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Abstract

Understanding the patterns and mechanisms of the process of desistance from criminal ac-

tivity is imperative for the development of effective sanctions and legal policy. Methodological

challenges in the analysis of longitudinal criminal behaviour data include the need to develop

methods for multivariate longitudinal discrete data, incorporating modulating exposure vari-

ables and several possible sources of zero-inflation. We develop new tools for zero-heavy joint

outcome analysis which address these challenges and provide novel insights on processes re-

lated to offending patterns. Comparisons with existing approaches demonstrate the benefits

of utilizing modeling frameworks which incorporate distinct sources of zeros. An additional

concern in this context is heaping of self-reported counts where recorded counts are rounded

to different levels of precision. Alternatively, more accurate data that is less burdensome on

participants to record may be obtained by collecting information on presence/absence of events

at periodic assessments. We compare these two study designs in the context of self-reported

data related to criminal behaviour and provide insights on choice of design when heaping is

expected.

The contributions of this research work include the following: (i) Developing a general

framework for joint modeling of multiple longitudinal zero-inflated count outcomes which in-

corporates a variety of probabilistic structures on the zero counts. (ii) Accommodating a sub-

group of subjects who are not at-risk to engage in a particular outcome (iii) Incorporating the

effect of a time-dependent exposure variable in settings where some outcomes are prohibited

during exposure to a treatment. (iv) Illustrating the extent to which heaping of zero-inflated

counts, arising from a variety of heaping mechanisms, can introduce bias, impeding the identi-

fication of important risk factors (v) Identifying situations where there is very little loss of effi-

ciency in the analysis of presence/absence data, depending on the partition of the time for the

presence/absence records and the underlying rate of events. (vi) Providing recommendations

on the design of studies when heaping is a concern. (vii) Modeling of multiple longitudinal

binary outcomes where a mixture model approach allows differential rates of recurrence of
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events, and where the underlying process generating events may resolve.

Keywords: Zero-inflation, Joint Modeling, Longitudinal Data, Random Effect Model,

Discrete Data, Mixture Model, Markov Chain Monte Carlo, Heaped Data
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Chapter 1

Introduction

Regression models for zero-inflated count data often need to accommodate within-subject cor-

relation and between-individual heterogeneity; frequently random effects models are utilized

for incorporating such complex correlation structures. In cases where several longitudinal

zero-heavy count outcomes are jointly considered, zero counts for different outcomes may

arise from distinct sources, so that a flexible approach for handling the zero-inflated outcomes

jointly becomes imperative. As well, sometimes count outcomes are regulated by an exposure

variable, with the length of exposure, for example, being proportional to expected counts. In

the case of a joint outcome analysis, it may be that the extent of exposure differs from outcome

to outcome. Both of these complications arise in our motivating context; importantly some out-

comes are prohibited during a specific treatment leading to some of the zero-heavy nature of

the data accounted for in a structural manner based on an exposure variable. In Chapter 2, we

develop a flexible mixture modeling approach for handling such joint outcome analyses adopt-

ing a conceptual framework similar to a mover-stayer model for handling the excess zeros. We

also investigate carry-over effects of time in a secure facility on the outcome in the subsequent

panel. Compared with existing methodology, our approach enables a better understanding,

offering new insights on processes related to offending patterns.

Self-reported count data are often subject to heaping where reported counts are rounded to

1



2 Chapter 1. Introduction

different levels of precision. This arises in settings where exact event times are not available but

instead aggregated counts of self-reported events over the observation period are recorded. In

situations where counts are aggregated over a long observation period, rounding of the data is

not unusual. This yields a distorted distribution of the observed counts and may bias estimation.

In Chapter 3, we illustrate the extent to which heaping of zero-inflated counts, arising from a

variety of heaping mechanisms, can introduce bias. Alternatively, an accurate recording of

presence/absence of events between shorter periodic assessments may provide a competitive

approach for self-reported data in terms of high efficiency relative to the analysis of counts. An

additional benefit is the reduction of the burden of data collection on respondents. But it is not

clear whether there is sufficient benefit of this approach versus an analysis of rounded aggregate

counts since certainly some efficiency loss is expected. In our motivating example, the utility

of count data aggregated over a year, and rounded, as well as monthly binary data, indicating

the presence/absence of events, are contrasted. We compare the analysis of these two types of

data records in the context of a joint analysis of two zero-heavy outcomes, where outcomes are

linked by a subject-specific random effect. Simulations and empirical studies demonstrate that

the analysis of aggregate heaped count data and longitudinal presence/absence data can lead

to differing results and, importantly, conflicting conclusions concerning possible risk factors

depending on the bias introduced by the heaping. As well, we identify situations where there

is very little loss of efficiency in the analysis of presence/absence data. We conclude Chapter 3

by offering recommendations on the design of studies using self-reported data, where heaping

may be a concern.

A major aim of studies examining criminal behaviour is understanding the patterns and

mechanisms of the process of desistance from criminal activity, as insight so derived is es-

sential for developing effective sanctions and legal policy. In cases where several types of

criminal behaviour are considered in a joint outcome analysis, we may conceptualize a latent

variable representing the individual susceptibility to engage in criminal activity, which under-

lies each outcome and hence links outcomes. The analysis of such data is often complicated
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by a proportion of subjects who never engage in a particular outcome. Additionally, some

subjects eventually desist in engaging in criminal activities leading to what is termed a reso-

lution of the process. As well, longitudinal studies may record only binary data indicating the

presence/absence of events between periodic assessments. Finally, incorporating time spent

in a secure facility (incarceration, for example) as an exposure variable regulating the occur-

rence of events is important in these analyses. In Chapter 4, we present a general modeling

framework for joint analysis of multiple longitudinal binary outcomes which addresses these

challenges. In our novel framework, a mixture model approach accommodates differential

rates of recurrence of events, and allows that the underlying process generating events may

resolve. Compared with existing approaches, our methodology offers new insights on the pro-

cesses generating the observed offending patterns. Simulations demonstrate that the proposed

methods can accurately differentiate between juvenile offenders who have ceased engaging in

criminal behaviour and those who have not.

The methods and models developed in this thesis are motivated by a major study of criminal

behaviour patterns. As the application is significant for our developments, in the subsection

below we provide contextual background of the study and an in depth description of the data.

1.1 Motivating Study

The juvenile justice system is responsible for keeping communities safe while considering

the best interest of the child and rehabilitating young offenders. This requires knowledge and

insight concerning the processes related to how and why juveniles desist from committing

crime. Unfortunately, the data on either patterns of desistance or escalation or the effects of

interventions and sanctions on trajectories of offending during and after adolescence is limited,

particularly with regarding serious adolescent offenders.

Sanctions for adolescent offenders are generally determined using commonsense guidelines

that have developed through years of practice (Mulvey et al., 2004). As a result, serious offend-

ers are generally given some form of sanction which has strong potential to control crime while
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less serious offenders are often enrolled in shorter-term programs. As well, younger serious

offenders are more likely to be given an opportunity for rehabilitation.

An important finding from vast literature on risk factors associated with adolescent antiso-

cial behaviour is that relatively few adolescent offenders become serious adult offenders. Con-

sequently, a crucial challenge is reliably distinguishing between juvenile offenders who will

continue antisocial behaviour into adulthood and those who will not. The motivating study for

this dissertation, the Pathways to Desistance study (Schubert et al., 2004), aims to address this

challenge. It is a major study investigating the offending patterns of serious juvenile offenders

from adolescence to early adulthood. A total of 1354 adolescents between 14 and 17 years old

at the time of their initiating offense were recruited from the juvenile and adult court systems in

Philadelphia, Pennsylvania (N=654) and Phoenix, Arizona (N=700) between November 2000

to January 2003. The study sample consists of primarily minority (44% African American and

29% Hispanic) males (86%) with an average of two prior petitions to court. However, 26%

of the sample had no prior petitions other than the offense that qualified them for study en-

rollment. Eligible crimes for enrollment into the study included all felony offenses with the

exceptions of less serious property crimes, misdemeanor weapons offenses and misdemeanor

sexual assault. As drug law violations represent substantial proportion of offenses for males

within this age group, the proportion of male subjects with drug offenses was limited to 15%

of the sample at each site.

During the enrollment period, slightly more than one half of the youth determined to be

adjudicated on an eligible charge were approached for enrollment. Those not approached were

excluded due to operational and design constraints. The participation rate, calculated as the

number of participants enrolled divided by the number approached for enrollment, was 67%

and the refusal rate, defined as the number of adolescents or guardians who declined to take

part in the study divided by the number approached, was 20%. There were several differences

between the subjects who were adjudicated, but not enrolled, and the subjects enrolled in the

study. The enrolled group was younger at their adjudication hearing, had more prior petitions,
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and appeared in the court for the first time at an earlier age. As well, the proportion of girls

was higher in the enrolled group. These differences are consistent with the investigators’ in-

creased efforts to recruit more serious juvenile offenders and more female subjects. Finally,

proportionately more white offenders and fewer African American subjects were enrolled in

the study. This discrepancy was likely related to the imposed quota on the proportion of sub-

jects adjudicated on drug charges as there is likely to be an association between adjudications

for drug charges and ethnicity.

A baseline interview collecting information about background characteristics and previ-

ous offending was conducted at the time of enrollment. Follow up interviews were conducted

every 6 months for the first 3 years and every year for an additional 4 years, resulting in a

total of ten follow up interviews. A target date for each follow up interview was determined

based on the date of baseline interview to ensure approximately equal observation periods for

all individuals. Follow up interviews were scheduled in the time period spanning 6 weeks

prior to the target interview date and 8 weeks after the target date. The baseline and follow

up interviews covered six domains: (a) background characteristics, (b) indicators of individual

functioning, (c)psychosocial development and attitudes, (d) family context, (e) personal rela-

tionships, and (f) community context. The interviews were conducted electronically, with the

computer screen visible to both the interviewer and the participant. Confidentiality was assured

through confidentiality protections provided by statute to the U.S. Department of Justice. Each

participant was randomly assigned to a single interviewer throughout the course of the study.

This consistency in interviewer was important to promote rapport, provide continuity for the

participant and hopefully increase disclosure. The self-reported data collected during the in-

terviews was supplemented and validated through interviews with collateral reporters, usually

parents, and official record information.

At each interview, two types of data records for illegal and antisocial activity were col-

lected. First, subjects indicated in which months, since the last scheduled interview, they

engaged in the antisocial or illegal activity. Secondly, they reported how many times they
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engaged in the activity since the last scheduled interview. Therefore, the available data on

offending consists of panel count data and repeatedly measured binary data recording pres-

ence/absence of events during each month of observation. Table Table A.1 in Appendix A

lists the offending outcomes on which the count and binary data were collected. The design

of the questionnaire used at the follow up interviews was based on previously developed life

calendars. Such methods for constructing life-event calendars have been shown to provide rea-

sonably accurate information about the temporal ordering of events during the period covered

by an interview and have been successfully used in studies of criminal offending, antisocial be-

havior, and mental health service use (Caspi et al., 1996; Horney, Osgood, & Marshall, 1995).

The use of self-reported count data rises questions about recall error, particularly given

the long periods between interviews. Previous authors (Monahan and Piquero, 2009) have ex-

pressed concerns about the accuracy and reliability of the count data in this data set, especially

with respect to recall errors corresponding to frequent and aggressive offenders. Additionally,

for three of the illegal or antisocial activities, carried a gun, sold marijuana and sold other

drugs, the reported count refers to the number of days the event occurred while for the remain-

ing activities the reported count refers to the number of times the subject engaged in the act.

Confusion with regard to what sort of count is requested may have led to outliers as there are a

few cases where the reported number of days the event occurs exceeds the maximum possible

for the window of observation. For these 0.52% of cases, the number of days was set at the

maximum possible.

The participants’ high degree of mobility and engagement in illegal activity made tracking

and retention of subjects difficult. The Pathways to Desistance study used a wide range of tac-

tics to maintain contact with participants including phone calls during odd hours, unscheduled

visits to the participants home, neighborhood, and hangouts, enlisting support and obtaining

information from family members and friends mentioned in previous interviews, and conduct-

ing address searches with credit databases, community agencies, and criminal justice facilities.

Additionally, study participants were paid using a graduated payment schedule.
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Overall subject retention was good; at specific follow up interviews the proportion of sub-

jects who completed the interview ranges from 83.5% to 92.5%. As shown in Table 1.1, the

proportion of subjects who completed the interview decreased over time. In Table 1.2, we

display the percentage of participants with complete data for all follow up interviews as well

as for 9,8,. . . ,1,0 interviews. The majority of subjects (79%) completed 9 or 10 interviews.

As well, we provide this data, stratified by gender and ethnicity in Table 1.3. Compared to

male subjects, a higher proportion of female subjects completed all ten interviews. There are

also differences in the number of complete follow up interview across ethnicity with a higher

proportion of white and Hispanic subjects completing all ten interviews than Black subjects or

subjects of another ethnic origin.

Table 1.1: Status of follow up interview by interview period (IP).
Status IP 1 IP 2 IP 3 IP 4 IP 5 IP 6 IP 7 IP 8 IP 9 IP 10
Complete (%) 92.54 92.54 89.59 90.32 90.55 90.77 89.66 88.85 86.78 83.53
Missing (%) 6.57 6.79 9.23 9.08 8.86 9.01 10.27 10.76 12.92 16.25
Partial (%) 0.89 0.66 1.18 0.59 0.59 0.22 0.07 0.30 0.30 0.22

Table 1.2: Percentage of participants with complete data for all (10) interviews as well as for
9,8,. . . ,1,0 interviews.
Interviews 0 1 2 3 4 5 6 7 8 9 10
% Participants 1.33 0.74 0.81 0.81 1.33 1.55 2.88 4.43 7.31 17.58 61.23

Table 1.3: Percentage of participants with complete data for all (10) interviews as well as for
9,8,. . . ,1,0 interviews, stratified by gender and ethnicity.

0 1 2 3 4 5 6 7 8 9 10
Male (%) 1.37 0.85 0.94 0.94 1.54 1.45 3.16 4.53 7.69 17.61 59.91
Female (%) 1.09 0 0 0 0 2.17 1.09 3.80 4.89 17.39 69.57
Black (%) 2.50 0.89 1.25 0.89 1.97 1.07 4.28 4.63 8.73 19.61 54.19
Hispanic (%) 0.44 0.88 0.44 0.44 1.10 1.98 1.76 3.52 7.05 16.52 65.86
White (%) 0 0.36 0.73 0.73 0.73 2.19 2.19 3.65 5.11 14.23 70.07
Other (%) 3.08 0 0 3.08 0 0 1.54 12.31 6.15 21.54 52.31

In this dissertation, we view a sanction or intervention as a placement in one of seven differ-

ent types of facilities without community access: (i) Drug or alcohol treatment units where the
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primary focus is providing substance use treatment services. This included both detoxification

and longer-term substance use treatment programs, with the vast majority being longer-term

treatment facilities. (ii) Psychiatric hospitals or psychiatric units of a general hospital providing

inpatient acute care to evaluate and stabilize individuals with mental health problems.(iii) Jails,

which are usually locally run and hold youths until trial or for relatively short sentences after

trial and prisons; these are typically state-run and hold offenders for a longer sentence after

trial. The main goal of these settings is incarceration. (iv) Detention facilities where adoles-

cents await their adjudication hearing or more permanent placement location after adjudication

and disposition. (v) State-run, secure juvenile facilities providing secure custody, education,

and treatment to committed youth. (vi) Contracted residential treatment (general) facilities pro-

viding residential care within a structured environment and that may offer a range of services.

(vii) Contracted residential treatment (mental health) facilities where the primary focus is the

treatment of the youth’s mental health needs. Data on placement in a secure facility including

the type of facility and the duration of the placement were recorded monthly. However, only

one type of facility can be recorded per month. Therefore, if a subject was in more than one

type of facility during a single month, the type of facility with the longest stay was recorded.

1.2 Plan of the Thesis

The motivating data set highlights gaps in the current literature that need to be addressed

in order to analyze complex data sets and the complications considered here may arise in a

variety of longitudinal data settings. The main methodological challenges include the need to

develop methods for multivariate longitudinal discrete data, incorporating modulating expo-

sure variables and several possible sources of zero-inflation. Additionally, we accommodate a

subgroup of subjects who eventually desist engaging in criminal activities, utilizing a modeling

framework where the simultaneous resolution of several recurrent event processes is possible.

As well, we contrast inference based on the analysis of self-reported count data aggregated

over the period of observation with that of repeatedly collected binary data indicating the pres-
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ence/absence of events between shorter periodic assessments using joint zero-inflated discrete

regression models when rounding of the count data is expected. Each chapter addresses differ-

ent issues related to the joint analysis of zero-heavy longitudinal outcomes and is presented in

a style similar to that for publication. As a result, some introductory material is repeated.

This thesis concludes with a discussion of future work emerging from extensions of the

methods developed.
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Chapter 2

Joint Analysis of Multivariate

Longitudinal Zero-heavy Panel Count

Outcomes with Differing Exposures

2.1 Introduction

Joint modeling is a generic term used to describe situations where two or more processes

are modeled in a way such that the models directly or indirectly influence each other. Out-

comes measured on the same subject may be correlated so that conceptualizing a shared latent

variable that reflects unobserved individual traits affecting outcomes may be useful for gain-

ing precision for the estimation of parameters. Previous authors have demonstrated that the

use of joint models can lead to efficiency gains for the marginal parameters of interest when

the association between outcomes is strong (Zeng and Cook, 2007). Furthermore, it has been

shown that ignoring the correlation between outcomes can lead to biased estimates (Guo and

Carlin, 2004). In this paper, we utilize the general framework proposed by Dunson (2000) in

which, conditional on random effects, different members of the exponential family are used to

describe the component models in the joint distribution of the set of observed outcomes.

11
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Multi-state stochastic models are useful for the analysis of data from longitudinal studies

monitoring individuals moving through various states, when interest centers on the dynamic

aspects of the process under investigation. If it is hypothesized that a subgroup of subjects,

termed stayers, will remain in the initial state over time, whereas others, termed movers, will

make transitions among states, the overall process can be modeled by a finite mixture model

called a mover-stayer model. Blumen, Kogan and McCarthy (1955) first introduced discrete

time mover-stayer models which consist of a mixture of two independent Markov chains, one

degenerate, with a transition matrix equal to the identity matrix for the stayers, and another with

an unspecified transition matrix. When several longitudinal count outcomes are jointly consid-

ered, and excess zeros may arise from several distinct sources, adopting the basic structure

of a mover-stayer model may provide a suitable approach to address a variety of frameworks

generating the zero counts.

In settings where the proportion of zero counts is high relative to what is expected based

on the distribution of the non-zero counts, standard count distributions such as Poisson, bino-

mial and negative binomial may not provide an adequate fit. Mixture methods for handling

zero-inflated counts have received considerable attention in the literature, especially over the

last two decades. Two influential foundational papers include Lambert (1992) and Hall (2000).

In a manufacturing context, Lambert (1992) introduced zero-inflated Poisson (ZIP) regres-

sion models where the probability of a perfect, non-zero defect state and the mean number of

defects in the imperfect state are allowed to depend on covariates via canonical link general-

ized linear models. Motivated by a horticular experiment with a repeated measures design,

Hall (2000) adapted Lambert’s methodology to the setting with upper bounded counts and

proposed the zero-inflated binomial (ZIB) model, including random effects in the mean com-

ponent of the ZIP and ZIB regression models to accommodate the within-subject correlation

and the between-subject heterogeneity typically observed in longitudinal data. Several authors

(Boone, Stewart-Koster and Kennard, 2012; Buu et al., 2012; Ghosh and Tu, 2008) have de-

veloped zero-inflated count regression models that incorporate correlation structures arising in



2.1. Introduction 13

longitudinal, clustered or spatial data.

Methods for the joint analysis of several count and zero-inflated count outcomes have been

recently developed. Rodrigues-Motta et al. (2013) proposed a joint model for multivariate

overdispersed count data where correlation among observations for the same subject is incor-

porated through the inclusion of correlated outcome- and subject-specific random effects in the

mean component. Additionally, they allowed correlated counts to follow different distributions

such as Poisson, negative binomial and ZIP. Feng and Dean (2012) discussed joint models for

multivariate spatial count data with excess zeros, where outcomes are linked through a shared

latent spatial random risk term.

