Doped TiO2 Nanowires for Applications in Dye Sensitized Solar Cells and Sacrificial Hydrogen Production

Qasem Alsharari
The University of Western Ontario

Supervisor
Dr. Mita Ray
The University of Western Ontario

Joint Supervisor
Dr. Paul Charpentier
The University of Western Ontario

Graduate Program in Chemical and Biochemical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Environmental Sciences Commons, Inorganic Chemistry Commons, Nanoscience and Nanotechnology Commons, and the Semiconductor and Optical Materials Commons

Recommended Citation
https://ir.lib.uwo.ca/etd/3665

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca, wlswadmin@uwo.ca.
Abstract

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO₂), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrificial hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO₂ at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a lower ratio led to the formation of various morphologies, depending on reaction conditions. The synthesized undoped and doped nanowires were characterized by electron microscopy (SEM and TEM), N₂ physisorption, FTIR, XRD, XPS, thermal analysis. These results showed high aspect ratio nanowires as observed by SEM (15-25) with surface areas ranging from 40 to 126 m²/g. These surface areas are comparable and sometimes exceeded the surface area of Degussa P25 (i.e. 50 m²/g).

Copper doped nanowires were examined as sacrificial photocatalytic catalysts in Chapter 3. It was found that the modified sol-gel synthesis approach in supercritical CO₂ produced primarily a single oxidation state (Cu (I)) of active Cu₂O/TiO₂, which was confirmed by XPS and XANES analyses. Wt % of copper and initial concentration of sacrificial agent were optimized to enhance hydrogen production with the results compared to undoped titanium nanowires and Degussa P25. The Cu₂O/TiO₂ nanowires showed improved hydrogen production at 1 % Cu (I) loading which produced about 10 times more hydrogen than Degussa P25 and 47 times more than undoped nanowires, respectively.

Chapter 4 discusses the synthesis and application of Indium (In) doped titania for DSSCs and sacrificial hydrogen production. Indium has high conductivity, transparency for visible light, and good electron mobility, making it an attractive dopant for such applications.

In Chapter 5, sacrificial hydrogen production by bismuth titanate nanowires using formaldehyde as the sacrificial agent is examined. Bismuth titanate was previously shown theoretically to have all the requirements to be an effective photocatalyst to produce hydrogen when doped with transition metals. However, little experimental work has been
reported on the performance of bismuth titanate nanowires. Bismuth titanate nanowires were synthesized using a sol-gel methodology in supercritical CO₂ with different levels of bismuth loading (1, 1.4, and 2 mol % bismuth). These nanowires were investigated for their sacrificial photocatalytic hydrogen production, which was compared to that of undoped titanium nanowires and P25.

Chapter 6 deals with the experimental results of bismuth titanate, which is known as an active visible light photocatalyst, with most of its applications focused on remediation of water and wastewater. However, very limited applications of bismuth titanate in DSSCs have been reported in the literature. The effect of Bi loading on TiO₂ nanowires for DSSCs was investigated by testing the J-V curves of the solar cells. The influence of Bi on the internal processes of electron transport was also evaluated by electrochemical impedance spectroscopy.

In order to integrate these nanowires into polymeric systems for easy processability and application, the synthesis of polysulfone polymers was examined in Chapter 7. These polymers were designed to contain carboxylic functional groups to enable coordination with titanium and titanium doped photocatalyst. The goal was to produce an organic-inorganic membrane for photocatalytic membrane reactor that can reduce fouling by degradation of pollutants. The membrane was also examined to be cast as nanotubes using an anodic aluminum oxide (AAO) template method.

Keywords
Titanium, nanowires, metal oxides, dye sensitized solar cells (DSSC), hydrogen, photocatalyst, copper, indium, bismuth, nanomaterials, solar energy, supercritical, carbon dioxide, sol-gel method.
Co-Authorship Statement

Title: Bismuth Titanate Nanowires as a photoanode for dye sensitized solar cells

Authors: Qasem Alsharari, Paul A. Charpentier, Madhumita Bhowmick Ray

Experimental work and preparation of this manuscript was done by Qasem Alsharari and corrected by Dr. Madhumita B. Ray and Dr. Paul Charpentier. This manuscript is under preparation for publication.

Title: Photocatalytic hydrogen production using active Bismuth titanate nanowires

Authors: Qasem Alsharari, Paul A. Charpentier, Madhumita Bhowmick Ray

All experimental work and preparation of this manuscript were done by Qasem Alsharari and corrected by Dr. Madhumita B. Ray and Dr. Paul Charpentier. This manuscript is under preparation for publication.

Title: Cu$_2$O /TiO$_2$ Nanowires using Supercritical CO$_2$ for Photocatalytic Hydrogen Production

Authors: Qasem Alsharari, Osariemen Ogbeide, Zhiqiang Wang, Tsun-Kong Sham, Paul A. Charpentier, Madhumita Bhowmick Ray

Synthesis and characterizations of nanowires were conducted by Qasem Alsharari, 70% of sacrificial hydrogen experiments were conducted by Qasem Alsharari, and 30 % by Osariemen Ogbeide. XANES analyses were performed at Dr. Tsun-Kong Sham’s facilities and interpretations were done by Dr. Zhiqiang Wang. Preparation of this manuscript was done by Qasem Alsharari and corrected by Dr. Madhumita B. Ray and Dr. Paul Charpentier. This manuscript is under preparation for publication.
Acknowledgments

I would like to express my appreciation to my supervisors Dr. Mita Ray and Dr. Paul Charpentier for their unconditional support by providing resources and their time to help me accomplish this work.

I extend my appreciation for all the support that I have received from Surface Science, Nanofabrication, Engineering store staff, machine shop for fabrication of supercritical reactors, and Chemistry Department of Western University. In addition, I would like to thank all my research group members for friendly work environment and exchange of knowledge and experience. Also, I would like to thank Osariemen Ogbeide and Tang Yixing for their help.

