise to multipotent erythro-myeloid progenitors (EMPs) that colonize the fetal liver, initiating myelopoiesis (McGrath et al., 2015). Macrophages generated from the second hematopoietic wave are distributed in most fetal tissues before the onset of fetal monocyte production by the fetal liver (Gomez Perdiguero et al., 2015; Frame et al., 2013). These primitive macrophages retain a high proliferative potential and participate in many fundamental processes during mid and late embryogenesis, including definitive macrophage hematopoiesis and in the clearance of dead cells during tissue maturation. Definitive hematopoiesis of myeloid progenitors takes place in the fetal liver during embryogenesis, and then in the bone marrow after birth. More precisely, EMPs in the fetal liver become the source circulating monocytes.
during embryogenesis, and following birth and bone development, the definitive hematopoiesis process relocates to the bone marrow (Italiani and Boraschi, 2014). The hematopoietic systems in humans and mice are coordinated in a similar manner (Tavian & Péault, 2005).

1.2.2 Monocytes

Monocytes are circulating phagocytic white blood cells that are derived from EMPs during definitive hematopoiesis and spread to various organs where they differentiate into macrophages (Shi & Pamer, 2011; Goncalves et al., 2011). Circulating monocytes were thought to replace tissue-resident macrophages as the host matures (van Furth & Cohn, 1968). However new evidence suggests tissue-resident macrophages are largely derived during primitive hematopoiesis in the yolk sac, populate the tissue before birth, and are capable of self-renewal continuing into adulthood (Schulz et al., 2012; Sieweke & Allen, 2013, Epelman et al., 2014). For example, tissue macrophages are able to maintain population size in the absence of monocyte precursors in homeostatic conditions, as well as during monocytopenia (Schulz et al., 2012, Yona et al., 2013, Jakubzick et al., 2013). In addition, following lung macrophage depletion, repopulation occurred in situ rather than by infiltration of blood monocytes (Hashimoto et al., 2013). Therefore, it is believed that monocytes are not generally necessary for maintenance of tissue-resident macrophage populations during homeostatic conditions. Instead, monocyte activity appears to mainly provide additional macrophages to the tissue necessary for resolution of acute inflammation (Jenkins & Hume, 2014).
Monocytes only remain in the bloodstream for 1-2 days, during which time they must be recruited to tissue by an inflammatory response or they will perish and be replaced (Italiani and Boraschi, 2014). There are two specific subtypes of monocytes defined by chemokine receptor expression in mice. The GR-1high CCR2high CX\textsubscript{3}CR1low monocytes are pro-inflammatory and migrate to infected sites to assist with pathogenic clearance (Herold et al., 2011). The GR-1low CCR2low CX\textsubscript{3}CR1high monocytes populate both healthy and infected areas, and are involved in resolution of inflammation and tissue repair (Auffray et al., 2007; Geissmann et al., 2010). During inflammatory responses GR-1high CCR2high CX\textsubscript{3}CR1low monocytes are recruited by chemokines, including monocyte chemoattractant protein-1 and Growth-related oncogene-α, released from pro-inflammatory tissue resident macrophages (Barnes 2004; Herold et al., 2011). Upon arrival to the tissue, recruited monocytes differentiate into monocyte-derived inflammatory macrophages, and assist the elimination of pathogens by phagocytosis, and nitric oxide (NO) production (Serbina et al., 2008). Monocyte-derived inflammatory macrophages also assist the inflammatory responses by secreting pro-inflammatory cytokines that induce T-cell polarization (Serbina et al., 2008; Evans et al., 2009)

1.3 Macrophages

1.3.1 Resident macrophages

Macrophages represent 10-15% of the total cell number during homeostasis and are the first line of defence of the innate immune system. (Murray & Wynn, 2011; Italiani and Boraschi, 2014). Generally, resident macrophages proliferate regularly to maintain their population at steady state, without the need for repopulation by monocyte progenitor cells.
(Sieweke & Allen, 2013). Many types of resident macrophages exist, each of which express different transcription profiles based on the needs of the environment. Therefore, each type of tissue resident macrophage is unique and is assigned a specific name according to tissue location such as microglia in the central nervous system, Kupffer cells in the liver, and alveolar macrophages in pulmonary alveoli (Gautier et al., 2012). Despite differences at the transcriptional level, the roles of macrophages in each tissue are in general similar. They are an integral component of tissue development, tissue surveillance and initiation of inflammatory response to pathogen, and maintenance of tissue homeostasis by clearing cellular debris and repairing tissue (Maus et al., 2002; Italiani and Boraschi, 2014).

Macrophages express cytosolic and membrane bound pattern recognition receptors (PRRs), including Toll like-receptors (TLRs), which recognize pathogen-associated molecular patterns (PAMPs) (Akira et al., 2006). Within an hour of PAMP detection, macrophages initiate inflammation to attempt to sterilize the area of infection (Chen & Nunez, 2010). During the initial phase of inflammatory responses, it becomes necessary to increase the population of pro-inflammatory cytokine secreting cells in order to produce a complete inflammatory response. The local increase in inflammatory macrophages is generally accomplished by recruitment of neutrophils, a type of leukocyte. Neutrophils are an important component of the acute inflammatory response, both by bacterial killing and secretion of chemokines such as CCL2 which will ultimately aid in the recruitment of blood monocytes (Kolaczkowska & Kubes, 2013). Upon exposure to the pro-inflammatory environment, exudated monocytes become monocyte-derived inflammatory macrophages and further propagate the inflammatory response (Italiani and Boraschi, 2014).
1.3.2 Lung macrophages

Macrophages are the most abundant immune cell in the lung and are strategically positioned to play a pivotal role in airway defence (Byrne et al., 2015). Lung macrophages (LMϕ) have dual origins: an F4/80$^{\text{High}}$ population derived from primitive yolk sac representing the majority of lung macrophages including AMϕs, along with a smaller population of F4/80$^{\text{Low}}$ of definitive hematopoetic origin which are continually replaced (Yona et al., 2013). There are two primary subtypes of lung macrophages: alveolar macrophages, and interstitial macrophages (IMϕs). The two macrophage subtypes may be distinguished based on their expression patterns of integrins cluster of differentiation (CD) 11b and CD11c. AMϕs express high levels of CD11c and lack CD11b, whereas IMϕs and recruited monocytes possess the opposite expression pattern (Hussel & Bell, 2014).

Alveolar macrophages

AMϕs are the predominant immune effector cell in the alveolar space and the conducting airways. AMϕs exist in a unique environment which is directly exposed to the external environment, contains high partial pressure of oxygen, and high lipid concentrations. This environment setting differentiates AMϕs from other types of macrophages, and therefore AMϕs exhibit vastly different characteristics. For example, under homeostatic conditions AMϕs have an incredibly long life span with a half-life which exceeds 12 months, in stark contrast to peritoneal macrophages which exhibit a half-life of merely 15 days (Janssen et al., 2011). Another unique property of AMϕs is how the population changes over the course of inflammation and resolution phases. Tissue macrophages in general have been described as polarizing from M2 to M1 upon stimulation.
with a pathogen, along with recruitment of monocytes to fight the infection and clear dead cells (Romo et al., 2011). Following pathogenic clearance, the M1 tissue macrophages were thought to perish due to their own NO production, and eventually the tissue would be repopulated by monocytes in the absence of pro-inflammatory signals (Mills 2012; Italiani and Boraschi, 2014). However, a study by Janssen et al demonstrated that AMϕs follow a much different process, whereby the resident AMϕ population remained stable throughout the inflammatory response and recruited monocytes are wholly responsible for increase in macrophage numbers during the inflammatory response. Furthermore, during the resolution phase recruited monocytes/macrophages undergo in situ programmed cell death and are phagocytosed by neighboring tissue macrophages (Janssen et al., 2011).

Interstitial macrophages in the lung

Whereas AMϕs are found in the airways and are directly exposed to the external environment, IMϕs reside inside the lung tissue (Byrne et al., 2015). In the lung, as a whole, IMϕs are roughly two times less abundant than AMϕs. IMϕs have a low phagocytic potential relative to AMϕs but play a very important role regarding antigen presentation and express much higher levels of MHC class II molecules than AMϕs (Bedoret et al., 2009). Due to their antigen-presenting capability the primary focus of IMϕs is to interact with interstitial lymphocytes in order to initiate a specific immune response, which is distinct from AMϕs which are more effective as non-specific first line of defence (Franke-Ullmann et al., 1996; Prokhorova et al., 1994; Fathi et al., 2001). Although IMϕs are poorly characterized compared with AMϕs, it is clear the two macrophage populations are distinct and play different roles in pulmonary immune responses.
1.4 Macrophage polarization

Macrophages demonstrate remarkable plasticity as they can assume different functional phenotypic states in response to different environmental states. Typically, macrophages have been classified as being either M1 or M2, corresponding to the Th1 and Th2 paradigms seen in helper T cells (Mantovani et al., 2004; Hume 2015). The M1/M2 concept originates from the differences observed in macrophage polarization between C56BL/6 (M1) and BALB/c (M2) mice due to differences in their gene expression profiles (Heinz et al., 2013; Raza et al., 2014; Wells et al., 2003). These differences may be due to differences in expression of transcription factor binding sites and/or DNA methylation patterns (Heinz et al., 2013; Schilling et al., 2009). The M1 phenotype marked by CD38 produces pro-inflammatory cytokines including TNF-α to recruit other immune cells to the site of infection (Murugan & Peck, 2009; Jablonksi et al., 2015) Conversely, alternatively activated (M2) macrophages marked by mannose receptor (Mrc1) and CD83 secrete anti-inflammatory cytokines such as transforming growth factor beta (TGF-β), IL-4, and IL-10 to stimulate Th2 cytokine production and assist with the resolution of cell-mediated inflammation (Spellberg & Edwards, 2001; LaFlamme et al., 2012; Gao et al., 2015; Jablonski et al., 2015; Yamaguchi et al., 2015). In addition, Th2/M2 responses are found to be the dominant response in allergy, asthma, and parasite infections (Bønnelykke et al., 2015; Chung 2015, Chávez-Galán et al., 2015).

iNOS and arginase-1

The regulation of arginine metabolism is critical for macrophage polarization. iNOS is an enzyme which converts arginine to NO and citrulline, and is considered to be a marker
of M1 phenotype. Upregulation of iNOS is an important component of the M1 phenotype, as secreted NO is a critical microbicidal molecule and can also be further metabolized to other reactive oxygen species such as peroxynitrite (Ignarro 1990; Italiani and Boraschi, 2014). Furthermore, NO can nitrosylate proteins which may in turn alter protein function (Rath et al., 2014). Additionally, it has been found that arginine concentrations decline to undetectable levels at inflammatory sites, highlighting the importance of selective arginine metabolism in regulating the M1/M2 response (Mills 2012).

M2 polarization may be induced by cytokines secreted from Th2 cells including IL-4 and IL-13 (Gordon 2003; Van Dyken and Locksley, 2013). These cytokines cause a shift in the arginine metabolism such that there is an increase in arginase-1 activity leading to L-ornithine production which promotes proliferation and repair (Morris, 2007). L-ornithine may be decarboxylated to produce polyamines necessary for cell growth, protein translation, and differentiation, or it may be converted to proline increasing production of collagen which may be important for tissue remodelling (Hesse et al., 2001; Van Dyken & Locksley, 2013). Due to increased arginase-1 activity—and a relative decrease in iNOS activity—there are low levels of pro-inflammatory NO within the cell, and the macrophage will now release anti-inflammatory mediators including TGF-β and IL-10 (Lech & Anders, 2013). TGF-β appears to be important for maintenance of M2 phenotype within the system, as it may exert anti-inflammatory effects by further inhibiting NO production (Mills 2012).

The M1/M2 paradigm demonstrates a balanced cellular system wherein upregulation of arginase-1 activity due to M2 phenotype will break down the substrate which M1-associated iNOS requires to produce NO (Figure 1.1). However, the M1/M2 classification is a limited view of macrophage phenotypes. In reality macrophages alter their phenotype
along a continuum in order to produce typical M1/M2 responses, or anywhere between these two extremes (Stout et al., 2009). This ability for macrophages to adopt various phenotypes allows them to orchestrate the systemic immune response. Each phenotype has distinct cytokine secretion profile depending on their polarized state, which is influenced by signals in their microenvironment (Mosser and Edwards, 2008; Xue et al., 2014; Robbe et al., 2015).

1.5 M1 polarization

M1 polarization is the most prevalent monocyte and tissue macrophage type seen in classical inflammation (Robbe et al., 2015). The M1 polarization of macrophages can be initiated by pro-inflammatory cytokines released from Th lymphocytes, including IFNγ; or triggered by PAMPs from pathogens such as LPS.

