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Abstract

In an attempt to identify and classify species based on genetic evidence, we propose a novel

combination of methods to quantify and visualize the interrelationships between thousand of

species. This is possible by using Chaos Game Representation (CGR) of DNA sequences to

compute genomic signatures which we then compare by computing pairwise distances. In the

last step, the original DNA sequences are embedded in a high dimensional space using Multi-

Dimensional Scaling (MDS) before everything is projected on a Euclidean 3D space.

To start with, we apply this method to a mitochondrial DNA dataset from NCBI containing

over 3,000 species. The analysis shows that the oligomer composition of full mtDNA se-

quences can be a source of taxonomic information, suggesting that this method could be used

for unclassified species and taxonomic controversies.

Next, we test the hypothesis that CGR-based genomic signature is preserved along a species’

genome by comparing inter- and intra-genomic signatures of nuclear DNA sequences from six

different organisms, one from each kingdom of life. We also compare six different distances

and we assess their performance using statistical measures. Our results support the existence

of a genomic signature for a species’ genome at the kingdom level.

In addition, we test whether CGR-based genomic signatures originating only from nuclear

DNA can be used to distinguish between closely-related species and we answer in the negative.

To overcome this limitation, we propose the concept of “composite signatures” which combine

information from different types of DNA and we show that they can effectively distinguish

all closely-related species under consideration. We also propose the concept of “assembled

signatures” which, among other advantages, do not require a long contiguous DNA sequence

but can be built from smaller ones consisting of 100-300 base pairs.

Finally, we design an interactive webtool MoDMaps3D for building three-dimensional

Molecular Distance Maps. The user can explore an already existing map or build his/her own

using NCBI’s accession numbers as input. MoDMaps3D is platform independent, written in

Javascript and can run in all major modern browsers.
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Chapter 1

Introduction

Classic alignment-based methods (DNA barcoding [3], Klee diagrams [12], multiple sequence

alignments [11]) have been used extensively for classification and identification of genomic

sequences. Alignment-free methods provide an alternative for this task while having a few

other advantages in terms of speed and applicability. After Karlin et al. suggested in [10] that

k-mer frequencies can play the role of a genomic signature, there was an increasing interest

in the bioinformatics community to further explore and analyze genomic signatures. Jeffrey

in [4, 5] introduced the use of Chaos Game Representation (CGR) of a DNA sequence giving

a visual aspect to its structural properties, while later the study of CGRs was standardized by

Deschavanne et al. in [2, 1].

Our goal is to find a general, universal method of classification based on the structural

composition of genomic DNA. In this thesis, we continue the exploration of genomic signatures

using CGRs and we extend results from other studies which were either qualitative or very

limited in scope. In particular, we investigate whether or not CGR-based signatures can indeed

act as genomic signatures. We also investigate the hypothesis that genomic signatures are

preserved along a species’ genome. Finally, we test the discriminating power of CGRs for

closely related species and we generalize genomic signatures by introducing two new types:

“composite signature” and “assembled signature”.

1



2 Chapter 1. Introduction

Our proposed algorithm consists of three main components. Firstly, Chaos Game Repre-

sentation (CGR) is being used to visualize and quantitatively express the syntactic structure

of a DNA sequence. Secondly, a distance measure is employed to compute distances between

CGRs of different DNA sequences. Notable distances being used in this thesis are Approxi-

mated Information Distance (AID), Structural Similarity Index (SSIM) and Descriptors-based

distance along with classical numerical distances such as Euclidean, Manhattan and Pearson

distance. Finally, Multi-Dimensional Scaling (MDS) is used to reduce the dimensionality and

efficiently embed the datapoints representing DNA sequences into a 2D or 3D Euclidean space,

producing a Molecular Distance Map (MoDMap).

Our research findings are organized in the following way. Chapter 3 contains the article

“Mapping the space of genomic signatures” [9] in which we perform an analysis of a mitochon-

drial (mtDNA) dataset from the National Center for Biotechnology Information (NCBI) ex-

ploring phylogenetic relationships and getting deeper insights on various unclassified spieces.

Results of this extensive analysis confirm that the oligomer composition of full mtDNA se-

quences can be a source of taxonomic information. Chapter 4 contains the article “An investi-

gation into inter- and intragenomic variations of graphic genomic signatures” [7], in which we

test the hypothesis of DNA genomic signatures being preserved along the genome of the same

organism, while being dissimilar for DNA sequences originating from different organisms, at

the kingdom level. We also assess six different distance measures and rank their performance

based on statistical measures. Results suggest that several distances outperform the Euclidean

distance, which has so far been almost exclusively used for such studies. Chapter 5 contains

the article “Additive methods for genomic signatures” [8], in which we test the discriminating

power of conventional CGR signatures of nuclear DNA sequences and we find, unexpectedly,

that they do not suffice for distinguishing closely related species, for example H.sapiens and

P.troglodytes. To overcome these limitations we extend the notion of genomic signature by

proposing the use of composite signature which combines in general information from various

types of DNA. We also propose the notion of assembled signature and we show that it can effi-
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ciently distinguish genomes even using less information than conventional genomic signatures.

Finally, in Chapter 6 we present a web tool to explore, analyze and visualize genomic diversity

on various DNA datasets [6]. The tool is written in JavaScript, is platform independent and can

run in any modern web browser.

We conclude this thesis with Chapter 7, which contains a discussion about possible exten-

sions of current work, including the search for a “representative” genomic signature of a species

and haplogroup identification using human mitochondrial DNA data to track maternal lineage.

Far more challenging tasks include backtracking paternal lineage in the Y chromosome and

testing the ability of this method to distinguish between healthy and unhealthy populations

with large scale mutations.
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Chapter 2

Genomic signatures

This chapter is organized in the following way. Firstly, an extensive literature review of re-

search on genomic signatures is given, presenting a timeline of research in this area. Various

methods and tools that have been used for analyzing DNA sequences are presented. Secondly,

the main methods employed throughout this thesis are presented. We give the definition of

Chaos Game Representation (CGR) of a DNA sequence and its improved version, Frequency

Chaos Game Representation (FCGR), together with an example. We also present various dis-

tance measures to compute distances between CGRs. Finally, we present Multi-Dimensional

Scaling (MDS) which is used for dimensionality reduction in the final stage of our proposed

algorithm.

2.1 Literature review

Deoxyribonucleic Acid (DNA) is a molecule that encodes the genetic instructions used in the

development and functioning of all known living organisms. As such, DNA has become a

subject of both theoretical and applied studies for the last decades. DNA is a polymer of

nucleotides. Nucleotides are the building blocks, or monomers of DNA. Each nucleotide is

made of a phosphate, a deoxyribose sugar and a nitrogen base. The four different nucleotides

of DNA are Adenine (A), Cytosine (C), Guanine (G), Thymine (T). DNA can be single stranded

5



6 Chapter 2. Genomic signatures

or double stranded. In a double stranded DNA, the nucleotides are pairwise complementary, A

is complementary to T, C is complementary to G. With this in mind, we can represent any DNA

sequence as a string over a 4-letter alphabet consisting of letters A,C,G and T. In this thesis,

we use various types of DNA, namely nuclear DNA (nDNA) which is the DNA located in

the nucleus of eukaryotic cells, mitochondrial DNA (mtDNA) which is the DNA located in an

organelle called mitochondrion and is responsible for energy production of the cell, chloroplast

DNA (cpDNA) which is the DNA located in chloroplasts found mainly in land plants and algae,

and plasmid DNA (pDNA) which is the DNA of plasmids mainly found in prokaryotes.

2.1.1 Graphical representations of DNA

After the first successful sequencing method reported by Fred Sanger in 1977 [149], various

methods have been proposed to represent, explore and analyze DNA data. Initial studies pro-

posed simple pictorial representations where each nucleotide is replaced with a specific symbol

to represent it [121], or gap plots which visualize positional correlations and periodic patterns

in a DNA sequence [102]. They were followed by representations of DNA sequences as ran-

dom walks in 2D [121, 54, 124, 102, 118] where a DNA sequence is represented as a curve

in a plane where the four possible moves, left/right and up/down, encode the four nucleotides.

Enhanced versions of the 2D random walk were later proposed, namely the DB-curve which

reduced degeneracy [185], and a modified version which eliminated degeneracy completely

[192, 106]. Another approach, this time in 3D, introduced by Zhang et al. [204], was the

Z-curve which was used to recognize coding protein genes in yeast [203], to build a database

of Z-curves for more than 1000 genomes [202], and to build phylogenetic trees for 24 coro-

noviruses [205]. A variation of Z-curve, the L-curve, was introduced in [110]. 4D curves based

on Z-curves were also introduced in [162].

Applications of random walks to DNA datasets include the construction of phylogenetic

trees for 12 primates using mtDNA and Euclidean distance [109], the construction of a sim-

ilarity matrix between 11 mammals based on the coding sequences of the first exon of the
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β-globin gene using both Euclidean and a custom Cosine distance in [108], and the use of the

Euclidean distance in 3-component vectors in [191]. Other studies perform analysis comput-

ing similarity matrices using random walks, as for example for 8 coding sequences of eukary-

otes to reduce degeneracy of 2D curves [114], 50 β-globin genes and 127 protein kinase C

enzymes to build “moment vectors” [193], 7 mammalian sequences using a custom distance

called “Similar Factor” [75], ND5 proteins from 9 mammals [180], 35 mammalian mtDNA,

33 primate lentiviruses and 30 coronoviruses using Euclidean distance [194], and 35 mammals

using whole mtDNA and Euclidean distance [76]. A Huffman-encoded version of 2D walk for

1-mers for the first exon of β-globin gene from 11 mammals was reported in [141].

Another approach to depict a DNA sequence is using a cell representation. Randic et

al. was one of the first to use this method in order to overcome the problem of arbitrary

assignment of the four nucleotides to symbols. His approach was based on the construction

of a 12-component vector whose components are the leading eigenvalues of the L/L matrices

(length/length) associated with the DNA sequence. This method was used for the first exon of

β-globin region of 11 mammals [145]. Various modifications along with tweaks and optimiza-

tions followed this study [112, 111, 190, 28, 107, 140, 142, 195] working mainly on small sets

(less than 15) of exons of β-globin regions of mammals.

Finally, another visual attempt to represent and analyze DNA sequences was accomplished

with the introduction of two 2D diagrams. These methods, although visually informative do

not always provide quantitative structural insights of the DNA sequences under consideration.

Examples of such studies is in [143] where a 2D diagram is formed in which all “spots” have

integer coordinates and by using only distances between spots having the same x or the same

y coordinate one can construct a “map profile”. This method is applied on DNA sequences

of the first exon of human β-globin. Similarly, in [144] a four-color map representation of

DNA and RNA sequences along with a similarity measure were introduced and illustrated

with the coding sequence of the first exon of the human β-globin gene, and in [207] where a

“ColorSquare” representation is introduced and its efficiency is explored for a set consisting of
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the first exon of β-globin gene for 10 mammals.

Detailed reviews about most of the graphical representations described above can be found

in [147, 125].

2.1.2 k-mer frequency-based methods

Many other tools have been used to perform statistical analysis and explore properties of DNA

sequences in terms of k-mer composition. Philips et al. used Markov Chain of order 3 in

nDNA of E.coli [135], and later the same method was used for nDNA of yeast [10]. Many

studies that followed, suggested possible explanations for asymetric k-mer frequencies among

which are that scarcity of CG in nDNA may reflect a requirement for mRNA stability [15], that

scarcity of GATC in enterobacteriophages may be a result of the methyl-directed mismatch

repair system [39], that scarcity of 4-mer and 6-mer palindromes in bacteria and bacterio-

phages may be because of restriction/methylation regimes, recombination and transcription

processes [91], that changes in 4-mer frequencies in nDNA of E.coli may have been altered

by “Very Short Patch” repair process [16], that excess/scarcity of some 2, 3, 4-mers in gDNA,

mtDNA and virusDNA may be due to DNA/RNA structure and regulatory mechanisms [25],

that excess/scarcity of some 2, 3, 4-mers in phages, animal mtDNA, bacteria nDNA, vertebrate

nDNA and chloroplasts cpDNA may be because of DNA structures (dinucleotide stacking

energies, DNA curvature and superhelicity, nucleosome organization), context-dependent mu-

tational events, methylation effects and processes of replication and repair [94, 90, 95] and that

scarcity of 4, 5, 6-mer palindromes in bacterial and archaeal nDNA may be due to restriction

enzymes [55].

Based on these observations, Karlin and Burge suggested, in [90], that k-mer frequency

can play the role of a genomic signature and since then, k-mer frequencies have been widely

used as a means to compare genomic sequences. Dinucleotide Relative Abundance Profiles

(DRAP) were proposed by Burge et al. to explore evolutionary relationships using 2-mers

[25]. Relative Abundance Profiles for various k-mer lengths (k = 2, 3, 4) were used extensively



2.1. Literature review 9

along with Manhattan and/or Mahalanobis distance for analyzing DNA datasets such as 19

eukaryotes [93], E. coli and phage nDNA [94], nDNA from 51 prokaryotes and cpDNA from

11 plants [89], prokaryote nDNA, pDNA and mtDNA sequences [26], 504 bacterial pDNA

and 230 nDNA [160], nDNA from 50 microbes [19], eukaryote nDNA [56], nDNA from 22

different species [83], and HIV-1 genomes from different years [131]. Dinucleotide Relative

Abundance Profiles were later generalized to tetranucleotides (4-mers) and used to classify 27

microbial nDNA sequences [136], and to study inter-genomic distances among 636 prokaryotes

[20].

As researchers started using frequency vectors of longer k-mers of lengths ranging from

k = 4 to k = 8 the applications of this method became apparent. In the majority of these

studies weighted or standardized Euclidean distance have been used, or slightly modified ver-

sions of them [68, 182, 183]. Typical examples include building phylogenetic trees from

nDNA sequences of 8 amniotes [152], 20 mammalian mtDNA sequences and 48 Hepatitis

E genomes [32], and RAG1 genes from 46 vertebrates, 18S rRNA sequences from 93 plants

and nDNA from 16 proteobacteria [27].

Based on k-mer vectors, more sophisticated approaches were used over time. Blaisdell

et al. in [18] used Euclidean distance between k-mer frequencies as “multiplet distribution

distance” and counting of bases not occurring in significantly long common words as “comple-

ments of long words” to generate trees for mammalian α and β globin genes. A method used in

stochastic processes, “Return Time Distribution”, was used to build a phylogenetic tree from

100 sets of Flaviridae nDNA in [96]. In the context of DNA sequences, the return time is the

number of nucleotides in between the reappearance of a particular nucleotide. Moreover, com-

paring sorted k-mer frequency vectors was later proposed in [189] and was tested in construct-

ing phylogenies for 48 Hepatitis E genomes and 42 HIV-1 genomes, while in [132] machine

learning methods were employed to “learn” a distance for classifying more than 1,000 micro-

bial sequences. Jensen-Shannon distance between k-mer vectors for some specifically selected

k-mers, named “feature frequency profiles”, was proposed in [153] and used for producing
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phylogenetic trees from intron sequences of 10 mammals. The same technique was used also

in [181] for 142 dsDNA eukaryote viruses, in [154] for 36 nDNA sequences taken from E. coli

and some Shigella species, in [100] for 27 primate mtDNA and 13 Malvidae/plant nDNA, in

[167] for 377 H.pylori genomes, and a webtool based on this was build in [74]. Using vectors

of k-mer occurrences one can also use the number of k-word matches as a distance between two

sequences. This distance which is usually denoted by D2 is equivalent to the dot product of the

k-mer occurrence vectors [113]. A variation of this, that considers up to t mismatches, is de-

noted by Dt
2 [24], while also some standardized and weighted versions exist [86, 146, 115, 14].

Many studies exist that study the statistical distribution properties [113, 24, 49, 48, 146, 84]

and statistical power [173, 115, 157] of these distances. Such distances have been used for

comparison of regulatory sequences [86] and for construction of phylogenetic trees for nDNA

of 5 mammals and 13 tree species from NGS reads [157]. A few other studies used methods

derived from k-mer vectors and usually mixed with custom distance measures. An example

of such a method is the “discrimination measure” introduced in [46], which uses primitive

discrimination substrings and was illustrated for 10 mammalian whole β-globin and 24 coro-

naviruses. Another example is the “natural vectors” introduced in [35], which are based on

normalized central moments and were tested with 51 influenza viruses, 99 human rhinovirus

and 31 mammalian mtDNA. One more example is the “underlying approach” in [31], which

is based on subword composition and tested with 54 H1N1 viruses, 18 prokaryote nDNA and

5 Plasmodium nDNA. Finally, a last example is the entropy of Gamma distribution in [188],

which is based on a k-mer voting model and was presented and tested with 30 mammalian

mtDNA.

The range of applications of k-mer vectors is far from being limited to DNA. A significant

number of studies also focuses on using k-mer vectors for peptide sequences. A widely used

method named CVTree [61] constructs phylogenetic trees using cosine distance between “com-

position vectors”. Applications of this method with minor variations, using values of k = 5 or

6 include building phylogenies for protein transcripts of over 80 archaea and bacteria nDNA
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sequences [61], 442 proteins of 34 mammals [158], 21 plant chloroplasts together with several

eubacteria, archaea, and eukaryote sequences [29], 139 prokaryotes [137], 16 archaea, 87 bac-

teria, and 6 eukaryotes [138], 124 dsDNA viruses [51], 82 fungi [174] and 109 eukaryotes, 34

plant chloroplasts and 62 alpha-proteobacteria [201]. Successful applications of k-mer vectors

have also been reported in metagenomics for the classification of bacterial nDNA fragments

from different species [148, 164]. In addition to this, k-mer vectors have been used along with

Self-Organizing Maps (SOM), in order to classify hundreds of thousands of short prokaryote

sequences into different phylogenetic groups in [3, 2, 120] and for various Drosophila genomes

in [1]. Other applications of k-mer frequencies include detection of horizontal transfers [79].

Efficient algorithms for parallel counting of k-mers have been developed as well [119]. Logic

Alignment Free (LAF) was also introduced and applied to bacterial genomes in [179]. LAF

combines alignment-free techniques and rule-based classification to assign biological samples

to their taxa, by searching for a minimal subset of k-mers whose relative frequencies are used

to build classification models as disjunctive-normal-form logic formulas. Finally, other studies

transform the problem of classifying DNA sequences based on k-mer frequencies into classi-

fying signals coming out of those. Initial studies analyzed small sets of genes [9], while later

whole genome comparison using genomic signals was tested for eukaryotes in [155] and for

prokaryotes in [151].

Many of the distances described for k-mer vectors have been compared and benchmarked

in [184, 73, 72, 33, 34, 58, 80, 63], and detailed reviews of the literature can be found in [92,

169, 123, 21, 150, 156].

2.1.3 Other representations of DNA sequences

Apart from the above representations which have been studied in depth, there is a number of

studies which used different approaches to analyze and compare DNA sequences. Markov

models have been used to cluster about 30 coding nDNA sequences in [17] and to explore

within-sequence variations for animal mtDNA and some viruses in [30]. A distance between
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Markov models was used to build phylogenetic trees for genes of E.coli and S.flexneri in [134],

while a “weighted relative entropy” between Markov models was used to build phylogenies of

48 Hepatitis E viruses.

A few other studies focus on the multifractal analysis of the “measure representation” of

DNA sequences, and were applied to bacterial nDNA in [197] and bacteria whole peptide

transcript in [198]. Multifractal analysis has also been applied to exon and intron sequences

[186] and to the human genome [53, 122]. Many statistical properties have been investigated in

[159], and a fractal model to simulate phylogenetic relationships has been proposed in [199].

Some other studies perform Lempel-Ziv complexity-based analysis of DNA, where dis-

tance measures are defined based on complexity measures of the sequences analyzed. Such

methods were used to build phylogenies for 30 mammalian mtDNA in [127] using 4 distances

based on Lempel-Ziv complexity, for Candida cytochrome b and 18S rRNA for some medically

relevant Fungi in [12], for 26 placental mammal mtDNA in [104], for the first exon of β-globin

gene for 10 mammals together wth 12 H5N1 genomes in [114], for various protein datasets

in [4], for 48 Hepatitis E viruses and 18 mammal mtDNA in [78], for 38 mammal mtDNA

in [175] and for 16 rRNA ITS region of Galanthus plants in [11]. Various modifications of

complexity-based distances have been defined also in [97, 47].

Another type of studies focus on the average length of the longest common substrings (and

various modifications of it) in order to extract information for a set of sequences. In [166]

authors use a custom distance measure between sequences which is related to information-

theoretic tools (KullbackLeibler relative entropy) and use it to construct phylogenies for 34

mammal mtDNA, 191 proteomes and many ssRNA viruses. A generalization of this method

also exists, that considers the average length of the longest common substrings with k mis-

matches, and was illustrated for 27 primate mtDNA and 32 Roseobacter nDNA in [101].

Guyon et al. proposed an evolutionary distance on maximal unique matches between sequences

and applied that to Gammaproteobacteria [59]. Similar to this idea is the use of the number

of substitutions and/or mismatches per site. In [65] an estimator of the number of substitu-
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tions was derived and used for 27 primate mtDNA, 8 Streptococcus agalactiae strains and 12

Drosophila nDNA to compare the results against three other measures, while in [42] a faster

version of [65] was reported and illustrated for 825 HIV-1 strains and 13 E.coli strains. A sim-

ilar estimator, this time for pairwise mismatches, was presented in [66] for 37 D.melanogaster

strains, and an improvement of it in [64] for 21 Drosophila species.

Various other representations combined with custom distances have been used in literature

to analyze DNA datasets. A “Standardized Hasse” distance between Hasse matrices, based on

partial ordering rules, was used for the first exon of β-globin genes from 8 mammals in [165].

Pattern-comparison based on linear predictive coding and its spectral distortion measure was

used to classify genes from E.coli and S.flexneri in [133]. The Euclidean distance between 16-

dimensional vectors, called “base-base correlations”, were used for 48 Hepatitis E viruses and

many prokaryote nDNA in [116] and for many coronoviruses in [117]. The Pearson distance

between “average mutual information” profiles was used for classifying HIV-1 genomes by

subtype in [13], and the Euclidean distance between information correlation matrices like [13]

was tested for 218 dsDNA viruses in [52]. Finally, adjacency matrices of weighted digraphs

were used with Euclidean, Cosine and Pearson distance for mtDNA genes of 12 primates in

[139], the difference in free energy of nearest-neighbour interaction was presented in [206],

Fourier transforms were proposed as a genomic signal processing distance and tested for 26

eukaryote 18S rRNA in [23], and “variable length local decoding” based on prefix codes was

illustrated for 117 Hepatitis C viruses in [41].

2.2 Methods

2.2.1 Chaos Game Representation (CGR)

Chaos Game Representation (CGR) of a DNA sequence is a graphical representation of a

sequence. Visual patterns produced in a CGR image depict the distribution of frequencies of all

k-mers in the sequence. Originally proposed by Jeffrey, [81, 82], as a means of visual inspection
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of DNA sequences, CGRs were initially used to analyze DNA sequences qualitatively [99, 69,

70, 60]. This led to the hypothesis expressed by Dutta et al. and Goldman, that CGR images

represent no more information than second-order Markov chains [44, 57]. This hypothesis was

later disproven by Almeida et al. [6, 5] and others [176, 88]. Deschavanne et al. [38, 37] were

the first to suggest that CGR is a good candidate for the role of genomic signature. The way

a CGR of a DNA sequence is produced is as follows. Starting with a unit square with its four

vertices labelled A, C, G, and T, clockwise starting from the bottom-left corner, we plot the

very first point in the center of the square. We then read the sequence from left to rigth letter

by letter, until the end of the sequence. For each letter being read, we plot a point in the middle

of the segment connecting our currently drawn point and the vertex labelled with the letter we

just read. An example demonstrating the procedure of plotting a CGR for a DNA sequence can

be found in Figure 2.1. A set of various CGR plots can be found in Figure 2.3.

It turned out however, that representing a DNA sequence as a set of points being plotted in a

unit square has its own limitations in terms of resolution and computer precision. This problem

was later solved by Deschavanne et al. suggesting Frequency CGR (FCGR) as an extension of

conventional CGR, where unit squares are in fact matrices of dimensions 2k × 2k, where k is

the resolution of FGCR. Each matrix entry represents the number of occurrences of a specific

substring of length k in the original sequence. This way, FCGR can quantitatively express the

structure and complexity of a DNA sequence as it contains the frequencies all k-mers of length

up to a certain length k. An example of FCGR plot can be found in Figure 2.2.