We generalize two existing methodologies: zero-heavy longitudinal count models and joint

outcome zero-heavy count analysis which accommodates longitudinal, multivariate data and

which adopts a framework similar to the mover-stayer concept for handling some of the zero

counts. Our context for these developments is a major study on criminal behaviour patterns of

serious adolescent offenders from adolescence into early adulthood. One goal of this study is

to examine the effect of institutional placement on subsequent offending. A specific concern is

the carry-over effects of time in a facility with no community access on the offending behavior

in the subsequent observation period.

A complicating factor in the analysis of this data set is that the likelihood of some of the

criminal activities (e.g. stealing a car) is severely reduced if the individual is in a facility with

no community access. Therefore, the length of exposure, defined as the length of time a subject

is at-risk to engage in an outcome, varies from outcome to outcome. One possible approach

to incorporate the extent of individual exposure in zero-inflated count models is to assume that

the mean count is proportional to the exposure time (Lee, Wang and Yau, 2001). Baetschmann

and Winkelmann (2013) extended this approach for analysis of a zero-inflated outcome by

assuming that structural zeros are generated by a separate process. From this viewpoint, a

structural zero occurs if the waiting time until an event exceeds the exposure time. Hence, the

probability of a structural zero is equal to the survival function of the waiting time distribution



14 Chapter 2. Joint Analysis of Zero-heavy Panel Count Outcomes

evaluated at the exposure time. Modeling the probability of a structural zero using a survival

function is logical for settings where some outcomes may be prohibited due to a modulating

exposure. Specifically, the probability of a structural zero decreases with the length of exposure

and if the length of exposure is 0 then the probability of a structural zero is 1. In this application,

we incorporate the length of exposure in the structural zero as well as the mean components of

the zero-inflated mixture count models.

This article focuses on the development of new tools for zero-heavy joint outcome analysis

with a major intent being the illustration of how to build relevant models and what sorts of novel

insights they provide in the setting of an analysis of juvenile criminal behaviour. We proceed

as follows: In Section 2.2 we describe our general joint modeling framework. In Section 2.3

we introduce our motivating data set and outline the methodological challenges for analysis.

We discuss model development in the context of the study of criminal behaviour in Section 2.4.

Highlighting innovations and new insights stemming from our mixture modeling approach as

well as the framework we adopt for our exposure variable, we present the results of our joint

analysis of this study in Section 2.5. A comparison with alternate models, demonstrating the

benefits of jointly modeling outcomes in this data set, is provided in Section 2.6. In Section

2.7 we conclude with a discussion of results and limitations, as well as suggestions for future

work.

2.2 Joint Analysis of Multivariate Longitudinal Zero-heavy

Count Outcomes

Suppose there are N subjects in a study and subject i is observed at Ti follow up interviews,

indicating the end of a panel length of time. At each follow up interview, subjects report the

number of times they engaged in each of K outcomes during the corresponding panel. We refer

to subjects as non-engagers if they are not at-risk to engage in outcome k, i.e. they generate

zero values at all panels for outcome k. Note that it is possible for a subject to be a non-engager
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for each outcome, resulting in zero values for each outcome. Let yitk be the observed count for

subject i at panel t for outcome k and yik = (yi1k, . . . , yiTik)
′

be the sequence of counts over

t = 1, . . . ,Ti observed for subject i for outcome k, i = 1, . . . ,N, k = 1, . . . ,K.

We assume each response vector yik, conditional on random effects, is independently drawn

from a mixture model having density

f (yik|sik, ri, ui, vi, dik, bik) =


I(yik = 0Ti×1) if sik = 1

fCk(yik|ui, vi, dik, bik) if sik = 0
(2.1)

where the variables sik are latent Bernoulli indicators, markers for the outcome-specific non-

engagers, with mean function pik, conditional on a random effect ri; subject and outcome spe-

cific random effects ui, vi, dik and bik will be discussed later. Specifically, for each outcome, we

assume sik|pik ∼ Bern(pik) with

pik = {1 + exp(−w
′

iγk − λrkri)}−1 (2.2)

where wi is a q1×1 vector of covariates, γk is a vector of corresponding regression parameters, ri

is a subject-specific random effect and λrk is a factor loading parameter representing outcome-

specific variability related to ri.

For each outcome, one mixture component places all its mass on the zero vector while the

other component distributes mass according to the density, fCk(yik|ui, vi, dik, bik), corresponding

to a longitudinal zero-heavy count model. There are several possible choices for the zero-

heavy count distribution such as zero-inflated Poisson, zero-inflated negative binomial and

zero-inflated binomial. Such different distributions may be required for different outcomes.

Conditional on random effects, we assume the counts for outcome-k-specific engagers fol-

low a zero-inflated count distribution with probability of a structural zero πitk so that

fCk(yik|ui, vi, dik, bik) is given by
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fCk(yik|ui, vi, dik, bik) =

Ti∏
t=1

[
I(yitk = 0){πitk + (1 − πitk) fk(0|µitk)}

+ I(yitk > 0)(1 − πitk) fk(yitk|µitk)
]

(2.3)

where fk denotes the probability mass function of the standard (non zero-inflated) count distri-

bution associated with outcome k and µitk is the corresponding conditional mean. The parame-

ters of the zero-inflated count distributions, πitk and µitk, i = 1, . . . ,N, t = 1, . . . ,Ti, k = 1, . . . ,K

are modeled as

πitk = exp[− exp{x
′

1it(−αk) + h1(t, ρ1k) + δk log(zitk) + λukui + dik}], (2.4)

the survivor function of a Weibull distribution, and

µitk = g−1
k {x

′

2itβk + h2(t, ρ2k) + λvkvi + bik}zitk (2.5)

where gk is the canonical link function for the standard count distribution corresponding to

the kth outcome; x1it and x2it are q2 × 1 and q3 × 1 vectors of covariates for the fixed effects

while αk and βk are vectors of corresponding regression parameters; h1(t, ρ1k) and h2(t, ρ2k) are

functions of time describing the temporal trends in πitk and µitk. We parameterize the model for

πitk in terms of −αk so that a positive covariate effect corresponds to an increased probability

of a structural zero. The form of πitk, as well as the term δk log(zitk) reflect the idea proposed

by Baetschmann and Winkelmann (2013) to model the probability of a structural zero as the

survivor function of a Weibull distribution. Here, the Weibull shape parameter is δk and zitk,

the waiting time, is the length of exposure in the panel. In the structural zero component, ui is

a subject-specific random effect shared across outcomes and λuk is the factor loading for this

shared effect on outcome k. Correspondingly, in the mean component, vi is a subject-specific

random effect shared across outcomes and λvk is the factor loading for this shared effect on
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outcome k. The outcome- and subject-specific random effect for the structural zero component

dik and the outcome- and subject-specific random effect for the mean component bik represent

additional heterogeneity beyond the shared random effect in the respective model components.

We assume the random effects are normally distributed such that ri ∼ N(0, 1), ui ∼ N(0, 1),

vi ∼ N(0, 1), dik ∼ N(0, σ2
dk

) and bik ∼ N(0, σ2
bk

), i = 1, . . . ,N and k = 1, . . . ,K. Thus, the

shared frailties allow for the outcomes to be linked in the probability of a non-engager, and for

engagers, both in the structural zero and mean components of the model.

Our mixed joint model for multivariate longitudinal zero-heavy count data may be imple-

mented in a Bayesian framework using Markov chain Monte Carlo (MCMC) methods. The

joint posterior distribution of the parameters is

p(Θ, r,u, v, d, b|Y) ∝L(Y|Θ, r,u, v, d, b)p(d|σ2
d)p(b|σ2

b)π(σ2
d)π(σ2

b)

p(r)p(u)p(v)π(Θ) (2.6)

where Θ = (γ,α,β, ρ1, ρ2, δ, λr, λu, λv)
′

, γ = (γ1, . . . ,γK)
′

, α = (α1, . . . ,αK)
′

, β = (β1, . . . ,βK)
′

,

ρ1 = (ρ11, . . . , ρ1K)
′

, ρ2 = (ρ21, . . . , ρ2K)
′

, δ = (δ1, . . . , δK)
′

, λr = (λr1, . . . , λrK)
′

, λu = (λu1, . . . , λuK)
′

,

λv = (λv1, . . . , λvK)
′

, σ2
d = (σ2

d1
, . . . , σ2

dK
)
′

, σ2
b = (σ2

b1
, . . . , σ2

bK
)
′

, r = (r1, . . . , rN)
′

, u =

(u1, . . . , uN)
′

, v = (v1, . . . , vN)
′

, d = (d11, . . . , dN1, d12, . . . , dNK)
′

and

b = (b11, . . . , bN1, b12, . . . , bNK)
′

. The first term on the right hand side of (2.6) is the likelihood

L(Y|Θ, r,u, v, d, b) ∝
N∏

i=1

K∏
k=1

[I(yik = 0Ti×1){pik + (1 − pik) fCk(0Ti×1|ui, vi, dik, bik)}

+ I(yik , 0Ti×1){(1 − pik) fCk(yik|ui, vi, dik, bik)}] (2.7)

The Bayesian model specification is made complete by assigning prior distributions to Θ,

σ2
d and σ2

b. Inference is then based on the posterior distribution, which can be summarized
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using samples drawn from the posterior distribution. This framework for the analysis was

implemented through the freely available software JAGS (Plummer, 2003).

2.3 A Study of Antisocial Behaviour Among Serious

Juvenile Offenders

The Pathways to Desistance study (Mulvey et al., 2004; Schubert et al., 2004) is a longi-

tudinal study of a group of serious juvenile offenders investigating offending patterns in the

period following court adjudication. A total of 1354 youth offenders, aged 14 through 17 years

old, who were found guilty of at least one serious offense in metropolitan areas of Phoenix,

Arizona or Philadelphia, Pennsylvania were enrolled in the study between 2000 and 2003 and

followed for up to 7 years. The primary aim of the study is to identify patterns of desistance or

escalation among serious juvenile offenders and evaluate the effects of adolescent development,

sanctions and interventions on these offending patterns.

All subjects completed a baseline interview where information about background charac-

teristics and previous offending was collected. Additionally, interviews were conducted over a

seven year follow up period. We analyze here panel data recorded approximately annually over

the seven year period. At each follow up interview, data pertaining to antisocial and criminal

activity in the period since the last scheduled interview were recorded. During the follow up

period, subjects may have spent time in a facility with no access to the community, termed a

secure facility. Data on placement in a secure facility and, if so, the proportion of the panel

spent in a secure facility, are available. Some of the antisocial and criminal activities are highly

unlikely to occur in a secure facility and, for this analysis, are considered prohibited in a secure

facility. We summarize the eight outcomes considered here: carried a gun, sold marijuana,

sold other drugs, drove drunk, aggressive I, aggressive II, income I, and income II, in Table

A.1; we provide a list of the antisocial and criminal activities associated with each outcome,

indicate whether the outcome is considered prohibited while a subject is in a secure facility and
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the type of response collected. These outcomes may refer to the number of times the subject

engaged in an activity and, therefore, represent an unbounded count or they may refer to the

number of days the subject engaged in an activity which is bounded by the length of exposure.

A large proportion of the observed counts are zero and there are several distinct patterns

in the occurrence of zero counts. In particular, a substantial proportion of subjects, ranging

from 81% for aggressive I to 21% for aggressive II, never report participating in a particular

outcome during the follow up period. Furthermore, there are distinct trends in the proportion of

zero counts over time across the different outcomes, displayed in Figure A.1. The proportion

of zeros substantially increases over time for aggressive II and income II whereas there is

less of a sharp increasing trajectory for the proportion of zeros related to the remaining six

outcomes. This motivates consideration of novel zero-inflated models which incorporate a

variety of structures on the joint longitudinal zero counts.

2.4 Model Development for Joint Zero-heavy Outcomes

Related to Antisocial Behaviour

2.4.1 Model Specification

We restrict our analysis to subjects for whom at least one year of data (N=1170) was avail-

able. For each subject, the number of time points included in the analysis, Ti, is defined as the

number of consecutive panels of follow up with complete data. We define the length of expo-

sure, zitk, as the number of days in the panel, for outcomes that are not prohibited in a secure

facility, and as the number of days spent in the community, for outcomes that are prohibited in

a secure facility. Recall that length of each panel is approximately one year. For outcomes not

prohibited in a secure facility, we utilize the survivor function of an exponential distribution

to model the probability of a structural zero and, hence, set δk = 1 as the panel length takes

only a few values. On the other hand, for outcomes prohibited in a secure facility, we utilize
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the survivor function of a Weibulll distribution to model the probability of a structural zero

and estimate δk. For outcomes corresponding to bounded counts, we assume, conditional on

random effects, the counts for an outcome-specific engager follow a ZIB distribution where the

number of trials, zitk, is the number of days the outcome could have occurred; gk is the logit link

function. For outcomes corresponding to unbounded counts, conditional on random effects, we

assume the counts for an outcome-specific engager follow a ZIP distribution and gk is the log

link function. We assume piecewise linear temporal trends with a single knot at panel 3 in the

structural zero and mean components of the model.

Preliminary results showed a strong positive correlation between the subject-specific ran-

dom effects in the structural zero and mean components of the model. Thus, a single subject-

specific random effect is shared across outcomes in both the structural zero and mean compo-

nents of the model. This model represents a substantial Watanabe-Akaike information criterion

(WAIC, Watanabe 2010) improvement (of approximately 115) over the model with two inde-

pendent (ui and vi in (2.4) and (2.5)) subject-specific random effects. MCMC methods for

computing posterior samples from mixed effects models can have convergence issues when the

variance of the random effects are near zero. This is the case for the between-subject variabil-

ity for the probability of being a non-engager for aggressive II which is adequately captured

by baseline covariates. Relative to the other outcomes, the proportion of subjects who re-

ported never engaging in aggressive II, 21%, is low and, therefore, the probability of being a

non-engager is low for the majority of subjects. The inclusion of gender in the non-engager

component of the model effectively reduces corresponding between-subject variability for ag-

gressive II to zero. For all of the outcomes, the shared effect seems to sufficiently characterize

the variability in the structural zero component. Additionally, we fit the independence model

with independent subject- and outcome-specific random effects (dik and bik in (2.4) and (2.5))

and examined the pairwise correlations of the random intercepts. Most of the pairwise esti-

mates of the correlation coefficient corresponding to the mean component for sold marijuana

and sold other drugs were close to zero (all below 0.3), indicating that essentially all of the
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variability in the mean component of these drug-related outcomes appears to be absorbed in

the term representing additional heterogeneity beyond the shared effect. Therefore, we set the

relevant factor loading parameters equal to zero and consider the following model specification



pik = {1 + exp(−w′

iγk − λrkri)}−1

πitk = exp[− exp{x′it(−αk) + ρ11kt + ρ12k(t − 3)+ + δk log(zitk) + λukui}]

µitk = g−1
k {x

′

itβk + ρ21kt + ρ22k(t − 3)+ + λvkui + bik}zitk

(2.8)

i = 1, . . . , 1170, t = 1, . . . ,Ti, k = 1, . . . , 8 where λr6 = λv2 = λv3 ≡ 0.

The vector of covariates associated with the probability of an outcome-specific non-engager,

wi consists of a fixed intercept, gender (male/female) and ethnicity (black/Hispanic/other). In

the structural zero and mean components, xit consists of an intercept, gender (male/female),

ethnicity (black/Hispanic/other), a binary indicator of placement in a secure facility during

panel t and a carry-over effect, defined as the proportion of the previous panel spent in a secure

facility.

2.4.2 Computational Details

We assign weakly informative prior distributions for the fixed regression effects, γk ∼

Nq1(0, Iq1), αk ∼ Nq2(0, Iq2), βk ∼ Nq3(0, Iq3), ρ1k ∼ N2(0, I2) and ρ2k ∼ N2(0, I2) k = 1, . . . ,K =

8, where In denotes an n × n identity matrix. For the factor loading parameters, λrk, λuk, λvk

k = 1, . . . , 8, we adopt moderately informative priors, Γ(1, 1), initially, prior to setting some of

these to zero in the model development. Feng and Dean (2012) utilized a similar prior speci-

fication in the context of a joint analysis of multivariate zero-heavy count outcomes. As well,

we specify moderately informative Γ(1, 1) priors to, δk k = 1, 4, 5 and 7, the shape parame-

ter associated with the Weibull survivor function used to model the probability of a structural

zero. Finally, we choose Unif(0, 100) priors for the standard deviations of the outcome- and

subject-specific random effects in the mean component, σbk k = 1, . . . , 8, because of the robust

properties of this prior (Gelman, 2006).
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The results below reflect two chains, each was run for an initial 10 000 burn-in iterations

followed by an additional 40 000 iterations thinned at 40, resulting in a total of 2000 iterations

to be used for posterior inference. In order to reduce the number of iterations needed and

improve the mixing of the chains, we implement a hierarchical centering reparametrization

(Gelfand, Sahu and Carlin, 1996) in the mean component of the model.

2.5 Analysis of Juvenile Offending Behaviour

The focus of this analysis is understanding the processes generating zero counts and assess-

ing the carry-over effects of placement in a secure facility. Within the modeling framework,

zero counts may arise from non-engagers, and for engagers, from either the structural zero or

mean components of the model.

The posterior medians and 95% equal-tail credible intervals for the baseline covariate ef-

fects in the non-engager component are shown in the top row of Figure 2.1. We observed that

for all outcomes, compared to male subjects, female subjects have a higher probability of being

a non-engager. This effect is significant for all outcomes except sold other drugs and aggressive

I. There are no significant differences in terms of the probability of being a non-engager among

ethnicities except that, relative to the baseline group, black subjects have a higher probability

of being a non-engager for drove drunk. As well, note that there are no significant differences

in the probability of being a non-engager for any of the outcomes between black and Hispanic

subjects.

The posterior medians for the outcome-specific trajectories for the probability of a struc-

tural zero and mean of the standard count distribution are displayed in Figure 2.2. In this figure,

the fitted values correspond to a non-black, non-Hispanic male subject who spent no time in a

secure facility in the previous or current panel. For illustration purposes, we assume a length

of exposure of 365 days. For all the outcomes, the probability of a structural zero is increasing

over time. However, the magnitude of this increase varies across outcomes, for example, the

probability of a structural zero corresponding to aggressive II increases from 0.26 at panel 1
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Figure 2.1: Posterior medians and 95% credible intervals for effects of baseline covariates on
the probability of a non-engager (γk, top), the probability of a structural zero (−αk, middle),
and the mean of the standard count distribution (βk, bottom). Credible intervals that exclude
the null value of 0 are shaded darker.
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to 0.74 at panel 7 while the probability corresponding to aggressive I increases from 0.89 to

0.95. There are three distinct types of trajectories associated with the mean of the standard

count distribution: increasing over time (carried a gun, sold marijuana), increasing over pan-

els 1 and 2 followed by a relatively constant mean (sold other drugs, drove drunk), or relatively

constant and low. Overall, the proportion of subjects who are engaging in illegal or antisocial

activity is decreasing over time. However, within the subgroup of individuals who continue to

engage in illegal or antisocial activity, the frequency of this activity remains relatively constant

or increases over time. This suggests that at the end of the seven year follow up period, the

majority of subjects have low probability of offending but there exists a small subgroup of sub-

jects whose rate of offending has remained constant or increased over the follow up period. As

an example, consider carried a gun where the probability of a structural zero increases from

0.85 at panel 1 to 0.95 at panel 7 and, within the at-risk subgroup, the mean of number of days

per year a subject carries a gun drastically increases over the follow up period from 3.9 to 38.8.

The posterior medians and 95% equal-tail credible intervals for the baseline covariate ef-

fects in the structural zero and mean components are shown in the middle and bottoms rows

of Figure 2.1, respectively. Within the outcome-specific engagers, female subjects compared

to male subjects have a significantly higher probability of a structural zero for all outcomes

except income I and sold other drugs. Relative to the baseline group, black and Hispanic en-

gagers have a lower probability of a structural zero for carried a gun. Additionally, black

subjects compared to both the baseline group and Hispanic subjects have a higher probability

of a structural zero for income I, income II and drove drunk. Turning to the mean compo-

nent, relative to male subjects, female subjects who are at-risk to engage in an outcome have

a significantly higher mean for drove drunk and income II and a significantly lower mean for

aggressive II. Black and Hispanic subjects compared to the baseline group have a higher mean

for carried a gun. As well, black subjects relative to both the baseline group and Hispanic

subjects have a higher mean for sold marijuana and sold other drugs and a lower mean for

income I, income II and aggressive II. Compared to Hispanic subjects, black subjects have a
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Figure 2.2: Fitted probability of a structural zero and fitted mean of the standard count distri-
bution.
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lower mean for drove drunk.

