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Abstract 

A central component to scientific practice is the construction and use of scientific models. 
Scientists believe that the success of a model justifies making claims that go beyond the 
model itself. However, philosophical analysis of models suggests that drawing inferences 
about the world from successful models is more complex. In this dissertation I develop a 
framework that can help disentangle the related strands of evaluation of model success, 
model extendibility, and the ability to draw ampliative inferences about the world from 
models.  

I present and critically assess two leading accounts of model assessment, arguing that neither 
is sufficient to provide a complete understanding of model evaluation. I introduce a more 
powerful framework incorporating elements of the two views, which can help answer these 
three questions: What is the target of evaluation in model assessment? How does that 
evaluation proceed? What licenses us in making inferences about the real world, based on the 
evaluation of our models as successful? 

The framework identifies two distinct targets of model evaluation: representational similarity 
between the model and target system, and the adequacy of the model as a tool to answer 
questions. Both assessments must be relativized to a purpose, of which there are three general 
kinds: descriptive, predictive, and explanatory. These purposes differ in the way they inform 
the similarity relation, which is relevant for the similarity assessment, and the output they 
produce, which is relevant for the adequacy assessment. Any model can be assessed relative 
to any purpose, however a model encodes certain decisions made during the model’s 
construction, which impact its ability to be applied to a new purpose or new domain. My 
framework shows that extending a model, and drawing inferences from it, depends on its 
representational similarity.  

I apply this framework to several examples taken from astrophysics showing in detail how it 
can help illuminate the structure of the models, as well as make the justification for 
inferences made from them clear. The final chapter is a detailed analysis of a contemporary 
debate surrounding the use of models in astrophysics, between proponents of MOND and the 
standard ΛCDM model.  

Keywords 

Philosophy of Science, Philosophy of Astrophysics, Model Evaluation, Adequacy for 
Purpose, Similarity Relation, Domain of Application, Models, Modeling, MOND, ΛCDM. 
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Chapter 1  

1 Introduction 

1.1 Introduction 

 

- What is the difference between a physicist and an astronomer?  

- A physicist needs two data points to get a line of best-fit, but an  

astronomer only needs one. 

This joke was told to me on many occasions throughout my time as undergraduate major 

in astronomy and physics by post docs and faculty members. The first time I heard it, the 

first day in my undergraduate astronomy lab, I was shocked. While I knew this was an 

exaggeration, there is undeniably an element of truth to it. I wondered how one of our 

best sciences could function if astrophysicists were able to develop models based on such 

sparse data. I asked how we know that the model we are working with is “good” and 

“successful” if we only have one data point. The answers I received were vague, 

unspecific, and never fully satisfying.  

While this did not bother many of my peers, it troubled me greatly. In 

astrophysics, there is extremely limited access to observational data; we are limited to a 

small observable part of the universe, and will never be able to observe the universe in its 

entirety. Nonetheless, cosmologists make claims about the entire universe based on what 

they see locally1. If their models are only based on local observations, how can they 

possibly be used to make claims about the entire universe? Furthermore, astronomers will 

                                                
1
 While cosmology and astrophysics are closely related, the difference between them can be characterized 

as follows: cosmology is the study of the entire universe, and aims at answering broader questions about 
the nature of the entire universe, and the laws that govern it. Cosmologists tend to makes global claims 
based on local extrapolations, given that it is impossible for them to observe the universe in its entirety.  
Astrophysics, on the other hand, is a branch of astronomy that studies various bodies in the universe, such 
as stars, black holes, galaxies, and the interstellar medium. Astrophysicists tend to makes claims regarding 
types of local systems. Claims about the systems of interest in astrophysics often involves samples of many 
instances of a particular type of system, which can then be used to test models to describe the system of 
interest.  
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never be able to run experiments on the universe as a whole, a common tool in other 

sciences for investigation of a system. How are any of our models to be tested, and how 

are they supported? This, to some extent, is the explanation of the joke: astronomy, 

because of the nature of what is being observed, often only has a small data set to work 

with, and so we must use what we have. 

Yet this should strike one as a very perplexing situation. Scientists constantly use 

models to make ampliative inferences, to go beyond the data they have to learn more 

about the system than what they can see of it. The question in cosmology and 

astrophysics is whether we can ever be justified in doing this in spite of the fact that we 

have so few observational data. Obviously there are best practices that have developed in 

each science individually that guide the practitioners in developing their models. 

However, such reasoning is rarely analyzed, and the justifications for why practitioners 

make these decisions are rarely discussed in published work. What does make its way 

into the literature lacks detail about this process and the decisions made in developing the 

models. And the complex details about a model’s accuracy are often presented as a 

simple numerical value of (un)certainty2. Questions like these continued to bother me 

throughout my time as an astrophysics major, and (as the story goes for many), I was not 

satisfied until I found my way into a philosophy of science classroom, where 

understanding of the process of scientific reasoning and justification was the main focus 

of inquiry. 

In the philosophical literature on scientific modeling it is acknowledged that 

models are used as a tool to understand and investigate the world around us. Models, 

including physical scale models, mathematical equations, and computer simulations are 

indispensable for scientific practice. A central component to scientific practice is the 

                                                
2
 There are various different quantitative measures of a “degree of fit of a model.” For example, in some 

disciplines such as astronomy and physics, the standard deviation σ (sigma) measures dispersion of data 
around a mean. Practitioners often use “5 sigma” as the standard for discovery. The standard deviation 
measures the likelihood that data is the result of random fluctuation or error. “5 sigma” means it is 
extremely unlikely that data results from a random occurrence. In other disciplines, quantitative measures 
of a model’s degree of fit take the form of a p-value, Akaike information criterion (AIC), or Bayesian 
information criterion (BIC) for model selection. 
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construction and use of scientific models, and it is through the use of models that 

scientists are able to make claims about what we know about the world around us, and 

how the world works. The challenge in understanding how we can generate knowledge 

from models stems from the fact that models are necessarily incomplete representations, 

and partial descriptions of the features of phenomena3 in the world being modeled. Yet 

science proceeds on the assumption that we are effectively able to discover new things 

about the world through models. The interesting philosophical project is to develop an 

understanding of how we can discover true claims about the world, even though it is 

acknowledged that the models being used offer only an incomplete representation of the 

system under study.  

There is a wide variety of models, and many different ways to think that they 

relate to the real world. Scientists ultimately think that by using models in science they 

are discovering and learning about the nature of the world. Yet how is it that they reason 

and discover things about the world using what they know are only partial 

representations? How is it that models allow for the ability to make seemingly true 

claims, and how should we understand the process of assessing a model that succeeds in 

this way? Most scientists believe that the success of a good model justifies making claims 

that go beyond the model itself. An important philosophical question arises here: what 

justifies these ampliative inferences? An understanding of how these inferences work is 

needed. Scientists want to be able to say they have discovered something about the nature 

of the world, not just about the model. But how is it that they are permitted to make this 

move from claims about a model, to claims about the real world? 

My goal is to develop a framework that can help us precisely formulate such 

questions, and develop answers. This framework will allow for understanding the process 

of constructing and evaluating models, and what it means to say a model is good, or 

successful, or “fits”. Finally, it will provide an understanding of the justificatory process 

that allows scientists to make inferences from models to claims about the real world. 

                                                
3
 “Phenomenon” refers generally, covering the general and stable features of the world that are of interest 

for the scientists or modeler. 
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1.2 Background: Modeling in Philosophy of Science 

The philosophical examination of scientific models has predominantly focused on two 

key aspects. The first relates to ontology: what is a model? Attempts to determine what a 

model is also involve a second key question, how do models relate to theory? The 

syntactic view of theories (Carnap 1938; Hempel 1965) holds that a theory is a set of 

sentences in an axiomatized system of first-order logic. A model, then, is a system of 

semantic rules that offer an interpretation of those sentences. Most philosophers have 

abandoned this account in favor of the semantic view of theories. On the semantic view, a 

theory is constituted of a family, or set, of models (van Fraassen 1980; Giere 1988; Suppe 

1989; Suppes 2002). While there are different versions of the sematic view, they all see 

models as the central unit of scientific theorizing. The function of the model is to 

represent part of the world. The scientific model is what represents the phenomena, 

features of the world, or the collection of data we obtain from observations. These are 

often treated as distinct types of models: theoretical models and data models. 

