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Abstract
In the first part of this thesis, a noncommutative analogue of Gross’ logarithmic Sobolev
inequality for the noncommutative 2-torus is investigated. More precisely, Weissler’s re-
sult on the logarithmic Sobolev inequality for the unit circle is used to propose that the
logarithmic Sobolev inequality for a positive element a =

∑
am,nU

mV n of the noncom-
mutative 2-torus should be of the form

τ(a2 log a) 6
∑

(m,n)∈Z2

(|m|+ |n|)|am,n|2 + τ(a2) log(τ(a2))1/2,

where τ is the normalized positive faithful trace of the noncommutative 2-torus. A
possible approach to prove this inequality for arbitrary positive elements will involve a
noncommutative multinomial expansion and seems to be exceedingly complicated. In
this thesis the above inequality is proved for a particular class of elements of the non-
commutative 2-torus.

In the second part of this thesis, the scalar curvature of the curved noncommutative
3-torus is studied. In fact, the standard volume form on the noncommutative 3-torus
is conformally perturbed and the corresponding perturbed Laplacian is analyzed. Then
using Connes’ pseudodifferential calculus for the noncommutative 3-torus, the first three
terms of the small time heat kernel expansion for the perturbed Laplacian are derived.
Moreover, by using the third term of this expansion and the Cauchy integral formula,
the scalar curvature of the curved noncommutative 3-torus is defined. Finally, proving
a rearrangement lemma, the scalar curvature is computed and an explicit local formula
that describes the curvature in terms of the conformal factor is given.

Keywords: Logarithmic Sobolev inequality, Noncommutative 2-torus, Scalar curva-
ture, Noncommutative 3-torus, Conformal perturbation, Modular operator, Pseudodif-
ferential calculus, Asymptotic expansion, Laplace operator, Spectral triples, Rearrange-
ment.
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Chapter 1

Introduction

The field of noncommutative geometry was introduced by Alain Connes in the 1980’s
[1.1], and since then it has grown very quickly. Noncommutative geometry is based on
the idea that one can study the geometric or topological properties of a space by looking
at the function algebras (which are commutative) on that space. Exploiting this idea
one can relax the commutativity condition and define noncommutative spaces through
noncommutative algebras.

In this chapter we will briefly recall some of the ideas of noncommutative geometry,
through certain examples. For more details and advanced discussion one can see [1.2],
[1.9] and [1.11].

1.1 Noncommutative Topology
The roots of noncommutative geometry can be seen in the seminal work [1.8] of Gelfand
and Naimark, where the theory of C*-algebras was born. In this section we explain how
that work helps us define noncommutative locally compact topological spaces.

Definition 1.1.1. A complete normed algebra A over C is called a C*-algebra if
(i) ‖ab‖ 6 ‖a‖‖b‖ for a, b ∈ A,
(ii) There is an involution, i.e. a conjugate linear map

∗ : A −→ A, a 7→ a∗,

such that (a∗)∗ = a and (ab)∗ = b∗a∗,
(iii) ‖a∗a‖ = ‖a‖2 for a ∈ A.

Let H be a Hilbert space and T be a linear map on H. The operator norm of T is
defined by

‖T‖ = sup {‖T (x)‖ : x ∈ H, ‖x‖ 6 1} .
If ‖T‖ < ∞, then T is called a bounded operator. We denote the space of all bounded
linear operators on H by B(H). As an example of a C*-algebra, we can consider B(H)
endowed with the operator norm and the involution defined by the adjoints of operators.
Indeed, by a famous theorem known as the Gelfand-Naimark-Segal (GNS) theorem we
know that every C*-algebra can be embedded in B(H) for some Hilbert space H [1.8].
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Let X be a locally compact Hausdorff space. A function f on X is said to be vanishing
at infinity if for every ε > 0 there exists a compact set K ⊂ X such that for x ∈ X \K,
‖f‖∞ < ε, where ‖.‖∞ is the uniform norm, i.e.

‖f‖∞ = sup{|f(x)| : x ∈ X}.

The space of all continuous functions on X vanishing at infinity forms an algebra
under the pointwise addition and multiplication. This algebra, which is denoted by
C0(X), endowed with the uniform norm and the involution defined by

∗ : C0(X) −→ C0(X), f ∗ = f̄

is a commutative C*-algebra. We will see soon that these C*-algebras are the only
commutative C*-algebras up to isomorphism.

For the C*-algebras A and B, the homomorphism ϕ : A −→ B is called a C*-
homomorphism, if it preserves the involution, i.e. for a ∈ A,

ϕ(a∗) = ϕ(a)∗.

A character of a C*-algebra A by definition is a nonzero multiplicative linear map
χ : A −→ C. The set of all characters of such an algebra is called the spectrum of that
algebra and is denoted by Â. For a commutative C*-algebra A, it can be shown that Â
is a locally compact Hausdorff space with respect to the weak* topology which is indeed
the topology of pointwise convergence on the continuous dual space of A. The space Â
is compact if and only if A is unital (see Theorem 1.3.5 in [1.12]). The next theorem
implies that there exists a unique commutative C*-algebra with a given spectrum up to
isomorphism.

Theorem 1.1.2. (Gelfand-Naimark Theorem). Let A be a commutative C*-algebra and
Γ be the Gelfand transform, i.e. the linear map

Γ : A −→ C0(Â), a 7→ â,

where â is defined by â(h) = h(a) for h ∈ Â. Then Γ is an isometric C*-isomorphism.

Proof. See Theorem 1.31 in [1.7].

As we stated earlier, for a locally compact Hausdorff spaceX, C0(X) is a commutative
C*-algebra. For x ∈ X, we define a character χx by

χx(f) = f(x).

The next theorem states that indeed all of the characters of C0(X) are of this form.

Theorem 1.1.3. Let X be a locally compact Hausdorff space. Then the map

F : X −→ Ĉ0(X), x 7→ χx,

is a homeomorphism.
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Proof. See Proposition 4.5 in [1.15].

Using the last two theorems we see that there is an equivalence between the category
of commutative C*-algebras and the opposite of the category of locally compact Hausdorff
spaces. In fact, the locally compact Hausdorff space associated to the commutative C*-
algebra A is Â, and the C*-algebra associated to the locally compact Hausdorff space X
is C0(X).

Now we are at the point that we can define a noncommutative locally compact Haus-
dorff space. Indeed, it suffices to drop the commutativity condition. Therefore, we define
a noncommutative locally compact Hausdorff space to be a not necessarily commutative
C*-algebra. Clearly, if X is a compact space then C0(X) is a unital C*-algebra and vice
versa. Accordingly, one can add more correspondences and form the following table:

locally compact Hausdorff space X C0(X)
compact Hausdorff space X unital C*-algebra C(X)
one point compactification of X unitization of C0(X)

Stone-Čech compactification of X multiplier algebra of C0(X)

Using this table we can also define new noncommutative spaces and processes and create
another table:

noncommutative locally compact Hausdorff space C*-algebra A
noncommutative compact Hausdorff space unital C*-algebra A
one point compactification unitization of A
Stone-Čech compactification multiplier algebra of A

The next step is defining the noncommutative vector bundles. To define them we use
Swan’s theorem [1.14], which states that there is a one-to-one correspondence between
vector bundles over a compact Hausdorff space X and finite projective C(X)-modules.
Thus a finite projective A-module is called a noncommutative vector bundle over the
noncommutative compact space A.

1.2 Noncommutative Measure Theory
In this section we will use a theorem that characterizes commutative von Neumann
algebras to define noncommutative measure spaces.

Let H be a Hilbert space. The weak operator topology on B(H) is the topology
generated by the semi norms

‖T‖x,y = | 〈Tx, y〉 | x, y ∈ H,

where 〈·, ·〉 is the inner product on H.

Definition 1.2.1. Let H be a Hilbert space. A von Neumann algebra is a ∗-subalgebra
of B(H) which is closed in the weak operator topology.

3



Since the weak operator topology is weaker than the operator norm topology, any von
Neumann algebra is a C*-algebra.

Let X be a locally compact space and µ be a positive Radon measure on X. One can
show that the following map

π : L∞(X,µ) −→ B(L2(X,µ)), ϕ 7→Mϕ,

is an injective map, where Mϕ is the multiplication operator by ϕ, i.e. for f ∈ L2(X,µ),
Mϕ(f) = fϕ. Moreover, the range of the map π is a von Neumann algebra. The next
theorem states that indeed all of commutative von Neumann algebras are of this form.

Theorem 1.2.2. Let A be a commutative von Neumann algebra. Then there exist a
locally compact space X and a positive Radon measure µ on it such that A, as an algebra,
is isomorphic to L∞(X,µ).

Proof. See Theorem 1.18 in [1.15].

The previous theorem leads us to call a not necessarily commutative von Neumann
algebra a noncommutative measure space.

1.3 The Noncommutative 2-Torus
One of the most famous examples of the noncommutative spaces is the noncommutative
2-torus. In fact, one can think of it as a noncommutative manifold of dimension two. This
space is a play ground for testing many interesting ideas, concepts and structures that
come to the mind in the noncommutative settings, and fortunately, most of them have
been proved to be a justifiable generalization of the commutative case. In this section we
shall briefly introduce the noncommutative two torus and see some of its properties. We
will start with the definition of the rotation algebras following M. A. Rieffel in [1.13].

Definition 1.3.1. Let θ ∈ R. The universal unital C*-algebra generated by two unitaries
U, V such that

UV = e2πiθV U,

is called a rotation algebra and is denoted by Aθ.

By universality we mean that for any C*-algebra B with unitaries u and v, subject to
the relation uv = e2πiθvu, there exists a unique unital C*-morphism from Aθ to B that
sends U to u and V to v.

In the purely algebraic case we know that one can always find an algebra generated
by a set of generators and relations, while in the C*-algebra settings we have to also
check the C*-indentity. As a result, some times there is no such a universal C*-algebra.
Fortunately, in the case of the rotation algebras, there exists a solution to the universal
property. Indeed, one can represent Aθ on L2(T), where T is the unit circle.

More precisely, we define the unitary operators U and V on L2(T) by

Uf(x) = e2πixf(x), V f(x) = f(x+ θ), f ∈ L2(T).

4



These operators satisfy the relation UV = e2πiθV U . One can show that the C*-algebra
generated by U and V in B(L2(T)) satisfies the universal property (See [1.9], Proposition
12.1).

Let

A∞θ =

 ∑
(m,n)∈Z2

am,nU
mV n : am,n is rapidly decreasing

 .

By rapidly decreasing we mean for all k ∈ N,

Sup
(m,n)∈Z2

(1 +m2 + n2)k|am,n|2 <∞. (1.1)

The set A∞θ is a dense subalgebra of Aθ and is called the noncommutative 2-torus.
For θ = 0, the commutation relation is UV = V U , so Aθ would be commutative. If

we set U and V to be functions on the 2-torus T2, defined by

U(φ1, φ2) = e2πiφ1 , V (φ1, φ2) = e2πiφ2 ,

where (φ1, φ2) is the angular coordinate for T2, then one can see that A0 is C(T2), the
algebra of continuous functions on the 2-torus. Moreover, in this case the condition (1.1)
is exactly the same condition on the Fourier coefficients of the smooth functions on T2.
Therefore, Aθ and A∞θ are respectively the noncommutative deformations of C(T2) and
C∞(T2), and this justifies the name noncommutative 2-torus. In what follows we state
some facts about Aθ and A∞θ . For the proof of these facts see Sections 12.3 and 12.4 in
[1.9].

The algebra A∞θ possesses two derivations, i.e. linear maps δi : A∞θ −→ A∞θ for
i = 1, 2, such that

δi(ab) = δi(a)b+ aδi(b), a, b ∈ A∞θ .

These derivations are defined by the following relations:

δ1(U) = 2πiU, δ1(V ) = 0,

δ2(V ) = 2πiV, δ2(U) = 0.

Using the derivation property, one can see that for a =
∑
am,nU

mV n ∈ A∞θ ,

δ1(a) = 2πi
∑

mam,nU
mV n, δ2(a) = 2πi

∑
nam,nU

mV n.

The last formulas are similar to the partial derivatives of a Fourier series on T2. Therefore,
we can think of δ1 and δ2 as the noncommutative partial derivatives of the elements in
A∞θ .

For θ ∈ R \Q, the rotation algebra Aθ has a unique normalized positive faithful trace,
i.e. a linear functional τ : Aθ −→ C with the following properties:

(i) τ(ab) = τ(ba) a, b ∈ Aθ,
(ii) τ(a∗a) > 0 a 6= 0,
(iii) τ(1) = 1.

This trace extracts the constant term of the elements in A∞θ , i.e. τ(a) = a0,0 where

5



a =
∑
am,nU

mV n ∈ A∞θ . Indeed, this trace plays the role of integration and satisfies a
kind of integration by parts identity:

τ(δi(a)b) = −τ(aδi(b)), a, b ∈ A∞θ , i = 1, 2.

As we mentioned earlier, many ideas and structures have been tested and proved to
be reasonable on the noncommutative 2-torus. In addition to what we have discussed
so far, we can also mention a few more items. For example, A. Connes introduced a
pseudodifferential calculus on the noncommutative 2-torus in [1.1] which is indeed the
cornerstone for the noncommutative geometry. Moreover, A. Connes and P. Tretkoff
proved a noncommutative Gauss-Bonnet theorem on the ncommutative 2-torus [1.4].
This theorem was extended to all conformal classes of metrics by M. Khalkhali and F.
Fathizadeh [1.5]. It took three decades until the first purely geometric concept in the
noncommutative settings was born. In fact, the scalar curvature of the noncommutative
2-torus was introduced and computed by A. Connes and H. Moscovici in [1.3], and
independently by M. Khalkhali and F. Fathizadeh in [1.6].

One can also define a noncommutative n-torus. Indeed, the approach is the same
as the case of 2-torus. In this case we need n unitaries subject to some commutation
relations. We will work with the noncommutative 3-torus in Chapter 4.

1.4 Organization of the Thesis
In this thesis we do analysis and geometry on the noncommutative tori. In Chapter
2 we will gather the prerequisites needed in the thesis. Indeed, we will first introduce
Sobolev spaces and a family of Sobolev type inequalities. Then the logarithmic Sobolev
inequality [1.10] will be discussed. Moreover, the spin structure and the Dirac operator
will be introduced. Finally, we shall briefly introduce the notion of a noncommutative
Riemannian spin manifold, by defining spectral triples.

In Chapter 3, using a version of the logarithmic Sobolev inequality on the unit circle,
introduced by Weissler [1.16], we will state a conjecture concerning a possible logarithmic
Sobolev inequality on the noncommutative 2-torus. The conjecture states that for a
positive element a =

∑
(m,n)∈Z2

am,nU
mV n of the noncommutative 2-torus we have

τ(a2 log a) 6
∑

(m,n)∈Z2

(|m|+ |n|)|am,n|2 + ‖a‖2
2 log ‖a‖2,

where ‖a‖2
2 = τ(a∗a). We will prove this conjecture for a certain class of elements in the

noncommutative 2-torus. Finally, in the last section of the chapter, we will show what
we can do towards proving the conjecture for an arbitrary positive element and what the
obstructions are.

In Chapter 4 we will use the ideas of [1.3], [1.4], [1.5] and [1.6] to define and com-
pute the scalar curvature of the noncommutative 3-torus with a conformally perturbed
metric. This is the first odd dimensional case among the noncommutative tori that have
been studied so far. First, we will introduce the noncommutative 3-torus and then we

6



shall study the different classes of conformally perturbed metrics on the noncommutative
3-torus. Moreover, Connes’ pseudodifferential calculus on the noncommutative 3-torus
will be introduced and using that we will define the scalar curvature of the noncommu-
tative 3-torus. The main part of Chapter 4 will be dedicated to the computation of the
scalar curvature. A version of the original rearrangement lemma in [1.3] is needed in the
computations. So we shall manipulate the proof of that lemma and will prove a slightly
different version using exactly the same method. Finally, we will give the formula for the
scalar curvature of the noncommutative 3-torus with a conformally perturbed metric.

7
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Chapter 2

Preliminaries

2.1 The Logarithmic Sobolev Inequality
In this section we will first introduce Sobolev spaces and Sobolev inequalities. Then the
logarithmic Sobolev inequality will be discussed. The main reference of this section is
[2.1]. Throughout this section we shall use the Lebesgue measure on Rn unless explicitly
stated otherwise.

Let I = (a, b) be an open interval in R and φ be a differentiable function on R such
that φ(a) = φ(b) = 0. Then using integration by parts, for a differentiable function u,
we get ∫ b

a

u(x)φ′(x)dx = −
∫ b

a

u(x)′φ(x)dx.

This motivates us to define a wider class of differentiable functions, namely weakly dif-
ferentiable functions.
Definition 2.1.1. Let I = (a, b) and 1 6 p 6 ∞. The Sobolev space W 1,p(I) is defined
to be

W 1,p(I) =

{
u ∈ Lp(I) : ∃g ∈ Lp(I) such that

∫
I

uφ′ = −
∫
I

gφ ∀φ ∈ C1
c (I)

}
.

An element u ∈ W 1,p(I) is called weakly differentiable with derivative in Lp(I). It
can be shown that the function g in the definition is unique a.e.. We call g the weak
derivative of u. For example, the function u(x) = |x| on I = (−1, 1) is an element of
W 1,p(I) for 1 6 p 6∞ and its weak derivative is u′ = g, where

g(x) =

{
1 0 < x < 1
−1 −1 < x < 0

.

We can immediately generalize the last definition to the domains in Rn and also to
the higher order derivatives. First we generalize it to the domains in Rn.
Definition 2.1.2. Let Ω ⊂ Rn be an open set and 1 6 p 6 ∞. The Sobolev space
W 1,p(Ω) is defined to be

W 1,p(Ω) =

u ∈ Lp(Ω) :
∃g1, g2, . . . , gn ∈ Lp(Ω) such that∫

Ω
u
∂iφ

∂xi
= −

∫
Ω
giφ ∀φ ∈ C∞c (Ω) ∀i = 1, 2, . . . , n

 .
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Moreover, for u ∈ W 1,p(Ω), we define
∂u

∂xi
= gi. The weak gradient of u is also defined

by

5u = gradu = (
∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xn
).

The Sobolev space W 1,p(Ω) is a normed space with the norm defined by

‖u‖W 1,p = ‖u‖p +
n∑
i=1

‖ ∂u
∂xi
‖p,

where ‖.‖p is the Lp norm. Now we define the higher order weak derivatives.