There are two effects related to placement in a secure facility. The first is an indicator effect

on the probability of a structural zero and the mean count in the current panel. The second is

the effect of the proportion of time in a secure facility in the previous panel on the probability

of a structural zero and the mean count in the current panel (termed the carry-over effect). The

posterior medians and credible intervals for the effect of placement in a secure facility on the

probability of a structural zero and the mean of the standard count distribution in the current

panel are shown in the top row of Figure 2.3. Corresponding posterior summaries for the

carry-over effect are shown in the bottom row of Figure 2.3. For each of the eight outcomes,

placement in a secure facility is associated with a lower probability of a structural zero in the

current panel. With the exception of the interval corresponding to income II, the 95% credible

intervals do not contain the null value of 0. Furthermore, placement in a secure facility is

associated with higher mean in the current panel for all outcomes except sold other drugs.

Overall, spending some time in a secure facility is associated with higher rates of offending in

the current panel. Note that due to the panel structure of the data, whether placement occurs

before or after criminal activity is unknown. It may be that a subject experienced a period

of higher offending which led to placement in a secure facility. A higher proportion of the

previous panel spent in a secure facility is associated with a higher probability of a structural

zero for all of the outcomes in the current panel. Moreover, except for aggressive I, a higher

proportion of the previous panel spent in a secure facility is associated with a lower mean for

the standard count distribution in the current panel. Overall, a higher proportion of the previous

panel spent in a secure facility is associated with lower offending in the current panel.

We utilize the survival function of a Weibull distribution to model the probability of a

structural zero for carried a gun, drove drunk, aggressive I and income I; the corresponding

posterior median estimates (95% credible interval) for the shape parameters are 0.29 (0.20,

0.38), 0.19 (0.10, 0.29), 0.01 (0.00, 0.05) and 0.05 (0.00, 0.13). These estimates are less than

1 which indicates that the hazard functions related to the waiting time until an event decreases
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Figure 2.3: Panels in the top row display posterior medians and 95% credible intervals for ef-
fects of placement in a secure facility during the current panel on the probability of a structural
zero (left) and mean of the standard count distribution (right); panels in the bottom row display
posterior medians and 95% credible intervals for the carry-over effect on the probability of a
structural zero (left) and mean of the standard count distribution (right). Credible intervals that
exclude the null value of 0 are shaded darker.
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as time in the community increases; the probability of an event in a fixed time interval in

the future decreases as time in the community increases. Furthermore, the shape estimates

corresponding to aggressive I and income I are very close to 0, suggesting that the length of

time in the community does not substantially affect the probability of a structural zero for these

outcomes.

Considering the subject-specific random effects in the non-engager component of the model,

their estimated factor loading parameters vary substantially across the outcomes. This indicates

that the between-subject variability for the probability of being a non-engager varies across the

outcomes. In particular, this variability is lowest for income I and income II and highest for

sold marijuana and sold other drugs. In the structural zero component, the estimated factor

loading parameters for the subject-specific effects are fairly consistent across the outcomes

with the exception of aggressive II. The factor loading parameter for aggressive II seems to

be distinctly smaller; the between-subject variability for the probability of a structural zero is

lower for aggressive II than the other outcomes. Finally, in the mean component, the factor

loading parameter corresponding to the subject-specific effects for income I seems to be dis-

tinctly larger. The variability of the shared random effect in the mean component of the model

is larger for income I than the other outcomes. The posterior medians and credible intervals for

the factor loading parameters associated with each of the model components are displayed in

Figure A.2.

In the top portion of Table 2.1, we display the pairwise estimates of Spearman’s rank cor-

relation coefficient for the posterior median estimates of the outcome- and subject-specific

random intercepts in the mean component, bik. Most of the pairwise estimates of the corre-

lation coefficient are close to zero, indicating that shared random effect adequately captures

the correlation structure. However, there is evidence of weak positive pairwise correlations of

bik between carried a gun and aggressive I and sold marijuana and sold other drugs. This

indicates that subjects who report a high count for carried a gun tend to report a high count

for aggressive I which is expected as several of the activities included in aggressive I involve
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using a gun. An analogous interpretation holds for sold marijuana and sold other drugs. Also

displayed in Table 2.1 is posterior medians for the variance of the random effect representing

additional heterogeneity beyond the shared random effect in the mean component, σ2
bk

. This

variance is substantially larger for carried a gun, indicating there is large variation in the Bi-

nomial mean for carried a gun across subjects, distinct from the other outcomes. In the mean

component, the variability of all outcomes is decomposed into one common error term that

is linked to the structure zero component and, additionally, outcome-specific variability. For

each run of the MCMC samples, the empirical variances for the random intercept and common

component, s2
bik+λvkui

and s2
λvkui

, respectively, are calculated. The fraction of variability explained

by the common factor is calculated as the ratio s2
λvku/s2

bik+λvkui
. In the final row of Table 2.1, we

display the posterior medians for the fraction of variability explained by the common factor

for each outcome. The shared random effect accounts for 12% to 48% of the variability in the

mean component; some of the variability in the mean component is absorbed by the shared

random effect. However, for carried a gun, the vast majority of the variability in the mean

component is absorbed in the term representing additional heterogeneity beyond the shared

random effect, indicating that some latent factors may have distinct effects on this outcome.

Figures 2.4 and 2.5 examine the goodness of fit by comparing the observed counts versus

those expected under the model for the structural zero and mean components. The observed

trends in the differences between the number of zeros and the number of zeros due to non-

engagers and the standard count distribution under the fitted model are overlain on the curves

of expected number of structural zeros under the fitted model in Figure 2.4. The trends in the

predicted counts of structural zeros follow the observed curves very closely. Figure 2.5 visu-

ally compares the trends in the mean of the standard count distribution under the fitted model

and the mean of the observed counts, weighted by the inverse probability of the observation

arising from the standard count component of the model; these trends are also in general agree-

ment. However, the mean number of counts for sold other drugs appears to be consistently

overestimated. This may be partially due to a small number of very frequent offenders and the
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influence of these individuals warrants further investigation.

2.6 Comparison with Alternate Models

We investigate the benefits, above that provided by less complex models, obtained by adopt-

ing our mixture model approach for the excess zeros as well as by considering the outcomes

jointly rather than modeling each outcome separately. We compared the following models:

Three Component Joint Model: This is the model we used in the analysis

Two Component Joint Model: Three component joint model without non-engager compo-

nent; i.e., pik ≡ 0.

Separate Model: Three component joint model with λrk = λuk = λvk ≡ 0, k = 1, . . . ,K and

πitk = exp[− exp{x′it(−αk) + ρ11kt + ρ12k(t − 3)+ + δk log(zitk) + dik}]

As measures of comparison, we use the deviance information criterion (DIC, Speighlhalter

et al., 2002) and the WAIC. DIC is defined as D(θ) + pD, where D(θ) is the posterior mean

of the deviance. The penalty term pD is the effective number of model parameters defined by

pD = D(θ) − D(θ) where θ is the posterior mean of θ. WAIC, defined as

WAIC = −2
N∑

i=1

Ti∑
t=1

K∑
k=1

log

 1
R

R∑
r=1

L
(
yitk|θ

(r)
) + 2

N∑
i=1

Ti∑
t=1

K∑
k=1

VR
r=1{log L(yitk|θ

(r))} (2.9)

where VR
r=1 represents the sample variance and θ denotes the collection of parameters in the

model, may be used as a fast and computationally-convenient alternative to cross-validation.

Models with lower values of DIC and WAIC are preferred.

The DIC and WAIC values are 129 853 and 57 313 for the three component joint model,

124 009 and 57 058 for the two component joint model and 166 905 and 64 197 for the sep-

arate model. The two component joint model seems to provide the best fit according to both

measures of fit. Practically, it is hard to distinguish between the fits of the two and three com-

ponent joint models. The primary difference between these models is at the interpretation level.
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Figure 2.4: The expected number of structural zeros over time (lines) and the observed number
of zeros minus the number of expected non-engagers and the expected number of zeros arising
from the standard count distribution (points).
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Figure 2.5: The expected mean of the standard count distribution over time (lines) and the
mean of the observed counts, weighted by the inverse of the probability of the observation
arising from the standard count distribution (points).
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Under the two component model we are not able to distinguish between subjects who are not

at-risk to engage in a particular outcome and subjects corresponding to a high probability of a

structural zero, possibly due to limited exposure. In this application, it is of particular interest

to identify subjects who are non-engagers and, hence, not at-risk for offending. Balancing vari-

ous criteria of model fit and interpretation, the three component model seems most appropriate

for modeling this data set. Also, the joint models yield substantially better fits than the sepa-

rate model. Note that only fixed effects can be included in the model for the probability of a

non-engager under the separate model. Linking these probabilities across outcomes allows for

the estimation of subject-specific random effects in this component of the model. Therefore,

considering the outcomes jointly allows us to account for correlations across outcomes in each

of the model components and incorporate additional flexibility in the model for the probability

of a non-engager through the inclusion of subject-specific random effects.

Our Bayesian framework provides various measures of subject-specific predictions. In the

current context, we may be interested in predicting which subjects will not offend during the

next year given that they spend the entire year in the community. We calculate the posterior

medians for the probability of not offending during panel Ti+1, assuming the length of exposure

is 365 days and no time is spent in a secure facility, across the competing models and display

the results in Figure A.3. This probability is expressed as

P(yit = 0K×1|Θ, ri, ui, bik) =

K∏
k=1

[
pik + (1 − pik){πitk + (1 − πitk) fk(0|µitk)}

]
(2.10)

i = 1, . . . , 1170, t = Ti + 1. These estimates are very similar for the joint models. Relative to

the joint models, the range of these fitted probabilities across all the individuals is substantially

narrower under the separate model. Here, considering the outcomes separately affects the

detection of individuals with an extreme (very low/very high) probability of not offending in

the next year. This may have useful implications from a decision-making perspective, for
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example, we may categorize subjects into two groups based on their risk of offending in the

next year. A reasonable decision rule would be to select a probability threshold, say 0.8, and

classify subjects with a probability of not offending during the next year greater than that

threshold as low risk. Decisions concerning the placement of a subject in a secure facility

versus enrollment in a community-based treatment would surely differ for low and high risk

subjects. Under the two and three component joint models, 372 and 376 subjects, respectively,

have an estimated probability of not offending during the next panel that exceeds 0.8. By

contrast, only 55 subjects have an estimated probability of not offending in the next panel that

exceeds 0.8 under the separate model. However, decision making in this context is complicated

and is influenced by factors beyond past behaviour.

Finally, we wish to investigate the accuracy of predictions obtained by modeling these

outcomes jointly compared to fitting them separately. We remove last panel of available data

and fit joint and separate models using this reduced data set. Then, based on the posterior

samples of the rth MCMC iteration, we generate a vector of predicted responses at last panel

for each subject, (y(r)
iTi1
, . . . , y(r)

iTiK
)
′

, r = 1, . . . ,R. We calculate the sum of absolute deviation as

K∑
k=1

N∑
i=1

|yiTik − ŷiTik| (2.11)

where ŷiTik = 1
R

∑R
r=1 y(r)

iTik
. The sum of absolute deviation is 60 724.18 for the three compo-

nent joint model, 60 290.21 for the two component joint model and 66 942.80 for the separate

model. We obtain more accurate predictions by modeling the outcomes jointly. We visually

compare the distributions of the residuals, yiTik − ŷiTik, under the three component joint model

and the separate model in Figure A.4. Under both models, the distribution of residuals is

skewed to the right, indicating that the predicted counts tend to be overestimated. The geo-

metric shape of the residual distributions arises from the fact that the observed responses are

counts while the average predicted responses take continuous values. The joint model provides

more accurate predictions as the median of the residuals is closer to zero under the joint model

than that of the separate model for all of the outcomes. The shift in location of the median is
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substantial for carried a gun, drove drunk, sold marijuana and sold other drugs.

2.7 Discussion

In this paper, we present a general framework for joint modeling of multiple longitudinal

zero-inflated count outcomes which incorporates a variety of probabilistic structures on the zero

counts. In particular, we accommodate a subgroup of subjects who are not at-risk to engage

in a particular outcome and incorporate the effect of a time-dependent exposure variable in

settings where some outcomes are prohibited during exposure to a treatment.

In the context of our motivating example, our three component mixture joint modeling ap-

proach enables a clearer understanding of offending patterns than the less complex alternative

models considered. Compared to the joint models, considering the outcomes separately im-

pacts the detection of subjects with an extreme probability of offending in a subsequent year

and leads to less accurate predictions. On the other hand, it is hard to distinguish between the

fits of the two and three component mixture joint models. The primary difference between

these models is that under the three component mixture model we are able to identify subjects

who are not at-risk for offending. Importantly, the analysis of the three component mixture

model identifies differences across gender and ethnicity in terms of the probability of being a

non-engager.

In our analysis, the use of the log-log link function in the structural zero component ac-

commodates the presence of high incidence of zeros. In settings where the proportion of zeros

exceeds 80 %, traditional ZIP models with symmetric link functions may struggle to explain

the high prevalence of zeros, especially to identify important covariates (Ghosh et al., 2012).

The three component mixture model may be particularly useful in such settings as under the

ZIP (ZIB) models, the non-engager component of the model reduces the proportion of zeros

fitted and such large percentages of zeros are hard to accommodate. A comparison with the

analysis where the probability of a structural zero is modeled using a logistic link function, and,

where the non-engager component is omitted, would be useful here to provide further insights
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in this regard.

One potential issue with the proposed approach is that short (possibly zero) lengths of ex-

posure can obscure the distinction between non-engagers and, engagers with a high probability

of a structural zero due to limited exposure. However, in our analysis, only three subjects spent

no time in the community over their follow up period. Additionally, in the proposed frame-

work, the model for the probability of being an outcome-specific non-engager is linked across

outcomes and, therefore, incorporates information from outcomes not prohibited in a secure

facility. Caution must be taken when applying the proposed model in studies where the length

of exposure may be zero or near zero across all outcomes.

Some alternatives to our modeling in Section 2 should be mentioned. In the Pathways to

Desistance study, followup interviews were conducted approximately every 6 months for the

first three years and every 12 months for the final four years. For convenience, we considered

approximately annual data. However, accommodating irregularly spaced followup times is

straightforward mathematically and would require some additional computational algorithmic

developments. Incorporating such flexibility is underway.

Our analysis indicates that a higher proportion of a panel spent in a secure facility is as-

sociated with lower offending in the subsequent panel. Within the current framework, it is

unclear whether this desistance is temporary or permanent. More complex models concern-

ing the longer-term impact of placement in a secure facility on offending patterns could be

investigated. Shen and Cook (2014) describe a dynamic mover-stayer model for recurrent

event processes in settings where the underlying condition generating the recurrent events may

resolve. Adopting this basic model structure by incorporating a time-dependent indicator vari-

able corresponding to non-engager status of a subject which permits a switch from engager to

non-engager sometime during the follow up period may be useful for differentiating between

temporary and permanent changes in offending. Additionally, an investigation of the carry-over

effects associated with placement in a juvenile versus an adult facility has been initiated.

More flexible correlation structures for the random effects could be implemented. In par-
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ticular, as an alternative to shared frailties, correlated random effects that follow multivariate

normal distributions could be utilized. In our analysis, the moderate pairwise correlations of

bik between some of the outcomes indicates that models with a more flexible correlation struc-

ture may be useful. However, computationally efficient estimation of a covariance matrix for

correlated random effects is challenging, especially in higher dimensional settings. As well, a

copula function could be used to link separate sets of random effects. The shared frality frame-

work utilized here is a special case of the Gaussian copula with a restricted correlation matrix

assuming pairwise correlations equal to 1 and Gaussian marginals. Exploring different depen-

dence structures through the use different copula functions warrants further research. Another

useful extension would be to allow the random effects in the longitudinal components to evolve

through time using an autoregressive structure.

Self-reported counts are often subject to heaping where recorded counts are rounded off

to different levels of precision. Indeed, the histograms of non-zero counts corresponding to

carried a gun, sold marijuana, sold other drugs and drove drunk exhibit heaps at multiples of

5, 10 and 30. Existing models for heaped zero-heavy count data (Wang and Heitjan, 2008) may

be adapted to more complex scenarios concerning longitudinal data for multiple outcomes to

examine the impact of heaping in Poisson-type analyses. In such settings, specifying the model

for the heaping behaviour is complicated, for example, some outcomes may always be reported

with the same level of precision and for other outcomes the level of reporting precision may

vary by subject. This is an important topic for future investigation.
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Chapter 3

Analyzing Heaped Counts Versus

Longitudinal Presence/Absence Data in

Joint Zero-inflated Discrete Regression

Models

3.1 Introduction

Joint outcome recurrent event data arise when events generated by two or more processes

may occur repeatedly over a period of observation. In practice, the exact event times may not

be readily observed but aggregate responses such as the number of events over the observation

period or the presence/absence of events between periodic assessments are recorded. This is

the case for the Pathways to Desistance study (Mulvey et al., 2004; Schubert et al., 2004), a

major study of criminal behaviour patterns where the available data pertaining to several types

of offending consist of both aggregate count data over the period of observation, as well as

binary data recording the presence/absence of events repeatedly collected at each month of

observation.

42
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A potential issue with the use of the aggregate count data is that self-reported counts are

often subject to heaping where recorded counts are rounded to different levels of precision. In

the context of a study of smoking behaviour where the responses were zero-inflated counts,

Wang and Heitjan (2008) described an example in which heaping attenuated the treatment ef-

fect by 20%. Given this concern, the monthly presence/absence data could be used instead to

draw inference. However, there is data loss in such an analysis which elicits alternate concerns

about loss of precision (Cameron and Trivedi, 2013 Section 3.6). These concerns would be

reduced when occurrence rates are low, so presence/absence data provides much of the infor-

mation available. The utility of both of these types of data records depends on a variety of

context-specific factors and, therefore, it is difficult to determine where the use of one type is

preferable over the other. This is exemplified in our motivating example where the role of two

key features of the data, gender-specific propensities for rounding and occurrence rates that

differ substantially from outcome to outcome, warrants investigation.

Heaping is a well-known problem in many applied contexts, particularly those involving

retrospective collection of self-reported data. It has been postulated that when Edmond Halley

published his Breslau life table in 1693, he grouped some of the reported ages at death due

to heaping at multiples of 5 (Bellhouse, 2011). Hence this topic has been of interest to re-

searchers for centuries. Some recent examples include the number of menstrual cycles (Ridout

and Morgan, 1991), number of drug partners (Roberts and Brewer, 2001), number of sexual

partners (Crawford, Weiss and Suchard, 2015), cigarette use (Wang and Heitjan, 2008) and age

at smoking cessation (Bar and Lillard, 2012). Heitijan and Rubin (1991) provided a general

framework for heaped data by introducing the concept of data coarsening, in which observa-

tions are made only on a subset of the sample space of the response variable. They established

conditions under which the stochastic nature of the coarsening mechanism can be ignored and

the data can be validly analyzed as group data. In particular, if the data are heaped at random

and the parameters of the underlying response and the heaping mechanism are distinct, the

coarsening mechanism is ignorable. In the case where heaping depends on the true underly-



44 Chapter 3. Analyzing Heaped Counts Versus Longitudinal Presence/Absence Data

ing response, several authors have modeled the latent true response and the heaping behaviour

using a mixture model framework. For example, suppose a true count for each subject arises

from a distribution with mass function f (y|Θ) that depends on parameters Θ and that a subject

reports a count y∗ from a heaping distribution with mass function f (y∗|y, ρ) that depends on the

true count y and parameters ρ. The likelihood contribution for an observed value y∗ is

L(y∗|Θ, ρ) =
∑

y

f (y∗|y, ρ) f (y|Θ) (3.1)

Several authors utlilize this mixing framework in specific applications. Wang and Heitjan

(2008) formulated a model for the analysis of heaped cigarette counts in which the probabilities

of reporting truthfully and misreporting at different heaping grids is modeled using a propor-

tional odds model. In the longitudinal setting, Wang et al (2012) included a subject-specific

random effect in the proportional odds model for heaping behaviour to incorporate between-

subject differences in heaping propensity. Crawford, Weiss and Suchard (2014) relaxed the

assumption that misreported responses can only take specified grid values. They proposed

a novel heaping distribution based on a general birth-death process where specially defined

jumping rates ensure that the Markov chain is attracted to heaping grid points. This process

accommodates quasi-heaping to values near but not equal to heaping grid points.