CGR has been used extensively in literature as the main or as a complementary tool for

analyzing DNA sequences. Initially, CGR was used to build phylogenetic trees for vari-

ous datasets, using commonly-used distance measures. Notable examples of these are the

use of nDNA fragments from various domains [38], 125 nDNA fragments from several bird

genomes [45], 27 genomes from various genera [37], 26 mtDNA sequences [176], 4 bacteria

and about 200 phages [36], 75 HIV-1 genomes [130], 10 mtDNA sequences and 14 nDNA

sequences from plants in the Brassicales order [62]. In later years, other distances have been
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Figure 2.1: The Chaos Game Representation (CGR) of the DNA sequence ACGCTG.
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Figure 2.2: The Frequency Chaos Game Representation (FCGR) of the sequence ACGCTGC,
for k = 2. The first k − 1 (here 2 − 1 = 1) points do not alter the FCGR matrix.
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used, some of which proving to perform better that those typically used. Pearson distance,

along with a custom image distance have been used in [176] for 26 mtDNA sequences, DSSIM

image distance has been used for over 3,000 mtDNA sequences in [88], and six different dis-

tances have been used in [87] for nDNA fragments from organisms of all major kingdoms of

life.

Other uses of CGRs have been reported in the literature as well. Deschavanne et al. in

[40] used CGRs to classify functional families of proteins using reverse encoding of amino

acids into nucleic sequences. An extension of CGR called Universal Sequence Map (USM)

has been reported in [7, 8], which can be used for any size of alphabet. A three-dimensional

CGR has been proposed in [163]. CGRs have also been used in studies to measure the degree

of self-similarity within images (multifractal analysis) e.g., [196, 178, 50, 168, 122, 129, 128],

to estimate sequence entropy [126, 170, 171], to detect horizontal transfers in prokaryotes

in [43], to speed up local-alignment algorithms [85], to classify HPV genomes by genotype

(together with Neural Networks) in [161], to propose a Recurrent Iterated Function Systems

(RIFS) model tested in 50 eukaryotes in [200], to construct CGRs of multiple resolutions (in

combination with Neural Networks) in [77] and to refactor foundational string problems using

CGR-based algorithms in [172]. Protein sequence analysis using modified CGR and physico-

chemical properties has been studied in [187].

2.2.2 Distance Measures

In this thesis, there are six distance measures being used and here we give the definition and a

short description for each one of them. All of the distances are being applied to CGRs/FCGRs,

that is, to 2k × 2k matrices with non-negative integers entries. Let X = [xi j],Y = [yi j] with

i, j = 1, 2, . . . 2k be matrices with non negative integer values, that is X,Y ∈ Z2k×2k

≥0 . In order

to compute the Euclidean, Manhattan and Pearson distances, we first convert the matrices

X,Y ∈ Z2k×2k

≥0 into 1 × 4k vectors. Now, for two vectors x, y ∈ Rn, their Euclidean distance

dE(x, y) and their Manhattan distance dM(x, y) are computed as
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(a) E. coli (b) S. cerevisiae (c) A. thaliana

(d) P. falciparum (e) P. furiosus (f) H. sapiens

Figure 2.3: Chaos Game Representation (CGR) of nDNA fragments from E. coli, S. cerevisiae,
A. thaliana, P. falciparum, P. furiosus and H. sapiens.
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dE(x, y) =

√√
n∑

i=1

(xi − yi)2,

dM(x, y) =

n∑
i=1

|xi − yi|,

while their Pearson distance dP(x, y) is defined as

dP(x, y) = 1 −
σxy

σxσy
,

where

µx =
1
n

n∑
i=1

xi , σx =

√√
1

n − 1

n∑
i=1

(xi − µx)2,

σxy =
1

n − 1

n∑
i=1

(xi − µx)(yi − µy).

In general, σxy

σxσy
ranges in the interval [−1, 1], and as a result the Pearson distance ranges in the

interval [0, 2]. Euclidean and Manhattan distances are metrics (they are non-negative, symmet-

ric and satisfy the triangle inequality). Pearson distance is not a metric.

Also, we define Approximated Information Distance dAID based on the Information Dis-

tance defined in [105]. The Normalized Information Distance in [105] was based on the un-

computable notion of Kolmogorov complexity. Using k-mers, the information distance be-

tween two strings x, y was defined as

d(x, y) =
Nk(x|y) + Nk(y|x)

Nk(xy)

with

Nk(x|y) = Nk(xy) − Nk(x)

where Nk(x) is the number of different, possibly overlapping, k-mers that occur in x.

The Approximated Information Distance (AID) for X,Y ∈ Z2k×2k

≥0 is a modification of the



20 Chapter 2. Genomic signatures

previous distance, and is defined as

dAID(X,Y) = 2 −
f (X) + f (Y)

f (X + Y)

where f (X) = SumOfElements(Unitize(X)). By unitization of a matrix X we mean that every

non-zero entry becomes 1, while zeros remain 0. The reason behind this modification was that

we wanted to avoid counting possible “extra” k-mers that are produced by the concatenation of

two strings x and y. This way, we are also guaranteed that

dAID(X,Y) = dAID(Y, X)

and

dAID(X, X) = 0

which are properties that were not present before. Approximated Information Distance is a

metric.

The descriptor distance between two FCGRs X,Y ∈ Z2k×2k

≥0 aims to compare properties

of the two given FCGRs of different scales. A descriptor is a vector characterized by the

parameters m which is the size of the non-overlapping windows in which the FCGR is divided,

r which is the number of intervals in the analysis, and r intervals which define the numbers of

k-mer occurrences that are considered significant.

For given m ≤ k and r, and intervals [a0, a1), [a1, a2), · · · , [ar−1, ar) such that
⋃r−1

i=0 [ai, ai+1) =

[0,∞) and [ai, ai+1) ∩ [a j, a j+1) = ∅ ∀i, j with i , j, we construct a descriptor in the follow-

ing way. Firstly, we divide each of the two FCGR matrices X and Y into non-overlapping

submatrices of size 2m × 2m, resulting in 4k−m submatrices Xi j and Yi j with i, j = 1, · · · , 2k−m,

which will be pairwise compared. Secondly, we compute for every Xi j a vector vecXi j =

1
(2m×2m) (b1, b2, · · · , br) where bi = |{x ∈ Xi j : ai−1 ≤ x < ai}|. The same procedure is performed

for Yi j, resulting in the vector vecYi j. Thirdly, we append all vectors vecXi j to form a new
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vector vecXm,r and, using the same order of appending, we append all vectors vecYi j to form

a new vector vecYm,r. For these parameter values of m, r and the r chosen intervals, vecXm,r

and vecYm,r are the “descriptors” of the FCGR matrices X and Y . Finally, we can combine

descriptors vecXm,r (respectively vecYm,r) for several values of m and r by appending them one

after another, in the same order, to obtain the vector vecX (respectively vecY). The descriptor

distance between the two FCGRs X and Y is now defined as the Euclidean distance (and as a

result is a metric) between the vectors vecX and vecY

dD(X,Y) = dE(vecX, vecY).

Finally, another distance measure being used in this thesis is derived from the Structural

Similarity Index, SSIM, which was introduced in [177] for the purpose of assessing the degree

of similarity between two images. Given two images X,Y as n × n matrices, SSIM computes

the luminance, contrast and structure of these images and combines them to obtain a similarity

value. However, instead of computing a global similarity between the two images, each image

is divided into 11×11 sliding square windows which move pixel by pixel to eventually cover the

entire image. The SSIM similarity of any given pair of images is then computed by comparing

their corresponding square windows. In theory, SSIM values range in the interval [−1, 1] with

the similarity being 1 between two identical images, 0, for example, between a black image

and a white image, and −1 if the two images are negatively correlated. To compute the distance

rather than the similarity between two images, we calculate DSSIM(X,Y) = 1-SSIM(X,Y) and

therefore the range of DSSIM is the interval [0, 2]. DSSIM is not a metric since it does not

satisfy the triangle inequality. An example of the SSIM similarity measure being applied to a

set of 6 images is depicted in Figure 2.4.



22 Chapter 2. Genomic signatures

Figure 2.4: An example of computing SSIM similarity values for a set of 6 images. Upper
left corner is the original image, hence similarity value is equal to 1. The rest of the images
have various pixel values changed, blurred and distorted. The similarity between these im-
ages and the original image decreases. This example is part of the examples demonstrated in
https://ece.uwaterloo.ca/ z70wang/research/ssim/

https://ece.uwaterloo.ca/~z70wang/research/ssim/
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2.2.3 Multi-Dimensional Scaling (MDS)

Multi-Dimensional Scaling (MDS) is a statistical method [98] that has been used to visual-

ize the degree of similarity between individual objects in a given dataset. MDS has been

used extensively in various fields such as cognitive science, information science, psychomet-

rics, marketing, ecology, social science, and other areas of study [22]. Applications of MDS

to molecular biology studies can be found in [103] where it was used for the analysis of geo-

graphic genetic distributions of some natural populations, in [67] where it was used to visualize

distances among COI genes from various species, and in [71] where it was used to analyze and

visualize relationships within collections of phylogenetic trees.

Given two points a, b in the r-dimensional Euclidean space we can directly compute their

Euclidean distance as d(a, b) =
√∑r

i=1(ai − bi)2. MDS tries to solve the inverse problem.

Given all the pairwise distances di j (i, j = 1, · · · , n) between n objects, it tries to determine a

set of vectors (that is, a set of points in the r-dimensional space) that have these distances as

their distances. MDS finds a set of points in the r-dimensional Euclidean space such that the

Euclidean distance between two objects is similar to the distances between the corresponding

objects in the input distance matrix di j.

More precisely, classical MDS, receives as input an n × n distance matrix (∆(i, j))1≤i, j≤n of

the pairwise distances between any two items in the set. MDS will return n points p1, p2, . . . , pn ∈

Rr such that d(i, j) = ||pi − p j|| ≈ f (∆(i, j)) for all i, j ∈ {1, . . . , n} where d(i, j) is the spatial

distance between the points pi and p j, and f is a function linear in ∆(i, j). The value of r can

be at most n− 1, while in most of the cases the value of either r = 2 or r = 3 is used to produce

a visualization in 2D or 3D space, respectively.

A relatively simple example of MDS can be seen in Figure 2.5. The red points represent

10 big cities in North America. A 10 × 10 distance matrix D = [di j] (i, j = 1, · · · , 10) was

formed where the di j element of this matrix was the distance in kilometers between the i-th

and j-th city. D = [di j] was the input to MDS, and the output (taken for r = 2 dimensions) is

the set of blue points. We can see that blue points, although not identically placed as the red
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points, approximate fairly well the topology of the red points. Some misplacement of points

is expected because of measurement errors, mainly because roads connecting cities are not

straight lines and because the Earth is not flat.

Figure 2.5: Multi-Dimensional Scaling (MDS) example. The red points are the real positions
of 10 big cities in North America. The blue points are the positions of these cities as output of
MDS.
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[79] K. Jaron, J. Moravec, and N. Martı́nková. Sighunt: horizontal gene transfer finder opti-

mized for eukaryotic genomes. Bioinformatics, 30(8):1081–1086, 2014.

[80] R. Jayalakshmi, R. Natarajan, M. Vivekanandan, and G. Natarajan. Alignment-free

sequence comparison using N-dimensional similarity space. Current Computer-Aided

Drug Design, 6(4):290–296, 2010.

[81] H. Jeffrey. Chaos game representation of gene structure. Nucleic Acids Research,

18(8):2163–2170, 1990.

[82] H. Jeffrey. Chaos game visualization of sequences. Computers & Graphics, 16(1):25–

33, 1992.



34 Chapter 2. Genomic signatures

[83] R. Jernigan and R. Baran. Pervasive properties of the genomic signature. BMC Ge-

nomics, 3(1):23, 2002.

[84] J. Jing, C. Burden, S. Forêt, and S. Wilson. Statistical considerations underpinning an

alignment-free sequence comparison method. Journal of the Korean Statistical Society,

39(3):325–335, 2010.

[85] J. Joseph and R. Sasikumar. Chaos game representation for comparison of whole

genomes. BMC Bioinformatics, 7:243, 2006.

[86] M. Kantorovitz, G. Robinson, and S. Sinha. A statistical method for alignment-free

comparison of regulatory sequences. Bioinformatics, 23(13):i249–i255, 2007.

[87] R. Karamichalis, L. Kari, S. Konstantinidis, and S. Kopecki. An investigation into

inter- and intragenomic variations of graphic genomic signatures. BMC Bioinformat-

ics, 16:246, 2015.

[88] L. Kari, K. Hill, A. Sayem, R. Karamichalis, N. Bryans, K. Davis, and N. Dattani.

Mapping the space of genomic signatures. PloS ONE, 10(5):e0119815, 2015.

[89] S. Karlin. Global dinucleotide signatures and analysis of genomic heterogeneity. Cur-

rent Opinion in Microbiology, 1(5):598–610, 1998.

[90] S. Karlin and C. Burge. Dinucleotide relative abundance extremes: a genomic signature.

Trends in Genetics, 11(7):283–290, 1995.

[91] S. Karlin, C. Burge, and A. Campbell. Statistical analyses of counts and distributions of

restriction sites in DNA sequences. Nucleic Acids Research, 20(6):1363–1370, 1992.
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[119] G. Marçais and C. Kingsford. A fast, lock-free approach for efficient parallel counting

of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

[120] C. Martin, N. Diaz, J. Ontrup, and T. Nattkemper. Hyperbolic SOM-based clustering of

DNA fragment features for taxonomic visualization and classification. Bioinformatics,

24(14):1568–1574, 2008.

[121] E. Mizraji and J. Ninio. Graphical coding of nucleic acid sequences. Biochimie,

67(5):445–448, 1985.



38 Chapter 2. Genomic signatures
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Chapter 3

Mapping the space of genomic signatures1

3.1 Introduction

Even though every year biologists discover and classify thousands of new species, it is esti-

mated that as many as 86% of existing species on Earth and 91% of species in the oceans have

not yet been classified and catalogued, [1]. In the absence of a universal quantitative method

to identify species’ relationships, information for species classification has to be gleaned and

combined from several sources, e.g., morphological, sequence-alignment-based phylogenetic

anaylsis, and non-alignment-based molecular information.

We propose a computational process that outputs, for any given dataset of DNA sequences,

a concurrent display of the structural similarities among all sequences in the dataset. This

is obtained by first computing an “image distance” for each pair of graphical representations

of DNA sequences, and then visualizing the resulting interrelationships in a two-dimensional

plane. The result of applying this method to a collection of DNA sequences is an easily inter-

pretable Molecular Distance Map wherein sequences are represented by points in a common

Euclidean plane, and the spatial distance between any two points reflects the differences in

their subsequence composition.

1A version of this chapter was published (L. Kari, K. Hill, A. Sayem, R. Karamichalis, N. Bryans, K. Davis,
N. Dattani, “Mapping the space of genomic signatures”, PLoS One 10(5): e0119815 (2015))

48



3.1. Introduction 49

The graphical representation we use is Chaos Game Representation (CGR) of DNA se-

quences, [2, 3], that simultaneously displays all subsequence frequencies of a given DNA

sequence as a visual pattern. CGR has a remarkable ability to differentiate between genetic

sequences belonging to different species, and has thus been proposed as a genomic signature.

Due to this characteristic, a Molecular Distance Map of a collection of genetic sequences may

allow inferrences of relationships between the corresponding species.

Concretely, to compute and visually display relationships within a given set S = {s1, s2, ..., sn}

of n DNA sequences, we propose a computational process that uses:

(i) Chaos Game Representation (CGR), to graphically represent all subsequences of a DNA

sequence si, 1 ≤ i ≤ n, as pixels of one image, denoted by ci;

(ii) Structural Dissimilarity Index (DSSIM), an “image-distance” measure, to compute the

pairwise distances ∆(i, j), 1 ≤ i, j ≤ n, for each pair of CGR images (ci, c j), and to produce a

distance matrix;

(iii) Multi-Dimensional Scaling (MDS), an information visualization technique that takes

as input the distance matrix and outputs a Molecular Distance Map in 2D, wherein each plotted

point pi with coordinates (xi, yi) represents the DNA sequence si whose CGR image is ci. The

position of the point pi in the map, relative to all the other points p j, reflects the distances

between the DNA sequence si and the other DNA sequences s j in the dataset.

We apply this method to analyze and visualize several different taxonomic subsets of a

dataset of 3,176 complete mtDNA sequences: phylum Vertebrata, (super)kingdom Protista,

classes Amphibia-Insecta-Mammalia, class Amphibia only, and order Primates. We illustrate

the usability of this approach by discussing, e.g., the placement of the genus Polypterus within

phylum Vertebrata, of the unclassified organism Haemoproteus sp. jb1.JA27 within the (su-

per)kingdom Protista, and the placement of the family Tarsiidae within the order Primates. We

also provide an interactive web tool, MoD Map (Molecular Distance Map), that allows an in-

depth exploration of all Molecular Distance Maps in the paper, complete with zoom-in features,

search options, and easily accessible additional information for each sequence-representing
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point (called hereafter sequence-point).

Overall, this method groups mtDNA sequences in correct taxonomic groups, from the king-

dom level down to the order and family level. These results are of interest both because of the

size of the dataset and because this information was extracted from DNA sequences that nor-

mally would not be considered in alignment-based comparison methods. Our analysis confirms

that sequence composition (presence or absence of oligomers) contains taxonomic information

that could be relevant to species identification, taxonomic classification, and identification of

large evolutionary lineages. Last but not least, the appeal of this method lies in its simplicity,

robustness, and generality, whereby exactly the same measuring tape can automatically yield

meaningful measurements between non-specific DNA sequences of species as distant as those

of the anatomically modern human and a cucumber, and as close as those of the anatomically

modern human and the Neanderthal.

3.2 Methods

A CGR [2, 3] associates an image to each DNA sequence as follows. Begin with a unit square

with corners labelled A, C, G, and T, clockwise starting from the bottom-left corner. The first

point of any CGR plot is the center of the square. To plot the CGR corresponding to a given

DNA sequence, start reading the letters of the sequence from left to right, one by one. The point

corresponding to the first letter is the point plotted in the middle of the segment determined by

the center of the square and the corner labelled by the first letter. For example, if the center

of the square is labelled “O” and the first letter of the sequence is “A”, then the point of the

plot corresponding to the first “A” is the point situated halfway between O and the corner A.

Subsequent letters are plotted iteratively as the middle point between the previously-drawn-

point and the corner labelled by the letter currently being read.

CGR images of genetic DNA sequences originating from various species show rich fractal

patterns containing various motifs such as squares, parallel lines, rectangles, triangles and di-
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agonal crosses, see, e.g., Figure 3.1. CGRs of genomic DNA sequences have been shown to be

genome- and species-specific, [2, 3, 4, 5, 6, 7, 8]. Thus, sequences chosen from each genome

as a basis for computing “distances” between genomes do not need to have any relation with

one another from the point of view of their position or information content. In addition, this

graphical representation facilitates easy visual recognition of global string-usage character-

istics: Prominent diagonals indicate purine or pyrimidine runs, sparseness in the upper half

indicates low G+C content, etc., see for example [6].

Figure 3.1: CGR images for three DNA sequences. (a) Homo sapiens sapiens mtDNA,
16,569 bp; (b) Homo sapiens sapiens chromosome 11, beta-globin region, 73,308 bp; (c)
Polypterus endlicherii (fish) mtDNA, 16,632 bp. Observe that chromosomal and mitochondrial
DNA from the same species can display different patterns, and also that mtDNA of different
species may display visually similar patterns that are however sufficiently different as to be
computationally distinguishable.

If the generated CGR image has a resolution of 2k × 2k pixels, then every pixel represents a

distinct DNA subsequence of length k: A pixel is black if the subsequence it represents occurs

in the DNA sequence, otherwise it is white. In this paper, for the CGR images of all 3,176

complete mtDNA sequences in our dataset, we used the value k = 9, that is, occurrences of

subsequences of lengths up to 9 were being taken into consideration. In general, a length of

DNA sequence of about 4,000 bp is necessary to obtain a well-defined CGR, but a length of

2,000 bp can sometimes give a good approximation, [2]. In our case, we used the full length of
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all analyzed mtDNA sequences, which ranged from 288 bp to 1,555,935 bp, with an average

of 28,000 bp.

Other visualizations of genetic data include the 2D rectangular walk [9] and methods simi-

lar to it in [10, 11], vector walk [12], cell [13], vertical vector [14], Huffman coding [15], and

colorsquare [16] methods. Three-dimensional representations of DNA sequences include the

tetrahedron [17], 3D-vector [18], and trinucleotide curve [19] methods. Among these visual-

ization methods, CGR images arguably provide the most immediately comprehensible “signa-

ture” of a DNA sequence and a desirable genome-specificity, [2, 7]. In addition, the images

produced using CGR are easy to compare, visually and computationally. Coloured versions of

CGR, wherein the colour of a point corresponds to the frequency of the corresponding oligomer

in the given DNA sequence (from red for high frequency, to blue for no occurrences) have also

been proposed [20, 21].

Note that other alignment-free methods have been used for phylogenetic analysis of DNA

strings, such as computing the Euclidean distance between frequencies of k-mers (k ≤ 5) for

the analysis of 125 GenBank DNA sequences from 20 bird species and the American alligator,

[22]. Another study, [23], analyzed 459 dsDNA bacteriophage genomes and compared them

with their host genomes to infer host-phage relationships, by computing Euclidean distances

between frequencies of k-mers for k = 4. In [24], 75 complete HIV genome sequences were

compared using the Euclidean distance between frequencies of 6-mers (k = 6), in order to

group them into subtypes. In [25], 27 microbial genomes were analyzed to find implications

of 4-mer frequencies (k = 4) on their evolutionary relationships. In [26], 20 mammalian

complete mtDNA sequences were analyzed using a so-called “similarity metric”. Our method

uses a larger dataset (3,176 complete mtDNA sequences), an “image distance” measure that

was designed to capture structural similarities between images, as well as a value of k = 9.

Structural Similarity (SSIM) index is an image similarity index used in the context of im-

age processing and computer vision to compare two images from the point of view of their

structural similarities [27]. SSIM combines three parameters - luminance distortion, contrast
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distortion, and linear correlation - and was designed to perform similarly to the human visual

system, which is highly adapted to extract structural information. Originally, SSIM was de-

fined as a similarity measure s(A, B) whose theoretical range between two images A and B is

[−1, 1] where a high value amounts to close relatedness. We use a related DSSIM distance

∆(A, B) = 1 − s(A, B) ∈ [0, 2], with the distance being 0 between two identical images, 1 for

example between a black image and a white image, and 2 if the two images are negatively cor-

related, that is, ∆(A, B) = 2 if and only if every pixel of image A has the inverted value of the

corresponding pixel in image B while both images have the same luminance (brightness). For

our particular dataset of genetic CGR images, almost all (over 5 million) distances are between

0 and 1, with only half a dozen exceptions of distances between 1 and 1.0033.

MDS has been used for the visualization of data relatedness based on distance matrices

in various fields such as cognitive science, information science, psychometrics, marketing,

ecology, social science, and other areas of study [28]. MDS takes as input a distance matrix

containing the pairwise distances between n given items and outputs a two-dimensional map

wherein each item is represented by a point, and the spatial distances between points reflect

the distances between the corresponding items in the distance matrix. Notable examples of

molecular biology studies that used MDS are [29] (where it was used for the analysis of geo-

graphic genetic distributions of some natural populations), [30] (where it was used to provide a

graphical summary of the distances among CO1 genes from various species), and [31] (where

it was used to analyze and visualize relationships within collections of phylogenetic trees).

Classical MDS, which we use in this paper, receives as input an n × n distance matrix

(∆(i, j))1≤i, j≤n of the pairwise distances between any two items in the set. The output of classical

MDS consists of n points in a q-dimensional space whose pairwise spatial (Euclidean) distances

are a linear function of the distances between the corresponding items in the input distance

matrix. More precisely, MDS will return n points p1, p2, . . . , pn ∈ R
q such that d(i, j) = ||pi −

p j|| ≈ f (∆(i, j)) for all i, j ∈ {1, . . . , n} where d(i, j) is the spatial distance between the points

pi and p j, and f is a function linear in ∆(i, j). Here, q can be at most n − 1 and the points
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are recovered from the eigenvalues and eigenvectors of the input n × n distance matrix. If we

choose q = 2 (respectively q = 3), the result of classical MDS is an approximation of the

original (n − 1)-dimensional space as a two- (respectively three-) dimensional map.

In this paper all Molecular Distance Maps consist of coloured points, wherein each point

represents an mtDNA sequence from the dataset. Each mtDNA sequence is assigned a unique

numerical identifier retained in all analyses, e.g., #1321 is the identifier for the Homo sapiens

sapiens mitochondrial genome. The colour assigned to a sequence-point may however vary

from map to map, and it depends on the taxon assigned to the point in a particular Molecular

Distance Map and the colour associated to that taxon in that map. For consistency, all maps

are scaled so that the x- and the y-coordinates always span the interval [−1, 1]. The formula

used for scaling is xsca = 2 · ( x−xmin
xmax−xmin

) − 1, ysca = 2 · ( y−ymin
ymax−ymin

) − 1, where xmin and xmax are the

minimum and maximum of the x-coordinates of all the points in the original map, and similarly

for ymin and ymax.