I appreciate Ministry of Higher Education, Saudi Arabia, for their scholarship support and giving me the opportunity to further my academic development at Western University. Last but not least, I would like to thank my wife for her unlimited encouragement and support even during the most difficult time while recovering from a car accident. Also, my sincere gratitude is to my kids, Ream, Savana, Dana, Sarah, and Raycan for understanding the importance of this work as they scarified so many personal events and celebrations so that I can focus on my work.

Without faith in God first, then support of you all, neighbors, friends, and specially my family this would not be possible.

Thank you all.
Table of Contents

Abstract ... ii

Co-Authorship Statement .. iv

Acknowledgments ... v

Table of Contents .. vi

List of Tables ... xi

List of Figures .. xii

List of Appendices .. xix

Appendix A: copyright releases .. xix

Chapter 1 ... 1

1 Introduction .. 1

1.1 Thesis Overview ... 1

1.2 Dye Sensitized Solar Cells Structure ... 3

1.3 Photocatalytic Hydrogen Production ... 5

1.4 References ... 8

Chapter 2 ... 10

2 Literature Review .. 10

2.1 Nanomaterials and Their Applications .. 10

2.2 Synthesis of Nanomaterials ... 13

2.2.1 Direct oxidation method ... 13

2.2.2 Chemical vapor deposition method .. 14

2.2.3 Hydrothermal methods ... 15

2.2.4 Sol-gel methods ... 16

2.3 Synthesis of Cu/TiO₂ Nanomaterials .. 18
2.4 Synthesis of Bi/TiO₂ ... 20
2.5 One-Dimensional Nanostructures ... 23
2.6 Polymeric Materials for Metal Oxide Nanowires 25
2.7 Synthesis of Nanowires using Supercritical Carbon Dioxide 27
2.8 Objectives of the Research .. 29
2.9 References ... 30

Chapter 3 .. 42
3 Cu₂O/TiO₂ Nanowires using Supercritical CO₂ for Photocatalytic Hydrogen Production .. 42
 3.1 Introduction .. 42
 3.2 Experimental Details .. 44
 3.2.1 Chemicals and Materials .. 44
 3.2.2 Synthesis of Cu (I) doped TiO₂ nanowires 44
 3.2.3 Characterization of Cu doped TiO₂ Nanowires 45
 3.2.4 Photocatalytic Hydrogen Production 45
 3.3 Results and Discussion ... 46
 3.3.1 Morphology and Compositional Characterization of Nanowires 46
 3.3.2 XANES and EXAFS ... 56
 3.3.3 Photocatalytic Hydrogen Production over Cu₂O/TiO₂ Nanowires ... 57
 3.4 Conclusions .. 65
 3.5 References .. 66

Chapter 4 .. 70
4 Synthesis and Applications of Indium doped Titanium Nanowires 70
 4.1 Introduction ... 70
 4.2 Experimental Details .. 72
 4.2.1 Chemicals and Materials .. 72
4.2.2 Synthesis of Indium Titanate Nanowires .. 72
4.2.3 Preparation of Photoanode .. 73
4.2.4 Assembling dye sensitized solar cells (DSSCs) ... 73
4.2.5 Photocatalytic Hydrogen Production .. 74
4.2.6 Characterization of Indium Titanate Nanowires ... 74

4.3 Results and Discussion .. 75
4.3.1 XANES and EXAFS .. 80
4.3.2 Photocurrent measurements .. 81
4.3.3 Electrochemical Impedance Spectroscopy Analysis 84
4.3.4 Photocatalytic Hydrogen Production ... 87

4.4 Conclusion .. 90
4.5 References ... 91

Chapter 5 .. 95

5 Photocatalytic Hydrogen Production using active Bismuth Titanate nanowires 95
5.1 Introduction ... 96
5.2 Experimental Details .. 97
5.2.1 Chemicals and Materials ... 97
5.2.2 Synthesis of Bismuth Titanate Nanowires ... 97
5.2.3 Characterization of Bismuth Titanate Nanowires .. 98
5.2.4 Photocatalytic Hydrogen Production ... 99
5.3 Results and Discussion .. 99
5.3.1 Photocatalytic Hydrogen Production ... 106

5.4 Conclusions .. 110
5.5 References .. 111

Chapter 6 .. 114

6 Bismuth Titanate Nanowires as Photoanode for Dye Sensitized Solar Cells 114
6.1 Introduction... 115
6.2 Experimental Details.. 116
 6.2.1 Chemicals and Materials... 116
 6.2.2 Synthesis of Bismuth Titanate Nanowires... 117
 6.2.3 Preparation of Photoanode... 117
 6.2.4 Assembling dye sensitized solar cells (DSSCs)... 118
 6.2.5 Characterization of Bismuth Titanate Nanowires... 118
6.3 Results and Discussion .. 119
 6.3.1 Photocurrent measurements... 124
 6.3.2 Electrochemical Impedance Spectroscopy Analysis... 128
6.4 Conclusions ... 132
6.5 References ... 133

Chapter 7 .. 136
7 Synthesis of polysulfone membrane materials for photocatalytic membrane reactor 136
 7.1 Introduction ... 136
 7.2 Experimental details... 139
 7.2.1 Chemicals and Materials... 139
 7.2.2 Characterization .. 140
 7.2.3 Results and discussions... 140
 7.2.4 Synthesis of Polysulfone using 4,4-bis(4-hydroxyphenyl) valeric acid 140
 7.2.5 Synthesis of polysulfone using 2-[Bis(4-hydroxyphenyl)methyl]benzoic acid (Phenolphthalin) ... 144
 7.2.6 Synthesis of polysulfone using mixture of 4,4’-Bis(4-hydroxyphenyl) valeric acid and 2-[Bis(4-hydroxyphenyl)methyl]benzoic acid 147
 7.2.7 Synthesis of polysulfone using Terephthaloyl Chloride , bis(4-chlorophenyl)sulfone, and 4,4’-bis(4-hydroxyphenyl) valeric acid 149
 7.2.8 Preparation of polymeric Nanotubes .. 152
7.3 Conclusions .. 155
7.4 References ... 156