Zero-inflated models have been developed for a variety of settings including count data

(Lambert, 1992; Hall, 2000; Yu 2008) and continuous data (Olsen and Schafer, 2001; Tooze et

al., 2002). These models utilize a mixture model approach to handle the excess zeros, specified

as a mixture of a point mass at zero and a specified distribution, e.g., Gaussian, Poisson or

binomial. If the support of the specified distribution includes zero, then zero values may arise

from either the point mass at zero, termed structural zeros, or as a realization of 0 from the

specified distribution, referred to as random zeros.

Similarly, for longitudinal presence/absence data, we may observe a zero response vector

for some subjects. In order to account for a high proportion of subjects who never experience

an event, Carlin et al. (2001) proposed a mixture model for longitudinal binary data in which
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each subject may be either at-risk or not at-risk for an event. Within the at-risk group, the

probability of an event is modeled by a mixed logistic regression model.

Methods for the joint analysis of several count and zero-inflated count outcomes have been

recently developed. Rodrigues-Motta et al. (2013) proposed a joint model for overdispersed

count data where correlation among observations for the same subject is incorporated through

the inclusion of correlated outcome- and subject-specific random effects in the mean compo-

nent. Feng and Dean (2012) discussed joint models for spatial count data with excess zeros,

where two outcomes are linked through a shared latent spatial random risk term. In this paper,

we utilize the general framework proposed by Dunson (2000) in which, conditional on random

effects, different members of the exponential family are used to describe the component models

in the joint distribution of the set of observed outcomes.

In order to reduce the burden of data collection on respondents and limit recall error, self-

reported data on recurrent events are sometimes recorded as binary responses indicating pres-

ence/absence of events or response categories defined by collapsed or grouped count data (0

events, 1-5 events, etc.), leading to partial observation of the underlying counting process. De-

spite this, little research has focused on developing methods for recurrent event studies with

partial observation. Matsui and Miyagishi (1999) discussed the design of clinical trials in which

periodic monitoring records whether or not recurrent events occurred. In their analysis, the re-

quired number of patients to achieve a specific power for the analysis of presence/absence data

recorded every 6 months was not substantially greater than that required to achieve the same

power when analyzing exact event times, clearly more so when the baseline event rate was low.

McGinley, Curran and Hedeker (2015) considered settings where an underlying count outcome

is measured using an ordinal scale and each response category represents a specified range of

counts. Through simulations they demonstrated that the analysis of ordinal data defined by

grouped counts can accurately recover parameters of the underlying count distribution. Fur-

thermore, in their simulations, there was little loss of precision for the parameter estimates

when ordinal data were analyzed instead of aggregate count data, even in the presence of zero-
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inflation and overdispersion.

This article focuses on the comparison of the analysis of aggregate heaped count data and

longitudinal presence/absence data using joint zero-inflated discrete regression models. Major

objectives are the illustration of how heaping can introduce bias, impeding the identification of

important risk factors and of determining in which situations the efficiency obtained from the

analysis of longitudinal binary data is high, depending on the partition of the time for the pres-

ence/absence records and the underlying rate of events. The remainder of this article proceeds

as follows. In Section 3.2, we provide a description of the Pathways to Desistance study and

identify patterns of heaping observed in this data set. In Section 3.3, we describe joint models

for zero-inflated recurrent event data with periodic monitoring and outline relevant heaping

distributions which seem prevalent in the context of the study of criminal behaviour. Section

3.4 highlights the differences in inference based on the joint analysis of the aggregate count

data and that of the monthly presence/absence data in our motivating data set. A simulation

study using the heaping distributions suggested by the criminal behaviour data, contrasts the

analysis of heaped count data to the analysis of accurate longitudinal presence/absence data.

In Section 3.6, we indicate how one may implement the methodology used in our simulation

study to inform decisions concerning the design of recurrent event studies where heaping is a

concern. We conclude with a discussion of results and limitations.

3.2 A Study of Antisocial Behaviour Among Serious

Juvenile Offenders

We introduce the motivating context as it shapes the model development. Here, we consider

the analysis of data on criminal behaviour from a major study of juvenile offenders. The

Pathways to Desistance study is a longitudinal study of a group of serious juvenile offenders

investigating offending patterns in the period following court adjudication. Our data consist

of 1170 youth offenders, aged 14 through 17 years old, who were found guilty of at least one
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serious offense in the metropolitan areas of Phoenix, Arizona or Philadelphia, Pennsylvania.

Subjects were enrolled in the study between 2000 and 2003 and followed for up to 7 years.

We analyze here data corresponding to approximately the first year of follow up. A primary

aim of the study is to identify risk factors associated with desistance or escalation of criminal

behaviour among serious juvenile offenders.

All subjects completed a baseline interview where information about background charac-

teristics and previous offending was collected. A follow up interview was conducted approxi-

mately one year after the baseline interview. At this interview, data pertaining to antisocial and

criminal activity in the period since the baseline interview were recorded. Subjects indicated

the months in which they engaged in an antisocial or illegal activity and reported how many

times they engaged in the activity during this approximately one year period. Therefore, the

available data on offending consists of aggregate count data and repeatedly measured binary

data recording presence/absence of events during each month of observation. During the ob-

servation period, subjects may have spent time in a facility with no access to the community,

termed a secure facility, for example, while incarcerated. Data on placement in a secure facility

and, if so, the length of time spent in a secure facility, are available monthly. In our analysis,

we consider the joint analysis of two outcomes, drunk driving (DD) and aggressive offend-

ing (AGG). These two outcomes represent sharply different patterns of occurrence as DD is

characterized by a high proportion of zeros counts (81%) and large variability among non-zero

counts while AGG is characterized by a moderate proportion of zeros (38%) and relatively few

large counts. Importantly, this allows us to contrast the utility of the two types data records

under two distinct patterns of occurrence.

A complicating factor in the analysis of the data from the Pathways to Desistance study is

that some of the criminal activities are highly unlikely to occur if the individual is in a secure

facility. It is is not possible that a subject will engage in DD while in a secure facility and, for

this analysis, DD is therefore prohibited in a secure facility. On the other hand, there is no such

restriction for AGG. Therefore, the length of exposure, defined as the length of time a subject is
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at-risk to engage in an outcome, varies across the two outcomes. Commonly, count outcomes

are regulated by such an exposure variable, with the length of exposure being proportional to

the expected counts. Baetschmann and Winkelmann (2013) extended the general framework

for incorporating an exposure variable in a count analysis to consider how exposures should be

handled in the analysis of zero-inflated outcomes. In their approach, a structural zero occurs if

the waiting time until an event exceeds the exposure time. This means that the probability of

a structural zero is equal to the survivor function of the waiting time distribution evaluated at

the exposure time. Using this approach, we incorporate the length of exposure in the structural

zero as well as the Poisson components of zero-inflated discrete regression models.

From the distribution of observed non-zero counts for DD, displayed in Figure 3.1, we see

evidence of heaping not only at 30, 60 and 90 (representing approximately one, two and three

months, respectively) but also at 10, 20, 40, 50 and 80 and to a lesser extent at 5, 15 and 25.

Subjects tend to report multiples of five, 10 or 30 and the reported data appear to be coarser

as the number of events increases. On the other hand, there is little evidence of heaping for

observed counts corresponding to AGG. Furthermore, there is evidence that the proportion of

zeros counts that are accurately recorded differs for the two outcomes. For DD, the set of

subjects who report a zero annual count is slightly smaller than the set of subjects who report

no engagement during each month of observation; whereas the subjects who report a zero

annual count for AGG coincide exactly with the subjects who report no engagement during

each month of observation. It appears that these two outcomes are recorded with different

levels of accuracy.

Another potential issue is that subjects may not be equally likely to under-report and over-

report events. In their comparison of self-reported arrest data and official police records, Krohn

et al (2013) concluded that adults are much less likely to over-report than under-report the

number of arrests. As well, the propensity for rounding counts may differ by gender as a

previous analysis of self-reported and official records of arrest data collected as part of the

Pathways to Desistance Study (Piquero et al., 2014) observed gender differences in official
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Figure 3.1: Comparison of distributions of non-zero counts between simulated rounded count
data corresponding to heaping behaviour HI , averaged over the 500 replicate data sets, and the
Pathways to Desistance data.
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arrests that were not accounted for by self-reported arrests. Earlier studies have also found

gender differences in the validity of crime measures. Jolliffe et al (2003) compared official

court referrals and self-report offending across gender and found higher concurrent validity

among male subjects than female subjects. It is hypothesized that the processes related to

offending patterns and to rounding differ for male and female subjects and as such gender

is a key complicating risk factor in our analysis. Estimation of the effect of gender may be

especially problematic in this situation. Hence, it is imperative to assess the impact of heaping

which depends on gender in our motivating context.

3.3 Joint Models for Zero-inflated Recurrent Event Data

with Periodic Monitoring

We consider a study with N subjects where data related to K outcomes, each corresponding

to a recurrent event process, are collected. For each outcome, conditional on random effects,

we assume that events arise according to a zero-inflated homogeneous Poisson process. That

is, for outcome k, conditional on random effects, events corresponding to subject i arise from

a Poisson process with intensity µik, with probability 1 − πik, and a degenerate process with

intensity 0, with probability πik, where

πik = exp{− exp(x
′

1iβ1k + δk log(zik) + νkui)} (3.2)

is the survivor function of a Weibull distribution, and

µik = exp(x
′

2iβ2k + λkui + bik) (3.3)

Here, x1i and x2i are q1 × 1 and q2 × 1 vectors of covariates for the fixed effects while β1k

and β2k are vectors of corresponding regression parameters. The form of πik, as well as the

term δk log(zik) reflect the idea proposed by Baetschmann and Winkelmann (2013) to model
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the probability of a structural zero as the survivor function of a Weibull distribution with shape

parameter δk, evaluated at zik, the length of exposure during the observation period. Hence πik

represents the probability that the waiting time until an event exceeds the length of exposure.

The subject-specific random effect, ui, is shared across outcomes and model components; νk

is the factor loading for this shared effect on outcome k in the structural zero component and

λk is the factor loading for this shared effect on outcome k in the Poisson component. The

outcome- and subject-specific random effect for the Poisson component, bik, represents ad-

ditional heterogeneity beyond the shared random effect. We assume the random effects are

normally distributed such that ui ∼ N(0, 1), without loss of generality since all νk and λk are

not constrained; and bik ∼ N(0, σ2
bk

), i = 1, . . . ,N and k = 1, . . . ,K.

3.3.1 Likelihood for Aggregate Zero-inflated Count Data

Let yC
ik denote the number of events corresponding the the kth outcome and ith subject that

occur during the period of observation. Conditional on random effects, ui and bik, yC
ik follows

a zero-inflated Poisson (ZIP) distribution with probability of a structural zero πik and Poisson

mean zikµik, proportional to the length of exposure. The likelihood can be expressed as

L(YC |Θ,u, b) =

N∏
i=1

K∏
k=1

[
I(yC

ik = 0)
{
πik + (1 − πik) exp(−zikµik)

}
+ I(yC

ik , 0)
(1 − πik)

exp(−zikµik)(zikµik)yC
ik

yC
ik!

 ]
. (3.4)

3.3.2 Modeling Heaping in Zero-inflated Count Data

We assume that the observed number of events for subject i and outcome k, y∗Cik , is generated

from a heaping distribution with mass function f (y∗Cik |y
C
ik, ρ) that depends on the true count yC

ik

and parameters ρ. Assuming the true count data arise from the likelihood given in (3.4), the

likelihood for the heaped count data can be expressed as
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L(Y∗C |Θ,u, b, ρ) =

N∏
i=1

K∏
k=1

∞∑
yC

ik=0

(
f (y∗Cik |y

C
ik, ρ)

[
I(yC

ik = 0)
{
πik + (1 − πik) exp(−zikµik)

}
+ I(yC

ik , 0)
(1 − πik)

exp(−zikµik)(zikµik)yC
ik

yC
ik!

 ])
. (3.5)

The likelihood of the observed heaped count data (3.5) and the extent to which this differs

from the likelihood of the true count data (3.4) depends on the heaping distribution. To illustrate

the impact of different heaping mechanisms on inference, in our simulation study in Section

3.5, we consider four heaping distributions, denoted HI to HIV .

The heaping structures aim to reflect various motivations expressed in the literature and

seen empirically in our data. As previously noted, gender differences in heaping behaviour as

well as differences in under- and over-reporting may be a concern with this data set. Table

3.1 summarizes the four heaping distributions considered here in terms of (i) parameters rep-

resenting heaping probabilities, (ii) change points for different levels of coarsening as well as

(iii) whether rounded counts are the result of symmetrically rounding to the nearest heaping

point or rounding down. For each outcome, true counts less or equal to κ are rounded to a

multiple of m, m ∈ {5, 10, 30}, with probability ρM
1m

/ρF
1m

for male/female subjects. Similarly,

true counts greater than κ are rounded to a multiple of m with probabilities ρM
2m

and ρF
2m

for male

and female subjects, respectively. The first heaping distribution, HI , is motivated by insights

arising from lengthy analysis of the patterns of heaping observed in the criminal behaviour

data without accounting for gender differences. Figure 3.1 visually compares the distribution

of non-zeros counts between simulated heaped count data generated according to HI and the

observed data; these distributions are in general agreement. Appendix B provides details on

how this heaping distribution was selected. HII links the probability of heaping with gender.

HIII assumes that rounded counts are the result of subjects under-reporting the true number of

events. Finally, HIV incorporates gender differences in both the heaping probabilities and the

direction of rounding.
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Table 3.1: Summary of four heaping distributions.
Heaping Parameter HI HII HIII HIV

Drunk Driving
κ 14 14 14 14
ρM

15
0.100 0.300 0.300 0.300

ρF
15

0.100 0.100 0.300 0.100
ρM

110
0 0 0 0

ρF
110

0 0 0 0
ρM

130
0 0 0 0

ρF
130

0 0 0 0
ρM

25
0.300 0.100 0.100 0.100

ρF
25

0.300 0.300 0.100 0.300
ρM

210
0.400 0.600 0.600 0.600

ρF
210

0.400 0.400 0.600 0.400
ρM

230
0.100 0.250 0.250 0.250

ρF
230

0.100 0.100 0.250 0.100
Aggressive Offending

κ 2 – – –
ρM

15
0 – – –

ρF
15

0 – – –
ρM

110
0 – – –

ρF
110

0 – – –
ρM

130
0 – – –

ρF
130

0 – – –
ρM

25
0.025 0.250 0.250 0.250

ρF
25

0.025 0.025 0.250 0.025
ρM

210
0 0 0 0

ρF
210

0 0 0 0
ρM

230
0 0 0 0

ρF
230

0 0 0 0

Rounding rule
Male round nearest round nearest round down round nearest
Female round nearest round nearest round down round down
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In particular, under HI , true counts for DD less or equal to κ = 14 are rounded to the nearest

multiple of 5 with probability ρM
15

= ρF
15

= 0.100 and accurately reported otherwise. True

counts for DD greater than 14, are rounded the nearest multiples of {5, 10, 30}with probabilities

{0.300, 0.400, 0.100} and accurately reported otherwise. On the other hand, true counts for

AGG less than or equal to 2 are accurately reported while true counts greater than 2 are rounded

to the nearest multiple of 5 with probability 0.025 and accurately reported with probability

0.975. Relative to HI , the probability of heaping for male subjects is greater under HII whereas

the heaping probabilities for female subjects are the same as those under HI . As well, we

allow true counts of 0,1 and 2 to be misreported for AGG as well as DD. Under HIII , the

heaping probabilities for all subjects are the same as that specified for male subjects under HII .

Under this heaping distribution, misreported counts are the result of rounding down the nearest

heaping point as opposed to symmetrically rounding to the nearest heaping point. The gender-

specific heaping probabilities for HIV are the same as those under HII . Additionally, under this

heaping distribution, there are gender differences in the direction of rounding in that female

subjects round down to the nearest heaping point (under-report) while male subjects round to

the nearest heaping point.

3.3.3 Joint Mixture Model for Longitudinal Presence/Absence Data

We consider situations where presence/absence of events between several periodic assess-

ments is recorded. For each subject, let 0 = t0 < t1 < · · · < tTi denote successive monitoring

times. We assume here, for simplicity in presenting the likelihood, that the monitoring times

are common for all subjects and equally spaced. This is true for out motivating data set. For

subject i and outcome k, let yB
i jk be the binary response at t j, so that yB

i jk = 1 if one or more

events occurred between t j−1 and t j and yB
i jk = 0 otherwise; and yB

ik = (yB
i1k, . . . , y

B
iTik

)
′

be the

corresponding sequence of binary responses. Conditional on ui and bik, yB
ik can be viewed as

arising from a mixture of a zero vector and a vector of independent responses drawn from a

Bernoulli distribution. That is, conditional on ui and bik, the binary response for subject i at
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time t j for outcome k will correspond to a structural zero with probability πik (Eq (3.2)) and

will follow a Bernoulli(ζi jk) distribution with probability 1 − πik where

ζi jk = 1 − exp(−zi jkµik) = 1 − exp{−zi jk exp(x
′

2iβ2k + λkui + bik)} (3.6)

Here, zi jk is the length of exposure for subject i between t j−1 and t j for outcome k and zik =∑Ti
j=1 zi jk. The corresponding likelihood is given by

L(YB|Θ,u, b) =

N∏
i=1

K∏
k=1

[
I(yB

ik = 0Ti×1)
{
πik + (1 − πik) exp(−zikµik)

}
+ I(yB

ik , 0Ti×1)
{
(1 − πik)

Ti∏
j=1

{1 − exp(−zi jkµik)}
I(yB

i jk=1)
{exp(−zi jkµik)}

I(yB
i jk=0)

}]
(3.7)

By comparing equations (3.4) and (3.7), we observe that the contribution to the likelihood

for a subject with no events during the observation period is the same under the joint zero-

inflated Poisson model and the joint mixture model for longitudinal presence/absence data.

The magnitude of the loss of precision due to repeatedly recording presence/absence of events

instead of aggregate counts depends on occurrence rate and the length of time between moni-

toring points. As the probability of observing more than one event between monitoring points

decreases, due to a low event rate and/or frequent monitoring, the loss of precision will decrease

to a possibly negligible level.

3.4 Analysis of Juvenile Offending Behaviour

The focus of this analysis is to examine differences in inference based on the analysis of

the heaped aggregate count data and that of the monthly presence/absence data. For DD, we

define exposure as number of days spent in the community and utilize the survivor function of a

Weibull distribution to model the probability of a structural zero. For AGG, we define exposure
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as the number of days under observation; we utilize the survivor function of an exponential

distribution to model the probability of a structural zero and, hence, set δ2 = 1 as the length

of the observation period takes only a few values. The fixed effects design matrices, x1i = x2i,

consist of an intercept, gender (male/female) and a binary indicator of placement in a secure

facility during the observation period.

The mixed joint models for aggregate zero-heavy count data and longitudinal presence/absence

data may be implemented in a Bayesian framework using Markov chain Monte Carlo (MCMC)

methods. The joint posterior distribution of the parameters is

p(Θ,u, b|YD) ∝ L(YD|Θ,u, b)p(b|σ2
b)π(σ2

b)p(u)π(Θ) (3.8)

where Θ = (β1,β2, λ, ν, δ)
′

, β1 = (β1k, . . . ,β1K)
′

, β2 = (β2k, . . . ,β2K)
′

,λ = (λ1, . . . , λK)
′

, ν =

(ν1, . . . , νK)
′

, δ = (δ1, . . . , δK)
′

, σ2
b = (σ2

b1
, . . . , σ2

bK
)
′

, u = (u1, . . . , uN)
′

and

b = (b11, . . . , bN1, b12, . . . , bNK)
′

. The first term on the right hand side of (3.8) is the likelihood

based on either aggregate count data (superscripted by D = C) or longitudinal presence/absence

data (superscripted by D = B).