Definition 2.1.3. Let Ω ⊂ Rn be an open set and 1 6 p 6 ∞. For an integer m > 2,
the Sobolev space Wm,p(Ω) is defined to be

Wm,p(Ω) =

{
u ∈ Wm−1,p(Ω) :

∂u

∂xi
∈ Wm−1,p(Ω) ∀i = 1, 2, . . . , n

}
,

or equivalently

Wm,p(Ω) =

{
u ∈ Lp(Ω) :

∀α with |α| 6 m,∃gα ∈ Lp(Ω) such that∫
Ω
uDαφ = (−1)|α|

∫
Ω
gαφ ∀φ ∈ C∞c (Ω)

}
,

where α = (α1, α2, . . . , αm) is a multi index, i.e. an ordered m-tuple of nonnegative
integers, and

Dαφ = (
∂1

∂x1

)α1(
∂2

∂x2

)α2 · · · ( ∂m
∂xm

)αmφ.

Accordingly, we set Dαu = gα and define a norm on Wm,p(Ω) by

‖u‖Wm,p =
∑

06|α|6m

‖Dαu‖p.

Proposition 2.1.1. Let Ω ⊂ Rn be an open set, m be a nonnegative integer and 1 6
p 6∞. The Sobolev space Wm,p(Ω) is a Banach space with respect to the norm ‖.‖Wm,p .

Proof. See Proposition 9.1 of [2.1] for m = 1.

Now we turn to the classic Sobolev inequalities. In what follows we introduce a family
of inequalities known as Sobolev inequalities. A prototype of a Sobolev inequality is the
following inequality which is also known as Sobolev embedding.

Theorem 2.1.4. Let I = (a, b) be a open interval in R. There exists a constant C such
that for u ∈ W 1,p(I) and for 1 6 p 6∞,

‖u‖L∞(I) 6 C‖u‖W 1,p(I).

Proof. See Theorem 8.8 in [2.1].
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The last theorem implies that one can embed W 1,p(I) by a continuous injection in
L∞(I). Although this result is not valid for the dimensions higher than one, still we can
embed W 1,p(Ω) in Lp

∗
(Ω) for some p∗ ∈ (p,∞), by a continuous injection. The next

inequality which is called Sobolev, Gagliardo, Nirenberg inequality does the job.

Theorem 2.1.5. Let n be a positive integer and 1 6 p < n. Also let p∗ be defined by
1

p∗
=

1

p
− 1

n
. There exists a constant Cp,n such that for every u ∈ W 1,p(Rn),

‖u‖p∗ 6 Cp,n‖ 5 u‖p.

Proof. See Theorem 9.9 in [2.1].

To set the stage for the next inequality we need to introduce a new notation. For an
open set Ω ⊂ Rn and 1 6 p <∞, we denote by W 1,p

0 (Ω) the closure in W 1,p(Ω) of C1
c (Ω),

the space of continuously differentiable functions on Ω with compact supports. The next
theorem states the Poincaré inequality.

Theorem 2.1.6. Let Ω be a bounded open set in Rn and 1 6 p < ∞. There exists a
constant C such that for every u ∈ W 1,p

0 (Ω),

‖u‖Lp(Ω) 6 C‖ 5 u‖Lp(Ω).

The constant C depends on p and Ω.

Proof. See Proposition 9.18 and Corollary 9.19 in [2.1].

To move toward the logarithmic Sobolev inequality and justify its name we need to
introduce Orlicz spaces. The first step to define these spaces is defining N - functions.

Definition 2.1.7. A strictly increasing continuous function Ψ : [0,∞) −→ [0,∞) is
called an N-function if

(a) Ψ is convex, i.e. for s, t > 0 and 0 < λ < 1,

Ψ(λt+ (1− λ)s) 6 λΨ(t) + (1− λ)Ψ(s),

(b) limt→0
Ψ(t)

t
= 0 and limt→∞

Ψ(t)

t
=∞,

(c)
Ψ(t)

t
is increasing.

For example, the following functions are N -functions:

Ψ(t) = tp for 1 < p <∞,

Ψ(t) = et − t− 1,

Ψ(t) = t2 ln t.

Now we can define Orlicz spaces.
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Definition 2.1.8. Let Ω be an open set in Rn, µ be a σ-finite measure on Ω and Ψ be an
N -function. The linear span of the set of all equivalence classes of measurable functions
f : Ω :−→ C modulo equality a.e. such that∫

Ω

Ψ(|f(x)|) dµ(x) <∞,

is denoted by LΨ(Ω, µ) and is called an Orlicz space.

For example, for 1 < p < ∞, Lp(Ω, λ) is an Orlicz space associated to the function
Ψ(t) = tp, where λ represents the Lebesgue measure.

Finally, in the next theorem we have Gross’ logarithmic Sobolev inequality. For the
proof of that see [2.7].

Theorem 2.1.9. Let ν be the Gaussian measure on Rn, i.e.

dν(x) =
1

(2π)n/2
e−|x|

2/2dx,

where dx is the Lebesgue measure. Then for a smooth function f ,∫
Rn
|f(x)|2 ln |f(x)| dν(x) ≤

∫
Rn
|5f(x)|2 dν(x) + ‖f‖2

2 ln ‖f‖2,

where ‖.‖2 is the L2-norm with respect to the Gaussian measure.

The last theorem implies that if f and 5f are in L2(ν), then f is in the Orlicz space
LΨ(ν), where Ψ(t) = t2 ln t. So we can think of this inequality as a logarithmic version
of the Sobolev inequalities.

2.2 Pseudodifferential Operators and Asymptotic Ex-
pansion of the Heat Kernel

In this section we will briefly introduce the theory of pseudodifferential operators and
then we shall explain how this theory helps one find an asymptotic expansion of the heat
kernel. Indeed, we will gather the necessary material for Chapter 4. The main reference
of this section is [2.5].

First we need to fix some notation. Let α = (α1, α2, . . . , αm) be a multi index, and
x = (x1, x2, . . . , xm) ∈ Rm. We define

|α| = α1 + α2 + · · ·+ αm,

α! = α1!α2! · · ·αm!,

and
xα = xα1

1 x
α2
2 · · ·xαmm .
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We also define the following operators on C∞(Rm), the space of the smooth functions on
Rm:

dαx = (
∂1

∂x1

)α1(
∂2

∂x2

)α2 · · · ( ∂m
∂xm

)αm ,

Dα
x = (−i)|α|dαx .

Now with the notations defined above we can define a differential operator on C∞(Rm).

Definition 2.2.1. Let d be a nonnegative integer. A differential operator P of order d
is defined by

P = p(x,D) =
∑
|α|6d

aα(x)Dα
x ,

where aα is a smooth function on Rm. The symbol σP = p of this operator is also defined
to be the polynomial

σP = p(x, ξ) =
∑
|α|6d

aα(x)ξα,

where ξ ∈ Rm.

The leading symbol of P is a homogeneous polynomial in ξ defined by

σLP (x, ξ) =
∑
|α|=d

aα(x)ξα.

Definition 2.2.2. A smooth function f on Rm is called a Schwartz class function if all
its derivatives decrease at ∞ faster than the inverse of any polynomial i.e. for any multi
indices α and β, there exists a constant Cα,β such that

|xαDβ
xf(x)| 6 Cα,β,

or equivalently for any multi index α and any nonnegative integer n, there exists a
constant Cn,α such that

|Dα
xf(x)| 6 Cn,α(1 + |x|)−n.

The set of all Schwartz class functions is denoted by S.

Let f ∈ S and f̂ be the Fourier transform of f , i.e.

f̂(ξ) =

∫
e−ix·ξf(x)dx.

Then one can show that
Dα
ξ f̂(ξ) = (−1)|α|(̂xαf)(ξ)

and
ξαf̂(ξ) = (̂Dα

xf)(ξ).

Using the latter, if we apply the Fourier inversion formula

f(x) =
ˆ̂
f(−x) =

∫
eix·ξf̂(ξ)dξ
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to Pf , we get

Pf(x) =

∫
eix·ξp(x, ξ)f̂(ξ)dξ =

∫
ei(x−y)·ξp(x, ξ)f(y)dydξ, (2.1)

where P is the differential operator with the symbol

p(x, ξ) =
∑
|α|6d

aα(x)ξα.

In (2.1) even if we replace the polynomial p(x, ξ) with a function possessing some nice
properties that control the growth rate of the function and its derivatives, still we get a
well defined operator from S to S. This leads to defining the pseudodifferential operators.

Definition 2.2.3. Let p(x, ξ) be a smooth complex valued function on Rm × Rm that
has compact x support and let d ∈ R. Then p(x, ξ) is called a symbol of order d if for all
pairs (α, β) of multi indices there exist constants Cα,β such that

|Dα
xD

β
ξ p(x, ξ)| 6 Cα,β(1 + |ξ|)d−|β|.

The set of all symbols of order d is denoted by Sd.

We can associate an operator P (x,D) : S −→ S to a symbol p(x, ξ) ∈ Sd. Indeed, a
pseudodifferential operator of order d with symbol p(x, ξ) is defined by

P (x,D)(f)(x) =

∫
eix·ξp(x, ξ)f̂(ξ)dξ =

∫
ei(x−y)·ξp(x, ξ)f(y)dydξ.

For example, if f is a smooth function with compact support, then

p(x, ξ) = f(x)(1 + |ξ|2)d/2

is a symbol of order d.
We also define

S−∞ =
⋂
d∈R

Sd.

The elements of S−∞ are called smoothing symbols. The symbols p, q are said to be
equivalent if p − q ∈ S−∞. We denote this relation by p ∼ q. Let dj be a sequence in
R such that dj −→ −∞ and pj ∈ Sdj , for j ∈ N. Then we say the symbol p has the
asymptotic expansion

∑∞
j=1 pj and we write p ∼

∑∞
j=1 pj, if for each d there exists an

integer kd, such that p −
∑k

j=1 pj ∈ Sd, for all k > kd. Now in the next proposition we
will see that the space of symbols modulo the smoothing symbols is an algebra.

Proposition 2.2.1. Let P,Q be pseudodifferential operators with the symbols p, q re-
spectively. Then PQ is a pseudodifferential operator with a symbol which is asymptoti-
cally given by

σ(PQ) ∼
∑
α

dαξ p ·Dα
xq/α!
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Proof. See [2.5].

Since we are going to introduce the pseudodifferential operators on compact manifolds,
we need to restrict the domain of the pseudodifferential operators. Let U be an open set
in Rm with compact closure. Moreover, assume U includes the x support of p(x, ξ) ∈ Sd.
If we restrict the domain of P to C∞c (U), clearly the range is also in C∞c (U), where
C∞c (U) is the space of all smooth functions on U with compact support. We define
Ψd(U) to be the space of all pseudodifferential operators P : C∞c (U) −→ C∞c (U) of order
d. We also define the set of all pseudodifferential operators and the set of smoothing
pseudodifferential operators on U respectively by

Ψ(U) =
⋃
d

Ψd(U)

and
Ψ−∞(U) =

⋂
d

Ψd(U).

Definition 2.2.4. Let U and U1 be open sets in Rm such that U1 ⊂ U . A symbol p ∈
Sd(U) is called elliptic on U1 if there exists an open set U2 such that U1 ⊂ U2 ⊂ U2 ⊂ U
and if there exists a symbol q ∈ S−d such that pq−1 ∈ S−∞ over U2. A pseudodifferential
operator is called elliptic if its symbol is elliptic.

Now we can extend the definition of pseudodifferential operators to compact mani-
folds.

Definition 2.2.5. Let M be a compact manifold without boundary and C∞(M) be the
space of smooth functions on M . A linear operator

P : C∞(M) −→ C∞(M)

is called a pseudodifferential operator of order d, if for every open chart U on M and all
functions φ, ψ ∈ C∞c (U), the operator φPψ ∈ Ψd(U) and it is called elliptic if φPψ is
elliptic where φψ 6= 0.

We denote the set of the pseudodifferential operators of degree d on M by Ψd(M),
and define the set of all pseudodifferential operators and the set of smoothing pseudod-
ifferential operators on M respectively by

Ψ(M) =
⋃
d

Ψd(M)

and
Ψ−∞(M) =

⋂
d

Ψd(M).

To define the symbol of a pseudodifferential operator P onM we need to fix a coordinate
chart. For a fixed coordinate the symbol σ(P ) is defined to be the symbol of φPφ,
where φ is a function which is identical to 1 near the point around which we have picked
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the chart. The symbol is unique modulo S−∞. Of course this symbol depends on the
chart. If P,Q are pseudodifferential operators on M , then in every coordinate chart, the
asymptotic expansion for PQ in Proposition 2.2.1 remains valid.

Let (M, g) be a Riemannian manifold of dimension n, and L2(M, dvol) be the space
of square integrable functions on M with respect to the volume measure. The Laplace
operator 4 is an elliptic differential operator of order 2 on L2(M, dvol), which is locally
defined by

4 = −
n∑
j=1

n∑
i=1

1√
|detG|

∂i(
√
|detG|gij∂j),

where G = (gij), and G−1 = (gij) .

Proposition 2.2.2. Let (M, g) be a closed oriented Riemannian manifold. The Laplace
operator is an unbounded formally self adjoint operator on L2(M, dvol), and its spectrum
is contained in the positive part of the real line.

Proof. See [2.2], Chapter 4, Corollaries 18, 19 and 20.

Now we turn to the heat operator e−t4 for t > 0. The heat operator is a smoothing
integral operator with a smooth kernel K(t, x, y), which is called the heat kernel. In fact,
the heat kernel is the fundamental solution of the heat equation

(
∂

dt
+4)f(t, x) = 0,

for t > 0 and f(0, x) = f(x). In what follows, using the Cauchy integral formula and the
pseudodifferential calculus, we will give an asymptotic expansion of the heat kernel.

Let (M, g) be a closed, oriented Riemannian manifold of dimension n, and 4 be the
Laplace operator acting on C∞(M), the algebra of smooth functions on M . Moreover,
let γ be a contour going counterclockwise around the nonnegative part of the real axis
without touching it. This way it goes around the spectrum of the Laplace operator.
Therefore, we have the Cauchy integral formula

e−t4 =
1

2πi

∫
γ

e−tλ(4− λ)−1dλ.

For λ /∈ [0,∞), the operator (4− λ)−1 is not a pseudodifferential operator, but we
shall approximate it by a pseudodifferential operator to find an asymptotic expansion of
the heat kernel . To this end, we need to generalize the pseudodifferential theory that
we discussed before.

Let P : C∞(M) −→ C∞(M) be a self adjoint elliptic differential operator of order
d such that its spectrum is contained in [C,∞) for some real number C and let γ be a
contour going counterclockwise around [C,∞) without touching it. Also let R be the
region in C consisting of γ plus the component of C − γ that does not contain [C,∞).
For an open set U in Rm with compact closure and λ ∈ R we define:
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Definition 2.2.6. The smooth function q = q(x, ξ, λ) on Rm × Rm × R is called a
symbol of order k depending on the complex parameter λ ∈ R if it satisfies the following
conditions:

(a) It has compact x-support in U , and is holomorphic in λ,
(b) For all multi indices α, β, γ, there exist constants Cα,β,γ such that

|Dα
xD

β
ξD

γ
λq(x, ξ, λ)| 6 Cα,β,γ(1 + |ξ|+ |λ|1/d)k−|β|−d|γ|.

The set of such symbols is denoted by Sk(λ)(U). Moreover, the symbol q(x, ξ, λ) is said
to be homogeneous of order k in (ξ, λ) if for t > 1,

q(x, tξ, tdλ) = tkq(x, ξ, λ).

We also denote the set of all operators Q(λ) : C∞c (U) −→ C∞c (U) with symbols
q(x, ξ, λ) ∈ Sk(λ)(U) by Ψk(λ)(U). Clearly for each λ ∈ RP , Q(λ) ∈ Ψk(U). Moreover,
we set

Ψ(λ)(U) =
⋃
k

Ψk(λ)(U).

This is the set of all pseudodifferential operators that depend on λ ∈ R and are defined
over the open set U , and obviously depends on the order d that we fixed at the beginning
and also the region R.

Similarly, for the symbols q, qj (j ∈ N), we say q ∼
∑∞

j=1 qj if for each k > 0 there
exists n(k) such that for n > n(k), q −

∑n
j=1 qj ∈ S−k(λ)(U).

The statement of Proposition 2.2.1 remains valid in the generalized case, i.e. if
P1 ∈ Ψk1(λ)(U) and Q ∈ Ψk2(λ)(U) have symbols p1 and q respectively, then P1Q ∈
Ψk1+k2(λ)(U) and

σ(PQ) ∼
∑
α

dαξ p1 ·Dα
xq/α!. (2.2)

Finally we can define the generalized pseudodifferential operators of order k on a
manifold M , in the way that we defined pseudodifferential operators on it. We denote
this class of operators by Ψk(λ)(M), and we set

Ψ(λ)(M) =
⋃
k

Ψk(λ)(M).

Recall that P : C∞(M) −→ C∞(M) is a self adjoint elliptic differential operator of
order d such that its spectrum is contained in [C,∞) for some real number C and assume
that the symbol of P has the decomposition

σP = pd + pd−1 + · · ·+ p0,

where for j = 0, 1, · · · d, pj is a homogeneous polynomial of order j in ξ. Although for
λ ∈ R, (P − λ)−1 is not a pseudodifferential operator, we are going to approximate it
by a pseudodifferential operator R(λ). Indeed, using the formula (2.2), we want to find
R(λ) such that

σ(R(λ)(P − λ))− 1 ∼ 0.
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We will inductively find R(λ) = r0 + r1 + r2 + · · · , such that rj ∈ S−d−j(λ). For j < d,
we set p′j(x, ξ, λ) = pj(x, ξ). We also set p′d(x, ξ, λ) = pd(x, ξ)− λ. Then we have

σ(P − λ) = p′0 + p′1 + · · ·+ p′d.

Applying the formula (2.2) to R(λ) and (P − λ) , we get∑
α

∑
j

∑
k

dαξ rj ·Dα
xp
′
k/α! ∼ 1.

In the above series we can group the homogeneous terms of order −n together and write∑
n

∑
|α|+j+d−k=n

dαξ rj ·Dα
xp
′
k/α! ∼ 1.

where j, k > 0 and k 6 d. In the series we do not have terms with n < 0. Considering
the term with n = 0, we get r0p

′
d = 1. Therefore, r0 = (p′d)

−1 = (pd − λ)−1 and also

rn = −r0

∑
|α|+j+d−k=n

j<n

dαξ rj ·Dα
xp
′
k/α!. (2.3)

The conditions |α| + j + d − k = n and j < n imply that if k = d, then |α| > 0. So in
the sum in (2.3), Dα

xp
′
k = Dα

xpk and we can write

rn = −r0

∑
|α|+j+d−k=n

j<n

dαξ rj ·Dα
xpk/α!. (2.4)

We will use a slightly different version of (2.4) in Chapter 4. In fact, we shall use a
noncommutative version of that in which r0 is multiplied from the right.

Now we return to our special case where P = 4, the Laplace operator, and d = 2.
In fact, we have all the materials needed to state the asymptotic expansion of the heat
kernel except one. In what follows, for a nonnegative integer k we introduce the norm
|.|∞,k on C∞(M), where M is a compact manifold of dimension n.