Chapter 8 .. 160

8 Conclusions, and Recommendations for Future work .. 160

Curriculum Vitae .. 164

Appendices .. 165
List of Tables

Table 3-1: Comparison of various mechanisms for hydrogen production over the catalysts. 63

Table 4-1: BET results for P25 TiO$_2$, undoped TiO$_2$ nanowires, and indium titanate nanowires In1, In2, In3 and In4. .. 78

Table 4-2: Photoelectric performance parameters for P25 TiO$_2$, undoped TiO$_2$ nanowires, and indium titanate nanowires In1, In2, In3 and In4. ... 84

Table 4-3: Typical EIS parameters calculated by fitting the data to an equivalent circuit for P25 TiO$_2$, undoped TiO$_2$ nanowires, and indium titanate nanowires In1, In2, In3 and In4. 87

Table 6-1: Photoelectric performance parameters for P25 TiO$_2$, undoped TiO$_2$ nanowires, and bismuth titanate nanowires Bi1, Bi2, Bi3 and Bi4 and irradiation of 100 mW/cm2. 126

Table 6-2: Typical EIS parameters calculated by fitting the data to equivalent circuit for P25 TiO$_2$, undoped TiO$_2$ nanowires, and bismuth titanate nanowires Bi1, Bi2, Bi3 and Bi4.. 130

Table 6-3: Electron lifetime P25 TiO$_2$, undoped TiO$_2$ nanowires, and bismuth titanate nanowires Bi1, Bi2, Bi3 and Bi4. ... 131

Table 7-1: GPC Analysis Results for bis (4-chlorophenyl) sulfone polymerizing with 4,4'-bis(4-hydroxyphenyl) valeric acid. ... 143

Table 7-2: GPC Analysis Results for produced polysulfone polymer by reacting bis(4-chlorophenyl) sulfone with 2-[Bis(4-hydroxyphenyl) methyl] benzoic acid. 146

Table 7-3: GPC Analysis Results for mixed polysulfone prepared by reacting bis(4-chlorophenyl) sulfone with 2-[Bis(4-hydroxyphenyl) methyl] benzoic acid and 4,4'-Bis(4-hydroxyphenyl) valeric acid mixture. ... 149

Table 7-4: GPC Analysis Results of synthesized mixed polysulfone prepared by reacting terephthaloyl chloride, bis(4-chlorophenyl) sulfone with 4,4'-Bis(4-hydroxyphenyl) valeric acid. ... 151
List of Figures

Figure 1-1: DSSC structure and operational principles.[5] .. 4

Figure 1-2: Photosensitizer N719. ... 5

Figure 1-3: Conduction and valence band positions of TiO₂ versus theoretical water redox potentials on NHE scale. .. 6

Figure 2-1: Cell structures of four TiO₂ polymorphs. (a) Rutile, (b) Anatase, (c) Brookite, and (d) TiO₂ (B). [20] ... 11

Figure 2-2: SEM images of spherical TiO₂ colloids synthesized by the sol–gel method with the addition of salts (a), and the addition of Lutensol ON 50 (b) (Eiden-Assmann et al., 2004).[25] .. 12

Figure 2-3: SEM images of the anatase TiO₂ nanosheets synthesized with a reaction time of 11 hr (Yang et al., 2009).[25] .. 12

Figure 2-4: SEM images of two combustion-synthesized products from titanium for raw materials with different average particle sizes (a) 10 μm and (b) 25 μm. The products differed in shape. The former is irregular but the latter is spherical.[27] 13

Figure 2-5: SEM images of the thin films grown on the titanium plates in the presence of water vapor assisted with NaF at different temperatures: (S1) 500 °C; (S2) 550 °C; (S3) 600 °C; and (S4) 650 °C.[26] .. 14

Figure 2-6: CVD reactor and SEM images of synthesized samples using this reactor at different temperatures (a) 650, (b) 700, (c)750, (d) 800, (e) 850, (f) 900 °C . [28] 15

Figure 2-7: Schematic mechanisms for the hydrothermal formation of TNTs.[29] 16

Figure 2-8: Schematic of structural-phase evolution of Cu loaded on TiO₂ photocatalyst at different stages.[59] .. 20

Figure 2-9: Photocatalytic activity of the as-synthesized CuOx-TiO₂ Photocatalyst and P25 in photocatalytic water reduction to H₂ under solar light irradiation. [46] 20
Figure 2-10: TEM image of Bi–TiO$_2$ synthesized by the sol–gel hydrothermal method. [81] ... 21

Figure 2-11: Schematic showing photoanode made of nanowires and direct percolation path represented by blue arrows. ... 24

Figure 2-12: Mechanism of carboxylation of PES Membrane. [135] .. 27

Figure 3-1: High resolution TEM image of undoped TiO$_2$ nanowires (a), TEM image of single nanowire with FFT diffraction (b), inverse FFT (c), histogram of lattice in figure c (d). ... 47

Figure 3-2: FTIR spectra of produced copper doped nanowires with different precursor, copper (II) methoxide (green), copper (II) 2-ethylhexanoate (blue), copper (II) Acetylacetonate (red), reacted with TIP and acetic acid at 60 ºC, 5000 psi. 48

Figure 3-3: Copper doped TiO$_2$ nanowires: (a) diameter distribution and (b) aspect ratio distribution. .. 50

Figure 3-4: High resolution TEM images of Cu doped TiO$_2$ nanowires CuAc1 (a), high magnification of figure a (b-c), histogram of lattice (d). .. 51

Figure 3-5: TEM image of CuAc5 (5 Atomic % doped TiO$_2$ nanowires) (a) and high resolution of selected area (b). ... 51

Figure 3-6: STEM image of copper doped TiO$_2$ nanowires showing porosity of nanowire (a), and EDS mapping showing dispersion of titanium (b), oxygen (c) and copper (d) within a nanowire. The bar scale is 100 nm... 52