The Bayesian model specification is made complete by assigning prior distributions to Θ

and σ2
b. In preliminary estimation runs using non-informative prior distributions there was

some instability in the iterative process, where a chain attempted to switch from the two-

component mixture to a reduced one-component model. Carlin et al. (2001) addressed a

similar issue by utilizing N(0, 1) priors for the fixed effects regression parameters and a normal

prior with a non-zero mean and variance of 1 for the fixed intercept term. Following this, we

assign weakly informative prior distributions for the fixed regression effects, β1k ∼ N3(µP, I3),

β2k ∼ N3(µP, I3) where µP = (−6, 0, 0, )
′

and In denotes an n×n identity matrix. Here, the prior

mean for the fixed intercepts reflects for fact that our zero-inflated count model includes a term

approximately equal to the logarithm of 365 days (log(365) = 5.9) in both model components.
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As well, we specify a moderately informative Γ(1, 1) prior to, δ1, the shape parameter associ-

ated with the Weibull survivor function used to model the probability of a structural zero. For

the factor loading parameters, νk, λk k = 1, 2, we adopt moderately informative priors, Γ(1, 1).

Finally, we choose Unif(0, 100) priors for the standard deviations of the outcome- and subject-

specific random effects in the mean component, σbk , k = 1, 2. Other prior distributions (for

example, σ2
bk
∼ IG(1, 1) and β2k ∼ N3(0, 2 × I3)) were explored in a sensitivity analysis with

no substantial change to the results obtained.

Inference is then based on the posterior distribution, which can be summarized using sam-

ples drawn from that distribution. This framework for the analysis was implemented through

the freely available software JAGS (Plummer, 2003). The posterior estimates and 95% equal-

tail credible intervals, displayed in Table 3.2, reflect two chains, each was run for an initial 10

000 burn-in iterations followed by an additional 40 000 iterations thinned at 40, resulting in a

total of 2000 iterations to be used for posterior inference.

3.4.1 Key Differences in Inference Between Count and Binary

Data Records

Most of the estimates corresponding to AGG are very close for the two types of data

records, whereas some of the parameter estimates corresponding to DD are substantially dif-

ferent for the analyses of the aggregate count data and the longitudinal presence/absence data.

Using the equal-tail 95% credible intervals, the use of both types of data records identify fe-

male subjects, compared to male subjects, as having a lower Poisson mean for AGG. In the

count data analysis gender is a to be significant effect in the structural zero component for DD,

but this effect is non-significant under the analysis of the presence/absence data. The use of

both types of data records identify placement in a secure facility as an important risk factor

that contributes to a decreased probability of a structural zero for both outcomes. Placement

in a secure facility is also associated with a higher Poisson mean for AGG in the analysis of

both types of data. On the other hand, placement in a secure facility is only significant in the
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Table 3.2: Posterior median and 95% credible intervals obtained from the analysis of the ag-
gregate count data and longitudinal presence/absence data.

Aggregate Count Data Monthly Presence/Absence Data
Parameter Estimate 95% CI Estimate 95% CI

Drunk Driving
β110 −5.08 (−7.08,−3.03) −4.93 (−6.69,−3.29)

(female) β111 −1.22 (−2.20,−0.24) −0.66 (−1.68, 0.53)ns

(secure facility) β112 1.56 (0.56, 2.58) 2.28 (1.41, 3.35)
δ1 0.51 (0.19, 0.97) 0.55 (0.23, 0.86)
ν1 2.26 (1.21, 4.13) 2.32 (1.36, 3.99)

β210 −6.95 (−8.55,−5.66) −6.71 (−7.77,−5.74)
(female) β211 0.01 (−1.05, 1.11)ns −0.75 (−1.51, 0.13)ns

(secure facility) β212 1.71 (0.78, 2.58) 0.54 (−0.22, 1.28)ns

λ1 2.03 (0.91, 3.14) 1.08 (0.30, 2.11)
σ2

b1
3.21 (0.11, 6.96) 2.03 (0.30, 3.65)

Aggressive Offending
β120 −5.28 (−5.79,−4.18) −5.13 (−5.66,−4.08)

(female) β121 −0.59 (−1.57, 0.35)ns −0.58 (−1.61, 0.64)ns

(secure facility) β122 0.73 (0.04, 1.78) 0.83 (0.09, 1.81)
δ2 1.00 1.00
ν2 1.33 (0.25, 3.19) 1.35 (0.51, 2.94)

β220 −5.73 (−6.01,−5.45) −5.90 (−6.12,−5.67)
(female) β221 −0.73 (−1.13,−0.32) −0.67 (−0.99,−0.32)

(secure facility) β222 0.70 (0.41, 1.00) 0.53 (0.28, 0.79)
λ2 0.79 (0.57, 1.23) 0.73 (0.49, 1.02)
σ2

b2
1.28 (0.47, 1.63) 0.66 (0.27, 0.95)

ns = non-significant
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Poisson component for DD under the analysis of the aggregate count data. Importantly, then

some of the covariate effects associated with DD are found to be significant in the analysis of

the aggregate count data but non-significant in that of the monthly presence/absence data. We

postulate explanations for these differences later and also explore characteristics of the data

which lead to such differences in our simulation study.

Considering the subject-specific random effects in the structural zero component of the

model, their estimated factor loading parameters are very similar for the two types of data

records. The estimated factor loading parameters in the Poisson component are close for AGG

under the two types of data records but the corresponding estimates for DD differ substantially,

with analysis of the count data indicating much higher outcome-specific variability related to

ui. For both outcomes, the estimated variance of the outcome- and subject-specific random

effect representing additional heterogeneity beyond the shared random effect in the Poisson

component, σ2
bk

, is larger but not significantly so, for the analysis of the aggregate count data

compared to the longitudinal presence/absence data.

Overall, the differences between the posterior median estimates based on the analysis of

the aggregate count data and analysis of the monthly presence/absence data are much smaller

for AGG than for DD. This is consistent with the observation that there is strong evidence of

heaping in the count data recorded for DD, whereas there is little to no evidence of heaping in

the observed counts for AGG. It is unclear the extent to which heaping of aggregate count data

may have introduced bias in this analysis.

3.5 Simulation Study

The conflicting conclusions concerning the covariate effects associated with DD for the

two types of data records prompts an investigation of the corresponding study designs when

heaping is expected. We note that for a homogeneous Poisson process, the analysis of aggre-

gate counts is fully efficient when compared to an analysis of event times. Here, we view an

analysis based on true count data, aggregated over the observation period, as the gold stan-
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dard and contrast this with analyses based on aggregate heaped count data and longitudinal

presence/absence data, through a simulation study. The goals of the study are to determine

the sorts of biases which manifest in the analysis of heaped data, and to identify whether accu-

rate presence/absence data along a partitioned longitudinal time scale could provide reasonably

efficient estimates. Importantly, the focus of comparison is in the context of the criminal be-

haviour data. We consider the heaping distributions suggested by the criminal behaviour data

and vary the frequency of the monitoring times at which presence/absence data are collected.

We simulate data corresponding to N = 1000 subjects from the joint model for zero-inflated

aggregate count data with true parameters corresponding to the posterior medians from the

analysis of aggregate count data in the criminal behaviour study. The design is specified by

the covariate and exposure history of N randomly selected subjects from this study. At the rth

replication, we generate

u(r) = (u(r)
1 , . . . , u

(r)
N )

′

∼ N(0, I) and b(r)
k = (b(r)

1k , . . . , b
(r)
Nk)

′

∼ MVN(0, σ2
bk

I)

for k = 1, 2. We calculate the probability of a structural zero and Poisson intensity

π(r)
ik = exp{− exp(x

′

1iβ1k + δk log(zik) + νku
(r)
i )} and µ(r)

ik = exp(x
′

2iβ2k + λku
(r)
i + b(r)

ik )

i = 1, . . . ,N, k = 1, 2. Then, we generate monthly count data where yC(r)
i jk ∼ ZIP(π(r)

ik , zi jkµ
(r)
ik ).

We calculate monthly presence/absence data as yB(r)
i jk = 0 if yC(r)

i jk = 0 and yB(r)
i jk = 1 otherwise

and similarly derive bi-monthly and quarterly (every three months) presence/absence data. The

true count data, aggregated over the period of observation, are yC(r)
ik =

∑Ti
j=1 yC(r)

i jk and heaped

aggregate count data, y∗C(r)
ik , generated according to heaping distributions HI to HIV , detailed

in Section 3.3.2, are also summarized. We fit the joint model for aggregate zero-inflated count

data using yC(r)
ik and y∗C(r)

ik to obtain the posterior median of the MCMC distribution for each

parameter. Similarly, we fit the joint mixture model for longitudinal presence/absence data
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using yB(r)
i jk to obtain the corresponding posterior estimates. We repeat the above procedure for

R = 500 replicates.

We compare the use of the two type data records, relative to the analysis of accurately

recorded aggregate count data, using average bias (ABIAS) and standard deviation (ASE) com-

puted as

ABIAS(θ̂) =
∑R

r=1 θ̃
(r)/R − θ

ASE(θ̂) =

[∑R
r=1

(
θ̃(r) −

∑R
r=1 θ̃

(r)/R
)2
/R

] 1
2

where θ̃ denotes the posterior median for a parameter θ.

Table 3.3 contrasts the ABIAS of the parameters under different heaping distributions and

frequency of presence/absence data collection. For the majority of parameters, the ABIAS for

count data rounded according to HI is virtually the same as that of accurately recorded count

data.

For the analysis of heaped count data corresponding to heaping distributions HII and HIV ,

the absolute value of the ABIAS for the majority of the regression parameters as well as the

factor loading parameters in the structural zero component increases, relative to the analysis

of true count data. We expect this increase in bias for fixed intercepts and gender effects

as the heaping probabilities depend on gender. At first glance, the increase in bias for the

effects of placement in a secure facility may be surprising but can be explained by the specified

covariate structure. Here, male subjects are more likely than female subjects (76% versus 55%)

to have spent some time in a secure facility during the observation period. Therefore, under

heaping distributions HII and HIV , the extent of heaping differs not only by gender but also

for subjects who spent some time in a secure facility versus those who did not. Accordingly,

the estimation of the effects of gender and placement in a secure facility are both impacted

by gender differences in the heaping probabilities. The poor estimation of the factor loading
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parameters in the structural zero component, νk, under HII and HIV likely reflects the fact that a

proportion of low, non-zero counts are inaccurately recorded as zeros under these two heaping

distributions. Averaged over the 500 replicate data sets, the proportion of true zeros counts for

DD and AGG are 0.73% and 0.29%, respectively. The corresponding observed proportions of

zero counts are 0.75% and 0.34% under both HII and HIV .

Relative to the analysis of true count data, the absolute value of the ABIAS for many of the

parameters in the structural zero component obtained from the analysis of heaped count data

corresponding to heaping distributions HIII and HIV drastically increases. As well, there are

similar increases for the fixed intercepts in the Poisson component. This increase in bias is a

result of a proportion of low, non-zero counts being inaccurately recorded as zeros, leading to

an increased number of observed zeros and a decreased observed frequency of low, non-zero

counts. The increase in the observed proportion of zero counts, relative to the true count data,

is largest under HIII with an average of 0.77% and 0.39% of the reported counts being zero

for DD and AGG, respectively, under this heaping distribution. Under-reporting can lead to

biased estimation in zero-inflated Poisson regression models, particularly in the structural zero

component.

We remark that the potential bias in parameter estimation introduced by a particular heap-

ing scheme heavily depends on the underlying event process. In additional simulations (not

shown), we considered the situation where both outcomes are recorded with same level of ac-

curacy using the heaping parameters specified for DD with HI in Table 3.1. In this case, the

ABIAS for the parameters corresponding to AGG that are obtained from the analysis of the

heaped aggregate count data remains low despite large increases in the heaping probabilities.

This is due to the fact that very few counts exceed the change point of 14 and, hence, the

proportion of counts that are rounded is far lower for AGG than DD under the same heaping

scheme.

We assume presence/absence data are accurately recorded and, hence, should yield un-

biased parameter estimates. Indeed, regardless of the frequency of the monitoring times,
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the ABIAS for all the parameters in the structural zero component for the analysis of pres-

ence/absence data are essentially the same as that for accurately recorded count data, aggre-

gated over the observation period. As well, the ABIAS for the parameters in the Poisson

component are comparable for the analyses of monthly presence/absence data and true ag-

gregate count data. For presence/absence data collected under the less frequent monitoring

schemes, there is an increase in the resulting ABIAS, relative to true count data, for some pa-

rameters in the Poisson component. This is particularly true for DD where the variability of

subject-specific event rates is high.

The loss of data arising from the use of longitudinal presence/absence data leads to con-

cerns about loss of precision. In Table 3.4, we contrast the ASE of the parameters obtained

from true aggregate count data and that obtained from presence/absence data collected every

month, every two months and every three months. Overall, the ASE values are larger for the

presence/absence data than the accurately recorded count data with the largest ASE value cor-

responding to σ2
b1

, the variance of the outcome- and subject-specific random effect in Poisson

component for DD, under monitoring every three months. As expected, the ASE of the pa-

rameters decreases as the length of time between monitoring points decreases. For all of the

parameters, the ASE corresponding to analyzing true count data and analyzing monthly pres-

ence/absence data are similar. Using longitudinal presence/absence data instead of accurately

recorded count data, aggregated over the observation period, results in loss of precision but this

loss is minimal if monitoring is frequent enough in our context. Determining an appropriate

monitoring scheme for presence/absence data depends on the occurrence rate of the process

under observation which is primarily driven by the baseline event rate and the between-subject

variability in the Poisson component. Under the current parameter values, the ASE when pres-

ence/absence data collected every three months are analyzed instead of accurately recorded

aggregate count data increased by at most 32% for DD and 23% for AGG, reflecting the differ-

ences in variability for these two outcomes. By contrast, in simulations where σ2
b2

is increased

from 1.28 to 3.06 (not shown), the corresponding increases in ASE are at most 52% for AGG.
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Table 3.4: Average standard deviation for parameters across 500 simulated data sets for the
aggregate true count data and presence/absence data collected monthly, bi-monthy and tri-
monthly.

True Count Monthly Bi-Monthly Tri-Monthly
Drunk Driving

β110 = −5.08 0.30 0.31 0.31 0.30
(female) β111 = −1.22 0.34 0.34 0.34 0.35

(secure facility) β112 = 1.56 0.28 0.28 0.29 0.29
δ1 = 0.51 0.11 0.08 0.08 0.10
ν1 = 2.26 0.52 0.51 0.53 0.53

β210 = −6.95 0.45 0.47 0.47 0.49
(female) β211 = 0.01 0.41 0.42 0.42 0.44

(secure facility) β212 = 1.71 0.31 0.31 0.33 0.34
λ1 = 2.03 0.48 0.51 0.54 0.56
σ2

b1
= 3.21 1.30 1.43 1.58 1.72

Aggressive Offending
β120 = −5.28 0.28 0.28 0.28 0.29

(female) β121 = −0.59 0.36 0.37 0.37 0.37
(secure facility) β122 = 0.73 0.32 0.32 0.32 0.32

δ2 = 1.00
ν2 = 1.33 0.31 0.32 0.33 0.34

β220 = −5.73 0.15 0.15 0.16 0.18
(female) β221 = −0.73 0.18 0.19 0.19 0.20

(secure facility) β222 = 0.70 0.13 0.13 0.14 0.15
λ2 = 0.79 0.13 0.13 0.14 0.16
σ2

b2
= 1.28 0.18 0.19 0.21 0.22
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The heaping observed in the Pathways to Desistance data set reflects elements of both heap-

ing distributions HI and HII . Specifically, the distribution of aggregate counts under heaping

distribution HI appears to capture the observed patterns of heaping. However, there are gender

differences in the propensity for rounding incorporated in HII that need to be considered in this

context. In our simulations, the biases obtained under HI were comparable to those obtained

from the analysis of accurately reported count data. On the other hand, under HII there was an

increase in bias, relative to HI , with a more substantial increase for parameters corresponding

DD than those corresponding to AGG. This may explain the differences in the effects for gen-

der and placement in a secure facility for DD between the two types of data records obtained

in our analysis of the data.

Overall, in the motivating context, it appears that the analysis of either of the available

data records, count data aggregated over a year and rounded, or binary data recording pres-

ence/absence of events repeatedly collected each month of observation, may accurately and

efficiently recover the true parameter values. In general, caution should be taken when ana-

lyzing count data with suspected heaping. In situations where the propensity for rounding is

linked to one or more of the covariates or where rounded counts are the result of subjects under-

reporting the number of events, estimation can be substantially biased. In such situations, the

use of longitudinal presence/absence data is preferable. Furthermore, our simulations show

that the precision of the estimates obtained from longitudinal presence/absence data under

modestly frequent monitoring can be comparable to that obtained from accurately recorded

aggregate count data.

3.6 Discussion

We contrast inference based on the analysis of self-reported count data aggregated over

the observation period with that of longitudinal presence/absence data using joint zero-inflated

discrete regression models when heaping is expected. Taken together, the simulation and em-

pirical studies demonstrate that the analysis of aggregate heaped count data and longitudinal
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presence/absence data can lead to different results and, importantly, mismatched sets of signif-

icant risk factors.

In our motivating context, it seems that the use of both aggregate count, with evidence of

heaping, and monthly presence/absence data may yield accurate parameter estimates. How-

ever, the utility of the two types of data records depends on the underlying processes generat-

ing events and the heaping behaviour. In our simulations, we observe that heaping may lead

to substantial bias in parameter estimation; the magnitude of this bias depends on the heaping

behaviour, the occurrence rate and the interplay of the two.

Here, relative to the use of accurately recorded aggregate count data, the loss of precision

for parameter estimates obtained from the analysis of presence/absence data collected monthly

may be minimal but this loss of precision increases as the length of time between monitoring

points increases. Additionally, the advantage of accurate recording of presence/absence data

is also more likely under shorter time intervals between monitoring points. Presence/absence

data can provide much of the available information if the monitoring is frequent enough. De-

termining optimal frequency of monitoring times depends on the occurrence rate.

We note that the context we study may yield errors in both counts and presence/absence

data since both types of data records are obtained in a retrospective manner. In particular, the

presence/absence data may be subject to recall errors where the number of months with at least

one event is underreported. Nevertheless, consideration of these two types of data records is

useful for the broader context of design of recurrent event studies. As well, in our context, the

heaping observed in the count data indicates that it is more likely that errors are observed there

than in the presence/absence data. Additionally, a few very large observed counts for DD may

have artificially inflated the variance estimates in the mean component. An investigation of the

leverage of such outliers is underway.

The majority of studies collect a single type of data record and, therefore, it is usually not

possible to directly contrast different study designs in terms of the resulting inference. Through

the analysis of the Pathways to Desistance study data, we are able to compare the two study
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designs in the context of self-reported data related to criminal behaviour and provide insights

on choice of design when heaping is expected. It is clear that the benefits of one design over the

other will heavily depend on a particular application. In light of this, in Appendix B, we detail

how the methodology of our simulation study can be used in conjunction with pilot study data

to inform decisions concerning the design of studies using self-reported data where heaping

may be an issue.

In our simulations, we assume a homogeneous Poisson process to understand the design

issues under a common modeling scenario. However, other underlying processes could be sim-

ilarly considered. For example, using a piecewise constant Poisson process to accommodate

non-homogeneous event processes is not unusual and results from utilizing such a modeling

framework could add substantially to our understanding of these issues.

In this work, we assume that peaks in the observed count data reflect misreporting and

investigate the implications of analyzing a distorted version of the true data. In some situations

these peaks may be a feature of the underlying data generating process, for example, in studies

of smoking cessation subjects may consume exactly one pack per day, corresponding to a heap

at 20. In this case, conclusions presented here are not applicable and a model that accounts

for inflation not only at 0 but at other peaks believed to represent likely ‘true heaping’ should

be employed. We note that, from discussions with subject experts, no such arguments for

distortions are hypothesized in the criminal behaviour context.

In the Pathways to Desistance study, data are also available on several other outcomes

related to different types of antisocial and criminal behaviour. These outcomes may refer to

the number of times the subject engaged in an activity, such as the two outcomes considered

here, or they may refer to the number of days the subject engaged in an activity which is

bounded by the length of exposure. In the latter case, we expect peaks corresponding to daily

activity. Indeed, histograms of counts for drug-related outcomes exhibit a heap at 365 days.