A third account for understanding the relationship between models and theories 

argues for understanding models as “autonomous agents”, relatively independent of 

theory, and functioning as “instruments of investigation” (Morgan & Morrison 1999, 10). 

A model is not something that is entailed by a theory. Rather, a model is a result of 

skilled construction on the part of the modeller, and through this construction it gains a 

partial independence from theory. In a sense, “models mediate between theory and the 

world” (Morgan & Morrison 1998, 242). On this “models as mediators” account, the role 

of models is understood as a tool that is used when theories are too complex to 

understand, or can be used in the development of a theory, or to complement a theory 

when the theory is incomplete.  

Another approach to understanding what a model is—regardless of the 

relationship it holds to a theory—starts by looking at the sorts of models that exist in 

scientific practice, in order to determine the anatomy or possible forms they take. One 

recent analysis has identified at least three categories of models: Concrete, Mathematical, 

and Computational. Concrete models are physical objects that can stand in a 

representational relationship with the phenomena under investigation. Mathematical 
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models are abstract structures whose properties can stand in a relation to mathematical 

representations of the phenomena. Computational models are sets of procedures that can 

potentially stand in relations to a computational description of the phenomena (Weisberg 

2013, 7). 

While the first aspect of the philosophical investigation of models focuses on 

what constitutes a model and its relationship to a theory, the second focuses on the 

relationship between the model and the world, as well as what goes into the construction 

of models. This line of investigation is often characterized as how models relate to 

phenomena, either directly or through data. Given the complexities of real-world 

phenomena, scientists often make judgments about what aspects of the phenomena are 

relevant to their questions or the investigation at hand. In order to develop a model, 

modellers often must first identify a target system. A target system refers to the selected 

part of the real-world phenomena that we seek to represent in our model (Suarez 2003; 

Giere 2004; Frigg 2010; Godfrey-Smith 2009; Weisberg 2013). The decision about what 

constitutes the target system can range from observations or a body of scientific evidence 

available (as is the case of models of phenomena), to more fine-grained set of data (as in 

the case of models of data) (Frigg & Hartmann 2012)4.  

Sometimes modellers will have a clear sense of a specific target system that a 

single model seeks to represent. This case can be referred to as target-directed modeling. 

There are also cases of nontarget-directed modeling, which comes in at least three 

varieties (Weisberg 2013). Generalized modeling occurs when a generalized phenomenon 

is chosen as the target. For example, rather than constructing a model of a specific black 

hole, we may want to construct a model for black holes generally. Hypothetical modeling 

involves modeling possible target systems. In this case, we construct models about a 

                                                
4
 It is worth noting that while the literature on scientific modeling has focused substantially on the how 

models represent though approximations and idealizations, little work has been done on the role of 
evidence in the context of making decisions regarding what constitutes the target system that is then 
represented by the model. Hughes (1997) discuses this question tangentially though examining how we 
learn from models. More recently, in her doctoral thesis, Target Systems and their Role in Scientific 
Inquiry, Elliot-Graves (2014) begins to address the larger question of what constitutes a target system. 
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target system that might not actually be instantiated in the real world, such as a model of 

a perpetual motion machine. Finally, targetless modeling involves modeling in which the 

“target system” is not a real world target but rather a model itself5.  

Models represent target systems through means of approximations—an inexact 

description of a target system—and idealizations—the creation of a new system, some of 

whose properties approximate some belonging to the target system6. There are many 

types of idealizations that can be made in the construction of models. McMullin (1985), 

for example, distinguishes six types of idealization: mathematical, construct, formal, 

material, causal, and subjunctive. Weisberg (2013) reduces this to three: Galilean 

idealizations, minimalist idealizations, and multiple-models idealizations.  

Regardless of the particular philosophical question under investigation in any of 

these discussions, there is general agreement that the greatest challenge of using models 

in scientific reasoning is related to the fact that models are partial and incomplete 

representations of their target systems. Models make approximations or idealizations, or 

they are highly simplified and incomplete representations of target systems. Parties to this 

debate consider models to be false7. Some philosophers have even argued that models 

should be thought of as fictions; they represent entities that do not actually exist and are 

never instantiated (Contessa 2010; Frigg 2010; Godfrey-Smith 2006; 2009). 

Nevertheless, we use these false models, and consider them effective tools for making 

predictions, providing explanations, and helping to establish true claims about the real 

world (Wimsatt 1987; 2002).    

                                                
5
 For example, the “Game of Life” is a cellular automaton model. Each cell can be in one of two states, 

“alive” or “dead”, and must follow four simple rules (for more details see Conway 1970, Weisberg 2013). 
A targetless model has no real world target chosen at all. Rather, the system of interest is a model itself, in 
this case the Game of Life model. The “model” in this case is a model of the model the aims to explore the 
functioning of the model itself.  
6
 This characterization of idealization and approximation is taken from Norton 2012. It should be noted, 

however, that he does not provide these characterizations in the context of how models represent target 
systems.  
7
 In chapter 2, I will argue that models are not truth-evaluable themselves; so I strictly speaking reject the 

claim commonly made in this debate that models are false.   



7 

 

Given that models are incomplete, partial, and in some sense false, what justifies 

their use to make claims about the real world? A significant amount of the philosophical 

literature has focused on these two aspects: what a model is (and understanding the 

relationship models hold to theories) and how we construct models (and how to 

understand them as representing the real world given that they are incomplete, or partial 

representations). However, there are open questions in philosophy related to a critical 

third aspect related to scientific models, which arise after a model is constructed. What 

does it mean to say a model is good or successful, and how is this evaluated? How does 

our evaluation of models justify and inform our claims about the nature of the real world? 

Ultimately it is these questions that are of concern in providing scientific justification, 

and thus need to be answered.  

The only means by which these questions have been discussed thus far in the 

literature is by extending what philosophers have argued about theory confirmation to 

model confirmation. Confirmation theory explains how empirical evidence confirms the 

truth of hypotheses and theories. In the context of model evaluation, confirmation theory 

will also explain how the empirical evidence confirms the model. For example, in 

evaluating a model the goal is to look for empirical or confirmatory virtues, “a virtue that 

indicates that a model or models are more likely to be used to represent accurate or true 

claims about the observable world” (Lloyd 2015, 58).  

An alternative is to discuss model evaluation in terms of validation, rather than 

confirmation. Validation, employed in the context of modeling, refers to the process of 

determining the degree to which a model is an accurate representation of the real world 

from the perspective of the intended use of the model (Calder et al. 2002, Jebeile & 

Barberousse 2016; Oreskes, Shrader-Frechette & Belitz 1994, Thacker et al. 2004). 

Given the idealizations and approximations contained in models, and that models are 

evaluated relative to a specific use, it may not be the case that model confirmation 
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proceeds in precisely the same manner as theory confirmation8 (Weisberg 2006; 

forthcoming). 

In this dissertation, I will approach model evaluation without making any prior 

commitments to the process involving confirmation, or validation. Rather, I want to 

explore the question of the evaluation of success of a model by focusing simply on how it 

proceeds in scientific practice. In developing this framework, I will not assume the 

process of model evaluation is the same (or different) from theory evaluation. It is 

possible that the arguments contained in this dissertation will have implications for the 

debate about model confirmation versus validation. However, this is beyond the scope of 

the present work. This dissertation contains the positive argument for a framework for 

understanding the evaluation and justification of models, and does not directly address 

the implications of this view for other debates.  

For these reasons, my framework will take the work of Michael Weisberg and 

Wendy Parker as a starting point. Their analysis of model evaluation does not rely on 

extending theory confirmation to models. Rather, they start by examining scientific 

practice. While they both do draw conclusions about validation or confirmation of 

models from their analysis, their work on model evaluation is separable from these 

claims. I can therefore separate their work on evaluation of models from the context of 

validation and confirmation, and discuss it instead in the context only of model success.  

Furthermore, Weisberg and Parker have each respectively developed the current 

strongest starting positions for possible understandings of model evaluation: similarity 

and adequacy. Weisberg (2013, 2015, forthcoming)—following other philosophers such 

as Cartwright (1983), Giere (1988), Teller (2001), and Godfrey-Smith (2006)—argues 

that successful scientific models stand in a relation of similarity to their real-world target 

systems. Parker (2009, 2010, 2015), however, argues that successful models are 

evaluated as being adequate, or sufficient relative to a given purpose. Part of my goal is 

                                                
8
 The relationship between models and theories has also been discussed above in section 1.2. 
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to assess if one, both, or neither of these approaches is the better understanding of model 

evaluation. 