Let U be an open set in Rn. We first define |.|∞,k for a smooth function f with
compact support in U by

|f |∞,k = sup
x∈U

∑
|α|6k

|Dα
xf(x)|.

Now to define |.|∞,k on M , we choose a finite number of coordinate charts Vi with dif-
feomorphisms hi : Ui −→ Vi, where Ui’s are open sets in Rn with compact closure. For
f ∈ C∞c (Vi) we define

|f |(i)∞,k = |f(hi)|∞,k .

Moreover, let {ψi} be a partition of unity subordinate to the chosen cover. For f ∈
C∞(M) we define

|f |∞,k =
∑
i

|ψif |(i)∞,k .
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It is known that this is independent of the choice of the cover and also the choice of the
partition of unity.

Now we will state the main theorem of this section. For the proof of the next theorem
one can see Sections 1.7 and 4.8 in [2.5]. With the notations that we have introduced we
have:

Theorem 2.2.7. Let (M, g) be a closed, oriented Riemannian manifold of dimension n,
4 be the Laplace operator acting on C∞(M) and γ be a contour going counterclockwise
around the nonnegative part of the real axis without touching it. Also for x ∈ M and
nonnegative integer m let

a2m(x) =
1

2πi

∫∫
γ

e−λr2m(x, ξ, λ)dλdξ.

If K(t, x, y) is the kernel of the heat operator e−t4, then K(t, x, x) has the asymptotic
expansion

K(t, x, x) ∼ t−n/2
∞∑
m=0

a2m(x)tm

as t −→ 0+, i.e. for any nonnegative integer k, there exists mk ∈ N and a constant Ck
such that ∣∣∣∣∣K(t, x, x)− t−n/2

∑
m6mk

a2m(x)tm

∣∣∣∣∣
∞,k

< Ckt
k for 0 < t < 1.

Moreover, a2(x) is a constant multiple of the scalar curvature of M at the point x ∈M .

In Chapter 2, based on the last theorem, and using an analogy we will define the
scalar curvature of the noncommutative 3-torus.

2.3 Spin Structure and the Dirac Operator
In this section we will introduce the structure needed to define a Dirac operator on an
oriented Riemannian manifold. For the proofs of the facts and theorems that we will
state in this section refer to [2.10]. More details can also be found in [2.9].

Throughout this section for a smooth manifold M , by TM and T ∗M , we mean,
respectively, the tangent bundle and the cotangent bundle of M . Moreover, for a vector
bundle E over M , we denote its space of smooth sections by C∞(E). We start with the
definition of connections.

Definition 2.3.1. Let M be a smooth manifold and E be a vector bundle over M . A
connection on E is a linear map

∇ : C∞(TM)⊗ C∞(E) −→ C∞(E), (X, Y )→ ∇XY,

such that for a smooth function f on M , a smooth vector field X and a smooth section
Y of E,
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(i) ∇fXY = f∇XY
(ii) ∇XfY = f∇XY + (X · f)Y , where X · f is the directional derivative of f along

X.
Note that we can also think of ∇ as a map from C∞(E) to C∞(T ∗M ⊗ E).

Let M be a manifold and ∇ be a connection on TM . Moreover, let γ : [a, b] −→ M
be a curve in M . A vector field X is called parallel along γ if ∇γ̇X = 0, where γ̇ is the
derivative of γ. Let t0 ∈ [a, b]. It is known that for a given vector X0 in Tγ(t0)M , the
tangent space of M at γ(t0), there exists a unique parallel vector field X along γ such
that Xt0 = X0.

Let (M, g) be a Riemannian manifold. A connection ∇ on TM is called torsion free
if for X, Y ∈ TM ,

∇XY −∇YX = [X, Y ],

where [X, Y ] = XY − Y X. A connection ∇ on TM is called compatible with the metric
if for X, Y, Z ∈ TM ,

X · 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 ,

where X · 〈Y, Z〉 is the directional derivative of 〈Y, Z〉 along X.
The fundamental theorem of Riemannian geometry asserts that every Riemannian

manifold M has a unique torsion free connection on TM compatible with its metric.
This connection is called the Levi-Civita connection.

Now we introduce principal bundles.

Definition 2.3.2. Let P and M be smooth manifolds and G be a Lie group that acts
freely on P on the right. The manifold P is called a principal G bundle over M if

(i) M = P/G, and the canonical projection π : P −→M is differentiable,
(ii) P is a locally trivial fiber bundle with fiber G over M .

Let P be a principal G bundle over M . For p ∈ P , let TpP be the tangent space
of P at p. We denote the subspace of TpP consisting of all vectors tangent to the fiber
through p by Vp. Indeed, Vp is the kernel of π∗p. A connection on the principal G bundle
P , by definition, is a choice of a subspace Hp of TpP for each point p ∈ P such that

(i) TpP = Hp ⊕ Vp,
(ii) Hpg = (Rg)∗Hp for every g ∈ G, where (Rg)∗ is the derivative of the map

Rg : P −→ P, Rg(a) = ag,

(iii) Hp depends differentiably on p.
We call Vp and Hp respectively the vertical subspace and the horizontal subspace of

TpP . Every vector Xp ∈ TpP can be decomposed into X = vX + hX such that vX ∈ Vp
and hX ∈ Hp. Condition (iii) above means that if X is a smooth vector field on P ,
then vX and hX are so. Since Vp is the kernel of π∗p, the restriction of π∗p to Hp is an
isomorphism and given a vector Xp ∈ Tπ(p), one can find a unique lifting of Xp to TpP
which is horizontal. We denote this unique lifting by X#

p .
Given an n dimensional vector bundle E over a manifold M , we can construct a

principal bundle. In fact, the bundle over M whose fiber at each point p consists of all
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frames of Ep, the fiber in E over p, is a principal GL(n) bundle, where GL(n) is the
group of real n× n invertible matrices. This bundle is called the frame bundle of E.

Conversely, if we have a principal G bundle P over a manifoldM , and a representation
of G on a finite dimensional vector space V , we can construct a vector bundle over M .
Indeed, suppose ρ : G −→ GL(V ) is a representation of G on V . Then we denote by
P ×ρ V the quotient space of P × V by the action of G defined by

(e, v)g = (eg, ρ(g−1)v), e ∈ E, v ∈ V, g ∈ G.

The quotient space P ×ρ V is a vector bundle whose fibers are isomorphic to V and is
called the vector bundle associated to P by the representation ρ. The space of sections
of P ×ρ V can be identified with the set of all maps ϕ : P −→ V , such that for p ∈ P
and g ∈ G, ϕ(p · g) = ρ(g−1)ϕ(p).

Given a principal G bundle P over a manifold M endowed with a connection, and a
representation ρ of G on the vector space V , we can define a connection on the vector
bundle P ×ρ V . In fact, we define

∇ : C∞(TM)⊗ C∞(P ×ρ V ) −→ C∞(P ×ρ V )

by (∇Xϕ)(p) = dpϕ(X#
p ), where p ∈ P,X ∈ TM,ϕ ∈ C∞(P ×ρ V ) and X#

p is the unique
lifting of Xp to TpP which is horizontal. One can see that ∇Xϕ is well defined, i.e.
(∇Xϕ)(p · g) = ρ(g−1)(∇Xϕ)(p).

In order to define Dirac operators we need to define Clifford algebras.

Definition 2.3.3. Let V be a vector space endowed with a symmetric bilinear form 〈·, ·〉.
The unital algebra generated by V as a linear subspace, subject to the relations

uv + vu = −2 〈u, v〉 1, u, v ∈ V,

is called the Clifford algebra, and is denoted by Cl(V ).

We denote Cl(V ) for V = Rn and V = Cn, equipped with the standard Euclidean
inner product, respectively by Cl(n) and Cl(n). Moreover, it is known that

Cl(n) = Cl(n)⊗ C.

Let Cl(n)× be the group of invertible elements in Cl(n). The multiplicative subgroup of
Cl(n)× generated by the unit vectors in Rn is denoted by Pin(n). We also define the Spin
group by

Spin(n) = {u1u2 · · ·u2k : k ∈ N, and for j = 1, 2 · · · 2k, uj ∈ Rn, |uj| = 1}.

Let O(n) be the group of orthogonal n× n matrices. We define ρ : Pin(n) −→ O(n)
by

ρ(u)(v) = uvu∗, u ∈ Pin(n), v ∈ Rn,

where u∗ = xkxk−1 . . . x1 if u = x1x2 . . . xk. One can check that ρ is well defined, i.e.
ρ(u) ∈ O(n).
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Let SO(n) be the group of orthogonal n× n matrices with determinant 1. It can be
shown that ρ(Spin(n)) = SO(n), i.e. if we restrict ρ to Spin(n), we have

ρ : Spin(n) −→ SO(n).

For n > 2, ρ is a covering map and Spin(n) is the universal 2-fold covering of SO(n)
(see Proposition 4.7 in [2.10]). If n is even, the Clifford algebra Cl(n) has a unique
irreducible representation whose restriction to Spin(n) is called the spin representation.
However, the spin representation is not irreducible and is decomposed into two irreducible
representations.

Let (M, g) be an oriented Riemannian manifold. For each m ∈M , TmM is equipped
with a symmetric bilinear form 〈·, ·〉g induced by the metric g. So we can construct
Cl(TmM). A bundle of Clifford modules over M is a bundle S whose fiber Sm over m is
a left Cl(TmM)⊗ C module.

Definition 2.3.4. A Clifford bundle S over a Riemannian manifold M is a bundle of
Clifford modules endowed with a Hermitian metric 〈·, ·〉h and a connection ∇c such that
for X, Y ∈ TM , and S, S1, S2 ∈ C∞(S),

(i) X · 〈S1, S2〉h = 〈∇c
XS1, S2〉h + 〈S1,∇c

XS2〉h, where X · 〈S1, S2〉h is the directional
derivative of 〈S1, S2〉h in the direction of X,

(ii) 〈X · S1, S2〉h + 〈S1, X · S2〉h = 0,
(iii) ∇c

X(Y · S) = (∇XY ) · S + Y · ∇c
XS, where ∇ is the Levi-Civita connection on

TM .

In the previous definition ∇c is called a Clifford connection. Now we can define Dirac
operators.

Definition 2.3.5. Let (M, g) be a Riemannian manifold and S be a Clifford bundle over
M equipped with the Clifford connection ∇c. A generalized Dirac operator is an operator
D : C∞(S) −→ C∞(S) which is defined as the composition of the following maps

C∞(S)
∇c−→ C∞(T ∗M ⊗ S) −→ C∞(TM ⊗ S)

c−→ C∞(S),

where the second map is induced by identifying TM and T ∗M using the metric g, and c
denotes the Clifford action.

We just saw that to define the generalized Dirac operators we need a Clifford bundle.
The spin structure is what guarantees the existence of such a bundle. Let M be an
oriented Riemannian manifold of dimension n, and F be the bundle over M whose fiber
over each point m ∈M is the set of all oriented orthonormal frames of TmM . The bundle
F is a principal SO(n) bundle and is called the bundle of oriented orthonormal frames
for the tangent bundle of M .

Definition 2.3.6. Let (M, g) be an oriented Riemannian manifold of dinension n and
F be the bundle of oriented orthonormal frames for the tangent bundle of M . A spin
structure on M is a principal Spin(n) bundle F̃ over M which is a double covering of F ,
and if we restrict the double covering F̃ −→ F to each fiber, we get the double covering
ρ : Spin(n) −→ SO(n). If M has a spin structure, it is called a spin manifold.

23



Let M be an even dimensional spin manifold with spin structure F̃ . The vector
bundle associated to F̃ by the spin representation is called the spin bundle of M . The
spin bundle has a natural Hermitian metric (see [2.4], page 24). Our next goal is to
construct a connection on the spin bundle of M .

It is known that∇, the Levi-Civita connection on TM , induces a connection on F , the
principal SO(n) bundle of the orthonormal frames of TM . Now since F̃ is a covering of F ,
we can lift the connection induced on F by the Levi-Civita connection to a connection on
the principal Spin(n) bundle F̃ . Using this lifted connection and the spin representation
and applying the argument before Definition 2.3.3 we obtain a connection on the spin
bundle. This connection is called the spin connection and is denoted by ∇s. It can be
checked that the spin bundle equipped with its Hermitian metric and the spin connection
is a Clliford bundle.

Finally we can define the Dirac operator:

Definition 2.3.7. Let M be an even dimensional spin manifold, S be the spin bundle
over M and ∇s be the spin connection on S. The Dirac operator D : C∞(S) −→ C∞(S)
is defined as the composition of the following maps

C∞(S)
∇s−→ C∞(T ∗M ⊗ S) −→ C∞(TM ⊗ S)

c−→ C∞(S),

where the second map is induced by identifying TM and T ∗M using the metric g, and c
denotes the Clifford action.

2.4 Spectral Triples
In this section we shall introduce the notion of a spectral triple, which is indeed the
noncommutative analogue of a Riemannian spin manifold.

Definition 2.4.1. Let A be an involutive algebra, H be a Hilbert space, π : A −→ B(H)
be a ∗-representation of A. Also let D be an unbounded self adjoint operator on H. The
triple (A,H,D) is called a spectral triple if

(i) The operator D has a compact resolvent, i.e. for λ /∈ R, the operator (D − λ)−1

is a compact operator,
(ii) For a ∈ A, [D, π(a)] is a bounded operator, where [D, π(a)] = Dπ(a)− π(a)D.

The following example is a prototype of spectral triples:
Let M be a compact spin manifold, S be the spin bundle of M , and L2(S) be the

Hilbert space of square integrable sections of the spin bundle S. We define

π : C∞(M) −→ B(L2(S)), f 7→Mf ,

where Mf is the multiplication operator by f . If D is the Dirac operator, then the triple
(C∞(M), L2(S), D) is a spectral triple which is called the canonical triple. Moreover, for
p, q ∈M , we have

dg(p, q) = sup
f∈C∞(M)

{|f(p)− f(q)| : ‖[D, π(f)]‖ 6 1},
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where dg(p, q) is the geodesic distance between p and q (see [2.3], Section VI.1 for the
proof). This distance formula means that we can reconstruct a geometric structure using
an operator algebraic process.
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Chapter 3

A Logarithmic Sobolev Inequality for
the Noncommutative 2-Torus

3.1 Introduction
The subject of logarithmic Sobolev inequalities has its roots in the paper of E. Nelson
[3.11], where he proved the contractivity of the semi-group generated by the Gauss-
Dirichlet form operator. Shortly after that, L. Gross introduced a new logarithmic
Sobolev inequality in [3.6] and using this gave a different proof of the contractivity of the
semi-group generated by the Gauss-Dirichlet form operator.

Let ν be the Gauss measure on Rn and

N : D(N) ⊆ L2(Rn, ν) −→ L2(Rn, ν),

be the Gauss-Dirichlet form operator defined by

〈Nf, g〉 =

∫
Rn
5f(x) · 5g(x)dν(x)

where 〈f, g〉 =
∫
Rn f(x)g(x)dν(x), and 5f is the weak gradient of f . Nelson showed that

for 1 < q ≤ p <∞, if

e−2t ≤ (q − 1)

(p− 1)
,

then
‖e−tN‖q→p ≤ 1,

where
‖e−tN‖q→p = sup

{
‖e−tNf‖p : f ∈ L2(ν) ∩ Lq(ν), ‖f‖q 6 1

}
.

This means that for

t > ln

√
p− 1

q − 1
,

e−tN is a contraction from Lq(Rn, ν) to Lp(Rn, ν). He proved more. Indeed, he showed
that e−tN is an unbounded operator from Lq(Rn, ν) to Lp(Rn, ν) if

t < ln

√
p− 1

q − 1
.
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The classical Sobolev inequality states that for f ∈ C∞c (Rn),

‖f‖Lq(Rn,dx) ≤ Cp,n‖ |5f | ‖Lp(Rn,dx) (3.1)

where 1 ≤ p < ∞,
1

q
=

1

p
− 1

n
, dx is the Lebesgue measure and Cp,n is a constant

depending only on n and p. So (3.1) implies that if the gradient of the function f is
in Lp(Rn, dx), then f must be in Lq(Rn, dx). These inequalities strongly depend on the
dimension of Rn.

In [3.6], Gross proved the logarithmic Sobolev inequality∫
Rn
|f(x)|2 ln |f(x)| dν(x) ≤

∫
Rn
|5f(x)|2 dν(x) + ‖f‖2

2 ln ‖f‖2 (3.2)

for a smooth function f , and showed that this inequality is equivalent to Nelson’s result
of contractivity that we just mentioned.

Unlike the classical Sobolev inequality, Gross’ logarithmic Sobolev inequality is di-
mension independent. Using (3.2) we see that if the function f and its gradient are in
L2(Rn, ν), then f is in the Orlicz space L2 lnL(ν). This somehow justifies the name
logarithmic Sobolev inequality. Gross also derived in [3.6] a weaker version of (3.2), from
Nirenberg’s form of the classical Sobolev inequality [3.12]. This version, not surprisingly
depends on the dimension.

Since then people have given various proofs of logarithmic Sobolev inequalities by
different methods: O. Rothaus [3.15] has proved it using Jensen’s inequality and the
positivity of the lowest eigenfunction for a Sturm-Liouville boundary value problem with
Dirichlet boundary conditions. R. A. Adams and F. H. Clarke also have given a simple
proof based on the calculus of variations [3.1].

One can also replace (Rn, ν) with a probability space (X,µ) and the Gauss-Dirichlet
form with a densely defined positive quadratic form on L2(X,µ), say E . Then we say the
logarithmic Sobolev inequality holds for E if, for f ∈ Dom(E),∫

X

|f(x)|2 ln |f(x)| dµ(x) ≤ E(f, f) + ‖f‖2
2 ln ‖f‖2.

This way one can talk about logarithmic Sobolev inequalites on Riemannian manifolds
[3.8].

F. Weissler has proved in [3.17] a logarithmic Sobolev inequality on the circle. Indeed,
using Fourier series he has shown that for a positive function f in L2(T, µ), where T is
the unit circle and µ is the normalized Lebesgue measure, if

f(θ) =
∞∑

n=−∞

ane
inθ,

then ∫
T
f 2 log fdµ ≤

∞∑
n=−∞

|n||an|2 + ‖f‖2
2 log ‖f‖2. (3.3)
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Since
∞∑

n=−∞

|n||an|2 ≤
∞∑

n=−∞

|n|2|an|2 = ‖ 5 f‖2
2 =

∫
T
|5f |2 dµ,

Weissler’s result is even stronger than the original logarithmic Sobolev inequality∫
T
f 2 log fdµ ≤

∫
T
|5f |2 dµ+ ‖f‖2

2 log ‖f‖2.

