
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

7-22-2016 12:00 AM 

Uniform Approximation on Riemann Surfaces Uniform Approximation on Riemann Surfaces 

Fatemeh Sharifi, The University of Western Ontario 

Supervisor: Paul. M. Gauthier, The University of Western Ontario 

Joint Supervisor: Gordon J Sinnamon, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Mathematics 

© Fatemeh Sharifi 2016 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Analysis Commons 

Recommended Citation Recommended Citation 
Sharifi, Fatemeh, "Uniform Approximation on Riemann Surfaces" (2016). Electronic Thesis and 
Dissertation Repository. 3954. 
https://ir.lib.uwo.ca/etd/3954 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F3954&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=ir.lib.uwo.ca%2Fetd%2F3954&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/3954?utm_source=ir.lib.uwo.ca%2Fetd%2F3954&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

This thesis consists of three contributions to the theory of complex approximation on
Riemann surfaces.

It is known that if E is a closed subset of an open Riemann surface R and f is
a holomorphic function on a neighbourhood of E, then it is “usually” not possible to
approximate f uniformly by functions holomorphic on all of R. In Chapter 2, we show,
however, that for every open Riemann surface R and every closed subset E ⊂ R, there
is a closed subset F ⊂ E, which approximates E extremely well, and has the following
property. Every function holomorphic on F can be approximated tangentially (much
better than uniformly) by functions holomorphic on R.

In Chapter 3, given a function f : E → C from a closed subset of a Riemann
surface R to the Riemann sphere C, we seek to approximate f in the spherical distance
by functions meromorphic on R. As a consequence we generalize a recent extension of
Mergelyan’s theorem, due to Fragoulopoulou, Nestoridis and Papadoperakis [3.13]. The
problem of approximating by meromorphic functions pole-free on E is equivalent to that
of approximating by meromorphic functions zero-free on E, which in turn is related to
Voronin’s spectacular universality theorem for the Riemann zeta-function.

The reflection principles of Schwarz and Carathéodory give conditions under which
holomorphic functions extend holomorphically to the boundary and the theorem of
Osgood-Carathéodory states that a one-to-one conformal mapping from the unit disc to
a Jordan domain extends to a homeomorphism of the closed disc onto the closed Jordan
domain. In Chapter 4, we study similar questions on Riemann surfaces for holomorphic
mappings.

Keywords: Riemann Surfaces, Holomorphic approximation, Meromorphic approx-
imation, Zero-free approximation, Pole-free approximation, Chordal metric, Jordan re-
gion, Tangential approximation.
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Glossary of notation

R The real line.
C The complex plane.

C and C∗ The Riemann sphere.
Note: “bar” and “star” may have other meanings, defined by chapter.

D Unit disc.
R An open Riemann surface.
Hol(R) Holomorphic functions on R.
E A closed set.
K A compact set.
C(X) A class of complex-valued continuous functions on X.
A(E) The space of functions in C(E) ∩ Hol(E).
H(K) Uniform Euclidean limits on K of holomorphic functions.
R(K) Uniform Euclidean limits on K of rational functions, pole-free on K.
M(K) Uniform Euclidean limits on K of meromorphic functions, pole-free on K.
R∗ One point compactification of R.
µ A regular Borel measure.
X A compact Hausdorff space.
∂E The boundary of the set E.
|., .| Euclidean distance.
χ(., .) Chordal distance.
C(p, q) A Cauchy kernel.
Ω A region in a Riemann surface R.
Ω A compact Jordan region.
D A closed parametric disc.
α Continuous analytic capacity.
Aχ(E) χ-continuous mapping on E, holomorphic on the interior E0 of E.
Mχ(E) Spherical limits of meromorphic functions on E.

Ã {f ∈ Aχ(E); f has no poles on E0}.
M̃ Spherical uniform limits of meromorphic functions pole-free on E.
A0(K) Restrictions of function in A(K) that are zero-free on K0.
d(A) Lower density.
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Chapter 1

Introduction and literature review

Complex Analysis is a rich and deep subject with a history going back to Cauchy in the
1820s. There are numerous interesting topics in complex analysis such as analytic number
theory but we are interested in the very important subject “approximation theory”.
Surprisingly, some mathematicians get the impression that complex analysis, specifically
approximation theory, is a dead subject!

In this introduction, we give a brief history of well-known results of approximation
on the complex plane and Riemann surfaces. For that, firstly we study compact and
closed subsets of the complex plane. The story begins with Runge’s theorems, consid-
ering approximation by rational and polynomial functions. But it is quite interesting to
mention that in the same year, 1885, Weierstrass also published his famous approxima-
tion theorem. Much of the work on compact sets has been extended to closed subsets of
the complex plane. For example, in 1927, Carleman extended the result of Weierstrass.

Since the only holomorphic functions on compact Riemann surfaces are constant
functions, we study non-compact Riemann surfaces, which are also called open Riemann
surfaces. Many results on compact subsets of the complex plane have been extended to
compact subsets of open Riemann surfaces. For instance, Behnke and Stein generalized
Runge’s theorem. But on closed sets, the situation is more complicated. Whether or not
the genus of a Riemann surface is finite is an important factor. Paul M. Gauthier and
Walter Hengartner in 1975, [1.16], gave a necessary condition for holomorphic approxi-
mation on closed subsets of an open Riemann surface which, surprisingly, was shown to
be not sufficient in general.

It is known that if E is a closed subset of an open Riemann surface R and f is
a holomorphic function on a neighbourhood of E, then it is “usually” not possible to
approximate f uniformly by functions holomorphic on all of R. We show, however, that
for every open Riemann surface R and every closed subset E ⊂ R, there is a closed subset
F ⊂ E, which approximates E extremely well, such that every function holomorphic on
F can be approximated much better than uniformly by functions holomorphic on R.

We study the approximation of a given function f , from a closed subset of a Riemann
surface into the Riemann sphere. Consequently, we generalize a recent extension of
Mergelyan’s theorem, due to Fragoulopoulou, Nestoridis and Papadoperakis, [1.13]. We
consider eight types of meromorphic approximation.

To this end, we study the extension to the boundary defined on subsets of Riemann
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surfaces of holomorphic function. We give a Carathéodory type reflection principle for
bordered Riemann surfaces which are arbitrary. That is, we do not assume that they are
compact, nor do we assume that they are of finite genus. From our Carathéodory type
reflection principle we deduce a Schwarz type reflection principle as well as an Osgood-
Carathéodory type theorem.

To simplify the notation for K an arbitrary compact subset of C, we introduce the fol-
lowing function spaces: C(K) denotes the space of complex-valued continuous functions
on K with norm ||f || = max{|f(z)| : z ∈ K}. By Hol(K) we mean the set of functions
f holomorphic on a neighbourhood Nf of K and H(K) denotes the set of uniform limits
on K of functions in Hol(K).

Let A(K) = C(K) ∩ Hol(K0) (K0 is the interior of K) denotes the set of functions
continuous on K, which are holomorphic on K0. Let P (K) be functions f on K such
that for each ε > 0 there exists a polynomial p such that

|f(z)− p(z)| < ε, z ∈ K.

Let R(K) be the closure in C(K) of the rational functions which are holomorphic on
K (without poles on K). Similarly, let M(K) be the closure in C(K) of all meromorphic
functions on C, which are holomorphic on K (without poles on K).

We naturally have the following inclusions:

P (K) ⊆ R(K) ⊆M(K) ⊆ H(K) ⊆ A(K) ⊆ C(K). (1.1)

Later, we will introduce corresponding spaces of functions for Riemann surfaces.

1.1 Approximation on compact subsets of the com-

plex plane

Holomorphic approximation on compact sets K has been studied for polynomials and
more generally, for rational functions. The story started with Runge’s approximation
theorems. Before stating Runge’s theorems, we would like to recall some basic definitions.
See [1.20].

Definition 1.1.1. A topology on set X is a collection τ of subsets of X having the following
properties:

1) X and ∅ are in τ ,

2) The union of the elements of any sub-collection of τ is in τ ,

3) The intersection of the elements of any finite sub-collection of τ is in τ .
A set X for which a topology τ has been specified is called a topological space.

If X is a topological space with topology τ , we say that a subset U of X is an open
set of X if U belongs to the collection τ .

It is routine to verify that for any subset Y of a topological space X with topology
τ , the set {Y ∩U : U ∈ τ} is also a topology. It is called the subspace topology on Y and
Y is called a subspace of X.

2



A subset E of a topological space X is said to be closed if the set X \ E is open.
A space X is connected if and only if the only sets in X that are both open and

closed are X and the empty set. A subset Y of a space X is a connected subset if Y is
a connected subspace. Every topological space can be expressed as a disjoint union of
connected subsets, called components.

Definition 1.1.2. LetG ⊂ C be open and connected. A function f : G→ C is holomorphic
if it is continuously differentiable.

A collection A of subsets of a space X is said to cover X, or to be a covering of X,
if the union of the elements of A is equal to X. It is called an open covering of X if its
elements are open subsets of X.

Definition 1.1.3. A space X is said to be compact if every open covering A of X contains
a finite sub-collection that also covers X.

A metric space is a pair (X, d) where X is a set and d is a function from X ×X into
R, called a distance function or metric, that satisfies the following conditions for x, y and
z in X:

1) d(x, y) ≥ 0,

2) d(x, y) = 0 if and only if x = y,

3) d(x, y) = d(y, x),

4) d(x, z) ≤ d(x, y) + d(y, z).
Let a ∈ X and r > 0 be fixed. Then we denote B(a; r) = {y ∈ X : d(a, y) < r}.

Definition 1.1.4. A function f has an isolated singularity at z = a if there is an r > 0
such that f is defined and holomorphic in B(a; r) \ {a} but not in B(a, r).

Definition 1.1.5. If z = a is an isolated singularity of a function f then a is a pole of f if
limz→a |f(z)| =∞. That is, for any M > 0 there is a number ε > 0 such that |f(z)| ≥M
whenever 0 < |z − a| < ε.

The components of the complement of K are called its complementary components.
The following theorems may be found in [1.14] unless otherwise indicated.

Theorem 1.1.6 (Rational Runge Theorem). Let K be an arbitrary compact subset of
C. Let f be holomorphic on K and let ε > 0. Then there exists a rational function r
with poles only in C \K such that

|f(z)− r(z)| < ε, z ∈ K.

Theorem 1.1.7 (Polynomial Runge Theorem). Suppose K is compact in C, C \ K is
connected and f is holomorphic on K. Then, for each ε > 0, there exists a polynomial p
such that

|f(z)− p(z)| < ε, z ∈ K.

Definition 1.1.8. The hull of K (denoted by K̂) is defined as the union of K with the
bounded complementary components of K, that is, K̂ = K∪ (the bounded components
of C \K).

3



In case C\K is connected, then it has no bounded components, so K = K̂ if and only
if C \K is connected; thus, Runge’s polynomial theorem is often stated in the stronger
form:

H(K) = P (K) if and only if K = K̂.

If we weaken the hypothesis of Runge’s theorem, namely, if we suppose that the
function f is continuous on K and analytic at the interior points of K, we would get the
very well-known interesting theorem proved by Mergelyan in 1951, which actually gives
us a sufficient and necessary condition for polynomial approximation.

Theorem 1.1.9 (Mergelyan’s Theorem). Suppose K is compact in the complex plane
and C \K is connected. Also suppose f is continuous on K and analytic in the interior
K0 of K. Then, for every ε > 0, there exists a polynomial p such that

|f(z)− p(z)| < ε, z ∈ K.

Mergelyan’s theorem could be stated as

A(K) = P (K) if and only if K = K̂.

We note that Mergelyan’s theorem is a generalization of the following well-known
theorem:

Theorem 1.1.10 (Weierstrass’s Theorem). If K is a (closed, bounded) segment of the
real line, then C(X) = P (X), that is, every continuous function on K can be uniformly
approximated on K by polynomials.

We now look at the rational approximation more closely having already stated Runge’s
theorem as one important theorem.

It is interesting to know that having many bounded complementary components for
a compact set K makes it more difficult to approximate a function f ∈ A(K) by rational
functions. In 1938, the Swiss mathematician, Alice Roth, constructed a compact set K,
called the Swiss Cheese, for which C \ K consists of infinitely many components and
rational approximation for a certain function f ∈ A(K) is not possible. To see this
interesting example see [1.14].

So the question that comes to mind is whether or not rational approximation is pos-
sible when C \K has only finitely many bounded components? To answer this question,
we need the important Bishop localization theorem.

Theorem 1.1.11 (Bishop’s Localization Theorem). Let K be a compact set in the com-
plex plane and let f be continuous in C. Suppose that for each z ∈ K there exists a
neighbourhood Uz such that f |K∩Uz ∈ R(K ∩ U z). Then f ∈ R(K).

Theorem 1.1.12 (Mergelyan’s Theorem 2 [1.7]). Let K be a compact subset of C, and
let Ω0 = C \ K̂, Ω1,Ω2, ... be the components of the complement of K; so that, C \K =
(Ω0) ∪ (∪s≥1Ωs). If d = infs{diam(Ωs)} > 0 then A(K) = R(K).

4



Note that if Ω0 = C\K, i.e., C\K is connected, then d =∞. The preceding theorem
has the following consequence.

Corollary 1.1.13. A function f ∈ A(K) can be uniformly approximated by rational
functions if K has only finitely many bounded complementary components.

Also to complete our task of describing approximation on compact subsets of the
complex plane, we need to mention Vitushkin’s theorem.

Theorem 1.1.14 (Vitushkin’s Theorem). Let K be a compact subset of C. Then the
following are equivalent:

1) R(K) = A(K);

2) For every open disc D, R(K ∩D) = A(K ∩D), where D denotes the closure of D.

If K0 = ∅ then the theorem can be stated for C(K). Vitushkin’s theorem can be
stated in terms of capacity, which we will use later so it is important to mention this ver-
sion. Denote the Riemann sphere by C. Continuous analytic capacity is defined as follows:

α(K) = sup{|f ′(∞)| : f ∈ C(C), f ∈ Hol(C \K), |f | ≤ 1}

where
f ′(∞) = lim

z→∞
z(f(z)− f(∞))

and
f(∞) = lim

z→∞
f(z).

Theorem 1.1.15 (Equivalent statement of Vitushkin’s Theorem). Let K be a compact
subset of C then the following are equivalent:

1) R(K) = A(K);

2) For every open disc D, α(D \K) = α(D \K0).

The fusion lemma by Roth serves as a stepping stone to the study of approximation
on closed sets, which will be treated in the next section.

Theorem 1.1.16 (Roth’s Fusion Lemma). Let K1, K2 and K be compact subsets in the
complex plane such that K1∩K2 = ∅. Then there exists a constant A, depending only on
K1, K2, with the following property. If r1, r2 are rational functions, such that

|r1 − r2| < ε on K,

then there exists a rational function r such that

|r − rj| ≤ A · ε on Kj ∪K, j = 1, 2.

5



1.2 Approximation on closed subsets of the complex

plane

In this section we shall study the approximation of functions defined on a closed set E
where the approximating functions are meromorphic or holomorphic in a neighbourhood
N of E.

We use the same notation for function spaces on an arbitrary closed (but not nec-
essarily compact) set that we use for compact sets. All the theorems above have been
generalized to closed subsets of C. But we would like to start with Roth’s approximation
theorem since it reduces the problem of approximating a function f on E by meromor-
phic functions to the problem of approximating functions on compact sets by rational
functions.

Theorem 1.2.1 (Roth’s theorem). Let E be a closed subset of the complex plane. A
function f can be uniformly approximated on E by a function in M(E) without poles in
E if and only if

f |K ∈ R(K) for each compact subset K ⊂ E.

In 1938, she generalized the rational Runge theorem to closed sets. This was her
doctoral thesis.

Theorem 1.2.2. For every closed set E, H(E) = M(E).

In 1927, Carleman extended the result of Weierstrass.

Theorem 1.2.3 (Carleman’s Theorem). For every function f continuous in R and for
every positive continuous function ε on R, there exists an entire function g such that

|f(x)− g(x)| < ε(x), x ∈ R.

Carleman generalized this theorem by replacing R by more general curves.
For a closed set E, if for every pair of functions {f(z), ε(z)}, f ∈ A(E) and ε(z)

positive continuous function on E, there exists a function g ∈ H(C) such that

|f(z)− g(z)| < ε(z), z ∈ E,

then E is called a Carleman set or a set of holomorphic Carleman approximation.
Carleman approximation is also called tangential approximation. Note that tangential

and uniform approximation coincide for compact sets; simply replace the function ε by
its minimum on the compact set.

The following necessary condition to characterize Carleman sets, was introduced in
1969 by Gauthier. A family A of sets in C satisfies the long islands condition if for each
compact set K, there exists a compact set Q such that every element of A which meets
K is contained in Q.

Later (1971) Nersesjan gave a complete characterization of holomorphic Carleman
approximation on closed sets with respect to the long islands condition.

6



The long islands condition could apply to three categories: interior of a set, fine
interior of a set and Gleason part. We will define it for a family of interior of a set later
in Chapter 2.

Mergelyan’s theorem was generalized by Arakelyan in 1964. The original paper is
[1.2], but the theorem may also be found in [1.14]. Before stating the theorem some
definitions need to be recalled.

A topological space S is called locally connected at a ∈ S if, for each neighbourhood
N of a, there exists a connected set Z ⊂ N that contains a as an interior point.

We shall apply this definition to C∗ \ E and a = ∞, where E is a closed set in C.
Since C∗ \E is open in C, to show that it is locally connected in C∗ it is enough to check
the point at infinity.

We say that a continuous path γ : [0, 1) → C starting at z0 ∈ C connects z0 with
infinity (meaning ∗) if for every compact set K ⊂ C there is a point on γ after which γ
does not meet K.

Lemma 1.2.4. [1.14] The space S = C∗\E is locally connected at infinity, if and only if,
the following holds: For every neighbourhood U of infinity, there exists a neighbourhood
V ⊂ U of infinity with the property that each point z ∈ V \ E, z 6= ∞, can be connected
with infinity in C by a continuous path γ ⊂ U \ E.

Theorem 1.2.5 (Arakelyan’s Theorem). Let E be a closed set. For every f ∈ A(E), for
every ε > 0, there exists a function F ∈ Hol(E) such that

|f(z)− F (z)| < ε, z ∈ E,

if and only if the following conditions are satisfied:

1) C∗ \ E is connected,

2) C∗ \ E is locally connected at infinity.

1.3 Approximation on non-compact Riemann sur-

faces

Definition 1.3.1. A complex chart on a topological space S is a homeomorphism φ : U →
V , where U is an open set in S and V is an open set in C.

Charts are also called local coordinates or uniformizing variables. When two charts
have overlapping domains, they need to be related.

Definition 1.3.2. Let φ1 : U1 → V1 and φ2 : U2 → V2 be two charts. We say that they are
compatible if ether U1 and U2 are disjoint or φ2 ◦ φ−1

1 is holomorphic on φ1(U1 ∩ U2).

Note that if φ2 ◦ φ−1
1 is holomorphic on φ1(U1 ∩ U2) then φ1 ◦ φ−1

2 is holomorphic on
φ2(U1 ∩ U2). So the definition is symmetric in the two charts. We refer to the functions
φ2 ◦ φ−1

1 and φ1 ◦ φ−1
2 as transition functions.

Definition 1.3.3. A complex atlas U on S is a collection U = {φα : Uα → Vα} of compatible
charts whose domains cover S, i.e., S = ∪αUα.

7



Two complex atlases U and V are equivalent if every chart in U is compatible with
every chart in V . When two atlases are compatible we can combine them to get another
atlas that contains them both.

Definition 1.3.4. A complex structure on S is a maximal complex atlas on S. Equivalently
it is an equivalence class of complex atlases on S.

Lemma 1.3.5. (Zorn’s Lemma) Suppose a partially ordered set has the property that
every chain (i.e. totally ordered subset) has an upper bound. Then the set contains at
least one maximal element.

A Zorn’s Lemma argument shows that every atlas is contained in a unique maximal
atlas. Furthermore two atlases are compatible if and only if they are sub-collections of
the same maximal atlas, i.e., two holomorphic atlases on S are compatible if and only if
they generate the same maximal holomorphic atlas on S.

Definition 1.3.6. If S is a set, a basis for a topology on S is a collection B of subsets of
S such that:

1) For s ∈ S there is at least one basis element B containing s,

2) If s belongs to the intersection of two basis elements B1 and B2, then there is a
basis element B3 containing s such that B3 ⊂ B1 ∩B2.

If B satisfies these two conditions, then we define the topology τ generated by B as
follows: A subset U of S is open in S, if for each element s ∈ U , there is a basis element
B ∈ B such that s ∈ B and B ⊂ U . Note that each basis element is itself an element of
τ .

Definition 1.3.7. A space S is said to have a countable basis at x if there is a countable
collection B of neighbourhoods of x such that each neighbourhood of x contains at least
one of the elements of B. A space that has a countable basis at each of its points is said
to be a first-countable space. If a space S has a countable basis for its topology, then
S is said to satisfy the second countability axiom, or to be second countable. Obviously
second-countability implies first-countability.

Recall that a topological space S is called a Hausdorff space if for each pair x1, x2 of
distinct points of S, there exist neighbourhoods U1, and U2 of x1 and x2, respectively,
that are disjoint.

Definition 1.3.8. A Riemann surface is a connected second countable Hausdorff topolog-
ical space with a complex structure.

The complex plane is an example of a Riemann surface for the trivial chart U =
C, V = C, φ(z) = z. Also any connected open subset of the complex plane is a Riemann
surface.

Since the charts of the complex structure are homeomorphisms, the topology on a
Riemann surface is determined by its complex structure. But there is a finer topology,
called the fine topology, which is sometimes of use. See [1.11] for a definition.

The next theorem gives the reason that questions of holomorphic approximation on
Riemann surfaces are interesting only for open Riemann surfaces. It is known but rarely
stated so we include a short proof.
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Theorem 1.3.9. Let R be a compact Riemann surface and R′ be a Riemann surface.
Let f : R → R′ be a holomorphic mapping. Then f is either constant or surjective.
In particular, the only holomorphic functions on a compact Riemann surface are the
constant functions.

Proof. Suppose f is non-constant. Since every non-constant holomorphic map is an open
map, and R is open, f(R) is an open set in R′. Also f(R) is compact because it is the
image of a compact set under a continuous map. Because R′ is Hausdorff, f(R) is closed.
Then f(R) is closed and open in the connected space R′ which implies f(R) = R′, i.e.,
f is surjective. If f is a holomorphic function, R′ is not compact, so f is not surjective.
Then it must be constant.

Now we can move on and talk about the generalization of the above stated theorems
for both compact and closed subsets of non-compact Riemann surfaces.

We will use the same notation for function spaces over subsets of Riemann surfaces
as we did for function spaces over subsets of C, and recall that we denote by R∗ the
one-point compactification of a Riemann surface R.

The space HR(K) consists of the uniform limits on K of functions holomorphic on R;
that is, f ∈ HR(K) if and only if there exists a sequence gn of functions in Hol(R) such
that limn→∞ ||f − gn||K = 0, i.e., uniform limits on K of “entire” functions.

Note that we required that the limit be uniform on all of K.
We have the following generalizations of the Runge and Mergelyan theorems.

Theorem 1.3.10. [1.3] [Behnke-Stein Theorem] Let R be a non-compact Riemann sur-
face and K be a compact subset of R. Then

1) H(K) = M(K), and

2) H(K) = HR(K) if and only if R∗ \K is connected.

Theorem 1.3.11. [1.4] [Bishop’s Theorem]
For each non-compact Riemann surface R and each compact subset K of R, we have

A(K) = HR(K)

if and only if R∗ \K is connected.

On closed sets the situation is more complicated than on compact sets. The genus
of a Riemann surface plays a significant role. Recall that the genus of a connected,
orientable surface is an integer representing the maximum number of cuttings along non-
intersecting closed simple curves without rendering the resultant manifold disconnected.
For instance, a sphere and a disc both have genus zero and a torus has genus one. (See
[1.1] for the definition of “orientable surface”—all Riemann surfaces are orientable.)

Definition 1.3.12. A closed subset E of an open Riemann surface is said to be essentially
of finite genus if there exists an open covering {Ui : i ∈ I} of E such that Ui ∩ Uj = ∅ if
i 6= j and each Ui is of finite genus.

If R is of finite genus, then every closed subset of R is automatically essentially of
finite genus and if R is of infinite genus, then it is not essentially of finite genus, since
Riemann surfaces are by definition connected.