Following Parker and Weisberg, I understand models to be entities that represent 

parts of the world9. The representational relation a model holds to its target system is 

analogous to the relation a picture can hold to its subject. The model captures details at a 

certain level of resolution of the target system. Like a picture, a model can be used to 

learn things about the world, and in this sense is a tool. This view of models fits most 

naturally with the idea that models have a high level of independence from scientific 

theories. This is similar in certain respects to the “models as mediators” view. While 

models can rely on theory in their construction, the end product, or model itself, can be 

assessed mostly independently of theoretical considerations. Despite the fact that 

Weisberg does not explicitly endorse this view, I will show through close analysis of his 

weighted feature-matching equation, that he has this kind of relationship in mind. As I 

will detail in the following chapters, the model’s similarity to a system in the world is one 

of the primary components of model assessment. Our understanding of that target system 

may, in some cases, have a high theoretical component10. However, this is the extent of 

the interaction between models and theory in the framework I develop in this dissertation. 

I will provide an account of what it means to say a model is successful through 

answering three questions: What is the target of evaluation in model evaluation? How 

does that evaluation proceed? And finally, what licenses us in making inferences about 

                                                
9
In philosophy of science, the problem of representation focuses on two problems. The first problem is to 

explain in virtue of what a model is a representation of something else, the second focuses on what 
representational styles there are in science (Frigg 2006; Frigg & Hartmann 2012). However, there is no 
consensus on solutions to these problems. So, I have adopted what I take to be the most general account of 
representation currently utilized in the philosophical discussion of scientific models offered by Ron Giere 
(1988; 1996; 1999; 2004): the way in which models represent is similar to the way in which pictures 
represent. He provides further detail about this relation as that of similarity, which I will discuss in 
substantial detail throughout this dissertation. Steven French (2003; and French & Ladyman 1999) also 
provides a stricter position along this line by adopting a representational relation of isomorphism. Given a 
relation of isomorphism is stronger than similarity, I have adopted the more modest positon.  
10

 Since similarity relation used in my framework is most closely based on Weisberg’s work, his view of 
model-theory relation is the one I adopt.  
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the real world, based on the evaluation of our models as successful? Through analyzing 

these questions, I will develop an understanding of how a model can tell us true things 

about the world. 

1.3 Overview of Thesis 

What is needed in the philosophical discussion of scientific modeling is a fully general 

framework in which we can trace the path of justification of a given model. Such an 

account would be a unified way to discuss modeling, and a means for understanding the 

claims being made across various disciplines that use scientific models. My project is an 

attempt to develop such a framework. Even if such a fully general account, ultimately, is 

not possible, the attempt in itself is valuable. This is because it will succeed in unifying 

some evaluative processes, as well as help identify where current evaluative standards 

need to be disentangled and refined. It is plausible that in many cases of conflicting 

models, even a partial account can be used as a tool to determine where, precisely, the 

conflict lies.  

 I will argue that an important point has been overlooked thus far in philosophical 

work: the evaluation of a model actually contains two conceptually distinct parts, or 

components of model evaluation. The first part is evaluation of how similar the model is 

to the target system it is meant to represent. This part of evaluation happens primarily 

during the construction stage, when the model is being developed. This process is 

dynamic, and takes place over many iterations during the model’s development. The 

second part of evaluation compares the output of the model with the analogous 

phenomenon in the target system. For example, if the model outputs a prediction, it is 

then compared to a later state of the target system it intends to model to see if the 

predicted phenomenon in fact came to pass. This evaluation assumes a completely 

constructed model that generates a particular output, and that we can obtain an analogous 

output from the target phenomenon. This second part of evaluation is different from an 

evaluation of similarity, in that it assesses the adequacy of a model. Evaluation of a 

model’s adequacy is different from an assessment of a model’s similarity in that 

adequacy is concerned with what the model does, while similarity is concerned with how 
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the model represents. These two evaluations should not be seen as competitors, but rather 

be seen as targeting two different components of an overall assessment11. 

The central concept at play in each of these components of evaluation is purpose, 

the reason for which the model is created or for which the model is used. The general 

kinds of purposes that are relevant for modeling are prediction, explanation, and 

description. These purposes will determine features of the target system that are included 

in the model, the structure of the model itself, and the kinds of outputs the model 

generates. The purpose for which the model is intended will determine what counts as 

“similar” during the construction stage. Likewise, the purpose to which the model is 

being put (whether it be prediction, explanation, or description) will determine how we 

evaluate its “adequacy” at the output stage. Of course, a model that was constructed to 

provide predictions can also, for example, be evaluated for its adequacy with respect to 

its ability to give explanations. The purpose for which it was constructed does not 

constrain the purposes to which it can be put. But keeping track of the role purpose plays 

in both parts of the evaluation will allow us to develop a clearer picture of what I will call 

the overall fit of the model—a combination of its similarity evaluated at the construction 

stage, and its adequacy evaluated at the output stage. 

Drawing these distinctions will provide the resources to better understand the 

success of our best models and the failure of those that fall short. But most importantly, it 

will allow for identifying how a model can fit well with respect to one purpose while 

failing to do so with respect to another. There is therefore a possibility that some models 

that were deemed unsuccessful for failing along one dimension of evaluation can be 

judged as successful, with the understanding that they are successful only with respect to 

a particular purpose. 

                                                
11

 In the formal epistemology literature recent work has focused on how to characterize evidence in terms 
of accuracy and coherence. However, in science there is often a broader notion in mind where anything that 
has any bearing on the truth or falsity of theoretical commitments or hypotheses could potentially count as 
evidence. This issue is underdeveloped in the philosophy of science, and I will not be directly addressing it 
here. The framework I develop in this dissertation draws on examples in which what counts as evidence is 
unambiguous. While the framework likely will not help identify what counts as evidence, it useful for 
identifying when evidence makes a difference for the hypotheses. 
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There are debates ongoing today to which this framework will make an immediate 

difference. In particular, debates surrounding the Lambda Cold Dark Matter (ΛCDM) 

model in astrophysics could benefit from exactly the conceptual clarity provided by this 

framework. Many of the criticisms that this model faces would be appropriate only if it 

were intended, and therefore constructed, with a particular purpose in mind. They fail to 

have as serious an effect when the actual intended purpose of the model is identified.  

The framework I propose begins by answering the question of what 

considerations the modeller needs to take into account when constructing a model. The 

most important question is why the model is being developed in the first place, or what 

the purpose of the model is. The process often proceeds by the modeller identifying a 

target system in the world that they want to model, and then subsequently considering the 

purpose of the model. However, it is consistent with this framework that the purpose 

partially determines the target system of interest.  

The important consideration at this stage is similarity12. The modeller needs to 

build a model that is similar in the relevant respects to the target system. The purpose 

determines what that similarity relation looks like—the features, or ways in which the 

model is similar to the target system. If the purpose is to describe the target system, then 

simply having features of the models that stand in for the features of the target system 

may be sufficient. However, if the purpose is to predict, then the sorts of features of the 

target system that are included will be different. For this part of my framework I will 

draw on Michael Weisberg’s weighted feature-matching account of similarity. This is 

because Weisberg has developed the most complete account of model-world relations in 

the context of assessing similarity. Any use of the term similar will be reserved for 

talking about evaluative considerations, like those identified by Weisberg, made at this 

stage.  

                                                
12

 Similarity is roughly characterized as resembling without being identical. This definition will be made 
precise in section 2.4.1 where I introduce the weighted-feature matching definition of similarity.  
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In my framework, all models are considered to produce an output. The simplest 

case is a predictive model, where the output is a future (or past) state of the target system. 

But other things can count as outputs as well. These can be structures in the model itself 

that can feature in an explanation, or a description of the target system. Which outputs are 

of interest will depend on how we are using the model. It may seem more natural to 

reserve “output” for a prediction generated by a model. However, I am employing 

“output” in a broader sense. An output is purpose-dependent and can vary based on what 

question the model is used to answer. This can include, in addition to questions about 

predictions, questions related to interrelations of the structures in the model itself, or 

questions related to what the model represents. While this may seem like a strange usage, 

the reason it is employed here is so that I can talk about the different ways in which we 

use models, while employing the same terminology. While my framework could be 

developed with a more complicated terminology—reserving “output” for predictions and 

including terms for model structure relations and representation—it would not make a 

substantive difference.  