1.5.1 IFNγ and IFNGR

The IFNγ receptor (IFNGR) is composed of two IFNGR1 chains responsible for ligand binding and signalling, and two IFNGR2 chains mainly associated with signal transduction (Schroder et al., 2004). While IFNGR1 expression is constitutively high, IFNGR2 limits the responsiveness of IFNγ as its expression is constitutively low and may be upregulated according to cellular activation state (Bernabei et al., 2001). IFNGR lack kinase activity, and therefore must associate with other proteins for receptor phosphorylation and consequent signal transduction. The intracellular domain of IFNGR1 expresses a Janus Kinase 1 (JAK1) binding site, as well as a signal transducer and activator of transcription 1 (STAT1) docking site which must be phosphorylated prior to association. IFNGR2 is associated with JAK2 (Bach et al., 1997). Typical IFNγ signalling occurs via the
Figure 1.1. Arginine metabolism pathways. Adapted from Rath et al., 2014. iNOS and Arginase-1 are prominent markers of the M1 and M2 phenotype, respectively. iNOS metabolizes arginine to NO and citrulline. NO, as well as its metabolite peroxynitrite, possess microbicidal function, while citrulline may be converted back to arginine for further metabolism. Arginase-1 primarily converts arginine to ornithine. Ornithine is further converted to polyamines by ornithine decarboxylase (ODC) and proline by ornithine aminotransferase (OAC), important for promotion of proliferation and tissue repair.
JAK/STAT1 signalling pathway. Upon ligand binding to the IFNGR1, JAK1 and JAK2 are activated and can then phosphorylate INFGR1 (Stark, 2007). Following phosphorylation, unphosphorylated STAT1 dimers located in the cytoplasm may associate with the receptor. Once associated STAT1 is phosphorylated which allows for its translocation to the nucleus where it stimulates target genes (Hu & Ivashkiv, 2009). The IFNγ/STAT1 pathway is primarily responsible for the induction of iNOS expression, pro-inflammatory cytokine secretion, as well as chemokines including C-X-C ligand motif (CXCL) 9, CXCL10 and CXCL11 which attract natural killer and T cells to assist in the inflammatory response (Martinez et al., 2008; Trinchieri 2003; MacMicking et al., 1997).

Many immune cells have the capacity to produce and secrete IFNγ, including Th1 cells, natural killer cells, and professional antigen-presenting cells including macrophages (Young, 1996; Frucht et al., 2001). Macrophage release of IFNγ may be a key component of early inflammatory responses, likely involved in autocrine activation as well as paracrine activation of nearby immune cells (Gessani & Belardelli, 1998; Frucht et al., 2001). IFNγ has been shown to inhibit proliferation of Th2 cells without affecting Th1 cell proliferation. As a result, the T-lymphocyte population shifts towards the pro-inflammatory Th1 state (Bach et al., 1995). Furthermore, IFNγ causes increased cell surface expression of class I MHC on macrophages which effectively increases the likelihood for cytotoxic T cell recognition of non-self peptides and subsequent cell-mediated immunity (Boehm et al., 1997). Exposure to IFNγ has been shown to result in upregulation of iNOS and shift the cellular priorities away from proliferation and towards effector functions including the production and secretion of pro-inflammatory cytokines, and synthesis of NO and other
reactive oxygen species in order to kill invading microbes (Schroeder et al., 2004, van Dyken and Locksley, 2013; Fairfax et al., 2014; Hume & Freeman, 2014)

1.5.2 LPS and TLR4

LPS, a component of gram-negative bacterial cell wall, is a PAMP and thus its molecular structure and receptor are well studied. LPS consists of three parts: lipid A, an oligosaccharide core, and a highly variable O side chain (Raetz & Whitfield, 2002; Miller et al., 2005). The main PAMP of LPS is lipid A which has been highly conserved throughout evolution (Płóciennikowska et al., 2015). TLRs are a group of PRRs expressed by cells of the innate immune system, which respond to structural motifs known as PAMPs (Akira et al, 2006). Thirteen different types of TLRs have been identified in mammals, twelve of which are found in mice and ten in humans (Płóciennikowska et al., 2015). TLR4 is an essential PRR which recognizes LPS and begins a downstream cascade to initiate an inflammatory response (Kawai and Akira, 2010; West et al., 2006, Beutler, 2009). A sequence of molecular interactions must take place before LPS elicits a response from TLR4. First LPS must bind to LPS binding protein, a soluble shuttle protein which facilitates the association between LPS and CD14, a glycosylphosphatidylinositol-anchored glycoprotein found on the cell surface of macrophages (Wright et al., 1989; Simmons et al., 1989; Lu et al., 2008). The primary binding site for LPS is located in an N-terminal hydrophobic pocket of CD14 monomers (Kim et al., 2005; Kelley et al., 2013). Next CD14 transfers LPS to MD-2, a soluble protein which is associated with TLR4 (Nagai et al., 2002; Gioannini et al., 2004). By interacting with MD-2 and the adjacent TLR4 simultaneously, LPS promotes dimerization with a second MD-2/TLR4 receptor complex (Park et al., 2009). Following
oligomerization, four adapter proteins including myeloid differentiation primary response gene 88 (MyD88), Toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP), TIR domain-containing adaptor inducing IFN-β (TRIF), and TRIF-related adaptor molecule (TRAM), are recruited through interactions with TIR domains (O’Neill & Bowie, 2007). LPS engagement of TLR4 can initiate signalling via both MyD88-dependent and MyD88-independent pathways.

MyD88-dependent signalling involves MyD88 and TIRAP. Following TLR4 activation, MyD88 recruits IL-1 receptor-associated kinase-4 and inducing a protein phosphorylation cascade ultimately resulting in activation of IκB kinase (IKK) (Motshwene et al., 2009; Lin et al., 2010b; Gay et al., 2014). IKK phosphorylates inhibitor of κ light chain gene enhancer in B cells (IκB), resulting in degradation of inhibitory IκB proteins and consequent translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) to the nucleus (Lu et al., 2008). Mitogen-activated protein kinase pathways extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase are also activated downstream of TLR4, all of which also play a critical role in the secretion of pro-inflammatory cytokines (Sato et al., 2005; Peroval et al., 2013).

MyD88-independent signalling functions through adapter protein TRAM and signalling molecule TRIF. TRIF recruits another adapter protein (TRAF3) to activate interferon regulatory factor 3 resulting in induction of type I interferon genes as well as IFN inducible chemokines such as IL-10 (Oganesyan et al., 2006; Kawai & Akira, 2011). TRIF also recruits and activates IKK leading to NF-κB activation (Meylan et al., 2004; Ea et al., 2006). Macrophage interaction with various types of bacteria and viruses induces transcription of many pro-inflammatory genes associated with the M1 phenotype, including
TNF-α, IL-6, and iNOS (Benoit et al., 2008). This response consequently stimulates Th1 cell population expansion and release of IFNγ. However, some studies demonstrate that TLR signalling, when accompanied by ligation of Fc gamma receptor (FCγR) results in M2b phenotype that is characterized by arginase-1 upregulation along with TNF-α and IL-10 secretion (Anderson et al., 2002). These macrophages are considered to be inhibitors of the acute inflammatory response due to their large secretion of IL-10, which can stimulate Th2 cell proliferation and secretion of IL-4/IL-13 (Martinez et al. 2008). Macrophage phenotypic polarizations are not mutually exclusive. A recent study examining AMϕ response to influenza virus demonstrated the AMϕs polarize to the M1 phenotype by 4 hours post-infection, and shift to M2b phenotype by 8 hours post-infection (Zhao et al., 2014). These findings highlight the plasticity of macrophage populations, not only in response to different stimuli but also over time with the same stimuli.

1.6 M2 polarization

Macrophages also take part in inflammation resolution and tissue repair, a highly organized process which reverses the inflammatory response by induction of counter-regulatory mechanisms, including halting neutrophil recruitment, as well as removal of apoptotic neutrophils. In a model of LPS induced lung injury it has been demonstrated that exudate macrophages derived from GR-1^{high} CCR2^{high} CX3CR1^{low} monocytes release IL-1 receptor antagonist (IL-1ra), which may block activity of IL-1 receptor (IL-1R) on AMϕs and alveolar epithelial cells (Benoit et al., 2008; Hussel & Bell., 2014). As a result of IL-1R antagonism, the release of macrophage inflammatory protein 2 by AMϕs and alveolar epithelial cells decreases, effectively reducing neutrophil recruitment, but triggering
neutrophil apoptosis (Herold et al., 2011). It is proposed that upon recognition of apoptotic neutrophils the pro-inflammatory transcriptional profiles within the AMϕs are switched, wherein pro-inflammatory cytokine secretion decreases as a result of decreasing NF-κB stimulation (Cvetanovic and Ucker, 2004).

M2 phenotype AMϕs are heterogenous, and they may be further described by three specific and distinct phenotypes: M2a, M2b, and M2c. The M2a subtype is the phenotype which is traditionally referred to simply as M2 or alternatively activated macrophages. Macrophages polarize to the M2a phenotype in response to IL-4/IL-13 and exhibit upregulated arginase-1, Ym1, FIZZ1, and secrete IL-10, and TGF-β (Röszer, 2015). These macrophages are important for anti-inflammatory properties including cell proliferation, growth factor release, and apoptotic cell removal (Gensel & Zhang, 2015). M2b macrophages are often referred to as type II macrophages and are activated by TLR ligands including LPS and may secrete pro-inflammatory cytokines IL-6 and TNF-α. Studies suggest that M2b is of particular importance in the proliferative phase of inflammation resolution in order to trigger tissue remodelling (Mosser and Edwards 2008; Lech and Anders, 2013). M2b macrophages also release IL-10 which may potentially play a role in activation of M2c macrophages, which are primarily activated by IL-10 and TGF-β (Mantovani et al., 2004; Novak and Koh, 2013; Röszer 2015). M2c macrophages are highly immunosuppressive and are found in higher quantities during the remodeling phase of inflammation resolution, as indicated by high levels of TGF-β (Lech and Anders, 2013; Novak and Koh, 2013).
1.6.1 IL-4 and IL-13 receptors

IL-4 and IL-13 are both typical Th2 cytokines and can induce similar physiological effects. However, they are independently regulated and have distinct functions in a Th2/M2 response. In macrophages IL-4 and IL-13 can elicit a myriad of cellular responses by interacting with two types of heterodimeric transmembrane receptor complexes. The type I receptor is composed of an IL-4Rα chain paired with a common gamma (γC) chain, whereas the type II receptor results from the pairing of the IL4-Rα chain with an IL-13Rα1 chain (Munitz et al., 2008). Consequently, only IL-4 may activate the type I receptor, but both IL-4 and IL-13 are capable of binding type II receptors. Both receptor types mediate their signalling responses via JAK-STAT pathways: IL-4Rα is associated with JAK1, γC associates with JAK3, and IL-13Rα1 with JAK2 (Kelley-Welch et al., 2003; Heller et al., 2012). There is also a decoy receptor IL-13Rα2 for which IL-13 has four orders of magnitude greater binding affinity than IL-13Rα1, however this receptor does not interact with a JAK and is generally considered to be indirectly inhibitory (Lupardus et al., 2010; Madala et al., 2011; Heller et al., 2012). The shared IL4-Rα chain stimulates JAK1 which activates STAT6, a key component of IL-4/IL-13-mediated upregulation of arginase-1 and downregulation of NO production (Rutschman et al., 2001). In macrophages, the type I receptor also exhibits γC dependent tyrosine phosphorylation of insulin receptor substrate 2, which can recruit phosphoinositide 3-kinase and consequently lead to upregulated expression of several M2-related genes including arginase-1, and Ym1 (Heller et al., 2008).
1.6.2 IL-4/IL-13 downstream signalling

One established action of IL-4 in tissue resident macrophages is to increase proliferation (Jenkins et al., 2011). Activated STAT6 translocates to the nucleus where it upregulates/activates transcription of several target genes, one being stem cell-inducing factor Krüppel-like factor 4 (KLF4), an important factor in macrophage self-renewal and development (Aziz et al., 2009). KLF4 has also been noted to co-operate with STAT6 to upregulate arginase-1 along with Mrc1, and resistin-like molecule (Retnla/FIZZ1) alpha, all of which are hallmarks of the M2 phenotype (Liao et al., 2011). Simultaneously KLF4 has been shown to actively suppress M1-associated NF-κB activation (Liao et al., 2011; Pello et al., 2012). Both IL-4 and IL-13 appear to activate peroxisome proliferator-activated receptor gamma and delta via STAT6, leading to suppression of inflammation (Odegaard et al., 2007; Odegaard et al., 2008; Kang et al., 2008). Despite these discoveries made in various cell types, the specific role of IL-4/IL-13 and their respective receptors have not yet been fully elucidated in AMϕs.

1.7 GABA signalling in macrophages

1.7.1 GABA synthesis, release and uptake

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (Sieghart, 2006). Therefore, knowledge of GABA signalling is obtained mainly from studies of neuronal cells. GABA is produced by decarboxylation of L-glutamate through the enzymatic activity of glutamic acid decarboxylase (GAD), which has two different isoforms: GAD65 and GAD67 (Nasreen et al., 2011). In neurons GAD65 is localized to the nerve terminals and is involved with GABA synthesis for neurotransmission
Vesicular GABA transporter (GAT) transports GAD65-produced GABA into secretory vesicles until release (McIntire et al., 1997). GAD67 is distributed throughout the cell body and synthesizes GABA for development and normal cell function (Kanaani et al., 2010). Murine knockout studies have demonstrated the importance of GADs, specifically GAD67, in development. Fetuses lacking GAD67 may perish from respiratory failure, and possess abnormalities in axonal and synaptic morphogenesis making the organism unviable (Kuwana et al., 2003, Salazar et al., 2008).