There is a useful survey of related topics and applications of logarithmic Sobolev
inequalities by Gross in [3.7]. One can also find more references therein.

Since the introduction of noncommutative geometry by Alain Connes in [3.3] (see
also [3.4]), noncommutative tori have proved to be an invaluable tool to understand and
test many aspects of noncommutative geometry that are not present in the commutative
case. The results are simply too many to be cited here. The present paper should be
seen as a step in understanding aspects of measure theory and analysis on noncomutative
tori that have been largely untouched so far. The combinatorial challenges one faces in
extending the logarithmic Sobolev inequality, at least in the form that we understand it,
seemed to us as a very interesting problem by itself.

Let θ ∈ R \Q. The universal unital C*-algebra generated by two unitaries U, V such
that UV = e2πiθV U , is called an irrational rotation algebra and is denoted by Aθ. It is
a simple algebra and has a unique positive faithful normalized trace τ . The C*-algebra
Aθ is the noncommutative deformation of C(T2), the algebra of continuous functions on
the 2-torus. More details about Aθ can be found in [3.4, 3.9, 3.13]. Let

A∞θ =

 ∑
(m,n)∈Z2

am,nU
mV n : am,n is rapidly decreasing

 .

By rapidly decreasing we mean for all k ∈ N,

Sup
(m,n)∈Z2

(1 +m2 + n2)k|am,n|2 <∞.

The set A∞θ is a dense subalgebra of the irrational rotation algebra and it is the analogue
of C∞(T2), the algebra of smooth functions on the 2-torus. The algebra A∞θ is called the
noncommutative 2-torus.

Let a =
∑

(m,n)∈Z2

am,nU
mV n be in A∞θ . Then

a∗ =
∑

(m,n)∈Z2

am,nV
−nU−m

=
∑

(m,n)∈Z2

am,ne
−2πimnθU−mV −n

=
∑

(m,n)∈Z2

a−m,−ne
−2πimnθUmV n.
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So if a = a∗, we have
am,n = a−m,−ne

−2πimnθ. (3.4)

Moreover, if b =
∑

(m,n)∈Z2

bm,nU
mV n ∈ A∞θ , we have

ab =
∑

(m,n)∈Z2

cp,qU
pV q,

where
cp,q =

∑
(m,n)∈Z2

am,nbp−m,q−ne
−2πi(p−m)nθ (3.5)

The unique trace τ on Aθ which plays the role of integration in the noncommutative
setting, extracts the constant term of the elements of A∞θ , i.e. τ(a) = a0,0. This trace
can be used to define an L2-norm on A∞θ by

‖a‖2
2 := τ(a∗a).

Using (3.4) and (3.5) one can show ‖a‖2
2 =

∑
(m,n)∈Z2

|am,n|2. One can also define Sobolev

norms on A∞θ . For more details see [3.14], where J. Rosenberg has developed the Sobolev
theory on the noncommutative 2-torus.

In this paper we will use Weissler’s method [3.17] to prove a logarithmic Sobolev
inequality for a class of elements of the noncommutative 2-torus. In Section 2 we will
prove some lemmas that we will need later on. In Section 3 we will first state our
conjecture about a logarithmic Sobolev inequality for the noncommutative 2-torus and
then we will prove that conjecture for a class of elements of the noncommutative 2-torus.
This would be the main result of this paper. Although we have not been able to prove the
logarithmic Sobolev inequality for arbitrary positive elements, we think the inequality
must hold for those elements as well. In Section 4 we will try to generalize the proof of
the main result to prove the conjecture, but in the middle of the way we will see that we
will face a problem. We hope that we can bypass this problem in a follow-up paper.

3.2 Preliminaries
In this section we will prove some technical lemmas that will be needed later on.

Lemma 3.2.1. Let G be an analytic function in some complex neighborhood of the in-
terval [0, 1]. Suppose all the coefficients in the power series expansion of G around r = 0
are nonnegative. Then G(1) ≥ 0.

Proof. First we show that we can find finitely many points

0 = x0 < x1 < x2 < . . . < xn = 1

in [0, 1] and finitely many discs D0, D1, D2, . . . , Dn such that xi for i = 0, 1, . . . , n, is
the center of Di, G has a power series expansion around xi on Di and xi ∈ Di−1, for
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i = 1, 2, . . . , n. To show this let N be the open set in C containing [0, 1] on which G is
analytic. Define

F : [0, 1] −→ R>0

by sending r 7→ dist(r,N c). The function F is continuous on a compact set, so it attains
its minimum. Let δ be the minimum of F and

x0 = 0, x1 =
δ

2
, x2 = δ, x3 =

3δ

2
, . . . , xn−1 =

(n− 1)δ

2
, xn = 1,

where n = b2
δ
c+ 1. For i = 0, 1, . . . , n, let Ri be the radius of convergence of the power

series expansion of G around xi, and Di be the disc centred at xi with radius Ri. For

i = 0, 1, . . . , n, we have
δ

2
< Ri. So xi ∈ Di−1, for i = 1, 2, . . . , n.

Let

G(z) =
∞∑
k=0

G(k)(0)

k!
zk (3.6)

be the power series expansion of G around 0 on D0. Since x1 ∈ D0, we evaluate z as x1

in (3.6), and since for k ≥ 0, G(k)(0) ≥ 0, we have

G(x1) =
∞∑
k=0

G(k)(0)

k!
xk1 ≥ 0.

If we substitute x1 into the derivative of (3.6), we will get

G(1)(x1) =
∞∑
k=1

G(k)(0)

(k − 1)!
xk−1

1

which is non-negative by the same reason. Differentiating (3.6) repeatedly, we can show
that the derivatives of G at x1 which form the coefficients of the power series expansion
of G around x1 on D1 are nonnegative.

Repeating this argument, we can show that all derivatives of G at each xi and in
particular at xn = 1 are non-negative. So G(1) ≥ 0.

We will need the following standard and elementary result of spectral theory in C*-
algebras.

Proposition 3.2.1. Let A be a C*-algebra, x ∈ A and N an open subset of C containing
σ(x), the spectrum of x. Then there exists δ > 0, such that for y ∈ A, ‖y − x‖ < δ
implies σ(y) ⊆ N .

Proof. See Theorem 10.20 in [3.16].

The following proposition will be needed in the proof of the main result of this paper.
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Proposition 3.2.2. Let a =
∑

(m,n)∈Z2

am,nU
mV n be in A∞θ , such that a > 0, a0,0 = 1 and

at most finitely many number of am,n’s are nonzero. For r ∈ C, we put

xr =
∑

(m,n)∈Z2

(m,n)6=(0,0)

am,nr
(|m|+|n|)UmV n

and Pr(a) = 1 + xr. Then there is an open neighborhood W of [0, 1] in C, such that for
all r in W , logPr(a) can be defined.

Proof. Since a is self-adjoint, using (3.4) for real r we have

am,nr
(|m|+|n|) = a−m,−nr

(|−m|+|−n|)e−2πimnθ.

So Pr(a) is self-adjoint for real r, and consequently the spectrum of Pr(a) is real for
real r. Now we show for 0 ≤ r ≤ 1, Pr(a) is a strictly positive element. Suppose for
some 0 ≤ r ≤ 1, Pr(a) is not strictly positive. Let [t0, t1] be the smallest closed interval
containing the spectrum of Pr(a). We know that there exists a state φ of Aθ, such that
φ(Pr(a)) = t0 ≤ 0. Now let

M = {(m,n) ∈ Z2 : (m,n) 6= 0, am,n 6= 0},

M1 = {(m,n) ∈M : m > 0, n > 0},

M2 = {(m,n) ∈M : m > 0, n < 0}.

Then since a is self-adjoint, using (3.4) we have

a = 1 +
∑

(m,n)∈M

am,nU
mV n (3.7)

= 1 +
∑

(m,n)∈M1
⋃
M2

am,nU
mV n +

∑
(−m,−n)∈M1

⋃
M2

am,nU
mV n

= 1 +
∑

(m,n)∈M1
⋃
M2

am,nU
mV n +

∑
(m,n)∈M1

⋃
M2

a−m,−nU
−mV −n

= 1 +
∑

(m,n)∈M1
⋃
M2

am,nU
mV n +

∑
(m,n)∈M1

⋃
M2

am,ne
−2πimnθU−mV −n

= 1 +
∑

(m,n)∈M1
⋃
M2

am,nU
mV n +

∑
(m,n)∈M1

⋃
M2

am,ne
−2πimnθe2πimnθV −nU−m

= 1 +
∑

(m,n)∈M1
⋃
M2

am,nU
mV n +

∑
(m,n)∈M1

⋃
M2

am,nV
−nU−m.

By the same reasoning we can show

Pr(a) = 1 +
∑

(m,n)∈M

am,nr
(|m|+|n|)UmV n
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= 1 +
∑

(m,n)∈M1
⋃
M2

am,nr
(|m|+|n|)UmV n

+
∑

(m,n)∈M1
⋃
M2

am,nr
(|m|+|n|)V −nU−m.

Since a is strictly positive, using (3.7) we see that

φ(a) = 1 +
∑

(m,n)∈M1
⋃
M2

am,nφ(UmV n)

+
∑

(m,n)∈M1
⋃
M2

am,nφ(V −nU−m) > 0.

Let hm,n = am,nφ(UmV n). Then regarding the fact that

φ(UmV n) = φ(V −nU−m),

we have
φ(a) = 1 +

∑
(m,n)∈M1

⋃
M2

(hm,n + hm,n) > 0. (3.8)

On the other hand,

φ(Pr(a)) = 1 +
∑

(m,n)∈M1
⋃
M2

am,nr
(|m|+|n|)φ(UmV n)

+
∑

(m,n)∈M1
⋃
M2

am,nr
(|m|+|n|)φ(V −nU−m) = t0 ≤ 0.

So
φ(Pr(a)) = 1 +

∑
(m,n)∈M1

⋃
M2

r(|m|+|n|)(hm,n + hm,n) ≤ 0. (3.9)

Then let
r(|m0|+|n0|) = Min

{
r(|m|+|n|) : (m,n) ∈M

}
and note that 0 ≤ r(|m0|+|n0|) ≤ 1. Now we have two cases. Either

−1 <
∑

(m,n)∈M1
⋃
M2

(hm,n + hm,n) ≤ 0,

or ∑
(m,n)∈M1

⋃
M2

(hm,n + hm,n) > 0. (3.10)

In the first case, since∑
(m,n)∈M1

⋃
M2

(hm,n + hm,n) ≤ r(|m0|+|n0|)
∑

(m,n)∈M1
⋃
M2

(hm,n + hm,n),
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we have
−1 <

∑
(m,n)∈M1

⋃
M2

r(|m0|+|n0|)(hm,n + hm,n)

≤
∑

(m,n)∈M1
⋃
M2

r(|m|+|n|)(hm,n + hm,n).

So ∑
(m,n)∈M1

⋃
M2

r(|m|+|n|)(hm,n + hm,n) > −1,

which contradicts (3.9). In the second case again we have∑
(m,n)∈M1

⋃
M2

r(|m0|+|n0|)(hm,n + hm,n)

≤
∑

(m,n)∈M1
⋃
M2

r(|m|+|n|)(hm,n + hm,n) ≤ −1,

which means ∑
(m,n)∈M1

⋃
M2

r(|m0|+|n0|)(hm,n + hm,n)

is strictly negative. But this contradicts (3.10), for∑
(m,n)∈M1

⋃
M2

r(|m0|+|n0|)(hm,n + hm,n),

and ∑
(m,n)∈M1

⋃
M2

(hm,n + hm,n)

have the same signs.
Then we show there exist B1, B2 > 0 such that for 0 ≤ r ≤ 1, σ(Pr(a)) ⊆ [B1, B2],

where σ(Pr(a)) is the spectrum of Pr(a). Since for 0 ≤ r ≤ 1,

‖Pr(a)‖ = ‖1 +
∑

(m,n)∈M

am,nr
(|m|+|n|)UmV n‖

≤ 1 +
∑

(m,n)∈M

|am,n|r(|m|+|n|)‖UmV n‖ ≤ 1 +
∑

(m,n)∈M

|am,n|,

and since the spectral radius of Pr(a) is less than ‖Pr(a)‖, it suffices to put

B2 = 1 +
∑

(m,n)∈M

|am,n|.

Now suppose there is no such B1. So for each n > 0 there exists rn ∈ [0, 1], and

λn ∈ (0,
1

n
), such that λn ∈ σ(Prn(a)). Obviously lim

n→∞
λn = 0. Since {rn}∞n=1 is a
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bounded sequence, it has a convergent subsequence. For simplicity we will call that
sequence again {rn}∞n=1. Let lim

n→∞
rn = r0. Then lim

n→∞
Prn(a) = Pr0(a). Let Inv(Aθ) be the

set of invertible elements in Aθ. It is an open set, hence its complement is closed. Then
for n > 0, since λn ∈ σ(Prn(a)),

Prn(a)− λn1 /∈ Inv(Aθ).

Then
lim
n→∞

Prn(a)− 1λn = Pr0(a) /∈ Inv(Aθ),

which means 0 ∈ σ(Pr0(a)). But this is a contradiction, for we have shown for 0 ≤ r ≤ 1,
Pr(a) is strictly positive.

Now we pick a neighborhood of [B1, B2] away from the y-axis. Let

N =

{
x+ iy :

2B1

3
≤ x ≤ B2 + 1,−1 ≤ y ≤ 1

}
.

Clearly for 0 ≤ r ≤ 1, σ(Pr(a)) ⊆ N . So by Proposition 3.2.1, for 0 ≤ r ≤ 1, there exists
δr such that for y ∈ Aθ, ‖y − Pr(a)‖ < δr implies σ(y) ⊆ N . Since

P (a) : C −→ Aθ, r 7→ Pr(a),

is a continuous map, for δr there exists γr > 0, such that for r′ ∈ C, |r′ − r| ≤ γr
implies ‖Pr′(a)− Pr(a)‖ < δr. So if r′ ∈ Bγr(r), then σ(Pr′(a)) ⊆ N where Bγr(r) is the
2-dimensional open ball centred at r with radius γr. Now let

W =
⋃

0≤r≤1

Bγr(r).

Obviously W is a complex open neighborhood of the interval [0, 1] and the way that we
have constructed W implies if r ∈ W , then σ(Pr(a) ⊆ N . Since N is in the right half
plane, using the standard branch of the logarithm, for r ∈ W , we can define logPr(a).

3.3 The Main Result
In this section we will first state our conjecture about a logarithmic Sobolev inequality
for the noncommutative 2-torus and then we will prove it for certain elements.

Conjecture 3.3.1. Let a =
∑

(m,n)∈Z2

am,nU
mV n be in A∞θ and assume a > 0. Then

τ(a2 log a) 6
∑

(m,n)∈Z2

(|m|+ |n|)|am,n|2 + ‖a‖2
2 log ‖a‖2, (3.11)

which is the same as

τ(a2 log a) 6
∑

(m,n)∈Z2

(|m|+ |n|)|am,n|2 + τ(a2) log(τ(a2))1/2.
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Our main goal was of course to prove the conjecture in general using Weissler’s method
[3.17], however, because of the noncommutativity, in the last step we encountered a
technical problem. So we decided to restrict ourselves to a certain class of elements. Now
we will prove the conjecture for the case m = sn for some s ∈ Z \ {0} and later on
in Section 4 we will give more details of what we have set up for the general case and
explain what the problem is in this setting.

Theorem 3.3.2. Let a =
∑
n∈Z

anU
nV sn be in A∞θ where s ∈ Z \ {0}, and such that a > 0.

Then
τ(a2 log a) 6

∑
n∈Z

(1 + |s|)|n||an|2 + ‖a‖2
2 log ‖a‖2, (3.12)

which is the same as

τ(a2 log a) 6
∑
n∈Z

(1 + |s|)|n||an|2 + τ(a2) log(τ(a2))
1
2 .

Proof. First suppose τ(a) = 1, i.e. a0 = 1, and suppose that at most finitely many
number of an’s are nonzero. Put x = a − 1 =

∑
n∈Z
n 6=0

anU
nV sn. Using the fact that ‖a‖2

2 =

1 + ‖x‖2
2, it can be shown that

‖a‖2
2 log ‖a‖2 >

1

2
‖x‖2

2.

Following Weissler, we shall prove the theorem by proving the stronger inequality

0 6
∑
n∈Z

(1 + |s|)|n||an|2 +
1

2
‖x‖2

2 − τ(a2 log a). (3.13)

For a complex number r we define

xr =
∑
n∈Z
n 6=0

anr
(1+|s|)|n|UnV sn

and Pr(a) = 1 + xr. By Proposition 3.2.2, for r in some complex neighborhood of the
interval [0, 1], we can define logPr(a).

Let

G(r) =
∑
n∈Z

(1 + |s|)r2(1+|s|)|n||n||an|2 +
1

2
‖xr‖2

2 − τ((Pr(a))2 logPr(a)).

Therefore, to prove (3.13) it suffices to show G(1) > 0. The function G(r) is analytic
in a complex neighborhood of [0, 1]. So to prove G(1) > 0, using Lemma 3.2.1, we shall
show that all the coefficients of the expansion of G(r) around r = 0 are nonnegative.

First note that for r with small enough |r| we have ‖xr‖2 < 1 (note that the sum is
a finite sum). So

(Pr(a))2 logPr(a) = (1 + xr)
2 log(1 + xr)
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= (1 + 2xr + x2
r)(1−

1

2
x2
r +

1

3
x3
r −

1

4
x4
r + · · · )

= xr +
3

2
x2
r + 2

∞∑
k=3

(−1)k−1xkr
(k − 3)!

k!
.

So
G(r) =

∑
n∈Z

(1 + |s|)r2(1+|s|)|n||n||an|2 +
1

2
‖xr‖2

2 (3.14)

−τ(xr)−
3

2
τ(x2

r) + 2
∞∑
k=3

(−1)k
(k − 3)!

k!
τ(xkr).

Using the facts that τ(xr) = 0 and

τ(x2
r) = ‖xr‖2

2 =
∑
n∈Z
n 6=0

r2(1+|s|)|n||an|2,

combined with (3.14), we get

G(r) = 2
∑
n∈Z
n>0

((1 + |s|)n− 1)r2(1+|s|)n|an|2 + 2
∞∑
k=3

gk(r), (3.15)

where gk(r) = (−1)k
(k − 3)!

k!
τ(xkr). Now we try to find the Taylor expansion of τ(xkr).

First we need to fix some notation. Let

M = {n ∈ Z : n 6= 0, an 6= 0},

M1 = {n ∈M : n > 0}.

For a function P : M −→ Z+
0 , we put

MP = {n ∈M : P (n) 6= 0} .

So (MP , P ) is a multiset. Indeed, the multiplicity of n is P (n). Moreover, let S(MP )
be the set of all permutations of the multiset (MP , P ). Let Ik be the set of all functions
P : M −→ Z+

0 such that ∑
n∈M

P (n) = k,

and Ik,0 be the set of all functions in Ik such that∑
n∈M

P (n)n = 0.