Each Molecular Distance Map has some error, that is, the spatial distances di, j are not

exactly the same as f (∆(i, j)). When using the same dataset, the error is in general lower for

an MDS map in a higher-dimensional space. The Stress-1 (Kruskal stress, [32]), is defined in

our case as

Stress-1 = σ1 =

√
Σi< j[ f (∆(i, j)) − di, j]2

Σi< jd2
i, j

where the summations extend over all the sequences considered for a given map, and f (∆(i, j)) =

a×∆(i, j)+b is a linear function whose parameters a, b ∈ R are determined by linear regression

for each subset and corresponding Molecular Distance Map. A benchmark that is often used to

assess MDS results is that Stress-1 should be in the range [0, 0.20], see [32].

The dataset consists of the entire collection of complete mitochondrial DNA sequences

from NCBI as of 12 July, 2012. This dataset consists of 3,176 complete mtDNA sequences,

namely 79 protists, 111 fungi, 283 plants, and 2,703 animals. This collection of mitochon-

drial genomes has a great breadth of species across taxonomic categories and great depth of
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species coverage in certain taxonomic categories. For example, we compare sequences at ev-

ery rank of taxonomy, with some pairs being different at as high as the (super)kingdom level,

and some pairs of sequences being from the exact same species, as in the case of Silene con-

ica for which our dataset contains the sequences of 140 different mitochondrial chromosomes

[33]. The prokaryotic origins and evolutionary history of mitochondrial genomes have long

been extensively studied, which will allow comparison of our results with known relatedness

of species. Lastly, this genome dataset permits testing of both recent and deep rooted species

relationships, providing fine resolution of species differences.

The creation of the datasets, acquisition of data from NCBI’s GenBank, generation of the

CGR images, calculation of the distance matrix, and calculation of the Molecular Distance

Maps using MDS, were all done (and can be tested with) the free open-source MATLAB pro-

gram OpenMDM [34]. This program makes use of an open source MATLAB program for

SSIM, [27], and MATLAB’s built-in MDS function. The interactive web tool MoD Map, [35],

allows an in-depth exploration and navigation of the Molecular Distance Maps in this paper.

When using the web tool MoD Map, clicking on the “Draw MoD Map” button allows the

selection of any of the five maps presented in the paper, each with features such as zoom-in

and search by scientific name of the species or the NCBI accession number of its mtDNA.

On any given Molecular Distance Map, clicking on a sequence-point displays its full mtDNA

sequence information such as its unique identifier in this analysis, NCBI accession number,

scientific name, common name, length of mtDNA sequence, taxonomy, CGR image, as well

as a link to the corresponding NCBI entry. Clicking on the “From here” and “To here” buttons

displays the image distance between the CGR images of two selected sequence-points, as a

number between 0 and 1.
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3.3 Results and Discussion

The Molecular Distance Maps we analyzed, of several different taxonomic subsets (phylum

Vertebrata, (super)kingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia only,

and order Primates), confirm that the presence or absence of oligomers in mtDNA sequences

may contain information that is relevant to taxonomic classifications. These results are relevant

because they are the output of a method that bypasses the need of sequence alignment and uses

as input DNA sequences that would not generally be considered by other, alignment-based,

methods. The main contributions of the paper are the following:

• The use of an “image distance” (designed to detect structural similarities between im-

ages) to compare the graphic signatures of two DNA sequences. For any given k, this

distance simultaneously compares the occurrences of all subsequences of length up to

k of the two sequences. In all computations of this paper we use k = 9. This image

distance (with parameter set to k = 9) is highly sensitive and succeeds to successfully

group hundreds of CGRs that are visually similar, such as the ones in Figure 3.1(a) and

Figure 3.1(c), into correct taxonomic categories.

• The use of an information visualization technique to display the results as easily inter-

pretable Molecular Distance Maps, wherein the spatial position of each sequence-point

in relation to all other sequence-points is quantitatively significant. This is augmented by

an interactive web tool which allows an in-depth exploration of the Molecular Distance

Maps in this paper, with features such as zoom-in, search by scientific name or NCBI

accession number, and quick access to complete information for each of the full mtDNA

sequences in the map.

• A method that is general-purpose, simple, computationally efficient and scalable. Since

the compared sequences need not be homologous or of the same length, this method

can be used to provide comparisons among any number of completely different DNA
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sequences: within the genome of an individual, across genomes within a single species,

between genomes within a taxonomic category, and across taxa.

• The use of a large dataset of 3,176 complete mitochondrial DNA sequences.

• An illustration of potential uses of this approach by the discussion of several case studies

such as the placement of the genus Polypterus within phylum Vertebrata, of the unclas-

sified organism Haemoproteus sp. jb1.JA27 (#1466) within the (super)kingdom Protista,

and the placement of the family Tarsiidae within the order Primates.

This method could complement information obtained by using DNA barcodes [30] and

Klee diagrams [36], since it is applicable to cases where barcodes may have limited effective-

ness: plants and fungi for which different barcoding regions have to be used [37, 38, 39]; pro-

tists where multiple loci are generally needed to distinguish between species [40]; prokaryotes

[41]; and artificial, computer-generated, DNA sequences. This method may also complement

other taxonomic analyses by bringing in additional information gleaned from comparisons of

non-homologous and non-coding sequences.

An example of the CGR/DSSIM/MDS approach is the Molecular Distance Map in Fig-

ure 3.2 which depicts the complete mitochondrial DNA sequences of all 1,791 jawed verte-

brates in our dataset. (In the legends of all Molecular Distance Maps in this paper, the number

of represented mtDNA sequences in each category is listed in paranthesis after the category

name.) Note that the position of each point in a map is determined by all the distances between

the sequence it represents and the other sequences in the dataset. In the case of Figure 3.2,

the position of each sequence-point is determined by the 1,790 numerical distances between its

sequence and all the other vertebrate mtDNA sequences in that dataset.

Observe that all five different subphyla of jawed vertebrates are separated in non-overlapping

clusters, with very few exceptions. Examples of fish species bordering or slightly mixed with

the amphibian cluster include Polypterus ornatipinnis (#3125, ornate bichir), Polypterus sene-

galus (#2868, Senegal bichir), both with primitive pairs of lungs; Erpetoichthys calabaricus
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Figure 3.2: Molecular Distance Map of phylum Vertebrata (excluding the 5 represented
jawless vertebrates), with its five subphyla. (a) This Molecular Distance Map comprises
1,791 mtDNA sequences, the average DSSIM distance is 0.8652, and the MDS Stress-1 is
0.12. Fish species bordering amphibians include fish with primitive pairs of lungs (Polypterus
ornatipinnis #3125, Polypterus senegalus #2868), a fish who can breathe atmospheric air us-
ing a pair of lungs (Erpetoichthys calabaricus #2745), a toadfish (Porichtys myriaster #2483),
and all four represented lungfish (Protopterus aethiopicus #873, Lepidosiren paradoxa #2910,
Neoceratodus forsteri #2957, Protopterus doloi #3119). Note that the question of whether
species of the genus Polypterus are fish or amphibians has been discussed extensively for hun-
dreds of years. Note also that gaps and spaces in clusters, in this and other maps, may be due
to sampling bias. (b) Screenshot of the zoomed-in rectangular region outlined in Figure 3.2(a),
obtained using the interactive web tool MoD Map [35].
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(#2745, reedfish) who can breathe atmospheric air using a pair of lungs; and Porichtys myri-

aster (#2483, specklefish midshipman) a toadfish of the order Batrachoidiformes. It is note-

worthy that the question of whether species of the Polypterus genus are fish or amphibians has

been discussed extensively for hundreds of years [42]. Interestingly, all four represented lung-

fish (a.k.a. salamanderfish), are also bordering the amphibian cluster: Protopterus aethiopicus

(#873, marbled lungfish), Lepidosiren paradoxa (#2910, South American lungfish), Neocerato-

dus forsteri (#2957, Australian lungfish), Protopterus doloi (#3119, spotted African lungfish).

In answer to the hypothesis in [22] regarding the diversity of signatures across vertebrates, we

note that in Figure 3.2 the avian mtDNA signatures cluster neither with the mammals nor with

the reptiles, and form a completely separate cluster of their own (albeit closer to reptiles than

to mammals).

We further applied our method to visualize the relationships among all represented species

from the (super)kingdom Protista whose taxon, as defined in the legend of Figure 3.3, had

more than one representative. As expected, the maximum distance between pairs of sequences

in this map was higher than the maximum distances for the other maps in this paper, all at

lower taxonomic levels.

The most obvious outlier in Figure 3.3 is Haemoproteus sp. jb1.JA27 (#1466), sequenced

in [43] (see also [44]), and listed as an unclassified organism in the NCBI taxonomy. Note

first that this sequence-point belongs to the same kingdom (Chromalveolata), superphylum

(Alveolata), phylum (Apicomplexa), and class (Aconoidasida), as the other two species-points

that appear grouped with it, Babesia bovis T2Bo (#1935), and Theileria parva (#3173). This

indicates that its position is not fully anomalous. Moreover, as indicated by the high value of

Stress-1 for this figure, an inspection of DSSIM distances shows that this sequence-point may

not be a true outlier, and its position may not be as striking in a higher-dimensional version of

the Molecular Distance Map. Overall, this map shows that our method allows an exploration

of diversity at the level of (super)kingdom, obtains good clustering of known subtaxonomic

groups, while at the same time indicating a lack of genome sequence information and paucity
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Figure 3.3: Molecular Distance Map of all represented species from (super)kingdom Pro-
tista and its orders. The total number of mtDNA sequences is 70, the average DSSIM distance
is 0.8288, and the MDS Stress-1 is 0.26. The sequence-point #1466 (red) is the unclassified
Haemoproteus sp. jb1.JA27, #1935 (grey) is Babesia bovis T2Bo, and #3173 (grey) is Theileria
parva. The annotation shows that all these three species belong to the same taxonomic groups,
Chromalveolata, Alveolata, Apicomplexa, Aconoidasida, up to the order level.
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of representation that complicates analyses for this fascinating taxonomic group.

We then applied our method to visualize the relationships between all available complete

mtDNA sequences from three classes, Amphibia, Insecta and Mammalia (Figure 3.4), as well

as to observe relationships within class Amphibia and three of its orders (Figure 3.5).

Figure 3.4: Molecular Distance Map of three classes: Amphibia, Insecta and Mammalia.
The method successfully clusters taxonomic groups also at the Class level. Gaps and spaces in
clusters, in this and other maps, may be due to sampling bias. A topic of further exploration
would be to understand the cluster shapes and nature of the distribution of sequences in this
figure. The total number of mtDNA sequences is 790, the average DSSIM distance is 0.8139,
and the MDS Stress-1 is 0.16.

A feature of MDS is that the points pi are not unique. Indeed, one can translate or rotate

a map without affecting the pairwise spatial distances d(i, j) = ||pi − p j||. In addition, the

obtained points in an MDS map may change coordinates when more data items are added to

or removed from the dataset. This is because the output of the MDS aims to preserve only
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Figure 3.5: Molecular Distance Map of class Amphibia and three of its orders. The total
number of mtDNA sequences is 112, the average DSSIM distance is 0.8445, and the MDS
Stress-1 is 0.18. Note that the shape of the amphibian cluster and the (x, y)-coordinates of
sequence-points are different here from those in Figure 3.4. This is because MDS outputs a
map that aims to preserve pairwise distances between points, but not necessarily their absolute
coordinates.
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the pairwise spatial distances between points, and this can be achieved even when some of the

points change their coordinates. In particular, the (x, y)-coordinates of a point representing the

mtDNA sequence of an amphibian species in the Amphibia-Insecta-Mammalia map (Figure

3.4) will not necessarily be the same as the (x, y)-coordinates of the same point when only

amphibians are mapped (Figure 3.5).

In general, Molecular Distance Maps are in good agreement with classical phylogenetic

trees at all scales of taxonomic comparisons, see Figure 3.5 with [45], and Figure 3.6 with[46].

In addition, our approach may be able to weigh in on conflicts between taxonomic classifica-

tions based on morphological traits and those based on more recent molecular data, as in the

case of tarsiers, discussed below.

Zooming in, we observed the relationships within an order, Primates, with its suborders

(Figure 3.6). Notably, two extinct species of the genus Homo are represented: Homo sapiens

neanderthalensis and Homo sapiens ssp. Denisova. Primates can be classified into two groups,

Haplorrhini (dry-nosed primates comprising anthropoids and tarsiers) and Strepsirrhini (wet-

nosed primates including lemurs and lorises). Figure 3.6 shows a clear separation of these

suborders, with the top-left arm of the map comprising the Strepsirrhini. However, there are

two Haplorrhini placed in the Strepsirrhini cluster, namely Tarsius bancanus (#2978, Hors-

field’s tarsier) and Tarsius syrichta (#1381, Philippine tarsier). The phylogenetic placement of

tarsiers within the order Primates has been controversial for over a century, [47]. According to

[48], mitochondrial DNA evidence places tarsiiformes as a sister group to Strepsirrhini, while

in contrast, [49] places tarsiers within Haplorrhini. In Figure 3.6 the tarsiers are located within

the Strepsirrhini cluster, thus agreeing with [48]. This may be partly because both this study

and [48] used mitochondrial DNA, whose signature may be different from that of chromosomal

DNA as seen in Figure 3.1(a) and Figure 3.1(b).

The DSSIM distances computed for all pairs of complete mtDNA sequences varied in

range. The minimum distance was 0, between two pairs of identical mtDNA sequences. The

first pair comprised the mtDNA of Rhinomugil nasutus (#98, shark mullet, length 16,974 bp)
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Figure 3.6: Molecular Distance Map of order Primates and its suborders: Haplorrhini
(anthropoids and tarsiers), and Strepsirrhini (lemurs, lorises, etc.). The total number of
mtDNA sequences is 62, the average DSSIM distance is 0.7733, and the MDS Stress-1 is 0.19.
The outliers are Tarsius syrichta #1381, and Tarsius bancanus #2978, whose placement within
the order Primates has been subject of debate for over a century.
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and Moolgarda cunnesius (#103, longarm mullet, length 16,974 bp). A base-to-base sequence

comparison between these sequences (#98, NC 017897.1; #103, NC 017902.1) showed that

the sequences were indeed identical. Subsequently, the sequence for species #103 was updated

to a new version (NC 017902.2), on 7 March, 2013, and is now different from the sequence

for species #98 (NC 017897.1). The second pair comprises the mtDNA sequences #1033 and

#1034 (length 16,623 bp), generated by crossing female Megalobrama amblycephala with

male Xenocypris davidi leading to the creation of both diploid (#1033) and triploid (#1034)

nuclear genomes, [50], but identical mitochondrial genomes.

The maximum distance was found to be between Pseudendoclonium akinetum (#2656, a

green alga, length 95,880) and Candida subhashii (#954, a yeast, length 29,795). Interestingly,

the pair with the maximum distance ∆(#2656, #954) = 1.0033 featured neither the longest

mitochondrial DNA sequence, with the darkest CGR (Cucumis sativus, #533, cucumber, length

1,555,935 bp), nor the shortest mitochondrial DNA sequence, with the lightest CGR (Silene

conica, #440, sand catchfly, a plant, length 288 bp).

An inspection of the distances between Homo sapiens sapiens and all the other primate mi-

tochondrial genomes in the dataset showed that the minimum distance to Homo sapiens sapi-

ens was ∆(#1321, #1720) = 0.1340, the distance to Homo sapiens neanderthalensis (#1720,

Neanderthal), with the second smallest distance to it being ∆(#1321, #1052) = 0.2280, the

distance to Homo sapiens ssp. Denisova (#1052, Denisovan). The third smallest distance was

∆(#1321, #3084) = 0.5591 to Pan troglodytes (#3084, chimp). Figure 3.7 shows the graph of

the distances between the Homo sapiens sapiens mtDNA and each of the primate mitochon-

drial genomes. With no exceptions, this graph is in full agreement with established phyloge-

netic trees, [46]. The largest distance between the Homo sapiens sapiens mtDNA and another

mtDNA sequence in the dataset was 0.9957, the distance between Homo sapiens sapiens and

Cucumis sativus (#533, cucumber, length 1,555,935 bp).

In addition to comparing real DNA sequences, this method can compare real DNA se-

quences to computer-generated sequences. As an example, we compared the mtDNA genome



66 Chapter 3. Mapping the space of genomic signatures

Figure 3.7: Graph of the DSSIM distances between the CGR images of Homo sapiens
sapiens mtDNA and the CGR images of each of the 62 primate mitochondrial genomes
(sorted by their distance from the human mtDNA). The distances are in accordance with
established phylogenetic trees: The species with the smallest DSSIM distances from Homo
sapiens sapiens are Homo sapiens neanderthalensis, Home sapiens ssp. Denisova, followed
by the chimp.
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of Homo sapiens sapiens with one hundred artificial, computer-generated, DNA sequences of

the same length and the same trinucleotide frequencies as the original. The average distance

between these artificial sequences and the original human mitochondrial DNA is 0.8991. This

indicates that all “human” artificial DNA sequences are more distant from the Homo sapiens

sapiens mitochondrial genome than Drosophila melanogaster (#3120, fruit fly) mtDNA, with

∆(#3120, #1321) = 0.8572. This further implies that trinucleotide frequencies may not con-

tain sufficient information to classify a genetic sequence, suggesting that Goldman’s claim [51]

that “CGR gives no futher insight into the structure of the DNA sequence than is given by the

dinucleotide and trinucleotide frequencies” may not hold in general.

The Stress-1 values for all but one of the Molecular Distance Maps in this paper were in

the “acceptable” range [0, 0.2], the exception being Figure 3.3 with Stress-1 equal to 0.26.

However, note that Stress-1 generally decreases with an increase in the map’s dimensionality,

from two to three or to a higher number of dimensions. In addition, as suggested in [28], the

Stress-1 guidelines are not absolute: It is not always the case that only MDS representations

with Stress-1 under 0.2 are acceptable, nor that all MDS representations with Stress-1 under

0.05 are good.

In all the calculations in this paper, we used the full mitochondrial sequences. Since the

length of a sequence can influence the brightness of its CGR and thus its Molecular Distance

Map coordinates, further analysis is needed to elucidate the effect of sequence length on the

positions of sequence-points in a Molecular Distance Map. The choice of length of DNA

sequences used may ultimately depend on the particular dataset and particular application.

We now discuss some limitations of the proposed method. Firstly, DSSIM is very effective

at picking up subtle differences between images. For example, all vertebrate CGRs present

the triangular fractal structure seen in the human mtDNA, and are visually very similar, as

seen in Figure 3.1(a) and Figure 3.1(c). In spite of this, DSSIM is able to detect a range of

differences that is sufficient for a good positioning of all 1,791 mtDNA sequences relative to

each other. This being said, DSSIM may give too much weight to subtle differences, so that
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small and big differences in images produce distances that are numerically very close. This

may be a useful feature for the analysis of datasets of closely related sequences. For large-

scale taxonomic comparisons however, refinements of DSSIM or the use of other distances

needs to be explored, that would space further apart the values of distances arising from small

differences versus those arising from big-pattern differences between images.

Secondly, MDS always has some errors, in the sense that the spatial distance between two

points does not always reflect the original distance in the distance matrix. For fine analyses,

the placement of a sequence-point in a map has to be confirmed by checking the original

distance matrix. Possible solutions include increasing the dimensionality of the maps to three-

dimensional maps, which are still easily interpretable visually and have been shown in some

cases to separate clusters which seemed incorrectly intermeshed in the two-dimensional version

of the map. Other possibilities include a colour-scheme that would colour points with low

stress-per-point differently from the ones with high stress-per-point, and thus alert the reader

to the regions where discrepancies between the spatial distance and the original distance exist.

Thirdly, we note that the use of the particular distance measure (DSSIM) or particular

scaling technique (classical MDS) does not mean that these are the optimal choices in all cases.

Lastly, as seen in Figure 3.1(a) and Figure 3.1(b), the genomic signature of mtDNA can

be very different from that of nuclear DNA of the same species and care must be employed in

choosing the dataset and interpreting the results.

3.4 Conclusions

Our analysis suggests that the oligomer composition of mitochondrial DNA sequences can be a

source of taxonomic information. These results are of interest both because of the large dataset

considered (see, e.g., the correct grouping in taxonomic categories of 1,791 mitochondrial

genomes in Figure 3.2), and because this method circumvents the need for sequence similarity

and extracts information from DNA sequences that normally would not be considered when
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using local, homology-based comparisons.

Potential applications of Molecular Distance Maps - when used on a dataset of genomic

sequences, whether coding or non-coding, homologous or not homologous, of the same length

or vastly different lengths – include identification of large evolutionary lineages, taxonomic

classifications, species identification, as well as quantitative definitions of the notion of species

and other taxa.

Possible extensions include generalizations of MDS, such as 3-dimensional MDS, for im-

proved visualization, and the use of increased oligomer length (higher values of k) for compar-

isons of longer subsequences in case of whole chromosome or whole genome analyses. Lastly,

it is worth mentioning that this method can be applied to analyzing sequences over other al-

phabets. For example binary sequences could be imaged using a square with vertices labelled

00, 01, 10, 11, and then DSSIM and MDS could be employed to compare and map them.
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Chapter 4

An investigation into inter- and

intragenomic variations of graphic

genomic signatures1

4.1 Introduction

Alongside DNA barcoding, [1] and Klee diagrams [2], Chaos Game Representation (CGR)

patterns of genomic segments have been proposed as another method for the classification

and identification of genomic sequences [3, 4]. The concept of genomic signature was first

introduced in [5], as being any specific quantitative characteristic of a DNA genomic sequence

that is pervasive along the genome of the same organism, while being dissimilar for DNA

sequences originating from different organisms. Initial studies [3, 6] suggesting that short

fragments of genomic sequences retain most of the characteristics of the genome of origin

indicated that such genomic signatures exist. In particular, the Chaos Game Representation

(CGR) of a DNA sequence, a graphic representation of its sequence composition, was proposed

1A version of this chapter was published (R. Karamichalis, L. Kari, S. Konstantinidis and S. Kopecki, “An
investigation of inter and intragenomic variations of graphic genomic signatures”, BMC Bioinformatics, 16:246
(2015))
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in [3] as having both the pervasiveness and differentiability properties necessary for it to qualify

as a genomic signature. Indeed, CGRs of genomic DNA sequences have been shown to be

genome- and species-specific, see, e.g., [3, 6, 7, 8, 4, 9, 10, 11, 12]. Note that CGR patterns

of mtDNA sequences can be different from those of DNA sequences from the major genome

of the same organism, and that large scale quantitative analyses, at all taxonomic levels, of

the hypothesis that CGR can play the role of a genomic signature for genomic sequences have

not, to our knowledge, been performed. The long term objective of this research is to find

out whether CGR can play the role of genomic signature for genomic DNA sequences, and

can be used to identify and classify genomic sequences at all taxonomic levels. To this end,

the objective of this study is to quantitatively assess the usability of CGR for classification of

genomic sequences at the kingdom level, as well as to assess various distances that can be used

to compare CGRs of genomic sequences for this purpose.

We first analyze 508 fragments, 150 kbp (kilo base pairs) long, spanning single com-

plete chromosomes of six organisms, each representing a different kingdom: chromosome 21

of Homo sapiens, chromosome 4 of Saccharomyces cerevisiae, chromosome 1 of Arabidop-

sis thaliana, chromosome 14 of Plasmodium falciparum, the genome of Escherichia coli, and

the genome of Pyrococcus furiosus, for a total length of 76,200 kbp analyzed. We analyze the

intergenomic and intragenomic variation of CGR genomic signatures of these sequences by

using six different distances: Structural Dissimilarity Index (DSSIM) [13], Euclidean distance,

Pearson correlation distance [14], Manhattan distance [15], approximated information distance

[16], and a distance defined here, based on an idea from computer vision, called descriptor dis-

tance. For each of the six distances, we visualize the results by computing Molecular Distance

Maps, [12], which represent sequences as points in a two-dimensional or three-dimensional

space, and thus display all their interrelationships simultaneously. The resulting Molecular

Distance Maps show a good clustering, with genomic sequences originating from the same

genome being largely grouped together, and separated from sequences belonging to genomes

of different organisms. We observe that, in some of the cases where the clustering is subopti-
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mal, the computation of three-dimensional Molecular Distance Maps resolves what appeared

to be cluster overlaps in the two-dimensional Molecular Distance Maps. Using the “ground-

truth” that sequences from the same genomes should have similar structural characteristics and

thus be grouped together, while those from genomes of different organisms should be sepa-

rated, we assess the six distances by combining three different quality measures: correlation to

an idealized cluster distance, silhouette accuracy, and histogram overlap. We conclude that, for

this dataset, DSSIM and the descriptor distance perform best according to these measures.

To maximize the diversity within each species, we also analyze a set of 526 fragments,

150 kbp long, sampled from the entire genomes of the aforementioned six organisms, for a

total length of 78,900 kbp analyzed. The resulting Molecular Distance Maps are very similar

to the ones in the first experiment, and the distance ranking is also the same, confirming the

preceding results.