9



Lemma 1.3.13. [1.14] The space S = R∗ \E is locally connected at infinity if and only
if the following holds: For every compact K ⊂ R, there exists a larger compact Q ⊂ R,
with the property that each point z ∈ (R \ E) \ Q, can be connected with infinity by a
continuous path γ ⊂ (R \ E) \K.

Arakelyan, in [1.2] that also could be found in [1.17], showed that his theorem is also
valid for every open subset of the complex plane. One could ask whether one could replace
the complex plane by an arbitrary open Riemann surface in the Arakelyan theorem and
have the theorem remain valid. The answer is no, but it is known that the Arakelyan
theorem holds for an essentially of finite genus set, in particular for finite genus Riemann
surface. More precisely, we have the following theorem.

Theorem 1.3.14 ([1.7]). Suppose E ⊂ R is closed and essentially of finite genus. Then
the following are equivalent.

1) H(E) = HR(E),

2) A(E) = HR(E),

3) R∗ \ E is connected and locally connected.

We may ask whether there is a Riemann surface of infinite genus, for which Arakelyan’s
theorem holds. We do not know the answer, but the following lemma suggests that we
cannot use the previous theorem to find such a surface.

Lemma 1.3.15. For every Riemann surface R of infinite genus, there is a proper closed
subset E which is not essentially of finite genus and for which R∗ \ E is connected and
locally connected.

The lemma can be proved by the help of Stoilov-Kerjarto compactification, but since
it has not been used to prove any investigation we omit the proof.

As we mentioned before, Nersesjan gave a characterization of holomorphic Carlemann
approximation for a proper closed subset of the complex plane. A. Boivin, generalized
his theorem for a proper closed subset of an open Riemann surface.

Theorem 1.3.16 (Boivin’s Theorem). [1.6] Let E be a proper subset of an open Riemann
surface R, then the following are equivalent:

1) E is a set of holomorphic Carleman approximation,

2) E is a closed subset of R which satisfies the long islands condition such that R∗ \E
is connected and locally connected,

3) E is a set of uniform holomorphic approximation (i.e., A(E) = H(E)) that satisfies
the long islands condition.

It is not true that a set of uniform approximation is a set of holomorphic Carleman
approximation if and only if all components of the interior are bounded. The following
is an example in which all components of the interior are bounded but the set is not a
set of holomorphic Carleman approximation.

E = R ∪
∞⋃
n=1

{z : |x| ≤ n, 1/(2n+ 1) ≤ y ≤ 1/(2n)}.
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Definition 1.3.17. A collection {Aα} of subsets of S, is said to be locally finite if each
point s of S has a neighbourhood that intersects Aα for only finitely many values of α.

Corollary 1.3.18. Let E be a set of uniform holomorphic approximation in an open
Riemann surface R. Then, E is a set of holomorphic Carleman approximation if the
components of the interior of E are bounded and form a locally finite family.

Proof. To prove the corollary we will show that the given condition implies the long
islands condition, so that by Theorem 1.3.16, E is a set of holomorphic Carleman ap-
proximation.

Let K ⊂ R be an arbitrary compact subset. Let Eo = ∪αGα where the Gα are the
components of Eo. Since the components form a locally finite family, K intersects Gα

for only finitely many values of α. Also each component is bounded so we may take
Q = K ∪ (∪Gα) for each α that Gα ∩K 6= ∅.

It is known that an arbitrary unbounded closed subset E of an open Riemann surface
is “usually” not a set of uniform holomorphic approximation. In the second chapter, we
show, however, that there is always a subset of F , whose complement in E is as small as
we please, on which we can approximate “extremely well”.

To close this section we recall the notion of a regular exhaustion. This important
technique is often used within arguments involving unbounded closed sets. We will apply
it frequently in subsequent chapters.

Definition 1.3.19. Let R be a Riemann surface. We say a sequence {Kn} of compact sets
in R is a regular exhaustion for R if R = ∪nKn and, for each n:

1) Kn is bounded by finitely many disjoint Jordan curves,

2) Kn ⊂ Ko
n+1,

3) R∗ \Kn is connected.

A regular exhaustion always exists.[1.1]
For every open Riemann surface R, there exists a holomorphic mapping ρ of R into

the complex plane which is a local homeomorphism, the mapping ρ induces a complex
structure on R which is just the original complex structure R, since ρ is locally biholo-
morphic. We shall call ρ a spreading of R over C. [1.15]

1.4 Characterization of topological conditions on

closed subsets of a Riemann surface

In general, there does not exist a topological characterization of those sets for which the
desired approximation can always be accomplished on Riemann surfaces of infinite genus.

If E is a closed subset of an open Riemann surface R, consider these statements about
E as conditions which E may or may not satisfy:

a) Every function inA(E) is the uniform limit on E of functions which are holomorphic
on R,
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b) R∗ \ E is connected,

c) R∗ \ E is locally connected at infinity,

d) E is essentially of finite genus.
By definition, (a) is a property of the pairs (R,E) and is a conformal invariant; that is,

if one pair is related to another by analytic homeomorphism, then both pairs satisfy (a)
or neither one does. It is natural to ask whether (a) is invariant for any other equivalence
relations. By a topological invariant we mean an invariant for the equivalence defined
by homeomorphism of pairs. The theorem of Bishop and Mergelyan implies that (a) is
a topological invariant in the case E is compact, and the theorem of Arakelyan shows
that (a) is a topological invariant when R is planar. Also it is known [1.22] that (a) is
topological invariant when R is of finite genus, but it is not true for an infinite genus
Riemann surface.

Recall that, a Riemann surface is said to be planar if it is homeomorphic to a subset
of the complex plane.

In this part, we are going to give some examples to aid in understanding the charac-
terization of Arakelyan’s topological conditions. The first example may be found in [1.7].
It shows that Arakelyan’s topological conditions are not enough to make E satisfy (a).
The second example, from [1.21], shows that beside having conditions (b) and (c), adding
condition (d) on the interior of E does not help to achieve approximation. The third
example, also due to Scheinberg, in [1.22], shows that approximation is not invariant
even under isotopy.

The second and third examples will be presented without proof, as they are quite
technical. We will give a proof of the first example since it is a natural way to prove that
a set is not a set of holomorphic approximation. This will require some preparation. Much
of the preparatory material presented here will be repeated in Chapter 2, where it will
be used to generate a new example, a set of approximation that cannot be “thickened”
and remain a set of approximation.

Theorem 1.4.1 (Tietze’s Extension Theorem [1.14, p. 99]). Suppose X is a locally com-
pact Hausdorff space, K is a compact subset of X and f : K → C is continuous on K.
Then there exists a function F : X → C, continuous on X and with compact support,
such that F (x) = f(x) for x ∈ K.

Definition 1.4.2. A sequence of points {zn} inside the unit disc is said to satisfy the
Blaschke condition, when Σn(1 − |zn|) < ∞. The sequence {zn} is called a Blaschke
sequence.

It is well known that if f is bounded holomorphic function on the unit disc and f is
not identically zero, the zeros of f must satisfy the Blaschke condition. See, for example,
[1.9].

We shall call an open Riemann surface R a Myrberg surface over the unit disc D (or
more simply a Myrberg surface) if there is holomorphic function π : R→ D, realizing R
as an n-sheeted, branched, fully covered surface of D. In other words, each point of D
has exactly n pre-images, counting multiplicities . For further information the interested
reader may consult [1.18] or [1.23].
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We can construct a class of examples of Myrberg surfaces as follows:
Let {xn} be a strictly increasing sequence of positive real numbers converging to 1.

Let R1 and R2 be two copies of the open unit disc each slit along the segments [x2n−1, x2n],
n = 1, 2, .... . Let R be the Riemann surface that results from joining R1 and R2 crossing
along these segments in the usual way. There is a natural projection π from R onto the
open unit disc D, which makes R into a Myrberg surface over D with a branch point of
order two over each of the points xn, n = 1, 2, ....

Let π : S̃ → S be a (possibly branched) covering surface of a surface S. For simplicity,

we sometimes say that S̃ is a covering surface of S, where π is implicit. By abuse of
notation, we write ∗ for both the ideal point of S and that of S̃ and we extend the
covering to π : S̃∗ → S∗. For p ∈ S∗ and A ⊂ S∗, we denote p̃ = π−1(p) and Ã = π−1(A).

We say that Ã is the set “over A.”
Let Sλ = {x + iy : |y| ≤ λ for λ ≥ 0}, Eλ = π−1(Sλ). The function θ(z) = w,

where

θ(z) =
ez − 1

ez + 1
, θ−1(w) = ln

(
1 + w

1− w

)
, ln 1 = 0,

maps the strip Eπ/2 conformally onto the unit disc. In general, if the sequence {xn} is
increasing to ∞, then

∞∑
n=1

(1− |θ(xn)|) < +∞ ⇔
∞∑
n=1

1

exn
< +∞. (1.2)

In particular, if the sequence {xn} grows linearly, more precisely, if xn ≥ a + nx0, for
some x0 > 0 and a > 0, then un = θ(xn), n = 1, 2, · · · , is a Blaschke sequence. Indeed,

∞∑
n=1

(1− |un|) =
∞∑
n=1

(
2

exn + 1

)
≤ 2

∞∑
n=1

1

ena
<∞.

It follows that, if lim inf(xn+1 − xn) > 0, then {θ(xn)} is a Blaschke sequence. The
converse does not hold. Indeed, let un = 1 − 1/n2, then

∑
(1 − |un|) =

∑
1/n2 < +∞,

which is the Blaschke condition while,

xn+1 − xn = θ−1(1− 1

(n+ 1)2
)− θ−1(1− 1

n2
) = ln

(
2n2 + 4n+ 1

2n2 − 1

)
→ 0.

To recapitulate, if lim inf(xn+1 − xn) > 0, then {θ(xn)} is a Blaschke sequence, but
we may have lim(xn+1 − xn) = 0, for a Blaschke sequence {θ(xn)}. Equivalently, if
{θ(xn)} is not a Blaschke sequence (and hence Eπ/2 is not a set of approximation), then
lim(xn+1 − xn) = 0, but it is possible to also have lim(xn+1 − xn) = 0, with {θ(xn)} a
Blaschke sequence.

Consider xn = δ lnn. Then ∑ 1

exn
=
∑ 1

nδ
,

so {un} is a Blaschke sequence if and only if δ > 1. For δ ≤ 1 and xn = δ lnn, Eπ/2 is
not a set of approximation. Notice that for every δ > 0, the sequence {δ lnn} is “tight”
in both senses xn+1 − xn → 0 and xn+1/xn → 1.
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Lemma 1.4.3. (Schwarz Lemma) Let D = {z : |z| < 1} and suppose f is holomorphic
on D with:

1) |f(z)| ≤ 1 for z in D,

2) f(0) = 0.

Then |f ′(0)| ≤ 1 and |f(z)| ≤ |z| for all z in the disc D. Moreover if |f ′(0)| = 1 or
if |f(z0)| = |z0| for some z0 6= 0, then there is a constant c, |c| = 1, such that f(z) = cz
for all z in D.

Let θ : D → D be a conformal mapping from the unit disc to itself, and such that
θ(0) = 0. By Schwarz’s lemma |θ′(z)| ≤ 1.This reasoning applies to θ−1 as well, so that
|(θ−1)′(0)| ≤ 1 and |(θ−1)′(0)| ≥ 1. We conclude that |(θ−1)′(0)| = 1, so by the uniqueness
part of Schwarz’s lemma, θ must be a rotation. So there is a complex number w, with
|w| = 1 such that

θ(z) ≡ wz, ∀z ∈ D.

It is often convenient to write a rotation as

ρβ(z) ≡ eiβz,

where we have set w = eiβ, with 0 ≤ β ≤ 2π. In particular ei
3π
2 z is a self mapping sending

−1, 0, i to i, 0, 1 respectively. Let {xn} be a sequence of numbers between zero and one,

which does not satisfy the Blaschke condition and let un = e−i
3π
2 xn. Since |e−iβ| = 1, the

Blaschke condition is invariant under this conformal self mapping of the disc.
Now suppose θ(0) 6= 0, then since θ is a bijection, θ(z0) = 0 for some z0 6= 0. Let

f(z) = z−z0
1−z̄0z .

| z − z0

1− z̄0z
| < 1 if and only if |z − z0|2 < |1− z̄0z|2

if and only if |z|2 − 2Rez̄0z + |z0|2 < 1− 2Rez̄0z + |z0||z|2

if and only if |z0|2(1− |z|2) < 1− |z|2 if and only if |z0| < 1.

Then f is also bijective analytic map from D to D and f(z0) = 0. Hence θ◦f−1(0) = 0
so θ ◦ f−1 is a rotation by the previous case then there exists β such that

θ(z) = (θ ◦ f−1)(f(z)) = eiβf(z) = eiβ
z − z0

1− z̄0z

Then every conformal self-map of the unit disc is a fractional linear transformation.
Let xn be a sequence of numbers on the real line which does not satisfy the Blaschke

condition, i.e., Σ(1− |xn|) =∞ then Σ(1− |θ(xn)|) =∞ which means that the Blaschke
condition is invariant under the conformal self-mapping from the unit disc.

Theorem 1.4.4 (Riemann Mapping Theorem). Let G be a simply connected region which
is not all of C and let w ∈ G. Then there is a unique conformal mapping f of G onto
the unit disc D such that f(w) = 0 and f ′(w) = 1.
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Corollary 1.4.5. Any two proper simply connected domains in C have a conformal map
between them.

For an arbitrary sequence of positive real numbers X = {xj}, strictly increasing to
+∞, let RX be the corresponding Riemann surface constructed by joining two copies of
C having slits (x2j−1, x2j) and denote by π the projection RX → C. For Sλ = {x + iy :
|y| ≤ λ(x)}, write Eλ = π−1(Sλ).

Remark. For each positive continuous function λ, on R, there is a sequence X, such
that Sλ is not a set of approximation in RX . Indeed we can map Sλ onto the unit disc.
Then if we take a sequence that does not satisfy the Blaschke condition and let X be the
corresponding sequence in Sλ, then Eλ is not a set of holomorphic approximation.

Example 1.4.6. ([2.2]) There exist an open Riemann surface R and a closed subset
E, such that R∗ \ E is connected and locally connected, but is not a set of holomorphic
approximation.

Proof. Let R be the surface obtained from two copies of the unit disc D, cutting each disc
along the intervals (2n−2

2n−1
, 2n−1

2n
), n ≥ 1, removing the endpoints of the cuts, and joining

the two copies along corresponding cuts in the usual way. Let D+ = D∩{z : Re(z) ≥ 0}
and E = π−1(D+), where π is the projection of R into the unit disc. Note that R∗ \ E
is connected and locally connected. We proceed by contradiction. We will show that if
approximation is possible, our constructed function behaves the same in each sheet of R.
This will contradict its construction (having pole at one point).

For each function g ∈ Hol(E) we define the function g∆ on D+ as follows: We set
g∆(z) = (g(z1) − g(z2))2, when z ∈ π(E) and π−1(z) = {z1, z2}. We set g∆(z) = 0
when z ∈ D \ π(E), i.e., when z is an endpoint of a cut. It is easy to see that g∆ is
holomorphic on D+, and that g∆ vanishes at the points 1− 1

n
; that is, at the endpoints

of the cuts. It follows that if g∆ is bounded on D+, then g∆ vanishes identically since the
Blaschke condition on the zeros of g∆ is not satisfied. (Strictly speaking, we must apply
the Blaschke condition in the disk {z : |z − 1/2| < 1/2} to obtain this conclusion. The
details are omitted.) Now assume that f is a meromorphic function on R with a unique
pole at p, where {p, q} = π−1(−1

2
). We now claim that if h is holomorphic on R then,

f − h must be unbounded on E and that consequently it is not possible to approximate
f uniformly on E by entire functions. Indeed, assuming f−h is bounded, we would have
(f − h)∆ is identically zero on D+ and thus on D \ {−1

2
}, but this is not possible since

f − h is holomorphic at the point q but has a pole at the point p.

Example 1.4.7. [1.21] There is an open Riemann surface R with a closed set E which
satisfies (b), (c), and E0 satisfies (d) but E does not satisfy (a).

Example 1.4.8. [1.22] There exists an open Riemann surface R and a closed subset E
such that E satisfies (a), R∗ \E is connected, locally connected and E has infinite genus,
and there exists a homotopy U of R onto itself such that while E is a set of holomorphic
approximation, U(E) is not.
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Spherical rational approximation on compact subsets of the complex plane and spher-
ical meromorphic approximation on closed subsets is an interesting topic and has been
studied, for example, in [1.13]. The analogue of this topic is to replace subsets of the
complex plane by subsets of open Riemann surfaces. In Chapter 3 we consider pole-free
meromorphic spherical approximation, giving results for both tangential and uniform
approximation. In particular, we give an extension of the famous Mergelyan theorem for
Jordan regions in open Riemann surfaces. The property of being a locally finite family
is essential for this work.

The Osgood-Carathéodory theorem asserts that conformal mappings between Jordan
domains extend to homeomorphisms between their closures. As we see in Chapter 4,
similar results holds for multiply-connected domains on Riemann surfaces. One approach
is to reduce them to the simply-connected case, but we find it simpler to deduce such
results using a direct analogue of the Carathéodory reflection principle.
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Akademiya Nauk. Matematicheskĭı Sbornik, 206, (2015), 5–28.

[1.9] A. Browder. Introduction to Function Algebras. W. A. Benjamin, Inc., New York-
Amsterdam, 1969.

[1.10] J. B. Conway, Functions of One Complex Variable, Graduate Texts in Mathemat-
ics, 11, Springer-Verlag, New York-Heidelberg, 1973.

[1.11] J. L. Doob. Classical Potential Theory and its Probabilistic Counterpart. Classics
in Mathematics, Reprint of the 1984 edition, Springer-Verlag, Berlin, 2001.

[1.12] O. Forster. Lectures on Riemann Surfaces. Graduate Texts in Mathematics, 81,
Translated from the 1977 German original by Bruce Gilligan, Reprint of the 1981
English translation, Springer-Verlag, New York, 1991.

17



[1.13] M. Fragoulopoulou, V. Nestoridis and I. Papadoperakis, Some results on spherical
approximation, Bull. Lond. Math. Soc. 45 (2013) no. 6, 1171–1180.

[1.14] D. Gaier. Lectures on Complex Approximation. Translated from the German by
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Chapter 2

Luzin-type holomorphic
approximation on closed subsets of
open Riemann surfaces

Dedication: In memory of André Boivin.

2.1 Introduction

Undergraduate students are often first introduced to Riemann surfaces via so-called con-
crete Riemann surfaces, meaning surfaces constructed with paper, scissors and paste.
Abstract Riemann surfaces, defined as manifolds, are usually encountered later in their
studies.

A remarkable theorem of Gunning and Narasimhan [2.9] essentially asserts that ev-
ery abstract non-compact Riemann surface can be represented as a concrete Riemann
surface. Precisely, it says the following. For every open Riemann surface R, there exists
a holomorphic mapping ρ of R into the complex plane which is a local homeomorphism,
the mapping ρ induces a complex structure on R which is the initial complex structure
on R, since ρ is locally biholomorphic. We shall call ρ a spreading of R over C.

By λ we denote Lebesgue measure in C = R2 and by µ the measure on R induced by
ρ and λ in the sense that if X = ∪Xn is the disjoint union of Xn, n = 1, · · · and each Xn

is contained in a chart where ρ is injective, then µ(X) =
∑
λ(ρ(Xn)) . One could also

say that µ(X) is the Lebesgue measure of the projection ρ(X) “counting multiplicities”.
A subset E of a Riemann surface R is said to be bounded if the closure E in R is

compact.
If a function can be approximated uniformly by holomorphic functions on a set E,

then necessarily that function must be in the class A(E) of continuous functions on E
which are holomorphic on the interior E0. Let us say that a closed set E in an open
Riemann surface R is a set of uniform approximation if, for every f ∈ A(E) and every
number ε > 0, there is a function g holomorphic on R, such that |f(p)− g(p)| < ε, for all
p ∈ E. Similarly, we say that E is a set of tangential approximation if, for every f ∈ A(E)
and every continuous function ε > 0, there is a function g holomorphic on R, such that
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|f(p) − g(p)| < ε(p), for all p ∈ E. A theorem of Carleman [2.5], which deserves to be
better known, asserts that the real line is a set of tangential approximation in C. For this
reason, sets of tangential approximation are often called sets of Carleman approximation.

For the case that R is a planar domain G, Arakelian [2.2] gave a complete topological
characterization of closed subsets E ⊂ G, for which E is a set of uniform approximation
by functions holomorphic on G. Let us denote by R∗ = R ∪ {∗} the one-point compact-
ification of an open Riemann surface R. Arakelian’s theorem states that E is a set of
uniform approximation in G if and only if G∗ \ E is connected and locally connected.

Gauthier and Hengartner [2.7] showed that the topological conditions of Arakelyan
are still necessary in order for a closed set E in an open Riemann surface R to be a set
of uniform approximation. That is, R∗ \ E must be connected and locally connected.
In the same paper an example was given to show that these topological conditions of
Arakelyan, although necessary, are not sufficient to guarantee that E be a set of uniform
approximation in R. Thus, in passing from planar domains to open Riemann surfaces,
Arakelyan’s topological conditions no longer give a characterization of closed sets of
uniform approximation. In fact, Scheinberg [2.11], showed that no topological conditions
whatsoever could characterize sets of uniform approximation on Riemann surfaces.

If a closed set E in an open Riemann surface R is a set of tangential approximation,
then of course it must a fortiori be a set of uniform approximation and so R∗ \ E must
be connected and locally connected. A further condition, now called the long islands
condition, was introduced by Gauthier in [2.6]. A closed subset E ⊂ R is said to satisfy
the long islands condition if for every compact set K ⊂ R, there exists a compact set
Q ⊂ R such that every component of the interior of E which meets K is contained in Q.
If E is a closed set of uniform approximation in C, then it was shown in [2.6] that the
long islands condition is necessary in order for E to be a set of tangential approximation.
Nersesjan [2.10] showed, that, in fact a closed set E of uniform approximation in a plane
domain G is a set of tangential approximation in G if and only if the long islands condition
is satisfied.

A closed strip in C of strictly positive width is a set of uniform approximation but
not of tangential approximation. If the width becomes zero, then a straight line is a set
of tangential approximation (and a fortiori of uniform approximation). At the end of the
present chapter, I construct a Riemann Surface R where the real line is a set of tangential
approximation (and a fortiori of uniform approximation) but a “strip” around it in R is
even not a set of uniform approximation. See Example 2.3.3 , below.

Thus, for planar domains, we have a characterization of closed subsets of uniform
approximation and also a characterization of closed subsets of tangential approximation.
The problem of characterizing closed sets of uniform approximation on open Riemann
surfaces is open, however, Boivin extended Nersesjan’s result to open Riemann surfaces,
thus giving a characterization of closed sets of tangential approximation in open Riemann
surfaces. Here is Boivin’s theorem.

Theorem 2.1.1 ([2.3]). Let E be a proper closed subset of an open Riemann surface R,
then the following are equivalent:

1) E is a set of tangential approximation;

2) R∗\E is connected and locally connected and E satisfies the long islands condition;
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3) E is a set of uniform approximation which satisfies the long islands condition.

Our principal result is the following Luzin-type theorem, which loosely speaking as-
serts that, for an arbitrary open Riemann surface R, an arbitrary (proper) closed set E in
R, an arbitrary function f ∈ A(E) and an arbitrary ε > 0, although there is practically
no chance that there exist a function g holomorphic on R, such that |f − g| < ε, never-
theless we can always find a closed subset F of E which is most of E in the sense that
E \F is small and becomes smaller at arbitrary speed as we approach the ideal boundary
point ∗ and on F such approximations are possible, in fact with arbitrary speed. That
is, ε(p) may decrease to zero with arbitrary speed as p tends to the ideal boundary. The
precise statement is the following.

Theorem 2.1.2. Let R be an arbitrary open Riemann surface and ρ be a spreading
of R over C. Let E be a closed subset of R. For every positive sequence δn, and every
regular exhaustion {Kn} of R, there exists a closed subset F of E such that F is a set of
tangential approximation in R and :

µ((E \ F ) \Kn) < δn, n = 1, 2, · · · .

Paraphrasing the 100% conjecture for the Riemann Hypothesis and denoting a propo-
sition regarding a point p by P (p), we shall say that the proposition P (p) is true for 100%
of the points in a set E ⊂ R if, for some (equivalently every) exhaustion {Kn} of R, we
have

lim
n→∞

µ{p ∈ E ∩Kn : P (p)}
µ(E ∩Kn)

= 1.