In the analysis, we link the conditional intensity of the Poisson process with the conditional

mean of a Bernoulli response using the complementary log-log link function. In the case of
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bounded counts, if the conditional Binomial probability is modeled using a complementary

log-log link function then an analogous longitudinal presence/absence model with expected

counts proportional to the number of Binomial trials can be utilized for zero-inflated Binomial

outcomes. The impact of heaping at the upper bound of the sample space of the response

variable is unclear and generalizing our findings to other count distributions warrants further

research.



70 References

References

Baetschmann, G., and Winkelmann, R. (2013). Modeling zero-inflated count data when

exposure varies: with an application to tumor counts. Biometrical Journal 55, 679-686.

Bar, H. Y., & Lillard, D. R. (2012). Accounting for heaping in retrospectively reported event

data-a mixture-model approach. Statistics in Medicine 31, 3347-3365.

Bellhouse, D. R. (2011). A new look at Halley’s life table. Journal of the Royal Statistical

Society: Series A (Statistics in Society) 174, 823-832.

Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data (2nd ed.). New

York, NY: Cambridge University Press.

Carlin, J. B., Wolfe, R., Brown, C. H., & Gelman, A. (2001). A case study on the choice,

interpretation and checking of multilevel models for longitudinal binary outcomes.

Biostatistics 2, 397-416.

Crawfoard, F.W., Weiss, R.E., & Suchard, M.A. (2015). Sex, lies and self-reported counts:

Bayesian mixture models for heaping in longitudinal count data via birth-death processes.

Annals of Applied Statistics 9, 572-596.

Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62, 355-366

Feng, C. X., and Dean, C. B. (2012). Joint analysis of multivariate spatial count and zero-

heavy count outcomes using common spatial factor models. Environmetrics 23, 493-508.

Hall, D. B. (2000). Zero-inflated Poisson and binomial regression with random effects: a

case study. Biometrics 56, 1030-1039.

Heitjan, D. F., & Rubin, D. B. (1990). Inference from coarse data via multiple imputation

with application to age heaping. Journal of the American Statistical Association 85,

304-314.

Heitjan, D. F., & Rubin, D. B. (1991). Ignorability and coarse data. The Annals of Statistics

19, 2244-2253.



References 71

Jolliffe, D., Farrington, D. P., Hawkins, J. D., Catalano, R. F., Hill, K. G., & Kosterman,

R. (2003). Predictive, concurrent, prospective and retrospective validity of self-reported

delinquency. Criminal Behaviour and Mental Health 13, 179-197.

Krohn, M. D., Lizotte, A. J., Phillips, M. D., Thornberry, T. P., & Bell, K. A. (2013).

Explaining systematic bias in self-reported measures: Factors that affect the under-and

over-reporting of self-reported arrests. Justice Quarterly 30, 501-528.

Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in

manufacturing. Technometrics 34, 1-14.

Matsui, S., & Miyagishi, H. (1999). Design of clinical trials for recurrent events with periodic

monitoring. Statistics in Medicine 18, 3005-3020.

McGinley, J. S., Curran, P. J., & Hedeker, D. (2015). A novel modeling framework for

ordinal data defined by collapsed counts. Statistics in Medicine 34, 2312-2324.

Mulvey, E. P., Steinberg, L., Fagan, J., Cauffman, E., Piquero, A. R., Chassin, L., et

al. (2004). Theory and research on desistance from antisocial activity among serious

adolescent offenders. Youth Violence and Juvenile Justice 3, 213-236

Olsen, M. K., & Schafer, J. L. (2001). A two-part random-effects model for semicontinuous

longitudinal data. Journal of the American Statistical Association 96, 730-745.

Piquero, A. R., Schubert, C. A., & Brame, R. (2014). Comparing official and self-report

records of offending across gender and race/ethnicity in a longitudinal study of

serious youthful offenders. Journal of Research in Crime and Delinquency 51, 526-555.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using

Gibbs sampling, Proceedings of the 3rd International Workshop on Distributed Statistical

Computing (DSC 2003), Vienna, Austria.

Ridout, M. S., & Morgan, B. J. (1991). Modelling digit preference in fecundability studies.

Biometrics 47, 1423-1433.

Roberts, J. M., & Brewer, D. D. (2001). Measures and tests of heaping in discrete

quantitative distributions. Journal of Applied Statistics 28, 887-896.



72 References

Rodrigues-Motta, M., Pinheiro, H. P., Martins, E. G., Araujo, M. S., and dos Reis, S. F.

(2013). Multivariate models for correlated count data. Journal of Applied Statistics

40, 1586-1596.

Schubert, C. A., Mulvey, E.P., Steinberg, L., Cauffman, E., Losoya, S., Hecker, T., Chassin,

L., et al. (2004). Operational lessons from the Pathways to Desistance project. Youth

Violence and Juvenile Justice 3, 237-255

Tooze, J. A., Grunwald, G. K., & Jones, R. H. (2002). Analysis of repeated measures data

with clumping at zero. Statistical Methods in Medical Research 11, 341-355.

Wang, H., & Heitjan, D. F. (2008). Modeling heaping in self-reported cigarette counts.

Statistics in Medicine 27, 3789-3804.

Wang, H., Shiffman, S., Griffith, S. D., & Heitjan, D. F. (2012). Truth and memory: Linking

instantaneous and retrospective self-reported cigarette consumption. The Annals of

Applied Statistics 6, 1689-1706.

Yu, B. (2008). A frailty mixture cure model with application to hospital readmission data.

Biometrical Journal 50, 386-394.



Chapter 4

Joint Analysis of Multivariate

Longitudinal Presence/Absence Data

Subject to Resolution

4.1 Introduction

Joint outcome recurrent event data arise when events generated by two or more processes

may occur repeatedly over a period of observation. In some settings, the condition generat-

ing the events may resolve over time; following the point of resolution the subject no longer

experiences events corresponding to any of the processes. In the context of criminology, re-

search has repeatedly documented that a substantial proportion of serious adolescent offenders

likely will not continue their criminal career into adulthood (Mulvey et al., 2010). Based on

empirical and theoretical grounds, some researchers have posited groups with distinct criminal

behaviour trajectories. Blumstein, Farrington, and Moitra (1985) hypothesized groups called

desisters, persisters and nonoffenders; Moffitt (1993) differentiates between persistent chronic

offenders and offenders who not not persist beyond adolescence in criminal activities, offering

distinct sociological explanations for these two types of offenders. The motivation for the de-

73
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velopments in this paper is a major study on criminal behaviour patterns of serious adolescent

offenders from adolescence into early adulthood. One goal of this study is to reliably distin-

guish between juvenile offenders who will continue antisocial and illegal behaviour beyond

adolescence and those who will not. Here, decisions concerning legal sanctions and interven-

tions are made at specific evaluation points. Such decision-making may be improved when an

individual’s likelihood of future offending, given their offending history over a long window

of time, is considered. These sorts of tools as developed here to accommodate resolution of

events are important in other scenarios. In the medical context, for some chronic diseases, the

disease process may resolve naturally, as for example rheumatological conditions where the

disease goes into remission (Shen and Cook, 2015), but it can be difficult to determine if and

when such changes take place.

Often the exact event times are not readily available, particularly for self-reported data. This

is the case for our motivating study where data pertaining to several types of offending consist

of binary data recording the presence/absence of events repeatedly collected at each month

of observation. For each outcome, this represents partial observation of a counting process.

In our modeling framework, the use of the complementary log-log link function allows us to

explicitly link binary responses to a suitable underlying count distribution as will be described

in more detail later.

When several longitudinal binary outcomes are jointly considered, responses for a specific

subject are likely correlated both over time and across outcomes. Previous authors (for exam-

ple, Agresti, 1997; Ribaudo and Thompson, 2002) have jointly analyzed several longitudinal

binary outcomes using random effect models to incorporate complex correlation structures. We

utilize the general framework proposed by Dunson (2000) in which, conditional on random ef-

fects, different members of the exponential family are used to describe the component models

in the joint distribution of the set of observed outcomes.

For longitudinal presence/absence data, we may observe a zero response vector for some

subjects. In order to account for a high proportion of subjects who never experience an event,
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Carlin et al. (2001) proposed a mixture model for longitudinal binary data in which each subject

may be either at-risk or not at-risk for an event. Within the at-risk group, the probability of an

event is modeled by a mixed logistic regression model. Here, we consider the joint analysis of

several longitudinal binary outcomes using a similar mixture model approach where outcomes

are linked by subject-specific random effects.

Methods for the analysis of a single recurrent event process subject to resolution have been

recently developed. Rondeau et al. (2013) discussed cure frailty models that account for the

possibility of a cure after each event. Shen and Cook (2014) developed a dynamic Mover-

Stayer model for recurrent event processes in which a latent variable associated with each

event indicates whether the underlying disease has resolved. Given that an individual’s disease

process has not resolved, events follow a standard point process model governed by a latent

intensity. This framework has been extended (Shen and Cook, 2015) to accommodate the anal-

ysis of interval-censored recurrent event data where the exact event times are not available but

the cumulative event count is recorded at periodic assessment times. These models enable a

clearer understanding of occurrence patterns when the possibility of resolution of an underly-

ing process can be justified. Omitting the possibility that the underlying process generating

events may resolve may lead to underestimating the event rate among subjects for whom the

underlying process has not resolved. We utilize here some ideas from Shen and Cook (2014,

2015) whereby a latent variable is associated with resolution of the underlying process, ex-

tending this to multiple outcome analysis. Furthermore, our extensions allows us to evaluate

the effects of time-dependent interventions on the event rate among subjects for whom the

underlying process has not resolved and on the probability of this resolution.

We note also that other types of transitional models have been utilized in different contexts.

Motivated by a smoking cessation study, Luo et al (2008) proposed a discrete time model with

three behavioural states; smoking, transient quitting and permanent quitting. When a subject is

in the smoking state, a quit attempt may be made at the beginning of each assessment period.

Once a quit attempt is successfully made, the subject may enter the transient quitting state or
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permanent quitting state. The model for the resolution of the process generating events con-

sidered here in fact follows the same basic structure; the underlying process may only resolve

following a period of offending. Importantly, the general framework proposed in Section 4.3

accommodates the use of more flexible models for the latent variable indicating whether the

underlying process has resolved, which may be warranted in different applications.

Models for multivariate longitudinal outcomes using a shared underlying latent variable

which focus on describing transitions through distinct states, have been previously considered.

Scott et al (2005) proposed a hidden Markov model for data collected in a clinical trial of

schizophrenia patients where the conditional distribution of multivariate outcomes given a la-

tent health state follows a multivariate t-distribution. For medical utilization data, Wall and

Li (2009) introduced a hidden Markov model which assumes a common unobserved health

state governs the counts of several types of medical encounters. This approach takes advantage

of conceptualizing a latent variable underlying the multivariate longitudinal data to provide a

succinct way of summarizing the process.

This article develops methods for the joint analysis of several longitudinal binary outcomes

denoting the presence/absence of events between periodic assessments in settings where an

underlying process generating events can resolve. In Section 4.2, we introduce our motivating

data set and outline the methodological challenges that motivated this work. In Section 4.3,

we describe our general modeling framework. The novelty is that we model the simultaneous

resolution of several recurrent event processes and utilize a mixture approach which accommo-

dates the possibility that a subject may not be at-risk to engage in one or more of the outcomes.

Accommodating such subjects is imperative in settings, such as our motivating example, where

there is no initiating event triggering the start of the observation period as the point of reso-

lution may occur prior to start of the study. We consider mixture models which assume the

underlying process may only resolve following the occurrence of at least one event for any

of the outcomes, accommodating effects due to time spent in a secure facility. Highlighting

novel insights arising from the conceptualization of a latent variable underlying the multivari-
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ate longitudinal data, we present the results of our joint analysis of this study in Section 4.4.

Focusing on the model component associated with the resolution of the underlying process,

we investigate the performance of our methodology through a simulation study in Section 4.5.

We conclude with a discussion of results and limitations, as well as suggestions for further

research.

4.2 A Study of Antisocial Behaviour Among Serious

Juvenile Offenders

The Pathways to Desistance study (Mulvey et al., 2004; Schubert et al., 2004) is a longi-

tudinal study of a group of serious juvenile offenders investigating offending patterns in the

period following court adjudication. A total of 1354 youth offenders, aged 14 through 17 years

old, who were found guilty of at least one serious offense in the metropolitan areas of Phoenix,

Arizona or Philadelphia, Pennsylvania were enrolled in the study between 2000 and 2003 and

followed for up to 7 years. The primary aim of that study was to identify patterns of desistance

or escalation among serious juvenile offenders and evaluate the effects of adolescent develop-

ment, sanctions and interventions on these offending patterns.

All subjects completed a baseline interview where information about background charac-

teristics and previous offending was collected. Additionally, interviews were conducted over

a seven year follow up period. At each interview, data pertaining to antisocial and criminal

activity in the period since the previous interview were recorded. Specifically, subjects indi-

cated the months in which they engaged in an antisocial or illegal activity and, therefore, the

available data consists of repeatedly measured binary data, indicators of presence/absence of

events during each month of observation.

During the follow up period, subjects may have spent time in a facility with no access to

the community, termed a secure facility. Data on placement in a secure facility and, if so,

the proportion of the month spent in a secure facility, are available. Some of the antisocial
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and criminal activities are highly unlikely to occur in a secure facility and, for this analysis,

are considered prohibited in a secure facility. We assume the expected number of events is

regulated by an exposure variable corresponding to the number of days a subject is able to

engage in an outcome. This exposure variable varies from outcome to outcome. An additional

concern is the effect of institutional placement on current and subsequent offending. To address

this issue, we consider two time-varying covariates related to placement in a secure facility. The

first is a binary indicator of placement in a secure facility during the current month. The second

is the cumulative time, in years, spent in a secure facility during prior months from the start of

the study.

We summarize the eight outcomes considered here: carried a gun, sold marijuana, sold

other drugs, drove drunk, aggressive I, aggressive II, income I, and income II, in Table A.1; we

provide a list of the antisocial and criminal activities associated with each outcome, indicate

whether the outcome is considered prohibited while a subject is in a secure facility and the type

of response collected. These outcomes may refer to the number of times the subject engaged

in an activity and, therefore, represent an unbounded count, or they may refer to the number

of days the subject engaged in an activity, which is bounded by the length of exposure. Our

analysis will therefore need to provide flexibility with regard to different discrete distributions,

for example, both Poisson-type for unbounded and conditional Binomial for bounded.

If the process generating events can resolve at some point, we would expect to observe un-

commonly long periods of time without the occurrence of any criminal behaviour at the end of

the follow up period for some subjects. As a rough way of understanding the patterns observed

in the data, for each of the eight outcomes considered, we examined the distribution of the time

between successive positive responses over all subjects. That is, for each positive response, we

considered the waiting time before the next positive responses as a single, possibly censored,

observation. As well, we examined the distribution of time between successive occurrences of

any type of criminal behaviour. Figure 4.1 depicts the associated Kaplan-Meier curves. We ob-

served that all curves exhibit a similar shape characterized by an initial rapid decline followed
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by a plateau, suggesting that some subjects may permanently cease offending over the duration

of the observation period. Note that curve for the occurrence of at least one outcome closely

follows the curve corresponding to aggressive II which reflects that much of the information in

the data is carried in this outcome.
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Figure 4.1: Kaplan-Meier curves for the waiting time between successive positive responses
over all subjects.
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4.3 Joint Model for Multivariate Longitudinal

Presence/Absence Data Subject to Resolution

An important focus of our model development is enabling a clearer understanding of the

processes generating zeros. Within the proposed modeling framework, zeros may arise from

three distinct sources. Firstly, some subjects, termed non-engagers, are not at-risk to engage

in a particular outcome at any point during the observation period, i.e. they generate zero

values at all time points for a particular outcome. Secondly, the process generating events may

resolve at some point, resulting in unusually long runs of zeros for each outcome at the end

of the observation period. Finally, for outcome-specific engagers for whom the underlying

process generating events has not resolved, at each assessment point, there is the possibility

of observing a zero corresponding to the realization of a zero count from the underlying count

distribution. Commonly, such count outcomes are regulated by an exposure variable, with

the length of exposure being proportional to the expected count. Here, some of the outcomes

are prohibited during a specific treatment leading to some of the zero counts being accounted

for in a structural manner based on an exposure variable. We discuss the model components

associated with each of the distinct sources of zeros in turn.

Suppose there are N subjects in a study and for each subject, let 0 = t0 < t1 < · · · < tTi

denote successive monitoring times. For simplicity in presenting the likelihood, we assume

here, that the monitoring times are common for all subjects and equally spaced. This is true

for our motivating data set. We assume data are collected on K related outcomes at each

monitoring point. Let yi jk be a binary response for subject i at t j, so that yi jk = 1 if one or

more events corresponding to outcome k occurred between t j−1 and t j and yi jk = 0 otherwise;

and yik = (yi1k, . . . , yiTik)
′

be the sequence of binary responses over j = 1, . . . ,Ti observed for

subject i and outcome k, i = 1, . . . ,N, k = 1, . . . ,K.

We assume each response vector yik, conditional on random effects, is independently drawn

from a mixture model having density
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f (yik|sik, ri, vi, bik) =


I(yik = 0Ti×1) if sik = 1

fBk(yik|qi, vi, bik) if sik = 0
(4.1)

where the variables sik are latent Bernoulli indicators, markers for the outcome-specific non-

engagers, with mean function pik, conditional on a random effect ri; subject and outcome spe-

cific random effects vi and bik will be discussed later. Specifically, for each outcome, we assume

sik|pik ∼ Bern(pik) with

pik = {1 + exp(−x
′

pi
βpk − λrkri)}−1 (4.2)

where xpi is a lp×1 vector of covariates, βpk is a vector of corresponding regression parameters,

ri is a subject-specific random effect and λrk is a factor loading parameter representing outcome-

specific variability related to ri.

For each outcome, one mixture component places all its mass on the zero vector while the

other component distributes mass according to the density, fBk(yik|qi, vi, bik), corresponding to

a longitudinal binary model. The longitudinal binary model accommodates the possibility that

the process generating the events may resolve at some point. In particular, the resolution of

this underlying process means that a subject will no longer experience events related to any

of the K outcomes, perhaps resulting in unusually long event-free periods of time at the end

of the observation period. All subjects who are engagers for at least one of the outcomes

may experience a resolution of the underlying process generating events. We let qi j denote a

time-dependent latent indicator such that qi j = 1 if underlying process generating events for

subject i has resolved by t j−1 and qi j = 0 otherwise, j = 1, . . . ,Ti. We may view qi j = 1 as

reflecting the absorbing state of resolution in that once qi j = 1, the value of this latent variable

will be 1 at all subsequent time points. The set of time-dependent indicators of resolution for

subject i is denoted qi = {qil, . . . , qiTi}. Note that qi is partially observed as we know qi j= 0 for

any assessment period up to and including the one corresponding to the last observed positive
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response. Conditional on random effects, we assume the binary responses for the outcome-k-

specific engagers for whom the underlying process generating events has not resolved follows

a Bernoulli distribution with probability of success ζi jk so that fBk(yik|qi, vi, bik) is given by

fBk(yik|qi, ui, vi, bik) =

Ti∏
j=1

[
(1 − qi j){ζ

yi jk

i jk (1 − ζi jk)1−yi jk} + qi j

]
(4.3)

i = 1, . . . ,N, j = 1, . . . ,Ti, k = 1, . . . ,K.

For each outcome, this Bernoulli random variable represents the partial observation of a

counting process where the probability of success, ζi jk, corresponds to the probability of ob-

serving at least one event. For outcome-k-specific engagers for whom the underlying process

generating events has not resolved, we assume the number of events that occur between t j−1

and t j, conditional on random effects, follows a count distribution with mean

µi jk = g−1
k {x

′

µi j
βµk + h( j, ρk) + λvkvi + bik}zi jk (4.4)

Here gk is a link function; xµi j is a lµ×1 vector of covariates for the fixed effects and βµk is vector

of corresponding regression parameters; h(t, ρk) is a function of time describing the temporal

trends in µi jk. The expected count is proportional to the length of exposure, zi jk, for subject i and

outcome k between t j−1 and t j. The subject-specific random effect, vi, is shared across outcomes

and λvk is the factor loading for this shared effect on outcome k. The outcome- and subject-

specific random effect bik represent additional heterogeneity beyond the shared random effect.