GABA transaminase (GABA-T) is an enzyme which functions to degrade GABA and convert it back into L-glutamate, balancing glutamate-GABA metabolism (Bhat et al., 2010, Liu et al., 2004).

After GABA has generated its signalling effects it must be removed from the extracellular environment by the GAT in order to limit signalling duration. There are four types of GATs (GAT1–4), and their activity is Na+/Cl− dependent (Salazar et al., 2008). GAT-1 is primarily responsible for GABA uptake in the adult central nervous system (Gadea & Lopez-Colome, 2001; Schousboe et al., 2004), however GAT-3 is most prevalent during development (Evans et al., 1996; Minelli et al., 2003).

1.7.2 GABA receptors

GABA generates signals through ionotropic A-type and C-type receptors, as well as metabotropic B-type receptors (Möhler, 2006; Benarroch, 2007; Lujan, 2007). GABA_ARs are GABA-gated ion channels that are permeable to anions such as chloride. A functional GABA_AR is composed of five subunits and each GABA_AR subunit has four transmembrane domains (M1-M4), as well as a large extracellular N-terminal domain and a short intracellular C-terminal domain (Barnard et al., 1998; Sigel & Steinmann, 2012). Humans
express a myriad of genes which may code for the following GABA receptor subunits: α1–6, β1–3, γ1–3, δ, ε, θ, and π (Simon et al., 2004). While a variety of subunits may be used to form the GABA receptor, most physiologically relevant receptor compositions are formed by two α, two β, and one other subunit which is most frequently γ. (Sigel & Steinmann, 2012). As a result, GABA_ARs may achieve functional diversity by variations in subunit combinations, affecting factors such as affinity for GABA, or ion channel kinetics, which will alter the result of GABA binding (Macdonald & Olsen, 1994; Benarroch, 2007). Subunit composition also has important pharmacological consequences; as different subunit compositions may affect the degree to which GABAergic drugs such as benzodiazepines open the receptor pore. For example, zolpidem shows preferential affinity for the α1 subunit and has hypnotic effects, while diazepam exerts its anxiolytic effects through GABA_ARs which express α2 (Crestani et al., 2000; Crestani et al., 2001; Möhler, 2006). Gephyrin is a scaffolding protein for GABA_ARs. In neurons, gephyrin interacts with GABA_AR subunits and helps to anchor and cluster receptors at inhibitory synapses (Choii & Ko, 2015).

GABA_ARs are ligand gated ion channels, which upon activation by the endogenous ligand GABA results in Cl⁻ flow through the channel in the direction determined by electrochemical gradient (Sieghart, 2006). In typical neurons Cl⁻ flows inward resulting in hyperpolarization of the cell. However, in premature neurons it has been found by patch clamp recording that Cl⁻ flow is outward resulting in cellular depolarization (Bhat et al., 2010; Ben-Ari Y et al., 2007). The direction of Cl⁻ flow has been determined to be a result of variations in intracellular Cl⁻ concentration. Immature neurons have intracellular concentration of Cl⁻ of roughly 30mM, whereas the Cl⁻ concentration in mature neurons is closer to 10mM. As a result, GABA_AR binding causes efflux in neuroblasts, and influx in
mature neurons (Owens et al., 1996). Elevated Cl⁻ in premature neurons can be attributed to NKCC1, a Na⁺/K⁺/2Cl⁻ active symporter, which results in intracellular accumulation of Cl⁻. This effect is balanced in matured neurons by the K⁺/Cl⁻ co-transporter KCC2, which pumps Cl⁻ out of the cell (Owens & Kriegstein, 2002). This process has also been hypothesized to occur in immune cells (Tian et al., 2004; Prud’homme et al., 2015).

GABA_CRs are GABA-gated pentameric anionic channels that are composed of subunits ρ1–3. Similar to GABA_ARs they can be inhibited by treatment with picrotoxin and activated by muscimol, however these receptors do not respond to bicuculline (Bormann & Feigenspan, 1995; Feigenspan & Bormann, 1998). Pharmacological differences between GABA_AR and GABA_CR are not fully understood, however, ρ1 subunit of GABA_CR is highly expressed in both the olfactory bulb and the retina, implicating a potential role for GABA_C signalling in these systems (Cutting et al., 1991; Chen et al., 2007).

GABA_BR is a G-protein coupled receptor (GPCR), a large protein family which bind ligands outside the cell and activate signal transduction pathways by coupling with specific G proteins (Trzakowski et al., 2012). A functional GABA_BR is formed by two subunits, GABA_{B1} and GABA_{B2}. In the brain the GABA_BR are most commonly linked via G proteins to open K⁺ channels in order to hyperpolarize neurons (Chen et al., 2005). In addition, GABA_BR suppresses voltage-gated Ca²⁺ channels effectively decreasing Ca²⁺ entry (MacDermott et al., 1999).

1.7.3 GABA_AR signalling in neural development

GABA signalling has been hypothesized to play an important role during neurogenesis, affecting proliferation, differentiation, and migration (Owens & Kriegstein,
2002; Ben-Ari, 2002). During the developmental stages the GABA-mediated inhibitory effect is not present. Instead, activation of GABA_ARs in developing neuroblasts results in a depolarizing effect due to Cl⁻ efflux. This depolarization has been shown to inhibit DNA synthesis and arrest the cell cycle, effectively preventing proliferation which may initiate a shift towards differentiation (LoTurco et al., 1995; Estefanía et. al, 2012). For example, a study by Tozuka et al., shows that treatment of brain slices with GABA increases expression of NeuroD, a transcription factor that contributes to neuronal differentiation (Tozuka et al., 2005). Since GABA signalling is critical for development and differentiation in the brain, it is possible that GABA signalling may also influence phenotypic shift in other cell types.

1.7.4 GABA signalling in immune cells

Recent research has demonstrated the presence and activity of GABA signalling within the peripheral system, including the pancreas and immune system (Bhat et al., 2010; Taneera et al., 2012). GABA_A subunits α1, α2, β3 and δ have also been discovered in murine peritoneal macrophages (Reyes-García et al., 2007). Furthermore, recent research has demonstrated the presence of GABA_A on human AMs (Sanders et al., 2015). There are several noted functions for GABA_ARs in the immune system, including immunosuppression. Prud’homme et al., demonstrated GABA signalling in T cells and macrophages resulted in a decrease of pro-inflammatory cytokine secretion via NF-kB inhibition (Prud’homme et al., 2013). Peritoneal macrophages isolated from mice and treated with GABA-T inhibitor vigabatrin secreted significantly lower quantities of pro-inflammatory cytokine IL-1β following LPS stimulation (Bhat et al. 2010). GAT2 expression and consequently GABA uptake has been found to be upregulated following inflammatory activation (Dionisio et al.,
2011, Paul et al., 2014). Taken together, these findings illustrate the inflammation suppression due to GABA signalling, and the inflammatory response that occurs when the signalling is interrupted. GABA is also reported to contribute to increased proliferation in response to endogenous GABA or by treatment with GABA$_A$R selective agonist muscimol (Takehara et al., 2007; Tamayama T et al., 2005).

1.8 GABA signalling in AMφs – Preliminary data

Unpublished studies in my laboratory using lys-EGFP-ki mice (Faust et al., 2000) have demonstrated the presence of α2-GABA$_A$R on AMφs in murine lungs, of which the expression decreases when the animal is injected peritoneally with LPS (Figure 1.2). Conversely in an ovalbumin (OVA)-induced asthma model, the α2-GABA$_A$R expression in AMφs increases in comparison with controls (Figure 1.3). These findings suggest a link between GABA signalling and AMφ polarization. Therefore, I began to explore whether GABA$_A$R-mediated signalling plays a role in AMφ polarization when carrying out an honors thesis project. My studies demonstrated that under culture conditions AMφs extracted from bronchoalveolar lavage (BAL) expressed high levels of α2- and β2/3-subunits of GABA$_A$R, as well as GAD65/67 (Figure 1.4).

When these AMφs were treated with LPS, the expression of α2-GABA$_A$R decreased drastically while the expression of F4/80, an immunoregulatory GPCR in mouse macrophages (Lin et al., 2010a), increased significantly (Figure 1.5). Treatment of the primary AMφs with the GABA$_A$R channel blocker picrotoxin increased TNF-α secretion suggesting that an autocrine GABA signalling in AMφs critically regulates the cells’ function Interestingly, following LPS treatment picrotoxin no longer affected TNF-α
Figure 1.2. GABA\textsubscript{A}R expression is decreased following LPS treatment. (A) Lung tissues prepared from naïve (Control) lys-EGFP-ki mice (Faust et al., 2000) and lys-EGFP-ki mice intraperitoneally injected with LPS (100 μg/kg) were immune-stained for α2-subunit of GABA\textsubscript{A}R (red). Twenty-four hours after LPS treatment, a large number of macrophages infiltrated the lung, which express both GFP and α2-GABA\textsubscript{A}R. (B) Plotting data from image analyses showed that the immunofluorescent intensity of α2-GABA\textsubscript{A}R in AM\textsubscript{ϕ}s of LPS-treated mice significantly decreased, in comparison with control mice. Plotted data represent mean ± SEM. Significant difference (unpaired T-test), p < 0.01 (**).
Figure 1.3. GABA_AR expression is increased in OVA-treated mice. BALB/c mice were sensitized twice at day-1 and day-11 and then challenged at day-30 with ovalbumin (OVA) to induce allergic asthmatic reaction, an immune response characterized by Th2 inflammation (Singh et al., 2011). (A) Lung tissues of naive mice (control) and OVA-treated mice were double-strained for α2-subunit of GABA_ARs (red) and DAPI (blue). AM_φs and alveolar type II epithelial cells were indicated with yellow arrows and green arrows, respectively. (B) The immunofluorescence intensity of α2-GABA_AR increased significantly in AM_φs of OVA-treated mice, in comparison with control mice. Plotted data represent mean ± SEM. Significant difference (unpaired T-test), p < 0.01 (**).
Figure 1.4. AMφs express GABA signalling molecules. AMφs were isolated by BAL of C57BL/6 mice. Immunocytochemical assays showed that AMφs express GAD65/67, as well as the α2- and β2/3-subunits of GABA_A R.
Figure 1.5. Activation of murine AMϕs with LPS reduces GABA AR expression. (A) AMs extracted from BAL of C57BL/6 mice were treated with LPS (500ng/mL) for 16 hours. Naïve (control) and LPS-treated (+ LPS) cells were then double-stained for F4/80 (red) and α2-GABA AR (green). (B) Plotted data showed that LPS treatment largely increased the immunofluorescence of F4/80 (B2), indicating an activation of AMϕs, but decreased the immunofluorescence of α2-GABA AR (B1). Plotted data represent mean ± SEM. Significant difference (unpaired T-test), p < 0.05 (*), n = 3.
Figure 1.6. GABA\(_{\text{A}}\)R blockade increased TNF-\(\alpha\) secretion from control, but not LPS-treated AM\(\phi\)s. (A). ELISA of culture media revealed that treating AM\(\phi\) with GABA\(_{\text{A}}\)R antagonist picrotoxin (PIC, 50\(\mu\)M), but not GABA (100 \(\mu\)M), for 24 hours significantly increased TNF-\(\alpha\) secretion, suggesting an autocrine GABA signalling of the cells. (B). Treating AM\(\phi\)s with LPS (500ng/mL) for 24 hours greatly increased TNF-\(\alpha\) secretion. However, treating the cells with LPS and GABA (L + G), or with LPS and picrotoxin (L + P) for 24 hours had no significant effect on TNF-\(\alpha\) secretion. Plotted data represent mean ± SEM. Significant difference (ANOVA/Tukey’s HSD), p < 0.05 (*), p < 0.0001, n = 3.
secretion, which may be related to the downregulation GABA\textsubscript{A}Rs by LPS (Figure 1.6).

1.9 Rationale, hypothesis, and aims

1.9.1 Rationale

AM\textgreek{phi}s are unique tissue resident macrophages due to their direct exposure to the atmosphere. Over the course of an immune challenge to the lung, LM\textgreek{phi}s—including AM\textgreek{phi}s—play a pivotal role in both the inflammatory process and resolving inflammation. More precisely, LM\textgreek{phi}s respond to stimuli present in their environment by polarizing to different phenotypes in order to maintain the homeostasis of lung tissues. Therefore, a tight regulation of phenotypic populations of LM\textgreek{phi}s within the lung is critical for pulmonary immunity. Like other tissue resident macrophages, LM\textgreek{phi}s express higher levels of iNOS when exhibiting an M1 phenotype, but express high levels of arginase-1 when polarizing to M2 phenotypes.

Previous studies in my laboratory demonstrated expressions of GAD65/67 and GABA\textsubscript{A}Rs in LM\textgreek{phi}s. Interestingly the expression levels of GABA\textsubscript{A}Rs in LM\textgreek{phi}s, particularly in AM\textgreek{phi}s, decreased in mice treated with LPS but increased in mice experiencing allergic asthmatic reaction. My 4th year honors thesis studies confirmed the expression of GAD65/67 and GABA\textsubscript{A}Rs in AM\textgreek{phi}s under culture conditions, and the GABA\textsubscript{A}R expression decreased in cultured AM\textgreek{phi}s 24 hours after exposure to LPS. Importantly, blocking GABA\textsubscript{A}R-mediated signalling in control AM\textgreek{phi}s increased TNF-\alpha secretion. Taken together, these combined results from previous studies suggested that an autocrine GABA signalling plays a role in phenotypic polarization of AM\textgreek{phi}s. Although GABA signalling has been identified in other immune cells such as peritoneal macrophages, very little study on GABA signalling has been done in either AM\textgreek{phi}s or IM\textgreek{phi}s. In particular, whether GABA signalling regulates LM\textgreek{phi}
polarization remains to be addressed. This thesis study sought to determine if GABA signalling in LMϕs regulates their phenotypic polarization as well as inflammatory response.