The following corollary is an easy consequence of Theorem 2.1.2.

Corollary 2.1.3. If µ(E) 6= 0, and E is unbounded, then for every f ∈ A(E) and for
every positive ε ∈ C(E), there exists g ∈ H(R) such that, for 100% of the points p in E,
we have |f(p)− g(p)| < ε(p).

We cannot drop the hypothesis that E be unbounded. First of all, we note that,
in case E is bounded, to say that |f(p) − g(p)| < ε(p) holds for 100% of the values of
E is equivalent to saying that |f(p) − g(p)| < ε(p) a.e. on E. Now, since f, g and ε
are continuous, this implies that |f(p) − g(p)| ≤ ε(p) everywhere on E. Now let R = C
and let E be the closed unit circle T. Suppose, to obtain a contradiction, that for every
f ∈ A(T) = C(T) and every ε > 0, there is an entire function (equivalently a polynomial
g) such that |f(z)−g(z)| < ε, for 100% of the points of T. We have seen that this implies
that |f(z)−g(z)| ≤ ε, for every point of T. We have shown that every continuous function
on the unit circle is the uniform limit of polynomials. But this is well known to be false.
This contradiction confirms our claim that the hypothesis that E be unbounded cannot
be dropped.

A sequence gn of almost everywhere finite measureable functions on a measureable
set E is said to converge in measure to an almost everywhere finite measureable function
f, if for each ε > 0,

µ{p ∈ E : |gn(p)− f(p)| > ε} −→ 0, as n→∞.
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Corollary 2.1.4. For every measureable subset E ⊂ R and for every complex measure-
able function f on E, there exist a sequence gn ∈ H(R), such that gn → f in measure.

These results are new even for the case that R is the complex plane C. We could
state similar results for approximation by meromorphic functions on Riemann surfaces,
but that is a topic for another time. The present chapter is concerned only with approx-
imation by holomorphic functions.

In the following section we prove Theorem 2.1.2 and in the last section we briefly con-
sider some so-called Myrberg surfaces, which are the most important source of examples
where approximation fails.

2.2 Proof of Theorem 2.1.2

Proof. Let Ec = R∗ \E. Fix a regular exhaustion {Kn} of R, with K0 = ∅, and let {δn}
be a sequence of positive numbers, which we may assume decreases strictly to zero.

Since {Kn} is a regular exhaustion, for each n = 1, 2, · · · , the open set An = (K0
n+1 \

Kn−1) has only finitely many components Un,j, j = 1, 2, · · · , jn.
Claim 1. For each component Un,j of each An, we may assume that Ec ∩ Un,j is non-

empty. To see this, we form a closed subset E1 of E as follows. For each n = 1, 2, · · · ,
and each j = 1, 2, · · · , jn, we construct an open subset Vn,j of Un,j so small that µ(Vn,j) <
δn+1/jn2n+2. Now, set

E1 = E \
∞⋃
n=1

jn⋃
j=1

Vn,j.

If we can show that E1 satisfies the conclusion of the theorem, then it follows that E also
satisfies the conclusion of the theorem. Thus, we assume that Ec meets each component
Un,j of each An.

Claim 2. For each component Un,j of each An, we may assume that Ec ∩ Un,j is
connected. To see this, we note that the open set Ec ∩Un,j has at most countably many
components and so there is a countable collection Jn,j of compact smooth Jordan arcs
in Un,j which connect all the components of Ec ∩ Un,j. For each such arc α, we have
µ(α) = 0, since α is smooth. We may surround α by a Jordan domain Gα whose closure
is contained in Un,j, so small that, setting

Hn,j =
⋃
{Gα : α ∈ Jn,j}, Hn =

jn⋃
j=1

Hn,j,

we have

µ(Hn,j) <
δn+1

jn2n+2
, µ(Hn) <

δn+1

2n+2
.

Now replace E by the closed subset

E2 = E \
∞⋃
n=1

Hn.

22



If E2 satisfies the conclusion of the theorem, so does E and, for each component Un,j of
each An, we have that Ec

2 ∩Un,j is connected. We therefore assume that E itself has this
property.

For each n = 1, 2, · · · , and each j = 1, 2, · · · jn, choose a point pn,j in Ec ∩ Un,j. For
each j = 1, 2, · · · , jn and each k = 1, 2, · · · , kn+1, we shall say that (n, j) < (n, k) if pn,j
and pn+1,k are in the same component of R \Kn−1. For each (n, j) < (n, k), let βj,k be a
smooth arc in An ∪An+1 from pn,j to pn+1,k. Since there are finitely many such arcs, for
fixed n, and each arc has µ-measure zero, we may surround each such arc by a Jordan
domain Gn,j,k in An ∪ An+1, such that, for fixed n, setting

Gn =
⋃
{Gn,j,k : (n, j) < (n, k)},

we have

µ(Gn) <
δn+1

2n+2
.

Now set E3 = E \ ∪nGn. It is enough to show that E3 satisfies the conclusion of the
theorem.

We claim that R∗ \ E3 is locally connected at ∗. It is sufficient to show that, for
each n, the set (R∗ \ E3) \ Kn−1 is connected. It is sufficient to show that for each
p ∈ (R \ E3) \ Kn−1, the component Cp of (R \ E3) \ Kn−1 containing p is unbounded.
The point p is contained in some Un,j and since p 6∈ E3, it is in Ec ∩ Un,j or in Gn. But
Gn connects Ec ∩Un,j to some Ec ∩Un+1,k. In any case Cp will contain some Ec ∩Un+1,k.
Since Ec ∩ Un+1,k is connected to some Ec ∩ Un+2,` by Gn+1, it follows by induction that
the component Cp is unbounded. Thus (R∗ \ E3) \Kn−1 is a connected neighbourhood
of ∗. As n varies, these form a neighbourhood basis of ∗ in R∗ \E3, so R∗ \E3 is locally
connected at ∗. Since R∗ \ E3 is clearly locally connected at each point of R \ E3, it is
locally connected. We have shown in passing that each point of R \E3 is connected to ∗
so R∗ \ E3 is not only locally connected but also connected.

There remains to perform one last modification to obtain the long islands condition.
For each n, let Qn,j be a regular exhaustion of K0

n and choose j so large that, setting
Wn = K0

n \Qn,j, we have

µ(K0
n \Qn,j) <

δn+1

2n+2
.

Finally, set F = E3 \
⋃∞
n=1Wn. Then, R∗ \ F continues to be connected and locally

connected and moreover

µ((E3 \ F ) \Kn) < δn, n = 1, 2, · · · .

By Theorem 2.1.1, F is a set of tangential approximation.

Proof. (of the Corollary) For fixed δ > 0, by Theorem 2.1.2, there exists a closed subset
F of E such that F is a set of tangential approximation and

µ((E \ F ) \Km) < δ,
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for some integer m > 0. Now fix f ∈ A(E) and ε a positive continuous function on E. Let
g ∈ H(R) such that |f(p)− g(p)| < ε(p), for p ∈ F and denote by P (p) the proposition
that |f(p)− g(p)| < ε(p).

lim
n→∞

µ(E ∩Kn : P (p))

µ(E ∩Kn)

= lim
n→∞

µ(E ∩Km : P (p)) + µ(E ∩ (Kn \Km) : P (p))

µ(E ∩Kn)
n > m

≥ lim
n→∞

µ(E ∩ (Kn \Km) : P (p))

µ(E ∩Kn)

= lim
n→∞

µ(E ∩ (Kn \Km))− µ(E ∩ (Kn \Km) :∼ P (p))

µ(E ∩Kn)

≥ µ(E ∩ (Kn \Km))− µ(E ∩ (Kn \Km) \ F )

µ(E ∩Kn)

= lim
n→∞

µ(E ∩ (Kn \Km))− µ((E \ F ) ∩ (Kn \Km))

µ(E ∩Kn)

≥ lim
n→∞

µ(E ∩ (Kn \Km))− µ((E \ F ) \Km))

µ(E ∩Kn)

≥ 1− lim
n→∞

δ

µ(E ∩Kn)
= 1.

Proof. (of Corollary 2) Let Gk ↗ R be a a regular exhaustion by smoothly bounded
open sets and put Ak = E ∩ (Gk \Gk−1).

For fixed (k, n) ∈ N×N, by Luzin’s Theorem, there exists a compact set Kk,n ⊂ Ak,
with µ(Ak \Kk,n) < 1/(2kn), such that f restricted to Kk,n is continuous.

We claim that we may assume K0
k,n = ∅. First of all, there is a finite union

Lk,n =
⋃
{Lk,n,j : j = 1, . . . , J(k, n)}

of disjoint closed squares Lk,n,j ⊂ K0
k,n, such that µ(Lk,n) approximates µ(K0

k,n) as well
as we please. Here, when we say that Lk,n,j is a closed square on the Riemann surface
R, we mean that ρ maps Lk,n,j homeomorphically onto a square I × I ⊂ R2 = C,
where I is a closed interval in R. We may construct a Cantor-type set B ⊂ I, whose
1-dimensional measure approximates the length of I as well as we please. Then B × B,
is a “Cantor-square” whose measure approximates that of ρ(Lk,n,j) as well as we please.
Thus Qk,n,j = ρ−1(B×B) is a compact nowhere dense subset of Lk,n,j such that µ(Qk,n,j)
approximates µ(Lk,n,j) as well as we please. Consequently, the union

Qk,n =
⋃
{Qk,n,j : j = 1, . . . , J(k, n)}

24



is a compact nowhere dense subset of K0
k,n whose measure approximates the measure of

K0
k,n as well as we please.

Now set Mk,n = Qk,n ∪ ∂Kk,n. Since µ(Qk,n) is a good approximation of µ(K0
k,n),

µ(Mk,n) is an equally good approximation of µ(Kk,n). Since the compact set Mk,n has
empty interior, this proves our claim. Thus, we assume that Kk,n has empty interior.

Let En = ∪kKk,n and let fn be the restriction of f to En. Since fn ∈ C(En), and
E0
n = ∅, we have fn ∈ A(En). By Theorem 2.1.2 , there is a closed subset Fn ⊂ En with

µ(En \ Fn) < 1/n and a function gn ∈ H(R), such that |fn − gn| < 1/n on Fn. Since
f = fn on En and µ(E \ En) < 1/n, this completes the proof.

2.3 A Myrberg surface where approximation fails

We use the expression Myrberg surface loosely to refer to a Riemann surface obtained by
taking two copies of the complex plane having identical slits and joining these two slit
planes along the slits in the usual way.

Definition 2.3.1. A sequence of points {zn} inside the unit disc is said to satisfy the
Blaschke condition, when Σn(1 − |zn|) < ∞. The sequence {zn} is called a Blaschke
sequence.

For λ ≥ 0, we denote Sλ = {x+ iy : |y| ≤ λ}. The function θ(z) = w, where

θ(z) =
ez − 1

ez + 1
, θ−1(w) = ln

(
1 + w

1− w

)
, ln 1 = 0,

maps the strip Sπ/2 conformally onto the unit disc. In general, if the sequence {xn} is
increasing to ∞, then

∞∑
n=1

(1− |θ(xn)|) < +∞ ⇔
∞∑
n=1

1

exn
< +∞. (2.1)

In particular, if the sequence X grows linearly, more precisely, if xn ≥ a+ nx0, for some
x0 > 0 and a > 0, then un = θ(xn), n = 1, 2, · · · , is a Blaschke sequence. Indeed,

∞∑
n=1

(1− |un|) =
∞∑
n=1

2

exn + 1
≤ 2

∞∑
n=1

1

ena
<∞.

It follows that, if lim inf(xn+1 − xn) > 0, then {θ(xn)} is a Blaschke sequence. The
converse does not hold. Indeed, let un = 1 − 1/n2, then

∑
(1 − |un|) =

∑
1/n2 < +∞,

which is the Blaschke condition while,

xn+1 − xn = θ−1

(
1− 1

(n+ 1)2

)
− θ−1

(
1− 1

n2

)
= ln

(
2n2 + 4n+ 1

2n2 − 1

)
→ 0.

To recapitulate, if lim inf(xn+1 − xn) > 0, then {θ(xn)} is a Blaschke sequence, but
we may have lim(xn+1 − xn) = 0, for a Blaschke sequence {θ(xn)}. Equivalently, if
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{θ(xn)} is not a Blaschke sequence (and hence Sπ/2 is not a set of approximation), then
lim(xn+1 − xn) = 0, but it is possible to also have lim(xn+1 − xn) = 0, with {θ(xn)} a
Blaschke sequence.

Consider xn = δ lnn. Then ∑ 1

exn
=
∑ 1

nδ
,

so {un} is a Blaschke sequence if and only if δ > 1. For δ ≤ 1 and xn = δ lnn, Eπ/2 is
not a set of approximation. Notice that for every δ > 0, the sequence {δ lnn} is “tight”
in both senses xn+1 − xn → 0 and xn+1/xn → 1.

The following lemma due to Scheinberg [2.12] gives us a Blaschke condition for a strip.

Lemma 2.3.2. Let xn be a sequence of distinct real numbers such that |xn| → ∞,
0 ≤ λ < ∞, θ be a conformal map which sends Sλ = {x + iy, |y| ≤ λ} to the unit disc,
and xn = θ−1(un). Then

∞∑
n=1

(1− |un|) <∞

if and only if
∞∑
n=1

a−|xn| <∞, where a = exp
( π

2λ

)
.

This lemma allows us to construct the following example, where approximation fails.

Example 2.3.3. There exists a Riemann surface R of infinite genus, formed by joining
two copies of the complex plane with slits on the real axis, such that all closed strips
“over” (see 1.4) the real axis are not sets of holomorphic approximation, while the set
over the real axis itself is a set of tangential approximation.

Proof. For λ ≥ 0, we denote Sλ = {x + iy : |y| ≤ λ} and for n = 1, 2, · · · , let θn be
the conformal map of S1/n onto the unit disc, which maps −∞, 0,+∞ respectively to
−1, 0,+1. Let {xj} be an increasing sequence of positive numbers tending to infinity,
such that, for each n, the sequence {θn(xj)} is not a Blaschke sequence. To obtain such a
sequence, for each n let {xn,j} be a sequence of distinct real numbers tending to +∞ with
xn,j ≥ n, such that {θn(xn,j)} is not a Blaschke sequence. We may assume that these
sequences are disjoint from each other. Now we may let {xj} be any sequence formed by
combining all of the sequences {xn,j} into a single sequence.

We take two copies of the complex plane, remove the intervals (x2j−1, x2j) and join
the slit planes together in the usual way to form a Riemann surface R = RX , where X
signifies the dependence on the sequence X = {xj}j. Let π be the projection map from
R to C and put E = Eλ := π−1(Sλ). Let us show that R∗ \ E is connected. R \ E
has four connected components; each one is an open complex half-plane. None of these
components is contained in any compact subset of R. Since every open neighbourhood
of ∗ in R∗ contains the complement of some compact subset of R, every neighbourhood
of ∗ in R∗ intersects each component of R \E. Suppose R∗ \E is disconnected. Then, it
is the union of non-empty disjoint sets A and B, open in R∗ \E, whose union is R∗ \E.
We may suppose that A contains ∗. Since A is an open neighbourhood of ∗ in R∗ \E, it
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is of the form A = U ∩ (R∗ \E), where U is an open neighbourhood of ∗ in R∗. We may
assume that U = R∗ \K, where K is a compact subset of R. Thus, A = R∗ \ (K ∪ E).
Suppose some component H of R \E does not intersect A. Then H ⊂ (K ∪E), which is
precluded. Therefore A intersects each component of R\E. But B∪(R\E) is non-empty
so some component H of R \ E also intersects B. This shows that the half-plane H is
the union of two non-empty disjoint open sets; A∩H, and B ∩H. So H is disconnected,
a contradiction. Therefore R∗ \ E is connected.

Now let us show that R∗ \E is locally connected. Obviously, it is locally connected at
points of R \E. To show it is locally connected at infinity, let H1, H2, H3, H4 be the half-
planes composing R \ E. For, n = 1, 2, · · · , set Un = {z : |z| > n}, Hj,n = π−1(Un) ∩Hj

and

Vn =
4⋃
j=1

Hj,n ∪ {∗}.

Then, {Vn}n is a neighbourhood basis of ∗, all of whose members are connected, so R∗\E
is locally connected at infinity. Thus R∗ \ E is locally connected.

The set E0 has empty interior, so by Theorem 2.1.1 it is a set of holomorphic tangential
approximation.

Fix λ > 0, let α be a point that is not in Sλ, and consider π−1(α) = {p1, p2}. Let f
be a meromorphic function on R which has a pole at p1 and only at p1.

Suppose, to obtain a contradiction, that there exists a holomorphic function F on R
such that |F −f | ≤ ε on Eλ. The function g := F −f is meromorphic on R, has a pole at
p1, is holomorphic elsewhere, and is bounded on Eλ. Denote by X the set of values of the
sequence {xj}. Then X̃ = π−1(X) is the set of branch points of R. Let ρ : R\ X̃ → R\ X̃
be the involution, mapping each point of R \ X̃ to the corresponding point on the other

sheet having the same projection on C. Set g1(p) = (g(p) − g(ρ(p)))2, for p ∈ R \ X̃.
Then, G = g1 ◦ π−1 is a well-defined holomorphic function on C \ (X ∪ {α}), which is
bounded on Sλ\X. Riemann’s theorem on removable singularities implies that G extends
holomorphically on C\{α} and vanishes at each point of the sequence {xj}. Now by using

the Blaschke condition, G is identically zero on Sλ, i.e., g(p) = g(ρ(p)), for p ∈ Eλ\X̃. By

the uniqueness of meromorphic continuation, we obtain that g(p) = g(ρ(p)), for p ∈ R\X̃.
In particular, g and hence f has a pole at p1, which is a contradiction. Thus Eλ is not a
set of approximation.
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[2.5] T. Carleman, Sur un théorème de Weierstrass. Arkiv. Mat. Astron. Fys. , 20 : 4
(1927) 1–5.

[2.6] P. M. Gauthier, Tangential approximation by entire functions and functions holo-
morphic in a disc. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 4 (1969) no. 5, 319–326.

[2.7] P. M. Gauthier and W. Hengartner, Uniform approximation on closed sets by
functions analytic on a Riemann surface. Approximation theory (Proc. Conf. Inst.
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Chapter 3

Uniform approximation in the
spherical distance by functions
meromorphic on Riemann surfaces

Given a function f defined on a closed subset E of a Riemann surface R, and given
ε > 0, a natural question is whether there exists a function fε meromorphic on R, such
that d(f(p), fε(p)) < ε, for all p ∈ E, for a given distance function d. If ε is an arbitrary
constant, we are speaking of uniform approximation, whereas, if ε = ε(p) is an arbitrary
positive continuous function, we call this tangential approximation. The two most nat-
ural distance functions here are the Euclidean distance | · − · | and the chordal distance
χ(·, ·). If a function has no poles (respectively zeros) on E, we say that it is pole-free (re-
spectively zero-free) on E. If the approximating functions fε are pole-free (respectively
zero-free) on E, we call this pole-free (respectively zero-free) approximation. Unless
explicitly stated otherwise, all approximations will be by meromorphic functions (equiv-
alently, holomorphic mappings R → C.) We shall consider eight types of meromorphic
approximation:

• pole-free Euclidean uniform (respectively tangential) approximation,

• spherically uniform (respectively tangential) approximation,

• pole-free spherically uniform (respectively tangential) approximation,

• zero-free Euclidean uniform (respectively tangential) approximation.

Our main concern is with pole-free spherically tangential approximation, but we also
discuss the other types of approximation, to situate our investigation in the general
context of meromorphic approximation.

Spherical rational approximation on compact subsets of the plane was studied in
[3.22] by Roth, Walsh and Gauthier. That paper concluded with a promise and two
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open problems. The promise was to consider in a later paper, spherical meromorphic
approximation on closed sets. One open problem was to replace subsets of the plane
by subsets of a Riemann surface. The other open problem was to ask whether we can
spherically approximate a function f on a subset E by meromorphic functions pole-free
on E, provided f is pole-free on E0. The paper this chapter is based on finally addressed
this promise and these open problems with a 39-year delay.

3.1 Pole-free Euclidean uniform and tangential ap-

proximation

Denote by C the Riemann sphere C ∪ {∞}. For a compact subset K ⊂ C, the theory
of rational approximation studies the class R(K) of functions on K, which are uniform
Euclidean limits on K of rational functions which are pole-free on K.

In this section we present extensions to Riemann surfaces of classical results on ra-
tional approximation. Some of these extensions are known, but since we shall need them
in subsequent sections and since they are sometimes difficult to find in the literature and
notations and terminology are different in various sources, we present them here using
our notation and terminology, for the convenience of the reader.

If E is a closed subset of a Riemann surface R, we denote by M(E) the space of
functions E → C, which are Euclidean uniform limits of functions meromorphic on
R, which are pole-free on E. The subject of uniform approximation by such pole-free
functions has been studied extensively, although many problems remain open.

Let D be an open connected subset of a Riemann surface R, φ : D → C a one-to-one
holomorphic function such that φ(D) = {z : |z − z0| < r} in C. If φ is one-to-one and
holomorphic on a neighbourhood of D, then D is a closed parametric disc.

We recall (see for example [3.20]) that every open Riemann surface admits a Cauchy
kernel C(p, q), that is, a meromorphic function on R × R, whose only singularities are
poles along the diagonal, such that, for some holomorphic function H on R×R and every
point p0 ∈ R, there is a parametric disc ρ : D0 → ∆, where ∆ is the unit disc in C, such
that, writing (ρ× ρ)(p, q) = (z, w),

C(p, q) =
1

z − w
+H

(
(ρ× ρ)−1(z, w)

)
, (p, q) ∈ D0 ×D0.

A Bordered Riemann surface R is a connected Hausdorff space with an open covering
{Ui} and corresponding homeomorphisms hi, hi : Ui → Vi = hi(Ui) where Vi is a relatively
open subset of the closed upper half-plane. Also whenever Ui ∩ Uj 6= ∅, the composition
hi ◦ h−1

j is a conformal homeomorphism of the open set hj(Ui ∩ Uj) on to hi(Ui ∩ Uj).
Definition 3.1.1. A subset C of a Riemann surface R is called a 1-dimensional (real)
sub-manifold if every p ∈ C has an open neighbourhood Nwhich can be mapped homeo-
morphically onto |z| < 1 such that the intersection N ∩C corresponds to the real interval
(−1,+1).

Definition 3.1.2. A region Ω in a Riemann surface R is regularly embedded if ∂Ω is a
1-dimensional sub-manifold and ∂Ω = ∂(R \Ω) and in this case we say that Ω is a closed
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regularly embedded region. It is easy to see (cf. [3.4]) that Ω is a bordered surface whose
border bΩ coincides with its boundary ∂Ω. By a Jordan region Ω in a Riemann surface
R we mean a pre-compact regularly embedded region. By a compact Jordan region, we
mean the closure Ω of a Jordan region Ω.

Classical polynomial approximation on compact subsets K of C first considered the
case where the complement C\K is connected, that is, K has no bounded complementary
components. The following theorem on a Riemann surface R may help to understand ap-
proximation on a subset, whose complement has only finitely many bounded components.
We say that a subset of R is bounded if it is relatively compact.

Theorem 3.1.3. Suppose a domain Ω in an open Riemann surface R has only finitely
many bounded complementary components Q1, . . . , Qn. Set Q∞ = R \ (Ω∪Q1 ∪ · · · ∪Qn)
and Uk = R \ Qk, for k = ∞, 1, . . . , n. Let f be a function holomorphic in Ω. Then, f
can be represented in the form

f = f∞ + f1 + · · ·+ fn, (3.1)

where fk is holomorphic in Uk, for each k. Moreover, if f ∈ A(Ω), then fk ∈ A(Uk).

Proof. We may exhaust Ω by smoothly bounded Jordan regions Ωj, compatible with Ω,
in the following sense. We may label the complementary components of Ωj as Qj,k, where
Qj,k ⊃ Qk, k =∞, 1, . . . , n. We denote ∂Ωj,k = Γj,k; k =∞, 1, . . . , n. Let C(p, q)dq be a
Cauchy kernel on R. By the Cauchy formula,

f(p) =
1

2πi

n∑
k=1

∫
Γj,k

f(q)C(p, q)dq =
n∑
k=1

fj,k(p), for p ∈ Ωj.