The second sense of evaluation that comes up in this framework occurs when the 

output of the model is compared to the target system in the real world. At this stage, what 

we evaluate is whether the model is adequate for the purpose for which we are currently 

using it. It is important to note that a model that was constructed with one purpose in 

mind can be evaluated relative to its adequacy for another purpose. This discussion of 

adequacy for purpose will draw on the work of Wendy Parker. The reason for starting 

from Parker’s work is that she provides an account of how modellers assess their model’s 

adequacy in the context of climate change. I believe this idea is generalizable, and thus I 

want to apply it in a broader context. All discussion of adequacy will be reserved for this 

component of evaluation.  

The final element of the framework is what I will call an overall assessment of 

model fit. The idea of model fit is used extremely loosely in the philosophy of science 

literature, as well as in science more broadly. The statement “the model fits” could refer 

to a model having a certain degree of similarity to the target system, to a model fitting 

data points, or to a model’s prediction fitting with our observational data or best-
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supported theory. Such ambiguity can lead to confusion about what part of a model is 

being evaluated as “fitting”. Both Weisberg and Parker use the concept of fit. But as I 

will argue, fit has a different meaning for each of them as they are evaluating different 

aspects of the model. For these reasons, it is essential to provide a specific definition of 

what I will mean by model fit. 

In my framework, model fit will refer to a claim about the assessment of both the 

similarity of the model, and the adequacy of the model, relative to a specified purpose. 

The concept of fit admits degrees; some instances of fit can be stronger than others. For 

example, cases in which we are able to include many features of the target system in the 

model, and minimize extraneous features, will be a stronger fit than cases in which we 

have not been able to include all important features of the target system of interest. 

Likewise, instances in which the model’s output is a closer match to the equivalent output 

in the real world are a stronger fit than those in which the output does not match as 

closely.  

In the end, my framework will provide guidance about the kinds of inferences that 

scientists are justified in making about the world from the models. The justification for 

inferences is grounded by (1) establishing a positive assessment of similarity of the 

model relative to the intended purpose and (2) establishing a positive assessment of the 

model’s adequacy for a particular purpose. The details embodied in these assessments 

inform us about how the model makes connections to the real world, as well as the limits 

of the model’s successful use. 

In what follows, I provide further details of the arguments I make for this 

framework in the subsequent chapters. 

1.3.1 Chapter 2: Constructing Hypotheses about Models 

When scientists conclude that they have a successful model, what exactly is it that they 

are evaluating, and what is it that they are gaining knowledge about? I begin this chapter 

by examining what the target of evaluation is in the case of models. Following other 

philosophers, I take it that model evaluation is not the evaluation of the truth of the 

models themselves, but rather the truth of hypotheses regarding the utility of models for 
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different purposes. If this is the case, the second issue—and main focus of this chapter—

is to determine what form these hypotheses should take.  

Wendy Parker and Michael Weisberg have each provided possible formulations 

for hypotheses regarding model evaluation. Parker proposes model evaluation as a matter 

of a model’s adequacy relative to a purpose to which the model is being applied (2009; 

2010). Weisberg proposes model evaluation as a matter of establishing the model’s 

similarity relation in the desired respects and degrees relative to its purpose (2013). This 

similarity relation is captured by a “weighted feature-matching” equation. I examine 

these two approaches for evaluating the success of a model, and their proposed 

formulation for hypotheses regarding model evaluation. In light of criticisms of the 

similarity account made by Parker (2015), I focus on further developing the 

understanding of the similarity relation hypothesis, and the weighted feature-matching 

equation offered by Weisberg.  

The similarity relation hypothesis and weighted feature-matching equation 

elucidate an incredible number of valuable elements that modellers consider in 

constructing their models. However, I argue there are two main problems. Weisberg 

accounts for the various elements that go into model construction in his formalized 

weighted feature-matching equation, S(m,t). From this S(m,t) equation we obtain a 

numerical value between zero and one quantifying how similar the model is to its target 

system. My first criticism is that, while conceptualizing model construction in this 

manner and formally accounting for the process is extremely valuable, it may not, in 

practice, be possible to obtain a numerical score. And even if we are able to obtain a 

score, it is not clear that we should want to use such a score, as it may have bad epistemic 

consequences. I argue that we should only consider the S(m,t) equation as an extremely 

informative tool and means for explicitly formulating the evaluative elements and 

decisions that occur at the model construction stage.  

My second criticism is that Weisberg has provided insufficient detail with respect 

to how a model’s purpose impacts the similarity relation, and the weighted feature-

matching equation. I argue that the similarity relation hypothesis must be modified to 
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explicitly include considerations of the domain of application of the model. Weisberg’s 

account will encounter a challenge that, without a domain specification, it cannot solve: 

instances in which we have the same target system, same model, and same purpose, yet 

the model should obtain different similarity scores for the different domains of 

application. I provide a case study of a mathematical model of stellar implosions to make 

this case. Domain of application must be made explicit if one is to draw on the weighting 

feature-matching equation. Without it, it is not possible to properly specify under what 

conditions the model is, in fact, similar to the target system. 

However, these critiques are not detrimental to the similarity account. Rather, 

with my proposed modifications—using the weighted feature-matching equation as a 

pragmatic guide, and including the domain of application explicitly in the hypothesis 

statement—I provide the strongest version of the similarity relation hypothesis for model 

evaluation. The similarity-relation hypothesis is an extremely informative and effective 

way to formulate a hypothesis statement. It forces us to enumerate the elements of the 

target system the modeller has chosen to include in the model explicitly. It also tracks 

what we choose to include in the construction of a model, and how the evaluation of the 

construction is relativized to a purpose within a certain domain of application.  

1.3.2 Chapter 3: Evaluating Hypotheses about Models 

With this modified version of the similarity-relation hypothesis, I turn to the question of 

whether one of the hypotheses—either the adequacy-for-purpose or a similarity-relation 

hypothesis—should be favored as best capturing the evaluation of model fit in scientific 

practice, as well as the question of how model fit should be evaluated through such 

hypotheses. By examining how Parker and Weisberg respectively propose to evaluate 

their hypotheses, I argue that each hypothesis actually has a different target of evaluation, 

and that, in the end, aspects of both similarity and adequacy need to feature in an account 

of evaluation of model fit.  

I argue that the two hypotheses work together in the following way: An 

assessment of a similarity-relation hypothesis is involved when evaluating the relation 

between the model and the target system during the model’s construction. For this 
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component of model evaluation, we should employ my modified similarity-relation 

hypotheses. Evaluation of the model’s adequacy for purpose is about evaluating the 

output of a model and comparing it to the equivalent output phenomena of the real world. 

These two aspects are different in that an assessment of adequacy is concerned with 

evaluating what the model does and its effectiveness for that aim, while assessment of 

similarity is concerned with evaluating how the model represents. I argue that it is only 

when we take both hypothesis statements together, that we can evaluate the overall fit of 

the model. 

I propose a framework in which assessment of model fit is understood through 

four components. The first component involves constructing the model and establishing 

the similarity relation via the weighted feature-matching equation. The second 

component involves, through reasoning or calculation, obtaining an output from the 

model. This component also involves determining what would be observed as the output 

in a certain test situation if the model is effective, or adequate for the purpose. The third 

component involves comparing and evaluating the level of agreement of the model’s 

output with the analogous output from the target system. The fourth component involves 

an assessment of the model’s overall fit through a final evaluation of our two hypotheses. 

The assessment of the adequacy-for-purpose hypothesis addresses whether the model is 

qualitatively or potentially quantitatively satisfactory for the purpose at hand. The 

similarity relation hypothesis addresses the standards by which the model is assessed to 

be similar to, and to representative of, the target system for the given purpose. 

1.3.3 Chapter 4: Making Inferences from Models 

Having established a framework in which evaluation of model fit is done through 

assessment of a similarity and adequacy of the model for a given purpose, I return to the 

larger question at hand: What justifies making inferences from a model to knowledge 

claims about the world?  