For P : M −→ Z+
0 , we also define

QP : M1 −→ Z+
0
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by QP (n) = P (−n).
Using the multinomial expansion of xr we have

xkr =
∑
P∈Ik

(∏
n∈M

(
anr

(1+|s|)|n|)P (n)

) ∑
σ∈S(MP )

k∏
i=1

Uσ(nPi )V sσ(nPi )


where nPi , for i = 1, 2, . . . k, is a labeling of elements of MP when P ∈ Ik. Then

τ(xkr) =
∑
P∈Ik,0

(∏
n∈M

(
anr

(1+|s|)|n|)P (n)

)
τ

 ∑
σ∈S(MP )

k∏
i=1

Uσ(nPi )V sσ(nPi )

 .

So we have

τ(xkr) =
∑
P∈Ik,0

∏
n∈M1

(
anr

(1+|s|)n)P (n) ∏
−n∈M1

(
anr

−(1+|s|)n)P (n)

×τ

 ∑
σ∈S(MP )

k∏
i=1

Uσ(nPi )V sσ(nPi )

 .

Hence
τ(xkr) =

∑
P∈Ik,0

∏
n∈M1

(
anr

(1+|s|)n)P (n) ∏
n∈M1

(
a−nr

(1+|s|)n)QP (n)

×τ

 ∑
σ∈S(MP )

k∏
i=1

Uσ(nPi )V sσ(nPi )

 .

Then since a is self-adjoint, using (3.4) we have

τ(xkr) =
∑

(P,Q)∈Hk

∏
n∈M1

(
anr

(1+|s|)n)P (n) ∏
n∈M1

(
anr

(1+|s|)n)Q(n)
(3.16)

×e
(−2πisθ

∑
n∈M1

Q(n)n2)

τ

 ∑
σ∈S(MP,Q)

k∏
i=1

Uσ(nP,Qi )V sσ(nP,Qi )

 ,

where Hk is the set of all pairs (P,Q) such that

P : M1 −→ Z+
0 ,

Q : M1 −→ Z+
0 ,∑

n∈M1

P (n)n =
∑
n∈M1

Q(n)n, (3.17)

∑
n∈M1

P (n) +
∑
n∈M1

Q(n) = k. (3.18)
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Also (MP,Q, [P,Q]) is a multiset defined by

MP,Q = M+
P ∪M

−
Q ,

where
M+

P = {n ∈M1 : P (n) 6= 0} ,

M−
Q = {n ∈M : −n ∈M1, Q(−n) 6= 0} ,

and
[P,Q] : MP,Q −→ Z+

0 ,

is defined by

[P,Q](n) =

{
P (n) n ∈M+

P

Q(−n) n ∈M−
Q

.

Also, nP,Qi for i = 1, 2, . . . , k is a labeling for elements of MP,Q.
So regarding (3.16), we see that

τ(xkr) =
∑

(P,Q)∈Hk

∏
n∈M1

(
anr

(1+|s|)n)P (n) ∏
n∈M1

(
anr

(1+|s|)n)Q(n)

×e
(−2πisθ

∑
n∈M1

Q(n)n2) ∑
σ∈S(MP,Q)

τ

(
k∏
i=1

Uσ(nP,Qi )V sσ(nP,Qi )

)
.

Now we will calculate τ
(∏k

i=1 U
σ(nP,Qi )V sσ(nP,Qi )

)
, for σ ∈ S(MP,Q), the set of permuta-

tions of the multiset MP,Q. For simplicity we drop the superscripts P,Q. Using (3.17),
we have

k∑
i=1

σ(ni) = 0. (3.19)

Hence

τ

(
k∏
i=1

Uσ(ni)V sσ(ni)

)
= τ

(
e2πiθBσU

k∑
i=1

σ(ni)
V
s
k∑
i=1

σ(ni)

)
= e2πiθBσ ,

where for σ ∈ S(MP,Q),
Bσ =

s

2

∑
n∈M1

(P (n) +Q(n))n2.

In fact, we know that
Bσ = −sσ(n2)σ(n1)

−sσ(n3) [σ(n1) + σ(n2)]

−sσ(n4) [σ(n1) + σ(n2) + σ(n3)]− · · ·

−sσ(nk−1) [σ(n1) + σ(n2) + · · ·+ σ(nk−2)]
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−sσ(nk) [σ(n1) + σ(n2) + · · ·+ σ(nk−1)] .

We also define
Aσ = sσ(n1) [σ(n1) + σ(n2) + · · ·+ σ(nk)]

+sσ(n2) [σ(n2) + σ(n3) + · · ·+ σ(nk)]

+sσ(n3) [σ(n3) + σ(n4) + · · ·+ σ(nk)]

+sσ(n4) [σ(n4) + σ(n5) + · · ·+ σ(nk)] + · · ·

+sσ(nk−1) [σ(nk−1) + σ(nk)]

+sσ(nk)σ(nk).

Using (3.19), we get Bσ − Aσ = 0. So Bσ =
1

2
(Bσ + Aσ). On the other hand,

Bσ + Aσ =
k∑
i=1

s(σ(ni))
2 =

k∑
i=1

s(ni)
2

=
∑
n∈M+

P

P (n)sn2 +
∑
n∈M−Q

Q(−n)sn2 =
∑
n∈M1

P (n)sn2 +
∑
−n∈M1

Q(−n)sn2

=
∑
n∈M1

P (n)sn2 +
∑
n∈M1

Q(n)sn2.

So we have proved
Bσ =

s

2

∑
n∈M1

(P (n) +Q(n))n2.

Therefore,

τ(xkr) =
∑

(P,Q)∈Hk

∏
n∈M1

(
anr

(1+|s|)n)P (n) ∏
n∈M1

(
anr

(1+|s|)n)Q(n)

×e
(−2πisθ

∑
n∈M1

Q(n)n2) ∑
σ∈S(MP,Q)

e2πiθBσ .

Since
|S(MP,Q)| = k!∏

n∈M1

P (n)!Q(n)!
,

we see that

τ(xkr) = k!
∑

(P,Q)∈Hk

∏
n∈M1

(
anr

(1+|s|)n)P (n) ∏
n∈M1

(
anr

(1+|s|)n)Q(n)

× 1∏
n∈M1

P (n)!Q(n)!
e
−2πisθ

∑
(m,n)∈M1

Q(n)n2

e
πisθ

( ∑
n∈M1

(P (n)+Q(n))n2

)
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= k!
∑

(P,Q)∈Hk

∏
n∈M1

(
anr

(1+|s|)n)P (n) ∏
n∈M1

(
anr

(1+|s|)n)Q(n)

× 1∏
n∈M1

P (n)!Q(n)!
e
πisθ

∑
n∈M1

(P (n)−Q(n))n2

= k!
∑

(P,Q)∈Hk

r

( ∑
n∈M1

(1+|s|)n(P (n)+Q(n))

)

×e
πisθ

∑
n∈M1

P (n)n2 ∏
n∈M1

(an)P (n)

P (n)!
e
−πisθ

∑
n∈M1

Q(n)n2 ∏
n∈M1

(an)Q(n)

Q(n)!
.

Now for a function P : M −→ Z+
0 , define

D(P ) = e
πisθ

∑
n∈M1

P (n)n2 ∏
n∈M1

(−an)P (n)

P (n)!
. (3.20)

Then we have

τ(xkr) = k!
∑

(P,Q)∈Hk

(−1)
(
∑

n∈M1

P (n)+Q(n))

r
(
∑

n∈M1

(1+|s|)n(P (n)+Q(n)))

D(P )D(Q).

So

τ(xkr) = (−1)kk!
∞∑
l=2

r2(1+|s|)l

 ∑
(P,Q)∈Gl

D(P )D(Q)

 , (3.21)

where Gl the set of all pairs (P,Q) such that

P : M1 −→ Z+
0 ,

Q : M1 −→ Z+
0 ,

and ∑
n∈M1

P (n) +
∑
n∈M1

Q(n) = k,

∑
n∈M1

P (n)n =
∑
n∈M1

Q(n)n = l,

One should note that in (3.21), l starts from 2. Here we shall show why that is the
case: ∑

n∈M1

P (n) 6
∑
n∈M1

P (n)n. (3.22)

Similarly we have ∑
n∈M1

Q(n) 6
∑
n∈M1

Q(n)n, (3.23)
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So
k =

∑
n∈M1

P (n) +
∑
n∈M1

Q(n) 6
∑
n∈M1

P (n)n+
∑
n∈M1

Q(n)n = 2l

So for a fixed k,
k

2
6 l and since k is at least 3, l > 2.

Now for l and t > 1 define

C(t, l) :=
∑
P∈Ht,l

D(P ),

where Ht,l is the set of all functions P : M1 −→ Z+
0 such that∑

n∈M1

P (n) = t, (3.24)

and ∑
n∈M1

P (n)n = l. (3.25)

When there is no such P then the sum is taken to be 0. For instance if t > l then there
is no such P , for

t =
∑
n∈M1

P (n) 6
∑
n∈M1

P (n)n = l.

Then we have ∑
(P,Q)∈Gl

D(P )D(Q) =
k−1∑
t=1

∑
Q∈Hk−t,l
P∈Ht,l

D(P)D(Q)

=
k−1∑
t=1

 ∑
P∈Ht,l

D(P)

 ∑
Q∈Hk−t,l

D(Q)

 =
k−1∑
t=1

C(t, l)C(k − t, l).

Now using this in (3.21), we get

τ(xkr) = (−1)kk!
∞∑
l=2

r2(1+|s|)l
k−1∑
t=1

C(t, l)C(k − t, l),

and this implies

N∑
k=3

gk(r) =
N∑
k=3

(k − 3)!
∞∑
l=2

r2(1+|s|)l
k−1∑
t=1

C(t, l)C(k − t, l)

=
∞∑
l=2

r2(1+|s|)l
N∑
k=3

(k − 3)!
k−1∑
t=1

C(t, l)C(k − t, l)

=
∞∑
l=2

r2(1+|s|)l
l∑

i=1

l∑
j=1

3≤i+j≤N

(i+ j − 3)!C(i, l)C(j, l).
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Therefore, for N > 2l the coefficient of r2(1+|s|)l in
∑N

k=3 gk(r) is

l∑
i=1

l∑
j=1

i+j≥3

(i+ j − 3)!C(i, l)C(j, l), (3.26)

and this is also the coefficient of of r2(1+|s|)l in
∑∞

k=3 gk(r).
Now we show that for l ≥ 0,

C(1, l) = −aleπisl
2θ.

In fact, this is true, for if l /∈M , then al = 0 and also H1,l = ∅ which implies C(1, l) = 0.
If l ∈M , then

P (n) =

{
1 n = l
0 otherwise

is the only element in H1,l. So using (3.20), we have

C(1, l) =
∑
P∈H1,l

D(P ) = −aleπisl
2θ. (3.27)

Recall that

G(r) = 2
∑
n∈Z
n>0

((1 + |s|)n− 1)r2(1+|s|)n|an|2 + 2
∞∑
k=3

gk(r).

Therefore the coefficient of r2(1+|s|)l, (l > 2) in G(r) is

2((1 + |s|)l − 1)|al|2 + 2
l∑

i=1

l∑
j=1

i+j≥3

(i+ j − 3)!C(i, l)C(j, l).

Using (3.27), this is equal to

2((1 + |s|)l − 1)C(1, l)C(1, l) + 2
l∑

i=1

l∑
j=1

i+j≥3

(i+ j − 3)!C(i, l)C(j, l),

which can be written as

2
l∑

i=1

l∑
j=1

Al(i, j)C(i, l)C(j, l), (3.28)

where the matrix Al defined by

Al(i, j) =

{
(1 + |s|)l − 1 i = j = 1
(i+ j − 3)! i+ j > 3

.
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In [3.17] it has been shown that for l > 2, Al is a positive semi-definite matrix. Hence
the coefficient of r2(1+|s|)l, (l > 2) in G(r) is positive. So we have proved (3.12) for a
positive element a with a0 = 1 in which only finitely many coefficients are non-zero.

Homogeneity of (3.12) implies that it should hold for a positive element a (with only
finitely many non-zero coefficients), even if a0 6= 1.

Finally, we shall prove (3.12) for an arbitrary strictly positive element of the form∑
n∈Z

anU
nV sn. For a =

∑
n∈Z

anU
nV sn and b =

∑
n∈Z

bnU
nV sn in A∞θ , we define

a ∗ b =
∑
p∈Z

(a ∗ b)pUpV sp

where (a ∗ b)p = apbp. We also define dj in A∞θ for j > 0 by

dj =
∑
n∈Z

djnU
nV sn,

where
djn =

{
1 |n| ≤ j
0 otherwise .

Then we have
‖(dj ∗ a)− a‖2

2 =
∑
n∈Z

|djnan − an|2 =
∑
|n|>j

|an|2.

So
lim
j→∞

dj ∗ a = a, (3.29)

in the ‖.‖2 topology.
Moreover,

‖(dj ∗ a)− a‖ = ‖
∑
n∈Z

(djnan − an)UnV sn‖

≤
∑
|n|>j

|an|,

which implies
lim
j→∞

dj ∗ a = a,

in the C*-norm topology. Now let

a =
∑
n∈Z

anU
nV sn

be a strictly positive element in A∞θ and F be a complex open neighborhood of σ(a) in
the right half plane away from the y-axis. Since a is strictly positive, we can choose such
a set. Therefore, using Proposition 3.2.1, we see that for large enough j, σ(dj ∗ a) is
inside F . On the other hand, since a is self-adjoint, (3.4) implies that for n ∈ Z,

an = ā−ne
−2πin2θ.
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So for n ∈ Z, and j ∈ N we have

djnan = djnā−ne
−2πin2θ,

which guarantees that dj ∗ a is self-adjoint. Therefore, σ(dj ∗ a) ⊂ R Hence for large
enough j, dj ∗ a is strictly positive and we can define log(dj ∗ a).

Since for j > 0, dj ∗ a is an element of A∞θ which has at most finitely many non-zero
coefficients, we shall apply (3.12) to dj ∗ a for large enough j and we will get

τ((dj ∗ a)2 log(dj ∗ a)) 6
∑
n∈Z

(1 + |s|)|n||djn|2|an|2 + ‖dj ∗ a‖2
2 log ‖dj ∗ a‖2. (3.30)

Let
h =

∑
n∈Z

(1 + |s|)
1
2 |n|

1
2anU

nV sn.

Then
‖dj ∗ h‖2

2 =
∑
n∈Z

(1 + |s|)|n||djn|2|an|2,

and
lim
j→∞

dj ∗ h = h (3.31)

in the ‖.‖2 topology.
Thus

lim
j→∞

∑
n∈Z

(1 + |s|)|n||djn|2|an|2 = lim
j→∞
‖dj ∗ h‖2

2 = lim
j→∞
‖h‖2

2 =
∑
n∈Z

(1 + |s|)|n||an|2. (3.32)

To prove (3.12), taking the limit of (3.30) as j −→∞, we use (3.29), (3.32) and also
the continuity of τ with respect to ‖.‖2. In fact, τ is continuous with respect to ‖.‖2, for
one can show (See [3.10] Theorem 3.3.2.) for a ∈ Aθ,

|τ(a)|2 ≤ ‖τ‖τ(a∗a).

3.4 Towards Proving the Conjecture
In this section, as promised in Section 3, we will give the details of what we have done
towards proving Conjecture 3.3.1 and we will explain what the remaining technical prob-
lem is. It seems to us that a part of the solution should involve the noncommutative
binomial theorem of Choi, Elliott, and Yui in [3.2], and its extension in [3.5]. Another
possible approach would be to first try to prove this inequality for rational values of
θ and then extend it to irrational θ’s. In what follows we will use the assumptions of
Conjecture 3.3.1.
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First suppose τ(a) = 1, i.e. a0,0 = 1 and suppose that at most finitely many of the
am,n’s are nonzero. Put x = a− 1 =

∑
(m,n)∈Z2

(m,n)6=(0,0)

am,nU
mV n. Using the fact that

‖a‖2
2 = 1 + ‖x‖2

2,

it can be shown that
‖a‖2

2 log ‖a‖2 >
1

2
‖x‖2

2.

We are going to try to prove the conjecture by proving an stronger inequality:

0 6
∑

(m,n)∈Z2

(|m|+ |n|)|am,n|2 +
1

2
‖x‖2

2 − τ(a2 log a). (3.33)

For a complex number r we define

xr =
∑

(m,n)∈Z2

(m,n)6=(0,0)

am,nr
(|m|+|n|)UmV n

and Pr(a) = 1 + xr. By Proposition 3.2.2, for r in some complex neighborhood of the
interval [0, 1], we can define logPr(a).

Let

G(r) =
∑

(m,n)∈Z2

r2(|m|+|n|)(|m|+ |n|)|am,n|2 +
1

2
‖xr‖2

2 − τ((Pr(a))2 logPr(a)).

Therefore, to prove (3.33) it suffices to show that G(1) > 0. The function G(r) is analytic
in a complex neighborhood of [0, 1]. So to prove G(1) > 0, using Lemma 3.2.1, we need
to show that all the coefficients of the expansion of G(r) around r = 0 are nonnegative.

First note that for r with small enough |r| we have ‖xr‖2 < 1 (note that the sum is
a finite sum). So

(Pr(a))2 logPr(a) = (1 + xr)
2 log(1 + xr)

= (1 + 2xr + x2
r)(1−

1

2
x2
r +

1

3
x3
r −

1

4
x4
r + · · · )

= xr +
3

2
x2
r + 2

∞∑
k=3

(−1)k−1xkr
(k − 3)!

k!
.

So
G(r) =

∑
(m,n)∈Z2

r2(|m|+|n|)(|m|+ |n|)|am,n|2 +
1

2
‖xr‖2

2 (3.34)

−τ(xr)−
3

2
τ(x2

r) + 2
∞∑
k=3

(−1)k
(k − 3)!

k!
τ(xkr).

Using the facts that τ(xr) = 0 and

τ(x2
r) = ‖xr‖2

2 =
∑

(m,n)∈Z2

(m,n)6=(0,0)

r2(|m|+|n|)|am,n|2
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in (3.34), we get

G(r) = 2
∑

(m,n)∈Z2

m>0,n>0

(m+ n− 1)r2(m+n)|am,n|2 + 2
∞∑
k=3

gk(r) (3.35)

where gk(r) = (−1)k
(k − 3)!

k!
τ(xkr). Now let us try to find the Taylor expansion of τ(xkr).

First we need to fix some notation. Let

M = {(m,n) ∈ Z2 : (m,n) 6= 0, am,n 6= 0},

M1 = {(m,n) ∈M : m > 0, n > 0},

M2 = {(m,n) ∈M : m > 0, n < 0}.