1.9.2 Hypothesis

On the basis of available data, I hypothesized that GABA signalling regulates phenotypic polarization and inflammatory activities of LMϕs.

1.9.3 Aims

To test the above hypothesis, I carried out experiments focused on the following two aims:

The first aim was to determine if GABA signalling plays a role in LMϕ polarization. To this end, I first established specific markers for each phenotype of LMϕs. I expected to confirm that treating macrophages with LPS and Th1/Th2 cytokines alter their expression profiles of the conventional M1 and M2 markers iNOS and arginase-1, respectively. Along with specific markers, I also examined secretion of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokines IL-4 and IL-10. I would then be able to examine the effects of GABA_AR agonist and/or antagonist on the expression of these M1 and M2 markers and cytokines.

The second aim was to study whether the expression levels of GABA signalling proteins in LMϕs are modified with their phenotypic polarizations. More precisely, I determined whether the expression of GAD65/67 and α2-GABA_AR in macrophages
changes during M1/M2 polarization, and if so, whether the phenotypic markers and cytokine profiles reflect the changes of GAD65/67 and α2-GABA_AR expressions in the cells.

Considering that quantification of phenotypic marker proteins would require a large amount of cells but the quantity of LMφs extracted from lung tissues was limited, I decided to use both primary LMφs derived from C57BL/6 mice, as well as RAW 264.7 cells in my studies. RAW 264.7 cells are a macrophage cell line derived from BALB/c mice. These cells are widely used for studies as they maintain many of the properties of macrophages including NO production, motility, phagocytosis, and extreme sensitivity to TLR agonists.
2.0 MATERIALS AND METHODS

Usage of animals in this study was approved by the UWO Animal Care and Veterinary Services through the Animal Use Protocols #2010-038 (Dr. Wei-Yang Lu) and #2016-010 (Drs. Sanjay Mehta and Sean Gill)

2.1 RAW 264.7 cell culture

RAW 264.7 cells (ATCC, Manassas VA) were cultured in Dulbecco’s Modified Eagle Medium (Gibco by Life Technologies) high glucose media containing 5.0 g/L L-Glutamine, Fetal Bovine Serum (10%; Life Technologies) and Penicillin-Streptomycin (100U/100µg/mL; Life Technologies). Cells were incubated at 37°C; 5% CO₂ and 95% O₂. Cell were maintained and used before they reached 60-70% confluency.

2.2 AM isolation and culture

Primary AMϕs were obtained from male C57BL/6 mice (8-10 weeks; Charles River Laboratories) by collecting bronchial alveolar lavage (BAL), of which it is estimated that 98% of the cells retrieved are macrophages and only 0.2% will be IMϕs (Huang et al., 2005; Bedoret et al., 2009). Mice were anaesthetized using 1 – chloro – 2, 2, 2 – trifluoroethyl difluoromethyl ether (Isofluorane; Baxter Corporation), and euthanized by laceration of the inferior vena cava. A small incision was made in the trachea into which a catheter tube (BD Angiocath; Becton, Dickinson and Company) was inserted. One millilitre of lavage fluid—1x Hanks Balanced Salt Solution (HBSS; CaCl₂/MgCl₂/MgSO₄ free, Gibco by Life Technologies) containing 15mM ethylenediaminetetraacetic acid (EDTA; 0.5M, pH 8.0, Ambion by Life Technologies)—was pumped through the catheter into the lungs, and pulled
back out three times using a 1mL insulin syringe (0.45mm x 13mm; Becton, Dickinson and Company) in order to collect the cells. This process was repeated three times in order to maximize cell collection, yielding a total of 3mL of lavage fluid per mouse and roughly one million cells.

After collection the cells in HBSS + EDTA were placed on ice until lavage of all mice was completed. The total lavage fluid was centrifuged at 1500rpm for 10 minutes at 4°C. The cellular pellet was then washed two times in Dulbecco’s Phosphate Buffered Saline (PBS; CaCl$_2$/MgCl$_2$ free, Sigma Life Science), and the cell solution was centrifuged at 1500rpm for 10 minutes at 4°C after each wash. The cells were re-suspended in AM Culture Media Roswell Park Memorial Institute Medium (RPMI; Gibco by Life Technologies) 1640 medium containing Fetal Bovine Serum (10%; Life Technologies), L-glutamine (2mM; GlutaMAX 100x, Gibco by Life Technologies), and Penicillin-Streptomycin (100U/100µg/mL; Life Technologies). Cells were plated in 12-well plates on glass coverslips primed with Poly-D-Lysine and placed in a 37°C incubator containing 5% CO$_2$ and 95% O$_2$.

2.3 LMϕ isolation and culture

LMϕs were obtained courtesy of Dr. Sean Gill and with the assistance of Cynthia Pape. Male C57BL/6 mice 12-14 weeks of age were euthanized and lungs were removed. The lungs were then perfused via the right ventricle with 10 mL PBS in order to remove red blood cells, and immediately placed in digest buffer (1X ‘S’ buffer + Enzyme D & Enzyme A; components of Lung Dissociation Kit, Miltenyi Biotec, Bergisch Gladbach, Germany). Tissue was then disrupted using Miltenyi’s gentleMACS dissociator, followed by a 30-
minute incubation period. During this time the sample was subjected to continuous rotation using MACSmix Tube Rotator in order to allow for maximal enzymatic dissociation. The sample was disrupted once more, then passed subsequently through 100 and 70 µm cell strainers. Cells were then centrifuged at 1500 rpm for 10 minutes at 4°C and resuspended in RPMI 1640 + 0.5% bovine serum albumin + 2mM EDTA. Next, the sample was incubated at 4°C with Milentyi CD45+ microbeads for 15 minutes, which magnetically label the desired CD45+ cells. The solution containing cells and microbeads were added to LS columns attached to magnetic MidiMACS Separator. The column was then washed out with 3mL media, which eluted all cells except for CD45+ cells which were stuck to the magnetic microbeads. The column was removed from the magnetic separator and eluted resulting in the collection of only CD45+ cells, which were then used in immunocytochemical studies. The CD45 microbeads have been demonstrated to have high specificity as determined by flow cytometry, such that cells negative for CD45+ that are present in the original suspension do not flow through the column (Schiedlmeier et al., 2000).

2.4 Cell treatments

Treatments used for both RAW 264.7 murine cell line and primary cells include: LPS (500 ng/mL; Sigma-Aldrich, St. Louis, MO), Th1 cytokine IFNγ (100ng/mL; Cedarlane, Burlington ON), Th2 cytokines IL-4 (25ng/mL; R&D Systems Inc., Minneapolis, MN) and IL-13 (25ng/mL; R&D Systems Inc.), GABA_A agonist muscimol (20μM; Sigma-Aldrich), GABA_A channel blocker picrotoxin (50μM; Sigma-Aldrich), iNOS inhibitor 1400W dihydrochloride (20μM; R&D Systems), and IKK inhibitor BAY 11-7082 (25μM; Santa Cruz Biotechnology Inc., Dallas, TX). Cells were treated with LPS, IFNγ, IL-4, and IL-13
for 16 hours, while inhibitors picrotoxin, 1400W dihydrochloride, and BAY 11-7082 were
given 90 minutes prior to LPS or IL-4/IL-13 treatments.

2.5 Western blot

Following treatment, cells were lysed and the protein concentration in lysate was
determined using BioPhotometer Plus UV/Vis Photometer (Eppendorf, Hamburg,
Germany). Western blotting was performed using an Owl™ dual-gel vertical electrophoresis
system (Thermo Fisher Scientific, Waltham, MA). Resolving gels were selected for each
protein of interest based on molecular weight. For detection of α2-GABAA-R (50kD), and
arginase-1 (38 kD) 10% acrylamide gels were run, while iNOS (131kD) was run on an 8% gel. GAD (65/67kD) was run on an 8% gel despite small protein size in order to allow for
sufficient separation of the two proteins. A 4% stacking gel was used for all experiments.
Through trial and error, appropriate loading protein concentrations were determined for each
protein of interest: 80μg for GAD, 120μg for GABA_A, 70μg for arginase-1, and 60μg for
iNOS. Samples were diluted in 2X sample buffer and electrophoresed in 192mM
glycine/25mM Trizma base/0.1% SDS running buffer for 30 minutes at 60V, followed by
one hour at 100V. Proteins were then transferred for two hours at 80V onto a 0.45μM
nitrocellulose membrane (Bio-Rad laboratories, Mississauga, ON) using Mini Trans-Blot
Cell (BioRad) containing 192mM glycine/25mM Trizma base/20% methanol transfer buffer.
The membrane was then blocked for one hour in 5% skim milk in 10mM Tris-HCl/150mM
NaCl/0.1% Tween-20 (TBS-T). Following the block, the membrane was probed overnight
at 4°C with primary antibody against: α2-GABAA_R (Rabbit; Alomone Labs Ltd., Jerusalem,
Israel), GAD 65/67 (Rabbit; Sigma-Aldrich), iNOS (Mouse, Santa Cruz Biotechnology), Arinase-1 (Chicken; Merck Millipore, Billerica, MA).

The following day, the membrane was washed three times in TBS-T for 10 minutes followed by secondary antibody application for 1.5 hours. Secondary antibodies used were horseradish peroxidase-conjugated goat anti-rabbit immunoglobulin G (BioRad), goat anti-mouse (Jackson ImmunoResearch Labs, West Grove, PA), and donkey anti-chicken (Jackson ImmunoResearch Labs). The membrane was washed three times for 10 minutes each. Clarity™ Western enhanced chemiluminescence Blotting Substrate (BioRad) was applied to the membrane for 5 minutes to allow for chemiluminescent imaging. Images were taken using Molecular Imager VersaDoc™ MP 5000 System (BioRad, #1708650) in conjunction with Quantity One 1-D Analysis Software. Anti-β-actin (Mouse; Sigma-Aldrich) antibody along with goat anti-mouse horseradish peroxidase (Jackson ImmunoResearch Labs) was used to detect β-actin as a loading control protein for all experiments. Image-J was used for densitometry analysis of Western blot images. Each experiment was repeated three times.

2.6 Immunocytochemistry

Collected cells were seeded onto poly-D-Lysine coated glass coverslips in 12-well plates, then treated as outlined in Section 2.4. Once the media was removed, cells were fixed to the coverslip using a 4% paraformaldehyde (Electron Microscopy Science) solution diluted in PBS. Coverslips were then washed once with PBS containing 0.1M glycine, and twice more with PBS. At this point cells were permeabilized with 0.1% Triton X-100 (Sigma-Aldrich), with the exception of studies examining α2- and β2/3-GABAAR
expression. Coverslips were then blocked with 5% Normal Donkey Serum (NDS; Jackson ImmunoResearch) diluted in PBS for 1 hour. The cells were treated overnight at 4°C using the following primary antibodies in 1% NDS solution: α2-GABA_AR (Rabbit; Alomone Labs Ltd.), Arinase-1 (Chicken; Merck Millipore), F4/80 (Rat; Abcam, Cambridge, United Kingdom), GAD65/67 (Rabbit; Sigma-Aldrich), gephyrin (Mouse; Synaptic Systems, Göttingen, Germany) iNOS (Rabbit; Abcam), iNOS conjugated to Alexa Fluor 488 (Mouse, Santa Cruz Biotechnology Inc.), LAMP1 (Rat; R&D Systems), GAT-1 (Mouse; Synaptic Systems).

The next day coverslips were washed three times, then secondary antibody in 1% NDS was applied for one hour. The following secondary antibodies were purchased from Jackson ImmunoResearch for these studies: Alexa Fluor 488 Donkey Anti-Chicken, FITC Donkey Anti-Rabbit, FITC Donkey Anti-Rat, Cy3 Donkey Anti-Rat, Cy3 Donkey Anti-Mouse, Cy3 Donkey Anti-Rabbit. Coverslips were washed three times, and 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI; Sigma-Aldrich) was applied for 10 minutes in order to stain the nuclei. Finally, coverslips were mounted using Fluormount G (Electron Microscopy Sciences; Hatfield PA) and preserved until imaging.

Cells were examined and photographed using the Zeiss LSM 510 Meta Confocal Microscope at the Confocal Microscopy Core Facility located at the Robarts Research Institute. Ten randomly selected cells were imaged from each treatment group, and each experiment was repeated three times. Image-J software was used for quantification of fluorescence intensity amongst test groups. For each cell in which staining intensity was to trace the perimeter of the cell was using Image-J, and the average staining intensity within
the enclosed area was calculated (Figure 2.1). After measurements of each cell were completed, the mean values were calculated for comparison between groups.