Figure 3-7: (a) Nitrogen isotherms of copper doped titanium nanowires. Pore volume and pore area distribution are shown in the insertion, (b) Nitrogen isotherms of indium doped titanium nanowires. Pore volume and area distribution are shown in the insertion. 53

Figure 3-8: XRD results (a) of anatase titanium dioxide, Titanium dioxide nanowires, and copper doped TiO$_2$ nanowires (b) zoom of selected range of (a). .. 54
Figure 3-9: XPS results of copper doped TiO$_2$ nanowires. (a) General scans and (b) shows Ti deconvolution.. 55

Figure 3-10: XPS results of copper doped TiO$_2$ nanowires. (a) shows copper deconvolution peak, (b) shows an increase of binding energy as copper concentration increases. 56

Figure 3-11: (a) TEY XANES spectra of Cu doped and In doped TiO$_2$ nanowires at Ti L3,2-edge. The spectra of standard TiO$_2$ of anatase and rutile phase are also shown for comparison. (b) TEY XANES spectrum of the Cu doped TiO$_2$ nanowires at Cu L$_3$-edge. ... 57

Figure 3-12: Effect of formaldehyde concentration on hydrogen production under solar light using CuAc1 as photocatalyst... 58

Figure 3-13: Four Replicated experimental results depicting (a) H$_2$ production rate µmole/min (b) H$_2$ production µmole per gram of photocatalyst. Photocatalytic study: TiO$_2$ Degussa P25, undoped TiO$_2$ nanowires (NW), Cu$_2$O/TiO$_2$ nanowires (CuAc1, CuAc2, CuAc5). [HCHO] = 0.16 M, photocatalyst concentration: 1 g/L, light intensity: 100 mW/cm2. ... 59

Figure 3-14: Cyclic photocatalytic study for hydrogen production using 1 % Cu doped TiO$_2$ nanowire (CuAc1), [HCHO] = 0.16 M, photocatalyst concentration: 1 g/L, light intensity: 100 mW/cm2. ... 61

Figure 3-15: H$_2$ production per gram of catalyst per hour for the latest published studies. ... 62

Figure 3-16: Mechanism for solar hydrogen production using Cu$_2$O-TiO$_2$ assembly......... 64

Figure 4-1: TEM images of TiO$_2$ nanowires [3.3 g TIP and 3.5 ml acetic acid](a), higher magnification of (a), and TEM images of single indium titanate nanowire [0.37g indium acetate, 3.5 ml acetic acid] (c), HAADF image showing porosity of nanowires (d). Synthesis was in scCO$_2$ at 60 ºC and 5000 psi... 76

Figure 4-2: EDS mapping of Indium doped TiO$_2$ nanowires showing the dispersion of titanium, and indium within a nanowires. Images from top to down are; high angle annular dark field STEM, Titanium (Ka1), In (La1) signals respectively... 77
Figure 4-3: XRD results of titanium dioxide nanowires, indium titanate nanowires (a) XRD overview (b, c, and d) selected ranges magnification. ... 79

Figure 4-4: XPS of indium titanate nanowires showing indium, oxygen, carbon and titanium binding energies and oxidation states. ... 80

Figure 4-5: (a) TEY XANES spectra of In doped TiO$_2$ nanowires at Ti L3,2-edge. The spectra of standard TiO$_2$ of anatase and rutile phase are also shown for comparison. (b) Linear combination fitting analysis of the In doped TiO$_2$ nanowires at Ti L3,2-edge. 81

Figure 4-6: Photocurrent density - voltage (J-V) curves for P25 TiO$_2$, undoped TiO$_2$ nanowires, and indium titanate nanowires In1, In2, In3 and In4. ... 82

Figure 4-7: Power (mW) curves for undoped TiO$_2$ nanowires, and indium titanate nanowires In1, In2, In3 and In4. .. 83

Figure 4-8: Nyquist plot (a) and the bode plots (b) measured with EIS analyzer for the DSSCs of Indium Titanate nanowires and (c) equivalent circuit. ... 86

Figure 4-9: Hydrogen production using 0.16M formaldehyde, catalyst loading of 1g/L under solar radiation of 100mW/cm2. .. 88

Figure 4-10: Total hydrogen produced by indium doped nanowires (In1, In2, In3, and In4), undoped TiO$_2$ nanowires, and undoped P25. ... 89

Figure 5-1: SEM image of bismuth titanate nanowires (a), and TEM images of single nanowire (b), Higher TEM magnification of b (c) showing grain sizes which is about 5 nm. .. 100

Figure 5-2: HRTEM images of bismuth titanate nanowire (a), High resolution TEM of selected site 1 (b), enhancement of (b) using inverse FFT (c), histogram of (c) calculating lattice distance (d), enhanced inverse FFT selected site 2 (e), enhanced inverse FFT of cross planes for lattice distance for site 3 (g). .. 101

Figure 5-3: STEM images of bismuth titanate nanowires showing porosity of nanowires as in dark field (a1, b1, c1), EDS mapping shows the dispersion of titanium in (a2, b2, c2), and
bismuth within nanowires in (a3,b3,c3) for bismuth loading of 1, 1.4 and 2.5 at % respectively. .. 102

Figure 5-4: FT-IR spectra of (a) TIP and bismuth acetate and their resulting sol-gel product at 7 mole % bismuth, (b) is comparing the resulting sol-gel of (a) at different loadings of bismuth acetate namely 1.4, 2.5, 5, and 7 mole % bismuth .. 103

Figure 5-5: XRD results of undoped TiO₂ nanowires and bismuth titanate nanowires...... 105

Figure 5-6: XPS results of bismuth titanate nanowire showing (a) titanium (b) bismuth. ... 106

Figure 5-7: Photocatalytic hydrogen production (a) rate of production (b) by bismuth titanate nanowires, P25, and undoped TiO₂ NW .. 107

Figure 5-8: Photocatalytic hydrogen production (a) rate of production (b) by bismuth titanate nanowires, P25, and undoped TiO₂ NW .. 108