For a function P : M −→ Z+
0 , we put

MP = {(m,n) ∈M : P (m,n) 6= 0} .

So (MP , P ) is a multiset. Indeed, the multiplicity of (m,n) is P (m,n). Moreover, let
S(MP ) be the set of all permutations of the multiset (MP , P ). For σ ∈ S(MP ), by
σ1(m,n) and σ2(m,n) we mean the first and the second components of σ(m,n), respec-
tively. Let Ik be the set of all functions P : M −→ Z+

0 such that∑
(m,n)∈M

P (m,n) = k,

and Ik,0 be the set of all functions in Ik such that∑
(m,n)∈M

P (m,n)m =
∑

(m,n)∈M

P (m,n)n = 0.

For P : M −→ Z+
0 , we also define

QP : M1 ∪M2 −→ Z+
0

by QP (m,n) = P (−m,−n).
Using the multinomial expansion of xr we have

xkr =
∑
P∈Ik

 ∏
(m,n)∈M

(
am,nr

|m|+|n|)P (m,n)

 ∑
σ∈S(MP )

k∏
i=1

Uσ1(mPi ,n
P
i )V σ2(mPi ,n

P
i )


where (mP

i , n
P
i ), for i = 1, 2, · · · k, is a labeling of elements of MP when P ∈ Ik. Then

τ(xkr) =
∑
P∈Ik,0

 ∏
(m,n)∈M

(
am,nr

|m|+|n|)P (m,n)

 τ

 ∑
σ∈S(MP )

k∏
i=1

Uσ1(mPi ,n
P
i )V σ2(mPi ,n

P
i )

 .
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So we have

τ(xkr) =
∑
P∈Ik,0

∏
(m,n)∈M1

(
am,nr

m+n
)P (m,n)

∏
(−m,−n)∈M1

(
am,nr

−m−n)P (m,n)

×
∏

(m,n)∈M2

(
am,nr

m−n)P (m,n)
∏

(−m,−n)∈M2

(
am,nr

n−m)P (m,n)

×τ

 ∑
σ∈S(MP )

k∏
i=1

Uσ1(mPi ,n
P
i )V σ2(mPi ,n

P
i )

 .

Then
τ(xkr) =

∑
P∈Ik,0

∏
(m,n)∈M1

(
am,nr

m+n
)P (m,n)

∏
(m,n)∈M1

(
a−m,−nr

m+n
)QP (m,n)

×
∏

(m,n)∈M2

(
am,nr

m−n)P (m,n)
∏

(m,n)∈M2

(
a−m,−nr

m−n)QP (m,n)

×τ

 ∑
σ∈S(MP )

k∏
i=1

Uσ1(mPi ,n
P
i )V σ2(mPi ,n

P
i )

 .

Then since a is self-adjoint, using (3.4) we have

τ(xkr) =
∑

(P,Q)∈Hk

∏
(m,n)∈M1

(
am,nr

m+n
)P (m,n)

∏
(m,n)∈M1

(
am,nr

m+n
)Q(m,n) (3.36)

×
∏

(m,n)∈M2

(
am,nr

m−n)P (m,n)
∏

(m,n)∈M2

(
am,nr

m−n)Q(m,n)

×e
(−2πiθ

∑
(m,n)∈M1

Q(m,n)mn)

e
(−2πiθ

∑
(m,n)∈M2

Q(m,n)mn)

×τ

 ∑
σ∈S(MP,Q)

k∏
i=1

Uσ1(mP,Qi ,nP,Qi )V σ2(mP,Qi ,nP,Qi )

 ,

where Hk is the set of all pairs (P,Q) such that

P : M1 ∪M2 −→ Z+
0 ,

Q : M1 ∪M2 −→ Z+
0 ,∑

(m,n)∈M1∪M2

P (m,n)n =
∑

(m,n)∈M1∪M2

Q(m,n)n, (3.37)

∑
(m,n)∈M1∪M2

P (m,n)m =
∑

(m,n)∈M1∪M2

Q(m,n)m, (3.38)

∑
(m,n)∈M1∪M2

P (m,n) +
∑

(m,n)∈M1∪M2

Q(m,n) = k (3.39)
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and (MP,Q, [P,Q]) is a multiset defined by

MP,Q = M1,2
P ∪M

−1,−2
Q

where
M1,2

P = {(m,n) ∈M1 ∪M2 : P (m,n) 6= 0} ,

M−1,−2
Q = {(m,n) ∈M : (m,n) /∈M1 ∪M2, Q(−m,−n) 6= 0} ,

and
[P,Q] : MP,Q −→ Z+

0 ,

is defined by

[P,Q](m,n) =

{
P (m,n) (m,n) ∈M1,2

P

Q(−m,−n) (m,n) ∈M−1,−2
Q

.

Also, (mP,Q
i , nP,Qi ) for i = 1, 2, . . . , k is a labeling for elements of MP,Q.

Now we show that for (P,Q) ∈ Hk,

τ

 ∑
σ∈S(MP,Q)

k∏
i=1

Uσ1(mP,Qi ,nP,Qi )V σ2(mP,Qi ,nP,Qi )

 (3.40)

= e
πiθ

∑
(m,n)∈M1∪M2

(P (m,n)+Q(m,n))mn

BP,Q,

where BP,Q is a real number which depends on P and Q. Indeed, for (P,Q) ∈ Hk and
σ ∈ S(MP,Q) we have (for simplicity we drop the superscript P,Q)

k∏
i=1

Uσ1(mi,ni)V σ2(mi,ni) = e2πiθBσU (
∑k
i=1 σ1(mi,ni))V (

∑k
i=1 σ2(mi,ni)), (3.41)

where
Bσ = −σ1(m2, n2)σ2(m1, n1)

−σ1(m3, n3) [σ2(m1, n1) + σ2(m2, n2)]

−σ1(m4, n4) [σ2(m1, n1) + σ2(m2, n2) + σ2(m3, n3)]− · · ·

−σ1(mk, nk) [σ2(m1, n1) + σ2(m2, n2) + σ2(m3, n3) + · · ·+ σ2(mk−1, nk−1)] .

Since (P,Q) ∈ Hk, (3.37) and (3.38) implies

k∑
i=1

σ1(mi, ni) = 0, (3.42)

and
k∑
i=1

σ2(mi, ni) = 0. (3.43)
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So using (3.41),

τ(
k∏
i=1

Uσ1(mi,ni)V σ2(mi,ni)) = e2πiθBσ . (3.44)

Let

Aσ = σ1(m1, n1) [σ2(m1, n1) + σ2(m2, n2) + · · · σ2(mk, nk)]

+σ1(m2, n2) [σ2(m2, n2) + σ2(m3, n3) + · · ·σ2(mk, nk)]

+σ1(m3, n3) [σ2(m3, n3) + σ2(m4, n4) + · · ·σ2(mk, nk)] + · · ·
+σ1(mk−1, nk−1) [σ2(mk−1, nk−1) + σ2(mk, nk)]

+σ1(mk, nk)σ2(mk, nk).

Using (3.42) and (3.43), one can check that Bσ − Aσ = 0. So

Bσ =
1

2
(Bσ + Aσ). (3.45)

We also set

Dσ =
k∑
j=2

j−1∑
i=1

[σ1(mi, ni)σ2(mj, nj)− σ1(mj, nj)σ2(mi, ni)] .

One can see that

Dσ =
k−1∑
j=1

k∑
i=j+1

[σ1(mj, nj)σ2(mi, ni)− σ1(mi, ni)σ2(mj, nj)] . (3.46)

Then we see that

Bσ + Aσ = Dσ +
k∑
i=1

σ1(mi, ni)σ2(mi, ni)

= Dσ +
∑

(m,n)∈MP,Q

[P,Q](m,n)mn

= Dσ +
∑

(m,n)∈M1,2
P,Q

P (m,n)mn+
∑

(m,n)∈M−1,−2
P,Q

Q(−m,−n)mn

= Dσ +
∑

(m,n)∈M1∪M2

P (m,n)mn+
∑

(−m,−n)∈M1∪M2

Q(−m,−n)mn

= Dσ +
∑

(m,n)∈M1∪M2

P (m,n)mn+
∑

(m,n)∈M1∪M2

Q(m,n)mn.

Therefore, by (3.45) we have

Bσ =
1

2

Dσ +
∑

(m,n)∈M1∪M2

(P (m,n) +Q(m,n))mn

 .
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Then regarding (3.44) we have

τ(
k∏
i=1

Uσ1(mi,ni)V σ2(mi,ni)) = e2πiθBσ

= e
πiθ

∑
(m,n)∈M1∪M2

(P (m,n)+Q(m,n))mn

eπiθDσ .

Now if we define
BP,Q =

∑
σ∈S(MP,Q)

eπiθDσ ,

we see that

τ

 ∑
σ∈S(MP,Q)

k∏
i=1

Uσ1(mP,Qi ,nP,Qi )V σ2(mP,Qi ,nP,Qi )

 = e
πiθ

∑
(m,n)∈M1∪M2

(P (m,n)+Q(m,n))mn

BP,Q.

So we have proved (3.40). Now we will show that BP,Q is a real number. Indeed, for
σ ∈ S(MP,Q), we define βσ ∈ S(MP,Q) by

βσ(mi, ni) = σ(mk−i+1, nk−i+1), i = 1, 2, . . . , k.

Then we have

Dβσ =
k∑
j=2

j−1∑
i=1

[βσ1(mi, ni)βσ2(mj, nj)− βσ1(mj, nj)βσ2(mi, ni)]

=
k∑
j=2

j−1∑
i=1

σ1(mk−i+1, nk−i+1)σ2(mk−j+1, nk−j+1)

−
k∑
j=2

j−1∑
i=1

σ1(mk−j+1, nk−j+1)σ2(mk−i+1, nk−i+1)

=
1∑

t=k−1

t+1∑
s=k

[σ1(ms, ns)σ2(mt, nt)− σ1(mt, nt)σ2(ms, ns)]

=
k−1∑
t=1

k∑
s=t+1

[σ1(ms, ns)σ2(mt, nt)− σ1(mt, nt)σ2(ms, ns)]

= −
k−1∑
t=1

k∑
s=t+1

[σ1(mt, nt)σ2(ms, ns)− σ1(ms, ns)σ2(mt, nt)] = −Dσ,

where in the last equality we have used (3.46). Now we have

BP,Q =
∑

σ∈S(MP,Q)

eπiθDσ =
1

2
(
∑

σ∈S(MP,Q)

eπiθDσ +
∑

σ∈S(MP,Q)

eπiθDσ)
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=
1

2
(
∑

σ∈S(MP,Q)

eπiθDσ +
∑

σ∈S(MP,Q)

eπiθDβσ )

=
1

2
(
∑

σ∈S(MP,Q)

eπiθDσ +
∑

σ∈S(MP,Q)

e−πiθDσ) =
1

2

∑
σ∈S(MP,Q)

(eπiθDσ + e−πiθDσ)

So BP,Q is real.
Now using (3.36), we see that

τ(xkr) =
∑

(P,Q)∈Hk

∏
(m,n)∈M1

(
am,nr

m+n
)P (m,n)

∏
(m,n)∈M1

(
am,nr

m+n
)Q(m,n)

×
∏

(m,n)∈M2

(
am,nr

m−n)P (m,n)
∏

(m,n)∈M2

(
am,nr

m−n)Q(m,n)

×e
−2πiθ

∑
(m,n)∈M1∪M2

Q(m,n)mn

e
πiθ

∑
(m,n)∈M1∪M2

(P (m,n)+Q(m,n))mn

BP,Q.

Then we have

τ(xkr) =
∑

(P,Q)∈Hk

r

( ∑
(m,n)∈M1

(P (m,n)+Q(m,n))(m+n)+
∑

(m,n)∈M2

(P (m,n)+Q(m,n))(m−n)

)

×e
πiθ

∑
(m,n)∈M1∪M2

P (m,n)mn

e
−πiθ

∑
(m,n)∈M1∪M2

Q(m,n)mn

×
∏

(m,n)∈M1∪M2

aP (m,n)
m,n

∏
(m,n)∈M1∪M2

am,n
Q(m,n)BP,Q

=
∑

(P,Q)∈Hk

r

( ∑
(m,n)∈M1

⋃
M2

P (m,n)m+
∑

(m,n)∈M1
⋃
M2

Q(m,n)m

)

×r

( ∑
(m,n)∈M1

P (m,n)n−
∑

(m,n)∈M2

Q(m,n)n+
∑

(m,n)∈M1

Q(m,n)n−
∑

(m,n)∈M2

P (m,n)n

)

×e
πiθ

∑
(m,n)∈M1∪M2

P (m,n)mn

e
−πiθ

∑
(m,n)∈M1∪M2

Q(m,n)mn

×
∏

(m,n)∈M1∪M2

aP (m,n)
m,n

∏
(m,n)∈M1∪M2

am,n
Q(m,n)BP,Q.

So

τ(xkr) =
∞∑

l+s=2
l≥0,s≥0

r2(l+s)
∑

(P,Q)∈Gl,s

e
πiθ

∑
(m,n)∈M1∪M2

P (m,n)mn

(3.47)

×e
−πiθ

∑
(m,n)∈M1∪M2

Q(m,n)mn ∏
(m,n)∈M1∪M2

aP (m,n)
m,n

∏
(m,n)∈M1∪M2

am,n
Q(m,n)BP,Q,

where Gl,s is the set of all pairs (P,Q) such that

P : M1 ∪M2 −→ Z+
0 ,
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Q : M1 ∪M2 −→ Z+
0 ,

and ∑
(m,n)∈M1∪M2

P (m,n) +
∑

(m,n)∈M1∪M2

Q(m,n) = k,

∑
(m,n)∈M1∪M2

P (m,n)m =
∑

(m,n)∈M1∪M2

Q(m,n)m = l,

∑
(m,n)∈M1

P (m,n)n−
∑

(m,n)∈M2

Q(m,n)n =
∑

(m,n)∈M1

Q(m,n)n−
∑

(m,n)∈M2

P (m,n)n = s.

One should note that in (3.47) (l + s) starts from 2. Here we shall show why that is the
case: for (m,n) ∈M1 if m = 0, then n 6= 0. So we have∑

(m,n)∈M1

P (m,n) 6
∑

(m,n)∈M1

P (m,n)m+
∑

(m,n)∈M1

P (m,n)n. (3.48)

Similarly we have∑
(m,n)∈M2

P (m,n) 6
∑

(m,n)∈M2

P (m,n)m−
∑

(m,n)∈M2

P (m,n)n, (3.49)

∑
(m,n)∈M1

Q(m,n) 6
∑

(m,n)∈M1

Q(m,n)m+
∑

(m,n)∈M1

Q(m,n)n, (3.50)

∑
(m,n)∈M2

Q(m,n) 6
∑

(m,n)∈M2

Q(m,n)m−
∑

(m,n)∈M2

Q(m,n)n. (3.51)

So
k =

∑
(m,n)∈M1∪M2

P (m,n) +
∑

(m,n)∈M1∪M2

Q(m,n) 6

∑
(m,n)∈M1∪M2

P (m,n)m+
∑

(m,n)∈M1∪M2

Q(m,n)m

+
∑

(m,n)∈M1

P (m,n)n−
∑

(m,n)∈M2

Q(m,n)n

+
∑

(m,n)∈M1

Q(m,n)n−
∑

(m,n)∈M2

P (m,n)n

= 2(s+ l).

So for a fixed k,
k

2
6 l + s and since k is at least 3, l + s > 2.

Let G̃l,s be the set of all pairs (P̃ , Q̃) such that

P̃ : M −→ Z+
0 ,

Q̃ : M −→ Z+
0 ,
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and ∑
(m,n)∈M1∪M2

P̃ (m,n) +
∑

(m,n)∈M1∪M2

Q̃(m,n) = k,

∑
(m,n)∈M1∪M2

P̃ (m,n)m =
∑

(m,n)∈M1∪M2

Q̃(m,n)m = l,

∑
(m,n)∈M1

P̃ (m,n)n−
∑

(m,n)∈M2

Q̃(m,n)n =
∑

(m,n)∈M1

Q̃(m,n)n−
∑

(m,n)∈M2

P̃ (m,n)n = s.

There exists a one-to-one correspondence between G̃l,s and Gl,s. In fact, for (P,Q) ∈ Gl,s,
we can define

P̃ (m,n) =

{
P (m,n) (m,n) ∈M1 ∪M2

Q(−m,−n) (m,n) /∈M1 ∪M2
,

and
Q̃(m,n) =

{
Q(m,n) (m,n) ∈M1 ∪M2

P (−m,−n) (m,n) /∈M1 ∪M2
.

Using this correspondence and the fact that BP,Q = BP̃ �M1∪M2
,Q̃�M1∪M2

in (3.47), we
have

τ(xkr) =
∞∑

l+s=2
l≥0,s≥0

r2(l+s)
∑

(P̃ ,Q̃)∈G̃l,s

e
πiθ

∑
(m,n)∈M1∪M2

P̃ (m,n)mn

(3.52)

×e
−πiθ

∑
(m,n)∈M1∪M2

Q̃(m,n)mn ∏
(m,n)∈M1∪M2

aP̃ (m,n)
m,n

∏
(m,n)∈M1∪M2

am,n
Q̃(m,n)BP̃ ,Q̃.

Now if we can decompose BP̃ ,Q̃ into two terms BP̃ and BQ̃, i.e.,

BP̃ ,Q̃ = BP̃BQ̃, (3.53)

such that BP̃ and BQ̃ depend only on P̃ and Q̃, respectively, then we can continue the
proof of Theorem 3.3.2. Indeed, if (3.53) holds, for a function

P : M −→ Z+
0 ,

we can define

D(P ) = e
πiθ

∑
(m,n)∈M1∪M2

P (m,n)mn ∏
(m,n)∈M1∪M2

(−am,n)P (m,n) BP , (3.54)

and the rest would be similar to the proof of Theorem 3.3.2.
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Chapter 4

A Scalar Curvature Formula for the
Noncommutative 3-Torus

4.1 Introduction
Since the beginning of noncommutative geometry in [4.2], noncommutative tori have
proved to be an invaluable model to understand and test many aspects of noncommutative
geometry. Curvature, one of the most important geometric invariants, is among those
aspects. Defining a suitable curvature concept in the noncommutative setting is an
important problem at the heart of noncommutative geometry. More precisely, we are
interested in curvature invariants of noncommutative Riemannian manifolds. In contrast
it should be noted that curvature of connections and the corresponding Chern-Weil theory
in the noncommutative setting has already been defined in [4.2].