I argue that the justification for extending claims about a model to the world first 

requires explicit attention to the scientific purpose of the model, since both the 

assessments of similarity and adequacy are always made relative to a purpose. While the 



18 

 

particular purposes to which any given model is put can be quite specific, I argue that 

there are three general kinds of purpose: descriptive, predictive, and explanatory. The 

difference is related to the kind of output obtained from the model when attempting to 

use it for a particular purpose. In the case of a descriptive purpose, the modeller obtains 

from the model an output that somehow represents the features present in the target 

system. In the case of a predictive purpose, the modeller obtains from the model an 

output corresponding to a future or past state of affairs about the target system that is not 

originally built into the model. In the case of an explanatory purpose, the modeller 

obtains from the model an output that can serve as an explanans in an explanation of 

some phenomenon. 

The second part of the argument in this chapter is related to how inferences from 

a model about the world are justified. While assessments of adequacy for purpose can 

evaluate whether a model is successful for one application relative to one purpose, it is 

not what justifies extending models to a new purpose or new domain; nor does it ground 

inferences made from models. I argue that a model having a high degree of similarity 

relative to a purpose-dependent S(m,t) is what provides justification that allows for 

determining when a model should or should not be extended, whether the model must be 

modified in order to serve a different purpose, and ultimately the inferences that can be 

made about the world from the model. It is because one can identify how the model is 

similar to the target system in the relevant ways that one can determine the appropriate 

level of confidence in drawing conclusions about the target system that go beyond the 

information that was built into the model in the first place. 

Through examples of modelling from astrophysics, I demonstrate how my 

framework can be deployed as a tool to gain insight into success claims about models and 

a means for understanding the connections between similarity, adequacy, fit, and 

justification for inferences about the world. The astrophysical examples are used to 

support both my argument for the three general kinds of purpose models can serve, and 

my claims about similarity grounding the extension of models.  
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1.3.4 Chapter 5: Tracing the Path of Justification for ΛCDM and MOND 

The final chapter examines a case from astrophysics in which analyzing the debate in 

terms of the framework I propose can make an immediate difference. The Lambda Cold 

Dark Matter (ΛCDM) model is considered to be the current best model of large-scale 

structure formation. However, part of the model posits that 84% of the mass of the 

universe is made of matter we have never seen, dark matter. Some astrophysicists 

consider this strange matter to be an unjustified ad hoc addition to the model introduced 

to ensure the model fits the data. In response, some of these critics have proposed 

(contentious) alternative models, which fit the same data by Modifying Newtonian 

Dynamics (MOND), such that positing the existence of dark matter is not required. 

MOND proponents view their models as equivalent or superior in some respects to 

ΛCDM models.  

This is a case in which there are two models that include different elements, and 

even differ fundamentally in terms of the theory on which they are based. Yet both 

models have been evaluated as models that successfully describe the observations, make 

adequate predictions, and even offer explanations. How can a claim like this be 

understood? How should we deal with situations in which there are two models, that 

seem to contradict one another, yet are both evaluated as having a good fit? 

While one option is to regard this as a case of Kuhnian incommensurability, or as 

a case in which a purely subjective choice must be made, I argue that the debate should 

be understood as one primarily about choosing the purpose of models, and then assessing 

whether they are useful for that purpose. Through the framework I have developed, I 

demonstrate how both ΛCDM and MOND can be considered well-justified, high-fit 

models given different choices about what to prioritize. I argue that both models can be 

evaluated as having good fit, when considering their fit within their respective domains of 

application. The apparent conflict between the two models arises due to extending both 

models past the domains in which they are successful. In attempting to extend each 

model to new domains, the modeller relies heavily on the model’s explanatory fit. But, 

extending claims of explanatory fit relies on strong commitments to the similarity relation 



20 

 

established, particularly with respect to the way the model represents theoretical 

commitments (as will be seen in the case of both the ΛCDM and MOND models). 
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Chapter 2  

2 Constructing Hypotheses about Models 

2.1 Introduction 

Models are used in science as a tool to understand and investigate the world around us. 

The scientific practice of modeling is the indirect study of real-world systems through the 

construction and analysis of models.  One of the main goals in model-based scientific 

reasoning is to construct successful models. But what is the right way to understand 

claims about the success of models? One of the main ways in which a model is 

considered to be successful is when the model fits well with a part of the world, or a 

target system under investigation. However, it is not clear what exactly “fit” means, or 

how this fit is evaluated in practice. My first goal is to provide an account of what is 

meant by the claim that a model fits the target system under investigation. 

Providing an account of what it means for a model to fit involves answering three 

questions. First, what is the target of evaluation in model fit? Ultimately, I argue that 

model fit is a complex notion; “fit” must be understood as a composite evaluation 

including assessment of both the similarity and adequacy of a model. The more complete 

picture of model fit is fleshed out in chapter 3.  In the present chapter, I introduce and 

discuss these two possible options: evaluating model success in terms of assessing 

similarity and in terms of assessing adequacy.  

The target in model evaluation, I argue, is not the evaluation of the truth of the 

models themselves, but rather of hypotheses regarding the utility of models for different 

purposes. If we do not evaluate the model itself but rather a hypothesis about the model, 

the second question regards the form hypothesis statements about models should take. 

After determining what form the hypothesis should take, the final question is how the 

hypothesis should be evaluated. In this chapter, I address the first two questions. The 

third follows in chapter 3.  

The strongest arguments for the possible forms a hypothesis about model fit 

should take are offered by Wendy Parker and Michael Weisberg. Parker (2009; 2010) 
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Figure 17: Millennium Run II 

 
This set of 12 images shows the evolutionary growth of a massive halo over cosmic time From 
top to bottom, the regions are plotted at redshift 6, 2, 1, and 0. The 3 columns from left to right 
show the evolution on different length scales. 100 x 100 Mpc/h, the center column is 40 x 40 

Mpc/h, and the right is 15 x 15 Mpc/h (in comoving units) (Boylan-Kolchin et al. 2009). 
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In considering the similarity of the model to the analogous output from our target 

system, however, this is a case in which there is not full access to observing the entire 

large-scale structure of the universe nor the timescales on which to observe such things. 

While astrophysicists cannot make a direct comparison of the output structure from the 

model to the universe, they can, however, compare the model output to smaller scale 

systems, such as galaxy clusters, in order to see if these structures are consistent with the 

output of the model. Some large-scale features can be observed, such as galaxy 

distributions, and these are similar to the output of the model. However, the output the 

modellers are most interested in is the description over time of large-scale structure. 

Since this cannot be directly observed, indirect observations, such as those of smaller 

scale structures, must suffice.   

In general, when a model is constructed so that it includes a strong theoretical 

component, then it is very likely that the model will be universally applicable. Since 

highly confirmed fundamental physical theories are to apply at all times, then a model 

closely based on them should also apply at all times. This suggests that a model with a 

strong theoretical component will likely be successful at making predictions. Even if the 

model was constructed with a descriptive purpose in mind, it will allow one to make 

claims about future and past states about the system. While a fundamental theory is valid 

in any domain, it likely will not be universally useful. Approximations and idealizations 

are made when constructing a model for a domain that differs from the standard domain 

of the theory. These approximations and idealizations may build in a domain dependence 

for the model that may not exist for the theory itself65.  An example of this is the 

Oppenheimer-Snyder black hole model seen in chapter 2. While the model was based on 

general relativity, Oppenheimer-Snyder idealized away features of the target system that 

are relevant on longer timescales (such as spin). This allowed them to create a useful 

model for their purposes, but it was not applicable outside of the domain that was 

determined by their idealizations and simplifications about the target system.  

                                                
65

 This is especially true for cases of non-fundamental theories that apply only in a limited domain.  
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Turning to assessment of adequacy of the ΛCDM model for various purposes, 

having a strong theoretical component in the establishment of the similarity relation for 

the construction of a model serving a descriptive purpose means that the description 

should apply at all times. Therefore, the ΛCDM model is also (in a sense) a predictively 

adequate model, as providing a description of a future or past unobserved state is a kind 

of prediction for which adequacy can be assessed. Furthermore, a heavy theoretical 

component in the similarity relation also means that the model should be able to be 

applied easily to unobserved cases, yielding new predictions in this sense as well.  

Yet the ΛCDM model is an incomplete case, as we cannot compare the full 

structure output to the real world, even though we can compare some features of the 

model output to the real world, such as smaller scale distribution of galaxies. 