2.7 Luminex assay

Following treatment, the supernatant was removed and combined with Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific) at a ratio of 1µL:100µL media, then centrifuged at 2000rpm for 10 minutes at 4°C. The cellular pellet was discarded and the supernatant was preserved at –80°C for Luminex multiplex assay. Cytokine analysis was carried out by Shannon Seney at the Screening Lab for Immune Disorders, Canadian Centre for Human Microbiome and Probiotic Research located at Lawson Health Research Institute in London, Ontario. Cell supernatants were tested via Luminex multiplex assay for TNF-α, IL-4, and IL-10. Luminex assays were carried out as follows: colour-coded beads were conjugated to protein-specific capture antibodies and added along with cell supernatant samples into a microplate and incubated for two hours. After washing the beads, protein-specific, biotinylated detector antibodies were added and incubated with the beads for one hour. Excess biotinylated antibody was washed away, and phycoerythrin conjugated streptavidin was added to bind to biotinylated antibodies. After 30 minutes, the wells were washed to remove unbound streptavidin and the beads are analyzed with a dual-laser Luminex detection system. One laser analyzed which protein was being detected, while the other measured the intensity of the phycoerythrin signal, which is proportional to the protein concentration in the sample.
Figure 2.1. Illustration of delineating stained cells for immunofluorescence analysis. Images of immuno-stained macrophages were taken by confocal microscopy. Using ImageJ, the perimeter of an individual cell in each image file was delineated allowing for analysis of the average intensity of immuno-stained protein in each cell. More than ten cells were measured from each treatment group. The calculated mean value of fluorescence intensity was plotted and compared between treatment groups.
2.8 Patch-clamp recording

To test whether RAW264.7 cells produce and release GABA, we measured transmembrane current in cultured hippocampal neurons when exposing them to conditioned media from RAW264.7 cell cultures. Specifically, the conditioned media were collected from untreated RAW264.7 cells 24 hours after culture. Medium from the same bottle was incubated for 24 hours and then was used as controls.

As described previously (Fortin et al., 2001), cortical neurons were cultured from dissociated cortices of E14.5 mice. Briefly, cortices from C57BL/6 mouse embryos were dissected and incubated for 25 min at 37°C in Hank’s balanced salt solution (GIBCO, BRL) containing 0.50 mg/ml trypsin. Trypsinization was stopped by incubating with 0.2 mg/ml trypsin inhibitor and 0.2 mg/ml DNase I for 2 min at 25°C. Cells were triturated in Neurobasal medium (GIBCO) and the cell suspension was centrifuged, and then the pellet was re-suspended in Neurobasal medium containing B-27 supplement, N-2 supplement, 0.5 mM glutamine, and 0.05 U/ml 0.05 mg/ml penicillin-streptomycin (GIBCO). Cortical cells were plated in Nunc 35 mm dishes coated with poly-D-lysine (Sigma-Aldrich). The cultured neurons were used for patch-clamp recordings 16 days after culture and they were bathed in the extracellular solution (ECS), which was composed of the following (in mM): 145 NaCl, 1.3 CaCl2, 5.4 KCl, 25 HEPES, and 33 glucose, pH 7.4 (osmolarity, 315 mOsm).

The procedures for whole-cell voltage-clamp recording were performed as previously described (Dong et al., 2004). Briefly, at room temperature (22°C) recordings were performed under voltage clamp (at -60 mV) mode with a MultiClamp 700 amplifier (Axon / Molecular Devices, San Francisco, CA). Electrodes (3-4 MΩ) were constructed from thin-walled glass (1.5 mm diameter; World Precision Instruments, Sarasota, FL). The
recording electrode was filled with an intracellular solution consisting of the following (in mM): 140 KCl, 35 KOH, 10 HEPES, 2 MgCl₂, 1 CaCl₂, 2 tetraethylammonium, and 4 ATP, pH 7.35 (osmolarity, 315 mOsm). Three to five minutes after a stable baseline recording was achieved, the control medium, conditioned medium, or medium containing 50 μM bicuculline was focally perfused to the test neuron, by means of a multibarrel perfusion system (SF-77B; Warner Instruments, Hamden, CT). The transmembrane conductance was continuously recorded, and the electrical signal was digitized, filtered (1 kHz), and acquired on-line using the program pClamp (Axon / Molecular Devices).

2.9 Statistical analysis

All graphs and statistics were produced using GraphPad Prism 6 software. Data are presented as mean values ± standard error of the mean. Statistical tests performed include non-parametric unpaired Student’s t-test, along with one-way ANOVA followed by either Dunnett’s or Tukey’s multiple comparisons test using a significance level of at least p < 0.05.
3.0 RESULTS

3.1 Determining if GABA signalling plays a role in LMφ polarization

3.1.1 Blockade, but not stimulation, of GABA_AR caused an opposite change in the expression of iNOS and arginase-1 in macrophages

Typically, the M1 phenotype of macrophage is associated with elevated iNOS expression. My Western blotting assays determined that iNOS was undetectable in RAW 264.7 cells under control culture. However, sixteen to twenty-four hours after treatment with IFN_γ or LPS, a high level expression of iNOS was detected (Figures 3.1A and 3.1B), indicating the inducible expression nature of this enzyme as previously demonstrated (MacMicking et al., 1997; Italiani & Boraschi, 2014). Interestingly, treating RAW 264.7 cells with LPS and the GABA_AR antagonist picrotoxin further increased the expression level of iNOS by 2-fold (Figure 3.1B).

Immunocytochemistry, in combination with confocal microscopy, revealed a low level of iNOS immunofluorescence in control LMφs. Exposure of LMφs to IFN_γ, however, induced roughly a five-fold increase in fluorescent intensity of iNOS (Figure 3.1C). Treating the cells with IL-4 + IL-13, or IL-4 + IL-13 together with the GABA_AR agonist muscimol did not affect the level of iNOS fluorescence. In contrast, treatment with IL-4 + IL-13 together with picrotoxin yielded a significant 1.55-fold increase of iNOS-specific immunofluorescence (Figure 3.2).

Western blot analysis showed that arginase-1 expression in RAW 264.7 cells at an unstimulated state was too low to detect (Figure 3.3). Commonly, macrophages polarizing to M2 phenotypes display an increased expression of arginase-1. Indeed, upon stimulation
Figure 3.1. Inducible expression of iNOS is increased by picrotoxin. RAW 264.7 cells were treated with IFNγ, LPS (500ng/mL), and picrotoxin (50μM). Both IFNγ (A) and LPS (B) induced iNOS expression following 16-hour treatment as determined by Western blot. Treatment with picrotoxin 90 minutes prior to LPS treatment further increased iNOS expression. (C) In primary LMs examined by immunocytochemistry and confocal microscopy, IFNγ (100ng/mL) strongly increased iNOS. Plotted data represent mean ± SEM Significant difference (ANOVA/Tukey’s HSD) p < 0.05 (*), p < 0.01 (**), n = 3.
Figure 3.2. Picrotoxin increases iNOS expression in LMφs treated with Th2 cytokines. Primary LMs were treated with IL-4 (25ng/mL) + IL-13 (25ng/mL) for 16 hours. Neither IL-4 + IL-13 nor IL-4 + IL-13 + muscimol (20μM) had an effect on the immunofluorescent intensity of iNOS. Treatment with picrotoxin (50μM), however, resulted in a significant increase of iNOS intensity in IL-4 + IL-13 treated LMφs. Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) p < 0.05 (*), n = 3.
Figure 3.3. Picrotoxin decreases arginase-1 expression in RAW 264.7 cells. Treating RAW 264.7 cells with IL-4 (25ng/mL) + IL-13 (25ng/mL) increased arginase-1 expression significantly. Adding the GABA\(_A\)R agonist muscimol (20μM) to the culture had no effect on arginase-1 expression. In contrast, the addition of GABA\(_A\)R channel blocker picrotoxin (50μM) to the culture significantly decreased arginase-1 expression. Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) \(p < 0.01\) (**), \(n = 3\).
with Th2 cytokines IL-4 and IL-13, the protein level of arginase-1 was increased from relative density of 0 to 0.6. RAW 264.7 cells with the GABAₐR agonist muscimol along with IL-4 and IL-13 did not appear to have an effect on arginase-1 expression. However, antagonizing GABAₐR signalling with picrotoxin 90 minutes before IL-4 and IL-13 treatment significantly hindered the extent to which these Th2 cytokines upregulated arginase-1, lowering relative density to 0.2 (Figure 3.3). In LMϕs, a low-level baseline-expression of arginase-1 was detected by immunocytochemistry and confocal microscopy. Exposure of LMϕs to IFNγ effectively reduced the immunofluorescence intensity of arginase-1 (Figure 3.4). On the contrary, treating LMϕs with IL-4 and IL-13 increased the fluorescence intensity of arginase-1 by 1.35 fold. Notably, treating the cells with IL-4 and IL-13 and the GABAₐR antagonist picrotoxin decreased arginase-1 levels, however in this instance arginase-1 was decreased below control expression levels (Figure 3.5).

3.1.2 Blockade, but not stimulation, of GABAₐR distinctively altered cytokine secretion from macrophages depending on their phenotypic polarizations

In order to further classify phenotypic polarizations induced by LPS, IFNγ, and IL-4/IL-13 in the test macrophages, I employed the Luminex assay to analyze the concentrations of TNF-α, IL-10, and IL-4 in the media of RAW 264.7 cell and primary LMs. In addition, I applied muscimol and picrotoxin to examine the role of GABAₐR-mediated signalling in regulation of macrophage cytokine secretion.

TNF-α Secretion: Analyses showed that treating RAW 264.7 cells with IFNγ or with LPS significantly increased TNF-α secretion in comparison with control by 1.7 and 2.25 fold, respectively (Figure 3.6A).
Figure 3.4. IFNγ decreases arginase-1 in primary LMφs. Primary LMφs were treated with IFNγ (100ng/mL) resulting in a decrease in arginase-1 expression. Plotted data represent mean ± SEM. Significant difference (unpaired T-test) p < 0.001 (**), n = 3.
Figure 3.5. Picrotoxin decreases arginase-1 expression in primary LMϕs. Primary LMϕs were treated with IL-4 (25ng/mL) + IL-13 (25ng/mL) resulting in increased arginase-1 intensity. Adding muscimol (20μM) led to a slight decrease in arginase-1 expression compared with IL-4/IL-13 alone. Picrotoxin (50μM) pre-treatment decreased arginase-1 staining intensity below control level. Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) p < 0.05 (*), n = 3.
Figure 3.6. LPS and IFNγ increase TNF-α secretion. (A) In RAW 264.7 cells, IFNγ (100ng/mL) and LPS (500ng/mL) both increase TNF-α secretion. (B) In primary LMϕs, IFNγ (100ng/mL) did not increase TNF-α secretion. LPS (500ng/mL) however, resulted in a large increase in TNF-α release. Plotted data represent mean ± SEM. Significant difference (ANOVA/Tukey’s test), p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) , n = 3.
However, in primary LMϕs, only LPS treatment yielded a nearly 3 fold increase in TNF-α (Figure 3.6B). On the other hand, treating RAW264.7 cells with IL-4 + IL-13 reduced TNF-α secretion below control levels (Figure 3.7A). Addition of muscimol or picrotoxin did not have any impact on TNF-α secretion. In primary LMϕs IL-4 + IL-13 also reduced TNF-α secretion, however this effect was non-significant (Figure 3.7B). Once again, addition muscimol and picrotoxin did not affect secretion of TNF-α.

IL-4 Secretion: Treatment with IFNγ and LPS induced a non-significant decrease of IL-4 secretion from RAW 264.7 cells (Figure 3.8A). However, both IFNγ and LPS resulted in a significant reduction of IL-4 secretion from LMϕs, with a more dramatic reduction following IFNγ treatment (Figure 3.8B). In contrast, treatment with IL-4/IL-13 greatly increased the detection of IL-4 in the media collected from both RAW 264.7 cells (Figure 3.9A) and primary LMϕs (Figure 3.9B). Treating RAW 264.7 cells or LMϕs with muscimol did not change the IL-4/IL-13-induced increase of IL-4 secretion. Treating the LMϕs with IL-4/IL-13 and picrotoxin also had no significant effect on IL-4 detection (Figure 3.9B), however, this might have resulted from mistaken medium collection. Remarkably, treating RAW 264.7 cells with IL-4/IL-13 and picrotoxin significantly reduced the increase in IL-4 secretion, in comparison with IL-4/IL-13 treatment alone.