In their pioneering work [4.5], Connes and Tretkoff (cf. also [4.1] for a preliminary
version) took a first step in this direction and proved a Gauss-Bonnet theorem for a
curved noncommutative two torus equipped with a conformally deformed metric. They
gave a spectral definition of curvature and computed its trace. This result was extended
in [4.6] to noncommutative tori equipped with an arbitrary translation invariant complex
structure and conformal perurbation of its metric. The full computation of curvature in
these examples was done independely and simultaneously in [4.4] and [4.7]. This line of
work has been continued and extended in different directions in many papers [4.8].

The approach used in the aforementioned papers is based on the heat kernel techniques
and Connes’ pseudodifferential calculus. In this paper using a similar technique we will
give a formula for the scalar curvature of a curved noncommutative 3-torus. This would
be the first odd dimensional case that has been studied among the noncommutative tori.
In [4.12] a general pattern for the scalar curvature of even dimensional noncommutatuve
tori is found. While a similar question in the odd dimensional case needs a close study
of the first.

This paper is organized as follows. In Section 2, we recall some facts about the heat
kernel expansion in the commutative case. In Section 3, we recall basic facts about
higher dimensional noncommutative tori and their flat geometry. Then we perturb the
standard volume form on this space conformally and analyse the corresponding perturbed
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Laplacian. In Section 4, we recall the pseudodifferential calculus of [4.3] for T3
θ. In Section

5, we review the derivation of the small time heat kernel expansion for the perturbed
Laplacian, using the pseudodifferential calculus. Then we perform the computation of the
scalar curvature for T3

θ, and find explicit formulas for the local functions that describe the
curvature in terms of the modular automorphism of the conformally perturbed volume
form and derivatives of the Weyl factor.

4.2 Heat Kernel Expansion and Scalar Curvature
To motivate the definition of scalar curvature in our noncommutative setting, let us first
recall Gilkey’s theorem on asymptotic expansion of heat kernels. Let (M, g) be a closed,
oriented Riemannian manifold of dimension n, endowed with the metric g and 4 be
the Laplace operator acting on C∞(M), the algebra of smooth functions on M . If C
is a contour going counterclockwise around the nonnegative part of the x-axis without
touching it, then using the Cauchy integral formula

e−t4 =
1

2πi

∫
C

e−tλ(4− λ)−1dλ

and approximating the operator (4−λ)−1 by a pseudodifferential operator R(λ) one can
find an asymptotic expansion for the smooth kernel K(t, x, y) of e−t4 on the diagonal
[4.9].

More precisely, using the formula for the symbol of the product of two pseudo differ-

ential operators one can inductively find an asymptotic expansion
∞∑
j=0

rj(x, ξ, λ) for the

symbol of R(λ) such that rj(x, ξ, λ) is a symbol of order −2−j depending on the complex
parameter λ, where j ∈ N ∪ {0}, x ∈ M and ξ ∈ Rn. Then one can see that for t > 0,
the operator e−t4 has a smooth kernel K(t, x, y) and as t −→ 0+ there exist asymptotic
expansion

K(t, x, x) ∼ t−n/2
∞∑
m=0

a2m(x)tm,

where
a2m(x) =

1

2πi

∫∫
C

e−λr2m(x, ξ, λ)dλdξ. (4.1)

It follows that

TrL2e−t4 ∼ t−n/2
∞∑
m=0

a2mt
m

where
a2m =

∫
M

a2m(x) dvol(x).

Moreover a2(x) is a constant multiple of the scalar curvature ofM at the point x, so that
a2 is the total scalar curvature [4.9]. In what follows we will explain how we exploit these
facts to define the scalar curvature of the curved noncommutative 3-torus by analogy.

58



4.3 A Curved Noncommutative 3-Torus
Let θ = (θk`) ∈M3(R) be a skew symmetric matrix. The universal C*-algebra generated
by three unitary elements u1, u2, u3 subject to the relations

uku` = e2πiθk`u`uk, k, ` = 1, 2, 3

is called the noncommutative 3-torus and is denoted by A3
θ. It has a positive faithful

normalized trace denoted by τ . This C*-algebra is indeed a noncommutative deformation
of C(T3), the algebra of continuous functions on the 3-torus.

For r = (r1, r2, r3) ∈ Z3 we set

ur = exp(πi(r1θ12r2 + r1θ13r3 + r2θ23r3))ur11 u
r2
2 u

r3
3 .

There is an action α of the 3-torus T3 on A3
θ which is defined by

αz(u
r) = zrur

where z = (z1, z2, z3) ∈ T3 and zr = zr11 z
r2
2 z

r3
3 . Let T3

θ be the set of all elements a ∈ A3
θ

for which the map
α(a) : T3 −→ A3

θ, z 7→ αz(a),

is a smooth map. This set is a unital dense subalgebra of A3
θ and it is called the algebra

of smooth elements of A3
θ. In fact, it is the analogue of C∞(T3), the algebra of smooth

functions on the 3-torus. It is known that

T3
θ =

{∑
r∈Z3

aru
r : (ar) is a rapidly decreasing sequence indexed by Z3

}
.

By rapidly decreasing we mean for all k ∈ N,

Sup(1 + |r|2)k|ar|2 <∞.

The trace on A3
θ, plays the role of integration in the noncommutative setting and

extracts the constant term of the elements of T3
θ, i.e.

τ(
∑
r∈Z3

aru
r) = a0.

The algebra T3
θ also possesses three derivations, uniquely defined by the relations

δj(
∑
r∈Z3

aru
r) =

∑
r∈Z3

rjaru
r, j = 1, 2, 3.

These derivations are noncommutative counterparts of the partial derivatives on C∞(T3)
and they satisfy the integration by parts relation i.e.

τ(aδj(b)) = −τ(δj(a)b), a, b ∈ T3
θ.

59



More details can be seen in [4.10].
Our next goal is to introduce a spectral triple (A3

θ, H,D) which encodes the geometry
of A3

θ with a flat metric. Then we will define the Laplace operator 4 by 4 = D2, and
perturbing the metric in a conformal class we will define a Laplace type operator 4ϕ

by 4ϕ = k 4 k, where k ∈ A3
θ is a positive element representing the conformal class

of the metric on A3
θ. Finally, we shall use 4ϕ = k 4 k to study the geometry of A3

θ

with a conformally perturbed metric. Then by analogy with (4.1), we define the scalar
curvature of A3

θ with the perturbed metric to be

1

2πi

∫
R3

∫
C

e−λb2(ξ, λ)dλdξ, (4.2)

where C is a contour going counterclockwise around the nonnegative part of the x-
axis and b2(ξ, λ) is the third term in the asymptotic expansion of the symbol of (k 4
k − λ)−1. We will find the first three terms of this asymptotic expansion by Connes’
pseudodifferential calculus [4.2] and finally we will compute (4.2).

Let 〈., .〉τ be the inner product on A3
θ defined by

〈a, b〉τ = τ(b∗a), a, b ∈ A3
θ.

We denote the completion of A3
θ with respect to this inner product by Hτ . It is indeed

the representation space in the GNS construction associated to τ . Let H = Hτ ⊗C2 and
π : A3

θ −→ B(H) be the representation defined by

π(a) =

(
a 0
0 a

)
, a ∈ A3

θ.

We define the Dirac operator D on H by

D := −i
3∑
j=1

σjδj,

where σj for j = 1, 2, 3 are Pauli spin matrices i.e.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

It can be shown that (A3
θ, H,D) is a spectral triple. Moreover, we define the Laplace

operator by 4 = D2. It can be seen that

4 =
3∑
j=1

δ2
j ⊗ I.

Next we define a conformal perturbation of this spectral triple. Let h ∈ T3
θ be a smooth

self adjoint element. We associate to h a positive linear functional ϕ = ϕh on A3
θ. This

positive linear functional is defined by

ϕ(a) = τ(ae−h), a ∈ A3
θ.
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Let ∆ be the modular operator for ϕ, i.e.

∆(a) = e−haeh, a ∈ A3
θ,

and {ηt}, t ∈ R be a 1-parameter group of automorphisms of A3
θ defined by

ηt(a) = ∆−it(a), a ∈ A3
θ.

Unlike τ , ϕ is not a trace. But it satisfies the KMS condition at β = 1 for {ηt}. In other
words,

ϕ(ab) = ϕ(bηi(a)), a, b ∈ A3
θ.

In analogy with the 2-dimensional case we define a Laplace type operator by 4ϕ = k4k,
where k = eh/2 should be thought as the left multiplication operator by k.

4.4 Connes’ Pseudodifferential Calculus
In this section, we will recall Connes’ pseudodifferential calculus that was introduced in
[4.2].

For n ∈ N ∪ {0}, a differential operator on T3
θ of order n is a polynomial in δ1, δ2, δ3

of the form
P (δ1, δ2, δ3) =

∑
|j|6n

ajδ
j1
1 δ

j2
2 δ

j3
3

where j = (j1, j2, j3) ∈ Z3
>0, |j| = j1 + j2 + j3 and aj ∈ T3

θ. Now we extend this definition
to pseudodifferential operators.

Definition 4.4.1. A smooth function ρ : R3 → T3
θ is called a symbol of order n ≥ 0 if

for all nonnegative integers i1, i2, i3, j1, j2, j3 there exists a constant C, such that

‖δi11 δi22 δi33 (∂j11 ∂
j2
2 ∂

j3
3 ρ(ξ))‖ ≤ C(1 + |ξ|)n−|j|,

and if there exists a smooth function k : R3 \ {(0, 0, 0)} → T3
θ such that

lim
λ→∞

λ−nρ(λξ1, λξ2, λξ3) = k(ξ1, ξ2, ξ3).

In the last definition by ∂1, ∂2, ∂3 we mean partial derivatives, i.e.

∂1 = ∂/∂ξ1, ∂2 = ∂/∂ξ2, ∂3 = ∂/∂ξ3.

The space of symbols of order n is denoted by Sn. To any symbol ρ ∈ Sn, an operator
Pρ on T3

θ is associated which is given by

Pρ(a) = (2π)−3

∫∫
e−iz.ξρ(ξ)αz(a)dzdξ, a ∈ T3

θ,

and is called a pseudodifferential operator.

Definition 4.4.2. Let ρ and ρ′ be symbols of order k. They are called equivalent if and
only if ρ− ρ′ ∈ Sn for all n ∈ Z. This equivalence relation is denoted by ρ ∼ ρ′.
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The next proposition which plays a key role in our computations in this paper, shows
that the space of pseudodifferential operators is an algebra. Given the differential opera-
tors P and Q, by the next proposition we can find the symbols of PQ and P ∗ up to the
equivalence relation ∼, where P ∗ is the adjoint of P with respect to the inner product
〈·, ·〉τ on Hτ (See [4.5]).

Proposition 4.4.1. Let ρ and ρ′ be the symbols of the pseudodifferential operators
P and Q. Then PQ and P ∗ are pseudodifferential operators, and σ(PQ) and σ(P ∗),
symbols of PQ and P ∗ respectively, can be obtained by the following formulas

σ(PQ) ∼
∑

(`1,`2,`3)∈(Z>0)3

1

`1!`2!`3!
∂`11 ∂

`2
2 ∂

`3
3 (ρ(ξ))δ`11 δ

`2
2 δ

`3
3 (ρ′(ξ)),

σ(P ∗) ∼
∑

(`1,`2,`3)∈(Z>0)3

1

`1!`2!`3!
∂`11 ∂

`2
2 ∂

`3
3 δ

`1
1 δ

`2
2 δ

`3
3 (ρ(ξ))∗.

4.5 The Main Result
In this section, using Connes’ pseudodifferential calculus, we will define the scalar curva-
ture of the curved noncommutative 3-torus and we will compute it.

To define the scalar curvature of the noncommutative 3-torus we analyze 4ϕ = k4k
on Hτ . Exploiting the formula in Proposition 4.4.1 and considering k as a pseudodiffer-
ential operator of order 0 with the symbol σ(k) = k, plus the fact that the symbol of 4
is

σ(4) =
3∑
i=1

ξ2
i ,

we can find the symbol of k4 k. Indeed, we can show that

σ(k4 k) = a0(ξ) + a1(ξ) + a2(ξ),

where ξ = (ξ1, ξ2, ξ3) and

a0(ξ) =
3∑
i=1

kδiδi(k),

a1(ξ) = 2
3∑
i=1

ξikδi(k),

a2(ξ) =
3∑
i=1

k2ξ2
i .

Let λ ∈ C. We need to find an asymptotic expansion of the symbol of (k4 k− λ)−1.
Indeed, we have to find an operator Rλ such that

σ(Rλ · (k4 k − λ)) ∼ σ(I)
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where I is the identity operator. Using the formula in Proposition 4.4.1 and following the
steps in page 52 of [4.9], we can find a recursive formula for the terms of an asymptotic
expansion of (k4 k − λ)−1. In fact, one can show that

σ(k4 k − λ)−1 ∼
∞∑
n=0

bn(ξ, λ),

where bn(ξ, λ) is a symbol of order −2− n given by the following recursive formula:

b0(ξ, λ) = (k2

3∑
i=1

ξ2
i − λ)−1,

bn(ξ, λ) = −
∑

2+j+`1+`2+`3−m=n
0≤j<n, 0≤m≤2

1

`1!`2!`3!
∂`11 ∂

`2
2 ∂

`3
3 (bj)δ

`1
1 δ

`2
2 δ

`3
3 (am)b0, (4.3)

for n > 1.
Now we are able to define the scalar curvature of A3

θ with the perturbed metric.
Indeed, (4.1) motivates us to define the scalar curvature of A3

θ with the perturbed metric
as follows:

Definition 4.5.1. Let C be a contour going counterclockwise around the nonnegative
part of the x-axis and b2(ξ, λ) for λ ∈ C be the third term in the asymptotic expansion of
the symbol of (k4 k− λ)−1. Then the scalar curvature of A3

θ with the perturbed metric
is defined to be the element S ∈ A3

θ given by

S =
1

2πi

∫
R3

∫
C

e−λb2(ξ, λ)dλdξ.

Let
α(λ) =

∫
R3

b2(ξ, λ)dξ.

The function α is homogeneous of degree −1/2 with respect to λ. We also define

β(λ) = λ−1/2α(λ).

The function β is homogeneous of degree −1 with respect to λ. For the square root
function we consider the nonnegative part of the real axis as the branch cut. Then we
have

S =
1

2πi
β(−1)

∫
C

e−λ

−λ1/2
dλ.

To compute the latter, we consider the contour C = C1 +C2 +C3, where C1 = reiπ/4 for
r ∈ (∞, 1), C2 = eiθ for θ ∈ (π/4, 7π/4) and C3 = re7iπ/4 for r ∈ (1,∞). One can see
that ∫

C1

e−λ

−λ1/2
dλ = (−1)7/8e

iπ
8
√
πErfc

[
(−1)1/8

]
,
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∫
C2

e−λ

−λ1/2
dλ =

√
π
(
−Erf

[
(−1)1/8

]
+ Erf

[
(−1)7/8

])
,

and ∫
C3

e−λ

−λ1/2
dλ = (−1)1/8e

7iπ
8
√
π
(
1 + Erf

[
(−1)7/8

])
.

Therefore, ∫
C

e−λ

−λ1/2
dλ = −2

√
π

and this implies that

S =
1

2πi

∫
R3

∫
C

e−λb2(ξ, λ)dξdλ =
−1√
π
α(−1).

By this argument, to find S, it suffices to work with λ = −1 and compute

α(−1) =

∫
R3

b2(ξ,−1)dξ.

We devote the rest of the paper to the calculation of α(−1).

4.6 The Computation of b2(ξ,−1)
In this section we will use the recursive formula (4.3) to find b2(ξ,−1). In what follows,
we set bn = bn(ξ,−1) for n ∈ N.

We know that

b0 = (k2

3∑
i=1

ξ2
i + 1)−1.

Now using (4.3), we have

b1 = −b0a1b0 − (
3∑
i=1

∂i(b0)δi(a2))b0.

Simplifying the above formula we obtain

b1 = 2ξ3
1b

2
0k

3δ1(k)b0 + 2ξ2ξ
2
1b

2
0k

3δ2(k)b0 + 2ξ3ξ
2
1b

2
0k

3δ3(k)b0 + 2ξ2
2ξ1b

2
0k

3δ1(k)b0

+2ξ2
3ξ1b

2
0k

3δ1(k)b0 + 2ξ3
2b

2
0k

3δ2(k)b0 + 2ξ3
3b

2
0k

3δ3(k)b0 + 2ξ2ξ
2
3b

2
0k

3δ2(k)b0

+2ξ2
2ξ3b

2
0k

3δ3(k)b0 + 2ξ3
1b

2
0k

2δ1(k)b0k + 2ξ2ξ
2
1b

2
0k

2δ2(k)b0k

+2ξ3ξ
2
1b

2
0k

2δ3(k)b0k + 2ξ2
2ξ1b

2
0k

2δ1(k)b0k + 2ξ2
3ξ1b

2
0k

2δ1(k)b0k

+2ξ3
2b

2
0k

2δ2(k)b0k + 2ξ3
3b

2
0k

2δ3(k)b0k + 2ξ2ξ
2
3b

2
0k

2δ2(k)b0k

+2ξ2
2ξ3b

2
0k

2δ3(k)b0k − 2ξ1b0kδ1(k)b0 − 2ξ2b0kδ2(k)b0 − 2ξ3b0kδ3(k)b0.
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Now we use b1 in (4.3) to obtain b2. We have

b2 = −b0a0 − b1a1

−∂1(b0)δ1(a1)− ∂2(b0)δ2(a1)− ∂3(b0)δ3(a1)

−∂1(b1)δ1(a2)− ∂2(b1)δ2(a2)− ∂3(b1)δ3(a2)

−∂12(b0)δ1(δ2(a2))− ∂13(b0)δ1(δ3(a2))− ∂23(b0)δ2(δ3(a2))

−(1/2)∂11(b0)δ2
1(a2)− (1/2)∂22(b0)δ2

2(a2)− (1/2)∂33(b0)δ2
3(a2).

After doing computations we get a simplified formula for b2. Here we exhibit the first 10
terms of b2. The entire formula can be seen in Appendix A.

b2 = −b0kδ1 (δ1(k)) b0−b0kδ2 (δ2(k)) b0−b0kδ3 (δ3(k)) b0+6ξ2
1b

2
0k

2δ1(k)2b0+2ξ2
2b

2
0k

2δ1(k)2b0

+2ξ2
3b

2
0k

2δ1(k)2b0+2ξ2
1b

2
0k

2δ2(k)2b0+6ξ2
2b

2
0k

2δ2(k)2b0+2ξ2
3b

2
0k

2δ2(k)2b0+2ξ2
1b

2
0k

2δ3(k)2b0+· · ·

4.7 Integrating b2(ξ,−1) over R3

In this section, first we will change the variables and then we will use a rearrangement
lemma to integrate b2(ξ,−1) over R3.