Figure 5-9: Schematic energy levels and photocatalytic hydrogen production by bismuth titanate nanowires. .. 109

Figure 6-1: SEM images of TiO₂ nanowires (a), and TEM images of single nanowire (b), High resolution TEM of (c). .. 120

Figure 6-2: STEM image of bismuth titanate nanowires showing porosity of nanowire. EDS mapping shows the dispersion of titanium and bismuth within a nanowire. 121

Figure 6-3: XRD results of titanium dioxide nanowires, bismuth titanate nanowires (a) XRD overview (b, c, and d) selected ranges of magnification .. 123

Figure 6-4: XPS results of bismuth titanate nanowire high resolution scan for the following elements (a) oxygen (b) Titanium (c) carbon (d) bismuth .. 124

Figure 6-5: Photocurrent density- voltage (J-V) curves for P25 TiO₂, undoped TiO₂ nanowires, and bismuth titanate nanowires Bi1, Bi2 , Bi3 and Bi4 at irradiation of 100 mW/cm². .. 127
Figure 6-6: Power curves for undoped TiO$_2$ nanowires, and bismuth titanate nanowires Bi1, Bi2, Bi3 and Bi4 and irradiation of 100 mW/cm2. ... 127

Figure 6-7: Nyquist plot (a) and the Bode plots (b) measured with EIS analyzer for the DSSCs of bismuth titanate nanowires, and (c) equivalent circuit. ... 129

Figure 7-1: A reaction scheme of polycondensation of 4,4'-bis(4-hydroxyphenyl) valeric acid and bis(4-chlorophenyl) sulfone. ... 142

Figure 7-2: FTIR spectra of starting materials Bis(4-chlorophenyl) sulfone (blue), 4,4' Bis(4-hydroxyphenyl) valeric acid (green) and produced polymer (red). 142

Figure 7-3: FTIR spectra of produced polymer formed from Bis (4-chlorophenyl) sulfone with 4,4' Bis (4-hydroxyphenyl) valeric acid (red) and TiO$_2$ of 21nm functionalized 4,4' Bis(4-hydroxyphenyl) valeric acid (black). .. 143

Figure 7-4: A reaction scheme of polycondensation of 2-[Bis(4-hydroxyphenyl)methyl]benzoic acid and bis(4-chlorophenyl) sulfone. ... 145

Figure 7-5: FTIR spectra of starting materials Bis(4-chlorophenyl) sulfone (black), 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid (blue) and their produced polymer by condensation reaction (red). ... 145

Figure 7-6: FTIR spectra of formed from Bis(4-chlorophenyl) sulfone with 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid (red), TiO$_2$ functionalized 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid (blue) and calcined at 500 °C (purple). 146

Figure 7-7: Reaction schematic of Bis(4-chlorophenyl) sulfone, with 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid, and 4,4'-Bis (4-hydroxyphenyl) valeric acid. 148

Figure 7-8: FTIR spectra of starting materials Bis(4-chlorophenyl) sulfone (blue), 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid (pink), 4,4'-Bis(4-hydroxyphenyl) valeric acid (green) and their produced polymer (red). ... 148

Figure 7-9: Reaction schematic of polysulfone by reacting terephthaloyl chloride, 4,4'-dichlorodiphenylsulfone and 4,4'-bis(4-hydroxyphenyl) valeric acid. 150
Figure 7-10: FTIR spectra of mixed produced polysulfone (red) prepared by reacting bis(4-chlorophenyl) sulfone (green), terephthaloyl chloride (blue), with 4,4’-Bis(4-hydroxyphenyl) valeric acid (pink). ... 151

Figure 7-11: SEM image of Aluminum Oxide membrane coated with platinum nanoparticles part of imaging requirement. .. 153

Figure 7-12: Aluminum oxide membrane template approach to prepare polymeric nanotubes. ... 153

Figure 7-13: An overview of polysulfone nanotubes prepared by the template assisted method. .. 154

Figure 7-14: SEM of an individual polysulfone nanotubes showing opening of 100 nm and wall thickness of 50 nm. Scale on image is 100 nm. 154

Figure 8-1: Shows the number of folds of hydrogen produced of the three different metal doping into nanowires compared to commercial P25 and undoped TiO₂ nanowires (a) and folds of efficiency of DSSC compared to undoped TiO₂ nanowires. 163
List of Appendices

Appendix A: copyright releases
Chapter 1

1 Introduction

1.1 Thesis Overview

The world's increasing demand for energy is being driven by both an exponential increase of population and an increasing standard of living in emerging economies. The world’s demand for electricity doubled between 2000 and 2012, while is expected to further increase by 70% by 2040. [1] Yet, almost 550 million people are projected to live without electricity in 2040, requiring new easy methods for harnessing energy which are renewable. The current electricity production is primarily based on non-renewable coal, oil, natural gas and nuclear energy, while renewable sources such as wind and solar energy are rapidly growing. [2] Nuclear energy, although it is a relatively low cost source, has significant disadvantages of limited availability, high environmental impact for storing the waste materials while is also considered unsafe. In comparison, photovoltaic technology (PV) is considered an excellent sustainable energy source for our future, as solar energy is both low cost with high availability. Earth receives annually about 100,000 terawatts (TWs) of solar energy, which is more than 10,000 times our global energy demand. Theoretically, the world's energy demand can be met by capturing only about 0.1% of sunlight using PV cells with a conversion efficiency of 10%. [3]

Of the various PV technologies, dye sensitized solar cells (DSSC) are of increasing interest (see Figure 1-1). These are simple devices involving photoelectrochemical principles mimicking the photosynthetic processes in plants to generate electricity using a photosensitizer. These devices capture incident photons from sunlight through organic dye absorption, which generate electrons that are subsequently transported to a semiconductor material, usually TiO₂ nanoparticles. With the help of an electrolyte and counter electrode, the full cycle can be repeated for the duration of solar radiation. These are simple devices involving photoelectrochemical principles mimicking the photosynthetic processes in plants to generate electricity using a photosensitizer. These
devices capture incident photons from sunlight through organic dye absorption, which generate electrons that are transported to a semiconductor material, usually TiO$_2$ nanoparticles. With the help of an electrolyte and counter electrode, the full cycle can be repeated for the duration of solar radiation.