Lastly, we provide some preliminary evidence of this method’s applicability to classifying

genomic DNA sequences at lower taxonomic levels by comparing 240 genomic sequences,

150 kbp long, sampled from the entire genome of Homo sapiens (class Mammalia, order Pri-

mates) with 210 genomic sequences, 150 kbp long, sampled from the entire genome of Mus

musculus (mouse, class Mammalia, order Rodentia) for an additional length of 67,500 kbp

analyzed. While a clear separation of sequences by genome is indeed achieved, we observe

that the distance ranking is quite different compared to the previous two experiments, indicat-

ing that different distances may have to be used for comparing genomic sequences at different

taxonomic levels.

Note that early analyses of genomic sequences with regard to similarities in the relative

abundances of oligonucleotides of lengths k = 1, ..., 6 exists and include [17, 18, 19, 20, 21,

22, 23, 24, 25]. Also, several alignment-free methods that use fixed-length word frequencies

have been used for phylogenomic analysis of DNA sequences, [26, 27, 28]. These methods

include statistical studies of word frequency within a DNA sequence [29, 5, 30, 31, 32, 33, 34],

or employ k-words and the Markov model to obtain information about DNA sequences [35, 36,
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37, 38, 39]. Iterated map methods for DNA sequence comparison include CGR-based analyses,

see [3, 40, 41, 42, 43, 44, 45, 46], and such alignment-free methods have been successfully

applied for sequence comparison [4, 47, 48, 49, 50, 11, 51, 52, 12, 53].

The initial reports on CGRs of genomic sequences [3, 6] contained mostly qualitative as-

sessments of CGR patterns of whole genes. In [54], several comparisons of eukaryotic ge-

nomic sequences, including within-species comparisons, were reported, using di-, tri-, and

tetranucleotide relative abundance distance (k = 2, 3, 4). In [25] di- and tetranucleotide abun-

dance profiles (k = 2, k = 4) were compared for genomic collections from genomes of 5 gram-

negative proteobacteria (including 2 complete genomes), 3 gram-positive bacteria, 2 mycoplas-

mas (complete genomes), 2 cyanobacteria (1 complete genome), and 3 thermophilic archaea

(1 complete genome), using the δ∗ distance which computes the average absolute difference of

the dinucleotide relative abundance values. In [4], several datasets of up to 36 genomic DNA

sequences were analyzed, and in [9] some various-length sequences were analyzed based on

computing Euclidean distances between frequencies of their k-mers, for k = 1, ..., 8. Subse-

quently, [10] computed the Euclidean distance between frequencies of k-mers (k ≤ 5) for the

analysis of 125 GenBank DNA sequences from 20 bird species and the American alligator. In

[47], 27 microbial genomes were analyzed to find implications of 4-mer frequencies (k = 4)

on their evolutionary relationships. In [16], 20 mammalian complete mtDNA sequences were

analyzed using the “similarity metric”, for k = 7. In [50] a multigene dataset of 33 genes for 9

bacteria and one archaea species, as well as the whole genomes of a set of 16 γ-proteobacteria

were analyzed, using values of k between 1 and 10, and Euclidean and χ2 distances. In [11] a

collection of 26 complete mitochondrial genomes was analyzed, using the Euclidean distance

and an “image distance”, with a value of k = 10. In [55] a megabase-scale phylogenomic

analysis of the Reptilia was reported, that compared frequency distributions of 8-mer oligonu-

cleotides (k = 8) using Euclidean distance. Another study, [56], analyzed 459 bacteriophage

genomes and compared them with their host genomes to infer host-phage relationships, by

computing Euclidean distances between frequencies of k-mers for k = 4. In [57], 75 complete
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HIV genome sequences were compared using the Euclidean distance between frequencies of

6-mers (k = 6), in order to group them in subtypes. In [58] several datasets were analyzed (109

complete genomes of prokaryotes and eukaryotes, 34 prokaryote and chloroplast genomes,

mitochondrial genomes of 64 vertebrates, and 62 complete genomes of alpha proteobacteria)

using values of k = 5, 6 for protein-coding genes and k = 11, 12 for whole genomes, with

two distances: chord distance and piecewise distance. In [12] a dataset of 3,176 complete

mtDNA sequences was analyzed using an image distance, DSSIM, and a value of k = 9, and

several Molecular Distance Maps were obtained which displayed sequences’ interrelationships

at several taxonomic levels (phylum Vertebrata, kingdom Protista, classes Amphibia-Insecta-

Mammalia, class Amphibia, and order Primates).

The main contributions of this paper are:

• We tested and confirmed for an extensive dataset, of a total length of approximately

174Mbp, the hypothesis that CGR images of genomic DNA sequences can play the

role of a (graphic) genomic signature, meaning that they have a desirable genome- and

species-specificity. The dataset comprised 150 kbp fragments taken from genomes of

six organisms, one from each of the six kingdoms of life. This was augmented by a

set 150 kbp fragments randomly sampled from all chromosomes of M. musculus, as a

test-case of this method’s applicability at lower taxonomic levels.

• We assessed the performance of six different distances in this context, and this analy-

sis included both same-genome and different-genome DNA fragment pairs. For several

of these distances, the intragenomic values were overall smaller than intergenomic val-

ues, suggesting that this method could separate DNA genomic fragments belonging to

different genomes, based on their CGRs.

• We showed that several distances outperform the Euclidean distance, which has so far

been almost exclusively used for such studies. In particular, we determined that the

DSSIM distance and the descriptor distance, adapted from computer vision for this ap-
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plication, were best able to differentiate sequences originating from different genomes at

the kingdom level. Both these distances essentially compare the k-mer composition of

DNA sequences (herein k = 9).

• Based on preliminary data, we suggested the use of three-dimensional Molecular Dis-

tance Maps for improved visualization of the simultaneous interrelationships within a

given set of genomic sequences.

Further analysis is needed to explore this method’s potential to differentiate genomic se-

quences originating from closely related species (e.g. within the same order). Additional

refinements of the distances considered may have to be defined for optimal genomic DNA

sequence identification and classification at very low taxonomic levels.

4.2 Methods

In this section we first describe the dataset used for our analysis, then present an overview of

the three main steps of the method, and conclude with a description of the six distances that we

considered.

4.2.1 Dataset

We used the complete genomes from six organisms, each representing one of the six kingdoms

of life. For the first experiment, we used one complete chromosome from each genome, see

Table 4.1. For additional information about the dataset see [59], Appendix B.

In order to have relatively comparable numbers of DNA sequences for each organism, we

chose the longest chromosomes for all organisms except H. sapiens, for which the shortest

chromosome was chosen.

The DNA sequences in the NCBI database are represented as strings of letters “A”, “C”,

“G”, “T”, and “N” which represent the four nucleotides Adenine, Cytosine, Guanine, Thymine,
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Organism NCBI Acc. Nr.
1 H. sapiens, chrom. 21 (Animalia) NC 000021.8
2 E. coli (Bacteria) NC 000913.3
3 S. cerevisiae, chrom. 4 (Fungi) NC 001136.10
4 A. thaliana, chrom. 1 (Plantae) NC 003070.9
5 P. falciparum, chrom. 14 (Protista) NC 004317.2
6 P. furiosus (Archaea) NC 018092.1

Table 4.1: Dataset for the first experiment: NCBI accession numbers of the complete chromo-
somes considered, in increasing order of their NCBI accession number.

and “unidentified Nucleotide”, respectively. For our analysis we ignored all letters “N”. In

S. cerevisiae and E. coli there were no ignored letters, and in P. falciparum and P. furiosus the

number of ignored letters is of the order of 0.001% of the length of the sequence. In H. sapiens

this number is 27%, and in A. thaliana is 0.54%. In H. sapiens, in particular, 96.4% of these

ignored letters exist in centromeric and telomeric regions of the chromosome.

The resulting genomic DNA sequences were divided into successive, non-overlapping, con-

tiguous fragments, each 150 kbp long. When the last sequence was shorter than 150 kbp, it

was not included in the analysis. This resulted in 234 fragments for H. sapiens, 30 fragments

for E. coli, 10 fragments for S. cerevisiae, 201 fragments for A. thaliana, 21 fragments for P.

falciparum, and 12 fragments for P. furiosus, for a total of 508 DNA fragments, see Table 4.2.

Organism Length(bp) # Letters “N” # Fragments
H. sapiens 48,129,895 13,023,253 234
E. coli 4,641,652 0 30
S. cerevisiae 1,531,933 0 10
A. thaliana 30,427,671 164,359 201
P. falciparum 3,291,871 37 21
P. furiosus 1,909,827 10 12

Table 4.2: The first experiment: Organisms considered, total length of the chromosome
(respectively genome), number of ignored letters “N”, and number of DNA fragments (se-
quences) obtained by splitting a single complete chromosome per organism into consecutive,
non-overlapping, equal length (150 kbp) contiguous fragments.

To maximize the diversity within each species, the dataset of the second experiment com-

prised fragments randomly sampled from each chromosome of the six chosen organisms, as
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follows. After deleting all “N” nucleotides, each chromosome was divided into successive,

non-overlapping, contiguous fragments, each 150 kbp long. When the last fragment was

shorter than 150 kbp, it was not included in the analysis. Next, for each chromosome we se-

lected randomly 10 such fragments to represent the chromosome, see [59], Appendix B. In the

cases where there were fewer than 10 fragments in a chromosome, all of them were considered.

In the cases of E. coli and P. furiosus, we retained all complete fragments of the genome. This

resulted in 240 fragments for H. sapiens, 30 fragments for E. coli, 73 fragments for S. cere-

visiae, 50 fragments for A. thaliana, 121 fragments for P. falciparum, and 12 fragments for

P. furiosus, for a total of 526 fragments.

4.2.2 Overview

The method we used to analyze and classify genomic sequences has three steps: (i) generate

graphical representations (images) of each DNA sequence using Chaos Game Representation

(CGR), (ii) compute all pairwise distances between these images, and (iii) visualize the in-

terrelationships implied by these distances as two- or three-dimensional maps, using Multi-

Dimensional Scaling (MDS).

CGR is a method introduced by Jeffrey [3] in 1990 and studied in, e.g., [3, 6, 60, 61, 7, 62,

63, 11] as a way to visualize the structure of a DNA sequence, This method associates an image

to each DNA sequence as follows. Starting from a unit square with corners labelled A, C, G,

and T, and the center of the square as the starting point, the image is obtained by successively

plotting each nucleotide as the middle point between the current point and the corner labelled

by the nucleotide to be plotted. If the generated square image has a size of 2k × 2k pixels, then

every pixel represents a distinct k-mer: A pixel is black if the k-mer it represents occurs in

the DNA sequence, otherwise it is white. CGR images of genetic DNA sequences originating

from various species show patterns such as squares, parallel lines, rectangles, triangles, and

also complex fractal patterns, Figure 5.6.

For step (i), a slight modification of the original CGR was used, introduced by Deschavanne
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Figure 4.1: 29 × 29 CGR images of 150 kbp genomic DNA sequences from H. sapiens, E. coli,
S. cerevisiae, A. thaliana, P. falciparum, and P. furiosus.
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[4]: a k-th order FCGR (frequency CGR) is a 2k×2k matrix that can be constructed by dividing

the CGR plot into a 2k × 2k grid, and defining the element ai j as the number of points that are

situated in the corresponding grid square. A second order FCGR is shown below, where Nw is

the number of occurrences of the oligonucleotide w in the sequence s.

FCGR2(s) =



NCC NGC NCG NGG

NAC NTC NAG NTG

NCA NGA NCT NGT

NAA NT A NAT NTT


The (k+1)-th order FCGRk+1(s) can be obtained by replacing each element NX in FCGRk(s)

with four elements  NCX NGX

NAX NT X


where X is a sequence of length k over the alphabet {A,C,G,T }.

For step (ii), after computing the FCGR matrices for each of the 150 kbp sequences in a

given dataset, the goal was to measure “distances” between every two CGR images. There are

many distances that can be defined and used for this purpose, [64]. One of the goals of this

study was to identify what distance is better able to differentiate the structural differences of

various genomic DNA sequences and classify them based on the species they belong to. In

this paper we use six different distances: Structural Dissimilarity Index (DSSIM), descriptor

distance (adapted from computer vision for this application), Euclidean distance, Manhattan

distance, Pearson correlation distance, and approximated information distance.

For step (iii), after computing all possible pairwise distances we obtained six different dis-

tance matrices. To visualize the inter-relationships between sequences implied by each of the

distance matrices, and to thus visually assess each of the distances, we used Multi-Dimensional

Scaling (MDS). MDS is an information visualization technique introduced by Kruskal in [65].

MDS takes as input a distance matrix that contains the pairwise distances among a set of items

(here the items are the 150 kpb DNA sequences analyzed). The output of MDS is a spatial

representation of the items in a common Euclidean space, wherein each item is represented as
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a point and the spatial distance between any two points corresponds to the distance between the

items in the distance matrix. Objects with a small pairwise distance will result in points that

are close to each other, while objects with a large pairwise distance will become points that are

far apart.

The combination of CGR/DSSIM/MDS was first proposed in [66], [12] as a tool to quan-

titatively measure and display the interrelationships among a set of complete mitochondrial

sequences. The outputs of this method, called Molecular Distance Maps, are two-dimensional

maps wherein each point represents a mitochondrial genome, and the spatial distances be-

tween any two points correspond to the differences between the structural composition of the

corresponding DNA sequences. The ideal Molecular Distance Map is a placement of n items

as points in an (n − 1)-dimensional space. The two-dimensional Molecular Distance Map is

simply an approximation, a flattening of this highly-dimensional space onto the plane, which

may sometimes result in erroneous positioning of some points. Increasing the dimensional-

ity of the Molecular Distance Map often results in a more accurate representation of the real

interrelationships between sequences, as embodied in the original distance matrix.

4.2.3 Distances

In this section we describe and formally define each of the six distances used in our analysis:

DSSIM, descriptor distance (adapted from computer vision for this application), Euclidean,

Manhattan, Pearson, and approximated information distance.

Structural Similarity Index, SSIM, was introduced in [13] for the purpose of assessing the

degree of similarity between two images. Given two images X,Y as n × n matrices having

as elements integers ranging in the interval [0, L], SSIM computes three factors (luminance,

contrast and structure) and combines them to obtain a similarity value. However, instead of

computing a global similarity between the two images, each image is divided into 11 × 11

sliding square windows Xi j(Y i jrespectively) with i, j = 1, · · · , n − 10 which move pixel by

pixel to eventually cover the entire image. The SSIM similarity of any given pair of images
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is then computed by comparing their corresponding square windows. In addition, an 11 × 11

circular symmetric Gaussian weighting function W ∈ R11×11 with a fixed standard deviation of

1.5, normalized to unit sum (
∑11

p=1
∑11

q=1 Wpq = 1), is used. Then, the mean µx,i, j (µy,i, j for Y),

variance σx,i, j (σy,i, j for Y) and correlation σxy,i, j are computed, as follows:

µx,i, j =

11∑
p=1

11∑
q=1

WpqXi j
pq

σx,i, j =

√√√ 11∑
p=1

11∑
q=1

Wpq(Xi j
pq − µx,i, j)2

σxy,i, j =

11∑
p=1

11∑
q=1

Wpq(Xi j
pq − µx,i, j)(Y i j

pq − µy,i, j)

where Apq denotes the (p, q) element of the matrix A. Based on these values, the luminance

l(Xi j,Y i j), contrast c(Xi j,Y i j) and structure s(Xi j,Y i j) are computed as

l(Xi j,Y i j) =
2µx,i, jµy,i, j + C1

µ2
x,i, j + µ2

y,i, j + C1

c(Xi j,Y i j) =
2σx,i, jσy,i, j + C2

σ2
x,i, j + σ2

y,i, j + C2

s(Xi j,Y i j) =
σxy,i, j + C3

σx,i, jσy,i, j + C3

where C1 = (0.01)2, C2 = (0.03)2, C3 = C2
2 . Then, these three factors are combined to get

S S IM(Xi j,Y i j) = l(Xi j,Y i j)c(Xi j,Y i j)s(Xi j,Y i j)

and finally, the SSIM index used to evaluate the overall image similarity is computed as

S S IM(X,Y) =
1

(n − 10)2

n−10∑
i=1

n−10∑
j=1

S S IM(Xi j,Y i j).

In theory, the values for SSIM range in the interval [−1, 1] with the similarity being 1
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between two identical images, 0, for example, between a black image and a white image, and

−1 if the two images are negatively correlated; that is, SSIM(X,Y) = −1 if and only if X

and Y have the same luminance µ and every pixel xi of image X has the inverted value of the

corresponding pixel yi = 2µ − xi in Y .

To compute the distance rather than the similarity between two images, we calculate

DSSIM(X,Y) = 1-SSIM(X,Y). Consequently, the range of DSSIM is the interval [0, 2]: two

identical images will result in a DSSIM distance of 0, while two images that are the negatives

of each other would result in a DSSIM distance of 2.

For defining the descriptor distance we adapted for this application the spatial pyramid

matching approach of [67], which is used to calculate hierarchical image descriptors. The

descriptor distance between two FCGRs X,Y ∈ N2k×2k
aims to compare a combination of

several different“descriptors”, that is, a combination of several different aspects, of the two

given FCGRs.

A descriptor is a vector characterized by parameters m and r, as well as r intervals, where

m is the size of the non-overlapping windows in which the FCGR is divided (scale of the

comparison), and the r intervals represent the “granularity” of the analysis, in that they define

the intervals of numbers of k-mer occurrences that are considered significant.

For a given m ≤ k and r, and intervals [a0, a1), [a1, a2), · · · , [ar−1, ar) such that
⋃r−1

i=0 [ai, ai+1) =

[0,∞) and [ai, ai+1) ∩ [a j, a j+1) = ∅ ∀i, j with i , j, a decriptor is constructed as follows.

Starting from the top-left corner, we divide each of the two FCGR matrices X and Y into

non-overlapping submatrices2 of size 2m × 2m. This procedure results in 4k−m submatrices Xi j

and Yi j with i, j = 1, · · · , 2k−m, which will be pairwise compared.

The choice of the r intervals, called “bins”, points to the fact that, rather than considering

the finest granularity, we are interested in a coarser comparison. This means that, instead

of a computationally expensive pairwise comparison of all possible numbers of occurrences

of k-mers, we are interested only in certain “bins” of such numbers. For example, in our

2In general, these windows (submatrices) can be overlapping, but in this paper we made the choice of using
non-overlapping windows.
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case, we use r = 5 and consider only 5 different bins, that is only k-mers with number of

occurrences: 0 (not occurring), 1 (one occurrence), 2 (two occurrences), between 2 and 5,

between 5 and 20, and greater than 20 (most frequent). Formally, we use r = 5 and [0,∞) =

[0, 1) ∪ [1, 2) ∪ [2, 5) ∪ [5, 20) ∪ [20,∞) as the 5 bins.

Afterwards, we compute for every Xi j a vector vecXi j = 1
(2m×2m) (b1, b2, · · · , br) where bi =

|{x ∈ Xi j : ai−1 ≤ x < ai}|. In our case, for each Xi j, we compute a five-tuple wherein, for

example, the 4th element represents the number of 9-mers whose number of occurrences is in

the 4th bin, that is, at least 5 but less than 20. The division to 2m × 2m is to obtain a probability

distribution for each submatrix. The same procedure is performed for Yi j, resulting in the vector

vecYi j.

We further append all vectors vecXi j and form a new vector vecXm,r and, using the same

order of appending, we append all vectors vecYi j forming a new vector vecYm,r. These two

vectors are the “descriptors” of the FCGR matrices X and Y for the parameters m, r and the r

chosen bins.

As a last step, we combine descriptors vecXm,r (respectively vecYm,r) for several values of

m and r by appending them one after another, in the same order, to obtain the vector vecX

(respectively vecY).

The descriptor distance between the two FCGRs X and Y is now defined as the Euclidean

distance between the vectors vecX and vecY

dD(X,Y) = dE(vecX, vecY).

In our case we computed descriptors for m = 4, 5, 6 therefore forming vectors vecX and

vecY of length 5
(
( 512

64 )2 + ( 512
32 )2 + (512

16 )2) = 6720. In general, for a given r, the length of the

vectors compared is r((2k−m1)2 + (2k−m2)2 + ... + (2k−mp)2), where m1,m2, . . . ,mp are the values

used for m. The choice of m for this study was made to balance the computational cost of

calculating the vector of descriptors with the ability to compare the two matrices at various

scales: large (m = 6, that is, compare windows of size 64 × 64), medium (m = 5, windows of
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size 32 × 32)) and small (m = 4, windows of size 16 × 16). The parameter r = 5 and the 5

bins were kept constant throughout our calculations but, in general, these parameters can also

be varied, and the resulting vectors for each value added to the vector of descriptors, resulting

in a larger vector.

In principle, the descriptor distance between two given FCGRs effectively compares the

distribution of frequencies of k-mers between the corresponding submatrices Xi j and Yi j, and

does that for several values of m, that is, at several different scales. (Note that, in each window

Xi j, all k-mers have the same suffix of length k − m.)

We now illustrate the descriptor distance by an example wherein k = 3, m = 2, r = 3, and

the 3 bins are [0, 15)∪ [15, 30)∪ [30,∞). Since k = 3, the FCGR table will contain the number

of occurrences of all 3-mers in a DNA sequence, as follows:

CCC GCC CGC GGC CCG GCG CGG GGG
ACC TCC AGC TGC ACG TCG AGG TGG
CAC GAC CTC GTC CAG GAG CTG GTG
AAC TAC ATC TTC AAG TAG ATG TTG

CCA GCA CGA GGA CCT GCT CGT GGT
ACA TCA AGA TGA ACT TCT AGT TGT
CAA GAA CTA GTA CAT GAT CTT GTT
AAA TAA ATA TTA AAT TAT ATT TTT

Take the two FCGRs X,Y ∈ N8×8, (k = 3, thus 23 × 23) corresponding to two genomic 150

kbp sequences of our dataset (one human and one bacterial), respectively. In order to use small

numbers throughout the example, we divide all elements of the obtained matrices by 100 and

take the integer part of each element, obtaining:
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X =



42 33 9 33 14 10 15 45

22 30 26 25 9 5 37 37

32 21 33 19 44 35 41 35

17 9 13 21 23 10 22 18

37 26 6 32 34 24 9 23

29 24 31 27 19 27 18 28

21 23 10 9 19 17 21 15

35 15 14 14 19 12 17 30



,

Y =



18 34 40 27 30 36 27 12

27 18 27 32 24 23 15 23

24 17 13 17 36 12 32 18

27 17 28 26 18 8 22 25

32 32 23 16 16 25 23 22

20 29 18 25 16 16 15 17

25 25 7 16 26 27 20 25

32 21 20 21 25 18 27 34



.

Thus, in the human DNA sequence, the triplet CCC appears about 42 x 100 times, the

triplet GCC appears about 33 x 100 times, the triplet CGC appears about 9 x 100 times, etc.

Since m = 2, we divide each of the matrices X and Y into non-overlapping submatrices of

size 4 × 4 (22 × 22). For X we thus obtain X11, X12, X21, X22



42 33 9 33

22 30 26 25

32 21 33 19

17 9 13 21


,



14 10 15 45

9 5 37 37

44 35 41 35

23 10 22 18


,
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

37 26 6 32

29 24 31 27

21 23 10 9

35 15 14 14


,



34 24 9 23

19 27 18 28

19 17 21 15

19 12 17 30


.

and similarly for Y .

Since the r = 3 bins are [0, 15) ∪ [15, 30) ∪ [30,∞), we will count, for each submatrix, the

number of 3-mers for which the number of occurrences is less than 15, between 15 and 30,

and greater than or equal to 30. Thus we obtain vecX11 = 1
16 (3, 7, 6) which has as elements the

number of elements of X11 which belong in each of the intervals selected, divided by the total

number of elements of X11. We proceed similarly for vecX12 = 1
16 (5, 4, 7), vecX21 = 1

16 (5, 7, 4),

vecX22 = 1
16 (2, 12, 2) and we form vecX by appending these vectors one after the other, that is

vecX = 1
16 (3, 7, 6, 5, 4, 7, 5, 7, 4, 2, 12, 2) .

We apply exactly the same procedure for the matrix Y and we get

vecY = 1
16 (1, 12, 3, 3, 9, 4, 1, 12, 3, 0, 15, 1) .

The descriptor distance between these two FCGRs is computed as the Euclidean distance be-

tween vecX and vecY , in this case dD(X,Y) ≈ 0.718. Note that, since we started by dividing the

number of 3-mer occurrences by 100, as well as because of the bin selection, this is a fictitious

example. The real value of the descriptor distance between the mentioned human and bacterial

sequences is 8.66, and the range of the descriptor distance for this dataset of DNA sequences is

[0, 13.17]. In general, the descriptor distance has a variable range, that depends on the choices

of parameters used.