IL-10 Secretion: IFNγ did not increase IL-10 secretion in RAW 264.7 cells or LMϕs. Contrary to our expectations, however, IL-10 secretion was largely increased by LPS treatment in both RAW 264.7 cells and LMϕs (Figure 3.10A and 3.10B), suggesting that LPS treatment may have induced a non-M1 phenotype. More surprisingly, IL-4/IL-13 significantly decreased IL-10 secretion from both RAW 264.7 cells (Figure 3.11A) and primary LMϕs (Figure 3.11B). IL-4/IL-13 + muscimol and/or picrotoxin had no effect.
Figure 3.7. IL-4 + IL-13 decrease TNF-α secretion. (A) In RAW 264.7 cells, IL-4 (25ng/mL) + IL-13 (25ng/mL) caused a decrease in TNF-α release. Further addition of muscimol (20μM) or picrotoxin (50μM) did not further affect TNF-α secretion. (B) In primary LMφs, IL-4 (25ng/mL) + IL-13 (25ng/mL) caused a slight but non-significant decrease in TNF-α secretion. Muscimol (20μM) or picrotoxin (50μM) did not have any effect. Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) \(p < 0.01 \) (**), \(n = 3 \).
Figure 3.8. LPS and IFNγ decrease IL-4 secretion. (A) In RAW 264.7 cells, IFNγ (100ng/mL) and LPS (500ng/mL) both decrease TNF-α secretion, though this change is not significant. (B) In primary LMφs, LPS (500ng/mL) caused a modest decrease in IL-4 secretion, while IFNγ (100ng/mL) nearly completely eliminated IL-4 secretion. Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) p < 0.05 (*), p < 0.001 (***) n = 3.
Figure 3.9. IL-4 + IL-13 increase IL-4 secretion, which is inhibited by picrotoxin (A) In RAW 264.7 cells, IL-4 (25ng/mL) + IL-13 (25ng/mL) cause an increase in IL-4 secretion. Further addition of muscimol (20µM) did not affect IL-4 secretion, however pre-treatment with picrotoxin (50µM) inhibited IL-4 secretion. (B) In primary LMφs, IL-4 (25ng/mL) + IL-13 (25ng/mL) caused a large increase of IL-4 release. Further addition of muscimol (20µM) or picrotoxin (50µM) had no effect. Plotted data represent mean ± SEM. Significant difference (ANOVA/Tukey’s HSD) p < 0.01 (**), p < 0.001 (****), n = 3.
Figure 3.10. LPS increases IL-10 secretion. (A) Baseline secretion of IL-10 was minimal in RAW 264.7 cells, which was unaffected by treatment with IFNγ (100ng/mL). LPS (500ng/mL) induced a very large increase in IL-10 secretion, suggestive of M2b polarization. (B) In primary LMφs, IFNγ (100ng/mL) treatment did not have an effect. However, LPS (500ng/mL) increased secretion of IL-10. Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) p < 0.05 (*), p < 0.0001 (****), n = 3.
Figure 3.11. IL-4 + IL-13 decrease secretion of IL-10 (A) In RAW 264.7 cells, IL-4 (25ng/mL) + IL-13 (25ng/mL), IL-4 + IL-13 + muscimol (20μM), and IL-4 + IL-13 + picrotoxin (50μM) lowered IL-10 secretion, although these changes were not significant. (B) In primary LMφs, IL-4 (25ng/mL) + IL-13 (25ng/mL) decreased secretion of IL-10, which decreased slightly further when muscimol (50μM) or picrotoxin (20μM) were added. Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) p < 0.05 (*), p < 0.01 (**), n = 3.
3.1.3 RAW 264.7 cells secrete GABA

The results described above showed that blockade, but not stimulation, of GABA\(_A\)R affected the expression levels of iNOS and arginase-1, as well as IL-4 production by macrophages under specific conditions. Since both cell types express GABA-synthesizing enzyme GAD, I decided to examine whether these cells produce and secrete GABA. In collaboration with Matthew Maksoud, whole-cell voltage-clamp recordings were performed on cultured hippocampal neurons, which express GABA\(_A\)Rs that contains subunits with high affinity to GABA (Caraiscos et al., 2004). It is known that GABA\(_A\)Rs containing \(\alpha_5\) subunit(s) has high affinity to GABA. Exposure of hippocampal neurons to the conditioned media collected from untreated RAW264.7 cell cultures, but not the control (blank) media, resulted in a transmembrane current in 4 out of 6 test cells. The amplitude of the media-induced current varied from 26-128 pA. Notably the current induced by the conditioned medium was blocked by the competitive GABA\(_A\)R antagonist bicuculline (Figure 3.12). These results indicated that under normal conditions RAW 264.7 cells produce and secrete GABA.

3.2 Studying whether LM\(\Phi\) polarization alters GABA signalling components

3.2.1 IFN\(\gamma\) and LPS lowered expression of GABA signalling proteins

Next I investigated whether macrophage polarization was associated with changes in protein expressions of GAD65/67 and \(\alpha_2\)-GABA\(_A\)R. Western blot assays showed that both \(\alpha_2\)-GABA\(_A\)R (Figure 3.13A) and GAD65/67 (Figure 3.13B) were expressed in RAW 264.7 cells. Sixteen hours after treatment with IFN\(\gamma\) and LPS, the expression levels of \(\alpha_2\)-GABA\(_A\)R
Figure 3.12. RAW 264.7 cell media induced bicuculline-sensitive transmembrane current in cultured hippocampal neurons. Shown are voltage-clamp recording traces in the same hippocampal neurons. Upper trace: exposing the cultured hippocampal neuron to conditioned media (RAW media), but not control (blank) media, induced a large transmembrane current. Lower trace: In the presence of 50μM bicuculline, a selective GABAAR antagonist, the conditioned media failed to induce current in the neuron. Note: Patch-clamp recording experiments were graciously performed by Matthew Maksoud, an MSc candidate in my lab.
and GAD65/67 in RAW 264.7 cells decreased significantly by a factor of 3.14 or 2.75 respectively (Figures 3.13). Immunocytochemistry and confocal microscopy revealed LMϕs were immunopositive for both α2-GABAAR (Figure 3.14A) and GAD65/67 (Figure 3.14B) in LMϕs. Similar to effects observed in RAW264.7 cells, treatment with IFNγ significantly decreased the immunofluorescence intensity of GAD65/67 and α2-GABAAR in LMϕs by 2.8 and 1.8 fold, respectively (Figure 3.14).

A previous study demonstrated that neuronal NOS (nNOS) induces S-nitrosylation of gephyrin, a GABAAR scaffolding protein, decreasing synaptic GABAARs (Dejanovic & Schwarz, 2014). Thus, I examined whether LPS down-regulated GABAAR expression in RAW 264.7 macrophages through iNOS/NO signalling. My immunocytochemical analyses revealed positive immunofluorescence for both α2-GABAAR and gephyrin with low levels of co-localization in the plasma membrane and cytosol of RAW 264.7 cells (Figure 3.15, upper row). Interestingly, LPS treatment not only decreased the immunofluorescence of α2-GABAAR and gephyrin in the cells, but also caused internalization of both proteins to intracellular structures, which were co-localized in structures visualized as fluorescent clusters (Figure 3.15, mid row). Notably, treating the cells with the iNOS inhibitor 1400W dihydrochloride largely eliminated the effect of LPS on the fluorescence intensity and cellular location of α2-GABAAR and gephyrin (Figure 3.15, lower row). These results suggested that activation of TLR4 by LPS regulates GABAAR expression and localization in macrophages likely through upregulation of iNOS activity. Next, I performed double-staining for α2-GABAAR and lysosomal-associated membrane protein 1 (LAMP-1) in control and LPS-treated RAW264.7 cells.
Figure 3.13. RAW 264.7 cells exhibit lower protein levels of α2-GABAAR and GAD65/67 in response to LPS and IFNγ. RAW 264.7 cells were treated with LPS (500ng/mL) or IFNγ (100ng/mL) for 16 hours. Western blots showed that such treatments significantly decreased the expression of α2-GABAAR (A) and GAD65/67 (B). Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) p < 0.001 (***), n = 3.
Figure 3.14. M1 polarization reduces expression of α2-GABAAR and GAD65/67 in Primary LMφs. Cultured LMs were treated with IFNγ (100ng/mL) for 16 hours to induce M1 polarization. The immunofluorescent intensity of α2-GABAAR (A) and GAD65/67 (B) significantly decreased in IFNγ-treated LMφs. Plotted data represent mean ± SEM. Significant difference (unpaired T-test) p < 0.05 (*), p < 0.001 (**), n = 3.
Figure 3.15. LPS induced reduction and relocation of α2-GABA_AR and gephyrin were reversed by inhibition of iNOS. Triple staining for α2-GABA_AR (red), gephyrin (green) and DAPI (blue) was made in control RAW 264.7 cell (upper row), as well as cells treated with LPS (500ng/mL, mid row) or with LPS together with an iNOS inhibitor 1400W dihydrochloride (20µM, lower row) for 16 hours. Note that LPS treatment not only lowered the expression levels of α2-GABA_AR and gephyrin, but also caused relocation of the two proteins to an intracellular structure. Treatment with 1400W dihydrochloride largely reversed the effect of LPS.
As shown in Figure 3.16, the immunofluorescence of α2-GABA_A_R and LAMP-1 were partially co-localized. After LPS treatment, the intracellular α2-GABA_A_R clusters were associated with LAMP-1 clusters.

I also explored whether the lowered level of α2-GABA_A_R and GAD65/67 proteins in LPS-treated macrophages was a result of activation of NF-κB pathway. To this end, RAW264.7 cells were treated with LPS, and LPS + BAY 11-7082, an inhibitor of IKK, a critical protein involved in NF-κB activation (Rauert-Wunderlich et al., 2013). Western blot assays revealed that the LPS induced an increase in the expression of both arginase-1 (Figure 3.17A) and iNOS (Figure 3.17B) which was significantly decreased by the co-treatment with BAY 11-7082. BAY 11-7082 also significantly blocked the LPS-induced down-regulation of GAD65/67 and α2-GABA_A_R in RAW264.7 cells (Figure 3.18). Furthermore, the increases in TNF-α (Figure 3.19A) and IL-10 (Figure 3.19B) secretion following LPS treatment were largely downregulated by BAY 11-7082. These results implicate that modulation of GAD65/67 and α2-GABA_A_R, as well as secreted cytokines TNF-α and IL-10 occurs through the TLR4/NF-κB pathway.

3.2.2 IL-4 + IL-13 increased expression of GABA signalling proteins

I also investigated whether M2a polarization altered the levels of GABA signalling proteins. For this purpose, RAW 264.7 cells were treated with IL-4 and IL-13 for 16 hours. Western blot analysis revealed that these Th2 cytokines significantly increased protein level of both GAD65/67 by 1.36 fold and α2-GABA_A_R by 1.69 fold (Figure 3.20). Treating cultured LMΦs with IL-4 + IL-13 for 16 hours also greatly increased the immunofluorescent
Figure 3.16. LPS treatment relocated LAMP-1 together with α2-GABA_{AR} in RAW 264.7 cells. LAMP-1 and α2-GABA_{AR} were immunostained in both control and LPS (500ng/mL) treated RAW264.7 cells. Sixteen hours after LPS treatment, immunofluorescence of LAMP-1 redistributed in RAW264.7 cells, becoming more uniform across the cell but with some large clusters. Interestingly, the large immunofluorescent clusters of α2-GABA_{AR} were co-localized with the large immunofluorescent clusters of LAMP-1.
Figure 3.17. NF-κB inhibition reverses effects of LPS on arginase-1 and iNOS expression in RAW 264.7 cells. Western blots of control RAW 264.7 cells, and cells treated with LPS (500ng/mL) or with LPS + BAY 11-7082 (20μM) for 16 hours, were performed to assay arginase-1 (A) and iNOS (B) expression. Note that LPS upregulated the expression level of both arginase-1 and iNOS; and that the effects of LPS were reversed by the IKK inhibitor BAY 11-7082. Plotted data represent mean ± SEM. Significant difference (ANOVA/Tukey’s HSD) p < 0.01 (**), p < 0.001 (***) n = 3.
Figure 3.18. NF-κB inhibition reverses LPS-mediated GAD65/67 and α2-GABA_AR downregulation in RAW 264.7 cells. Western blots of lysates of control RAW 264.7 cells, and cells treated with LPS (500ng/mL) or with LPS + BAY 11-7082 (20µM) for 16 hours, were performed to assay GAD65/67 (A) and α2-GABA_AR (B). LPS treatment down-regulated the level of GAD65/67 and α2-GABA_AR. This effect of LPS were reversed by the IKK inhibitor BAY 11-7082. Plotted data represent mean ± SEM. Significant difference (ANOVA/Tukey’s HSD) p < 0.05 (*), n = 3.
Figure 3.19. NF-κB inhibition reverses LPS-induced TNF-α and IL-10 secretion in RAW 264.7 cells. (A) LPS (500ng/mL) causes an increase in TNF-α secretion. Pre-treatment with IKK inhibitor BAY 11-7092 reverses LPS-induced increase in cytokine secretion. (B) LPS (500ng/mL) greatly induced IL-10 secretion, however BAY 11-7092 completely reverses this effect. Plotted data represent mean ± SEM. Significant difference (ANOVA/Tukey’s HSD) p < 0.01 (**), p < 0.0001 (****), n = 3.
Figure 3.20. Th2 cytokines increase expression of α2-GABA_AR and GAD65/67 in RAW 264.7 cells. Western blots of the lysates of control RAW 264.7 cells and cells treated with IL-4 (25ng/mL) + Il-13 (25ng/mL) for 16 hours were performed to assay the protein levels of α2-GABA_AR (A) and GAD65/67 (B). Expression of α2-GABA_AR and GAD65/67 were increased in RAW264.7 cells after IL-4 + IL-13 treatment. Plotted data represent mean ± SEM. Significant difference (unpaired T-test) p < 0.01 (**), n = 3.
intensity of α2-GABA\(_A\)R by 1.76 fold and GAD65/67 by 1.53 fold (Figures 3.21 and 3.22). Although addition of muscimol had no effect on the immunofluorescence intensity of α2-GABA\(_A\)R and GAD65/67, picrotoxin significantly decreased the immunofluorescence intensity of GAD65/67 in cultured LM\(\phi\)s (Figure 3.22). Treating cultured LM\(\phi\)s with IL-4 + IL-13 for 16 hours also greatly increased the immunofluorescence intensity of α2-GABA\(_A\)R by 1.76 fold and GAD65/67 by 1.53 fold (Figures 3.21 and 3.22). Although addition of muscimol had no effect on the immunofluorescence intensity of GAD65/67 and α2-GABA\(_A\)R, picrotoxin significantly decreased the immunofluorescence intensity of GAD65/67 in cultured LM\(\phi\)s (Figure 3.22).
Figure 3.21. IL-4 + IL-13 increases expression of α2-GABA_AR in primary LMφs. Primary LMφs were treated with IL-4 (25ng/mL) + IL-13 (25ng/mL), or with IL-4 and IL-13 + muscimol (20µM) or picrotoxin (50µM). IL-4 + IL-13 treatment increased expression of α2-GABA_AR (A). The addition of muscimol or picrotoxin to IL-4 + IL-13 had no effect. Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) p < 0.01 (**), n = 3.
Figure 3.22. IL-4 + IL-13 increases expression of GAD65/67 in primary LMφs. Primary LMs were treated with IL-4 (25ng/mL) + IL-13 (25ng/mL), with IL-4 and IL-13 + muscimol (20µM) or picrotoxin (50µM). IL-4 + IL-13 treatment increased expression of GAD65/67. The addition of muscimol to IL-4 + IL-13 had no effect, however picrotoxin reduced GAD65/67 expression below control levels. Plotted data represent mean ± SEM. Significant difference (ANOVA/Dunnett’s test) p < 0.01 (**), p < 0.0001 (****), n = 3.
4.0 DISCUSSION