Astrophysicists do not have direct observational access to the large-scale structure of our 

universe, nor the timescales relevant to the predictions. They can, however, compare the 

model output of structure formations to smaller scale objects, such as galaxy clusters, and 

see if these models seem to be similar. On this basis, astrophysicists have judged the 

ΛCDM model to be predictively adequate as well. It has successfully predicted a variety 

of empirical consequences ranging from galaxy distributions on large scales, to lensing 

phenomena caused by dark matter halos surrounding galaxies (Mo et al 2010).  

Most importantly, such a heavy inclusion of theory in the similarity relation, and 

in the construction of the model means the model fares well with respect to its 

explanatory adequacy. Because the ΛCDM model is based so closely on general 

relativity, it has already included the structures that are similar to the causal dependencies 

that exist in the target system. It has already included these explanatory elements, rather 

than needing to use the model to discover them. When a model is based closely on 

theory, in general, it will be explanatorily adequate because we take theories to offer 

good explanations66.  

                                                
66

 When a model is not based closely on theory, robustness analysis is an indispensable tool to aid in 
discovering these dependencies. 
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Even though the ΛCDM model is constructed for a descriptive purpose, in that the 

parameter values were chosen to accommodate observational data about the target 

system, it is adequate with respect to prediction and explanation as well. The reason for 

this is its close reliance on a well-confirmed theory in establishment of the similarity 

relation in the construction. In general, a model closely based on a theory will predict and 

explain well. Within the domain of the ΛCDM model—application to extremely large 

scale structure of the universe—the model can be evaluated as fitting well, with respect to 

its similarity to the target system for the purpose of providing a description, and it is 

adequate with respect to providing that description, as well as being able to provide 

predictions and retrodictions about the structure, and explaining why the structure is as it 

is. 

5.4 The Extension of Domain and Rise of Conflict 

Since astrophysicists take ΛCDM to be an adequate explanatory model, it is quite natural 

to want to extend the model to other domains. If a model is explanatorily adequate, and 

we consider the explanatory mechanisms to be not just adequate, but fundamental to the 

similarity relation in construction of the model, and actually similar to the target system, 

then the model should have some explanatory adequacy with respect to other domains.  

For this reason, while the ΛCDM model was constructed to apply on a large-scale 

domain, it could be extended to a different domain, such as the small-scale structure of a 

single galaxy. For the domain of small-scale structure, the field equations, on which the 

model lays its foundation, reduce to Newton's law of gravity by using both the weak-field 

approximation and the slow-motion approximation, which are considered justified 

approximations for single galaxies or clusters.  

This allows for the ΛCDM model to be extended to model galaxy rotation 

structures. And in fact, it was single galaxy rotation curves that partly led to the inclusion 

of dark matter as an attribute in the ΛCDM model (Ryden 2003). A galaxy rotation curve 

is a plot of the orbital speeds of visible stars or gas in a galaxy against their radial 

distance from that galaxy's center. How much matter is visible in a given galaxy 

determines a simple curve for rotational speed as a function of the distance from the 
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galactic center. However, the actual observational data did not match the calculated 

expected curve. 

Figure 18: Example Galaxy Rotation Curve 

 
Example galaxy rotation curve. The rotational velocities of stars are plotted against their distance 

from the center of a galaxy. The dotted line A plots what the expected rotation curve based on 
visible matter. Solid line B plots what is actually observed (Nesvold 2013). 

According to general relativity67, for the galaxies to rotate in the way the observations 

indicated, there must be significantly more mass in the galaxy than the mass we are able 

to see. As such, dark matter was postulated as an attribute of the universe and added to 

our model of the universe (and thus adding the ‘DM’ to ΛCDM).   

One of the most interesting problems in astrophysics is that modellers often do 

not even know everything that constitutes the target system that is being modeled. In 

astrophysics more generally, one of the largest problems in constructing a model of the 

large scale structure of the universe is modellers are able to directly observationally 

access only a very small part of the system. They have no direct access to the entire target 

system of interest, and moreover they are not even totally sure what is in the target 

system.  

                                                
67

 In this domain, the weak field approximation applies, meaning that it is actually Newtonian dynamics 
that is used to model galaxy rotation. However, general relativity is still considered to be the correct theory 
for this system. Newtonian mechanics is used because it is considered to be a good approximation in this 
domain.  
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In the case of the ΛCDM model, two extremely controversial attributes are 

included: dark matter and dark energy. These two features have been postulated to be part 

of our universe, but almost entirely because astrophysicists have wanted to maintain 

general relativity as the basis of the model, heavilty weighting it as a mechanism. The 

inclusion of dark matter is a strange feature, as we currently do not know for certain that 

it exists in the target system. There is a debate about whether postulating dark matter in 

order to maintain general relativity is a bad explanatory move. As a result, other 

astrophysical research programs have developed alternative models that do not posit this 

strange dark matter. However, the problem is that in order to succeed, they have to 

abandon general relativity as the mechanism for gravity in the model. While some 

consider this to be a matter of a subjective choice between incommensurable models, my 

framework will show that it involves questions about the assessment of different models 

for different purposes. Both are successful in their domain of application for multiple 

purposes. However, when the models are extended to a common domain, they are 

actually in conflict with each other, and can be directly compared. 

5.5 MOND as an Alternative Means to Fit the Data 

Proponents of Modified Newtonian Dynamics (MOND) (originally proposed by 

Mordehai Milgrom) consider the inclusion of dark matter in order to maintain 

consistency with general relativity to be a bad explanatory move. The MOND research 

program attempts to explain galaxy rotation without dark matter by modifying the 

underlying laws of physics. By modifying the underlying physics proponents are able to 

provide a model for galaxy rotation that not only does not posit dark matter but also 

matches the observed data descriptively, with a higher degree of accuracy than the 

extended ΛCDM model (McGaugh 2014; Milgrom 1983).  

Take, for example, the measured rotation curve of the galaxy NGC 1560 in Figure 

19. The observed rotation velocity data points, plotted as a function of distance from the 

galactic center, are compared to the predictions of three models. 
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Figure 19: NGC 1560 Rotation Curve 

 
The measured rotation curve of the galaxy NGC1560 shown by the data points. Newtonian curve 

based on the measured mass distribution (in blue), MOND (in green), and Newtonian + dark 
matter halo of the type predicted by CDM simulations (in red). (McGaugh (from Milgrom) 2009).   

The ΛCDM-based galaxy rotation model (ΛCDM extended by further approximations for 

its application to a single galaxy as a model with Newtonian gravitation and the inclusion 

of dark matter) is able to offer an adequate descriptive fit of the rotation curves, in that it 

generally gets the shape correct. However, if we want a model that, with the smallest 

amount of deviation, describes the data points, we must say that MOND is the better 

model. The MOND model for galaxy rotations supports a larger descriptive similarity to 

the data points. The MOND model also predicts the data points of rotation curves of other 

galaxies with higher similarity than ΛCDM, and is thus more predictively adequate68. 

The key difference is that the proponents of MOND also want it to serve the purpose of 

                                                
68

 For extended discussion and further examples of MOND verses ΛCDM galaxy rotation curves, see 
Randriamampandry & Carignan (2014), “Galaxy Mass Models: MOND verses Dark Matter Halos”.  
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offering an explanatory model, in that the explanation for these data points is modified 

Newtonian dynamics and not general relativity. As Milgrom states, MOND “explains 

almost all aspects of the mass discrepancies in galactic systems with no need to invoke 

dark matter. This is what MOND claims to achieve” (Milgrom 2009, 5). 

Much like their colleagues who support ΛCDM, MOND proponents consider 

their models for galaxy rotation to be heavily based on theory, and thus believe that their 

similarity relations are actually capturing a real causal mechanism in the target system. 

So, MOND proponents have attempted to extend its domain beyond its descriptively 

well-fitting galaxy rotation curves. However, when moving to large scales, their models 

fare quite poorly. Take, for example, the extension to large-scale structure formation 

models. 

Figure 20: ΛCDM and MOND Structure Formation 

 
Large scale structure formation model slices for ΛCDM (top) and MOND (bottom). Notice the 
MOND have shifted redshift z values, for the same ΛCDM model above. (McGaugh 2014, 12) 

In Figure 20 the top row is a depiction of the predicted structure formation from the 

ΛCDM model for the present (z=0), as well as several instances in the past (z=3, z=5). 
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These model outputs are considered by astrophysics to be well fitting with respect to 

what is known about our universe’s current structure. The MOND model also achieves 

similar structures, but in MOND the structures develop too soon (McGaugh 2014, 13). 