Transforming materials from bulk to the nanoscale influences materials’ chemical and physical properties due to size changes. The nano-size of materials introduces unique properties such as quantum confinement, in which electron-hole pairs are confined to distances less than the Bohr excitation radius of the material.[4] This helps to improve the materials’ surface area, optical and electrical properties for enabling either new applications or enhancing efficiencies for existing applications.

Although nanoparticles provide a high surface area for reactions to take place on, for many applications such as solar cells or photocatalytic applications, nanowires are gaining increased attention due to their 1D transport of electrons. This can provide both higher efficiencies and a better understanding of the various individual processes occurring within the DSSC. Not only are high surface areas required for dyes to adsorb, but also photogenerated electrons need to be transported to the transparent conductive oxide (TCO) layer for harvesting electrons while reducing their recombination rate. Nanowires might provide significant advantages by providing a direct electron percolation pathway, while providing a better distribution of dopant metals throughout the nanowire to reduce electron recombination, enhance light scattering, while providing a high surface area to volume ratio. However, the synthesis of nanowires with high aspect ratios, high surface areas, and easy distribution of dopant metals is challenging. Most published methods for preparing nanowires involve corrosive acids, harsh organic solvents, expensive reagents, and high or ultrahigh vacuum systems. The literature indicates an urgent need for a new scalable methodology for the synthesis of nanowires with a high degree of morphology control while utilizing environmentally friendly solvents.

In this work, a sol-gel method was examined to synthesize nanowires in supercritical CO$_2$, a green enabling solvent which helps in the synthesis procedure by stabilizing
reactant intermediates in the anisotropic growth process. This method enabled the successful synthesis of titanium dioxide nanowires with Cu, Bi, and In doping. Their performance was evaluated in both dye sensitized solar cells and sacrificial hydrogen production, which are of interest for energy production and water purification.

1.2 Dye Sensitized Solar Cells Structure

Since the first report of the dye sensitized solar cell (DSSC) in 1991 by O'Regan and Gratzel, these devices are becoming a promising third generation alternative to what are more generally known as inorganic p-n junction cells. Gratzel's group has provided a basic understanding of the processes that govern DSSC's. As shown in Figure 1-1, a typical DSSC device consists of an active nanomaterial semiconductor with wide band gap energy, which is most commonly TiO$_2$ or a similar material deposited on glass. A thin layer of transparent conductive oxide (TCO) is normally deposited on the glass, followed by sintering. A light sensitive dye is then applied to these nanomaterials on TCO by adsorption of the dye to the surface from a dilute alcohol/organic solvent dye solution. The resulting nanomaterials on the TCO and dye form the photoanode of the DSSC. The sequence of events that takes place at different components of the solar cell during operation is described briefly below. The first and most important step of the DSSC process is light absorption by the dye at the photoanode surface. Attached dye molecules on the nanocrystalline semiconductor absorb incident light, and the excited electrons from the dye molecules are injected into the conduction band of the active nano-crystalline material. These electrons help generate oxidized dye molecules where positive charge is formed at the metal center. Effective injection of these electrons into the nanomaterial layer is a critical step for efficient charge separation. Electrons are then transported to the transparent conductive electrode, then to the external circuit. Excited dye molecules are regenerated by electron donation from iodide/tri-iodide electrolyte, which provides the required electrons to diffuse to the counter electrode. The tri-iodide is regenerated by electrons flowing from the external circuit to the platinum layer on the counter electrode to complete the electrical circuit of the DSSC.

Maximum photovoltage is a critical performance indicator of a DSSC, which is determined by the potential difference between the redox potential level of electrolyte
and the conduction band edge of semiconductor nanomaterials used to form the photoanode. Under illumination, injected electrons in the conduction band will shift the Fermi level of the semiconductor to rise near the edge of the conduction band. This new Fermi level of a cell under equilibrium determines the photo-electrochemical productivity of the DSSC. Selection of a semiconductor with the right conduction band edge, Fermi level, electron mobility, and redox electrolyte to regenerate excited dye and adequate potential are critical for high performance DSSC's.

The semiconductor is the material that provides the surface area for dye adsorption, and must be capable of collecting an electron from the excited dye and transporting it to the transparent conductive oxide of the photoanode. The conduction band edge of the semiconductor material should be more negative (lower level) than the excited dye by at least 0.2-0.3 eV for efficient electron injection from the dye to the conduction band of the semiconductor. The charge generation is proportional to dye concentration, which is related to the surface area of the semiconductor material. Thus, a high surface area increases the number of sites for dye adsorption as the dye adsorbs as a monolayer on the surface of the semiconductor. Furthermore, the semiconductor should be chemically stable in the fabricated dye sensitized solar cell. Porosity of the semiconductor is a critical factor as it provides sufficient contact of the dye and enhances internal light scattering increasing light utilization within the solar cell.

![DSSC structure and operational principles](image-url)

Figure 1-1: DSSC structure and operational principles.[5]
Light harvesting is the driving force in DSSC’s as it is the source of photogenerated electrons producing photocurrent. Photoactive dyes such as N719 excite electrons excited from the highest occupied molecular orbital (HOMO) to a higher energy state the lowest unoccupied molecular orbital (LUMO), which should be more positive than nanocrystalline material conduction band edge. Dyes with maximum light absorption in the visible range of sunlight are effective photosensitizers. Organic linkers can be modified to ensure effective linkage to the surface of nanocrystalline semiconductor as monolayer to ensure injection of hot-carriers and regeneration of the excited photosensitizer. For example, N719 [cis-bis (isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium (11) bis-tetrabutylammonium] is a very efficient Ru based photosensitizers with two carboxylic groups attached to the surface of TiO₂ as shown in Figure 1-2. It absorbs in the visible range of sunlight and injects photogenerated electrons into the semiconductor through a metal to ligand transfer mechanism.