Previous studies in my laboratory demonstrated that AMϕs express both GAD and GABA_{AR} subunits indicating an autocrine GABA signalling mechanism exists in these cells. In addition, my honors thesis study found that blockade of GABA_{AR}s significantly increased secretion of the M1 cytokine TNF-α from AMϕs. The primary goal of this research project was to explore whether GABA signalling plays a role in phenotypic polarization of AMϕs. Specifically, I first determined if GABA signalling plays a role in LMϕ polarization, and then I studied whether the expression levels of GABA signalling proteins in LMϕs were modified with their phenotypic polarizations. The main results from this study showed that 1) LMϕs displayed multifaceted polarizations under different microenvironments; 2) the expression levels of GABA signalling proteins in macrophages were up- or down-regulated depending on which agents were used to induce the phenotypic polarization; and 3) LMϕs are endowed with an autocrine GABA signalling mechanism that modulates phenotypic polarization of the cells.

4.1 Multifaceted Macrophage Polarizations

Data from converging studies indicate that macrophages are functionally polarized to M1 and M2 phenotypes in response to microorganisms and host mediators such as cytokines secreted from Th1/2 cells. Gene expression profiling of macrophages show that different Gram-negative and Gram-positive bacteria often induce the transcription of genes belonging to the M1 program. However, some bacterial pathogens provoke specific M2 programs in macrophages (Benoit et al., 2008). Moreover, M2 macrophages cover a continuum of cell phenotypes, including M2a, M2b, and M2c subtypes with different
phenotypic and functional properties, depending on specific microenvironments. In order to understand the role of GABA signalling in M1/M2 polarization, one must first understand the complexities of macrophage polarization.

4.1.1 M1 phenotype

IFN\(\gamma\) is a typical Th1 cytokine. In agreement with previous findings demonstrating that IFN\(\gamma\) increases iNOS expression in murine macrophages (Stout et al., 2005, Staitieh et al., 2015), my results confirmed that IFN\(\gamma\) upregulates the M1 marker iNOS in both cell models (Figure 3.1). In contrast, IFN\(\gamma\) decreased the M2 marker arginase-1 in primary LM\(\phi\)s (Figure 3.4).

Increased secretion of TNF-\(\alpha\) is often associated with M1 macrophages. My analyses demonstrated that IFN\(\gamma\) upregulates secretion of TNF-\(\alpha\) in RAW264.7 cells (Figure 3.6), which agrees with a previous study performed in the same cell line. (Vila-del Sol et al., 2008). IL-4 is a Th2 cytokine, and it is also secreted by macrophages (Gao et al., 2015). My assays showed that IL-4 secretion from control RAW264.7 cells was extremely low at baseline. Treatment of RAW 264.7 cells with IFN\(\gamma\) induced a slight decrease in IL-4 following treatment, however this change was too small to be considered statistically significant. Baseline secretion of IL-4 from LM\(\phi\)s was slightly higher than in RAW 264.7 cells, and treating them with IFN\(\gamma\) significantly decreased the baseline secretion of IL-4 (Figure 3.8).

Taken together, my results showed that treating macrophages with IFN\(\gamma\) not only increased the M1 marker iNOS and the M1 cytokine TNF-\(\alpha\) but also decreased the M2 marker arginase-1 and the M2 cytokine IL-4, inducing a shift towards the M1 phenotype.
4.1.2 M2a phenotype

Both IL-4 and IL-13 are secreted by Th2 cells and they use the IL-4Rα chain as a component of their receptors. Thus, these two cytokines are often used together to stimulate their receptors (Hershey, 2003). Several previous studies showed that IL-4 and/or IL-13 increases arginase-1 expression via STAT6 signalling, and arginase-1 is cited as a marker for M2a phenotype in murine macrophages and cell lines (Müller et al., 2007; Sheldon et al., 2013). My results showed the combination of IL-4 and IL-13 increased expression of arginase-1 in both RAW 264.7 cells and primary LMφs (Figures 3.3 and 3.5).

Past studies have demonstrated that IL-4 inhibits TNF-α secretion from human monocytes, and that IL-4 and IL-13 decrease TNF-α translation in RAW 264.7 cells (te Velde et al., 1990; Mijatovic et al., 1997). In agreement with these previous studies, my results revealed that IL-4 + IL-13 significantly reduced TNF-α secretions from RAW 264.7 cells, though only slightly reduced TNF-α secretions from primary LMφs (Figure 3.7).

It was interesting to observe that 16 hours after IL-4/IL-13 treatment the IL-4 secretion largely increased in both RAW 264.7 cells and primary LMφs (Figure 3.9). This finding is consistent with literature which reports that IL-4 is released from M2a macrophages (La Flamme et al., 2012; Murray et al., 2014, Gao et al., 2015). High levels of IL-10 secretion are associated with the M2 phenotype (Spellberg & Edwards, 2001; Lech & Anders, 2013; Yamaguchi et al., 2015). I therefore analyzed IL-10 as an example of an M2 anti-inflammatory cytokine. Surprisingly, IL-4 + IL-13 treatment decreased IL-10 secretion from both RAW 264.7 cells and primary LMφs (Figure 3.11). It is reported that IL-4 may act to suppress IL-10 secretion in human monocytes (Bonder et al., 1999), suggesting increased IL-10 secretion may not be associated with all M2 phenotypes. Nonetheless,
combined results from my experiments showed that IL-4 + IL-13 treatment induces M2a polarization of LMϕs.

4.1.3 M2b phenotype

M2b phenotype is a unique subtype of macrophages that often mediate inflammatory responses. Although arginase-1 expression has typically been used as a marker for M2 polarization, some studies have suggested M2b and M2c phenotypes may be better characterized by high IL-10 and TGF-β secretion, respectively (Martinez et al., 2008; Saclier et al., 2013). For example, several studies have noted an increase in IL-10 release as a consequence of LPS stimulation, including in RAW 264.7 cells and human AMϕs (Chanteux et al., 2007, Van den Bosch et al., 2014). It is reported that M2b activation can be elicited by IL-1 receptor ligands, immune complexes, and LPS. Indeed, my assays showed that LPS treatment induced a great increase in IL-10 secretion (Figure 3.10) in RAW 264.7 cells and primary LMϕs, and an elevation of arginase-1 and expression (Figure 3.17) in RAW 264.7 cells. These combined results may suggest that under these experimental conditions, LPS treatment induces M2b phenotype. However, the LPS-treated cells also displayed high levels of iNOS, which reflects the complicity of macrophage phenotypical development. Given that M1 macrophages are not associated with high levels of IL-10 secretion (Murray et al., 2014) and that a mixed M1/M2b phenotype has been identified in the population of microglia (Lisi et. al., 2014), a type of macrophage in the brain, it is plausible to propose that LMϕs share the same capability.
4.2 Macrophage polarization alters autocrine GABA signalling

4.2.1 Decreased GABA signalling is associated with M1 and M2b phenotype

My immunoblot assays showed that when cultured RAW 264.7 and LMφs polarized to M1 phenotype by IFNγ treatment or to M2b by LPS treatment, the expression level of both GAD and α2-GABAAR decreased (Figure 3.13 and 3.14). This result is in line with the earlier studies in our lab, in which significant decrease in immunofluorescence of GAD and α2-GABAAR occurred in AMφs of mice that were systemically treated with LPS. Considering that iNOS expression is largely increased in these cells and NO down-regulates GABAAR expression in neurons by S-nitrosylation of the GABAAR anchoring protein gephyrin (Dejanovic & Schwarz, 2014), I investigated the role of iNOS/NO in the regulation of GABAARs in RAW 264.7 cells. In RAW 264.7 cells, LPS treatment caused co-localization and clustering of both gephyrin and α2-GABAAR inside of the cells, which was largely blocked by the iNOS inhibitor 1400W, suggesting iNOS/NO may be responsible for internalization of GABAARs (Figure 3.15). Furthermore, my studies demonstrated an association between α2-GABAAR and the lysosome marker LAMP-1 following LPS treatment (Figure 3.16), suggesting that the internalized GABAARs might be degraded within lysosomes.

My results also showed that inhibition of the NF-κB signalling pathway in RAW264.7 cells by BAY 11-7082 not only significantly lowered the LPS-induced iNOS expression but also reduced the decrease in the expression of both GAD and α2-GABAAR (Figures 3.17 and 3.18). This finding was in line with a previous study, which reported that iNOS expression occurs through activation the NF-κB pathway (Aktan F, 2004). However, IFNγ treatment also yielded GAD and α2-GABAAR downregulation. The most well
understood downstream signalling of IFNγ is activation of STAT1, which has been suggested to be an important mediator of iNOS expression in epithelial cells (Stempelj et al., 2007). More study could be done on STAT1 to fully elucidate the mechanisms involved in GAD and GABAAR downregulation, however our results highlight the importance of NF-κB signalling.

4.2.2 M2a polarization is associated with increased GABA signalling

My results showed that in response to IL-4 + IL-13 both RAW 264.7 cells and primary LMφs displayed a significant upregulation of both GAD and α2-GABAAR (Figure 3.20 and 3.21), although the signalling pathway through which Th2 cytokine upregulates the expression of GAD and GABAAR awaits further studies. Taken together my results demonstrated that M1/M2b polarization is linked to an overall decrease in GABA signalling, while M2a polarization is associated with an increase in GABA signalling (Figure 4.1).

4.3 Autocrine GABA signalling regulates macrophage polarization

4.3.1 Blockade of endogenous autocrine GABA signalling alters the phenotypic markers and cytokines

Results showed that at resting stage (M0), macrophages secreted GABA as evidenced by the occurrence of bicuculline-sensitive current in neurons when exposed to conditioned medium from RAW264.7 cells (Figure 3.12). To examine whether a GABAAR mediated autocrine signalling regulates macrophage phenotypical polarization, I treated RAW 264.7
Figure 4.1. Changes in GABA_R-mediated autocrine signalling and its role in macrophage polarization. Autocrine GABA signalling maintains the macrophage at a resting state (M0). Increased autocrine GABA signalling occurs in M2a phenotype while decreased GABA signalling is associated with M1 or M1/M2b phenotype.
cells and LM$s with the $GABA_A$R agonist muscimol and the $GABA_A$R channel blocker picrotoxin. Results showed that muscimol did not affect the expression of iNOS, arginase-1, GAD65/67 and $\alpha2$-$GABA_A$R, or the secreted cytokines. On the other hand, treating “naïve” AMϕs with picrotoxin significantly increased TNF-α secretion (Figure 1.7), while treating the IL-4/13 primed LMϕs with picrotoxin decreased IL-4 secretion along with arginase-1 and GAD expression (Figures 3.3, 3.5, 3.9, and 3.21). Notably, picrotoxin had no effect on TNF-α secretion from LPS-treated AMϕs (Figure 1.7), in which the expression of both $GABA_A$Rs and GAD was greatly down-regulated (Figures 1.6 and 3.13). These results indicate that in M0 and M2a macrophages an active autocrine GABA signalling persistently regulates the function of the cells, whereas the autocrine GABA signalling is terminated when the cells shift to M1/M2b phenotypes.