What astrophysicists consider to be the current structure (z=0 in ΛCDM) occurs in 

MOND at z=3. Astrophysicists consider the MOND-based model of structure formation 

not to fit with our observational data-based claims of the large scale structures (McGaugh 

2014; Dodelson 2011). Therefore, MOND does not have a good fit when applied to larger 

domains. However, ΛCDM is evaluated to fit well.  

5.6 The Importance of Similarity Relation and Domain of Application 

Recall that the puzzle about the ΛCDM and MOND models that motivated my discussion 

is how they can both be so successful, yet be based on fundamentally different physical 

theories. How do we make sense of this fact?  

Each of these models, in its own domain, fits well with respect to description and 

prediction, and each includes potentially problematic explanatory structures. ΛCDM fits 

well with respect to describing and predicting the large-scale structure of the universe. 

However, in order to maintain general relativity as its fundamental explanatory 

mechanism, it has to include dark matter as an attribute of the target system. MOND fits 

well for describing and predicting the small-scale structure of single galaxy rotations. 

However, in order to provide this accurate description, general relativity as the 

underlying causal mechanism is abandoned in favor of modified Newtonian dynamics. 

Both of these models fit well within their domains and for their intended purposes.  

What my framework allows us to see is that the models are not in conflict when 

applied in their domains, and it is only when they are taken to be good explanatory 

models, and those explanations are extended, that they come into conflict. In so far as 

ΛCDM is a model of structure formation, it does not apply to galaxies directly and does 

not directly conflict with MOND. However, its underlying fundamental physical theory is 

general relativity, which does conflict. It is ΛCDM’s similarity with general relativity 

that makes it highly explanatorily adequate in its domain. However, the attempted 
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extension to new domains, justified by high similarity to general relativity, is what brings 

it into direct conflict with MOND.  

With respect to assessing the overall explanatory fit for these two models, it is 

important to remember that one needs to separately assess explanatory adequacy and 

similarity for the purpose of explanation. Both models are adequate for explanations in 

their respective domains. Recall that adequacy is assessed by attempting to use the output 

of the model in an explanation. Both models produce outputs that can feature as 

explanantia in an explanation for phenomena relevant to their domains.  

But what is interesting about cases from astrophysics, such as this, is that we do 

not always know exactly what constitutes the target system. A consequence of having 

uncertainty with respect to what is in the target system is that there is some uncertainty 

with respect to our assessment of the similarity relation. The similarity relation 

establishes the representational relation between the attributes and mechanisms in the 

model and the attributes and mechanisms in the target system. If we do not know what is 

in the target system, we will not know what to capture in the similarity relation.  

A claim that a model has good explanatory fit means that the model is an 

adequate explanation, but also that it is similar to the target system in the right kind of 

way. Recall, it is of special importance for explanatory similarity that the mechanisms be 

accurately represented in the model. If we are justified in claims that the model has a 

good explanatory fit, then it should be the case that the model is capturing actual 

mechanisms in the similarity relation that represent actual causal dependencies in the 

target system.  

This is why we consider it justified to extend a good explanatory model beyond 

its original domain of application. A good explanation is grounded by the accurate 

representation of the target system captured in the similarity relation. For something to be 

a good explanation, it presupposes the idea that the similarity relation is capturing real 

features of the system. This is especially true with respect to mechanisms because that is 

how the causal relations in the world are represented in the model. Relatedly, if an 

element of an explanatorily adequate model is indispensable for giving a good 
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explanation, then one should conclude that what it represents is a part of the target 

system.  

Where the ΛCDM and MOND models run into trouble is when they move beyond 

their original domains and attempt to extend their claims about the model’s explanatory 

adequacy. Both are adequate explanatory models in their original domains. But what they 

disagree about is what they consider to be in the target system. That is to say, they 

disagree about the mechanisms and attributes included in the similarity relation. 

What my framework allows us to see is that when we think of a model as having 

high explanatory fit, because of the way the similarity relation is structured, we are 

endorsing the idea that the mechanisms in the model represent real causal relations in the 

world, and that the attributes in the model stand in that relation to one another. If 

scientists think they have a model with high explanatory fit, what they think they have is 

a model that has good similarity to the target system, and to the real counterfactual 

dependencies that exist in the world.  

Models with high explanatory fit make the most commitments to what there is in 

the world, and this is the reason why it is natural to think they can be extended to new 

domains. If modellers have identified features about the target system within a certain 

domain, and find that when they extend the model to a new domain those features are still 

there, it is likely because they really are there in the world. As a result, one can generate 

new models based on having a good explanatory understanding of a phenomenon. 

However, this cannot necessarily be done with prediction or description. Explanatory 

models commit to more, namely, to the existence of real counterfactual relations. 

So what does this mean, more specifically, for the case of ΛCDM and MOND? It 

means that there is not a conflict between the ΛCDM and MOND models when they are 

applied to their own domains. The ΛCDM model was constructed to describe extremely 

large-scale structure, and does well within this domain. However, the two models are in 

conflict when one attempts to extend them.  We see this in ΛCDM when it is extended to 

small-scale structure of single galaxies. While it might be adequate for the purpose of 

describing the rotation curve, it does not do it as well as the MOND model for galaxy 
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rotation does. What is hiding here in the details, however, is that the real conflict between 

the two is their explanation for the phenomena.  

The question, then, becomes which explanation is better supported? ΛCDM has, 

as far as our current knowledge of our target system goes, the stronger similarity relation 

because the mechanism for gravitational attraction in the model comes from our current 

best theory. The questionable attributes that it includes (namely, dark matter and dark 

energy) are not theoretically problematic according to general relativity. But on the other 

hand, the questionable mechanism in MOND (namely modified Newtonian dynamics) is 

theoretically problematic, because it is inconsistent with our current best theory of 

gravity. One might think that the point of models, and therefore the point of MOND, is to 

help us explore cases in which our current best theory may not be the correct theory. 

Alternative models, like MOND, can help us formulate and assess new theoretical 

hypotheses. They are a valuable tool in testing our best theories, and discovering possible 

alternatives.  

However, if the dynamics in the MOND model represents a viable alternative 

theory, then when that model is applied outside of its original domain of application, it 

should still do well. The MOND model should fit in the new domain, if it has identified 

the causal aspects that are actually in the target system. However, we do not see that. 

MOND, on large scales dramatically misses the mark (McGaugh 2014). This is evidence 

that the modified Newtonian dynamics is not identifying a real causal relation in the 

world, and just happens to work at the scale of the original domain of the model. While 

the ΛCDM model does not do better than MOND for galaxy rotation, the ΛCDM 

modellers do acknowledge that their model likely does not have the full similarity story, 

or that some of the idealizations they have made in constructing a model for the large-

scale domain (such as homogeneity and isotropy) are not justifiable when examining the 

smaller scales.  

Stacy McGaugh (2014) argues that the difference between the ΛCDM and 

MOND models is a matter of “mutual incommensurate paradigms”, that they are 

opposing explanations for the observed mass discrepancies in the universe. Each 
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paradigm has different pertinent data, and “where one makes clear predictions, the other 

tends to be mute. This makes comparison of the two fraught” (McGaugh 2014, 16). 

However, my framework provides a different means to understand the issue at hand. We 

should not understand these two models as being incommensurable, but rather as 

reflecting differences in understanding how to justify the extension of high-fit models, 

relative to the model’s similarity, and adequacy relative to a purpose and domain of 

application. My framework allows for comparison between the two, and offers a means 

of identifying where the models differ and why. My framework allows for a richer 

progress in the discussion of the conflicts between the models. 

5.7 Conclusion.  

My framework enables us to see where the ΛCDM and MOND models disagree, 

and to understand how it could be possible for two models with fundamentally different 

physics to both be good fits in their domains for their purposes. They conflict only when 

they are extended, and one is justified in extending them beyond their original domain 

only if the models are thought to be good explanatory models. And anyone who thinks 

they are good explanatory models is committed to the attributes and mechanisms in the 

models standing in some representational relation to attributes and mechanisms in the 

actual target system.  