We assume the random effects are normally distributed such that ri ∼ N(0, 1), vi ∼ N(0, 1)

without loss of generality since all factor loadings are not constrained; and bik ∼ N(0, σ2
bk

),

i = 1, . . . ,N and k = 1, . . . ,K.

If conditional on random effects, we assume the underlying counts follows a Poisson dis-

tribution with mean µi jk with gk being the log link function then

ζi jk = 1 − exp{− exp(x
′

µi j
βµk + h( j, ρk) + log(zi jk) + λvkvi + bik)} (4.5)
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Alternatively, for outcome-k-specific engagers for whom the underlying process generating

events has not resolved, the number of events that occur between t j−1 and t j may be bounded

and follow, conditional on random effects, a Binomial(zi jk,
µi jk

zi jk
) distribution. If we assume gk

is the complementary log-log link function then the probability of observing at least one event

can be expressed as

ζi jk = 1 −
(
1 −

µi jk

zi jk

)zi jk

= 1 − [exp{− exp(x
′

µi j
βµk + h( j, ρk) + λvkvi + bik)}]zi jk

= 1 − exp{− exp(x
′

µi j
βµk + h( j, ρk) + log(zi jk) + λvkvi + bik)} (4.6)

The longitudinal model in (4.3) provides a flexible modeling framework and requires spec-

ifying a model for the latent indicator variables qi j. In the case where qi j ≡ 0 ∀i, j, the model

reduces to an extension of the mixture model for longitudinal binary data proposed by Carlin

et al. (2001) in which several outcomes are linked by subject-specific random effects. We

contrast the proposed full model, detailed below, and this reduced model in the analysis of our

motivating example and through simulations.

As the focus of our analysis is identifying factors related to desistance among serious ju-

venile offenders, we model the probability of permanently quitting, defined as the probability

that the underlying process generating events resolves following an assessment period with the

occurrence of at least one event for any of the outcomes. That is, we assume the underlying

process generating events may only resolve at a time point t j if one or more events correspond-

ing to any of the K outcomes occurred between t j−1 and t j. The probability of permanently

quitting is modeled as

P

qi j = 1

∣∣∣∣∣∣∣
qi( j−1) = 0,

K∑
k=1

yi( j−1)k > 0, xφi j


 = φi j = exp{− exp(x

′

φi j
βφ)} (4.7)

j = 2, . . . ,Ti; xφi j is a lφ × 1 vector of covariates for the fixed effects and βφ is the vector
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of corresponding regression parameters. A critical issue involved in regression models for

binary response data is the choice of an appropriate link function. This involves choosing

between a symmetric link and a skewed link and, if applicable, the direction of the skewed link.

Preliminary results indicate that the probability of a subject permanently quitting offending

is very low and, hence, we utilize the negatively skewed log-log link function. Under the

proposed model, inference for φi j is based on all available data, including data collected after

t j.

The mixed joint models for multivariate longitudinal presence/absence data subject to reso-

lution may be implemented in a Bayesian framework using Markov chain Monte Carlo (MCMC)

methods. The joint posterior distribution of the parameters is

p(Θ, r, v, b|Y) ∝ L(Y|Θ, r, v, b)p(b|σ2
b)π(σ2

b)p(r)p(v)π(Θ) (4.8)

where Θ = (βp,βµ,βφ, ρ, λr, λv)
′

, βp = (βp1 , . . . ,βpK )
′

, βµ = (βµ1 , . . . ,βµK )
′

, ρ = (ρ1, . . . , ρK)
′

,

λr = (λr1 , . . . , λrK )
′

, λv = (λv1 , . . . , λvK )
′

, σ2
b = (σ2

b1
, . . . , σ2

bK
)
′

, r = (r1, . . . , rN)
′

, v = (v1, . . . , vN)
′

and b = (b11, . . . , bN1, b12, . . . , bNK)
′

. The first term on the right hand side of (4.8) is the

likelihood

L(Y|Θ, r, v, b) ∝
N∏

i=1

K∏
k=1

[I(yik = 0Ti×1){pik + (1 − pik) fBk(0Ti×1|qi, vi, bik)}

+ I(yik , 0Ti×1){(1 − pik) fBk(yik|qi, vi, bik)}] (4.9)

The Bayesian model specification is made complete by assigning prior distributions to Θ

and σ2
b. Inference is then based on the posterior distribution, which can be summarized using

samples drawn from the posterior distribution. This framework for the analysis was imple-

mented through the freely available software JAGS (Plummer, 2003).
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4.4 Application to the Pathways to Desistance Study

We restrict our analysis to subjects who completed at least the first follow up interview

(N=1259). For each subject, the number of time points included in the analysis, Ti, is defined

as the number of consecutive months of follow up with complete data. We define the length of

exposure, zitk, as the number of days under observation for subject i and outcome k between t j−1

and t j, for outcomes that are not prohibited in a secure facility, and as the number of days spent

in the community, for outcomes that are prohibited in a secure facility. We assume piecewise

linear temporal trends with a single knot at 36 months in the mean component of the model.

Covariates considered include gender (male/female), ethnicity (black/Hispanic/other), a binary

indicator of placement in a secure facility between t j−1 and t j (in xµi j) and the cumulative time,

in years, spent in a secure facility between t0 and t j−1 (in xµi j and xφi j).

4.4.1 Computational Details

We assign weakly informative prior distributions for the fixed regression effects, βpk ∼

Nlp(0, Ilp), βµk ∼ Nlµ(0, Ilµ), ρk ∼ N2(0, I2) k = 1, . . . ,K = 8, and βφ ∼ Nlφ(0, Ilφ) where In

denotes an n × n identity matrix. For the factor loading parameters, λrk and λvk k = 1, . . . , 8,

we adopt moderately informative priors, Γ(1, 1). Finally, we choose Unif(0, 100) priors for the

standard deviations of the outcome- and subject-specific random effects in the mean compo-

nent, σbk k = 1, . . . , 8.

The results below arise from two chains, each was run for an initial 2000 burn-in iterations

followed by an additional 10 000 iterations thinned at 10, resulting in a total of 2000 iterations

to be used for posterior inference. In order to reduce the number of iterations needed and

improve the mixing of the chains, we implement a hierarchical centering reparametrization

(Gelfand, Sahu and Carlin, 1996) in the mean component of the model.
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4.4.2 Results

We investigate the insights, above that provided by less complex models, obtained by ac-

counting for the possibility of the underlying process resolving following the occurrence of at

least one event. We compare our proposed “full” model and a “reduced” model without the

permanent quit component i.e., qi j ≡ 0.

Standard implementations of random effects models assume a known correlation structure.

In some settings commonly used assumptions concerning this structure may not be appropriate.

For example, the assumption that the random effects covariance matrix has the same structure

across outcomes may not be realistic. Here, the outcome- and subject-specific variability in

the mean component for aggressive I appears to be adequately captured by the shared random

effect, vi. Only 2.5% of the positive responses for aggressive I do not coincide with a positive

response for at least one other outcome. The inclusion of the shared random effect effectively

reduces the variance of the outcome- and subject-specific random effect for aggressive I to zero.

Additionally, it appears that aggressive II is distinct from the remaining outcomes in terms of

the probability of being an non-engager. In particular, 16% of subjects report only engaging

in aggressive II while the corresponding proportion is approximately 1% for the remaining

outcomes. Therefore, we set the relevant parameters (λrk for aggressive II (k = 6) and σ2
bk

for

aggressive I (k = 5)) equal to zero. This approach utilizes ideas from Chen and Dunson (2003)

whereby random effects may have zero variance and effectively drop out of the model.

Probability of Non-engager: The posterior medians and 95% equal-tail credible intervals

for the baseline covariate effects in the non-engager component are shown in the top row of

Figure 4.2. For all outcomes, under the full and reduced models, female subjects have a higher

probability than males of being a non-engager. This effect is significant for all outcomes.

Relative to the baseline group, for both the full and reduced models, black subjects have a

significantly higher probability of being a non-engager for drove drunk, income I and income

II.
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Figure 4.2: Comparison of effects of baseline covariates on the probability of a non-engager
(βpk , top) and the mean count (βµk , bottom). Credible intervals corresponding to full/reduced
model are shaded in solid purple/dashed blue.
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Figure 4.3: Posterior medians and 95% credible intervals for the factor loading parameters
for the probability of a non-engager (λrk , left) and the mean (λvk , right) model components.
Credible intervals corresponding to full/reduced model are shaded in solid purple/dashed blue.

The posterior medians and credible intervals for the factor loading parameters associated

with permanent quit model component are displayed in the left column of Figure 4.3. Con-

sidering the subject-specific random effects in the non-engager component of the model, the

factor loading parameter obtained from the full (and reduced) model for sold marijuana seems

to be distinctly larger, indicating larger variability for this outcome.

Mean of Partially Observed Count Distribution: The posterior medians for the outcome-

specific trajectories for the mean of the count distribution are displayed in Figure 4.4. Relative

to the full model, under the reduced model, the mean is consistently underestimated over time

for all of the outcomes. Furthermore, the shape of the time trend differs for carried a gun, sold
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marijuana, sold other drugs and drove drunk under the two models. Under the reduced model,

the time trends for these four outcomes remains relatively flat while under the full model the

mean is increasing over time. Here, the reduced model is essentially averaging over the in-

creasing event rate within a shrinking group for whom the underlying process has not resolved,

and long periods without recurrence at the end of the observation period corresponding to a

growing subgroup of subjects who have permanently quit offending.

The posterior medians and 95% equal-tail credible intervals for the baseline covariate ef-

fects in the mean component are shown in the bottom row of Figure 4.2. Under the full model,

within the outcome-specific engagers, female subjects compared to male subjects have a sig-

nificantly higher mean for income I and a significantly lower mean for sold marijuana. For

all outcomes, the effect of gender in the mean component is lower under the reduced model,

compared to the full model. This arises from the fact that female subjects compared to male

subjects are more likely to permanently quit offending. Removing the permanent quit compo-

nent yields more female subjects with long periods of non-offending in the mean component of

the model and, hence, the frequency of events for female subjects across all outcomes appears

lower. This change is most apparent for aggressive II where the gender effect is not significant

under the full model but significant under the reduced model. This is expected as aggressive

II is the most frequently reported outcome and appears to primarily determine the resolution

process.

As well, under both the full and reduced models, there are several differences in the mean

component among ethnicities. Relative to the baseline group, black and Hispanic engagers

have a higher mean for carried a gun. Additionally, black subjects compared to both the

baseline group and Hispanic subjects have a higher mean for sold marijuana and sold other

drugs and a lower mean for aggressive II and income I. Finally, compared to Hispanic subjects,

black subjects have a lower mean for drove drunk.

There are two effects related to placement in a secure facility in the mean component of the

model. The first is an indicator effect on the mean count in the current month. The posterior
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Figure 4.4: Comparison of time trends in the mean component. Fitted values correspond to a
non-black, non-Hispanic male subject who spent no time in a secure facility between t0 and
t j and with length of exposure of 31 days. Posterior medians corresponding to full/reduced
model are shaded in solid purple/dashed blue.
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Figure 4.5: Comparison of effect of placement in a secure facility during the current panel (left)
and the effect of prior cumulative time spent in a secure facility on the probability of at least
one event (right). Credible intervals corresponding to full/reduced model are shaded in solid
purple/dashed blue.

medians and credible intervals for this effect are shown in the left column of Figure 4.5. For

three of the outcomes, sold marijuana, sold other drugs and income I, under both the full and

reduced models, placement in a secure facility is associated with a lower mean in the current

panel. On the other hand, again for both models, for the remaining outcomes, placement in

a secure facility is associated with a higher mean in the current panel. Note that whether

placement occurs before or after criminal activity is unknown. It may be that, for example, a

subject experienced a period with a high event rate for carried a gun which led to placement in

a secure facility.

The second is the effect of the cumulative time in a secure facility in the previous months

on the mean count in the current month; posterior summaries for this effect are shown in

the right column of Figure 4.5. For each of the eight outcomes, under the full and reduced



4.4. Application to the Pathways to Desistance Study 93

Table 4.1: Posterior medians obtained from the full model for σ2
k and the fraction of variability

explained by the shared random effect in the mean component.
Carried a gun Sold marijuana Sold other drugs Drove drunk Aggressive I Aggressive II Income I Income II

σ2
bk

0.99 0.69 0.89 1.25 − − − 0.49 1.10 0.46
% variability 0.77 0.70 0.74 0.60 1.00 0.64 0.69 0.84

models, a longer cumulative time in a secure facility in the previous months is associated with

a significantly lower mean in the current panel. For all of the outcomes, the effect of cumulative

time spent in a secure facility during prior months in the mean component is approximately the

same or slightly attenuated under the reduced model.

The posterior medians and credible intervals for the factor loading parameters associated

mean model component are displayed in the right column of Figure 4.3. These estimated

factor loading parameters vary substantially across the outcomes; this variability is lowest for

aggressive II and highest for aggressive I.

Pairwise estimates (not shown) obtained from the full model of Spearman’s rank correla-

tion coefficient for the posterior median estimates of the outcome- and subject-specific random

intercepts in the mean component, bik, are all fairly close to zero, indicating that the shared ran-

dom effect adequately captures the correlation structure. Table 4.1 provides posterior medians

for the variance of the random effect representing additional heterogeneity beyond the shared

random effect in the mean component, σ2
bk

. This variance is largest for drove drunk, indicating

there may be additional variation in the Poisson mean for drove drunk across subjects, distinct

from the other outcomes. For each run of the MCMC samples, the empirical variances for the

random intercept and common component, s2
bik+λvk Vi

and s2
λvk vi

, respectively, are calculated. The

fraction of variability explained by the common factor is calculated as the ratio s2
λvk v/s2

bik+λvk vi
.

Table 4.1 also displays the posterior medians for the fraction of variability explained by the

common factor for each outcome. The shared random effect accounts for 60% to 77% (exclud-

ing aggressive I) of the variability in the mean component; hence the majority of the variability

in the mean component is absorbed by the shared random effect.

Probability of Resolution: Finally, we examine the probability that the process generating
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events resolves following an assessment period with one or more events. Compared to male

subjects, female subjects are more likely to permanently quit. There are no significant dif-

ferences in terms of the probability of permanently quitting offending among ethnicities. The

posterior median estimates (95% credible interval) of the regression parameters in the perma-

nent quit component corresponding to female, Black and Hispanic subjects are -0.22 (-0.32,

-0.12), -0.07 (-0.14, 0.00) and -0.02 (-0.09, 0.06), respectively. More cumulative time spent in

a secure facility since the start of observation is associated with a higher probability of perma-

nently quitting offending; the posterior median estimate for this effect is -0.07 (-0.09, -0.04).

Although this effect is significant, it is not practically meaningful. For example, the probability

of permanently quitting for a black, male subject increases from 0.021 (0.017, 0.026) with no

prior time in a secure facility to 0.027 (0.022, 0.032) with one year spent in a secure facility.

We investigate how an individual’s pattern of offending affects their estimated probability of

permanently quitting, computed as α̂i = 1
B

∑B
b=1 q(b)

iLi
where B is the number of MCMC iterations,

B=2000 here, and Li denotes the month following the occurrence of the last observed event for

any of the outcomes. Figure 4.6 displays the estimated probability of permanently quitting

versus the number of event-free months for subject i following Li, stratified by the proportion

of prior months with at least one event for any of the outcomes. The probability of permanently

quitting increases with the number of event-free months following the occurrence of the last

observed event. This curve becomes steeper as the proportion of prior months with at least one

event increases. For subjects with a very low rate of offending in the prior months, α̂i does not

exceed approximately 0.6. In contrast, for subjects with a high rate of offending in the prior

months, the probability of permanently quitting increases sharply with the number event-free

months following Li.

These sorts of insights offer a striking advantage of the full versus the reduced model. Es-

timates of the probabilities of permanently quitting (after Li) may be useful for distinguishing

between juvenile offenders who will continue engaging in criminal behaviour beyond adoles-

cence and those who will not. A possible approach would be to classify individuals into two
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Figure 4.6: Estimated probability of permanently quitting offending, α̂i, versus the number of
event-free months following Li, stratified by the proportion of months prior to Li with at least
one event.
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groups, e.g. permanent quitters and nonpermanent quitters. One decision rule would be to clas-

sify subjects as permanent quitters if α̂i > p0, a selected threshold, and nonpermanent quitters

otherwise. Using this approach and a threshold of p0 = 0.8, 35% of the subjects were classified

as permanent quitters.

Figure 4.7 displays, for each outcome, the expected versus observed number of individ-

uals with a presence of event by month showing no striking evidence of lack of fit. Similar

comparisons (not shown here) by gender and ethnicity also show reasonable agreement.
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Figure 4.7: The expected number of positive responses over time (lines) and the number of
observed positive responses (points).



98 Chapter 4. Joint Analysis of Presence/Absence Data Subject to Resolution

4.5 Simulation Study

We investigate the added value of incorporating the permanent quitting component to our

model. The differences in estimates obtained under the full and reduced models in the analysis

of the Pathways to Desistance data prompts an investigation of the potential bias in the mean

component of the model when the underlying process generating events can indeed resolve but

the reduced model is implemented for analysis. We simulated data corresponding to N = 1000

subjects from a simpler joint model for multivariate longitudinal presence/absence data subject

to resolution and incorporating non-engagers as well as an exposure variable, as seen in the

Pathways to Desistance study. Specifically, we consider K = 5 outcomes with rates similar to

that observed for carried a gun, sold marijuana, aggressive I, aggressive II and income I. The

true values of the fixed intercepts represent approximately the fitted probabilities correspond-

ing to a male, non-Black, non-Hispanic subject at the first month of the observation period who

spent no time in a secure facility during the current month. All model components depend only

on one binary covariate xi denoting gender, simulated independently from a Bernoulli distribu-

tion with probability 0.14 which is the about the prevalence of female subjects in Pathways to

Desistance study, for i = 1, . . . ,N. The length of exposure by month for each outcome reflects

approximate average values for these outcomes with the Pathways to Desistance study. The

algorithm for data generation is described in the Appendix C.

Using the Bayesian methodology described in Section 4.3, we obtain the joint posterior

distribution for all parameters under the full model. For each of 250 simulated data sets, we run

two chains, each for an initial 2000 burn-in iterations followed by an additional 5000 iterations

used for inference. As well, we fit the reduced model without the permanent quit component

using the simulated data.

The bias for the gender effect in the mean component under the full and reduced models is

reported in Table 4.2. We observe that the bias is smaller for outcomes where the proportion

of positive responses is higher. It may be difficult to obtain accurate parameter estimates in
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settings with very sparse data as seen here for sold marijuana, carried a gun and aggressive I

(approx. 1% positive responses). As seen in our analysis of the Pathways to Desistance data,

the estimate of gender in the mean component is lower under the reduced model, relative to the

full model, resulting in an increase in bias. The increase in bias is most apparent for aggressive

II which is the outcome that corresponds to the highest proportion of positive responses.

Table 4.2: Average bias for gender effect in mean component under the full and reduced models
and in the permanent quit component under the full model across 250 simulated data sets. The
first column displays the true parameter value, the second and third columns display the aver-
age posterior median, the average bias obtained under the full model and the fourth and fifth
columns reports the the average posterior median and the average bias under the reduced model.
Outcomes are listed in ascending order according to the proportion of positive responses.

True Full Bias Full Reduced Bias Reduced
Sold Marijuana −0.500 −0.746 −0.246 −0.996 −0.496
Carried a Gun −0.800 −1.131 −0.331 −1.257 −0.457
Aggressive I 0.150 −0.176 −0.326 −0.443 −0.593
Income I 0.650 0.465 −0.185 −0.197 −0.847
Aggressive II −0.200 −0.269 −0.069 −0.594 −0.394
φ −0.250 −0.249 0.001

Table 4.2 also displays the average posterior median and the average bias for the gender ef-

fect in φ (the permanent quit model component). The bias for this effect is substantially smaller

than the corresponding bias for any of the outcomes in the mean component. This illustrates

another aspect of the conceptualization of the latent variable corresponding to this effect under-

lying the multivariate longitudinal data. The model for the permanent quit component borrows

information across different outcomes effectively increasing the sample size used for parameter

estimation.