![N719](image)

Figure 1-2: Photosensitizer N719.

1.3 Photocatalytic Hydrogen Production

Hydrogen production using sunlight is a promising source of clean renewable energy by splitting water into hydrogen and oxygen. The formed energy can be used directly as a fuel or chemically transformed into different fuels. Water splitting requires a minimum energy of 1.23 eV to activate water for splitting into hydrogen and oxygen, which can be supplied by an external voltage. This can be done by a solar cell to drive the forward reaction of producing hydrogen. Light absorbing catalysts such as TiO₂ are used to
catalyze water splitting, which eliminate the externally applied potential used for electrolysis. The energy gap of TiO$_2$ is not only larger than 1.23 eV (about 3 eV) but also the conduction band edge is more negative than the water reduction potential and the valance band position is more positive than the oxidation potential of water, i.e., -0.82 V and +0.41 V vs NHE at pH7, respectively. The schematic presented below (Figure 1-3) shows these band positions for TiO$_2$ nanomaterials with the corresponding oxidation/reduction potentials for water. [6-8]

![Schematic of TiO$_2$ band positions](image)

Figure 1-3: Conduction and valence band positions of TiO$_2$ versus theoretical water redox potentials on NHE scale.

In photocatalytic water splitting, photogenerated electrons migrate to the conduction band, where they reduce H$^+$ to H$_2$, and the holes on the surface of semiconductor decompose H$_2$O to O$_2$ and H$.^+$ Oxygen needs to be eliminated via purging because it competes with H$^+$ ions for electrons [9]. However, a sacrificial reagent can be used to control this process as a hole scavenger. [10] Recent studies indicate that sacrificial reagents such as chorophenol, methanol, ethanol, lactic acid, and formaldehyde can prohibit rapid recombination of electron/hole pairs as well as recombination of hydrogen and oxygen. [11] In addition, sacrificial hydrogen production using wastewater also fulfills the dual purposes of water treatment with in-situ hydrogen production from the contaminant (s).
Due to its low splitting energy (16.1 kJ mol^{-1}), previously methanol has been investigated for sacrificial hydrogen generation. [12] However, formaldehyde with lower splitting energy of -48 kJ mol^{-1} compared to methanol is being increasingly used for sacrificial hydrogen production. Formaldehyde is present in several industrial effluents including paint, paper, chemical and petroleum industries as it is an important vital reagent for the manufacture of dyes, glass mirrors, textiles, disinfectants, and resins. [13] The presence of formaldehyde in wastewater treatment plants is detrimental to the bacterial activity, while under UV irradiation and in presence of oxygen, TiO$_2$ can effectively degrade formaldehyde to CO$_2$ and water. [14] Therefore, effective reduction of recombination of electron-hole is achieved by the dual actions of removal of electrons by a dopant on surface of TiO$_2$ and the removal of holes by a sacrificial agent.
1.4 References

Chapter 2

2 Literature Review

2.1 Nanomaterials and Their Applications

Nanostructured materials have gained significant attention, particularly in the field of photocatalytic applications such as water treatment, industrial wastewater, air purification, self-cleaning surfaces, degradation of organic pollutants, and hydrogen production. Processing traditional materials into nanodimensions increases their chemical and physical characteristics due to a higher surface area per unit volume providing more active sites for reactions.[1] Synthesis of these nanomaterials has opened a new frontier of chemical and physical properties of the materials compared to their bulk properties. As the size of the nanomaterial becomes smaller; electron mobility becomes more restricted, an effect called "quantum confinement". Quantum confinement is exploited in various nanomaterials such as quantum dots, providing new applications for traditional metals such as gold, cadmium, selenium, gallium and indium. Most of these so-called quantum dot materials are used to enhance harvesting of solar light or used as a photocatalyst.[2]

The ability to produce nanomaterials with controlled size and structure is critical in the development of effective and efficient photocatalytic and photoactive materials. One of the most widely used photocatalysts is titanium dioxide, TiO_2 or titania, due to its high chemical and thermal stability, wide band gap, low cost, abundance, and nontoxicity. The pioneering work of Fujishima and Honda (1972) for water splitting paved the way for many applications of TiO_2 as the gold standard for photocatalysts. [3]

Titanium dioxide exists in three different phases namely, anatase, rutile, brookite, and TiO_2(B) as shown in Figure 2-1. Reduction in size of these three phases affects their surface defects, refractive index and the charge transfer across their interfaces and their resulting band gap. However, these changes make anatase the most commonly form used as a photocatalyst as it is the least thermodynamically stable in the bulk phase but most stable material with grain size below 13-16 nm and a surface energy of 1.32 Jm^{-2}. [4-6]
The most researched application of titanium dioxide is for the degradation of organic molecules by hydroxyl radicals produced by UVA irradiation. Hydroxyl radical is the second most oxidizing agent, and the amount of hydroxyl radical production is a measure of the photocatalyst efficiency. Upon irradiation with UVA radiation, excited electrons from the valence band of TiO\textsubscript{2} migrate to the conduction band, creating electron-holes on the surface of the photocatalyst, where water reacts to generate hydroxyl radical that degrades organic molecules indiscriminately.[7, 8] The superior photocatalytic properties of nanosize TiO\textsubscript{2} make it a promising and competitive photocatalyst for environmental applications, photo-electrochemical applications, e.g. solar cells and water splitting for hydrogen generation and gas sensors. [9-13]

Although it has many benefits, TiO\textsubscript{2} absorbs only about 5\% of available sunlight, i.e. the ultraviolet light that matches its band gap to generate electrons and hole pairs. Furthermore, the high rate of recombination of photo-generated electron/hole pairs is limiting its future development and efficiency.[14, 15] [16] Many investigations have been conducted to overcome charge recombination and the low efficiency of utilizing solar light. Doping TiO\textsubscript{2} using various noble and transition metals such as Pt, Au, Pd, Rh, Ni, Cu, Ag, etc. greatly reduces the possibility of electron-hole recombination, resulting in efficient separation and stronger photocatalytic activity of TiO\textsubscript{2}.[17] [18] Doping TiO\textsubscript{2} also induces a red shift in the absorption spectrum, making it possible for visible light activation, enhancing the energy harvesting efficiency of this semiconductor.[19]