The point at which the models enter into conflict arises when we attempt to move 

beyond the models to claims about the real world. Ronald Giere says, “There is no best 

scientific model of anything; there are only models more or less good for different 

purposes” (Giere 2001, 1060). I have argued that this is true. However, we must 

acknowledge what these models commit us to when we attempt to move beyond the 

model itself. It is when we attempt to make inferences from our models to the real world 

that we must reflect on what the establishment of the similarity relation commits us to. To 

learn about the world from a model, the model’s construction and assessment at each 

stage is of primary importance.  
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Chapter 6  

6 Conclusion 

6.1 Concluding Remarks 

In this dissertation I have presented a framework that is intended to be used to help 

disentangle the interwoven threads of evaluation of model success, model extendibility, 

and the ability to draw ampliative inferences about the world from models. I began by 

identifying three important questions that guided the development of my framework: 

What is the target of evaluation in model assessment? How does that evaluation proceed? 

What licenses us in making inferences about the real world based on the evaluation of our 

models as successful? 

The framework identifies two distinct targets of model evaluation: 

representational similarity between the model and target system, and the adequacy of the 

model as a tool to answer questions. Both assessments must be relativized to a purpose, 

of which there are three general kinds: descriptive, predictive, and explanatory. These 

purposes differ in the way they inform the similarity relation, which is relevant for the 

similarity assessment and for the output they produce, which is relevant for the adequacy 

assessment. Any model can be assessed relative to any purpose, but a model encodes 

certain decisions made during the model’s construction, which affects its ability to be 

applied to a new purpose or new domain. My framework shows that extending a model, 

and drawing inferences from it, depends on its representational similarity.  

This framework has been successful in that it has allowed me to analyze an 

important contemporary debate in astrophysics between the proponents of MOND and 

the more commonly accepted ΛCDM model of structure formation. I have shown that the 

supposed conflict between the two models can be resolved by showing that it is an 

artifact of inappropriate extension of the models, when the explanatory similarity is not 

sufficient for such an extension.  This conflict is not properly understood as 

incommensurability, as is sometimes claimed. Rather, it is a conflict between models 

designed for specific purposes in specific domains being unjustifiably extended. The 
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framework has proven its value in this case and could easily be applied to analyze similar 

cases to identify the source of conflict in model disagreement.  

However, this framework also has some open ends for further exploration and 

work. It is possible that there may be more than three kinds of purpose. Indeed, the three 

general kinds of purposes I have identified may not be exhausted or comprehensive. I do 

however think they are “primary” in some sense. The addition of another kind of purpose 

would require reflection as to what one might expect at the output stage of the framework 

that differs from the outputs already captured by description, prediction, and explanation. 

However, should there be more than just these three I see no reason the model cannot be 

extended to account for those.  

There may be scientific models that do not neatly fit into the proposed analysis. 

However, my framework clearly captures large swaths of models actually used in 

science. Any instances of model evaluation that might not fit in this framework would be 

a wonderful find, as it would illuminate possible missing aspects that may be specific to a 

certain science or type of modeling. Additionally, one could also object that the four 

components of framework presuppose discrete temporal steps in the assessment of 

models. While this is necessary for dialectical purposes, nothing about how the analysis 

actually proceeds requires that they be considered as successive steps. Rather, what I 

have done is to draw conceptual distinctions in the ways in which models are assessed. 

Furthermore, this framework could allow for tracking the complexities of model 

evolution is an iterative process, that does not proceed cleanly from component 1 to 2 to 

3 to 4. Rather, there may (and in fact often are) revisions to the construction of the model 

and the similarity relation in light of the output or comparable observational evidence 

obtained. But what the framework does track is this process, and the various aspect to the 

decisions made during the evaluation. 
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The role of evidence is also an open question both in my framework, and 

philosophical work on modeling more generally69. The role of evidence in the discussion 

of modelling can be quite messy, however what my framework provides is a means for 

identifying where evidential considerations come into play. Evidence, be it observational, 

experimental, or raw data can play a role in in determining what the target system will be, 

in the assessment of the similarity relation, or in assessing the adequacy of the model’s 

output for the purpose. My framework allows for identifying these nodes of entry for 

data, as well as how that evidence is used in the justificatory process. It may be that 

certain evidence might support a hypothesis statement, while evidence in favor of the 

model more generally differ. A closer look at the role of evidence in these contexts may 

also be illuminating for a topic I have set aside: confirmation. There are at least three 

ways in which the relation between models and evidence can be discussed, the first 

relates to whether observations or the model itself confirms our understanding of a target 

system. Second, whether a variety of evidence can validate the use of a certain model to a 

higher degree than a single line of evidence. Finally, whether the success of a model can 

serve as evidence or confirmation for a particular theory. What my framework can 

provide is a means to identify the various justificatory processes at play in the evaluation 

of a model, which may be helpful for disentangling what notions of verification, 

validation, or confirmation are at play in a positive assessment of a model as successful. 

As I noted, I have attempted to provide a framework absent of discussion of scientific 

confirmation in order to examine the process of model evaluation. Future work should 

look to see how the framework developed based on examining the practice of scientific 

modeling fits within the existing literature on confirmation generally. 

Relatedly, this project has focused on instances of modeling in which there is little 

uncertainty with respect to identifying the target system, in which the data is clear, and in 

which the models are already well-developed. However, it is often the case in actual 

scientific practice that the data itself is uncertain. For example, there may be sources of 
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 As a point of reference, discussion of evidence in the context of scientific models is absent from the 
Stanford Encyclopedia of Philosophy’s entry on “Models in Science”. 
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systematic error in certain observations made by astronomers. Most mature sciences have 

techniques for addressing error in their data, which allows them to create models even in 

cases of uncertainty. Considerations of this kind have not played a role in the analysis 

presented in this dissertation, and may represent an interesting complication to my 

framework. This is a potential area for future research. However, a few brief remarks can 

be made presently. Uncertainty may enter in before the model evaluation of fit proceeds, 

in that there may not be agreement about what features should be included in the 

similarity relation, and weighted-feature matching equation (component 1 of the 

framework). Part of the advantage to the weighted-feature matching equation is that by 

specifying the weightings, and why certain features are weighted in the way they are, the 

modeler is tracking which aspects of model they are less certain about. Error analysis 

may be a critical part of the assessment of adequacy, or the assessment of the similarity 

relation during component three or four. In comparing the model to comparable output 

from the target system, error analysis may help inform a modeller’s evaluation. Again, 

this points to the strength of my framework as a means to identify the instances in which 

these sorts of uncertainties enter into the evaluative process. 

Finally, the analysis I have proposed often relies on saying something about a 

modeler’s intentions or decisions during the model’s construction. In some cases, one 

does not have access to any information of this kind, or a model will be used without 

having been created with any purpose in mind (e.g. inherited from other unrelated or 

historical sciences, or parameters set by trial and error). In these cases, a certain amount 

of reconstruction is needed for the analysis to proceed. If the modeler has not considered 

why the use of a historical model or model from a different discipline may be 

appropriate, inferences made from those models to the world may very well not be 

justified. To be permitted in making inferences from a model, the modeler must consider 

the ways in which the model is similar, and represents, the target system to which it is 

being applied. Regardless of whether the modeler constructed the model themselves, 

there is some similarity relation analysis that the modeler conducts such that they think 

the model represents the target system in a way that is meaningful. I see my framework 

as being particularly illuminating in these cases, as it gives means by which a modeler 
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can express their rational for adopting a specific existing model for their target system of 

interest.   

Recall the joke I heard in undergraduate physics, which started me thinking about 

these issues: What is the difference between a physicist and an astronomer? A physicist 

needs two data points to get a line of best-fit but an astronomer only needs one. While 

there is a hint of truth to the joke, it fails to take into account the purpose for which most 

astronomical models are developed. Astronomers tend to develop models for describing 

an unknown target system. They operate with a small set of data, and build the best 

descriptions of their target system they can. Their models are heavily theoretically 

influenced, and therefore a significant amount can be learned from a small amount of 

observational evidence. It is through attending to the purpose and domain a model is 

intended to be a tool for that we can better understand what success in science looks like. 

Understanding the world is a difficult task, and models are invaluable tools. But we must 

understand how they represent their target systems, how they are adequate for the jobs we 

want to use them for, and how we are justified in drawing inferences from them, if we are 

to be able to truly learn anything about our world.  
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