4.3.2 Potential mechanism by which autocrine GABA signalling regulates macrophage polarization

$GABA_A$R is a channel permeable for Cl$^-$ and activation of this receptor leads to changes of membrane potential. My thesis study did not investigate the underlying mechanisms by which $GABA_A$R regulates macrophage polarization. However, unpublished studies in my lab showed that activation of $GABA_A$R can change intracellular Ca$^{2+}$ concentrations. The enormous concentration difference between the extra- and intracellular compartments make Ca$^{2+}$ entry to the cell a sensitive signal (Demaurex & Nunes, 2016). As a second messenger, intracellular Ca$^{2+}$ plays a key role in the regulation of gene expression and cell differentiation (LoTurco et al., 1995; Johnson et al., 1997; van Haasteren et al., 1999; Barbado et al., 2009). In excitable cells, membrane depolarization will result in the
opening of voltage-gated Ca\(^{2+}\) channels allowing for a large influx of Ca\(^{2+}\) due to the concentration gradient (Bers, 2008; Atlas, 2013). However, there has been no substantial evidence to support the expression of voltage-gated Ca\(^{2+}\) channels in immune cells. Instead, Ca\(^{2+}\) entry in non-excitable cells including macrophages is largely mediated by store-operated Ca\(^{2+}\) entry (SOCE) through of the calcium-release activated channels (CRAC) on the plasma membrane allowing for Ca\(^{2+}\) entry (Putney et al., 2001).

How can a GABA\(_A\)R-mediated membrane potential change affect SOCE in macrophage? A study performed in peritoneal macrophages has demonstrated the resting potential of these macrophages is \(-75\) mV, while the reversal potential for Cl\(^-\) is \(-35.3\) mV (Randriamampita & Trautmann, 1987). In essence, this means GABA\(_A\)R stimulation at rest will result in an efflux of Cl\(^-\) ions in peritoneal macrophages, although the resting and reversal potentials in LMs need to be determined. Due to the efflux of Cl\(^-\) through the GABA\(_A\)R channels and hence the more positive membrane potential, less Ca\(^{2+}\) enters the cell. Results from my study showed that LPS downregulates GABA\(_A\)R expression, which would result in a more negative membrane potential, and hence a larger Ca\(^{2+}\) influx to the cells.

My results showed that M2a polarization results in a feedforward GABA signalling marked by increased GAD and \(\alpha2\)-GABA\(_A\)R, leading to upregulation of IL-4 secretion. M2a polarization might reduce Cl\(^-\) influx channel NKCC expression but increase Cl\(^-\) efflux channel KCC expression causing a lowered intracellular Cl\(^-\) concentration. Consequently, upon GABA\(_A\)R activation there will be Cl\(^-\) influx causing membrane hyperpolarization, more Ca\(^{2+}\) entry and activated M2 gene expression. (Figure 4.2).
Figure 4.2. Proposed mechanisms by which the GABA$_A$R mediated autocrine signalling regulates phenotypic polarization and function of macrophages. In “resting macrophages (M0), the higher expression and activity levels of the Cl$^-$ intruding NKCC and the lower expression and activity levels of the Cl$^-$ extruding KCC results in a higher intracellular Cl$^-$ concentration. Therefore, autocrine GABA activates GABA$_A$Rs mediating Cl$^-$ efflux, which consequently maintain the transmembrane membrane potential depolarized (less negative) and minimum Ca$^{2+}$ entry through store-operated calcium (SOC) channels. M1 polarization results in a decreased expression of GABA$_A$Rs and GAD, causing membrane hyperpolarization and more Ca$^{2+}$ entry through SOC channels, consequently M1 gene expression. In contrast, M2 polarization results in an increased expression of GABA$_A$Rs and GAD. However, M2 polarization might reduce NKCC expression but increase KCC expression and thus shift the reversal potential of Cl$^-$, consequently resulting in Cl$^-$ influx through GABA$_A$Rs, hence membrane hyperpolarization, more Ca$^{2+}$ entry and activated M2 gene expression.
As previously mentioned, changes in Ca\(^{2+}\) signalling may also play a role in macrophage polarization by modification of gene transcription. Although exact mechanisms are still under investigation, several factors have been suggested to play important roles in Ca\(^{2+}\) mediated alterations in gene expression, including, nuclear factor of activated T-cells, and NF-Kb. Changes in Ca\(^{2+}\) signalling related to changes in Cl\(^{-}\) flow before and after neuronal maturation may be an indicator that differential gene expression may be related to phenotype change, and in LM\(\psi\)s GABA/Ca\(^{2+}\) signalling may play an important role in phenotypic shifts seen in this study (Nachtomy et al., 2007).

4.4 Future studies

Several measures could be taken to strengthen already existing findings. Treatments and time points used in these experiments were based on treatments established in the literature. However, in the future dose-response curves should be established for each drug. Multiple time points should also be examined, which may be particularly important for examining how LM\(\psi\)s/RAW 264.7 cells change phenotype and/or cytokine secretion over time. Along the same vein many studies could be repeated using bicuculline in the place of picrotoxin, since bicuculline is selective antagonist for GABA\(_A\)Rs rather than a channel blocker. Several additional experimental methods could also be applied to strengthen the current studies, including proteomics to further examine cytokine production, and real-time PCR to examine RNA expression of GAD and \(\alpha\)2-GABA\(_A\)Rs at various time points following treatments with IFN\(\gamma\), LPS, and IL-4 + IL-13. Furthermore, fluorescence-activated cell sorting should be done following LM\(\phi\) extraction from lung tissue based on differential expression of CD11, allowing for separation and independent study of IM\(\phi\) and AM\(\phi\).
populations. Finally, although it has been demonstrated that RAW 264.7 cell media contained secreted GABA, the same has not yet been confirmed in LM media. Therefore, the same patch clamping study we performed using cultured hippocampal neurons should be carried out once again. Patch clamping studies should also be performed using primary LMϕs to determine the resting membrane potential, and direction of Cl⁻ flow following GABAergic stimulation.

There are also areas which could be expanded upon in future study. Given that this study did not fully establish a mechanism for GABAₐR downregulation, it is possible other unexplored mechanisms may be responsible. In neurons it has been suggested that GABAₐR reduction may be attributed to degradation of receptor proteins followed by a decrease in de novo synthesis (Barnes EM Jr, 1996). One method that could be used to further investigate the fate of decreased GABAₐR expression is by a biotin degradation assay. Biotinylation techniques may also be useful for investigating receptor endocytosis, which would confirm GABAₐRs are being internalized into lysosomes as suspected. In this instance GABAₐRs may be pretreated prior to biotinylation with a lysosomal inhibitor such as leupeptin to prevent proteolysis. A Western blot may then be run wherein the higher expression of biotin represents GABAₐR internalization. (Mammen et al., 1997; Arancibia-Cárcamo et al., 2006). Biotin may also be useful for further examining whether upregulated iNOS is related to gephyrin nitrosylation in LMϕs/RAW 264.7 cells. One particular study known as the biotin-switch technique can effectively replace S-nitrosylated cysteine residues with biotin for relatively easy detection (Forrester et al., 2009). Receptor upregulation in M2a polarization should also be further examined. It is known that IL-4/IL-13 function primarily through the transcription factor STAT6, therefore one study that could be done involves
treatment with IL-4/IL-13 while inhibiting STAT6. Changes in GAD and α2-GABA_{A}R could then be observed via Western blot, confocal microscopy, and/or PCR.

My results suggested a potential mechanism for changes in intracellular Cl^{-} concentration related to macrophage phenotypes. These changes are proposed to be due to differential expression of NKCC and KCC channels during polarization. In order to investigate the proposed mechanism, Western blots may be performed for KCC and NKCC in IFNγ and IL-4 + IL-13 treated cells.

The ultimate goal for studying GABA signalling in LMφs should involve in vivo studies. Although in vitro studies allow for examination of isolated populations of single cell types, this is not necessarily realistic. Other cells including Type II epithelial cells and T cells reside in the environment and are constantly secreting factors which affect macrophage polarization. Furthermore, studies have shown T cells secrete GABA and studies in our laboratory have found that Type II epithelial cells also possess GABA signalling systems (Bhat et al., 2010; Prud’Homme et al., 2013, Xiang et al., 2013). Therefore, GABA signalling interactions between these cell types may also affect inflammatory responses within the pulmonary immune system.

4.5 Limitations

Although the findings outlined in the present study suggest an important role for GABA signalling as a regulator of LMφ inflammatory response, there are several limitations to be considered. Due to the low number of primary LMφs that could be obtained via lung digest, immunofluorescence techniques were utilized to measure changes in markers involved in cellular polarization, as well as GABA signalling proteins. Immunofluorescent...
techniques have inherent limitations, including a potential for non-specific protein binding
with fluorescent antibodies, and photo-bleaching. In addition, the results of fluorescence
intensity are qualitative in nature. Regarding the selected experimental treatment groups,
controls were not run for muscimol or picrotoxin, therefore it is unknown how these drugs
would affect the cell on their own. Furthermore, only one type of agonist/antagonist were
used at fixed concentrations, therefore it is difficult to ensure all results are induced by the
intended purpose of the drug or an unanticipated side effect. Finally, all experiments in this
study focussed on either the RAW 264.7 cell line or LMϕs in isolation. While these studies
are good for investigating the role of GABA signalling within this specific cell type, it is
likely the case that the cells would function differently in vivo when surrounded by
neighboring immune cells.

4.6 Conclusion and significance

This study is the first to link GABA signalling in AMϕs to phenotypic polarization.
First, it was found that blockade of GABA\A_R with picrotoxin shifts the cell towards M1
phenotype, while muscimol had no effect. This finding led to the discovery that RAW 264.7
cells possess an autocrine GABA signalling system, as they express GAD, produce GABA,
and express α2-GABA_ARs. My study established a link between LMϕ polarization and
GABA signalling. Increased GABA signalling is associated with M2a polarization, while a
decrease in GABA signalling is related to M1 and M2b phenotypes. These findings provide
insight for a novel role of endogenous GABA signalling as a regulator of LMϕ polarization
and inflammatory response. Specifically, tonic GABA signalling provides feedback
inhibition of pro-inflammatory cytokine release. IFNγ and LPS decrease GABA signalling,
leading to the release of pro-inflammatory cytokines. Conversely GABA signalling feeds forward to M2a polarization, inducing secretion of IL-4. Primarily, I propose changes in GABA signalling associated with polarization regulates Ca^{2+} signalling and consequently cytokine release and potentially transcriptional changes. This may have therapeutic implications, providing further insight that GABA may be an effective immunomodulatory signalling molecule (Bhat et al., 2010; Prud’homme et al., 2013).

Differential GABA$_AR$ expression may also be a useful indicator for phenotypic polarization. Currently classification of different macrophage phenotypes is confusing, with different markers sometimes being used to classify the same phenotypes. Currently an effort within the immunology is to define a unified set of markers to distinguish between different macrophage phenotypes (Murray et al., 2014). The standardization of marker usage would benefit experienced researchers as well as those entering the field, by establishing definite associations between markers and phenotypes. Results from my studies demonstrate distinct GABA$_AR$ expression patterns in different phenotypical macrophages, therefore expression levels of this receptor may aid in the classification of macrophage subtypes.

LMϕs display a plastic nature and play key roles in pulmonary functions and diseases. This study demonstrates that autocrine GABA signalling regulates the plasticity of LMϕs. The challenge remains to apply the knowledge generated from mechanistic studies of LMϕs towards pulmonary physiology and directed therapies for the treatment of pulmonary disease. I propose that pharmacological manipulation of GABA signalling within the lung may be a potential treatment for lung inflammation, in particular the M2/Th2 inflammation associated with pulmonary allergy and asthma. Specifically, this study demonstrates an increase in GABA signalling associated with M2a polarization, it may be
possible that antagonism of this GABA signalling may restrain M2/Th2 inflammation. Nevertheless, LM\(\phi\)s are not the only immune cells which exhibit GABA signalling. Studies, including some in our lab, have demonstrated that T lymphocytes and type II alveolar epithelial cells possess autocrine GABA signalling mechanisms, which could interact with the GABA signalling system in LM\(\phi\)s. Therefore, more \textit{in vivo} studies is imperative for establishing the notion of GABA signalling as an immune regulator.

In conclusion, this study has demonstrated that LM\(\phi\)s possess an autocrine GABA signalling mechanism which has important implications in regulation of inflammatory responses. Specifically, the role of autocrine GABA signalling in LM\(\phi\)s is to provide feedback inhibition to the M1/M2b phenotype, and feedforward activation to the M2a phenotype.
5.0 REFERENCES

Chávez-Galán L, Olleros ML, Vesin D, Garcia I. 2015. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. *Front Immunol* **6**: 263.

JACOB WILSON POIRIER

EDUCATION
• Bachelor of Medical Sciences – Pharmacology
 Western University, 2015
• Master of Science – Physiology and Pharmacology
 Western University, 2016

SCHOLARSHIPS AND AWARDS
• Ontario Graduate Scholarship (OGS), 2015-2016
• Dean’s Honor List, 2014-2015
• Dean’s Honor List, 2013-2014

TEACHING EXPERIENCE
• Teaching Assistant – Physiology 3130Z (September 2015-April 2016)

SEMINARS
• Robarts Molecular Medicine Data Club – “Role of autocrine GABA signalling in
 alveolar macrophage polarization” (April 2015)
• Robarts Molecular Medicine Data Club – “Role of autocrine GABA signalling in
 lung macrophage immune response” (April 2016)

POSTER PRESENTATIONS
• Undergraduate thesis presentation – Summer 2014
• Dept. of Physiology & Pharmacology Research Day, Western University –
 November 2014
• London Health Research Day – April 2015
• Robarts Research Retreat – June 2015
• London Health Research Day – March 2016
• Robarts Research Retreat – June 2016

CONFERENCES
• London-Toronto Lung Research Symposium (September 2015)