We study here the use of α̂i for classifying juvenile offenders as permanent quitters as dis-

cussed in Section 4.2. We vary the length of the observation period as well as the threshold p0

to determine the effects on the sensitivity and specificity of this classification process. Sensi-

tivity is calculated as 1
|Q|

∑
i∈Q I{α̂i > p0}, where Q is the set of true permanent quitters and | • |

is the cardinality of the set, while, specificity is computed as 1
|S \Q|

∑
i∈S \Q I{α̂i ≤ p0}, where S is

the set of all subjects. The length of the observation period takes values 36, 60 and 84 months,

while p0 takes values from 0.3 to 0.95 in increments of 0.05.
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Figure 4.8 displays the mean sensitivity and specificity at each threshold p0 by the length of

the observation period, T . Sensitivity increases as the length of the observation period increases

with the sensitivity remaining above approximately 0.8 for thresholds p0 ∈ [0.3, 0.95] when the

observation period is 84 months long. Regardless of the length of observation, the specificity

increases from approximately 0.9 for p0 = 0.3 to one for p0 = 0.95. Overall, these results

indicate that our methodology may be an useful tool to accurately identify permanent and

nonpermanent quitters.
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Figure 4.8: The mean sensitivity (top) and specificity (bottom) from 250 simulated data sets
with observation periods covering 36, 60 and 84 months.
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4.6 Discussion

The approach of utilizing a modeling framework where the process generating events may

resolve offers new insights on processes related to offending patterns. The observed decrease in

offending over time, across all outcomes, is primarily due to long periods without recurrence at

the end of the observation period corresponding to a growing subgroup of subjects who seem

to have permanently quit offending. On the other hand, for those subjects who continue to

offend, the frequency of offending remains constant or increases over time. Importantly, in

our analysis both gender and cumulative time spent in a secure facility since the start of the

study were found to significantly affect the probability of permanently quitting. However, the

magnitude of the increase associated with increased time in a secure facility was not seen to be

meaningful in this application.

Under less complex models, omitting the possibility of the underlying process generating

the events resolving, we are unable to distinguish between subjects who are no longer at-risk

to offend and subjects with low event rates. The simulation and empirical studies demonstrate

that omitting the permanent quit component of the model when the possibility of resolution

of an underlying process is justified can yield biased estimates of parameters in the mean

component. As well, simulations indicate that our methodology which utilizes data pertaining

to individual’s engagement in antisocial or illegal activity during the entire observation period

is able to accurately identify permanent and nonpermanent quitters.

Our model considers settings where resolution of the event generating process occurs fol-

lowing the presence of an event for any of the outcomes. A natural extension is accommodating

the resolution of the underlying process at some specific intervention points in the observation

period, for example, following a placement in a secure facility or perhaps some treatment. This

may also lead to different interpretations reqarding qi j and φi j.

The resolution process may also differ from outcome to outcome whereby an underlying

process generating events for each outcome may resolve at some point during the observation
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period. In this work, by assuming a single underlying resolution process, the model is driven

by the outcome that is least likely to resolve. The rationale for utilizing a common underlying

resolution process in our motivating context was two-fold. First, a major goal of the Pathways

to Desistance study is to reliably distinguish between juvenile offenders who will continue

criminal behaviour beyond adolescence and those who will not. The conceptualization of a

single resolution process directly addresses this objective. Second, due to the limited number

of positive responses for all of the outcomes, with possible exception of aggressive II, there

is insufficient data to permit such an extension which allows resolution for each outcome.

However, in other studies such an extension might be important. As well, the development

of methods to identify which outcomes convey the most information for the parameters of a

single resolution process may add substantially to our understanding of the desistance process.

Under the proposed approach, the probability of permanently quitting is calculated using

an individual’s data collected over a specified window of time. In our motivating context, deci-

sions concerning, for example, the placement of a subject in a secure facility versus enrollment

in a community-based treatment would be made at some specific evaluation points and, hence,

such an approach is useful. An alternative approach would be to consider real-time predictions

of the probability of the underlying process generating events resolving. Recently, there has

been considerable interest in the development of methods for real-time individual predictions,

particularly in medical settings. These methods utilize joint models to dynamically predict a

subject’s risk of occurrence of an event using information pertaining to their medical history.

For example, Mauguen et al. (2013) established dynamic predictions of the risk of death using

history of cancer recurrences where predictions can be updated following the occurrence of a

new event. In some contexts, it may be useful to update the probability of the underlying pro-

cess resolving following each event-free assessment period. Specifically, we could compare the

current censored time since the last occurrence to a gap time distribution based an individual’s

previous pattern of recurrence of events. The development of such methods is underway.

Our analysis indicates that a higher cumulative time spent in a secure facility during prior
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months is associated with a lower rate of offending and a marginally higher probability of

permanently quitting offending. It is unclear how these effects cumulate over longer time pe-

riods and the impact of placement in a secure facility at different periods within adolescence.

Adapting the approach for modeling the cumulative effects of time-dependent exposure pro-

posed by Sylvestre and Abrahamowicz (2009) may provide insights in this regard. Under this

approach, cumulative effects of exposure, weighted by recency, are estimated using cubic re-

gression splines. In this work, placement in a secure facility refers to several distinct types of

institutional settings beyond incarceration including, for example, substance abuse treatment

units and facilities which target mentally ill adolescents. We also note that exposure considered

here does not account for placement in a secure facility prior to the start of the study. Future

work will incorporate such information, as well as age effects and information on history of

offending prior to study enrollment.

More flexible correlation structures for the random effects could be implemented. Cor-

related random effects that follow a stationary multivariate autoregressive process could be

utilized to incorporate correlation between observations with the same subjects across time.

However, computationally efficient estimation of a covariance matrix for correlated random

effects would need to be developed, especially for higher dimensional settings as seen here.
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Chapter 5

Future Work

Directions for future work will consider extensions of the modeling framework where the pro-

cess generating events may resolve as well as Bayesian methods for handling missing data.

5.1 Outcome-specific Process Resolution

In Chapter 4 of this thesis, we develop a modeling framework which utilizes a common

latent variable representing the resolution of the process generating events, borrowing infor-

mation across different outcomes. This assumption of a single underlying resolution process

results in the probability of permanently quitting being driven by the outcome that is least likely

to resolve. While this suited the criminal behaviour context considered, allowing the resolution

process to differ from outcome to outcome whereby different underlying processes generating

events for each outcome lead to resolution at some point during the observation period may be

important in other situations.

Here, we may consider latent indicators, qi jk, denoting whether or not the underlying pro-

cess generating events for subject i and outcome k has resolved by time t j−1 and model the

probability of permanently quitting as follows

107



108 Chapter 5. FutureWork

P
(
qi jk = 1

∣∣∣∣{qi( j−1)k = 0, yi( j−1)k = 1, xφi j

})
= φi jk = exp{− exp(x

′

φi j
βφk + λukui)} (5.1)

where xφi j is a lφ × 1 vector of covariates, βφk is a vector of corresponding regression param-

eters, ui is a subject-specific random effect and λuk is a factor loading parameter representing

outcome-specific variability related to ui.

This model specifies independent subject-specific random effects for each model compo-

nent. Forms which include a single subject-specific random effect, shared across outcomes in

multiple components of the model may be considered.

Such an extension raises concerns about model selection as we would need to determine

if it is more appropriate to assume outcome-specific resolution processes or a common reso-

lution process in a given application. Wall and Li (2009) discussed testing the hypothesis of

a shared common state underlying several longitudinal outcomes in a hidden Markov model

where an unobserved health state governs the counts of several types of medical encounters.

In their model, if the behaviour observed for one outcome is inconsistent with the remaining

outcomes, it could be detected by examining the estimated regression parameter associated

with the underlying state in the mean model for the outcome-specific counts. However, in our

modeling framework such an approach is not available. In this case, model selection would

rely on measures of fit and model assessment. Gelman, Hwang and Vehtari (2014) recom-

mended the use of the Watanabe-Akaike information criterion (Watanabe, 2010) over the more

commonly utilized deviance information criterion (DIC, Speighlhalter et al. 2002), particu-

larly for mixture models as considered in this thesis. The Bayesian framework utilized in this

thesis facilitates the use of posterior predictive assessments based on any parameter-dependent

function, or so-called discrepancy (Gelman, Meng and Stern, 1996). This approach allows us

to tease apart the impact of modeling choices on the ability of our model to capture key as-

pects of the data. For example, in a joint analysis of several count outcomes related to sexual
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behaviour, Zhu and Weiss (2012) examined the ability of their model to accurately model high

activity portions of the study population using posterior predictive distributions. In the context

of the criminal behaviour study, it may be of interest to examine the distribution of the number

of event-free months following the occurrence of the last observed event.

5.2 Dynamic Prediction of the Probability of Permanently

Quitting

The classification of juvenile offenders as permanent or nonpermanent quitters discussed

in Chapter 4 is based an individual’s data collected over a window of time. In the criminal

behaviour context, decisions concerning, for example, the placement of a subject in a secure

facility versus enrollment in a community-based treatment, would be made at some specific

evaluation points and, hence, such an approach is useful. In other settings, it may be beneficial

to consider real-time predictions of the probability of the underlying process generating events

resolving.

Recently, there has been considerable interest in the development of methods for real-time

individual predictions, particularly in medical settings. These methods utilize joint models to

dynamically predict a subject’s risk of occurrence of an event using information pertaining to

their medical history. Rizopoulos (2011) discussed the prediction of survival probabilities for

patients infected with the human immunodeficiency virus based on their longitudinal CD4 cell

count measurements. Additionally, the capability of the longitudinal marker to differentiate

between subjects who experience an event within a specified time frame, and those who do

not, was assessed. Mauguen et al. (2013) established dynamic predictions of the risk of death

using history of cancer recurrences where predictions can be updated following the occurrence

of a new event.

One approach may be to update the probability of the underlying process resolving follow-

ing each event-free assessment period. Specifically, we could compare the current censored
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time since the last occurrence to a gap time distribution based an individual’s previous pat-

tern of recurrence of events. This requires the estimation of subject-specific recurrent event

gap time distributions. Peña et al. (2001) proposed Nelson-Aalen and Kaplan-Meier-type es-

timators for distribution functions governing the time to occurrence of a recurrent event in the

presence of censoring. The parallel to the survival setting yields a natural framework for exten-

sions involving covariates, Cox-type regression and frailty models. Recently, Lee et al. (2015),

relaxed the commonly used assumptions that individuals are enrolled in a study due the occur-

rence of an event of interest, and subsequently experience recurrent events of the same type.

They developed a nonparametric estimator of the joint distribution of the time from the start of

the study to the first event and the gap times between consecutive events.

A two-stage prediction algorithm could be considered that first, following each event-free

assessment period, compares an individual’s current censored time since the last occurrence to

the distribution of gap times between previous occurrences, then calculates the probability of

permanently quitting as an increasing function of the time since the last observed occurrence.

Previous authors (Li, Wileyto and Heitjan, 2011) have used two-stage algorithms in the context

of prediction using frailty models.

5.3 Bayesian Methods for Handling Nonigorable Missing

Observations

In our analysis of the data from the Pathways to Desistance study, we consider only data

obtained from consecutive follow up interviews with complete data, leading to dropouts. This

is not uncommon in large observational studies. Dropouts can be ignored if the dropout pro-

cess is unrelated to the processes under investigation. However, this may not be the case for

longitudinal studies of human behaviour. In a study of sexual behaviour of adolescents, Ghosh

and Tu (2009) hypothesized that dropouts may be associated with traits that can be character-

ized by a lack of discipline. These traits may be related not only to the dropout process, but
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also may influence sexual behaviour, motivating the joint analysis of the zero-inflated count

outcome and dropout process. Similar arguments may be justified in the context of criminal

behaviour of juvenile offenders. As well, when a subject is in a secure facility it is unlikely that

they will miss a scheduled interview. Given that it is well known that failure to accommodate

informative dropouts may lead to suspect inference (Wu and Carroll 1988; Little 1995; Wu

2007), extending the Bayesian framework of Ghosh and Tu (2009) to accommodate several

zero-inflated count outcomes and the effects due to time spent in a secure facility, both on the

outcomes and the dropout process, is warranted.

Moreover, in the Pathways to Desistance data set, there are various patterns of missing

data, including intermittently missing patterns corresponding to non-responses for a particular

question and missed interviews. In cases where several longitudinal outcomes are jointly con-

sidered, methods for handling missing data need to account for multiple sources of correlation.

Luo et al. (2016) proposed Bayesian methods using multiple imputation for missing multivari-

ate longitudinal data of various types. Under multiple imputation, uncertainty concerning the

imputed values is addressed by generating M > 1 sets of imputed values for the missing values

in the data set as draws from the predictive distribution. Inference across the imputed data

sets can be obtained using Rubin’s multiple imputation rules (Rubin, 1987). Here, the authors

utilized underlying normal variable models for binary, ordinal and continuous data. In other

settings, gamma frailty models for underlying Poisson variables could be utilized for count

and discrete event time outcomes (Dunson and Herring, 2005). Accommodating zero-inflated

count data within such a framework would require some additional computational algorithmic

developments.

Assumptions concerning the processes generating missing data may be untestable, but in-

ference can be sensitive to the particular assumptions made. Linero and Daniels (2015) de-

veloped a Bayesian framework for continuous-valued longitudinal outcomes which accommo-

dates a sensitivity analysis. The use of such sensitivity analyses is important in the broader

context of longitudinal studies.
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Table A.1: Summary of the eight outcomes analyzed
Outcome Prohibited in a secure facility? Type
Carried a gun yes bounded count
Sold marijuana no bounded count
Sold other drugs no bounded count
Drove drunk yes count
Aggressive I yes count
Set fire
Forced someone to have sex
Killed someone
Shot someone, bullet hit
Shot at someone, no hit
Robbery with weapon
Aggressive II no count
Destroyed/damaged property
Beat up someone, serious injury
In a fight
Beat someone as part of gang
Income I yes count
Broke in to steal
Shoplifted
Used check/credit card illegally
Stole car or motorcycle
Carjack
Paid for sex
Broke into car to steal
Income II no count
Bought/received/sold stolen property
Robbery no weapon
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Figure A.1: Proportion of zero counts over time for the eight outcomes analyzed.
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Figure A.3: Comparison of posterior median for the probability of not offending during panel
Ti + 1 for all individuals.
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Appendix B

Strategies to Consider in the Design of

Recurrent Event Studies

Planning studies that are expected to yield zero-inflated Poisson data can be challenging when

heaping may be a significant concern. Opportunities to elicit from individuals more accurate

data that is less burdensome on participants to record may include obtaining information of

presence/absence of events at successive, closely timed assessments rather than a precise count

of the number of events that occurred in some window of observation. In this case a key

question will be how often such presence/absence data should be collected in order to obtain

as high efficiency in the analysis as provided by accurately rendered counts. We describe how

practitioners can come to terms with these issues to derive an efficient study design by adapting

the methodology utilized in our simulations study.

Selection of Families of Plausible Heaping Distributions: We need to establish a set of rel-

evant heaping distributions that are characterized by a set of parameters. This requires careful

examination of the both the data collection process and the raw data. The data collection pro-

cess and the wording of the survey questions may influence at which points in the distribution

one should expect to observe heaping. For example, in the Pathways in Desistance study, at the

follow up interview subjects where asked to indicate which months they engaged in an activity
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and how many times they engaged in this activity since the baseline interview. As expected, we

observed peaks at multiples of 30. Examining plots of the raw data will help identify plausible

heaping points. It is important to look for evidence of heaping using the raw data on the scale

of the response offered by the survey question. Using smoking cessation data, Bar and Lillard

(2012) illustrated that heaping may be obscured by transformations of the raw data. In the

criminal behaviour application, we identified three plausible families of heaping distributions

based on (i) rounding to multiples of 5, (ii) a proportional odds model where the observed data

are coarser for larger values of the true count, and (iii) change points for different levels of

coarsening.

Identification of Heaping Distribution which Best Mimics Heaping Observed in Pilot Data:

Fit an appropriate regression model to aggregate count pilot data, ignoring any apparent heap-

ing, to obtain rough values for parameter estimates. As in our simulation study, we will subse-

quently view this as the true data generating model. Using these parameter values, we generate

R replicate data sets representing accurately recorded aggregate count data. For each of the

families of relevant heaping distributions, we generate R replicate data sets of rounded counts

where the values of the heaping parameters reflect hypotheses concerning the heaping mech-

anisms. We visually compare the distributions of the observed pilot data and the simulated

heaped data, averaged over the replicate data sets. Based on this, we select the family of

heaping distributions which best mimics the patterns of heaping observed in the pilot data.

In Figure B.1, we display the comparison of the distributions of observed data and that of the

simulated heaped count data for the three families of plausible heaping distributions considered

for criminal behaviour study. Here, we identified the heaping distribution with change points

for different levels of coarsening as the most appropriate. Next, tune the values of the heaping

parameters for the selected heaping distribution using a measure of discrepancy

D =

L∑
y=0

|( % obs. counts = y) − (% simulated counts = y, avg’d over R sims.)|
2



122 Chapter B. Strategies to Consider in the Design of Recurrent Event Studies

where L is enough large so that the probability of a count exceeding this threshold is of small

order. We utilize parameter values that minimize the measure of discrepancy to represent the

observed data in the prospective study, denoted HI in the our simulations. In our motivating

example, the measure of discrepancy for HI as presented in Table 3.1 were 0.089 and 0.120

for DD and AGG, respectively. This represents an improvement in goodness-of-fit, relative to

preliminary parameter values for this heaping distribution, displayed in the final row of Figure

B.1 (D = 0.097 for DD and D = 0.128 for AGG). In addition to a heaping distribution that

closely resembles the pilot study data, a worst case scenario with more pronounced heaping

should be considered. Comparison of the ABIAS for the parameters obtained from the simu-

lated true count and heaped count data provide an indication of the extent to which heaping of

the data may introduce bias.

Investigating Efficient Choices of Timing of Longitudinal Presence/Absence Data by Sim-

ulation: Using the simulated true count data, we derive R replicate data sets of accurately

reported presence/absence data collected at periodic assessment points within the window of

observation. We consider several monitoring schemes where we vary the length of time be-

tween assessments points, including the most frequent collection schedule plausible given the

resource allocation for the prospective study. By comparing the ASE for parameters obtained

from the simulated true count data and the simulated presence/absence data collected at vary-

ing frequencies, we can determine how often the longitudinal binary should be collected in

order to obtain as high (or nearly as high) efficiency as the analysis as provided by accurately

reported counts.
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Appendix C

Algorithm for Generation of Simulated

Data in Chapter 4

In our simulations, the offending pattern is generated using the following procedure.

(1) Set m = 1 and at the mth replication, generate r(m) = (r(m)
1 , . . . , r(m)

N )
′

∼ N(0, I) , v(m) =

(v(m)
1 , . . . , v(m)

N )
′

∼ N(0, I) and b(m)
k = (b(m)

1k , . . . , b
(m)
Nk )

′

∼ MVN(0, σ2
bk

I) for k = 1, . . . ,K.

(2) Generate s(m)
ik , markers for the outcome-specific non-engagers where (4.2) is given by

p(m)
ik = {1 + exp(−βp0k − βp1k xi − λrkr

(m)
i )}−1

for i = 1, . . . ,N, k = 1, . . . ,K.

(3) For outcome-specific engagers, generate the presence/absence of at least one event at the

first month where (4.5) is expressed as

ζ(m)
i1k = 1 − exp{− exp(βµ0k + βµ1k xi + log(zi1k) + λvkv

(m)
i + b(m)

ik ))}

Note that we assume q(m)
i1 = 0 for all i = 1, . . . ,N as the offending process can only

resolve following at least one event.

124



125

(4) If y(m)
i1k = 0 for all k = 1, . . . ,K then set q(m)

i2 = 0, otherwise generate q(m)
i2 where (4.7) is

defined as

φ(m)
i2 = exp{− exp(βφ0 + βφ1 xi))}

(5) For outcome-specific engagers, given that q(m)
i2 = 0, generate the presence/absence of at

least one event at the second month from a Bernoulli(ζ(m)
i2k ) random variable.

(6) Repeat steps (4) and (5) for j = 3, . . . ,T = 84.
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