We note that fj,k is holomorphic on R \ Γj,k and in particular on R \ Qj,k. We may so
choose the exhaustion that Γj,k is homologous to Γi,k in Ω, for each i and j, so that
fj,k = fi,k on R \Qj,k, for i > j. Hence, letting j →∞, we obtain well-defined functions
fk holomorphic on R \Qk and we have (3.1).

Now suppose f ∈ A(Ω) and fix k = 1, . . . , n. Since

fk = f −
∑
j 6=k

fj,

where the fj are respectively holomorphic on the open sets Uj ⊃ ∂Uk, it follows that fk
extends continuously to Uk.

Theorem 3.1.3 applies to the particularly interesting case where the domain Ω is a
Jordan region.

The fusion lemma of Alice Roth is a fundamental tool in rational approximation and
was extended to Riemann surfaces in [3.16] as follows.

Theorem 3.1.4 (Fusion). Let K1, K2 and K be compact subsets of a Riemann surface
R such that K1 ∩K2 = ∅ and K1 ∪K2 6= R. Then there exists a constant A, depending
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only on K1, K2 and K, with the following property. If m1,m2 are meromorphic functions
on R, such that

|m1 −m2| < ε on K,

then there exists an m meromorphic on R such that

|m−mj| ≤ A · ε on Kj ∪K, j = 1, 2.

For a closed subset E ⊂ R, recall that M(E) is the family of functions f on E such
that there exists a sequence of meromorphic functions fn on R, pole-free on E, such that
|f−fn| → 0 uniformly on E. In case E is compact, then by the theorem of Behnke-Stein,
this is equivalent to such approximations by meromorphic functions having only finitely
many poles. Functions in M(E) necessarily lie in the set A(E) of continuous functions
E → C which are holomorphic on E0. Let us say that E is a set of uniform Euclidean
pole-free approximation if A(E) = M(E).

With the help of the Fusion Theorem 3.1.4, one can prove (see [3.20] ) the following
fundamental result, originally proved by Kodama [3.26].

Theorem 3.1.5 (Kodama). If K is a compact subset of a Riemann surface R and if for
every p ∈ K there is a closed neighbourhood W of p such that f |W ∈ M(K ∩W ), then
f ∈M(K).

Proof. Kodama proved this theorem for the case that R is an open Riemann surface.
Suppose R is compact. If K = R, the conclusion is trivial. This is because the

property of being meromorphic is local. A function is meromorphic in an open set if and
only if it is meromorphic in a neighbourhood of each point. Suppose K 6= R and choose
a point q ∈ R \K. By hypothesis, for every p ∈ K there is a neighbourhood Wp of p in
R, such that f |Wp ∈M(K ∩Wp). Now we remove the point q to form the open Riemann
surface Rq. It is easy to see that the set Up = Wp \ {q} is a closed neighbourhood of p in
Rq, satisfying f |Up ∈M(K ∩Up). But Kodama proved the theorem for this case. Hence
there is a sequence gn of meromorphic functions in Rq which are pole-free on K such
that |f − gn| < 1/n on K. By the Runge-type theorem for compact Riemann surfaces
due to Köditz and Timmann [3.28], for each n, there is a meromorphic function hn on R,
which is pole-free on K, such that |gn − hn| < 1/n on K. By the triangle inequality, the
sequence of functions {hn}, which are meromorphic on R and pole-free on K, converges
uniformly on K to f. Thus, f ∈M(K).

Corollary 3.1.6. If Ω is a compact Jordan region in a Riemann surface R, then Ω is a
set of Euclidean pole-free approximation.

Proof. The complement R \ Ω has only finitely many components, so if ϕ : D → C is a
closed parametric disc, ϕ(Ω∩D) has only finitely many complementary components in C.
By a theorem of Mergelyan, A(ϕ(Ω∩D)) = R(ϕ(Ω∩D)). By the Behnke-Stein Theorem,
it follows that A(Ω ∩D) = M(Ω ∩D). From Theorem 3.1.5, then, A(Ω) = M(Ω).

It follows from Theorem 3.1.5 that a compact set is a set of uniform Euclidean pole-
free approximation if it is locally so. There is also, for closed sets, a theorem in the other
direction due to Boivin and Jiang [3.9].
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Theorem 3.1.7 (Boivin-Jiang). Let E be a closed subset of a Riemann surface R. If
A(E) = M(E), then, for each closed parametric disc D, we have A(E∩D) = M(E∩D).

The known examples [3.18] also show that the converse of Theorem 3.1.7 is false in
general, without additional assumptions on E or R.

The following consequences of Theorem 3.1.7 are essentially obtained in [3.9].

Corollary 3.1.8. For a compact subset K of a Riemann surface, the following are equiv-
alent:

1) A(K) = M(K),

2) A(K ∩D) = M(K ∩D), for every closed parametric disc D,

3) for each p ∈ K, and each sufficiently small closed parametric disc Dp centred at p,
we have A(K ∩Dp) = M(K ∩Dp),

4) A(ϕ(K ∩D)) = R(ϕ(K ∩D)), for every closed parametric disc (ϕ : D),

5) for each p ∈ K, and for each sufficiently small closed parametric disc (ϕp : Dp)
centred at p, we have A(ϕp(K ∩Dp)) = R(ϕp(K ∩Dp)),

Proof. The preceding theorems give 1)↔ 2).
By the Runge-Behnke-Stein Theorem, 2)↔ 4) and 3)↔ 5). The implications 2)→ 3)

and 4)→ 5) are trivial and the implication 3)→ 1) follows from Theorem 3.1.5.

Corollary 3.1.9 ([3.16]). For a closed subset E with empty interior in a Riemann sur-
face, the following are equivalent:

1) E is a set of Euclidean pole-free tangential approximation,

2) E is a set of Euclidean pole-free uniform approximation,

3) C(E ∩D) = M(E ∩D), for every closed parametric disc D,

4) for each p ∈ E, and for each sufficiently small closed parametric disc Dp centred
at p, we have C(E ∩Dp) = M(E ∩Dp),

5) C(ϕ(E ∩D)) = R(ϕ(E ∩D)), for every closed parametric disc (ϕ : D),

6) for each p ∈ E, and for each sufficiently small closed parametric disc (ϕp : Dp)
centred at p, we have C(ϕp(E ∩Dp)) = R(ϕp(E ∩Dp)),

Proof. The proof is similar to that of the previous corollary, with the help of [3.16].

If we can approximate on each of two sets, it does not in general imply that we can
approximate on the union. A counterexample is given in [3.14, p. 113], where one of
the two sets is even a compact Jordan domain. However, in the following situations it is
possible.

Theorem 3.1.10. For j = 1, 2, let Kj be compact subsets of a Riemann surface such
that A(Kj) = M(Kj). If the compacta are disjoint, if one of them has empty interior or
if one of them is a compact Jordan region with analytic boundary, then

A(K1 ∪K2) = M(K1 ∪K2).
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Proof. First Suppose K1 ∩ K2 = ∅. Let f ∈ A(K1 ∪ K2) and ε > 0. Then f ∈ A(Kj).
By hypothesis A(Kj) = M(Kj). Then there exits a meromorphic function mj such that
|f −mj| < ε/2 on Kj. Since Kj is compact, there exits disjoint open neighbourhood
Uj of Kj such that mj is holomorphic on Uj. By the Behnke-Stein theorem, there exists a
meromorphic function m such that |m−mj| < ε/2 on Kj, and so |f−m| < ε on K1∪K2.

Now suppose K2 has analytic boundary. By Theorem 3.1.5, it is sufficient to show
that, for each p ∈ K1 ∪K2, there is a closed parametric disc Dp centred at p, such that

A((K1 ∪K2) ∩Dp) = M((K1 ∪K2) ∩Dp). (3.2)

Since A(K1) = M(K1), by Theorem 3.1.7, for every closed parametric disc Dp centred
at p, we have A(K1 ∩ Dp) = M(K1 ∩ Dp). Since the boundary of K2 is analytic, for
sufficiently small Dp, we have K2∩Dp is a Jordan domain bounded by two analytic arcs,
disjoint except for their common end points. So K2∩Dp is a Lyapunov domain, therefore
by Lemma 3 in [3.19],

A((K1 ∩Dp) ∪ (K2 ∩Dp)) = M((K1 ∩Dp) ∪ (K2 ∩Dp)),

Thus,
A((K1 ∪K2) ∩Dp) = M((K1 ∪K2) ∩Dp).

which is (3.2).
Now suppose K0

2 = ∅. First we consider the case where K1 and K2 are compact sets
in the complex plane. By the Vitushkin theorem, A(K) = R(K) if and only if for each
open disc D,

α(D \K) = α(D \K0),

where, for an arbitrary Borel set E, α(E) denotes the continuous analytic capacity
of E.

For K = K1 ∪K2,

α(D \ (K1 ∪K2)0) = α(D \K0
1) = α(D \K1),

The second equality is from the Vitushkin Theorem. The first equality is because
(K1 ∪ K2)0 = K0

1 . To see this, because K0
2 = ∅, it is sufficient to show that no point

of ∂K1 ∩ K2 can be in (K1 ∪ K2)0 = K0
1 . Suppose, to obtain a contradiction that z is

such a point. Then z has an open neighbourhood U ⊂ (K1 ∪K2). Since z is a boundary
point of K1, the open set U \K1 is nonempty and this nonempty open set is contained
in (K1 ∪K2) \K1, which is contained in K2. But this is a contradiction, since K0

2 = ∅.
A second form of the Vitushkin Theorem states that A(K) = R(K) if and only if, for

every open set U, we have α(U \K) = α(U \K0). Applying this to the compact set K2

and the open set D \K1, we have, since K0
2 = ∅,

α(D \K1) = α(U) = α(U \K0
2) = α(U \K2) = α(D \ (K1 ∪K2)).

Combining the previous two equations, we have A(K1 ∪K2) = R(K1 ∪K2), by the
first version of Vitushkin’s theorem.
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We now prove the theorem for the general case where K1 and K2 are compact subsets
of a Riemann surface. By Corollary 3.1.8, it is sufficient to show that, for every closed
parametric disc D, A(ϕ((K1 ∪K2) ∩D)) = R(ϕ((K1 ∪K2) ∩D)). By the Corollary, we
have A(ϕ(Kj ∩D)) = R(ϕ(Kj ∩D)), j = 1, 2, so by the planar case,

A(ϕ((K1 ∪K2) ∩D)) = A(ϕ(K1 ∩D) ∪ ϕ(K2 ∩D)) =

R(ϕ(K1 ∩D) ∪ ϕ(K2 ∩D)) = R(ϕ((K1 ∪K2) ∩D)),

which concludes the proof.

Definition 3.1.11. A closed subset E of an open Riemann surface is said to be essentially
of finite genus if there exists an open covering {Ui : i ∈ I} of E such that Ui ∩ Uj = ∅ if
i 6= j and each Ui is of finite genus.

If R is of finite genus, then every closed subset of R is automatically essentially of
finite genus and if R is of infinite genus, then it is not of essentially finite genus, since
Riemann surfaces are by definition connected.

Theorem 3.1.12. Let E be the union of a locally finite family of disjoint compact sets
of uniform Euclidean pole-free approximation in a Riemann surface R. Then E is a set
of Euclidean pole-free tangential approximation.

Proof. By assumption E = ∪En, where {En} is the locally finite family in the hypotheses.
If the family is finite, then the conclusion follows from Theorem 3.1.10, so we suppose the
family is infinite. It follows that R is open and E is essentially of finite genus. Theorem
2 in [3.16] states that, if E is a closed subset that is essentially of finite genus in an open
Riemann surface R, and R \ E is unbounded (this condition was omitted by error in
[3.16]), then E is a set of Euclidean pole-free uniform approximation. This applies to our
set E.

First of all, since {En} is a locally finite family of disjoint compact sets, it follows
that R is open. Suppose to obtain a contradiction that R \E is bounded. Then, at most
finitely many of the En, say E1, . . . , Em can meet the compacts set R \ E. Now

R =
(
(R \ E) ∪ E1 ∪ · · · ∪ Em

)
∪

(⋃
n>m

En

)
represents R as the union of two disjoint closed sets, contradicting the connectivity of R.
Thus R \ E is unbounded as claimed.

Indeed, we may cover E by a locally finite family {Un} of disjoint open sets of finite
genus.

Fix an arbitrary positive continuous function ε on E. Set εn = min{ε(p) : p ∈ En}.
We define a holomorphic function on U = ∪Un, by setting h = 1 + 1/εn on each Un
respectively. Let g∞ be a meromorphic function on R such that |g∞ − h| < 1 on E. The
g∞ exists by Runge- type theorem” Behnk-Stien” Then |g∞| > 1/εn on En, for each n.

Fix an arbitrary f ∈ A(E). Let g0 be a meromorphic function such that |fg∞−g0| < 1
on E and set g = g0/g∞. Then for p ∈ En,

|f(p)− g(p)| = |f(p)g∞(p)− go(p)| ·
1

|g∞(p)|
< εn ≤ ε(p).
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Corollary 3.1.13. Let E be the union of a locally finite family of disjoint compact
Jordan regions in a Riemann surface R. Then E is a set of Euclidean pole-free tangential
approximation.

Proof. This follows immediately from the theorem 3.1.12 and Corollary 3.1.6.

In case the function to be approximated on a compact set K is holomorphic on
a neighbourhood of K, the following result of Scheinberg [3.30] allows us to specify
the location of poles of approximating meromorphic functions. It is a generalization of
Runge’s theorem to Riemann surfaces.

Theorem 3.1.14 (Scheinberg). Let K be a compact subset of an open Riemann surface R
and let P be a set consisting of one point from each bounded complementary component of
K. Then, each holomorphic function on K is the uniform limit of meromorphic functions
all of whose poles lie in P.

3.2 Spherically uniform and tangential approxima-

tion

The chordal distance χ in C ∪ {∞} is defined as follows:

χ(z1, z2) =
|z1 − z2|

(1 + |z1|2)
1
2 (1 + |z2|2)

1
2

, z1, z2 ∈ C,

χ(z,∞) =
1

(1 + |z|2)
1
2

, χ(∞,∞) = 0.

If fn, f : E → C, n = 1, 2, ... are mappings defined on a set E, then fn is said to converge
spherically uniformly (or χ-uniformly) to f on E, if ,

sup
z∈E

χ(fn(z), f(z))→ 0, as n→∞.

For a closed set E ⊂ R, we denote by Mχ(E) the class of mappings f : E → C,
which are χ-uniform limits on E of holomorphic mappings R → C, in other words of
meromorphic functions R→ C ∪ {∞}.

Clearly, Mχ(E) ⊂ Aχ(E), where Aχ(E) denotes the family of all continuous mappings
f : E → C which are holomorphic on the interior E0. Equivalently, Aχ(E) is the family
of spherically continuous functions f : E → C ∪ {∞}, which on each component of E0

are meromorphic or identically ∞.
An open problem is to characterize pairs (E,R), for which Mχ(E) = Aχ(E), where

E is a closed subset of a Riemann surface R. We call such a set E a set of uniform
spherical approximation. We shall show that a compact set is a set of uniform spherical
approximation if and only if it is a set of uniform Euclidean pole-free approximation.
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For a point p in a Riemann surface R, we say that Dp is a closed parametric disc
centred at p if there is an injective holomorphic function h : U → C defined in a neigh-
bourhood U of Dp such that h(Dp) is the closed unit disc and h(p) = 0. The following is
a spherical version of the Bishop-Kodama Localization Theorem.

Theorem 3.2.1. Let f : K → C, where K is a compact subset of a Riemann surface R.
Suppose that for each p ∈ K there is a closed parametric disc Dp with center p such that

f |(K∩Dp) ∈Mχ(K ∩Dp).

Then f ∈Mχ(K).

Proof. Set
K1 = {p ∈ K : |f(p)| ≤ 1/2}, (3.3)

K0 = {p ∈ K : 1/2 ≤ |f(p)| ≤ 1}, and (3.4)

K2 = {p ∈ K : |f(p)| ≥ 1}. (3.5)

Let a > 1 be a positive constant associated with K1 and K2 by the Fusion Theorem
3.1.4. Since f is continuous and finite-valued in a neighbourhood of K1 ∪ K0, for each
p ∈ K1 ∪K0, there is a closed parametric disc Dp for which

f |(K∩Dp) ∈M(K ∩Dp).

Thus, by Theorem 3.1.5 for each ε > 0, there is a function r1 holomorphic in a
neighbourhood of K1 ∪K0, such that

|r1 − f | < ε/16a < ε/2 on K1 ∪K0. (3.6)

Similarly, there is a function r2 holomorphic on K2 ∪K0, such that

|r2 − 1/f | < ε/16a < ε/2 on K2 ∪K0. (3.7)

Hence,
χ(1/r2, f) = χ(r2, 1/f) ≤ |r2 − 1/f | < ε/2 on K2 ∪K0. (3.8)

Therefore,
|r2| ≥ 1/|f | − ε/2 ≥ 1/2− ε/2 > 1/4 on K0,

if ε < 1/2. By (3.7),

|1/r2 − f | <
ε

16a

|f |
|r2|

<
ε

4a
on K0, (3.9)

and by (3.6) and (3.9)

|r1 − 1/r2| <
ε

2a
on K0.

By the Fusion Theorem 3.1.4, there is an r ∈M(R) with

|r − r1| < ε/2 on K1 ∪K0; (3.10)

|r − 1/r2| < ε/2 on K0 ∪K2. (3.11)
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Thus, on K1 ∪K0,
χ(r, f) ≤ |r − f | ≤ |r − r1|+ |r1 − f | < ε,

and on K0 ∪K2, by (3.11) and (3.8),

χ(r, f) ≤ χ(r, 1/r2) + χ(1/r2, f) < ε.

Corollary 3.2.2. Let K be a compact subset of Riemann surface. If for each p ∈ K,
there exists a closed parametric disc Dp centred at p such that Aχ(K∩Dp) = Mχ(K∩Dp),
then Aχ(K) = Mχ(K).

Proof. Let f ∈ Aχ(K). Then, for each p ∈ K and each closed parametric disc Dp, we
have f ∈ Aχ(K ∩Dp). By the preceding theorem f ∈Mχ(K), so Aχ(K) ⊂Mχ(K). The
opposite inclusion is obvious.

The following was first proved in [3.22] for compact subsets of the Riemann sphere.

Theorem 3.2.3. For a compact subset K of a Riemann surface, we have

Aχ(K) = Mχ(K) if and only if A(K) = M(K).

Proof. The implication from left to right is clear. Let f ∈ A(E) and ε ∈ C(E) be
positive. Since f is bounded on compact sets, there exists δ ∈ C(E) positive, such that,
if g : E → C and χ(f, g) < δ, then g is finite-valued and |f − g| < ε. If E is a set of
spherical tangential approximation, there is a meromorphic g such that χ(f, g) < δ.

Suppose A(K) = M(K) and let f ∈ Aχ(K). For each p ∈ K we may choose a closed
parametric disc Dp such that f |(K∩Dp) ∈ A(K ∩Dp) or 1/f |(K∩Dp) ∈ A(K ∩Dp).

Since M(K ∩Dp) ⊂ Mχ(K ∩Dp), we have f ∈ Mχ(K ∩Dp) or 1/f ∈ Mχ(K ∩Dp).
Since f ∈ Mχ(K ∩ Dp) if and only if 1/f ∈ Mχ(K ∩ Dp), it follows that f |(K∩Dp) ∈
Mχ(K ∩Dp). By Theorem 3.2.1, f ∈Mχ(K).

Combined with the previous section, this theorem yields the following corollaries.

Corollary 3.2.4. For a compact subset K of a Riemann surface, the following are equiv-
alent:

1) Aχ(K) = Mχ(K),

2) Aχ(K ∩D) = Mχ(K ∩D), for every closed parametric disc D,

Proof. 1)→ 2) Suppose Aχ(K) = Mχ(K). Then, by Theorem 3.2.3, A(K) = M(K) and
so by Theorem 3.1.7, for every closed parametric disc D, A(K ∩D) = M(K ∩D). The
sets K ∩D are compact, so again by applying Theorem 3.2.3, Aχ(K ∩D) = Mχ(K ∩D).

2) → 1) Suppose Aχ(K ∩ D) = Mχ(K ∩ D), for every closed parametric disc D
Then, by Theorem 3.2.3, A(K ∩ D) = M(K ∩ D), for every closed parametric disc D.
It follows easily from Theorem 3.1.5 that A(K) = M(K), and so by Theorem 3.2.3,
Aχ(K) = Mχ(K).
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Corollary 3.2.5. For j = 1, 2, let Kj be compact subsets of a Riemann surface such that
Aχ(Kj) = Mχ(Kj). If the compacta are disjoint, if one of them has empty interior or if
one of them is a compact Jordan region with analytic boundary, then

Aχ(K1 ∪K2) = Mχ(K1 ∪K2).

Proof. By Theorem 3.2.3, Aχ(Kj) = Mχ(Kj) if and only if A(Kj) = M(Kj). Then, by
Theorem 3.1.10, A(K1 ∪K2) = M(K1 ∪K2) in each case of the hypothesis, and so again
by Theorem 3.2.3, Aχ(K1 ∪K2) = Aχ(K1 ∪K2).

The preceding theorem says that a compact set is a set of spherical uniform approx-
imation if and only if it is a set of Euclidean uniform pole-free approximation. We now
consider corresponding questions for closed sets.

Lemma 3.2.6. Let E be a closed subset of a Riemann surface R and let f ∈ Cχ(E).
Then, f can be extended to a continuous mapping F ∈ Cχ(U), where U is a neighbourhood
of E.

Proof. This follows directly from Theorem 2-35 in [3.25].

Theorem 3.2.7 (Whitney theorem). For every open subset U of Rn, for every continuous
f : U → Rk and for every positive continuous function ε on U, there exists a function F,
analytic on U, such that

||F (x)− f(x)|| < ε(x), for all x ∈ U.

Lemma 3.2.8. Let E be a closed subset of a Riemann surface R, let f ∈ Cχ(E) and ε be
a positive continuous function on E. Then, there is an open neighbourhood N of E and
a (real) analytic mapping g : N → C, such that

sup
p∈E

χ(f(p), g(p)) < ε(p).

Proof. We may consider that R is properly embedded in a Euclidean space Rn, Rudy
theorem and C is the unit sphere S2 centred at the origin in R3. By Lemma 3.2.6, we may
extend f continuously as a mapping f : U → S2, where U is an open neighbourhood of
E in Rn. By the Tietze Extension Theorem, we may consider that ε is also defined on all
of U. By choosing U smaller, we may assume that ‖f‖ > 1/2 on U. Thus F = f/‖f‖ is
a continuous extension U → S2 of f. By the Whitney Approximation Theorem, for each
positive continuous function η on U, there is an analytic mapping h : U → R3 such that
‖F (p)−h(p)‖ < η(p). We may assume that η < 1/2. Thus |h| ≥ |F |−|F−h| > 1/2, so the
mapping g(p) = h(p)/‖h(p)‖ is well-defined and analytic. Moreover, g takes its values on
S2. Since the projection q → q/‖q‖ is uniformly continuous in the shell 1/2 ≤ ‖q‖ ≤ 3/2,
we may choose η to tend to zero so rapidly as ‖p‖ → ∞, that ‖F (p)− g(p)‖ < ε(p) on U.
Since F (p) and g(p) both lie on S2, the Euclidean distance between them is the same as
the chordal distance and so we have χ(F (p), g(p)) < ε(p), for p ∈ U. Setting N = U ∩R,
we have the desired conclusion.
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Theorem 3.2.9. If a closed set E in a Riemann surface is a set of spherical tangential
approximation, then it is also a set of Euclidean pole-free tangential approximation.

Proof. Let f ∈ A(E) and ε ∈ C(E) be positive. Since f is bounded on compact sets,
there exists δ ∈ C(E) positive, such that, if g : E → C and χ(f, g) < δ, then g is
finite-valued and |f − g| < ε. If E is a set of spherical tangential approximation, there is
a meromorphic g such that χ(f, g) < δ. Thus, E is a set of uniform Euclidean pole-free
approximation.

Corollary 3.2.10. If a closed set E in a Riemann surface is a set of spherical tangential
approximation, then the family of components of the fine interior of E, and hence also
the family of components of the interior, must satisfy the long islands condition.

Proof. By Theorem 3.2.9, E is a set of Euclidean pole-free tangential approximation, so
by Theorem 2 and a remark after that in [3.6] , the family of components of the fine
interior satisfy the long islands condition. Since any subfamily of a family satisfying
the long islands condition must also satisfy the long islands condition, it follows that the
family of components of the interior of E must also satisfy the long islands condition.