To integrate b2(ξ,−1) with respect to ξ = (ξ1, ξ2, ξ3), we apply the spherical change
of coordinates

ξ1 = r sin Φ cos θ, ξ2 = r sin Φ sin θ, ξ3 = r cos Φ,

where 0 ≤ θ ≤ 2π, 0 ≤ Φ ≤ π and 0 ≤ r ≤ ∞. Considering this change of coordinates
and integrating the formula for b2(ξ,−1) in Appendix A, with respect to θ and Φ, one
finds that ∫

R3

b2(ξ,−1)dξ,

up to an overall factor of 4π/3, is ∫ ∞
0

B(r)dr,

where
B(r) = 4r8b2

0k
2δi(k)b2

0k
4δi(k)b0 + 4r8b2

0k
3δi(k)b2

0k
3δi(k)b0

+8r8b3
0k

4δi(k)b0k
2δi(k)b0 + 8r8b3

0k
5δi(k)b0kδi(k)b0

+8r8b3
0k

5δi(k)b0δi(k)b0k + 4r8b2
0k

2δi(k)b2
0k

3δi(k)b0k

+4r8b2
0k

3δi(k)b2
0k

2δi(k)b0k + 8r8b3
0k

4δi(k)b0kδi(k)b0k − 8r6b3
0k

4δi(k)2b0

−4r6b3
0k

5δi (δi(k)) b0 − 4r6b3
0k

4δi (δi(k)) b0k − r6b0kδi(k)b2
0k

3δi(k)b0

−14r6b2
0k

2δi(k)b0k
2δi(k)b0 − 18r6b2

0k
3δi(k)b0kδi(k)b0

−14r6b2
0k

3δi(k)b0δi(k)b0k − 4r6b0kδi(k)b2
0k

2δi(k)b0k
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−10r6b2
0k

2δi(k)b0kδi(k)b0k + 10r4b2
0k

2δi(k)2b0

+7r4b2
0k

3δi (δi(k)) b0 + r4b2
0k

2δi (δi(k)) b0k + 10r4b0kδi(k)b0kδi(k)b0

+6r4b0kδi(k)b0δi(k)b0k − 3r2b0kδi (δi(k)) b0.

In the above sum b0 = (r2k2 + 1)−1 and summation over i is understood.
Moreover, one can see that for x ∈ T3

θ, xkn = kn∆n/2(x). Using this relation plus the
fact that b0k = kb0, we can see that

B(r) = 4r8k6b2
0∆2(δi(k))b2

0δi(k)b0 + 4r8k6b2
0∆3/2(δi(k))b2

0δi(k)b0

+8r8k6b3
0∆(δi(k))b0δi(k)b0 + 8r8k6b3

0∆1/2(δi(k))b0δi(k)b0

+8r8k6b3
0∆1/2(δi(k))b0∆1/2(δi(k))b0 + 4r8k6b2

0∆2(δi(k))b2
0∆1/2(δi(k))b0

+4r8k6b2
0∆3/2(δi(k))b2

0∆1/2(δi(k))b0 + 8r8k6b3
0∆(δi(k))b0∆1/2(δi(k))b0

−8r6k4b3
0δi(k)2b0 − 4r6k5b3

0δi (δi(k)) b0 − 4r6k5b3
0∆1/2(δi (δi(k)))b0

−4r6k4b0∆3/2(δi(k))b2
0δi(k)b0 − 14r6k4b2

0∆(δi(k))b0δi(k)b0

−18r6k4b2
0∆1/2(δi(k))b0δi(k)b0 − 14r6k4b2

0∆1/2(δi(k))b0∆1/2(δi(k))b0

−4r6k4b0∆3/2(δi(k))b2
0∆1/2(δi(k))b0 − 10r6k4b2

0∆(δi(k))b0∆1/2(δi(k))b0

+10r4k2b2
0δi(k)2b0 + 7r4k3b2

0δi (δi(k)) b0 + 3r4k3b2
0∆1/2(δi (δi(k)))b0

+10r4k2b0∆1/2(δi(k))b0δi(k)b0 + 6r4k2b0∆1/2(δi(k))b0∆1/2(δi(k))b0

−3r2kb0δi (δi(k)) b0.

To integrate the terms of B(r), we need a lemma similar to the rearrangement lemma
in [4.4]. In the following lemma we will use exactly the same method as in the proof of
the rearrangement lemma in [4.4], to prove a slightly different statement.

Lemma 4.7.1. Let ρj ∈ T3
θ and mj ∈ Z, for j = 0, 1, 2, . . . , l. Then

∫ ∞
0

(k2u+ 1)−m0ρ1(k2u+ 1)−m1 · · · ρl(k2u+ 1)−mlu
(
j=l∑
j=0

mj−3/2)

du

= k
(−2

j=l∑
j=0

mj+1)

Fm0,m1,m1,...,ml(∆(1),∆(2), . . . ,∆(l))(ρ1ρ2 · · · ρl),

where

Fm0,m1,m1,...,ml(u1, u2, . . . , ul) =

∫ ∞
0

(u+ 1)−m0

j=l∏
j=1

(
u

h=j∏
h=1

uh + 1

)−mj
u

(
j=l∑
j=0

mj−3/2)

du,

and ∆(j) means that ∆ acts on the jth factor, for j = 0, 1, 2, . . . , l.
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Proof. Let Gn and Gn,α be the inverse Fourier transforms of the functions defined re-
spectively by

gn(t) = (et/2 + e−t/2)−n

and
Hn,α(t) = e(n−α)t(et + 1)−n,

where n ∈ N and α ∈ (0, n). Then Gn,α(s) = Gn(s− i(n/2− α)). So we have

Hn,α(t) =

∫ ∞
−∞

Gn(s− i(n/2− α))e−istds. (4.4)

Let J be the integral in the left hand side of the equation in the lemma. Now we use
the substitutions u = es and k = ef/2 to compute J . Therefore, we have

J =

∫ ∞
−∞

(e(s+f) + 1)−m0ρ1(e(s+f) + 1)−m1 · · · ρl(e(s+f) + 1)−mle
(
j=l∑
j=0

mj−1)s

es/2ds.

Then for j = 0, 1, 2, . . . , l, we pick a positive real number αj such that
j=l∑
j=0

αj = 1. We

also set βj = −
i=l∑
i=j

(mi − αi). Replacing (e(s+f) + 1)−mj by e(mj−αj)(f+s)(e(s+f) + 1)−mj in

J , we get

J = e
−(

j=l∑
j=0

mj−1)f
∫ ∞
−∞

Hm0,α0(s+ f)∆β1(ρ1)Hm1,α1(s+ f) · · ·∆βl(ρl)Hml,αl(s+ f)es/2ds.

Let ρ′j = ∆βj(ρj). Using (4.4), J can be written as an integral of the form

e
−(

j=l∑
j=0

mj−1)f

Hm0,α0(s+ f)ρ′1e
−i(s+f)t1ρ′2 · · · e−i(s+f)tl−1ρ′le

−i(s+f)tles/2 (4.5)

with respect to the measure

j=l∏
j=1

Gmj ,αj(tj)dtjds.

Now we can write the term (4.5) as

e
−(

j=l∑
j=0

mj−1)f

Hm0,α0(s+ f)e
−i(

j=l∑
j=1

tj)(s+f)
h=l∏
h=1

∆
−i

j=l∑
j=h

tj
(ρ′h)e

s/2.

We also have ∫ ∞
−∞

Hm0,α0(s+ f)e
−i(

j=l∑
j=1

tj)(s+f)

es/2ds =
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e−f/2
∫ ∞
−∞

e(s+f)/2Hm0,α0(s+ f)e
−i(

j=l∑
j=1

tj)(s+f)

ds = 2πe−f/2Pm0,α0(−
j=l∑
j=1

tj),

where Pm0,α0 is the inverse Fourier transform of the function es/2Hm0,α0(s).
So we have

J = 2πe−f/2e
−(

j=l∑
j=0

mj−1)f
∫ h=l∏

h=1

∆
−i

j=l∑
j=h

tj
(ρ′h)Pm0,α0(−

j=l∑
j=1

tj)

j=l∏
j=1

Gmj ,αj(tj)dtj.

Replacing ρ′j by ∆βj(ρj) we have

∆
−i

j=l∑
j=h

tj
(ρ′h) = ∆

−i
j=l∑
j=h

tj+βh
(ρh).

Now we replace the last term by

u
−i

j=l∑
j=h

tj+βh

h .

We define

Fm0,m1,m1,...,ml(u1, u2, . . . , ul) = 2πe−f/2
∫ h=l∏

h=1

u
−i

j=l∑
j=h

tj+βh

h Pm0,α0(−
j=l∑
j=1

tj)

j=l∏
j=1

Gmj ,αj(tj)dtj.

Moreover, we can write

2πPm0,α0(−
j=l∑
j=1

tj) =

∫ ∞
−∞

es/2Hm0,α0(s)e
−i(

j=l∑
j=1

tj)(s)

ds.

Using this and assuming that uh = esh , we can do the integration. Then, the coefficient
of tj in the exponent is

−is− i
h=j∑
h=1

sh.

So integrating in tj gives the Fourier transform of Gmj ,αj at s+
h=j∑
h=1

sh. On the other hand

we have

e
(mj−αj)(s+

h=j∑
h=1

sh)
(e

(s+
h=j∑
h=1

sh)
+ 1)−mj = e(mj−αj)s

(
h=j∏
h=1

uh

)(mj−αj)(
es
h=j∏
h=1

uh + 1

)−mj
.

When we multiply these terms from j = 1 to j = l, the exponent of uh is
j=l∑
j=h

(mj − αj).

So uβhh disappears and we get

Fm0,m1,m2,...,ml(u1, u2, . . . , ul) =
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e−f/2
∫ ∞
−∞

(es + 1)−m0

h=l∏
h=1

(
es
h=j∏
h=1

uh + 1

)−mj
e

(
j=l∑
j=0

mj−1)s

es/2ds.

In Lemma 4.7.1, it is clear that

Fm0,m1,m1,...,ml(u1, u2, . . . , ul) = Hm0,m1,m1,...,ml(u1, u1u2, . . . , u1 · · ·ul),

where

Hm0,m1,m1,...,ml(u1, u2, . . . , ul) =

∫ ∞
0

(u+ 1)−m0

j=l∏
j=1

(uuh + 1)−mj u
(
j=l∑
j=0

mj−3/2)

du.

We only need some of these functions:

H1,1(x) =

∫ ∞
0

(u+ 1)−1(ux+ 1)−1u1/2du =
π

x+
√
x
,

H1,1,1(x, y) =

∫ ∞
0

(u+ 1)−1(ux+ 1)−1(uy + 1)−1u3/2du =

π
(√

x+
√
y + 1

)
(
√
x+ 1)

√
x
(
y +
√
y
) (√

x+
√
y
) ,

H2,1(x) =

∫ ∞
0

(u+ 1)−2(ux+ 1)−1u3/2du =

2π√
x

+ π

2 (
√
x+ 1)

2 ,

H2,1,1(x, y) =

∫ ∞
0

(u+ 1)−2(ux+ 1)−1(uy + 1)−1u5/2du =

π
(√

x
(√

y + 2
)2

+ x
(√

y + 2
)

+ 2
(√

y + 1
)2
)

2 (
√
x+ 1)

2√
x
(√

y + 1
)2√

y
(√

x+
√
y
) ,

H1,2,1(x, y) =

∫ ∞
0

(u+ 1)−1(ux+ 1)−2(uy + 1)−1u5/2du =

π
(

2x3/2 + 4x
(√

y + 1
)

+ 2
√
x
(√

y + 1
)2

+ y +
√
y
)

2 (
√
x+ 1)

2
x3/2

(√
y + 1

)√
y
(√

x+
√
y
)2 ,

H2,2,1(x, y) =

∫ ∞
0

(u+ 1)−2(ux+ 1)−2(uy + 1)−1u7/2du =

π
(
2
(
x3/2 + 4x+ 4

√
x+ 1

)
y +

(
7x3/2 + x2 + 13x+ 7

√
x+ 1

)√
y
)

2 (
√
x+ 1)

3
x3/2

(√
y + 1

)2√
y
(√

x+
√
y
)2 +

π
(

(x+ 3
√
x+ 1) y3/2 + 2 (

√
x+ 1)

3√
x
)

2 (
√
x+ 1)

3
x3/2

(√
y + 1

)2√
y
(√

x+
√
y
)2 ,
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H3,1(x) =

∫ ∞
0

(u+ 1)−3(ux+ 1)−1u5/2du =
π (3x+ 9

√
x+ 8)

8 (
√
x+ 1)

3√
x
,

and
H3,1,1(x, y) =

∫ ∞
0

(u+ 1)−3(ux+ 1)−1(uy + 1)−1u7/2du =

π

(
− 3x+9

√
x+8

(
√
x+1)

3√
x
− 8√

y+1
− 5

(√y+1)
2 − 2

(√y+1)
3 + 8√

y

)
8(x− y)

.

Now with the notations that we have set up, we can state and prove the main result
of this paper:

Theorem 4.7.2. The scalar curvature of A3
θ with the perturbed metric, is the element

S ∈ A3
θ given by the following formula multiplied by −4

√
π/3.

S = k−2(−3

2
H1,1 +

7

2
H2,1 − 2H3,1)(∆(1))(δi (δi(k)))

+k−3(3H1,1,1 − 7H2,1,1 + 4H3,1,1)(∆(1),∆(1)∆(2))(∆
1/2(δi(k))∆1/2(δi(k))))

+k−3(5H1,1,1 − 9H2,1,1 + 4H3,1,1)(∆(1),∆(1)∆(2))(∆
1/2(δi(k))δi(k))

+k−2(
3

2
H2,1 − 2H3,1)(∆(1))(∆

1/2(δi (δi(k)))) + k−3(5H2,1 − 4H3,1)(∆(1))(δi(k)2)

+k−3(−5H2,1,1 + 2H3,1,1)(∆(1),∆(1)∆(2))(∆(δi(k))∆1/2(δi(k)))

k−3(−2H1,2,1 + 2H2,2,1)(∆(1),∆(1)∆(2))(∆
3/2(δi(k))∆1/2(δi(k)))

k−3(−7H2,1,1 + 4H3,1,1)(∆(1),∆(1)∆(2))(∆(δi(k))δi(k))

k−3(−2H1,2,1 + 2H2,2,1)(∆(1),∆(1)∆(2))(∆
3/2(δi(k))δi(k))

+2k−3H2,2,1(∆(1),∆(1)∆(2))(∆
2(δi(k))∆1/2(δi(k)))

+2k−3H2,2,1(∆(1),∆(1)∆(2))(∆
2(δi(k))δi(k)).

Proof. It suffices to find ∫ ∞
0

B(r)dr.

For that we only need to use the substitution r2 = u, and then apply Lemma 4.7.1.
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Appendix A

The Formula for b2(ξ,−1)

In Section 4.5 we gave the first 10 terms of b2(ξ,−1). Here we have the entire formula:

b2 = −b0kδ1 (δ1(k)) b0 − b0kδ2 (δ2(k)) b0 − b0kδ3 (δ3(k)) b0

+6ξ2
1b

2
0k

2δ1(k)2b0 + 2ξ2
2b

2
0k

2δ1(k)2b0 + 2ξ2
3b

2
0k

2δ1(k)2b0 + 2ξ2
1b

2
0k

2δ2(k)2b0

+6ξ2
2b

2
0k

2δ2(k)2b0 + 2ξ2
3b

2
0k

2δ2(k)2b0 + 2ξ2
1b

2
0k

2δ3(k)2b0 + 2ξ2
2b

2
0k

2δ3(k)2b0

+6ξ2
3b

2
0k

2δ3(k)2b0 + 5ξ2
1b

2
0k

3δ1 (δ1(k)) b0 + ξ2
2b

2
0k

3δ1 (δ1(k)) b0

+ξ2
3b

2
0k

3δ1 (δ1(k)) b0 + 4ξ1ξ2b
2
0k

3δ1 (δ2(k)) b0 + 4ξ1ξ3b
2
0k

3δ1 (δ3(k)) b0

+4ξ1ξ2b
2
0k

3δ2 (δ1(k)) b0 + ξ2
1b

2
0k

3δ2 (δ2(k)) b0 + 5ξ2
2b

2
0k

3δ2 (δ2(k)) b0

+ξ2
3b

2
0k

3δ2 (δ2(k)) b0 + 4ξ2ξ3b
2
0k

3δ2 (δ3(k)) b0 + 4ξ1ξ3b
2
0k

3δ3 (δ1(k)) b0

+4ξ2ξ3b
2
0k

3δ3 (δ2(k)) b0 + ξ2
1b

2
0k

3δ3 (δ3(k)) b0 + ξ2
2b

2
0k

3δ3 (δ3(k)) b0

+5ξ2
3b

2
0k

3δ3 (δ3(k)) b0 − 8ξ4
1b

3
0k

4δ1(k)2b0 − 8ξ2
1ξ

2
2b

3
0k

4δ1(k)2b0

−8ξ2
1ξ

2
3b

3
0k

4δ1(k)2b0 − 8ξ2
1ξ

2
2b

3
0k

4δ2(k)2b0 − 8ξ4
2b

3
0k

4δ2(k)2b0

−8ξ2
2ξ

2
3b

3
0k

4δ2(k)2b0 − 8ξ2
1ξ

2
3b

3
0k

4δ3(k)2b0 − 8ξ2
2ξ

2
3b

3
0k

4δ3(k)2b0

−8ξ4
3b

3
0k

4δ3(k)2b0 − 4ξ4
1b

3
0k

5δ1 (δ1(k)) b0 − 4ξ2
1ξ

2
2b

3
0k

5δ1 (δ1(k)) b0

−4ξ2
1ξ

2
3b

3
0k

5δ1 (δ1(k)) b0 − 8ξ3
1ξ2b

3
0k

5δ1 (δ2(k)) b0 − 8ξ1ξ
3
2b

3
0k

5δ1 (δ2(k)) b0

−8ξ1ξ2ξ
2
3b

3
0k

5δ1 (δ2(k)) b0 − 8ξ3
1ξ3b

3
0k

5δ1 (δ3(k)) b0

−8ξ1ξ
2
2ξ3b

3
0k

5δ1 (δ3(k)) b0 − 8ξ1ξ
3
3b

3
0k

5δ1 (δ3(k)) b0 − 4ξ2
1ξ

2
2b

3
0k

5δ2 (δ2(k)) b0

−4ξ4
2b

3
0k

5δ2 (δ2(k)) b0 − 4ξ2
2ξ

2
3b

3
0k

5δ2 (δ2(k)) b0 − 8ξ2
1ξ2ξ3b

3
0k

5δ2 (δ3(k)) b0

−8ξ3
2ξ3b

3
0k

5δ2 (δ3(k)) b0 − 8ξ2ξ
3
3b

3
0k

5δ2 (δ3(k)) b0 − 4ξ2
1ξ

2
3b

3
0k

5δ3 (δ3(k)) b0
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