To compute the Euclidean, Manhattan and Pearson distances, we first convert the matrices

X,Y ∈ Nn×n into 1× n2 vectors. For two vectors x, y ∈ Rn, their Euclidean distance dE(x, y) and

their Manhattan distance dM(x, y) are computed as



92Chapter 4. An investigation into inter- and intragenomic variations of graphic genomic signatures

dE(x, y) =

√√
n∑

i=1

(xi − yi)2,

dM(x, y) =

n∑
i=1

|xi − yi|,

while their Pearson distance dP(x, y) is defined as

dP(x, y) = 1 −
σxy

σxσy
,

where

µx =
1
n

n∑
i=1

xi , σx =

√√
1

n − 1

n∑
i=1

(xi − µx)2,

σxy =
1

n − 1

n∑
i=1

(xi − µx)(yi − µy).

In theory, the correlation coefficient σxy

σxσy
ranges in the interval [−1, 1], and therefore the Pear-

son distance ranges in the interval [0, 2].

The last distance we considered is based on the information distance defined in [16]. The

use of this distance is motivated computationally since it is easily computed from FCGRs as it

tracks only the number of different k-mers for a sequence instead of the actual set. In [16], for

a given k, the information distance for two strings x, y is defined as

dAID(x, y) =
Nk(x|y) + Nk(y|x)

Nk(xy)

with

Nk(x|y) = Nk(xy) − Nk(x)

where Nk(x) is the number of different k-mers (possibly overlapping) which occur in x. We

go one step further and modify this in order to avoid the creation of “unwanted” k-mers from

the concatenation xy of x and y. We now show how to compute Nk(x) for a sequence x. For

a sequence x, first we build its FCGR(x) = X ∈ N2k×2k
, which is a matrix of 2k × 2k with
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element values in N. Then we unitize X, that is every non-zero entry becomes 1, while zeros

remain 0. Nk(x) is now computed as the sum of the elements of this unitized FCGR, that is,

Nk(x) = f (X) = SumOfElements(Unitize(X)). For two strings x and y, with FCGRs X and Y

respectively, we define Nk(x|y) as:

Nk(x|y) = f (X + Y) − Nk(x) (4.1)

This slight modification of the information distance gives us also the desired properties of

d(x, x) = 0 and d(x, y) = d(y, x) which were not satisfied before. Using (4.1), we now define

the approximated information distance (AID) as:

dAID(x, y) = 2 −
f (X) + f (Y)

f (X + Y)
(4.2)

where x, y are the strings and X,Y ∈ N2k×2k
their FCGRs, respectively. It also turns out that this

distance is in fact the normalized Hamming Distance of the unitized FCGRs X and Y . Note

that, for two sets X and Y, the normalized Hamming distance is |X4Y|
|X∪Y|

= 2 − |X|+|Y|
|X∪Y|

where 4

denotes the symmetric difference.

Online Material, [59], includes the code used, the distance matrices, and an Appendix (Ap-

pendix A with details about accessing the online resources, Appendix B with information about

the dataset, and Appendix C with additional histograms for the first experiment). The code,

written in Wolfram Mathematica version 9, was used (and can be tested) for the generation of

CGR images, the calculation of distance matrices, and the creation of 2D and 3D Molecular

Distance Maps. The interactive webtool ModMap, [68], allows in-depth exploration of the

2D Mod Maps (Molecular Distance Maps) in this paper. When using the interactive webtool

MoDMap, clicking on a distance underneath a dataset will result in plotting the MoD Map of

the dataset computed with that distance. On any particular MoD Map, clicking on a point will

display a window with information about the subsequence represented by that point: its NCBI

accession number, scientific name of the organism it originates from, and its CGR pattern.
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Clicking on the “From here” and “To here” buttons on two such selected windows will display

the distance between the corresponding genomic subsequences in the distance matrix.

4.3 Analysis and Results

For our dataset, we use k = 9, that is, each DNA sequence was represented as a 29 × 29 FCGR

matrix. In practice, this means that the FCGR of a DNA sequence contains the full information

regarding its k-mer sequence composition, for k = 1, 2, ..., 9. The length choice of 150 kbp and

value of k = 9 is partly justified by the fact that, for a random sequence of length 150 kbp,

its CGR at resolution 29 × 29 has around half of the pixels black, and half white, and partly

justified by the fact that it empirically produced good results while at the same time being

computationally inexpensive.

Figure 4.2 depicts two-dimensional Molecular Distance Maps obtained from the first ex-

periment, using one complete chromosome for each organism, computed using the DSSIM

distance, descriptor distance, Euclidean distance, Manhattan distance, Pearson distance and

approximated information distance, respectively. Figure 4.3 depicts the corresponding three-

dimensional Molecular Distance Maps for the same dataset. The projection of each three-

dimensional map is chosen by hand in order to visually separate clusters of points which appear

to be overlapping in the two-dimensional maps, as discussed below.

We note that MDS is not a clustering method, as the clusters are defined beforehand by the

coloring scheme used (blue for H. sapiens, green for E. coli, and so on). MDS simply tries to

display visually the interrelationships between the given items, based on the pairwise distances

in the distance matrix which is its input. Note also that an increase in dimensionality from 2 to 3

can lead to a better cluster visualization. For example, if we compare the two-dimensional and

the three-dimensional Molecular Distance Maps obtained using DSSIM, we see that points

that appeared to be erroneously mixed with each other in the two-dimensional map, Figure

4.2(a), (S. cerevisiae and P. falciparum sequences mixed in with A. thaliana sequences) are in
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Figure 4.2: The first experiment: Two-dimensional Molecular Distance Maps of 150 kbp ge-
nomic sequences spanning one complete chromosome from each of six organisms, representing
all kingdoms of life. The MoD Maps were obtained using DSSIM, descriptor, Euclidean, Man-
hattan, Pearson and approximated information distance, respectively. Each point corresponds
to one 150 kbp genomic sequence from: H. sapiens (blue), E. coli (green), S. cerevisiae (red),
A. thaliana (turquoise), P. falciparum (magenta), and P. furiosus (orange).
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Figure 4.3: The first experiment: Three-dimensional Molecular Distance Maps of 150 kbp ge-
nomic sequences spanning one complete chromosome from each of six organisms, representing
all kingdoms of life. The MoD Maps were obtained using DSSIM, descriptor, Euclidean, Man-
hattan, Pearson and approximated information distance, respectively. Each point corresponds
to one 150 kbp genomic sequences from: H. sapiens (blue), E. coli (green), S. cerevisiae (red),
A. thaliana (turquoise), P. falciparum (magenta), and P. furiosus (orange).
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fact clearly separated from each other in Figure 4.3(a), the three-dimensional version of the

Molecular Distance Map.

Figure 4.4 displays the histograms of the pairwise intragenomic distances (dark blue and

turquoise) and intergenomic distances (grey) of DNA sequences from H. sapiens and A. thaliana,

obtained using each of the six distances. As noted, some distances seem to perform better than

others. Visually, the poorest performer for these two sets of sequences (from H. sapiens and

A. thaliana) seems to be the Euclidean distance wherein the intragenomic distances are as high

as intergenomic distances, and no separation is visible. In contrast, DSSIM gives – for the

same data – intergenomic distances that are overall much higher than intragenomic distances,

resulting in a clear classification of DNA sequences into the species they belong to.

Table 4.3 displays the mean and standard deviation of distances between clusters Ci and C j,

1 ≤ i, j ≤ 6, where a cluster C` is defined as the set of all genomic sequences from the genome

of organism `, as labelled in Table 4.1. In each subtable, the diagonals represent the means

and standard deviation for intragenomic distances, while the other entries are all intergenomic

distances.

From this table we see that for DSSIM, Manhattan and approximated information distance,

the maximum of all the averages of intragenomic distances in this dataset is strictly smaller

than the minimum of all the averages of intergenomic distances. For the descriptor distance and

Pearson distance the previous statement does not hold but, for each pair of organisms, the two

averages of intragenomic distances (e.g., H. sapiens - H. sapiens and A. thaliana - A. thaliana)

are both lower than the average of the intergenomic distances (H. sapiens - A. thaliana). For

the Euclidean distance, none of the previous statements holds: For example, the average of

the A. thaliana - A. thaliana intragenomic distances (element 4-4 in the Euclidean distance

subtable of Table 4.3) is 723, a value which is larger than 672, the average of the S. cerevisiae

- A. thaliana intergenomic distances (element 3-4 in the Euclidean distance subtable of Table

4.3). The complete histograms of all pairwise comparisons Ci − C j can be found in [59],

Appendix C.
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Figure 4.4: The first experiment (150 kbp fragments spanning one complete chromosome per
each of the six organisms): Histograms of pairwise intragenomic and intergenomic distances
among the DNA sequences from H. sapiens and A. thaliana.
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- 1 2 3 4 5 6

1
0.81 ±
0.04

0.99 ±
0.01

0.92 ±
0.02

0.91 ±
0.03

0.92 ±
0.03

0.91 ±
0.02

2 - 0.85 ±
0.01

0.97 ±
0.01

0.99 ±
0.01

0.99 ±
0.01 0.99 ± 0.

3 - - 0.87 ±
0.01

0.89 ±
0.02 0.91 ± 0. 0.91 ±

0.01

4 - - - 0.87 ±
0.03

0.9 ±
0.02

0.91 ±
0.01

5 - - - - 0.74 ±
0.01 0.94 ± 0.

6 DSSIM 0.83 ±
0.01

1
3.76 ±
1.69

9.74 ±
0.66

5.92 ±
1.14

5.71 ±
1.41

9.33 ±
1.23

5.44 ±
0.92

2 - 2.5 ±
0.28

8.05 ±
0.39

9.1 ±
0.55

12.67 ±
0.19

9.38 ±
0.41

3 - - 2.12 ±
0.08

3.42 ±
1.05

9.48 ±
0.31

4.6 ±
0.09

4 - - - 2.75 ±
1.33

8.23 ±
0.94

4.94 ±
0.76

5 - - - - 1.53 ±
0.14

9.99 ±
0.28

6 Descriptor 2.4 ±
0.32

1
756 ±
498

856 ±
349

756 ±
361

818 ±
514

3914 ±
510

812 ±
356

2 - 558±5 674 ±
17

802 ±
366

4102 ±
466 696 ± 18

3 - - 564 ±
11

672 ±
383

3964 ±
472 633 ± 20

4 - - - 723 ±
535

3923 ±
506

748 ±
372

5 - - - - 999 ±
276

4085 ±
468

6 Euclidean 585 ± 24

- 1 2 3 4 5 6

1
171 ±

15 222±5 189 ±
13 188 ± 17 213 ± 20 191 ± 9

2 - 175±2 209±4 219 ± 8 252 ± 4 218 ± 3

3 - - 171±2 177 ± 10 206 ± 2 184 ± 2

4 - - - 172 ± 16 200 ± 11 188 ± 9

5 - - - - 105 ± 3 224 ± 2

6 Manhattan (in thousands) 167 ± 3

1
0.5 ±
0.12

0.97 ±
0.02

0.69 ±
0.1

0.64 ±
0.12

0.65 ±
0.09

0.81 ±
0.06

2 - 0.71 ±
0.02

0.93 ±
0.02

0.96 ±
0.02

0.98 ±
0.01

0.99 ±
0.02

3 - - 0.6 ±
0.02

0.6 ±
0.07

0.71 ±
0.03

0.75 ±
0.02

4 - - - 0.53 ±
0.11

0.63 ±
0.09

0.76 ±
0.04

5 - - - - 0.02 ±
0.01

0.94 ±
0.01

6 Pearson 0.64 ±
0.03

1
0.65 ±
0.03

0.78 ±
0.01

0.7 ±
0.03

0.7 ±
0.03

0.76 ±
0.04

0.69 ±
0.02

2 - 0.67 ±
0.

0.75 ±
0.01

0.77 ±
0.02

0.85 ±
0.01

0.77 ±
0.01

3 - - 0.67 ±
0.01

0.68 ±
0.02 0.74 ± 0. 0.69 ± 0.

4 - - - 0.67 ±
0.03

0.73 ±
0.02

0.69 ±
0.02

5 - - - - 0.64 ±
0.01

0.76 ±
0.01

6 Approx. Information 0.65 ±
0.01

Table 4.3: The first experiment: Mean and standard deviation of distances between clusters
Ci −C j for i, j = 1, ..., 6.
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To maximize the diversity within each species, we performed a second experiment, with

similar parameters as the first, but in which the fragments analyzed were randomly sampled

from the entire genomes. The Molecular Distance Maps for this experiment are presented in

Figure 4.5 and Figure 4.6. Note that the separation of sequences by the organism they belong

to is even more clear than in the previous experiment, that used one complete chromosome

from each organism. This suggests that (for this dataset), the CGR pattern is a genome-wide

characteristic.

4.3.1 Quality measures for distances

In this section we present three quality measures that each evaluates the quality of the six dis-

tances considered. In the data mining literature a wide range of quality measures for a given

clustering has been defined; see for example [69, 70]. Most of these measures are designed

to assess the quality of different automated clustering methods while using the same distance.

Our set-up is different, as we use different distances while the clustering is fixed and given by

the initial colour-coding of the sequence-representing points. Thus, we have to use other ap-

proaches to compare the distances we analyze. In particular, as the six distances have different

ranges, we have to use assessment methods which are invariant to the scale of the distance.

The “ground-truth” that we use as a basis for our distance assessment is the fact that the

“ideal” clustering of DNA sequences and the points that represent them is known: sequences

from the same organism should be close to one another and far from sequences originating

from other organisms. (This assumption is justified – for this dataset – as the six organisms

considered are very different from one another, belonging to different kingdoms of life.) Thus,

an optimal distance should yield a relatively small value for two FCGRs which were generated

from the DNA sequences originating from the same organism, and relatively high values for

two FCGRs originating from DNA sequences coming from different organisms.

In order to assess each of the six distances quantitatively, we computed three quality mea-

sures which rate different features of a distance:
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Figure 4.5: The second experiment: Two-dimensional Molecular Distance Maps of DNA
genomic sequences sampled from the entire genomes of all six organisms, obtained using
DSSIM, descriptor, Euclidean, Manhattan, Pearson and approximated information distance,
respectively. The dataset consists of 10 randomly sampled fragments from each chromosome
of multi-chromosome genomes, and all complete fragments from the genomes of E. coli and
P. furiosus, for a total of 526 fragments. Each point corresponds to one such 150 kbp fragment
from H. sapiens (blue), E. coli (green), S. cerevisiae (red), A. thaliana (turquoise), P. falci-
parum (magenta), and P. furiosus (orange).
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Figure 4.6: The second experiment: Three-dimensional Molecular Distance Maps of ge-
nomic DNA sequences sampled from the genomes of all six chosen organisms, obtained using
DSSIM, descriptor, Euclidean, Manhattan, Pearson and approximated information distance,
respectively. The dataset consists of 10 randomly sampled fragments from each chromosome
of multi-chromosome genomes, and all complete fragments from the genomes of E. coli and
P. furiosus, for a total of 526 fragments. Each point corresponds to one such 150 kbp fragment
from H. sapiens (blue), E. coli (green), S. cerevisiae (red), A. thaliana (turquoise), P. falci-
parum (magenta), and P. furiosus (orange).
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• the correlation to an idealized cluster distance

• the silhouette cluster accuracy

• the relative overlap between the intragenomic and intergenomic distance histograms.

Let us stress that all three quality measures of the six distances are based on the distance matri-

ces which we computed and not on their MDS plots. We will define the three quality measures

such that their expected values range in the interval [0, 1] where higher values correspond to

better performance.

Let us first describe the three quality measures informally. An idealized distance is a dis-

tance that would be able to differentiate DNA sequences by species, that is, a distance δ for

which δ(x, y) = 0 if x and y are sequences from the same species and δ(x, y) = 1 otherwise.

The first quality measure, the correlation to an idealized cluster distance, measures how well

a distance is linearly correlated to the idealized distance δ. The second quality measure, sil-

houette cluster accuracy, is the percentage of points that are best embedded in the cluster they

belong to. The third quality measure quantifies the “visual overlap” between the intragenomic

and intergenomic distance histograms. Given our dataset, it is reasonable to expect that a good

distance gives a low value if applied to FCGRs of genomic sequences of the same organism,

and a high value when applied to FCGRs of genomic sequences from two different organisms,

thus separating the histograms of intragenomic distances from that of intergenomic distances.

This is illustrated by the histograms in Figure 4.4, where a high overlap between the graph

of intragenomic distances (dark blue and turquoise) and the graphs of intergenomic distances

(grey) is an indication of a poorly performing distance. In a theoretically optimal situation,

there would exist a value c such that all distances that are smaller than c are intragenomic dis-

tances and all distances that are larger than c are intergenomic distances. This can usually not

be expected from real data, but a low overlap between histograms is nevertheless indicative of

a “good” distance.

In order to formally define the three quality measures, we consider a dataset V which is
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partitioned into p non-overlapping clusters C1, . . . ,Cp for which a distance dα : V × V → R≥0

exists. The cardinalities of the sets are |V | = m and |Ci| = mi for i = 1, . . . , p. In our analysis,

p = 6 and C1 contains all FCGRs generated from genomic DNA sequences from H. sapiens,

C2 contains all FCGRs generated from genomic sequences of E.coli, and so on, according to

the order in Table 4.1. The distance dα is one of the six distances α ∈ {DSSIM, D, E, M, P,

AID}.

The correlation to an idealized cluster distance is computed as follows. We define the

idealized cluster distance as a function (or matrix) δ : V × V → {0, 1} such that δ(x, y) = 0 if

and only if x and y belong to the same cluster, and δ(x, y) = 1 otherwise. Because we can view

dα and δ as discrete, symmetric functions which have the same domain, we can compute their

correlation coefficient. We define the correlation of δ to dα to be the Pearson correlation of δ

and dα. More precisely, the upper triangular part of the matrix corresponding to a distance dα

is interpreted as a vector (x1, . . . , xn) and compared with the corresponding values (y1, . . . , yn)

given by δ. We obtain the δ-correlation as

Dα =
σxy

σxσy
.

The correlation ranges in the interval [−1, 1]: a value of 1 means that dα and δ are linearly

correlated, and a value of 0 means that they are unrelated. In other words, if the value obtained

by measuring the correlation of a given distance to the idealized cluster distance is close to

1, this means that the given distance is closer to the idealized cluster distance, and hence,

performs well. Note that negative values for this measure are not expected as this would imply

that dα and δwere negatively related (dα would perform worse than a matrix containing random

entries).

The silhouette cluster accuracy is based on the silhouette coefficient defined in [71] as a

measure that determines how well a single point is embedded in the cluster to which it belongs.

For a point x from cluster Ci we define ax as the average distance of this point to all other points

in Ci, that is,
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ax =
1

mi − 1

∑
y∈Ci,y,x

dα(x, y),

and we define bx as the minimum over the average distances of x to all points of a different

cluster

bx =
K

min
j=1, j,i

 1
m j

∑
y∈C j

dα(x, y)

 .
The silhouette coefficient of x is defined as

Sα(x) =
bx − ax

max{ax, bx}
.

If a point x has a silhouette coefficient Sα(x) ≤ 0, then x is at least as close to a cluster to

which it does not belong than to its own cluster. The silhouette cluster accuracy Aα denotes

the percentage of points with a silhouette coefficient greater than 0, that is the percentage of

points which are well-embedded in their own cluster,

Aα =
|{x ∈ V | Sα(x) > 0}|

m
.

Obviously, the silhouette cluster accuracy ranges in [0, 1] with a high accuracy being desirable.

For assessing the relative overlap of the histograms, consider any two clusters Ci and C j

with i , j (for example, C1 is the H. sapiens cluster and C4 the A. thaliana cluster). We

compare the two sets of intragenomic distances Ci–Ci and C j–C j with the set of intergenomic

distances Ci–C j. For a distance dα, we divide the range from min(dα) to max(dα) in this dataset

into 100 bins of size r =
max(dα)−min(dα)

100 and count the distances which fall into this bin: ci,i[`]

denotes bin ` containing distances from Ci–Ci and ci, j[`] denotes bin i containing distances

from Ci–C j. For ` = 1, . . . , 100 we let



106Chapter 4. An investigation into inter- and intragenomic variations of graphic genomic signatures

ci′, j′[`] = |{{x, y} | x ∈ Ci′ , y ∈ C j′ and x , y

and (` − 1) · r < dα(x, y) ≤ ` · r}|.

By si′, j′ we denote the sum over all ci′, j′-bins, that is, si′, j′ =
∑100
`=1 ci′, j′[`]. We define the

relative overlap Oα(i, j) of Ci–Ci (intragenomic distances) with Ci–C j (intergenomic distances)

as

Oα(i, j) =
max{si,i, si, j}

min{si,i, si, j}
·

∑100
i=1 min{ci,i, ci, j}∑100
i=1 max{ci,i, ci, j}

.

The relative overlap Oα( j, i) of C j–C j with Ci–C j is defined analogously; note that Oα(i, j) ,

Oα( j, i) in general. The overlap is normalized to the range [0, 1] where 0 means no overlap

of elements of bins between intra- and intergenomic distances, and 1 means that one of the

histograms completely “covers” the other. Also note that we are not interested in the overlap

of Ci–Ci with C j–C j as both sets of distances are intragenomic distances.

Since we intend to define a quality measure where a value close to 1 should represent

a small overlap, we will use 1 − Oα(i, j). Furthermore, we combine these quantities for all

possible pairs of clusters Ci and C j, obtaining the relative overlap as:

Oα = 1 −
1

p(p − 1)

p∑
i=1

p∑
j=1,i, j

Oα(i, j).

For example, in Figure 4.4, for each of the considered distance, the dark blue histograms

depict the C1 − C1 (H. sapiens – H. sapiens) intragenomic distances, the turquoise histograms

the C4−C4 (A. thaliana – A. thaliana) intragenomic distances, and grey histograms the C1−C4

(H. sapiens – A. thaliana) intergenomic distances. As seen from this figure, the descriptor dis-

tance appears to visually perform best at separating the two intragenomic distance histograms

from the intergenomic histogram, while the Euclidean distance has the weakest performance.

The relative overlap attempts to quantify this by computing the overlaps of each of the two
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pairs of histograms (dark blue with grey, and turquoise with grey). Note that small visual his-

togram overlaps will result in a high numerical relative overlap, and is indicative of a better

performing distance.

4.3.2 Distance comparison results

For the first experiment (one complete chromosome from each organism) the results of ranking

the six distances, using the three quality measures, are listed in Table 4.4. Recall that all quality

measures have an expected range of [0, 1] where larger values imply better performance.

Dα Aα Oα z-score sum Rank
DSSIM 0.627 1.000 0.965 1.895 2nd
Descriptor 0.639 0.976 0.988 2.509 1st
Euclidean 0.231 0.325 0.907 −4.831 6th
Manhattan 0.527 1.000 0.951 0.84 3rd
Pearson 0.536 0.980 0.888 −0.875 5th
Approx. Inf. 0.527 1.000 0.937 0.462 4th

Table 4.4: The first experiment: Summary of quality measures for the performances of six
distances (DSSIM, descriptor, Euclidean, Manhattan, Pearson, approximated information dis-
tance) on a dataset of 508 genomic DNA sequences spanning one complete chromosome for
multi-chromosomes organisms and the complete genome otherwise, of one organism from each
kingdom of life. Dα is the correlation to an idealized cluster,Aα the silhouette cluster accuracy,
and Oα the relative overlap. Higher is better.

To compare each distance relative to all the other distances, we compute for each quality

measure (each column) the standard scores (z-scores) of each distance dα, where α ∈ {DSSIM,

D, E, M, P, AID}, as z(dα) =
dα−µ
σ

where µ is the mean and σ is the deviation for that particular

quality measure (column). A positive value of the standard score will mean that a distance

performs above average (in this category) and a negative value that it performs below average.

Finally, we compute the sum of the z-scores for each quality measure as seen in Table 4.4,

second last column. Note that the total of z-scores for a distance represents the performance of

that distance relative to the other distances, and indicates its relative ranking.

Table 4.5 contains the results of the distance comparison for the second experiment, that
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sampled 10 fragments from each chromosome. Interestingly, the ranking of distances is the

same for both experiments.

Dα Aα Oα z-score sum Rank
DSSIM 0.729 1.000 0.964 1.980 2nd
Descriptor 0.726 0.998 0.984 2.336 1st
Euclidean 0.438 0.608 0.861 −5.292 6th
Manhattan 0.662 1.000 0.955 1.172 3rd
Pearson 0.639 0.949 0.875 −0.954 5th
Approx. Inf. 0.637 1.000 0.946 0.759 4th

Table 4.5: The second experiment: Summary of quality measures for the performances of
six distances (DSSIM, descriptor, Euclidean, Manhattan, Pearson, approximated information
distance) on a dataset of 526 genomic DNA sequences sampled randomly (10 fragments per
chromosome for multi-chromosome organisms, and all fragments of the genome otherwise)
from the genomes of organisms from each kingdom of life. Dα is the correlation to an idealized
cluster,Aα the silhouette cluster accuracy, and Oα the relative overlap. Higher is better.