We shall consider the case E0 = ∅ in a more general context in the following section.
The general situation, when E0 6= ∅ is not understood, but we have the following partial
result.

Theorem 3.2.11. Let E be the union of a locally finite family of disjoint compact sets of
uniform spherical approximation in a Riemann surface R. Then E is a set of spherical
tangential approximation.

Proof. Let f ∈ Aχ(E) and ε > 0 be an arbitrary continuous function on E. If f ≡ ∞, we
may approximate f by the constant functions fn = n, n = 1, 2, . . . , so we shall assume
that f 6≡ ∞.

If the family of compacta is finite, then by Corollary 3.2.5, the conclusion holds, so
we assume that the family is infinite.

By hypothesis E = ∪Ej where Ej’s are compact disjoint sets of uniform approxima-
tion which form a locally finite family. Let Kn be a regular exhaustion of R, where each
Kn is bounded by finitely many disjoint analytic curves. Choose n1 so large such that
Kn1 ∩ E 6= ∅. Let F1 be the union of the Ej’s which meet Kn1 . Now choose n2 so large
that Kn2 ∩ E 6= ∅ and F1 ⊂ K0

n2
. Let F2 be the union of the Ej’s which meet Kn2 . We

construct in this way sequences {Knk} and {Fk} and we put

Hk = Knk ∪ Fk+1 =
(
Knk ∪ Fk

)
∪ (Fk+1 \ Fk).

Note that Fk and Fk+1 \ Fk are sets of approximation, because they are finite unions of
disjoint sets of approximation. Also, Knk ∪Fk is a set of approximation, because it is the
union of two sets of approximation, one of which is bounded by finitely many disjoint
analytic curves. Therefore, Hk is a set of approximation, because it is the union of the
two disjoint sets of approximation Knk ∪ Fk and Fk+1 \ Fk.
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Setting F0 = ∅, we may choose a sequence εk of positive numbers decreasing so rapidly
that for each k = 0, 1, . . . ,

εk+1 + εk+2 + · · · < min{ε(p) : p ∈ Fk+1 \ Fk}/2.

Let g1 be a meromorphic function on R such that χ(f, g1) < ε1 on F1.
Define h1 on H1 by setting h1 = g1 on Kn1 ∪ F1 and h1 = f on F2 \ F1. Then

h1 ∈ Aχ(H1). Let g2 be a meromorphic function on R such that χ(h1, g2) < ε2 on H1.
On Kn1∪F1 we have χ(g2, g1) < ε2. On F1, we have χ(g2, f) ≤ χ(g2, g1)+χ(g1, f) < ε2+ε1.
On F2 \ F1, we have χ(g2, f) < ε2.

Define h2 on H2 by setting h2 = g2 on Kn2 ∪ F2 and h2 = f on F3 \ F2. Then
h2 ∈ Aχ(H2). Let g3 be a meromorphic function on R such that χ(h2, g3) < ε3 on H2. On
Kn2∪F2 we have χ(g3, g2) < ε3. On F1, we have χ(g3, f) ≤ χ(g3, g2)+χ(g2, f) < ε3+ε2+ε1.
On F2 \ F1, we have χ(g3, g2) + χ(g2, f) < ε3 + ε2. On F3 \ F2, we have χ(g3, f) < ε3.

We proceed by induction passing from step m to step m+1 in the same way as we
went from step 1 to step 2 and from step 2 to step 3. In this way we obtain a sequence
of meromorphic functions {gk} having the following properties. For k = 1, 2, 3, . . . ,

χ(gk+1, gk) < εk+1 on Knk ∪ Fk;

χ(gk+1, f) < εk+1 + . . .+ ε1, on F1;

χ(gk+1, f) < εk+1 + . . .+ ε2, on F2 \ F1;

.

.

.
χ(gk+1, f) < εk+1 on Fk+1 \ Fk.

The sequence {gk} is now inductively defined for all k = 1, 2, . . . . The sequence {gk}
is spherically uniformly Cauchy on compact subsets and hence converges to a function g
identically infinite or meromorphic on R.

Now, let us estimate χ(f, g). Fix p ∈ E. Then p ∈ Fk+1 \ Fk, for some k, and

χ(f(p), g(p)) ≤ χ(f(p), gk+1(p)) +
m∑

j=k+1

χ(gj(p), gj+1(p)) + χ(gm+1(p), g(p)) <

εk+1 +
m+2∑
j=k+2

εj + χ(gm+1(p), g(p)).

Letting m→ +∞, we have

χ(f(p), g(p)) ≤
∞∑

j=k+1

εj < ε(p).
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The following case is of particular interest for us in view of the main result of the next
section. Notice here that there is no restriction on the genus of the respective Jordan
regions, whereas in the next section, the corresponding result will be for Jordan regions
of genus zero.

Corollary 3.2.12. Let E be the union of a locally finite family of disjoint compact Jordan
regions in a Riemann surface R. Then E is a set of tangential spherical approximation.

Proof. We have proved that compact Jordan regions are sets of uniform Euclidean pole-
free approximation. Later we proved that for compact sets, it is equivalent to be a set of
uniform spherical approximation. Thus it satisfies the condition of previous theorem.

In case E has empty interior, the following theorem states that the possibilities of
(tangential, uniform, local) Euclidean pole-free and spherical approximations are equiv-
alent.

Theorem 3.2.13. If E is a closed subset of a Riemann surface R such that E0 = ∅,
then the following are equivalent:

1a) E is a set of spherical tangential approximation,
1b) E is a set of spherical uniform approximation,
1c) E ∩K is a set of spherical uniform approximation, for every compact K,
2a) E is a set of Euclidean pole-free tangential approximation,
2b) E is a set of Euclidean pole-free uniform approximation,
2c) E ∩K is a set of Euclidean pole-free uniform approximation, for every compact

K.

Proof. 1a)→ 1b) is obvious and
1c)↔ 2c) follows from Theorem 3.2.3.
2a) → 2b) → 2c) → 2a). First of all 2a → 2b) is trivial. 2b) → 2c) follows from the

fact that every continuous function on E ∩K can be extended to E. 2c) → 2a) follows
from [3.16].

1a)→ 2a) is Theorem 3.2.9.
1b) → 2a) Suppose E is a set of spherically uniform approximation. Then, in par-

ticular, every f ∈ C(E) can be spherically uniformly approximated by meromorphic
functions. In particular, every bounded f ∈ C(E) can be spherically uniformly ap-
proximated by meromorphic functions. But, for bounded functions, spherically uniform
approximation is equivalent to Euclidean uniform approximation. If E0 = ∅, we claim
that C(E ∩ K) = M(E ∩ K) for every compact K. Indeed, let K be compact and
f ∈ C(E ∩ K). We may extend, by Teitz extension theorem, f to a bounded function
F ∈ C(E). Given ε > 0, there is a meromorphic function G such that |F − G| < ε.
In particular, |f − G| < ε. This proves the claim. Since C(E ∩ K) = M(E ∩ K) for
every compact K, it follows from [3.16] that E is a set of Euclidean pole-free tangential
approximation.

1c) → 1a) Let f ∈ Cχ(E) and ε be a positive continuous function on E. Let Gn

be a regular exhaustion of R and set εn(z) = infz∈E∩Gn ε(z). By the hypothesis there
exists a meromorphic function g1 such that χ(f, g1) < ε2/2

2 on E ∩G1. We proceed the
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proof by induction. Set g0 = g1 and G0 = ∅. Suppose we have meromorphic functions
gj; j = 1, · · · , n− 1, such that

χ(gj, f) <
εj+1

2j+1
on E ∩ ∂Gj, (3.12)

χ(gj, gj−1) <
εj+1

2j+1
on Gj−1, (3.13)

χ(gj, f) <
εj
2j

+
εj+1

2j+1
on E ∩ (Gj \Gj−1). (3.14)

We shall construct gn. If we identify the sphere C with the unit sphere S in R3, then
we may consider gn−1(p) and f(p) as vectors in R3 lying on S. Define fn to be gn−1 on
Gn−1 and to be f on ∂Gn. Consider the vector function λ(p) which on ∂Gn is 0 and on
∂Gn−1 is gn−1(p)− f(p), considered as a vector in the ball of radius εn−1/2

n−1 in R3. Let
Λ(p) be a continuous extension of λ(p) to R, whose values remain in the ball of radius
εn/2

n in R3. On E ∩ (Gn \Gn−1), define

fn(p) =
f(p) + Λ(p)

|f(p) + Λ(p)|
.

Since fn(p) is of norm 1, on E ∩ (Gn \Gn−1), we may consider it as a continuous map to
the Riemann sphere. Combining the three definitions of fn, we have that fn ∈ Aχ(Gn−1∪
(E ∩Gn)) and

χ(fn, f) < εn/2
n

on E ∩ (Gn \Gn−1).
By Corollary 3.1.6, Theorem 3.2.3 and Corollary 3.2.5,

Aχ(Gn−1 ∪ (E ∩Gn)) = Mχ(Gn−1 ∪ (E ∩Gn)).

Then there exists a meromorphic function gn such that

χ(gn, fn) < εn+1/2
n+1.

on Gn−1 ∪ (E ∩Gn). We have

χ(gn, f) ≤ χ(gn, fn) + χ(fn, f) < εn+1/2
n+1 + εn/2

n,

on E ∩ (Gn \Gn−1);
χ(gn, gn−1) < εn+1/2

n+1 on Gn−1;

and
χ(gn, f) < εn+1/2

n+1 on E ∩ ∂Gn.

We have established by induction the existence of a sequence {gj} of meromorphic
functions satisfying (3.12), (3.13) and (3.14).

The sequence gn is spherically uniform Cauchy on compact subsets and so converges
to a function g identically infinite or meromorphic on R. For p ∈ E ∩ (Gn \ Gn−1) and
for all m > n,

χ(f(p), gm(p)) ≤ χ(f(p), gn(p)) + Σm−1
j=n+1χ(gj(p), gj−1(p)) <

εn/2
n + εn+1/2

n+1 + Σm−1
j=n+1εj+1/2

j+1 < εn.

Letting m goes to infinity, χ(f, g) ≤ εn ≤ ε(p). Hence, 1c)→ 1a).
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3.3 Pole-free spherically uniform and tangential ap-

proximation

For a mapping f : E → C on a subset E of a Riemann surface R, we say that f has a
pole at a point p if f(p) =∞ and we say that f is pole-free on E if f omits the value ∞
on E. In this section, we study the space M̃(E) of functions f : E → C, for which there
is a sequence of functions fn meromorphic on R and pole-free on E, such that fn → f
χ-uniformly on E. Of course, such a function f must be in Aχ(E) and by the Hurwitz
theorem, in each component V of E0, the mapping f is either pole-free or identically ∞.
We denote by Ã(E) the space of such functions. Let us say that E is a set of pole-free

(uniform) spherical approximation if M̃(E) = Ã(E). Thus, E is a set of pole-free uniform

spherical approximation if and only if, for each f ∈ Ã(E) and for each number ε > 0,
there is a function g, meromorphic on R and pole-free on E, such that χ(f(p), g(p)) < ε,
for all p ∈ E. Moreover, we shall say that E is a set of tangential pole-free spherical
approximation, if we may take ε to be an arbitrary positive continuous function. Thus,
χ(f(p), g(p)) < ε(p), for all p ∈ E.

It is in general impossible to approximate continuous functions to the Riemann sphere
by continuous finite-valued functions, but the following lemma has a sufficiently strong
hypothesis.

Lemma 3.3.1. Let E be a closed subset of a Riemann surface R with Eo = ∅ and U an
open neighbourhood of E. Let f be a function meromorphic on U and let ε be a positive
continuous function on U. Then there is a function g ∈ Cχ(U) pole-free on E (thus
g|E ∈ C(E) ), such that χ(f(p), g(p)) < ε(p), for all p ∈ E.

Proof. Let {pn} be an enumeration of the poles of f which lie on E and, for each n, let
Dn be a closed parametric disc at pn, such that pn is the only pole of f in Dn and the
family {Dn} is locally finite in U. We may assume that the Dn are so small that

max{χ(f(p), f(q)) : p, q ∈ Dn} < min{ε(x) : x ∈ Dn}.

Choose a point qn ∈ Dn \ E. Let ηn : Dn → Dn be a continuous map which fixes ∂Dn

such that η(qn) = pn. Define g(p) = f(p), for p 6∈ ∪nDn and g = f ◦ ηn on Dn, for each
n. Then g has the required property.

The chordal distance is not linear, however the following lemma is a helpful substitute
for linearity.

Lemma 3.3.2. Given M > 0 and ε > 0, there exists δ > 0, such that, if a, b ∈ C, with
χ(a,∞), χ(b,∞) < δ and c, d ∈ C, with |c|, |d| < M, then χ(a+ c, b+ d) < ε.

Proof. By the triangle inequality,

χ(a+ c, b+ d) ≤ χ(a+ c,∞) + χ(∞, b+ d),

so it is sufficient to show there is a δ such that both χ(a+ c,∞) < ε/2 and χ(b+d,∞) <
ε/2. Both cases are the same, so we show the first.

χ(a+ c,∞) ≤ χ(a+ c, a) + χ(a,∞) < o(1) + δ, as δ → 0.
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Thus, for all sufficiently small δ, we have χ(a+c, a) < ε/4. If we choose δ with the further
property that δ < ε/4, the proof is complete.

The following lemma enables us to “push” poles.

Lemma 3.3.3. Suppose E is a closed subset of an open Riemann surface R and f is
meromorphic in an open neighbourhood U of E and has a single pole at a point p0 ∈ E.
Then, for each compact K ⊂ E and for each ε > 0, there is a neighbourhood N of p0 in
U, such that, for each q ∈ N, there is a function fq meromorphic on U, whose only pole
on K ∪N is at q and

max
p∈K

χ(f(p), fq(p)) < ε.

Proof. Let ρ(p) = z be a local coordinate near p0, such that ρ(p0) = 0. Let C(p, q) be a
Cauchy kernel on R. For p and q near p0, we may write

C(p, q) =
1

z − w
+H(z, w),

where z = ρ(p), w = ρ(q) and H is holomorphic. In particular,

C(p, p0) =
1

z
+H(z, 0).

In this local coordinate,

f(z) = P

(
1

z

)
+ h(z),

where P is the principal part of f(z) at 0 and h is holomorphic. Then, for p near p0, we
may write

f(p) = P (C(p, p0)) + h(p),

where, by abuse of notation, we write f(p) = f(ρ(p)) = f(z) and h(p) = h(ρ(p)) = h(z).
We claim that, for each compact set K and each ε > 0, there is a neighbourhood Nε

of p0, such that

max
p∈K

χ(C(p, q), C(p, p0)) < ε, for all p ∈ K, q ∈ Nε. (3.15)

We may choose a parametric disc z : Dδ → (|z| < δ) for p0, such that C(p, q)
is holomorphic on (R × R) \ (Dδ × Dδ) and in local coordinates in Dδ × Dδ, we have
C(p, q) = (z−w)−1+H(z, w). In particular, we have, by Lemma 3.3.2, and for sufficiently
small δ,

χ(C(p, q), C(p, p0)) = χ

(
1

z − w
+H(z, w),

1

z
+H(z, 0)

)
< ε for p, q ∈ Dδ. (3.16)

Now, we consider the situation, when p 6∈ Dδ. If we fix an arbitrary strictly smaller
parametric disc

z : Dη → (|z| < η) at p0, then, since C(p, q) is holomorphic on (R \ Dδ) × Dδ, it is
uniformly continuous on (K \Dδ)×Dη. Hence, if η is small enough,

χ(C(p, q), C(p, p0)) ≤ |C(p, q)− C(p, p0)| < ε, for p ∈ K \Dδ, q ∈ Dη. (3.17)
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Combining the estimates (3.16) and (3.17), we have (3.15).
Since polynomials are (uniformly) continuous mappings C→ C, it follows from (3.15)

that

max
p∈K

χ(P (C(p, p0)), P (C(p, q)))→ 0, as q → p0.

Set a = P (C(p, p0)), b = P (C(p, q))), c = d = f − a and fq(p) = f(p) − P (C(p, p0)) +
P (C(p, q)). Then, by Lemma 3.3.2, since c = c(p) remains bounded for p ∈ K ∪Dη,

χ(f(p), fq(p)) = χ(a+ c, b+ c)→ 0, as q → p0.

To obtain the conclusion of the Lemma, it is sufficient to set N = Dη, for sufficiently
small η.

Lemma 3.3.4. Suppose E is a closed subset of an open Riemann surface R and f is
meromorphic in an open neighbourhood U of E and pole-free on E0. Then, f |K ∈ M̃(K),
for each compact K ⊂ E.

Proof. We claim that for each ε > 0, there is a function fK meromorphic on U and
pole-free on K, such that

max
p∈K

χ(f(p), fK(p)) < ε.

The function f has at most finitely many poles p1, · · · , pn on K. Setting p0 = p1 in the
previous lemma, we obtain a function f1 meromorphic on U such that χ(f, f1) < ε/n on
K and f1 has the same poles on K, except for the pole p1 which has been shifted to q1.
We may choose as q1 any point sufficiently close to p1. Since p1 ∈ ∂E, we may choose
q1 6∈ E. The function f1 thus has one less pole on K. We apply the same procedure to
f1 to remove the pole p2. After finitely many steps, we arrive at the function fn, which
we define as fK . By the Behnke-Stein theorem, there is a function g meromorphic in R,
such that |fK − g| < ε on K. Of course g is pole-free on K and χ(fK , g) < ε on K. By
the triangle inequality, χ(f, g) < 2ε on K, which concludes the proof.

For a compact set with empty interior, the following theorem states that the pos-
sibilities of Euclidean pole-free, spherical, and spherical pole-free approximations are
equivalent.

Theorem 3.3.5. Let K be a compact subset of an open Riemann surface and K0 = ∅.
Then Mχ(K) = M̃(K), and

A(K) = M(K) ⇔ Aχ(K) = Mχ(K) ⇔ Ã(K) = M̃(K). (3.18)

Proof. By definition, M̃(K) ⊂ Mχ(K). Now, suppose Ko = ∅ and f ∈ Mχ(K). Then,
for each n = 1, 2, · · · , there is a function fn, meromorphic on R, such that χ(f, fn) < 1/n
on K. By Lemma 3.3.4, for each n, there exists a function gn meromorphic on R and
pole-free on K, such that

max
p∈K

χ(fn(p), gn(p)) < 1/n.

Thus, gn → f χ-uniformly on K and so f |K ∈ M̃(K).

46



By Theorem 3.2.3, the first equivalence in (3.18) is true even if Ko 6= ∅. Now, suppose

Ko = ∅ and Aχ(K) = Mχ(K). If f ∈ Ã(K), then f ∈ Aχ(K), so f ∈ Mχ(K) = M̃(K)

(since K0 = ∅) and hence Ã(K) ⊂ M̃(K). Since we always have the opposite inclusion,
we have the third equality in (3.18). We have shown that the second equality implies the
third.

Now, suppose we have the third equality for a compact set K having empty interior,
and let f ∈ A(K). Then, there is a sequence gn of meromorphic functions on R, pole-free
on K, which converges χ-uniformly on K to f. Since f is bounded, the convergence is
also Euclidean uniform, so f ∈M(K) and we have shown that A(K) ⊂M(K). Since the
opposite inclusion is always true, we have shown that A(K) = M(K). We have shown
that the third equality in (3.18) implies the first. This completes the proof of (3.18) and
of the theorem.

Lemma 3.3.6. Suppose a closed subset E of a Riemann surface is a set of spherically
pole-free uniform approximation and f ∈ A(E). Then f |K ∈M(K), for each compact set
K ⊂ E.

Proof. Since a function f ∈ A(E) can be uniformly spherically approximated by mero-
morphic function pole-free on E, it follows that the restriction of f to an arbitrary com-
pact subset of E can be spherically uniformly approximated by meromorphic functions
pole-free on E. Since such a restriction is bounded, it follows that it can be uniformly
approximated in the Euclidean distance by meromorphic functions pole-free on E.

Our next theorem will be phrased in terms of Gleason parts.

Definition 3.3.7. For a compact subset K of a Riemann surface R, the space Spec(M(K))
of non-zero (continuous) multiplicative linear functionals on the algebra M(K) can be
identified with K itself [3.29], where the action of a point of K on M(K) is that of
evaluation at p. We define an equivalence relation on K as follows. For any two points
p, q ∈ K, we write p ∼ q if and only if

‖p− q‖ ≡ sup{|f(p)− f(q)| : f ∈M(K), |f | ≤ 1} < 2.

The equivalence classes are called Gleason parts for the algebra M(K). See [3.10].

The following lemma can be found in [3.10, p. 130].

Lemma 3.3.8. If W is a component of K0, then W is contained in a single Gleason
part of M(K).

Wilken showed that, if K is a compact subset of C, the Gleason parts of the algebra
R(K) are connected. Boivin [3.7] extended this result to Riemann surfaces as follows.

Lemma 3.3.9. If P is a Gleason part for M(K), then P is connected.

The previous definition defines Gleason parts for M(K), when K is compact. For a
closed subset E of a Riemann surface R, Boivin [3.6] introduced the following notion of
Gleason parts for the algebra M(E).
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Definition 3.3.10. Let E be a closed subset of R and let Kn be an exhaustion of R by
compacta. We define the parts of E to be the limit as n tends to∞ of the Gleason parts
of M(E ∩Kn); that is, two points of E are in the same part of E if eventually they are
in the same Gleason part of M(E ∩Kn). A part is called trivial if it consists of only one
point.

It is shown in [3.6] that this definition makes sense and is independent of the choice
of the exhaustion Kn.

Definition 3.3.11. Let P ⊂ K ⊂ R. If K is compact and P is an (at most countable)
union of non-trivial Gleason parts of M(K), we say (P , K) is a Nersesjan pair.

Lemma 3.3.12. [3.6, Prop. 2] If the Gleason parts of a closed subset E of R satisfy the
long islands condition, then there exists an exhaustion Dn of R, such that for all n : Dn

is compact and connected; Dn ⊂ D0
n+1; and Dn is the union of (at most countably many)

non-trivial Gleason parts of M(Dn ∪ (E ∩Dn+1)).

Boivin does not explicitly say that the Dn are connected, but it can be deduced from
his construction using Lemma 3.3.9.

We shall need the following easily verified fact, which is also used in [3.6] .

Lemma 3.3.13. Let {Dn} be as in the previous lemma. There exists an exhaustion by

compact sets D̂n with (D̂n)0 connected, such that Dn ⊂ (D̂n)0, D̂n ⊂ (Dn+1)0.

Boivin does not say explicitly that the D̂n can be chosen to be compact with (D̂n)0

connected, but this follows easily from the compactness and connectivity of the Dn.
The following two technical lemmas will assist us in pushing poles.

Lemma 3.3.14. Let V be a bounded complementary component of E ∩ (D̂n \ (D̂n−2)0).
Suppose v is a meromorphic function pole-free on E which has a pole p in the intersection
of V with Dn−2 ∪ (E ∩ (D̂n−2)0) Then, V 6⊂ Dn−2 ∪ (E ∩ (D̂n−2)0).

Proof. First of all, V 6⊂ E, since v is pole-free on E. Nor can we have V ⊂ Dn−2 since
Dn−2 is connected and strictly contained in (D̂n−2)0 which is a subset of the complement

of E ∩ (D̂n \ (D̂n−2)0). There would exist a connected open set W, with

Dn−2 ( W ⊂ (D̂n−2)0.

Thus W would be a connected open set in the complement of E ∩ (D̂n \ (D̂n−2)0), which
strictly contains V. This would contradict the fact that V is a component. Therefore
V \Dn−2 6= ∅.

Suppose to obtain a contradiction that V ∩ (D̂n−2 \ Dn−2) ⊂ E and V ∩ Dn−2 6= ∅.
Then, there is a connected open set W, such that

W ⊂ Dn−2 ∪ (E ∩ D̂n−1), W ∩ Dn−2 6= ∅ and W 6⊂ Dn−2. By Lemma 3.3.8, W is

contained in a non-trivial Gleason part of M(Dn−2 ∪ (E ∩ D̂n−1)). Since W ∩Dn−2 6= ∅,
this contradicts the fact that Dn−2 is a union of non-trivial Gleason parts of M(Dn−2 ∪
(E ∩ D̂n−1)). Thus, either V ∩ (D̂n−2 \Dn−2) 6⊂ E or V ∩Dn−2 = ∅. There are two cases.
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Case 1. V ∩ (D̂n−2 \Dn−2) 6⊂ E. Then

V ∩ D̂n−2 = (V ∩Dn−2) ∪ (V ∩ (D̂n−2 \Dn−2)) 6⊂ Dn−2 ∪ (E ∩ D̂n−2).

Thus, V 6⊂ Dn−2 ∪ (E ∩ D̂n−2) and we are through.

Case 2. V ∩ (D̂n−2 \Dn−2) ⊂ E and V ∩Dn−2 = ∅. Then the pole p is in E which is
a contradiction.

Lemma 3.3.15. Suppose ν is meromorphic on R and pole-free on E. Then, ν is the
Euclidean uniform limit on E ∩ (D̂n \ D̂0

n−2) of meromorphic functions having no poles

on Dn−2 ∪ (E ∩ D̂0
n−2).

Proof. This follows directly from Lemma 3.3.14 and Theorem 3.1.14.

By definition, Dn = ∪Pj, where each Pj is a non-trivial Gleason part of M(Dn∪ (E ∩
Dn+1)). Set

Kn = (Dn ∪ (E ∩Dn+1)) ∪ Jn = Dn ∪ (E ∩ D̂n+1),

where Jn = E ∩ (D̂n+1 \Do
n+1). By [3.6, Lemma 2] , each Pj is a non-trivial Gleason part

of M(Kn). Hence (Dn, Kn) is a Nersesjan pair.

Lemma 3.3.16. Let {δn} be a sequence of positive numbers. For each n, there exists a
meromorphic function ηn such that

|ηn| < 1 on Dn−1 ∪ (E ∩ D̂n), (3.19)

|1− ηn| < δn on (D̂n \ D̂n−1) ∩ E, (3.20)

|ηn| < δn on D̂n−2. (3.21)

Proof. This follows from [3.6, Cor. 2]. The last inequality is true since D̂n−2 is a compact
subset of Dn−1 and Dn−1 is the union of some Gleason parts of M(K), where K := Kn =

Dn−1 ∪ (E ∩ D̂n), so III of [3.6, Cor. 2] yields (3.20)

Theorem 3.3.17. If a closed subset E of a Riemann surface is a set of pole-free spheri-
cally uniform approximation and the Gleason parts of E satisfy the long islands condition,
then E is a set of Euclidean pole-free tangential approximation.

Proof. Our proof is inspired by [3.6], but we must be careful at each step to specify the
location of the poles. For this, we employ the previous lemmas.

Let f ∈ A(E) and let ε be a positive continuous function on E. Set

εk = min
p∈(D̂k∩E)

ε(p).

It follows from Lemma 3.3.6 that there is a function u1 meromorphic on R and pole-free
on E, such that

|f − u1| <
ε1
4

E ∩ D̂1.
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Also, from Lemma 3.3.6, there exists a function ν2 meromorphic on R and pole-free on
E such that

|(f − u1)− ν2| <
ε2
4

on (D̂2 \ D̂0
0) ∩ E.

By Lemma 3.3.15 we may assume that ν2 is also pole-free on D0.
By Lemma 3.3.16, there exists, for each δ > 0, a meromorphic function η2 (depending

on δ) such that

|η2| < δ on D̂0,

|1− η2| < δ on (D̂2 \ D̂1) ∩ E,

|η2| ≤ 1 on D1 ∪ (E ∩ D̂2).

Choose δ so small that

|(f − u1)− η2ν2| <
ε2
4

on (D̂2 \ D̂1) ∩ E,

|(f − u1)− η2ν2| < |f − u1|+ |η2||ν2| <
ε1
4

+ 1
(ε1

4
+
ε2
4

)
< ε1 on (D̂1 \ D̂0) ∩ E,

|(f − u1)− η2ν2| <
ε1
4

+ δ|ν2| < ε0 on D̂0 ∩ E

and

|η2ν2| < δ|ν2| <
1

22
on D0.

Set u2 = η2ν2. By Lemma 3.3.6 there exists a function ν3 meromorphic on R and
pole-free on E such that

|(f − u1 − u2)− ν3| <
ε3
4

on (D̂3 \ D̂1) ∩ E.

By Lemma 3.3.15 we may assume that ν3 is also pole-free on D1.
Again, by Lemma 3.3.16. for each δ > 0, there is a function η3 meromorphic on R

such that
|η3| < δ on D̂1,

|1− η3| < δ on (D̂3 \ D̂2) ∩ E

|η3| ≤ 1 on D2 ∪ (E ∩ D̂3).

Choose δ so small that

|f − u1 − u2 − η3ν3| <
ε3
4

on (D̂3 \ D̂2) ∩ E,

|f − u1 − u2 − η3ν3| < ε2 on (D̂2 \ D̂1) ∩ E,

|f − u1 − u2 − η3ν3| < ε1 on (D̂1 \ D̂0) ∩ E,

|f − u1 − u2 − η3ν3| < ε0 on D̂0 ∩ E,
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and

|η3ν3| <
1

23
on D1.

Set u3 = η3ν3.
Thus, by induction, we can find uk meromorphic on R and pole-free on E such that

|uk| <
1

2k
on Dk−2, k ≥ 2,

|f − u1 − u2 − · · · − uk| < εj on E ∩ (D̂j \Dj−1), j = 1, 2, . . . , k − 1.

|f − u1 − u2 − · · · − uk| <
εk
4

on E ∩ (D̂k \Dk−1).

Then, the function g =
∑∞

k=1 uk is meromorphic on R and satisfies

|f(p)− g(p)| < ε(p), p ∈ E.

Suppose Ω is a compact Jordan region in an open Riemann surface R. Denote by
K1, . . . , Kn the bounded complementary components and by K∞ the union of the un-
bounded complementary components. Let f ∈ Ã(Ω). Then f can be represented in the
form

f = f∞ + · · ·+ fn,

such that fk ∈ Ã(R \Kk). Indeed, since the interior of Ω has only the single component
Ω, the function f is either identically ∞ or pole-free on Ω. The case where f ≡ ∞ is
trivial. If f 6≡ ∞, then by Theorem 3.1.3,

f = f∞ + f1 + · · ·+ fn,

where fk is holomorphic in R \Kk. For fixed k 6= j, the functions fj are holomorphic on

∂Kk, so fk = f − Σj 6=kfj is spherically continuous on ∂Kk. Therefore fk ∈ Ã(R \Kk).

It was shown in [3.13] that if K is a finite union of disjoint compact Jordan regions
in C, then K is a set of pole-free spherical meromorphic approximation. The following
result generalizes this to certain closed subsets of Riemann surfaces (and in particular,
to a class of closed subsets of C).

Theorem 3.3.18. Let E be the union of a locally finite family of disjoint compact sets
of uniform spherical pole-free approximation in a Riemann surface R. Then E is a set
of tangential spherical pole-free approximation.

Proof. Let f ∈ Ã(E) and ε be a positive continuous function on E = ∪nEn. Set fn = f |En .

Then, fn ∈ Ã(En). Take εn = minp∈En ε(p). By hypothesis, for each n, the set En is a
set of uniform spherical pole-free approximation. That means there exists a function mn

meromorphic on R and pole-free on En, such that χ(mn, fn) < εn/2. Since the En are
disjoint and compact, we may construct a locally finite family Un of open neighbourhoods
of the En with disjoint closures, such that, for each n, the function mn is holomorphic
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on Un. Then, we obtain a holomorphic function m on E by setting m = mn on Un for
each n. By Behnke-Stein and Theorem 3.1.12, then E is a set of tangential Euclidean
pole-free approximation, i.e., there is a meromorphic function M on R, pole-free on E,
such that |M −m| < εn/2 on En for each n. For p ∈ E, there is a unique n such that
p ∈ En. We have

χ(M(p), f(p)) ≤ χ(M(p),mn(p)) + χ(mn(p), fn(p)) < εn < ε(p).

If ψ : U → V is a biholomorphic mapping of an open neighbourhood U of a compact
Jordan region G of the complex plane onto an open set V in a Riemann surface R, we
say that Ω = ψ(G) is a parametric Jordan region in R and Ω a closed parametric Jordan
region in R. We note that a closed parametric Jordan region is compact.

Lemma 3.3.19. Let Ω be a parametric compact Jordan region in a Riemann surface R.
Then Ω is a set of pole-free uniform spherical approximation.

Proof. Suppose Ω is a parametric compact Jordan region . Let f ∈ Ã(Ω) and ε > 0
be given. From the definition of a parametric Jordan region, there exists a compact
Jordan region G ⊂ C and a biholomorphic mapping ψ from a neighbourhood of G onto
a neighbourhood of Ω such that ψ : G → Ω, We have f ◦ ψ ∈ Ã(G). It follows from a
theorem in [3.13] that there exists a rational function r pole-free on G, such that

χ(r, f ◦ ψ) < ε/2 on G.

Thus, g = r ◦ ψ−1 ∈ A(Ω) and

χ(g, f) < ε/2 on Ω.

By Corollary 3.1.6, there is a meromorphic function h on R, pole-free on E, such that
|h− g| < ε/2 and hence χ(h, g) < ε/2. By the triangle inequality, χ(f, h) < ε.

Theorem 3.3.20. Let E be the union of a locally finite family of disjoint parametric
compact Jordan regions in a Riemann surface R. Then E is a set of pole-free tangential
spherical approximation.

Proof. This follows immediately from Theorem 3.3.18 and the preceding lemma.

Having considered parametric Jordan regions, we now turn to general Jordan regions.

Lemma 3.3.21. If Ω is a Jordan region in a Riemann surface R, then Ω and every
complementary component of Ω is a bordered surface.

Proof. Ω is a regularly embedded region and every complementary component of a reg-
ularly embedded region is also a regularly embedded region and hence a bordered sur-
face.
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Let S be a topological space and B is a subset of S. Following Brown [3.11], we
say that B is collared in S if there exists a homeomorphism h from B × [0, 1) onto a
neighbourhood of B such that h(b, 0) = b for all b ∈ B. If B can be covered by a
collection of subsets relatively open in B each of which is collared in S, then B is said to
be locally collared in S.

A bordered n-manifold is a connected metrizable topological space such that each
point has a closed neighbourhood homeomorphic to the closed n-ball.

Theorem 3.3.22 (Brown [3.11]). The border of a bordered n-manifold M is collared in
M.

Lemma 3.3.23. If Ω is a compact Jordan region whose interior Ω is of genus zero in a
Riemann surface R, then Ω has a planar neighbourhood.

Proof. By the previous theorem, both Ω and R \Ω are collared. Hence, there is an open
neighbourhood W of ∂Ω and a homeomorphism

h : ∂Ω× (−1,+1) −→ W,

with
h (∂Ω× (−1, 0]) = Ω ∩W, h(p, 0) = p, h(∂Ω× [0,+1)) = W \ Ω.

The function φ(t) = −1/2 + 3(t + 1/2) defines a homeomorphism φ : [−1/2, 0) →
[−1/2,+1), which induces a homeomorphism

Φ : ∂Ω× [−1/2, 0) −→ ∂Ω× [−1/2,+1),

given by Φ(p, t) = (p, φ(t)). Set

C = h(∂Ω× {−1/2}), V = h(∂Ω× [−1/2, 0]), U = h(∂Ω× [−1/2,+1)).

The function G = h ◦ Φ ◦ h−1 defines a homeomorphism of V onto U, which fixes points
of C. Denoting N = Ω ∪ U, we have a homeomorphism H : Ω → N, defined by setting
H(p) = p, for p ∈ Ω \ V and H(p) = G(p), for p ∈ V. Since Ω is of genus zero it is
planar. The stolow kerekyardo compactification represents Ω as an open subset of the
sphere with g handle added, where g is a genus. Ω is of genus zero, so there is no handle.
then it is homemorphic to a proper subset of the plane. and since N is homeomorphic
to Ω, the neighbourhood N is also planar, which completes the proof.

Lemma 3.3.24. If Ω is a compact Jordan region whose interior is of genus zero in a
Riemann surface R, then Ω is a set of pole-free uniform spherical approximation.

Proof. By the preceding lemma, Ω has a planar neighbourhood N. By the general uni-
formization theorem of Koebe, every planar Riemann surface is biholomorphic to a plane
domain, so there is a biholomorphic mapping h : N → W mapping the open set N in R
onto an open set W in the complex plane. Thus Ω is a parametric compact Jordan region
and so the lemma follows from Lemma 3.3.19.
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Theorem 3.3.25. Let E be the union of a locally finite family of disjoint compact Jordan
regions of genus zero in a Riemann surface R. Then E is a set of pole-free tangential
spherical approximation.

Proof. We have E = ∪nEn, where {En} is a locally finite family of disjoint compact

Jordan regions with genus zero. Let f ∈ Ã(E). Set fn = f |En . By the lemma, for each n,
En is a set of pole-free meromorphic uniform approximation. Then, for every εn > 0 there
exists a function gn meromorphic on R and pole-free on En, such that χ(fn, gn) < εn/2.
Since En compact and disjoint, we can construct a locally finite family Un of disjoint
neighbourhood of the En such that gn is holomorphic on Un for each n.

Set g = gn on Un. Then g is a holomorphic function on E.
And so by [3.16], there exists a meromorphic function G on R which is pole-free on

E, such that, |g −G| < εn/2 on En for each n
So χ(g,G) < |g − G| < εn/2 on En. For p ∈ E, there exists n such that p ∈ En and

so,

χ(G(p), f(p)) ≤ χ(G(p), gn(p)) + χ(gn(p), fn(p)) < εn.

3.4 Zero-free uniform and tangential approximation

The problem of pole-free spherical approximation was raised in [3.22]. Since the chordal
distance is invariant with respect to the inversion z 7→ 1/z, this problem is in an obvious
sense equivalent to that of approximating spherically continuous functions on E which are
zero-free in E0, by meromorphic functions on R which are zero-free on E. For example,
the following theorem is essentially a reformulation of Theorem 3.3.20.

Theorem 3.4.1. Let E be the union of a locally finite family of disjoint parametric
compact Jordan regions in a Riemann surface R. Then E is a set of zero-free tangential
spherical approximation.

This allows us to obtain a similar result on zero-free tangential Euclidean meromorphic
approximation.

Theorem 3.4.2. Let E be the union of a locally finite family of disjoint parametric
compact Jordan regions in a Riemann surface R. Then E is a set of zero-free tangential
Euclidean meromorphic approximation.

Proof. We may write E = ∪En, where the En are pairwise disjoint compact Jordan
regions. Fix f ∈ A(E) zero-free on E0 and a sequence {εn}, εn > 0. We must show the
existence of a function g meromorphic on R and zero-free on E such that |f − g| < εn on
En, for each n.

By Theorem 3.4.1, for each sequence {δn}, δn > 0, there is a meromorphic function g,
zero-free on E, such that χ(f, g) < δn on En, for each n.

Since, for each n the function f is bounded on En, we may choose δn so small that
on En the function g is also bounded and |f − g| < εn.
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We have briefly considered the problem of Euclidean uniform approximation on a
closed set E by meromorphic functions zero-free on E. The analogous problem of Eu-
clidean uniform approximation on a compact subset K ⊂ C by polynomials zero-free on
K has been investigated by several authors recently: [3.1], [3.2], [3.3], [3.12], [3.17], [3.21],
and, not so recently, [3.31].

For a compact set K ⊂ C, denote by R0(K) the uniform Euclidean limits on K of
rational functions zero-free on K. By Hurwitz’s theorem, R0(K) is contained in the family
A0(K) of functions in A(K) having no isolated zeros in K0. The problem of zero-free
Euclidean approximation is that of describing those compacta for which A0(K) = R0(K).
If we denote by P (K) the uniform Euclidean limits on K of polynomials and by P0(K)
the uniform Euclidean limits on K of polynomials zero-free on K, then the problem of
zero-free Euclidean polynomial approximation is that of determining those K for which
P0(K) = A0(K). The following was recently conjectured by Andersson [3.2].

Zero-free approximation conjecture.

A0(K) = P0(K) ⇐⇒ A(K) = P (K).

Denote as usual the Riemann zeta-function by ζ(z). Let A be a subset of [0,+∞).
The lower density d(A) of A is defined as follows.

d(A) = lim inf
T→+∞

m(A ∩ [0, T ])

T
,

where m denotes Lebesgue measure.

Theorem 3.4.3. The following assertions are equivalent and true. For each compact set
K in the strip 1/2 < <z < 1 with C \K connected, for each zero-free f ∈ A(K) and for
each ε > 0 :

{t : max
z∈K
|ζ(z + it)− f(z)| < ε} has positive lower density, (3.22)

{t : max
z∈K

∣∣∣∣ 1

ζ(z + it)
− f(z)

∣∣∣∣ < ε} has positive lower density, (3.23)

{t : max
z∈K

χ(ζ(z + it), f(z)) < ε} has positive lower density, (3.24)

{t : max
z∈K

χ

(
1

ζ(z + it)
, f(z)

)
< ε} has positive lower density. (3.25)

The assertion (3.22) is the spectacular theorem of Voronin on the universality of the
Riemann zeta-function [3.31]. We have stated the other (clearly equivalent) forms to
suggest that this is perhaps related to our present investigation.

Indeed, surprisingly, Andersson [3.2] has shown that the zero-free polynomial approx-
imation conjecture is equivalent to a strengthening of the Voronin universality theorem,
namely it is equivalent to replacing the hypothesis that f ∈ A(K) is zero-free by the
weaker hypothesis that it is merely zero-free on K0. Such f are in A0(K). We could also

say that f is in Aχ(K) and pole-free on K0 or equivalently f is in Ã(K) and pole-free
on K0.
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Theorem 3.4.4. For K ⊂ C compact,

Ã(K) = R̃(K) =⇒ A0(K) = R0(K).

Proof. Suppose the left side and let f ∈ A0(K). Then 1/f ∈ Ã(K) and there exists a
rational function 1/r pole-free on K such that χ(1/r, 1/f) < ε on K. Thus, χ(r, f) < ε
and r is zero-free on K. Since ε is arbitrary and f is bounded on K, there exists a rational
r such that |r − f | < ε on K.

Corollary 3.4.5. If C \K is connected,

Ã(K) = R̃(K) =⇒ A0(K) = P0(K).

Proof. For f ∈ A0(K) and ε > 0, there is rational function r zero-free on K such that
|f − r| < ε/2. Let m = min |r| on K. By Runge’s theorem, there is a polynomial p such
that

|r − p| < min{m/2, ε/2}.

Then, by the triangle inequality, |f − p| < ε and since |r − p| < m/2, the polynomial p
is zero-free on K.

From the corollary, we have that a complete solution to the spherical pole-free approx-
imation problem would yield a complete solution of the zero-free Euclidean polynomial
approximation problem and hence the strengthening of the Voronin Universality Theo-
rem.

The Voronin Universality Theorem states that translates of the Riemann zeta-function
approximate in a very strong sense all zero-free holomorphic functions in the strip
1/2 < <z < 1. Bagchi [3.5] has shown that the assertion that the zeta-function can
also approximate itself in this manner is equivalent to the Riemann Hypothesis. This
chain of implications suggests that a complete solution of the spherical pole-free approx-
imation problem may be difficult.
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Renate McLaughlin. Birkhäuser Boston, Inc., Boston, MA, 1987.

[3.15] P. M. Gauthier, Tangential approximation by entire functions and functions holo-
morphic in a disc. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 4 (1969) no. 5, 319–326.

[3.16] P. M. Gauthier, Meromorphic uniform approximation on closed subsets of open
Riemann surfaces. Approximation theory and functional analysis (Proc. Internat.
Sympos. Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977),
pp. 139–158, North-Holland Math. Stud., 35, North-Holland, Amsterdam-New
York, 1979.

[3.17] P. M. Gauthier, Approximating functions by the Riemann zeta-function and by
polynomials with zero constraints. Comput. Methods Funct. Theory 12 (2012),
no. 1, 257–271.

[3.18] P. M. Gauthier and W. Hengartner, Uniform approximation on closed sets by
functions analytic on a Riemann surface. Approximation theory (Proc. Conf. Inst.
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Chapter 4

The Carathéodory reflection
principle and Osgood-Carathéodory
theorem on Riemann surfaces

4.1 Introduction

The reflection principles of Schwarz and Carathéodory give conditions under which holo-
morphic functions extend holomorphically to the boundary and the theorem of Osgood-
Carathéodory states that a one-to-one conformal mapping from the unit disc to a Jordan
domain extends to a homeomorphism of the closed disc onto the closed Jordan domain.
In this chapter, we study similar questions on Riemann surfaces for holomorphic map-
pings. We give a Carathéodory type reflection principle for bordered Riemann surfaces
which are arbitrary. That is, we do not assume that they are compact; nor do we assume
that they are of finite genus. From this follows a Schwarz type reflection principle as well
as an Osgood-Carathéodory type theorem.

When we speak of a conformal mapping f from a domain Ω1 of one Riemann sur-
face R1 to a domain Ω2 in another Riemann surface R2, we always mean an orientation
preserving conformal mapping which is one-to-one, but not necessarily onto. The expres-
sions “one-to-one conformal mapping onto” and “biholomorphic mapping” will be used
interchangeably. For an overview of conformal mappings in the plane, see [4.5], [4.8],
[4.13], [4.15] and [4.16].

A Riemann surface is said to be planar if it is homeomorphic to a subset of the
complex plane C. In extending results from the complex plane to Riemann surfaces, the
following General Uniformization Theorem of Koebe is extremely helpful.

Theorem 4.1.1. Every planar Riemann surface is conformally equivalent to a plane
domain.

It will also be helpful to recall that meromorphic functions on Riemann surfaces are
the same as holomorphic mappings to the Riemann sphere C = C ∪ {∞}.

For a domain G ⊂ C, a function f : G → C and a boundary point ζ ∈ ∂G,
Carathéodory defines a point α ∈ C to be a boundary value of f at ζ, if there is a
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sequence zν in G for which the equations

lim
ν→∞

zν = ζ and lim
ν→∞

f(zν) = α

hold. The set of boundary values of f at ζ is precisely the cluster set C(f, ζ). Also, for
a subset E ⊂ ∂G, we denote

C(f, E) ≡
⋃
ζ∈E

C(f, ζ).

For a set E ⊂ C, let us set E∗ = {z : z ∈ E}, where ∞∗ =∞.
The first part of the following theorem is the Carathéodory reflection principle [4.4].

Theorem 4.1.2. Let V be a domain in the open upper half-plane {=z > 0} and suppose

I be the interior of {z ∈ ∂V : =z = 0} in the topology of R. Set V̂ = V ∪ I ∪ V ∗.Let f
be meromorphic in V and suppose all boundary values of f on I are real or ∞. Then f
extends to a surjective meromorphic function f̂ : V̂ → f(V ) ∪ C(f, I) ∪ f(V )∗. Suppose,
moreover that f(V ) is contained in the open upper half-plane H+ = {w ∈ C : =w > 0}.
If f is respectively locally conformal, or conformal, then so is f̂ .

Proof. The final two sentences are not in Carathéodory’s formulation of the theorem,
but, as we shall see, this final portion follows from the first part.

Suppose, then, that f(V ) is contained in the open upper half-plane. Then combining
the first part of the theorem with the Schwarz reflection principle, we conclude that, if f is
locally conformal (respectively conformal) in V, then f̂ is locally conformal (respectively

conformal) in V ∗. Suppose, for some value p ∈ I, that f̂(p) were assumed with multiplicity
greater than 1. Then, at p all angles would be multiplied by p which contradicts the
assumption that the image by f of any upper half-disc “centred” at p is contained in the
open upper half-plane. Thus, f̂ is locally conformal at each point of I. Now, suppose f is
conformal. We have already verified that f̂ is injective on V ∪V ∗. Since f̂(V ), f̂(V ∗) and

f̂(I) are disjoint, it is sufficient to show that f̂ is injective on I. Then, f̂ will be injective

and hence conformal. Suppose, to obtain a contradiction, that f̂(p) = f̂(q), for p 6= q
in I. Let Up and Uq be disjoint neighbourhoods of p and q respectively, sufficiently small

that f̂ is conformal, hence injective, in Up and Uq. Since f̂ is an open mapping and f̂(I)
is of measure zero, it follows that there are points a and b in Up \I and Uq \I respectively

such that f̂(a) = f̂(b). This contradicts the fact that f̂ is injective on V ∪ V ∗. Thus, f̂ is
injective on I.