The conclusion of these analyses is that the best performing distances for this dataset are

the descriptor distance and DSSIM. The Manhattan, Pearson, and approximate information

distances perform well in some categories but not so well in other categories. For this dataset

and value of k, the Euclidean distance had the weakest performance in all measured categories,

which confirms the visual assessment of the MDS plots obtained by using the Euclidean dis-

tance, as seen in Figure 4.2 and Figure 4.3.

It is worth noting that the two distances which perform best (DSSIM and descriptor) treat

FCGR matrices as two-dimensional maps in which the local arrangement of the cells (matrix

entries) influences the computed distance, whereas the other distances treat the FCGR matrices

as linear vectors. This suggests that the organization of the k-mer tallies (in this paper k = 9) of

a DNA sequence as an FCGR matrix, rather than a simple vector, reveals structural properties

of the DNA sequence that could be utilized in order to identify and classify genomic DNA

sequences.
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4.4 Discussion and Conclusions

In this study we test, at the kingdom level, the hypothesis that CGR-based genomic signatures

of genomic DNA sequences are indeed species and genome-specific. With this goal in mind

we first analyzed over five hundred 150 kbp DNA genomic sequences spanning one complete

chromosome from each of six organisms, representing all kingdoms of life. We then separately

analyzed over five hundred 150 kbp genomic sequences randomly sampled from the complete

genomes of all organisms considered.

Our quantitative comparison of six different distances suggests that several other distances

outperform the Euclidean distance, which has been until now almost exclusively used in such

studies. Our preliminary results show that two of these distances, DSSIM and descriptor dis-

tance (introduced here) when applied to CGR-based genomic signatures, have indeed the abil-

ity to differentiate between DNA sequences coming from different species at this taxonomic

level. This indicates that the k-mer sequence composition (where k = 1, 2, ..., 9) of genomic

sequences contains taxonomic information which could potentially aid in the identification,

comparison and classification of species based on molecular evidence. The two-dimensional

and three-dimensional Molecular Distance Maps we obtain, which visualize the simultaneous

intragenomic and intergenomic interrelationships among the sequences in our dataset, show

this method’s potential.

Further analysis is needed to explore this method’s applicability to the genomic species

identification and classification at lower taxonomic levels. As a preview experiment, we ap-

plied it to 240 fragments, randomly sampled from the entire genome of H. sapiens (10 frag-

ments per chromosome), and 210 fragments randomly sampled from the entire genome of

M. musculus (10 fragments per chromosome). See [59], Appendix B, for dataset details.

The Molecular Distance Maps of these 450 DNA sequences, 150 kbp each (see Figure 4.7

and Figure 4.8) suggest that several of the distances are able to differentiate between DNA

sequences at lower taxonomic levels. As seen in Table 4.6, the Euclidean distance was again

outperformed by other distances, when assessed with the quality measures we described. How-
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ever, we note a change in the distance rankings, with Pearson and DSSIM ranking first and re-

spectively second, and the descriptor distance ranking last. This may be because the descriptor

distance is able to identify large pattern-differences between CGR images, which may be more

suitable when comparing genomic sequences at high taxonomic levels, while DSSIM is good

at picking up subtle differences between similar CGR images and thus it may be better suited

to comparing genomic sequences from more closely related species. Overall, this suggests that

different distances may have to be chosen, depending on the taxonomic level of the analysis.

Dα Aα Oα z-score sum Rank
DSSIM 0.422 1.000 0.618 3.014 2nd
Descriptor 0.032 0.560 0.063 −3.347 6th
Euclidean 0.079 0.658 0.318 −1.558 4th
Manhattan 0.209 0.969 0.336 0.601 3rd
Pearson 0.531 0.993 0.647 3.643 1st
Approx. Inf. 0.101 0.578 0.195 −2.353 5th

Table 4.6: The preview experiment: Summary of quality measures for the performances of
six distances (DSSIM, descriptor, Euclidean, Manhattan, Pearson, approximated information
distance) on a dataset of 450 DNA sequences, sampled from the entire genome (10 fragments
per chromosome) of H. sapiens and M. musculus. Dα is the correlation to an idealized cluster,
Aα is the silhouette cluster accuracy, and Oα is the relative overlap. Higher is better.

Further large-scale computational experiments have to be carried out to confirm these pre-

liminary results and establish their validity, as well as to establish the applicability of this

method to genomic sequences identification and classification at lower taxonomic levels. Such

experiments could provide additional insights regarding the choice of optimal distance for

structural genomic sequence comparisons in different settings.
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Figure 4.7: The preview experiment: Two-dimensional Molecular Distance Maps of 150 kbp
genomic DNA sequences, randomly sampled from each chromosome (10 fragments per chro-
mosome) of H. sapiens (blue), M. musculus (fuchsia) using the six distances.
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Figure 4.8: The preview experiment: Three-dimensional Molecular Distance Maps of 150 kbp
genomic DNA sequences, randomly sampled from each chromosome (10 fragments per chro-
mosome) of H. sapiens (blue), M. musculus (fuchsia) using the six distances.
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Chapter 5

Additive methods for genomic signatures1

5.1 Background

Motivated by the general need to identify and classify species based on molecular evidence,

alignment-free genome comparisons have been proposed, based on comparing Chaos Game

Representations (CGR) of genomic DNA sequences. The CGR of a DNA sequence, proposed

by Jeffrey [1, 2], is a graphical representation of a DNA sequence, where the patterns in the

image correspond to the frequencies of k-mers in the sequence. Deschavanne et al. [3, 4] were

the first to suggest that CGR is a good candidate for the role of “genomic signature” defined by

Karlin and Burge [5] as any specific quantitative characteristic of a sequence that is pervasive

along the genome, while being dissimilar for sequences originating from organisms of different

species.

CGR is one of a variety of alignment-free methods (see [6, 7, 8, 9, 10, 11] for detailed lit-

erature reviews) that have been proposed for sequence and genome comparisons, as a compu-

tationally efficient approach that performs well even with DNA sequences that have nothing or

little in common. (We use the following notational conventions for genomic DNA: nDNA (nu-

clear/nucleoid DNA), mtDNA (mitochondrial DNA), cpDNA (chloroplast DNA), and pDNA

1A version of this chapter was published (R. Karamichalis, L. Kari, S. Konstantinidis, S. Kopecki and S.
Solis-Reyes, “Additive methods for genomic signatures”, BMC Bioinformatics, 17:313 (2016))
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(plasmid DNA).)

Initially, CGR images were only qualitatively analyzed [12, 13, 14], and Dutta et al. and

Goldman both advanced the suggestion that CGR images represent no more information than

second-order Markov chains [15, 16], which was later disproven by Almeida et al. [17, 18]

and others [19, 20]. CGR has been applied extensively to phylogenetics together with the

Euclidean distance, for instance on nDNA fragments from various domains [3], 27 genomes

from various genera [4], 125 nDNA fragments from several bird genomes [21], 26 mtDNA

sequences (also with the Pearson distance and a custom image distance) [19], 4 bacteria and

about 200 phages [22], 75 HIV-1 genomes [23], 10 mtDNA sequences and 14 nDNA sequences

from plants in the Brassicales order [24]. Other distances have also been used, for instance the

DSSIM image distance on a set of 3,176 mtDNA sequences [20], and six different distances

on 174 million base pairs of sampled nDNA fragments from organisms of all major king-

doms of life [25]. The performance of several distance functions has also been compared and

benchmarked on their accuracy in constructing phylogenetic trees [26, 27, 28, 29, 30, 31, 32].

Initially, CGR was used only for strings over a 4-letter alphabet (like DNA), but generaliza-

tions have been proposed to peptide sequences [33, 34, 35, 36, 37, 38], and Almeida and Vinga

proposed a derivative of CGR called the Universal Sequence Map (USM), which is suitable for

alphabets of any size [39, 40]. CGRs have also been subjected to multifractal analysis (which

measures the degree of self-similarity within the image), see, e.g., [35, 41, 42, 43, 44, 45, 46].

Lastly, CGR has been used to estimate sequence entropy [47, 48, 49], to speed up local-

alignment algorithms [50], and has been used together with neural networks to classify HPV

genomes by genotype [51].

Several CGR studies [13, 52, 20] observed that CGR patterns of nuclear and organellar

DNA sequences of the same organism can be completely different. While the hypothesis that

CGRs of mitochondrial DNA sequences can play the role of genomic signatures was tested and

validated on the set of all 3,176 sequenced mitochondrial genomes (totalling 91.3 megabase

pairs) available in the NCBI GenBank sequence database in July 2012 [20], to our knowledge
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no such extensive analysis of CGRs of nuclear/nucleoid genomic sequences exists to date.

The main contributions of this paper are:

• We present an extensive analysis of the hypothesis that conventionally computed (called

herein “conventional”) nDNA signatures can play the role of genomic signatures at mul-

tiple taxonomic levels, from kingdom to species. Our dataset totals 1.45 gigabase pairs

of nDNA sequences from 42 different genomes, from all major kingdoms of life.

• Our analysis indicates that conventional nDNA signatures of two different origins cannot

always be differentiated, especially if they originate from closely related organisms. To

address this issue, we propose taking into account information obtained from organellar

DNA, in addition to nDNA. More generally, we propose the concept of an additive DNA

signature of a set (collection) of DNA sequences, and define two particular instances:

composite DNA signatures and assembled DNA signatures.

• We explore composite DNA signatures, which combine conventional nDNA signatures

with organellar DNA signatures (mtDNA, cpDNA, or pDNA) of the same organism. We

demonstrate that, in this dataset, the composite DNA signatures originating from two

different organisms can be differentiated in all cases, including those where the use of

conventional nDNA signatures failed. In particular, composite DNA signatures from

genomes of species as closely related as H. sapiens and P. troglodytes, or E. coli and

E. fergusonii, can be successfully separated.

• We explore assembled DNA signatures, which combine information from many short

contigs (e.g., 100 bp) of a DNA fragment to produce a recognizable signature. This is in

contrast to conventional DNA signatures wherein one single long (thousand to hundreds

of thousands of basepairs) DNA sequence is needed to generate a recognizable signature.

The enhanced discriminating power of composite DNA signatures, and the ability of assembled

DNA signatures to operate with scattered and reduced sequence data, open the possibility of
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practical applications including aiding species identification or classification, and comparisons

of DNA fragments of various origins such as genomes of extinct organisms, synthetic genomes,

raw unassembled next-generation sequencing (NGS) read data, or even computer-generated

DNA sequences.

5.2 Results

The first objective of this study was to test, on a comprehensive dataset, the hypothesis that

conventional nDNA signatures can be used to differentiate between nuclear DNA sequences

originating from different organisms, spanning all major kingdoms of life, at multiple taxo-

nomic levels.

To this end, the following computational experiment was performed, for each of the major

kingdoms of life, at various taxonomic levels. We chose a pivot organism (e.g., H. sapiens for

Kingdom Animalia) and proceeded to use conventional nDNA signatures to compare fragments

of its nuclear/nucleoid genome with fragments of the nuclear/nucleoid genome of one other

organism from the same kingdom. The process was then repeated with the second organism

being at increasing degrees of relatedness to the pivot organism.

More precisely, for each such pairwise comparison, the following three-step process was

implemented.

Step 1. Randomly sample 150 kbp nDNA fragments from every chromosome (20 per

chromosome, or all fragments if fewer) of the two genomes involved in the comparison. For

each such nDNA fragment, construct its corresponding conventional nDNA signature using the

process described in Section 5.4.

Step 2. Compute pairwise distances for all pairs of conventional nDNA signatures gen-

erated in Step 1. The distance used to start with was an approximated information distance

(AID), formally defined in Section 5.4 (see also [53, 25]), since it is computationally sim-

ple and uses the least amount of sequence information. If separation was not achieved using
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AID, five other distance measures were used: Structural Dissimilarity Index (DSSIM) [54],

Euclidean distance, Pearson correlation distance [55], Manhattan distance [56], and descriptor

distance [25].

Step 3. Use the distance matrix obtained in Step 2 as input to a Multi-Dimensional Scal-

ing (MDS) algorithm to produce a 3D Molecular Distance Map [25]: Each point in the map

corresponds to (the conventional nDNA signature of) an nDNA fragment from Step 1, and

the geometric distance between every two points corresponds to the distance between the re-

spective conventional nDNA signatures in the distance matrix. Assess, for each Molecular

Distance Map, whether or not separation between conventional nDNA signatures of DNA frag-

ments from the pivot organism and those from the other organism was achieved, by using either

k-means clustering [57] or by verifying the existence of a separating plane.

Figure 5.1 illustrates an example of the end result of this three-step process: A three-

dimensional Molecular Distance Map that displays the conventional nDNA signatures of the

pivot organism of Kingdom Animalia, H. sapiens, plotted together with the conventional nDNA

signatures of D. melanogaster.

The results for all kingdoms are presented in Table 5.2 (the first two result columns) and the

corresponding 3D Molecular Distance Maps can be found in [58]. For Kingdom Animalia, the

approximated information distance succeeded to separate H. sapiens (24 chromosomes, 480

fragments) conventional nDNA signatures from those of other organisms, down to and includ-

ing from M. murinus (grey mouse lemur, same order but different suborder) and T. syrichta

(Phillipine tarsier, same suborder but different infraorder). In the cases marked Y* in Table

5.2, while the accuracy was less than the threshold for separation (85%), the existence of a

separating plane was verified. See discussion in Section 5.4 for details.
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Figure 5.1: 3D Molecular Distance Map illustrating interrelationships among con-
ventional nDNA signatures of 480 randomly sampled 150 kbp nuclear genomic frag-
ments from H. sapiens (blue) and 128 randomly sampled 150 kbp nuclear genomic
fragments from D. melanogaster (orange). The accuracy of separation is 97.2%.
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Table 5.1: Each subtable summarizes, for a given kingdom, the results of pairwise comparisons
between DNA signatures of fragments from a pivot organism (blue) and those from one other
organism, at increasing levels of relatedness. The first two result columns indicate the outcome
of the comparisons of conventional nDNA signatures, and the last two columns the compar-
isons of composite DNA signatures. Green indicates that separation was achieved with AID,
red indicates that separation was not achieved with any of the six distances listed in Section
5.2, and yellow (Y/N) or Y* indicate results discussed in the text. The columns labelled Acc %
indicate the accuracy of the separations listed immediately at their left: Acc > 85% was con-
sidered separation. A dash indicates that no sequenced data was available on NCBI/GenBank
at the time of this submission. The corresponding 3D Molecular Distance Maps for each of the
comparisons can be found in [58].

Animalia

H. sapiens vs. Common taxon Different taxon nDNA Acc % nDNA+mtDNA Acc%

D. melanogaster Kingdom: Animalia Phylum: Arthropoda Y 97.2 Y 100

G. gallus Phylum: Chordata Class: Aves Y* 65.25 Y 100

M. musculus Class: Mammalia Order: Rodentia Y* 50.6 Y 100

M. murinus Order: Primates Suborder: Strepsirrhini Y* 57.04 Y 100

T. syrichta Suborder: Haplorhini Infraorder: Tarsiiformes Y* 62.65 Y 100

C. jacchus Infraorder: Simiiformes Parvorder: Callitrichidae N 50.36 Y 100

P. anubis Parvorder: Catarrhini Family: Cercopithecidae N 51 Y 100

N. leucogenys Superfamily: Hominoidea Family: Hylobatidae N 52.9 Y 100

P. abelii Family: Hominidae Subfamily: Ponginae N 50.41 Y 100

G. gorilla gorilla Subfamily: Homininae Genus: Gorilla N 50.72 Y 100

P. troglodytes Tribe: Hominini Genus: Pan N 52.34 Y 100
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Fungi

S. cerevisiae vs. Common taxon Different taxon nDNA Acc % nDNA+mtDNA Acc%

C. gattii Kingdom: Fungi Phylum: Basidiomycota Y 100 — —

F. oxysporum Phylum: Ascomycota Class: Sordariomycetes Y 100 Y 100

— Class: Saccharomycetes Order: — — — — —

K. pastoris Order: Saccharomycetales Family: Phaffomycetaceae Y* 65.6 — —

C. dubliniensis Family: Saccharomycetaceae Genus: Candida Y 100 — —

S. arboricola Genus: Saccharomyces Species: S. arboricola Y/N 59 Y 100

Plantae

B. napus vs.
Common taxon Different taxon nDNA Acc %

nDNA+mtDNA/
Acc%

nDNA+cpDNA

M. pusilla Kingdom: Plantae Phylum: Chlorophyta Y 98.04 Y/Y 100

P. patens Unranked: Embryophyta Unranked: Bryophyta Y 98.26 Y/Y 100

M. domestica Unranked: Rosids Unranked: Fabids Y 100 Y/Y 100

C. papaya Order: Brassicales Family: Caricaceae Y 99.67 Y/Y 100

A. thaliana Family: Brassicaceae Tribe: Camelineae N 70 Y/Y 100

R. sativus Tribe: Brassiceae Genus: Raphanus N 65.4 Y/Y 100

B. oleracea Genus: Brassica Species: B. oleracea N 62.85 Y/Y 100

Protista

P. falciparum vs. Common taxon Different taxon nDNA Acc % nDNA+mtDNA Acc%

O. trifallax Kingdom: Protista Phylum: Ciliophora Y 100 — —

T. gondii Phylum: Apicomplexa Class: Conoidasida Y 100 — —

T. orientalis Class: Aconoidasida Order: Piroplasmida Y 100 — —

— Order: Haemosporida Family: — — — — —

— Family: Plasmodiidae Genus: — — — — —

P. vivax Genus: Plasmodium Species: P. vivax Y 99.65 Y 99.65
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Bacteria

E. coli vs. Common taxon Different taxon nDNA Acc % nDNA+pDNA Acc%

S. aureus Kingdom: Bacteria Phylum: Firmicutes Y 100 — —

H. pylori Phylum: Proteobacteria Class: Epsilonproteobacteria Y 100 — —

A. baumannii Class: Gammaproteobacteria Order: Pseudomonadales Y 100 Y 100

— Order: Enterobacteriales Family: — — — — —

S. enterica Family: Enterobacteriaceae Genus: Salmonella Y 87.5 Y 100

E. fergusonii Genus: Escherichia Species: E. fergusonii N 50 Y 100

Archaea

P. furiosus vs. Common taxon Different taxon nDNA Acc % — —

S. islandicus Kingdom: Archaea Phylum: Crenarchaeota Y 100 — —

M. smithii Phylum: Euryarchaeota Class: Methanobacteria Y 100 — —

— Class: Thermococci Order: — — — — —

— Order: Thermococcales Family: — — — — —

Thermococcus sp. AM4 Family: Thermococcaceae Genus: Thermococcus Y 100 — —

P. yayanosii Genus: Pyrococcus Species: P. yayanosii Y 100 — —

The use of conventional nDNA signatures failed to achieve separation for genomes of more

closely related species. In particular, it failed to separate conventional nDNA signatures of

H. sapiens from those of C. jacchus (common marmoset, same infraorder), P. anubis (Anu-

bis baboon, same parvorder), N. leucogenys (northern white-cheeked gibbon, same superfam-

ily), P. abelii (Sumatran orangutan, same family), G. gorilla (gorilla, same subfamily, and

P. troglodytes (chimpanzee, same tribe, see Figure 5.2). For those organisms where separation

was not achieved with approximated information distance, we performed the comparisons with

the other five distances. The results of these multiple computations were that, in all cases where

approximated information distance failed to achieve separation, the other distances also failed.

For Kingdom Fungi, the pivot organism is the model organism Saccharomyces cerevisiae

(16 chromosomes, 73 fragments), a species of yeast instrumental to winemaking, baking, and

brewing. Separation of its conventional nDNA signatures was achieved down to and including

separation from C. dubliniensis (same family, different genus). In the case of the comparison

with K. pastoris, marked with Y* in Table 5.2, the accuracy score was lower than 85%: This
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Figure 5.2: 3D Molecular Distance Map illustrating interrelationships among con-
ventional nDNA signatures of 480 randomly sampled nuclear genomic fragments
from H. sapiens (blue) and 500 randomly sampled nuclear genomic fragments from
P. troglodytes (red). All fragments are 150 kbp long, the accuracy of separation is
52.34%, and no separation plane could be found.
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is an artifact of the shape of the 3D Molecular Distance Map wherein one of the clusters has

a trailing set of points that become erroneously separated by k-means from all the rest of the

points. Because of this, and since the use of k-means on the 2D Molecular Distance Map of

the same dataset resulted in an accuracy score of 100%, we interpreted this comparison as

resulting in separation. The results of the comparison between the conventional nDNA signa-

tures of the pivot organism and those of S. arboricola (same genus, different species), were

inconclusive: The use of Euclidean and Pearson distances resulted in separation (both with

accuracy of 88.48%), while the use of the other four distances (DSSIM, Manhattan, descriptor,

approximated information distance) did not result in separation.

For Kingdom Plantae, the pivot organism is the model organism Brassica napus (19 chro-

mosomes, 380 DNA fragments), rapeseed, a flowering member of the family Brassicaceae

(mustard or cabbage family). Separation of its conventional nDNA signatures was achieved

down to and including separation from C. papaya (papaya, same order, different family). For

the comparisons with A. thaliana (thale cress, same family, different tribe) and R. sativus

(radish, same tribe, different genus), cluster separation was visually observed but not quan-

titatively confirmed by either k-means or plane separation. The comparison with B. oleracea

(wild cabbage, same genus, different species) did not result in separation, with any of the six

distances.

For Kingdom Protista, the pivot organism is the model organism Plasmodium falciparum, a

protozoan parasite (14 chromosomes, 149 DNA fragments), one of the species of Plasmodium

that cause malaria in humans. Separation of its conventional nDNA signatures from those of

other organisms from the same kingdom was achieved at all taxonomic levels, down to and

including separation from P. vivax (same genus, different species).

For Kingdom Bacteria, the pivot organism is the model organism Escherichia coli (20 ge-

nomic DNA fragments), a bacterium commonly found in the lower intestine of warm-blooded

organisms. Separation of its conventional nDNA signatures from those of other bacteria was

successful down to and including separation from S. enterica (same family, different genus),
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but failed with all six distances in the comparison with E. fergusonii (same genus, different

species).

For Kingdom Archaea, the pivot organism is the model organism Pyrococcus furiosus (12

genomic DNA fragments), an extremophilic species of Archaea. Separation of its conven-

tional nDNA signatures from those of other archaea was successful at all levels, down to and

including separation from P. yayanosii (same genus, different species).

The above results indicate that, especially in kingdom Animalia, conventional nDNA sig-

natures cannot always be used to differentiate nuclear/nucleoid genomic sequences originating

from two different genomes. This suggests that conventional nDNA signatures cannot always

play the role of a “genomic signature”, particularly when the genomes being compared belong

to closely related species.

5.2.1 Composite DNA signatures

To enhance the discriminating power of conventional nDNA signatures, our second objective

was to introduce and explore the concept of composite DNA signatures, which combine con-

ventional nuclear/nucleoid DNA signatures with signatures of organellar genomes (mtDNA,

cpDNA, or pDNA).

To test the discriminating power of composite DNA signatures, we repeated all previous

pairwise comparisons (where sequenced organellar DNA was available), using this time com-

posite DNA signatures. The results are presented in the last two columns of Table 5.2.

For Kingdoms Animalia, Fungi and Protista we used composite DNA signatures combining

the conventional nDNA signature of each nuclear/nucleoid genomic fragment with that of the

mtDNA of the same organism (when available). Using such composite DNA signatures, differ-

entiation of DNA signatures by organism was successful in all cases, including all cases where

the use of conventional nDNA signature previously failed or was inconclusive. See Figure 5.2

(H. sapiens vs. P. troglodytes conventional nDNA signatures, no separation) versus Figure 5.3

(H. sapiens vs. P. troglodytes composite DNA signatures using nDNA and mtDNA, complete
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separation).

Figure 5.3: 3D Molecular Distance Map illustrating interrelationships among com-
posite DNA signatures using nDNA and mtDNA, of 480 DNA fragments from H.
sapiens (blue) and 500 DNA fragments from P. troglodytes (red). The accuracy of
separation is 100%.

To test the discriminating power of composite DNA signatures using nDNA, mtDNA and

cpDNA, we employed them to perform comparisons for all genome pairs from Kingdom

Plantae. Separation was achieved using all of: composite DNA signatures using nDNA and

mtDNA, composite DNA signatures using nDNA and cpDNA, and composite DNA signatures

using nDNA, mtDNA, and cpDNA. See Figure 5.4 for the Molecular Distance Maps illustrat-
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ing the relationships between these signatures for B. napus and B. oleracea.