The example f(z) = z2 shows that, if we omit the assumption that f(V ) is contained

in the open upper half-plane, it does not always follow that f̂ is locally conformal, when
f is locally conformal, in fact, not even when if f is conformal.
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4.2 A few facts on conformal mappings in the plane

An open (respectively compact) Jordan arc is defined as the homeomorphic image of
the interval (0, 1) (respectively the interval [0,1]). A Jordan curve is the homeomorphic
image of a circle by Ahlfors, I.7A, this definition is for general topological space S not
only for Riemann sphere.

and a Jordan domain in C is a domain whose boundary is a Jordan curve. By the
Jordan curve theorem, if J is a Jordan curve in C, then its complement C \ J consists of
two disjoint Jordan domains, both having J as boundary. A closed Jordan domain is the
closure of a Jordan domain. By the Schoenflies theorem, a closed Jordan domain is the
homeomorphic image of the closed unit disc. The Schoenflies theorem could be phrased
as follows. A homeomorphism from the boundary of the disc to the boundary of a Jordan
domain extends to a homeomorphism of the interiors. The Osgood-Carathéodory theo-
rem goes in the opposite direction, and has as a consequence that a conformal mapping
of the unit disc onto a Jordan domain (which of course is a homeomorphism) extends to
a homeomorphism of the boundaries.

More precisely, the Osgood-Carathéodory theorem states that a conformal mapping
from the open unit disc onto a Jordan domain in the Riemann sphere C extends to
a homeomorphism of the closed disc onto the closed Jordan domain. If we think of
a Jordan domain U as the complement of a closed Jordan domain V , then a natural
generalization would be to replace V by a compact Jordan arc J (thinking of a Jordan
arc as a “compressed” Jordan domain). In this spirit, we shall consider to what extent
we can obtain an analogue of the Osgood-Carathéodory theorem, if we map the unit
disc to the complement of a compact Jordan arc. The following discussion describes the
situation.

A topological space is said to be locally connected if every point has a fundamental
system of connected neighbourhoods. The continuous image of a locally connected space
need not be locally connected. For example, the closure of the curve

γ(t) =

∣∣∣∣sin(2π

t

)∣∣∣∣ eit, 0 < t ≤ 1

is not locally connected.

Theorem 4.2.1 (Continuity theorem [4.15]). Let f be a conformal mapping of the open
unit disc ∆ onto a domain G ⊂ C. The function f has a continuous extension to ∆ if
and only if ∂G is locally connected.

Lemma 4.2.2. Let f : ∆ → G be conformal, with ∂G locally connected. Then, the
continuous extension to ∆ maps the circle T onto ∂G.

Proof. If w ∈ ∂G, there is a sequence zn ∈ ∆, such that f(zn) → w. By choosing a
subsequence, we may assume that zn converges to a point ζ of the unit circle. Then
f(ζ) = w, so f(T) ⊃ ∂G. Conversely, if ζ ∈ T and zn ∈ D converges to ζ, then f(zn) is
eventually outside of every compact subset of f(∆) = G, so f(ζ) ∈ ∂G. Thus, f(T) ⊂
∂G.
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Lemma 4.2.3. Let φ be a conformal mapping of the open unit disc ∆ onto the comple-
ment J c of a compact Jordan arc J in C. Then φ extends to a continuous mapping of ∆
onto C, which maps the unit circle T onto J.

Proof. Since J is locally connected, the lemma follows from the previous theorem and
lemma.

Let E be a locally connected continuum. We say that a ∈ E is a cut point of E
if E \ {a} is no longer connected. For a Jordan arc, all points except end points are
cut-points.

Lemma 4.2.4. Let φ be as in the previous lemma. Then, for a ∈ J, the set φ−1(a) is a
singleton if and only if a is an end point of J.

Proof. By [4.15, Proposition 2.5], if φ is a conformal mapping of ∆ onto a bounded
domain G, where ∂G is locally connected, then, for each a ∈ ∂Ω, the set f−1(a) is a
singleton if and only if a is not a cut-point of ∂G. In our situation, J c is not a bounded
domain in C, but the proof can be easily modified to apply to our case. Since a ∈ J is
not a cut-point of J if and only if a is an end point, the lemma follows.

Lemma 4.2.5. Let φ be as in the previous lemma. Let p and q be the ends of J and J0

be the inner points of J. There are points a and b on the unit circle, such that φ(a) =
p, φ(b) = q and φ maps each of the two arcs comprising T \ {a, b} onto J0. The map φ
is one to one on each arc with end points a and b.

Proof. From the previous lemma, φ−1(p) is a singleton {a} and φ−1(q) is a singleton {b}.
Let A be one of the two arcs comprising T \ {a, b}. Since φ(A) is a connected subset of
the (open) Jordan arc J0, it is a point or an arc. It cannot be a point, for then, φ would
be constant on the arc A and hence constant by uniqueness theorems. Hence, φ(A) is a
sub-arc of J0. Since a and b are in the closure of φ(A), the arc φ(A) must be all of J0.

A cross-cut C of an open set G is an open Jordan arc in G such that C = C ∪ {a, b}
with a, b ∈ ∂G. We allow that a = b (see [4.1]).

Lemma 4.2.6. Let J be a compact Jordan arc in C. Then, for every neighbourhood G of
J, there is a Jordan domain W ⊂ C, such that J0 ⊂ W ⊂ W ⊂ G and J is a cross-cut of
W. That is, J is contained in W, except for the end points, which (of course) lie on ∂W.

Proof. It follows from the Jordan arc separation theorem that J c = C \ J is connected.
For a proof, see for example [4.2, Lemma 4]. Let φ : ∆ → J c be a conformal map. By
lemma 4.2.3 , φ extends to a continuous mapping (which we continue to denote by φ)
of ∆ onto C which maps T onto J. There are two points a, b ∈ T which are mapped to
the end points of J and the two arcs of T \ {a, b} are mapped onto J0. We may assume
that {a, b} = {−1,+1}. Let G be a neighbourhood of J . The neighbourhood φ−1(G) of
T contains an annulus Ar = (r ≤ |z| ≤ 1), for some r > 0. Let L be a “lens domain”
in ∆ such that L ∩ T = {−1,+1} and the disc Dr = (|z| ≤ r) is contained in L. Then,
Γ = φ(∂L) is a Jordan curve in C, which, separates C into two Jordan domains with
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boundary Γ. One of these domains φ(L) contains φ(Dr), so the other Jordan domain,
call it W, is contained in φ(Ar) ⊂ G. Since ∂L ⊂ Ar, we also have φ(∂L) = Γ ⊂ G. Hence
W = W ∪ Γ ⊂ G. Since φ maps the two semicircles T \ {−1,+1} onto J0, and these
semicircles are disjoint from ∂L, it follows that J0 ⊂ W. Since φ(±1) are the end points
of J and they lie on Γ = ∂W, it follows that J is a cross-cut of W.

A domain W ⊂ C is called a circular domain if ∂W consists of finitely many disjoint
spherical circles. A domain is non-degenerate if no component of its complement is a
single point. The following theorem of Koebe states that circular domains are conformally
canonical for the class of non-degenerate n-connected domains.

Theorem 4.2.7. Every non-degenerate n-connected domain in C is conformally equiva-
lent to a circular domain.

We define a (finitely connected) Jordan region Ω in C to be a domain bounded by
finitely many disjoint Jordan curves and, if Ω is a Jordan region, we say that Ω is a
closed Jordan region. If there is only one boundary curve, then we call the Jordan region
a Jordan domain.

Occasionally, the Osgood-Carathéodory theorem is invoked not only for Jordan do-
mains, but also (implicitly) for Jordan regions (for example in [4.11]). The following
extension of the Osgood-Carathéodory theorem for Jordan regions in C was proved in
[4.14] (see also [4.5, Ch. 15]) and can be deduced from the simply-connected case.

Theorem 4.2.8. If G and Ω are two Jordan regions and f : Ω → G is a conformal
equivalence, then f extends to a homeomorphism of Ω onto G.

If two plane domains are conformally equivalent, then their automorphism groups
are isomorphic. Thus, by the Riemann mapping theorem, for simply connected plane
domains, we only need to understand the automorphism groups of the disc and the
plane, which are well known.

If a plane domain is not simply connected, the group Aut(Ω) of conformal self-maps
is “in general small”.

However, for a given domain, there may be many conformally equivalent domains
which are presented in very different ways. For example, let Ω be a Jordan region in C
and let D be a disc containing Ω. Now let f be an arbitrary conformal mapping of D
onto a simply connected domain. Then, f(Ω) is conformally equivalent to Ω, but may
appear quite different as a subset of C.

For n > 2, an example of an n-connected Jordan region Ω ⊂ C for which Aut(Ω) is not
trivial, is obtained by choosing 0 < r < 1, and taking as Ω the unit disc ∆, from which
we have removed n − 1 disjoint closed discs of the same small radius, whose centres
are equidistributed on the circle |z| = r. Clearly, rotations of angle j2π/(n − 1), j =
0, 1, . . . , n− 1, are distinct elements of Aut(Ω).

4.3 Bordered Riemann surfaces

Let us denote a bordered Riemann surface with interior Ω and border bΩ by Ω̃ = Ω∪ bΩ.
Every bordered Riemann surface is a bordered surface, so there is an open cover {Uα}
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of Ω̃ and corresponding homeomorphismas hα : Uα → ∆α, which we call closed charts,
where each ∆α is either a disc, whose closure is contained in the open upper half-plane of
C or an upper half-disc {w : |w − t| < r,=w ≥ 0}, for some real “center” t and positive

radius r. Points of Ω̃ that correspond to points on the real line form the border bΩ and
the remaining points, which correspond to points of the open upper half-plane, form the
“interior” Ω of Ω̃. The changes of charts h−1

β ◦ hα, when defined, preserve interior points

and border points, and are clearly homeomorphisms. If Ω̃ is, not only a bordered surface,
but also a bordered Riemann surface, then we require in addition that these changes of
charts be conformal. At interior points the meaning of conformal is obvious and at border
points we ask that h−1

β ◦ hα be the restriction of a conformal mapping in an open subset
of the complex plane.

Lemma 4.3.1. If Ω̃ = Ω ∪ bΩ is a bordered Riemann surface, then each border point

p ∈ bΩ has a neighbourhood system, given by closed border charts hr : U r → ∆
+

r , 0 <
r < 1, where ∆+

r is the open upper half-disc {z : |z| < r,=z > 0}. Set Ur = h−1
r (∆+

r ).
Each closed neighbourhood U r is thus a closed Jordan domain, where the Jordan curve
U r \ Ur consists of an open border arc βr ⊂ bΩ and a cross-cut Cr of Ω̃ having the same
end points as βr.

Proof. Fix p ∈ bΩ. Let hp : Up → ∆
+

p be a closed chart at p where ∆+
p = {z : |z − t| <

r,=z > 0} for some real centre t and positive radius r. Without loss of generality,
we may suppose t = 0, r = 1, ∆+

p = {z : |z| < 1,=z > 0} and hp sends p to zero.
Denote by ∆+

r the open upper half-disc {z : |z| < r,=z > 0} and Ur the inverse image

h−1
p (∆+

r ). Since ∆
+

r , 0 < r < 1, is a neighbourhood system of 0 in the closed upper

half-plane and hp is a homeomorphism, it follows that the U r, 0 < r < 1, are closed
Jordan domains and form a neighbourhood system of p. The Jordan curve ∂Ur consists
of the open border arc βr = h−1

p {(−r, r)} and the cross-cut h−1
p (cr), where cr is the closed

semi-circle {z : |z| = r,=z ≥ 0}. If we denote by hr the restriction of hp to U r, then

hr : U r → ∆
+

r , 0 < r < 1, are closed border charts at p.

Given a bordered Riemann surface Ω̃ = Ω ∪ bΩ, we construct a bordered Riemann
surface Ω̃∗, called the conjugate of Ω̃ (see [4.1]). The conjugate Ω̃∗ of Ω̃ is a topological

copy of Ω̃. For each α, denote by U∗α the corresponding topological copy of the Uα and

for each p ∈ Ω̃ by p∗ the corresponding point in Ω̃∗. The space Ω̃∗ is endowed with the
complex structure obtained by replacing the closed charts hα : Uα → ∆α of Ω̃ by the
charts h∗α : U

∗
α → ∆

∗
α, where h∗α(p∗) = −hα(p).

We now form the double Ω̂ of the bordered Riemann surface Ω̃ by welding Ω̃ and Ω̃∗

together by the identity mapping on bΩ. The double of a bordered Riemann surface is a
Riemann surface (not a bordered Riemann surface). The complex structure of the double

Ω̂ is given by charts ĥα : Ûα → ∆̂α, which we now describe. If Uα is contained in the
interior Ω, then we set Ûα = Uα and ĥα = hα. Similarly, if U∗α is contained in the interior

of Ω̃∗, we set ĥα = h∗α and ∆
∗
α = h∗α(U∗α). There remains to define charts at points of

bΩ̃ = bΩ̃∗. If Uα corresponds to a half-disc, then we denote by Ûα the set obtained by the
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welding together of Uα and U∗α. We define the function ĥα on the closure of Ûα by setting

ĥα = hα on Uα and ĥα = −h∗α = −(−h) = h on U
∗
α.

A manifold need not be second countable (consider the long line), but it is a profound
property (Rado’s theorem) of Riemann surfaces that they are second countable. They are
therefore σ-compact, that is, they can be represented as a countable union of compacta.
Similar properties hold for bordered Riemann surfaces but, since non-compact bordered
Riemann surfaces are less familiar, we state the following result, which makes it easier
to see these properties (and many others) for bordered Riemann surfaces.

Theorem 4.3.2. Every bordered Riemann surface is homeomorphic to a closed subset of
R3.

Proof. Let Ω̃ be a bordered Riemann surface. The remarkable result of Rüedy [4.17]
states that every Riemann surface admits a smooth proper conformal embedding into
R3. Let h : Ω̂→ R3 be such an embedding. Since Ω̃ is closed in Ω̂, it follows that h(Ω̃) is

closed in h(Ω̂) and, since h(Ω̂) is closed in R3, it follows that h(Ω̃) is also closed in R3.

A subset of a Riemann surface or bordered Riemann surface is said to be bounded if
its closure is compact.

Corollary 4.3.3. In a bordered Riemann surface Ω̃, a subset is compact if and only if it
is closed and bounded. Hence, a closed subset is non-compact if and only if it contains a
sequence which tends to infinity (the Alexandroff point of Ω̃).

4.4 A reflection principle for bordered Riemann sur-

faces

Theorem 4.4.1. Let Ω̃ = Ω ∪ bΩ be a bordered Riemann surface. Bordered Riemann
surface could be compact or non-compact. We care of the latest one. Let f be meromor-
phic in Ω and suppose all boundary values of f on bΩ are real or ∞. Then f extends to
a meromorphic function f̂ on Ω̂. Suppose f(Ω) is contained in the open upper half-plane.

Then, if f is locally conformal, so is f̂ and, if f is conformal, so is f̂ .

Proof. First, we shall extend f to a point p of the border bΩ. At p considered as a point
of Ω̂, there is a chart ĥ : Û → ∆, where ∆ is the open unit disc. Set ∆+ = {w : |w| <
1,=w ≥ 0} and ∆− = {w : |w| < 1,=w ≤ 0}. Setting U+ = ĥ−1(∆+) and U− = ĥ−1(∆−),

we have Û = U+ ∪ U−. Moreover, ĥ|U+ = h : U+ → ∆+ and ĥ|U− = −h∗ : U− → −∆−

are border charts of p in Ω̃ and Ω̃∗ respectively.
Denote ∆+

0 = {w : |w| < 1,=w > 0}. The meromorphic function

f ◦ ĥ−1 : ∆+
0 −→ C

satisfies the hypotheses of Theorem 4.1.2 and so extends meromorphically to the open
disc ∆. Consequently f extends meromorphically to the neighbourhood Û of p.
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If p and q are two border points and Ûp and Ûq are corresponding neighbourhoods as
above which intersect, then the corresponding meromorphic extensions agree, since they
agree on Û+

p ∩ Û+
q . Setting

Ûb =
⋃
{Ûp : p ∈ bΩ̃},

we obtain a meromorphic extension f̂ , defined on the neighbourhood Ûb of bΩ̃.
Since this extension to the neighbourhood Ûb of the common border bΩ̃ is defined

explicitly on Ω̃∗ ∩ Ûb by the formula f̂(p∗) = f(p), we may extend f̂ to all of Ω̃∗ by the

same formula. Namely, we set f̂(p∗) = f(p), for all p∗ ∈ Ω̃∗.

From this formula, we see that if f is locally conformal on Ω, then f̂ is locally con-
formal on Ω ∪ Ω∗.

Now, suppose f(Ω) is contained in the open upper half-plane. The proof that f̂ is
locally conformal or conformal, if f is respectively locally conformal or conformal, is the
same as the proof of the corresponding portion of Theorem 4.1.2.

Let Ω̃1 and Ω̃2 be two bordered Riemann surfaces and consider a holomorphic mapping
f : Ω1 → Ω̂2. For p ∈ bΩ1, denote the set of boundary values (the cluster set) of f at p
by C(f, p). For B ⊂ bΩ1 we define the cluster set at B as

C(f,B) = {q ∈ Ω̃2 : ∃p ∈ B, ∃pn → p, pn ∈ Ω1, f(pn)→ q} =
⋃
p∈B

C(f, p).

If Ω̃2 is compact, then C(f, p) is not empty f is holomorphic, so continuous, but if Ω̃2

is not compact, C(f, p) may be empty. For example, this is the case for C(f, 0), when

Ω̃1 = Ω̃2 is the closed upper half-plane and f(z) = 1/z.
We shall say that the mapping f sends the border bΩ1 to the border bΩ2, if for every

sequence pj ∈ Ω1 converging to a point of bΩ1, the sequence f(pj) has a limit point in
bΩ2. If f sends the border to the border, then C(f, p) is a non-empty subset of bΩ2 and
since C(f, p) is connected it lies in a single component of bΩ2. Similarly, we shall say that
f sends a border component B1 of bΩ1 to the border bΩ2, if for every sequence pj ∈ Ω1

converging to a point of B1, the sequence f(pj) has a limit point in bΩ2. Also, we shall
say that f sends a border component B1 of bΩ1 to a border component B2 of bΩ2, if for
every sequence pj ∈ Ω1 converging to a point of B1, the sequence f(pj) has a limit point
in B2.

For B a closed subset of bΩ1, the cluster set C(f,B) may not be closed, even if f

is continuous and sends the border to the border. For example, let Ω̃2 be the closed
upper half-plane, Ω̃1 the closed upper half-plane less the point 0 and f(z) = z. Then, for
B = bΩ1, the set B is closed in bΩ1, but C(f,B) is not closed in bΩ2.

Lemma 4.4.2. Let Ω̃j = Ωj ∪ bΩj, j = 1, 2, be bordered Riemann surfaces. Let f : Ω1 →
Ω̂2 be a continuous mapping which sends the border to the border and let B ⊂ bΩ1. If B
is compact or connected, then C(f,B) is respectively compact or connected.

Proof. Suppose B is compact. Since each component of bΩ1 is clopen (closed and open)
in bΩ1, it follows that B is contained in the union b1∪· · ·∪bn of finitely many components
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of bΩ1 and that each Bj = B ∩ bj is compact. Since

C(f,B) =
n⋃
k=1

C(f,Bj),

we may assume that B is contained in a single component b of bΩ1.
Let h : b×[0, 1)→ Hb be a collar of b in Ω̃1. By [4.3] it exists and it is a neighbourhood

of b such that h(bb, 0) = bb, ∀bb ∈ b. Let In be a nested sequence of open subsets of b
such that each In is compact and

B ⊂ In ⊂ In ⊂ b, B =
∞⋂
n=1

In

and put Un = h(In × (0, 1/n]). Then,

C(f,B) =
⋂
n≥1

f(Un) (4.1)

and we see that C(f,B) is closed.
To see that C(f,B) is compact, it is sufficient to show that f(U1) is compact. Suppose

f(U1) is not compact. Then, since f(U1) is closed, Ω̂2 is surely not compact because then
f(U1) is compact which we assume to be not and there is a sequence qn ∈ f(U1), such

that qn → ∗2, where ∗2 is the ideal (Alexandroff) point of Ω̂2. By a diagonal process, we
can construct a sequence pn ∈ U1, such that f(pn) → ∗2. By choosing a subsequence,
if necessary, we may assume that pn converges to a point p ∈ In. This contradicts the
assumption that f sends the border to the border. Thus, f(U1) is compact. Since C(f,B)
is a closed subset of the compact set f(U1), it follows that C(f,B) is also compact.

Suppose that B is not only compact but also connected. Then, we may take the In
to be connected. Recall that, since f sends the border to the border, C(f,B) 6= ∅. The
sets f(Un) are connected subsets of the compact Hausdorff space f(U1) and

lim inf f(Un) = lim sup f(Un) = C(f,B) 6= ∅.

It follows [4.10, Th. 2-101] that C(f,B) is connected.
We have shown that if B is compact, and if B is moreover connected, then C(f,B)

is also connected.
Now, we show that if B is connected, then C(f,B) is connected, even if B is not

compact. Since B is connected, it is contained in a single border component b. The only
connected subsets of b are Jordan arcs and Jordan curves. Jordan curves are compact,
so we may assume that B is a Jordan arc, possibly containing one or both end points.
In any case, we may write B as the union of an increasing sequence of compact Jordan
arcs In. Since the In are compact and connected, we have shown that the sets C(f, In)
are connected. Now,

C(f,B) =
⋃
n

C(f, In)

and the C(f, In) are increasing, so C(f,B) is connected.

68



Lemma 4.4.3. Let Ω̃1 and Ω̃2 be two bordered Riemann surfaces and f : Ω1 → Ω̂2 a
holomorphic map. Then, f sends a border component B1 to the border bΩ2 if and only if
it sends B1 to some border component B2.

Proof. By the definition, direction “if” is obvious. Now suppose f sends a border com-
ponent B1 of bΩ1 to the border bΩ2. It suffices to show that C(f,B1) is connected, but
since B1 is a border component, it is connected, and so by the previous lemma, C(f,B)
is connected

The following result extends the Carathéodory reflection principle to bordered Rie-
mann surfaces.

Theorem 4.4.4. For j = 1, 2, let Ω̃j = Ωj ∪ bΩj be bordered Riemann surfaces with

respective interiors Ωj, respective borders bΩj and respective doubles Ω̂j. Let f : Ω1 → Ω̂2

be a holomorphic mapping which sends the border bΩ1 to the border bΩ2. Then, there is
a holomorphic surjective extension

f̂ : Ω̂1 −→ f(Ω1) ∪ C(f, bΩ1) ∪ f(Ω1)∗ ⊂ Ω̂2,

such that f̂(bΩ1) = C(f, bΩ1).

Proof. Fix p ∈ bΩ1. By Lemma 4.4.3, C(f, p) is contained in a single component B2 of the
border bΩ2. We consider two cases, depending on whether B2 is an open Jordan arc or a
Jordan curve. B2 can not be closed at one end and open at the other end because from
the definition of border, every point of B2 must have a neighbourhood homeomorphic to
(−1,+1), so B2 has no end points.

Suppose first that B2 is a Jordan arc. By the proof of lemma 4.4.2, there is some
compact Jordan arc [α, β] ⊂ B2 such that C(f, p) is contained in the open Jordan arc
(α, β). We may choose a closed arc [a, b] about p in bΩ1, such that C(f, q) ⊂ (α, β), for
each q ∈ [a, b].

Construct a closed Jordan domain G2 in Ω̃2, such that the Jordan curve G2 \ G2,

consists of the closed arc [α, β] and a cross-cut γ2 of Ω̃2. To see that this is possible, use a
collar of B2. Similarly, (see also Lemma 4.3.1) we may construct a closed border chart G1

for p, which is a closed Jordan domain in Ω̃1, such that the Jordan curve G1 \G1 consists

of a closed arc [a, b] in bΩ1 and a cross-cut γ1 of Ω̃1. Let φ be the restriction of f to G1.

Denote by G̃2 the bordered Riemann surface whose interior is G2 and whose border is
(α, β). By Lemma 4.3.1, we may further assume that G1 is so small that φ(G1) ⊂ Ĝ2,
and all boundary values of φ on (a, b) lie in (α, β).