(a) (b)

(c) (d)

Figure 5.4: 3D Molecular Distance Map illustrating interrelationships among signa-
tures of 380 DNA fragments from B. napus (magenta) and 180 DNA fragments from
B. oleracea (brown) using (a) conventional nDNA signatures, (b) composite DNA
signatures using nDNA and mtDNA, (c) composite DNA signatures using nDNA and
cpDNA, and (d) composite DNA signatures using nDNA, mtDNA, and cpDNA. The
accuracy of separation is 63.03% for (a), and 100% for each of (b), (c), and (d).

For Kingdom Bacteria, the use of composite DNA signatures combining nDNA and pDNA

(when available) resulted in separation in all cases.

Overall, the use of composite DNA signatures resulted in separation in all pairwise compar-

isons in Table 5.2 (where organellar DNA sequencing data was available), including in those
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where the use of conventional nDNA signature failed or resulted in inconclusive separations.

5.2.2 Assembled DNA signatures

As the third objective of this study, we explored a way to enhance the practical applicability

of conventional DNA signatures. Recall that, to produce a recognizable visual pattern that can

be reliably used to represent a genome, a conventional DNA signature needs as input a long

contiguous (two to several hundred kilobase pairs) DNA fragment. This assumes a high quality

and reliability of sequencing and assembly, which are not always available. We propose instead

to approximate a conventional signature by an assembled DNA signature, which combines the

conventional DNA signatures of many short contigs (e.g., 100 bp) of the given fragment. Note

that these contigs need not cover the entire DNA fragment.

In what follows, we denote by |s| the length of the sequence s. Given a DNA fragment

s, an assembled DNA signature of s, using r equi-length contigs of length n (subfragments

of the sequence s), is defined as the sum of the conventional DNA signatures of all of the r

contigs. A particular case of assembled DNA signature is where the fragment s is partitioned

into equi-length, consecutive, non-overlapping contigs, that is, s = s1s2 . . . sr sr+1, and |si| = n

for 1 ≤ i ≤ r, with |sr+1| < n. In this case, we call the assembled signature a fully-assembled

DNA signature of the sequence s, using equi-length contigs of length n.

Table 5.2 ((A) through (C)) presents a comparison between the conventional nDNA signa-

ture of a given DNA fragment and its assembled DNA signatures, as well as fully-assembled

DNA signatures, for various values of contig length n, and number of contigs r. The DNA

fragment used is from H. sapiens, chromosome 21, fragment 20 (from position 2,850,001 to

3,000,000 after removing all Ns in the original sequence), and the distance used is approxi-

mated information distance between CGRs with k = 9. For example, the distance between

the conventional nDNA signature and the fully-assembled DNA signature of the same frag-

ment, that uses 1,000 contigs of length 150 bp each, is 0.03 (row 2, column (A)). This value is

very small, given that approximated information distance theoretically ranges between 0 and
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n r (A) (A′) (B) r (C) r (B′) r (C′)
100 1500 0.05 0.13 0.29 4500 0.042 1475 0.32 4434 0.041
150 1000 0.03 0.09 0.29 3000 0.034 1000 0.29 2999 0.040
200 750 0.02 0.07 0.28 2250 0.033 750 0.29 2250 0.038
300 500 0.02 0.04 0.28 1500 0.030 500 0.28 1500 0.038
500 300 0.01 0.03 0.26 900 0.037 300 0.28 900 0.033

1000 150 0.005 0.01 0.30 450 0.030 150 0.25 450 0.039
2000 75 0.003 0.007 0.30 225 0.041 75 0.26 225 0.023
3000 50 0.002 0.004 0.25 150 0.044 50 0.29 150 0.021

10000 15 0.0004 0.001 0.30 45 0.053 15 0.25 45 0.045
15000 10 0.0003 0.0008 0.24 30 0.12 10 0.23 30 0.079
30000 5 0.0001 0.0004 0.36 15 0.13 5 0.41 15 0.058

Table 5.2: (A) through (C) – Distances between the conventional nDNA signature of a fragment
and its assembled DNA signatures, for various numbers r of contigs of the same length n:
(A) distances to fully-assembled DNA signatures; (A′) theoretical upper bounds for (A); (B)
distances to assembled DNA signatures; (C) same as (B), when tripling the number of contigs.
(B′) through (C′) – Distances between the conventional nDNA signature of a fragment and
its assembled DNA signatures, using variable-length contigs taken from a normal distribution
N(n, σ), with mean n and variance σ = 40. The nDNA fragment used was from H. sapiens,
chromosome 21, fragment 20 (from position 2,850,001 to 3,000,000 after removing all Ns in
the original sequence).

1. This suggests that, for these parameter values (n = 150 and r = 1, 000), a fully-assembled

DNA signature can be an excellent approximation of the conventional DNA signature of the

same fragment. This was expected, given that the only information lost in the computation of

a fully-assembled DNA signature, when using the approximated information distance, is the

information about the k-mers situated at the borders between contigs.

Also as expected, for the same values of n and r, the distance between an assembled DNA

signature and the conventional nDNA signature of the same fragment (Table 5.2, Column (B))

is higher than the one between a fully-assembled DNA signature and the conventional nDNA

signature of the same fragment (Table 5.2, (A)). This indicates that the assembled DNA sig-

nature is less performant than the fully-assembled DNA signature as an approximation of a

conventional nDNA signature. The reason is that, given a fixed number r of contigs, in the

case of an assembled DNA signature the contigs are allowed to overlap and need not cover

the entire fragment. This can be compensated by increasing the coverage, that is, the number
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r of contigs. Table 5.2, (C) shows that tripling the number of contigs results in significantly

smaller differences between assembled DNA signatures and the conventional DNA signature

of the same fragment which they were meant to approximate.

The results in Table 5.2 suggest that assembled DNA signatures have the potential to play

the role of “genomic signatures”, and be used directly on raw unassembled next-generation

sequencing read data, or in cases where other methods are not directly applicable because high-

quality sequencing data is not available. To test this hypothesis, we considered the organism

pairs in Table 5.2 for which separation was obtained using conventional nDNA signatures, and

attempted to reproduce these successful separations using assembled DNA signatures instead.

In addition, we empirically sought to find, in each case, the coverage (amount of sequence

data) needed to achieve separation, as a percentage of total fragment length.

To determine the threshold interval where separation between assembled DNA signatures

of a given pair of organisms was achieved, when contigs of length n = 300 were used, the

following process was employed. For various values of t, 0 ≤ t ≤ 1 (representing the frag-

ment coverage, e.g., t = 0.5 means that 50% of the fragment data was used), we attempted to

see if separation of assembled DNA signatures from the two organisms was achieved, in the

following way.

For each of the 150 kbp fragments s from the two genomes, q random positive integers

were picked from the interval 1 to |s| − n + 1 = (150, 000 − 300 + 1), where q = bt ∗ |s|/nc, that

is, the integer part of t ∗ |s|/n. These q numbers represent the start positions of the q chosen

contigs. For each contig start position, a contig of length n = 300 was read and used for the

assembled DNA signature of the fragment s.

For each value of t, the corresponding 3D Molecular Distance Map of the assembled DNA

signatures of the two organisms was then analyzed, by verifying the existence (or absence) of

a separating plane.

The results are summarized in Table 5.2.2 and can be interpreted as follows. In the compari-

son between H. sapiens and D. melanogaster the threshold interval is 1% - 5%. The lower limit
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of this interval is 1%, and this means that in the computation using the coverage value t = 0.01

(implying q = b0.01 ∗ 150, 000/300c = 5), separation was not achieved. That is, for each of

the 150 kbp nDNA fragments available (480 from H. sapiens and 128 from D. melanogaster),

when employing assembled nDNA signatures using only 5 contigs per fragment (for a max-

imum of 1% of each fragment length, that is, 1,500 bp per fragment), separation was not

achieved. The upper limit of the interval is 5%, and this means that in the computation using

the coverage value t = 0.05 (implying q = 25), separation was achieved. That is, when em-

ploying assembled nDNA signatures using 25 contigs per fragment (for a maximum of 5% of

each fragment length, that is, 7,500 bp per fragment), separation was achieved.
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Table 5.3: Each subtable summarizes, for a given kingdom, the results of pairwise comparisons
between DNA signatures of fragments from a pivot organism (blue) and those from one other
organism, at increasing levels of relatedness. The first two result columns indicate the outcome
of the comparisons of conventional nDNA signatures, and the last two columns the compar-
isons of composite DNA signatures. Green indicates that separation was achieved with AID,
red indicates that separation was not achieved with any of the six distances listed in Section
5.2, and yellow (Y/N) or Y* indicate results discussed in the text. The columns labelled Acc %
indicate the accuracy of the separations listed immediately at their left: Acc > 85% was con-
sidered separation. A dash indicates that no sequenced data was available on NCBI/GenBank
at the time of this submission. The corresponding 3D Molecular Distance Maps for each of the
comparisons can be found in [58].

Animalia

H. sapiens vs. Different taxon Thresh.

D. melanogaster Phylum: Arthropoda 1% - 5%

G. gallus Class: Aves 3% - 10%

M. musculus Order: Rodentia 10% - 20%

M. murinus Suborder: Strepsirrhini 60% - 80%

T. syrichta Infraorder: Tarsiiformes 20% - 40%

Fungi

S. cerevisiae vs. Different taxon Thresh.

C. gattii Phylum: Basidiomycota 0.5% - 2%

F. oxysporum Class: Sordariomycetes 0.5% - 2%

K. pastoris Family: Phaffomycetaceae 2% - 10%

C. dubliniensis Genus: Candida 2% - 10%

Plantae

B. napus vs. Different taxon Thresh.

M. pusilla Phylum: Chlorophyta 2% - 3%

P. patens Unranked: Bryophyta 3% - 4%

M. domestica Unranked: Fabids 4% - 5%

C. papaya Family: Caricaceae 4% - 5%
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Protista

P. falciparum vs. Different taxon Thresh.

O. trifallax Phylum: Ciliophora 0.5% - 2%

T. gondii Class: Conoidasida 0.5% - 2%

T. orientalis Order: Piroplasmida 0.5% - 2%

P. vivax Species: P. vivax 0.5% - 2%

Bacteria

E. coli vs. Different taxon Thresh.

S. aureus Phylum: Firmicutes 0.5% - 2%

H. pylori Class: Epsilonproteobact. 0.5% - 2%

A. baumannii Order: Pseudomonadales 0.5% - 2%

S. enterica Genus: Salmonella 10% - 20%

Archaea

P. furiosus vs. Different taxon Thresh.

S. islandicus Phylum: Crenarchaeota 0.5% - 2%

M. smithii Class: Methanobacteria 0.5% - 2%

Thermococcus Genus: Thermococcus 0.5% - 2%

P. yayanosii Species: P. yayanosii 0.5% - 2%

The actual threshold values lie in the intervals listed, and may be subject to the quality of the

sequencing. As expected, in general, the thresholds needed for separation increase with the in-

crease in the degree of relatedness of the organisms being compared. This suggests that nDNA
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sequences from closely related organisms require a higher coverage (that is, a higher amount

of information from each sequence) to be separated. The only exception to this trend, in this

dataset, were the pairs H. sapiens with M. murinus (gray mouse lemur) requiring 60% - 80%

sequence coverage, and H. sapiens and T. syrichta (Philippine tarsier) requiring 20% - 40% se-

quence coverage. Thus, the (human, lemur) pair required higher sequence coverage to achieve

separation than the (human, tarsier) pair, even though the gray mouse lemur belongs to a dif-

ferent primate suborder (Haplorrhini) than the modern human, while the tarsier belongs to the

same primate suborder as the modern human (Strepsirrhini), and thus one would expect that

more information would be needed to achieve the latter separation. This apparent anomaly may

be partly related to the fact that the phylogenetic placement of tarsiers within the order Primates

has been controversial for over a century [59]: In [60] tarsiers are placed within Haplorrhini,

while according to [61, 20], mitochondrial DNA evidence places tarsiiformes as a sister group

to Strepsirrhini.

Table 5.2.2 indicates that the amount of DNA fragment information needed to achieve

separation, at the same taxonomic level, can differ from one kingdom to another. For example,

in Kingdom Animalia, conventional nDNA signatures of organisms from two species of a

different species (H. sapiens and P. troglodytes) could not be separated even though we use

100% of the DNA fragment information. In contrast, in Kingdom Fungi, assembled nDNA

signatures from two organisms of a different genus (S cerevisiae and C. dubliniensis) could be

separated even when using only 10% of DNA fragment data. Similarly, in Kingdom Bacteria,

assembled nDNA signatures from two organisms of different genus (E. coli and S. enterica)

could be separated even when using only 20% of DNA fragment data. The situation is even

more extreme in Kingdom Protista and Kingdom Archaea, where even organisms belonging

to the same genus could be separated with very little sequence coverage. Indeed, in Kingdom

Protista, assembled nDNA signatures of two organisms of the same genus (P. falciparum and

P. vivax) could be separated using only 2% of DNA fragment data. Similarly, in Kingdom

Archaea, assembled nDNA signatures from two organisms of the same genus (P. furiosus and
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P. yananosii) could also be separated using only 2% of DNA fragment data. This suggests

that some taxonomic categories, such as “genus”, do not necessarily reflect the same degree of

structural similarity of genomic sequences uniformly across kingdoms.

5.2.3 Composite-assembled DNA signatures

We now briefly explore the potential of combining the approach of composite DNA signatures

with that of assembled DNA signatures. A composite-assembled DNA signature is produced

by combining information from the assembled DNA signatures of two (or more) different types

of DNA fragments. For example, a composite-assembled signature using nDNA and mtDNA

is obtained by combining the assembled nDNA signature of one 150 kbp nDNA fragment, with

the assembled mtDNA signature of the mtDNA genome of the same organism.

Figure 5.5 plots together composite DNA signatures and composite-assembled DNA sig-

natures using nDNA and mtDNA from H. sapiens and P. troglodytes. Note that composite-

assembled DNA signatures and composite DNA signatures of fragments (using nDNA and

mtDNA), from the same species are closely clustered together. On the other hand, all DNA

signatures of H. sapiens are separated from all DNA signatures of P. troglodytes, and the ex-

istence of a separating plane was verified. These results suggest that composite-assembled

DNA signatures could also be potential candidates for the role of “genomic signature”, as they

have in general better discriminating power than conventional nDNA signatures while using

scattered and potentially less sequence information.

5.3 Conclusions

The first objective of this paper was to conduct a comprehensive analysis, on a dataset totalling

1.45 Gb, of the hypothesis that Chaos Game Representations of nuclear/nucleoid genomic

sequences can play the role of “genomic signatures”, that is, that they are genome- and species-

specific. Our results suggest that this hypothesis is not always valid, in that nuclear/nucleoid
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Figure 5.5: 3D Molecular Distance Map illustrating interrelationships among 480
composite (respectively 480 composite-assembled) DNA signatures, each using one
nDNA fragment and the mtDNA genome from H. sapiens, blue (resp. green); and
500 composite (resp. 500 composite-assembled) DNA signatures, each using one
nDNA fragment and the mtDNA genome from P. troglodytes, red (resp. turquoise);
For the composite-assembled DNA signatures, the length of contigs was n = 100,
while the number of contigs was 4,500 for each 150 kbp nDNA fragment, and 497
(resp. 496) for the human (resp. chimp) mtDNA genome. The accuracy of separation
between the H. sapiens and the P. troglodytes sequences was 58%, but the existence
of a separation plane was verified.
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DNA sequences belonging to closely related species such as H. sapiens and P. troglodytes

or E. coli and E. fergusonii cannot always be separated using conventionally computed CGR

signatures.

To address this issue, as a second objective, we propose the use of composite DNA sig-

natures, which combine information from the nuclear/nucleoid genome with that from one or

more organellar genomes (mtDNA, cpDNA and/or pDNA). Composite DNA signatures were

found, in this study, to result in successful separation of DNA sequences by organism in all

cases, including those where conventional nDNA signatures failed.

As a third objective, we propose the use of assembled DNA signatures, which combine

information from short contigs (subfragments) of a DNA fragment, rather than using the entire

contiguous fragment, to produce its signature. We show that assembled DNA signatures can

be successful replacements of conventional DNA signatures, and also that the composite and

assembled DNA signature approaches can be used simultaneously.

Mathematically, composite and assembled DNA signatures are both particular cases of a

general concept, namely that of an additive DNA signature of a set of DNA sequences (see

Section 5.4). Our results indicate that such additive DNA signatures could be considered as

potential candidates for the role of “genomic signatures” at various taxonomic levels, from

distant to closely related species, and thus complement other methods for species identification

and classification.

Several directions of future research stem from the fact that existing literature indicates

that the oligomer composition of nuclear/nucleoid DNA sequences and mitochondrial DNA

sequences can be a source of taxonomic information. Such directions include testing the dis-

criminating power of additive DNA signatures in large-scale multi-genome comparisons, and

exploring their utility in practical applications such as DNA sequence identification and classi-

fication (including directly on raw unassembled NGS read data or when high-quality sequenc-

ing data is not available), metagenomics, and synthetic genomes.
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5.4 Methods

Dataset

The dataset, totalling 1.45 Gb, comprised whole nuclear/nucleoid genomes and organellar

genomes of 42 organisms, spanning all major kingdoms of life (see Appendix for the scien-

tific name, NCBI accession number, chromosome number, and number of fragments sampled).

In our analysis, for each complete genomic sequence, all letters other than A,C,G,T were

ignored, and the resulting DNA sequence was divided into successive, non-overlapping, con-

tiguous fragments, each 150 kbp long (when the last portion was shorter than 150 kbp, it was

not included in the analysis). The choice of fragment length, 150 kbp, was due to our choice

of CGR image resolution (namely 29 × 29, that is, k = 9), empirical testing, and computational

efficiency reasons, see [25].

Subsequently, 20 such 150 kbp fragments were randomly sampled from each chromosome

and, for each such fragment, a corresponding conventional nDNA signature was constructed, as

described below. (If there were fewer than 20 fragments, all fragments in the chromosome were

chosen.) In the cases where the genome assembly of the organism was at the contig/scaffold

level, the contigs/supercontigs of the assembly were sorted by length and the first 500 con-

tigs/supercontigs were selected. (If there were fewer than 500 contigs/supercontigs, all were

selected.) From each contig/supercontig, only the first 150 kbp fragment was considered.

We note that this method is alignment-free, and that its approach contrasts typical biodiver-

sity and species identification research [62, 63, 64, 65] in that it uses randomly selected DNA

sequences rather than specific marker genes for identification and classification of species. This

approach is somewhat similar to novel approaches in metagenomics, metatranscriptomics, and

viromics [66], but there are also substantial differences such as that metatranscriptomics is

based on RNA rather than DNA and that it groups sequences based on functionality rather than

oligomer composition.
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Chaos Game Representation (CGR)

CGR is a method introduced by Jeffrey [1] as a way to visualize the structural composition

of a DNA sequence. This method associates an image to each DNA sequence as follows:

Starting from a square with corners labelled A, C, G, and T, and the center of the square as

the starting point, the image is obtained by successively plotting each nucleotide as the middle

point between the current point and the corner labelled by the nucleotide to be plotted. If the

generated square image has a size of 2k×2k pixels, then every pixel represents a distinct k-mer:

A pixel is black if the k-mer it represents occurs in the DNA sequence, otherwise it is white.

CGR images of genetic DNA sequences originating from various species show patterns such

as squares, parallel lines, rectangles, triangles, and also complex fractal patterns, as shown in

Figure 5.6.

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Conventional nDNA signatures of 150 kbp sequences of the pivot organ-
isms from Kingdom (a) Animalia, (b) Fungi, (c) Plantae, (d) Protista, (e) Bacteria,
and (f) Archaea.

We used a modification of the original CGR, introduced by Deschavanne [3]: a k-th order



5.4. Methods 147

FCGR (frequency CGR) of a sequence s, denoted by FCGRk(s), is a 2k × 2k matrix that can

be constructed by dividing the CGR image of the sequence s into a 2k × 2k grid, and defin-

ing the element ai j of the matrix FCGRk(s) as the number of points that are situated in the

corresponding grid square.

We now formally define the conventional DNA signature of a sequence s to be the matrix

FCGRk(s), which records the numbers of occurrences of all possible k-mers in the sequence s.

Throughout this paper, the parameter k is assumed to be a fixed constant. In particular, similar

to [25], in all computational experiments in this paper the value used was k = 9.

For computing composite and assembled DNA signatures, we introduce the general concept

of additive DNA signature of a set of sequences, formally defined as follows.

Definition The additive DNA signature of a set of sequences S = {s1, s2, . . . , sr}, r ≥ 1, is

defined as

FCGRk(S ) = FCGRk(s1) + . . . + FCGRk(sr).

Note that the notions of conventional DNA signature, composite DNA signature, assem-

bled DNA signature, and fully-assembled DNA signature, are all particular cases of additive

DNA signatures, as follows:

• The conventional DNA signature of a sequence s is the additive DNA signature of the

set {s} consisting of a single sequence s, that is, FCGRk(s) = FCGRk({s}).

• The composite DNA signature using two DNA sequences s1, s2, of two different types,

is

FCGRk({s1, s2}) = FCGRk(s1) + FCGRk(s2),

• An assembled signature of a sequence s, using r equi-length contigs of length n, is

FCGRk({s1, s2, . . . , sr}) =
∑r

i=1 FCGRk(si),

where s = αisiβi, |si| = n, for 1 ≤ i ≤ r.
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• The fully-assembled DNA signature of a sequence s, using equi-length contigs of length

n, is

FCGRk({s1, s2, . . . , sr}) =
∑r

i=1 FCGRk(si), where r = b|s|/nc, s = s1s2 . . . sr sr+1, and

|si| = n for 1 ≤ i ≤ r, while |sr+1| < n.

To compute the fully-assembled DNA signature of a sequence s, using equi-length contigs

of length n, one adds the FCGRk of all the adjacent consecutive contigs of length n that cover s

(except possibly a short tail of length less than n), where the first contig starts at the beginning

of the sequence. In contrast, to compute an assembled signature of s using equi-length contigs

of length n, one has the freedom to set the number of such contigs as an additional parameter r,

and then add the FCGRk of r contigs sampled randomly from the sequence s. Thus, for a given

n, a sequence s has only one fully-assembled DNA signature, but many different assembled

signatures, each depending on both the choice of parameter r, and the particular sampling of

the r sequences (which may overlap or be identical).

For example, if s is the DNA sequence

s = AAAAACCCCCGGGGGTTT,

of length 18, and if we consider contigs of length n = 5, then the fully-assembled DNA sig-

nature of s is unique and is obtained by adding the FCGRk of the following r = b18/5c = 3

contigs

{AAAAA,CCCCC,GGGGG}

that cover s (except the discarded remainder TTT ).

For the same sequence s and contig length n = 5, many diferent assembled DNA signatures

can be computed. For example, an assembled DNA signature of s using r = 3 equi-length

contigs of length n = 5 could use contigs {AAACC,CCCGG,CCCGG}, while another could

use contigs {AACCC,CCCCG,GGTTT }. In addition, other assembled DNA signatures of s

with equi-length contigs of length n = 5 exist, depending on the parameter r. For example, an
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assembled DNA signature of s using r = 5 equi-length contigs of length n = 5 could use the

contigs

{AAAAA, AAACC,CGGGG,GGGGT,GGTTT }.

Approximated Information Distance (AID)

For a finite set X, we denote by |X| the cardinality of X, that is the number of elements in X.

Given a set of sequences S = {s1, s2, . . . , sn} we denote by Mk(S ) the set of all distinct k-mers

that occur in all the sequences of S . In the case of a set consisting of a single sequence s, we

write Mk(s) to denote Mk({s}).

The approximated information distance between two sequences s and t (introduced in [25]

as a slight modification of a distance used in [53]) is defined as:

dk
AID(s, t) =

|Mk(s) \ Mk(t)| + |Mk(t) \ Mk(s)|
|Mk({s, t})|

,

where for two sets X and Y , X \ Y denotes the set difference between X and Y , that is, the set

of elements that belong to X but not to Y .

The distance dk
AID(s, t) was used for most of the computations of pairwise distances between

conventional DNA signatures in this paper.

The notion of approximated information distance between two sequences can now be ex-

tended to that of generalized approximated information distance between two sets of se-

quences S and T , as:

dk
AID(S ,T ) =

|Mk(S ) \ Mk(T )| + |Mk(T ) \ Mk(S )|
|Mk(S ∪ T )|

.

This generalization of the approximated information distance preserves the original mean-

ing of the concept as the ratio between the number of noncommon k-mers of the two sets S

and T and the total number of k-mers that occur in S or in T (or both). This distance was used

to compute distances between conventional, composite and assembled DNA signatures in this
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paper.

The next Proposition leads to a formula for the computation of the generalized approx-

imated information distance, as well as gives a theoretical upper bound for the generalized

approximated information distance in the case of fully-assembled DNA signatures. The fol-

lowing auxiliary lemma follows from standard set theory arguments.

Lemma 5.4.1 Let s be a sequence and S ,T be two finite sets of sequences over the DNA

alphabet {A,C,G,T }, and let k ≥ 2 be an integer. The following statements hold true.

1. If S ⊆ T then |Mk(S )| ≤ |Mk(T )| and

|Mk(S ∪ T )| = |Mk(T )|,

2. If every sequence in S is a subsequence of a given sequence s, then |Mk(S ) ∪ Mk(s)| =

|Mk(s)|,

3. The number of distinct k-mers that occur in S but not in T is |Mk(S ) \ Mk(T )| = |Mk(S ∪

T )| − |Mk(T )|,

4. |Mk(S )| = #FCGRk(S ),

where for a numerical matrix A we denote by #(A) or #A the number of non-zero entries of

A.

Proposition 5.4.2 Let s be a sequence and let S ,T be two sets of sequences. The following

statements hold true.

1. dk
AID(S ,T ) = 2 − |Mk(S )|+|Mk(T )|

|Mk(S∪T )|

2. If s = s1s2 . . . sr and each si is of length n, n > k, then

dk
AID({s1s2 . . . sr}, s) ≤ min{(r−1)(k−1),|Mk(s)|}

|Mk(s)| .

3. There is a sequence s for which the above relation holds with “=”.
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Proof The first statement follows from Lemma 5.4.1.3, by noting that dk
AID(S ,T ) equals

(
|Mk(S ∪ T )| − |Mk(T )|

)
+

(
|Mk(S ∪ T )| − |Mk(S )|

)
|Mk(S ∪ T )|

which is indeed equal to the required formula.

For the second statement, let S = {s1, s2, . . . , sr} and T = {s}. By the definition of the

generalized information distance, dk
AID({s1, . . . , sr}, s) equals a fraction, where the numerator

is the sum between the number of distinct k-mers that appear in {s1, . . . , sr} but not in s, and

the number of distinct k-mers that appear in s but not in {s1, . . . , sr}. The first term of this

sum is obviously zero, since si are contigs that span the sequence s. Thus, the numerator of

this fraction is the second term of the sum, namely the number of distinct k-mers that appear

in s = s1s2 . . . sr but not in {s1, . . . , sr}. We can count these k-mers by noticing that the only

k-mers that appear in s but not in {s1, . . . , sr}, are the ones that span consecutive contigs.

We now note that each joint of two contigs sisi+1 contains at most (k − 1) distinct k-mers

that span both contigs, and that s contains (r − 1) such joints sisi+1. Thus, the total number of

k-mers of s, that are in s but not in {s1, . . . , sr}, is at most (r − 1) · (k − 1).

Since the denominator of the fraction is, by Lemma 5.4.1.2, |Mk(s)∪Mk({s1, s2, . . . , sr})| =

|Mk(s)|, we have that

dk
AID({s1, . . . , sr}, s) ≤

0 + (r − 1)(k − 1)
|Mk(s)|

.

Since the approximated information distance ranges between 0 and 1, the required inequal-

ity follows.

For the third statement, an example of a sequence where the upper bound of the distance be-

tween the conventional DNA signature of the sequence and the fully-assembled DNA signature

of its contigs is reached is the sequence

s = AAAACCCCGGGGTTTT,
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with k = 3 and n = r = 4. Then s contains exactly 10 different 3-mers, that is, |M3(s)| = 10, and

(r−1) · (k−1)/|M3(s)| = 0.6. On the other hand, let s1 = AAAA, s2 = CCCC, s3 = GGGG, s4 =

TTTT . Then we have |M3({s1, s2, s3, s4})| = 4, since only 4 distinct 3-mers, namely AAA,

CCC, GGG and TTT can be found in this set, and thus

d3
AID({s1, s2, s3, s4}, s) = 2 −

4 + 10
10

= 0.6,

which equals the given upper bound.

Remark that, by Proposition 5.4.2.1, the generalized approximated distance between two

sets of sequences S and T can be now computed as

dk
AID(S ,T ) = 2 −

#FCGRk(S ) + #FCGRk(T )
#(FCGRk(S ) + FCGRk(T ))

,

which is the formula that was used for all generalized approximated information distance

calculations in this paper.

Remark also that the upper bound determined in Proposition 5.4.2.2 for the generalized

approximated information distance, in the case of the comparison between the conventional

DNA signature of a sequence and the fully-assembled DNA signature of its r contigs of length

n, is the one illustrated in Column (A′) of Table 5.2.

Multi-Dimensional Scaling and separation assessment

To visualize the interrelationships among DNA signatures originating from a pair of genomes,

and thus to visually assess whether separation was achieved, we used Multi-Dimensional Scal-

ing (MDS). MDS is an information visualization technique introduced by Kruskal in [67].

MDS takes as input a distance matrix that contains the pairwise distances among a set of items

(here the items are DNA signatures), and outputs a spatial representation of the items in a com-

mon Euclidean space. Each item is represented as a point, and the spatial distance between any
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two points corresponds to the distance between the items in the distance matrix. Objects with

a smaller pairwise distance will result in points that are close to each other, while objects with

a larger pairwise distance will become points that are far apart.

Concretely, classical MDS, which we use in this paper, receives as input an m ×m distance

matrix (∆(i, j))1≤i, j≤m of the pairwise distances between any two items in the set. The output of

classical MDS consists of m points in a q-dimensional space whose pairwise spatial (Euclidean)

distances are a linear function of the distances between the corresponding items in the input

distance matrix. More precisely, MDS will return m points p1, p2, . . . , pm ∈ R
q such that

d(i, j) = ||pi − p j|| ≈ f (∆(i, j)) for all i, j ∈ {1, . . . ,m} where d(i, j) is the spatial distance

between the points pi and p j, and f is a function linear in ∆(i, j). Here, q can be at most (m−1)

and the points are recovered from the eigenvalues and eigenvectors of the input m×m distance

matrix. If we choose q = 3, the result of classical MDS is an approximation of the original

(m − 1)-dimensional space as a three-dimensional map, such as the Molecular Distance Maps

in this paper. Throughout the paper, for consistency, all Molecular Distance Maps have been

scaled so that the x-, y-, and z- coordinates always span the interval [−1, 1]. The formula used

for scaling is xsca = 2 · ( x−xmin
xmax−xmin

) − 1, where xmin and xmax are the minimum and maximum

of the x-coordinates of all the points in the original map, and similarly for ysca and zsca. In all

Molecular Distance Maps displayed in this paper, the origin of coordinates (0, 0, 0) is the center

of the depicted cube, and the parallel edges of the cube are parallel to one of the x−, y−, and

z− axis respectively. The maps have been rotated for optimal visualization and, for each of the

axes, the length units are displayed only on one of the four edges of the cube that are parallel

to it.

A feature of MDS is that the points pi are not unique. Indeed, one can translate or rotate

a map without affecting the pairwise spatial distances d(i, j) = ||pi − p j||. In addition, the

obtained points in an MDS map may change coordinates when more data items are added to,

or removed from, the dataset. This is because MDS aims to preserve only the pairwise spatial

distances between points, and this can be achieved even when some of the points change their
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coordinates. In particular, the (x, y, z)-coordinates of a point representing the DNA signature

of a particular DNA fragment of H. Sapiens in Figure 5.1 will not be the same as the (x, y, z)-

coordinates of the point representing the same DNA fragment in Figure 5.2.

For a given Molecular Distance Map, k-means clustering [57] was used to assess whether

separation of the DNA sequences by organism was achieved. The reason for this choice were

that in all computed Molecular Distance Maps the number of clusters was known a priori,

k = 2 (not to be confused with k-mers, where k has a different meaning), that the clusters had

approximately the same number of points and thus the prior probability of the two clusters was

the same, and that in most cases the clusters were somewhat spherical in shape. Moreover, the

use of k-means yielded satisfactory results in the majority of cases.

The k-means clustering algorithm proceeds as follows. Suppose S 1 is the set of points

originating from the genome of one of the organisms, and S 2 is the set of points originating

from the second one. k-means assigns labels A and B to all given points, in its attempt to cluster

them into two clusters, A and B. The k-means accuracy score is computed by counting how

many points were assigned correctly to their cluster, that is,

Acc =
max{|AS 1 | + |BS 2 |, |BS 1 | + |AS 2 |}

|S 1| + |S 2|

where AS 1 is the set of points in the cluster A that belong to the set S 1, and BS 2 is the set of

points in the cluster B that belong to the set S 2 (BS 1 and AS 2 are defined similarly). If label A

would correspond to species S 1, and B to species S 2, the quantity |AS 1 | + |BS 2 | would represent

the number of points that have been correctly classified in this Molecular Distance Map, while

|BS 1 | + |AS 2 | would represent the number of points that have been incorrectly classified. As

a number, Acc is a quantity between 0.5 and 1, with 50% indicating the worst clustering,

and 100% indicating perfect clustering. For this paper, any Molecular Distance Map with an

accuracy greater than 85% was interpreted as achieving separation of points by species.

In some cases the accuracy was less than 85% in spite of the fact that separation of clusters

could clearly be observed visually. A closer look at those cases revealed that they were gen-
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erally plots similar to Figure 5.3, that is, consisting of two long and thin clusters. In addition,

in those plots the clusters were closer to each other than in Figure 5.3. In such cases, k-means

erroneously labelled the top halves of the two clusters by A, and the two bottom halves by

B. For such situations, where the k-means clustering algorithm had a relatively low accuracy

score but visual separation was nevertheless observed, we verified the existence of a plane

that completely separated the two clusters. That is, if cluster S 1 had n1 points of coordinates

(xi1 , xi2 , xi3), where 1 ≤ i ≤ n1, and cluster S 2 had n2 points (y j1 , y j2 , y j3), where 1 ≤ j ≤ n2,

then our Mathematica-based code [68] was used to find one (out of possibly infinitely many)

solutions to the system of equations with unknowns a, b, c, d:


a · xi1 + b · xi2 + c · xi3 + d > 0, i = 1, . . . , n1

a · y j1 + b · y j2 + c · y j3 + d < 0, j = 1, . . . , n2

that is, it found the equation ax + by + cz + d = 0 of a plane with the property that the points of

the cluster S 1 are situated on one of its sides, while those of cluster S 2 are situated on the other.

For example, in Figure 5.5, the equation of a plane computed by this method, that completely

separates the points originating from H. sapiens from those originating from P. troglodytes, is

x + 0.918 y + 0.37 z + 0.0002 = 0.

For Molecular Distance Maps with more complex cluster shapes, where k-means accuracy

is low and separating planes do not exist, the use of other clustering methods such as density-

based spatial clustering of applications with noise (DBSCAN) [69] would have to be explored

to see if separation is achieved.

The webtool MoDMap3D, [58], illustrates the 3D Molecular Distance Maps that corre-

spond to each of the comparisons listed in Table 5.2, in the same way the Molecular Distance

Map in Figure 5.1 illustrates the positive separation result listed in Table 5.2, subtable Ani-

malia, line 1. The webtool MoDMap3D is, moreover, interactive, and allows for an in-depth

exploration of each particular 3D Molecular Distance Map. After first selecting the pair of

genomes to be compared, the user can navigate in the three-dimensional space of their DNA
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signatures: clicking on any point in the map will display information about the DNA fragment

represented by that point, such as its NCBI accession number or assembly number, scientific

name of the organism it originates from, chromosome or contig/scaffold number, length of the

subsequence in bp, and fragment number from the original sequence.

Software

The code for running the experiments [68] was written in Wolfram Mathematica, and was used

for the generation of FCGRs, the computation of composite and assembled DNA signatures,

the calculation of distance matrices, the creation of the 3D Molecular Distance Maps, and the

computation of the separating planes.

Remarks

One observation should be made about the genome assemblies at contig/scaffold level in the

dataset. The general intent was for the 150 kbp DNA fragments from a given genome not to be

overlapping. This is because sequence overlaps could result in artificially smaller intragenomic

distances due to the increase in sequences’ similarities, and this could potentially lead to false

positive cluster separations. However, some overlap may have been unavoidable in the cases

where only contig/scaffold level data was available. The availability of contig/scaffold data

only may thus explain why in Table 5.2 the accuracy scores do not always decrease uniformly,

as expected, when one compares the pivot organism with organisms more and more closely

related to it.

Another observation should be made about the length of sequences analyzed. When com-

puting composite DNA signatures, the signature of the mitochondrial genome (or entire chloro-

plast or plasmid) was appended to that of each 150 kbp nDNA fragment. This, in some sense,

magnifies the role of the organellar genome in the composite signature. Depending on the ap-

plication, one can generalize Definition 5.4 to a weighted additive DNA signature which gives

different weights to the different types of DNA that compose it.
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We now discuss some limitations of the proposed methods. First, note that assembled

DNA signatures as defined here use equi-length contigs. Preliminary computational experi-

ments, illustrated in Table 5.2, columns (B′) and (C′), show the results of comparisons between

a conventional nDNA signature and variable-length assembled DNA signatures of the same

fragment. In those experiments, contig lengths are drawn from a normal distribution N(µ, σ)

with mean µ = n (the length of the contig in the corresponding equi-length contig experiment)

and variance σ = 40. The table shows that the performance of assembled DNA signatures

using variable-length contigs is comparable with the performance of those using equi-length

contigs. This indicates that both equi-length and variable-length contigs assembled DNA sig-

natures could be reliable approximations of conventional genomic signatures, depending on

the application. Additional exploration is needed to confirm this hypothesis.

Second, every computational experiment in this study is a comparison between DNA sig-

natures of genomic sequences belonging to two different organisms. Further analysis is needed

to determine if the positive preliminary results on the discriminating power of composite and

composite-assembled DNA signatures extend successfully to multi-genome comparisons. A

necessary step for such an experiment would be a thorough investigation of intragenomic vari-

ations of FCGRs and finding a method to determine, for each genome, a single “representative”

FCGR matrix to successfully represent that genome.

Third, we mention a case where separation by organism could not be achieved, even when

using composite DNA signatures (nDNA and cpDNA). This is the pairwise comparison be-

tween a cultivated pepper Capsicum annuum L, cultivar Zunla-1 (domesticated) and its wild

progenitor Capsicum annuum var. glabriusculum, cultivar Chiltepin (wild), see Figure 5.7.

Several directions of future research stem from the observation that the function FCGRk is

a quasi-homomorphism from the set of all DNA sequences with the operation of catenation, to

the set of 2k × 2k matrices with the operation of addition, in the sense that for sequences s, t,

we have
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(a) (b)

Figure 5.7: (a) Conventional nDNA signatures, and (b) composite (nDNA + cpDNA)
signatures of Capsicum annuum L, cultivar Zunla-1 (domesticated) shown in light
green, and Capsicum annuum var. glabriusculum, cultivar Chiltepin (wild) shown in
grey.

FCGRk(st) ≈ FCGRk(s) + FCGRk(t).

The definition of FCGRk can be easily modified to make it an exact homomorphism by, e.g,

defining a marked catenation of sequences s and t as s · t = s$t, with $ a new symbol, and

constructing FCGRk so as to not count any k-mer that includes the symbol $. Next steps in

the exploration of the mathematical properties of additive DNA signatures include studying

the implications of the homomorphic, structure-preserving, nature of FCGRk, as well as ex-

tensions of the concept of additive DNA signature, to, e.g., weighted additive DNA signatures

which would give different weights to the different types of DNA that compose it.
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[43] Vélez, P.E., Garreta, L.E., Martı́nez, E., Dı́az, N., Amador, S., Tischer, I., Gutiérrez, J.M.,

Moreno, P.A.: The Caenorhabditis elegans genome: A multifractal analysis. Genetics and

Molecular Research 9(2), 949–965 (2010)
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Chapter 6

Molecular Distance Maps 3D

(MoDMaps3D)

6.1 Introduction

In order to identify and classify species based on genetic evidence, various alignment-free

methods for genome comparison have been proposed. In an effort to visualize these interre-

lationships between DNA sequences, we propose the interactive webtool Molecular Distance

Maps (MoDMaps3D).

6.2 Methods

The flow of our proposed algorithm is as follows. We start with n DNA sequences. First, we

compute the CGR of each one of them CGR1, · · ·CGRn. Secondly we compute all pairwise

distances between these CGRs, and we store the values in a (symmetric) distance matrix D =

[di j] with i, j ∈ {1, · · · , n}. Finally, we run MDS with input this distance matrix D and we get

as output a n×5 vector representing a 5D representation of the original DNA sequences. Then,

we can visualise any triplet of these 5 dimensions in a regular 3D space, producing eventually

a three dimensional molecular distance map.
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MoDMaps3D can be used in two main ways: (i) Exploring pre-build maps of various DNA

sequences or, (ii) Building a new Molecular Distance Map which involves three computational

steps.

6.3 Software Description

MoDMaps3D has been written in Javascript. MoDMaps3D uses jQuery (a free open-source

cross-platform Javascript library), Bootstrap (a free open-source collection of tools for web

applications), and Three.js (a cross-browser JavaScript library using WebGL for displaying

animated 3D computer graphics in a web browser). In addition to these, the Parallel.js library

is used for parallel computation when applicable.

For exploring a Molecular Distance Map, the user can select a category from the drop-

down menu, view the header of the file for relevant information and then visualize it. There,

MoDMaps3D uses internally the Three.js library for building 3D computer graphics. On

Figure 6.1, you can see a screenshot of MoDMap for Phylum Vertebrata from the webtool

MoDMaps3D. Each map is accompanied by a set of panels, left and right. Both of the panels

can be minimized/maximized at any time either by clicking the top button of each panel or by

using the shortcuts available (Ctrl+Alt+N for left, Ctrl+Alt+M for right).

On the left panel, from top to bottom, one can find the basic keyboard commands to navi-

gate through the MoDMap. You can move in the four directions using keyboard keys A, D, W,

S for left, right, up and down respectively. You can zoom in by E and Q. You can rotate the

map by left click and drag accordingly. You can also navigate using Ctrl + ArrowKey. A de-

tailed list of shortcuts can be found https://github.com/rallis/MoDMaps3D. Next, one can see

the triplet of selected dimensions (out of 5) that are being plotted at any given time. User can

also increase/decrease the radius of each point depicted from the radius field. By changing any

of these values and hitting the button Re-Draw a new map with the settings specified will be

drawn. Underneath, user can select to see CGR image of a selected point (it will be visible on
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the right panel upon selection of a point), change the highlight color for selecting/highlighting

points on the map, see the distance menu to compute the distance between any pair of points,

and enable/disable selection of points while hovering the mouse instead of double clicking on

them. Under this, user can find a legend of the map containing a short description and a list of

colour, name and number of points for each category of sequences being plotted.

Another feature of MoDMap is that one can search and highlight any subset of points (DNA

sequences) which have a common label in their description. On the right panel, user can search

for any keyword (complete or partial, as infix) in the dataset of the map under consideration. A

shortcut for moving to search field is also available (Ctrl+F). Under this, the user can see the

CGR image of a point, if this option has been checked from the left panel, and if a point has

been selected on the map. Under CGR, the user can change the highlight color, if this option

has been checked from the left panel. Under this menu, is the Point Info Panel. This panel

contains all available information for the currently selected point: its index in the current map,

its accession number in NCBI (a direct link to that page is also provided), its full scientific

name (with the option of one-click search in Google images), its length in base pairs and its

taxonomy (if applicable). Depending on the type of map, fragment or haplogroup fields may

be available as well.

For building a Molecular Distance Map, the user can input the sequences (as NCBI acces-

sion numbers) to be included in the map, adjust the parameters (number of different colors,

length of k-mers, taxonomy information to be included or not) and build the map. All three

steps described in Chapter 2.2 are computed on the user’s browser and when the computation

has finished, the user is prompted to visualize the MoDMap produced. In case of large datasets

(greater than 500 sequences), the user is prompted to continue the computation off the browser,

in either Wolfram Mathematica of Python. All files necessary to continue the computation are

provided to the user during runtime.
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Figure 6.1: Molecular Distance Map of Phylum Vertebrata, consisting of 3,158 mtDNA se-
quences. Blue, cyan, green, red and yellow, represent fish, amphibia, reptiles, mammals and
birds mtDNA genomes respectively. Enlarged version of left and right panel can be found in
Figure 6.2
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Figure 6.2: Enlarged version of left and rigth panel of MoDMaps3D.



Chapter 7

Conclusion

In this thesis, we continue the exploration of the concept of genomic signature and we show

that Chaos Game Representation (CGR) can quantitatively express the syntactical properties

of genomic DNA sequences. We also show in chapter 4 that intragenomic variation of ge-

nomic signatures, although distance dependent, is in general smaller than intergenomic one,

giving support to the idea that genomic signature as a quantitative characteristic is maintained

throughout the genome of a species. These findings suggest that CGR can play the role of

genomic signature. In chapter 5, we extend the notion of genomic signature to overcome

its limitations and to make it applicable to more real-case scenarios using smaller sequence

length (compared to that produced from next generation sequencing) while still maintaining

its discriminative power. An interactive webtool is also developed to support a user-friendly

exploration of the datasets and the methods presented in this thesis.

As a future work, we focus on building a representative signature of a species. Such a

signature will incorporate information from various loci (and possibly different types of DNA

as well) to uniquely identify any species. An extension of it would be to build, if possible,

representative signatures of taxonomic categories (similar to signatures with wildcards where

mismatches are allowed).

Another topic we are interested in is haplogroup identification using genomic signatures on
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H.sapiens mtDNA. Preliminary results suggest that it is possible to identify haplogroups and

track maternal lineage using genomic signature of mitochondrial DNA. A further extension

would be to look at paternal lineage as well by using the Y chromosome. This is more chal-

lenging computationally than mtDNA analysis, due to the sequence size differences. (human

mtDNA is about 16,000 bp long while the Y chromosome is about 60,000,000 bp long).

Another venue of future research is to explore the possibility of using this method to distin-

guish between healthy and unhealthy individuals for a disease with a genetic cause (preferably

with large scale mutations), based solely on genomic signatures. Finally, increasing the reso-

lution of a CGR (value of k) significantly (k = 20) could potentially help identifying Single

Nucleotide Polymorphism (SNP) in the human genome.
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Copyright Releases

Chapter 3 contains the article “Mapping the space of genomic signatures” from PLoS ONE.

According to their website http://journals.plos.org/plosone/s/content-license

“PLOS applies the Creative Commons Attribution (CC BY) license to works we publish.

This license was developed to facilitate open access namely, free immediate access to, and

unrestricted reuse of, original works of all types. Under this license, authors agree to make

articles legally available for reuse, without permission or fees, for virtually any purpose. Any-

one may copy, distribute or reuse these articles, as long as the author and original source are

properly cited.”

“Using PLOS Content: No permission is required from the authors or the publishers to

reuse or repurpose PLOS content provided the original article is cited. In most cases, appro-

priate attribution can be provided by simply citing the original article. If the item you plan to

reuse is not part of a published article (e.g., a featured issue image), then indicate the originator

of the work, and the volume, issue, and date of the journal in which the item appeared. For any

reuse or redistribution of a work, you must also make clear the license terms under which the

work was published.”

Chapters 4 and 5 contain the articles “An investigation of inter- and intragenomic variations

of graphic genomic signatures” and “Additive methods for genomic signatures” from BMC
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Bioinformatics. According to their website https://bmcbioinformatics.biomedcentral.com/submission-

guidelines/copyright

“Copyright on any open access article in a journal published by BioMed Central is retained

by the author(s). Authors grant BioMed Central a license to publish the article and identify

itself as the original publisher. Authors also grant any third party the right to use the article

freely as long as its integrity is maintained and its original authors, citation details and publisher

are identified. The Creative Commons Attribution License 4.0 formalizes these and other terms

and conditions of publishing articles.”

and http://old.biomedcentral.com/bmcbioinformatics/about/faq/journal-copyright-policy

“All articles published in BMC Bioinformatics are open access, which means the articles

are universally and freely available online. In addition, the authors retain copyright of their

article, and grant any third party the right to use reproduce and disseminate the article, subject

to the terms of our copyright and license agreement. Allowing the authors to retain copyright

of their work permits wider distribution of their work on the condition it is correctly attributed

to the authors.”
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Appendix B

Supplemental Material - Appendices per

chapter

Here is a list of supplemental material and appendices per chapter.

Supplemental material for chapter 3 can be found

https://github.com/rallis/Supplemental Material Mapping the Space of Genomic Signatures

Supplemental material and appendix for chapter 4 can be found

https://github.com/rallis/intraSupplemental Material

Appendix for chapter 5 can be found

https://github.com/rallis/Thesis Appendices
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Appendix C

Errata

Since this thesis is formated as integrated-article, the content of specific chapters should be

exactly the same as those of published articles and no change is allowed.

Therefore, here we list all the modifications according to the comments provided by the

thesis examiners.

Page 84, “The ideal Molecular Distance Map is a placement of n items as points in an

(n-1)-dimensional space.” should be removed.

Page 105, correct formula for Oα(i, j) is

Oα(i, j) =
max{si,i, si, j}

min{si,i, si, j}
·

∑100
l=1 min{ci,i[l], ci, j[l]}∑100
l=1 max{ci,i[l], ci, j[l]}

.
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