Let h be a conformal mapping of G2 onto the upper half-plane H+. By Theorem 4.4.1,
h extends to a conformal mapping ĥ : Ĝ2 → ĥ(G2) ⊂ C. The function h ◦ φ also satisfies

the hypotheses of Theorem 4.4.1, so h ◦ φ extends to a meromorphic function ĥ ◦ φ :
Ĝ1 → C. Since meromorphic functions on Riemann surfaces are the same as holomorphic
maps to the Riemann sphere, this extension can be considered as a holomorphic mapping
Ĝ1 → C. On G1 we have

φ = h−1 ◦ h ◦ φ = (ĥ)−1 ◦ ĥ ◦ φ = (ĥ)−1 ◦ (̂h ◦ φ).
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Hence, φ extends to a holomorphic mapping φ̂ : Ĝ1 → Ĝ2. Since φ is the restriction of f
to G1, this gives a holomorphic extension of f which we denote by fp and fp : Ĝ1 → Ĝ2.
Moreover, the value fp(p) lies on B2, since C(f, p) ⊂ B2.

Now we need to consider the case that B2 is a Jordan curve. Let C̃2 = C2 ∪ B2

be a collar about B2 in Ω̃2. The interior C2 of C̃2 is planar and so, by the General
Uniformization Theorem 4.1.1 and the Koebe theorem on circular domains 4.2.7 , there
is a conformal mapping h of C2 onto a circular domain A = H+ \K, where K is a closed
disc in H+. By Lemma 4.4.3, we may assume that h sends B2 to R ∪ {∞}. By Theorem

4.4.1, we may extend h to a meromorphic function ĥ : Ĉ2 → C. Let B1 be the border
component containing p. Then, by Lemma 4.4.3, C(f, q) ⊂ B2, for each q ∈ B1. Hence,
if we fix a sufficiently small open arc α in B1 which contains p and which is pre-compact
in B1, then, we may construct a collar C̃1 = C1∪α of α in Ω̃1, such that f(C1) ⊂ Ĉ2. Let
φ be the restriction of f to C1. As for the case that B2 was not compact, the function h
extends meromorphically to Ĉ2 and h ◦ φ extends meromorphically to Ĉ1. Consequently
f extends to a holomorphic mapping fp : Ĉ1 → Ĉ2 and fp(p) ∈ B2. By the construction,

Ĉ2 ⊂ Ω̂2.
From the preceding, it follows that, for every p ∈ bΩ1, There is a closed Jordan domain

Up ⊂ Ω̃1, such that the Jordan curve Up \Up consists of an open border arc αp containing

p and a cross-cut σp of Ω1 and there is a closed Jordan domain V p ⊂ Ω̃2, such that the
Jordan curve V p\Vp consists of an open border arc βp and a cross-cut τp of Ω2, such that,

denoting Ũp = Up ∪ αp and Ṽp = Vp ∪ βp, f restricted to Up extends to a holomorphic

mapping fp : Ûp → V̂p, where Ûp is the double of Ũp and V̂p is the double of Ṽp. Moreover,

fp(αp) ⊂ βp. We may assume that we have a closed border chart hp : Ṽp → ∆
+
.

These various holomorphic extensions fp, p ∈ bΩ1 are compatible. That is, suppose p
ad q are two arbitrary points in the border bΩ1 of Ω1, with corresponding holomorphic
extensions fp : Ûp → V̂p and fq : Ûq → V̂q. Suppose αp∩αq 6= ∅. Then, fp = fq on Ûp∩ Ûq,
by the uniqueness of holomorphic continuation.

It follows that there is an open neighbourhood of bΩ1 in Ω̃1, which is a bordered
surface of the form Ũ = U ∪ bU, with interior U ⊂ Ω1 and border bU = bΩ1 and there is
a holomorphic extension f̂ : Ω1 ∪ Û → Ω̂2, such that f̂(bΩ1) ⊂ bΩ2. Since, for p∗ ∈ U∗,
this extension is given by f̂(p∗) = f(p)∗, we may define the extension on all of Ω∗1 by the

same formula. We now have a holomorphic extension f̂ : Ω̂1 → Ω̂2.

As we already mentioned, the previous theorem, for maps f : Ω1 → Ω̂2, can be consid-
ered as an extension of the Carathéodory reflection principle to Riemann surfaces. In the
following, we consider the particular case that f(Ω1) ⊂ Ω2 and obtain a generalization
of the Schwarz reflection principle.

Theorem 4.4.5. For j = 1, 2, let Ω̃j = Ωj ∪ bΩj be bordered Riemann surfaces; let
f : Ω1 → Ω2 be a holomorphic map which sends the border bΩ1 to the border bΩ2 and
let f̂ : Ω̂1 → Ω̂2 be the holomorphic extension given by Theorem 4.4.4. If f is locally
conformal (respectively conformal), then so is f̂ .

If f is conformal and onto and C(f, bΩ1) = bΩ2, then f̂ is a biholomorphic mapping

of Ω̂1 onto Ω̂2.
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For an example which is not onto but satisfies the other conditions, take both bordered
surfaces to be the upper half-plane with the positive real axis. Take f to be the branch
of the square root which sends the point 1 to itself.

For an example which satisfies the first two conditions but not the last, take Ω2 to
be the closed upper half-plane and Ω1 to be the upper half-plane with the positive real
axis. Take f(z) = z.

Proof. Let Û , Ûp, hp and fp be the same as in the proof of the previous theorem.

From the formula f̂(p∗) = f(p)∗, it clear that if f is locally conformal on Ω1, then f̂

is locally conformal on Ω1 ∪ Ω∗1 and we claim that it is also locally conformal on Û . It is

sufficient to show that it is locally conformal on each Ûp. Clearly, (hp◦fp)(Ûp) is contained
in the open upper half-plane. Hence, so is hp ◦ fp restricted to Up and so, by Theorem

4.4.1, ĥp ◦ fp is locally conformal on Ûp. Consequently also fp is locally conformal on Ûp.

It follows that f̂ is locally conformal.
The proof that, if f is conformal, then f̂ is also conformal, is similar to that of the

analogous statement in Theorems 4.1.2 and 4.4.1.
If f is conformal and onto and C(f, bΩ1) = bΩ2, then f̂ is conformal and onto and

hence is a biholomorphic mapping of Ω̂1 onto Ω̂2.

Let Ω be the interior of a compact bordered Riemann surface Ω̃. Let p ∈ Ω and Hp

be the family of holomorphic functions from Ω to the unit disc which take p to zero,
and which have, in a fixed coordinate chart, a non-negative derivative at p. The Ahlfors
function for Ω and p is the unique function A in Hp such that

A′(p) = max
f∈Hp

Ref ′(p)

It is a non-trivial fact that every Ahlfors function is a proper mapping of Ω onto the unit
disc ∆.

The Ahlfors function for a Jordan region in C is presented in [4.8, Ch. VI]. For a
monumental treatment of Ahlfors functions, see [4.7].

Corollary 4.4.6. Let Ω̃ be a compact bordered Riemann surface and let f : Ω → ∆ be
an Ahlfors function of Ω onto the open unit disc ∆. Then f extends to a meromorphic
function f̂ : Ω̂→ C ∪ {∞}.

For Riemann surfaces Ω,Ω1 and Ω2, let us denote by Iso(Ω1,Ω2) the space of biholo-
morphic mappings Ω1 → Ω2 and by Aut(Ω) the automorphism group Iso(Ω,Ω). Similarly,

for bordered Riemann surfaces Ω̃, Ω̃1 and Ω̃2, let us denote by Iso(Ω̃1, Ω̃2) the space of

homeomorphisms Ω̃1 → Ω̃2 whose restrictions to Ω1 are in Iso(Ω1,Ω2) and by Aut(Ω̃) the

space Iso(Ω̃, Ω̃).

Theorem 4.4.7 (Schwarz 1879). The automorphism group of every compact Riemann
surface of genus g ≥ 2 is finite.

A compact bordered Riemann surface is said to be of type (g, n), if it is of genus g
and the number of border components is n.
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Corollary 4.4.8. If Ω̃ is a compact bordered Riemann surface of type (g, n) and 2g+n ≥
3, then Aut(Ω̃) is finite.

Proof. It follows from the theorem 4.4.5 that every φ ∈ Aut(Ω̃) extends to φ̂ ∈ Aut(Ω̂).
Since ψ is an automorphism it is biholomorphic so both ψ and its inverse are continuous.
But a continuous function takes compact sets to compact sets, so ψ is proper. But
here Ω̃ is compact so ψ takes the border to the border. The genus of the double Ω̂ is
2g + n − 1, which is greater than or equal to 2. By the Schwarz Theorem, Aut(Ω̂) is

finite. Consequently, since the mapping φ 7→ φ̂ is injective, Aut(Ω̃) is also finite.

The hypothesis on the type is satisfied if the genus g is not zero or if the genus is zero
and the number n of border components is at least 3.

The restriction mapping gives a natural embedding Aut(Ω̃) ↪→ Aut(Ω), but this need

not be surjective. For example, if ∆̃ is the bordered Riemann surface, whose interior is
the open unit disc ∆ and whose border is an arc eiθ, 0 < θ < β, for some β ∈ (0, 2π),

then Aut(∆̃) is the proper subgroup of Aut(∆) described as follows. Fix α ∈ (0, β). The

group Aut(∆̃) consists of the elements φγ ∈ Aut(∆) which send the points 1, eiα, eiβ to
the points 1, eiγ, eiβ respectively, for 0 < γ < β. They are thus parametrized by the values
γ, 0 < γ < β.

If Ω̃1 and Ω̃2 are bordered Riemann surfaces and Iso(Ω̃1, Ω̃2) 6= ∅, then every element

f of Iso(Ω̃1, Ω̃2) induces bijections

Aut(Ω̃1) −→ Iso(Ω̃1, Ω̃2), φ 7→ f ◦ φ

and
Aut(Ω̃2) −→ Iso(Ω̃1, Ω̃2), ψ 7→ ψ ◦ f.

In this situation, the groups Aut(Ω̃1) and Aut(Ω̃2) are isomorphic and have the same

cardinality as the family Iso(Ω̃1, Ω̃2). Of course, for “most” Riemann surfaces Ω, the

group Aut(Ω) is trivial. Similarly, for most bordered Riemann surfaces Ω̃, the group

Aut(Ω) is trivial. For such Ω̃, the subgroup Aut(Ω̃) is of course also trivial.

4.5 Bordered regions in Riemann surfaces

We wish to show the equivalence between bordered Riemann surfaces and certain domains
in Riemann surfaces together with a portion of their boundary. We shall call these
bordered domains and they include Jordan domains as the prime example.

Let Ω be a domain in a Riemann surface R. An open Jordan arc A ⊂ ∂Ω is called a
free boundary arc of the domain Ω if, for each point p ∈ A, there is an open set U ⊂ Ω and

a homeomorphism hp : U → ∆
+
, where ∆+ is the open upper half-disc {|z| < 1,=z > 0},

h(U ∩ A) = (−1,+1) and hp(p) = 0. The maps hp are similar to border charts in a
bordered Riemann surface, where, the hp were additionally required to have a certain
analyticity property.

An open arc A ⊂ ∂Ω is called a doubly free boundary arc of the domain Ω if, for each
point p ∈ A, there is an open set U ⊂ R and a homeomorphism h : U → ∆, where ∆ is
the open unit disc, h(U ∩A) = (−1,+1), h(U ∩Ω) = ∆+, h(U \Ω) = ∆− and h(p) = 0.
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As an example, if Ω is a Jordan domain in C, then it follows from the Schoenflies
theorem that ∂Ω is doubly free.

Lemma 4.5.1. If A is a doubly free boundary arc of a domain Ω in a Riemann surface,
then A is a free boundary arc of Ω.

Proof. Fix p ∈ A. By the definition there exists an open set N ⊂ R, and a homeomor-
phism g : N → ∆ such that g(N ∩ A) = (−1, 1), g(N ∩ Ω) = ∆+ and g(p) = 0. Take
U := N ∩ Ω and h := g|U in the definition of free boundary arc.

Let us say that a subset E ⊂ ∂Ω is a doubly free boundary set of Ω, if each point of
E is contained in a doubly free boundary arc of E.

If Ω is a bounded domain (open connected set) in a Riemann surface R and B is a

(non empty) doubly-free boundary set of set Ω, then we shall say that Ω̃ = Ω ∪ B is a

bordered region in R. We note that a bordered region Ω̃ = Ω∪B is compact if and only
if Ω̃ = Ω. In this case, B = ∂Ω and B consists of finitely many disjoint Jordan curves.
For this reason, we call a compact bordered region a closed Jordan region. A closed
Jordan region of genus zero, whose boundary is a single Jordan curve is a closed Jordan
domain. The following theorem asserts that every bordered region can be considered to
be a bordered Riemann surface, thus giving us a multitude of bordered Riemann surfaces.
It is similar to a result in [4.1], where there is the further hypothesis that the border B
is locally analytic arc.

Theorem 4.5.2. Suppose Ω̃ = Ω∪B is a bordered region in a Riemann surface R. Then,
Ω̃ admits the structure of a bordered Riemann surface with interior Ω and border B. The
complex structures on Ω as interior of the bordered Riemann surface and as domain in
R are the same. In the other direction, if Ω̃ is a bordered Riemann surface, then Ω̃ may
be considered as a bordered region in the double Ω̂.

Proof. Fix a point p ∈ B. Since B is a doubly free boundary set of Ω, there is an
open set U ⊂ R and a homeomorphism h : U → ∆, where ∆ is the open unit disc,
h(U ∩ B) = (−1,+1), h(U ∩ Ω) = ∆+, h(U \ Ω) = ∆− and h(p) = 0. Since U is planar,
it follows from the General Uniformization Theorem 4.1.1, that there is a biholomorphic
mapping φp of U onto a plane domain Gp. We may assume that φp(p) = 0. Let A ⊂ U∩B
be a compact Jordan arc containing p not as an end point. Then, J = φp(A) is a compact
Jordan arc in Gp, containing 0, not as an end point. By Lemma 4.2.6, there is a closed
Jordan domain W p in Gp, such that W p∩φp(U ∩B) = J and J is a cross-cut of Wp. That
is, J is contained in Wp except for its end points, which lie on the Jordan curve ∂Wp.
By the Jordan curve theorem, J separates W p into two closed Jordan domains, whose

intersection is J. By construction, φ−1
p maps one of these, call it G

+

p , homeomorphically

to a closed Jordan domain V p ⊂ Ω̃. We note that V p is a closed neighbourhood of p

in Ω̃; φp : V p → G
+

p is a homeomorphism; φp : Vp → G+
p is biholomorphic; φp maps

V p ∩ B onto J ; and φp(p) = 0. By the Riemann mapping theorem and the Osgood-
Carathéodory theorem, there is a conformal mapping σp : G+

p → ∆+, which extends to a

homeomorphism G
+

p → ∆
+
, such that σp(J) = [−1,+1] and σp(0) = 0.
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Set ηp = σp ◦φp. We may consider the family of maps: ηp : V p → ∆
+
, p ∈ B, as closed

border charts and if, for every p ∈ Ω, we add to this family a chart ηp : Vp → ∆+ at p, for

the Riemann surface Ω, then these combined charts give Ω̃ = Ω∪B the desired structure
of a bordered Riemann surface. Although, the subset B of ∂Ω is locally an arc, these
arcs may be non-analytic. Nevertheless, the change of border charts ηq ◦ η−1

p is analytic

on ηp(B ∩ (V p ∩ V q)), by the Schwarz reflection principle,. This completes the proof of
the first part of the theorem.

The other direction is almost immediate.

A particular consequence of the preceding theorem is that every bordered region
Ω̃ = Ω ∪ B in C can be endowed with the structure of a bordered Riemann surface and
the restriction of this structure to Ω is compatible with the given holomorphic structure
on Ω. This is striking, considering that the curves which comprise the border of Ω need
not be analytic. Nevertheless, the change of border charts

φq ◦ φ−1
p , p, q ∈ B ⊂ ∂Ω,

which maps the real interval φp(∂Ω ∩ (Vp ∩ Vq)) to the real interval φq(∂Ω ∩ (Vp ∩ Vq))
is analytic. Of course, an illustration of this is the Riemann mapping theorem (with the
Osgood-Carathéodory theorem), which sends an arbitrary closed Jordan domain Ω to
the closed unit disc. If the Jordan curve ∂Ω is not analytic, the structure of a bordered
Riemann surface we give to Ω is definitely not the restriction to Ω of the complex structure
of C, although the restriction to Ω of both structures are the same.

Theorem 4.5.3. If Ω̃ = Ω∪B is a bordered region, whose interior is of genus zero in a
Riemann surface R, Ω is planar Riemann surface then Ω̃ has a planar neighbourhood.

Proof. If A is a component of the exterior R \Ω whose boundary meets B, denote by BA

the intersection B ∩ ∂A. Then Ã = A ∪BA is also a bordered region.
Denote by XΩ the union of all components A of the exterior of Ω, whose boundaries

meet B. Since the border of every bordered manifold is collared [3.11], each set BA is
collard in both Ω ∪BA and A ∪BA.

Hence, there is an open neighbourhood W of B and a homeomorphism

h : B × (−1,+1) −→ W,

with
h (B × (−1, 0]) = Ω̃ ∩W, h(p, 0) = p, h(B × [0,+1)) = W \ Ω.

The function φ(t) = −1/2 + 3(t + 1/2) defines a homeomorphism φ : [−1/2, 0) →
[−1/2,+1), which induces a homeomorphism

Φ : B × [−1/2, 0) −→ B × [−1/2,+1),

given by Φ(p, t) = (p, φ(t)). Set

C = h(B × {−1/2}), V = h(B × [−1/2, 0]), U = h(B × [−1/2,+1)).
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The function G = h ◦ Φ ◦ h−1 defines a homeomorphism of V onto U, which fixes points
of C. Denoting N = Ω ∪ U, we have a homeomorphism H : Ω → N, defined by setting
H(p) = p, for p ∈ Ω \ V and H(p) = G(p), for p ∈ V. Since Ω is of genus zero it is planar
and since N is homeomorphic to Ω, the neighbourhood N is also planar, which completes
the proof.

The next theorem may be considered as a generalization of the Osgood-Carathéodory
theorem to bordered regions in Riemann surfaces.

Theorem 4.5.4. For j = 1, 2, let Ω̃j = Ωj ∪ Bj be bordered regions in Riemann sur-
faces Rj with respective interiors Ωj and respective borders Bj. Let f : Ω1 → Ω2 be a
holomorphic mapping, which sends B1 to B2. Then, f extends to a (unique) continuous
surjective mapping

f̃ : Ω̃1 −→ f(Ω1) ∪ C(f,B1) ⊂ Ω̃2.

If f is locally conformal or conformal, then f̃ is respectively locally injective or injective.
If f is conformal and onto and C(f,B1) = B2, then f̃ is a homeomorphism of Ω̃1 onto

Ω̃2.

Let Ω1 be the upper half plane and positive real axis, Ω2 be the closed upper half
plane. f(z) = z. Then f is conformal and onto but C(f,B1) is not B2.

Proof. By Theorem 4.5.2, each Ω̃j can be endowed with the structure of a bordered
Riemann surface, with interior Ωj and border Bj, and such that on Ωj this structure is
compatible with the given holomorphic structure. This implies that f is also holomorphic,
when considered as a mapping between the interiors of the bordered Riemann surfaces.
By the Carathéodory reflection principle for bordered Riemann surfaces (Theorem 4.4.4),

the mapping f extends to a holomorphic mapping f̂ : Ω̂1 → Ω̂2.
We claim that the restriction f̃ of f̂ to Ω̃1 has the desired properties. First of all, since

f̂ is continuous, the restriction f̃ is certainly a continuous extension of f. Since Ω1 is dense
in Ω̃1, the continuous extension of f is unique. By Theorem 4.4.4, f̂(B1) = C(f,B1),

so f̃ is surjective onto f(Ω1) ∪ C(f,B1). Since f sends B1 to B2, this image is certainly

contained in Ω̃2.
If f is locally conformal or conformal, then by Theorem 4.4.5, the mapping f̂ is

locally conformal or conformal respectively and hence f̃ is locally injective or injective
respectively.

It follows that, if f is conformal onto and C(f,B1) = B2, then f̃ is a continuous

bijection Ω̃1 → Ω̃2. From Theorem 4.3.2, Ω̃1 has an exhaustion by compact sets Kj, j =
1, 2, . . . , such that, in the relative topology of Ω1,

K0
j ⊂ Kj ⊂ K0

j+1, j = 1, 2, . . . .

Let gj be the restriction of f̃ to Kj. Since

gj : Kj −→ gj(Kj) = f̃(Kj)

is a continuous injective mapping of a compact space onto a Hausdorff space, it is a
homeomorphism [3.25]. Thus g−1

j is a continuous mapping on gj(K
0
j ) = f̃(Kj)

0. Since f̃

75



is a bijection, the inverse mapping f̃−1 is well-defined. For each j, the restriction of f̃−1

to the set f̃(Kj)
0 is the continuous function g−1

j . Since the family f̃(Kj)
0, j = 1, 2, . . . , is

an open cover of Ω̃2, it follows that f̃−1 is continuous. Hence f̃ is a homeomorphism.

Since the interior of every bordered region in a Riemann surface can be viewed as a
Riemann surface, it follows that if Ω̃1 and Ω̃2 are two such bordered regions, the family
Iso(Ω1,Ω2) is usually empty and, if not, then it has the same cardinality as Aut(Ω̃1) and

Aut(Ω̃2). For a general Riemann surface, and in particular for a general domain Ω in a
Riemann surface, the group Aut(Ω) is usually trivial.

There are interesting exceptional bordered regions Ω̃ of infinite genus, for which
Aut(Ω̃) is infinite. For example, consider the bordered region in C :

Ω̃ = C \
+∞⋃
−∞

∆j,

where ∆j is the open disc of center j and radius 1/3. Then, the interior Ω is of infinite
connectivity and Aut(Ω) is clearly infinite.

We can easily modify this example to obtain an example of infinite genus. Take
two copies of C, from which we have removed the slits z = x + i : j < x < j + 1/2, j =
0,±1,±2, . . . and let R be the Riemann surface obtained by gluing these two slit domains
along the slits in the usual way. Let W̃ be the bordered region in R, obtained by removing
the open discs ∆j from each sheet of R. Then W̃ is of infinite genus, has infinitely many
border components and Aut(W ) is again clearly infinite.

For more information regarding domains with infinite automorphism groups, see for
example [4.12].
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Chapter 5

Conclusion

In this thesis we have discussed approximating holomorphic functions in compact and
closed subsets of the complex plane and open Riemann surfaces. Mainly holomorphic and
meromorphic functions were considered as approximating functions. At the beginning,
compact subsets and closed subsets of the complex plane were studied and later we moved
on to work on Riemann surfaces.

We have discussed topological conditions and the Blaschke condition for holomorphic
approximation on a closed subset of an open Riemann surface of infinite genus. We
also mentioned some known examples constructed based on Myrberg surfaces to ease
understanding the topological conditions of Arakelyan’s approximation.

Gauthier and Hengartner showed that Arakelyan’s topological conditions are not
enough for uniform holomorphic approximation on an arbitrary Riemann surface. We
have shown that for an arbitrary open Riemann surface R, and an arbitrary (proper)
closed set E in R, although uniform approximation is not to be expected there always
exists a closed subset F of E which is most of E in the sense that E \ F is small and
becomes smaller at arbitrary speed as we approach the ideal boundary point ∗ and F is
also “better” than E because it is a set of tangential approximation.

Euclidean and spherical distances are two natural distances for the complex plane
and Riemann sphere, respectively. In this work, pole-free approximation with respect
to both of these distances has been studied for compact and closed subsets of an open
Riemann surface as well as for (compact) Jordan regions with interior of genus zero
and for parametric Jordan regions. Consequently, a recent extension of Mergelyan’s
theorem, due to Fragoulopoulou, Nestoridis and Papadoperakis (see [3.13] in Chapter
3) has been generalized. Also, a discussion of zero-free approximation was included,
since approximating by pole-free meromorphic functions is equivalent to approximating
by zero-free meromorphic functions.

The reflection principles of Schwarz and Carathéodory give conditions under which
holomorphic functions extend holomorphically to the boundary and the theorem of
Osgood-Carathéodory states that a one-to-one conformal mapping from the unit disc
to a Jordan domain extends to a homeomorphism of the closed disc onto the closed Jor-
dan domain. In the last chapter, we studied similar questions on Riemann surfaces for
holomorphic mappings. We gave a Carathéodory type reflection principle for bordered
Riemann surfaces which are arbitrary. That is, we did not assume that they are com-

79



pact; nor did we assume that they are of finite genus. From this follows a Schwarz type
reflection principle as well as an Osgood-Carathéodory type theorem.
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