\textbf{Figure 2-1}: Cell structures of four TiO\textsubscript{2} polymorphs. (a) Rutile, (b) Anatase, (c) Brookite, and (d) TiO\textsubscript{2} (B). [20]
Synthesis of nanoparticles (NPs) has received great attention due to the advantage of higher surface area and consequently higher reaction sites for these materials. Many methods are used to prepare nanosize TiO$_2$ and doped TiO$_2$ including chemical, physical, solvo-thermal and hydro-thermal, and electrochemical processes, [21] which are reviewed in more detail below. Various morphologies have been prepared as shown in Figure 2-2, although nanoparticles are the most widely reported morphology. NPs provide high surface areas which give more reactive sites while reducing diffusion limitations. Recently one dimension (1D) forms such as nanowires are gaining special attention in many applications especially photovoltaic applications.[22-24]

![Figure 2-2: SEM images of spherical TiO$_2$ colloids synthesized by the sol–gel method with the addition of salts (a), and the addition of Lutensol ON 50 (b) (Eiden-Assmann et al., 2004).[25]](image)

![Figure 2-3: SEM images of the anatase TiO$_2$ nanosheets synthesized with a reaction time of 11 hr (Yang et al., 2009).[25]](image)
2.2 Synthesis of Nanomaterials

This literature review will focus on a few selected methods based on their wide use and ease of application for the synthesis of doped titanium dioxide with a special focus on copper, bismuth and indium dopants, as examined in this thesis.

2.2.1 Direct oxidation method

This method is based on the combustion of titanium metal or nanoparticles. Kitamura et al. (2007) prepared titanium dioxide by flame treatment at temperatures exceeding the titanium boiling point in the presence of sodium perchlorate using a graphite crucible reactor under argon gas. They found that the size of nanomaterials depends on the starting materials’ size as shown in Figure 2-4. Wu and Chen et al. (2014) used titanium plate to prepare fluorine doped titanium dioxide under oxidizing vapors of hydrogen peroxide and sodium fluoride and tested the synthesized materials for photodegradation of 4-nitrophenol under both UV and visible light (Figure 2-5). However, this method is not widely used due to the required high energy and low conversions. [26, 27]

![Figure 2-4: SEM images of two combustion-synthesized products from titanium for raw materials with different average particle sizes (a) 10 μm and (b) 25 μm. The products differed in shape. The former is irregular but the latter is spherical.[27]](image-url)
Figure 2-5: SEM images of the thin films grown on the titanium plates in the presence of water vapor assisted with NaF at different temperatures: (S1) 500 °C; (S2) 550 °C; (S3) 600 °C; and (S4) 650 °C.[26]

2.2.2 Chemical vapor deposition method

Chemical vapor deposition is generally used to prepare thin films of titanium dioxide on a substrate material by means of chemical reaction of gaseous species. This process uses thermally initiated reactions of a metal precursor on a heated surface. A volatile metal containing the precursor is thermally heated in a reactor with an inert gas flow where the metal vapor reaches the substrate, adsorbs to the substrate, then reacts creating seeds for more metal or metal oxide atoms to attach to the surface. Organometallic precursors such as tetraisopropoxide (TIP) are used in a cylindrical furnace to produce TiO$_2$ NPs with a size range from 10-60 nm. Metal salts such as TiCl$_4$ were used to react with water vapors. Size control in CVD methods can be achieved by the control of the precursor's concentration, gas flow rate, temperature, and vacuum level. Figure 2-6 shows both a typical CVD reactor and SEM figures of titania samples prepared at various temperatures.[28] This method produces highly uniform films with reproducible morphologies, however, production is limited by the size of reactor while expensive volatile precursors are required.
Figure 2-6: CVD reactor and SEM images of synthesized samples using this reactor at different temperatures (a) 650, (b) 700, (c) 750, (d) 800, (e) 850, (f) 900 ºC. [28]

2.2.3 Hydrothermal methods

The hydrothermal method is widely used to prepare nanostructured materials, specially 1D material such as nanotubes with wide pore and uniform tubular structures and single crystal titanium nanomaterials. For synthesis using this method, the metal precursor and alkali solution in water are heated in an autoclave reactor to initiate crystal growth. The resulting material is then calcined to transform the product from amorphous to crystalline phase. Temperature, pressure, and concentration are used as control parameters, affecting the final morphology of the material produced. [21] The growth mechanism is illustrated in Figure 2-7 below.
Industrial production of NPs often uses the hydrothermal method due to its simplicity to obtain nanotubes, however, long reaction time to grow desired materials, use of harsh solvents and alkali such as NaOH, requirement for neutralization and waste treatment are some of the disadvantages of this method. Wang et al. (2014) published a review article covering most of the currently used methods to prepare nano sized titanium dioxide materials for environmental applications, expanding the understanding of hydrothermal and solvothermal synthesis. However, new approaches such as electrospinning, solution based routes and sol-gel chemistry seem to be gaining more interest due to their simplicity and less aggressive reaction conditions compared to hydrothermal or solvothermal methods.[30-34]

2.2.4 Sol-gel methods

Sol-gel chemistry is considered to be inexpensive, direct and relatively simple to prepare nanomaterials from precursors. This method is used to prepare a wide range of metal oxide nanomaterials. It involves the hydrolysis and condensation of metal precursors in a solvent (often alcohol) and the formation of a network of connected nanomaterials aged to form a gel. The solvent can be aqueous in which oxygen for the formation of oxide is provided by water molecules. The aqueous sol-gel method can be described by the following reaction:

\[M(OR)x + mH_2O \rightarrow M(OR)x-m(HO)m + mROH \]
Total hydrolysis of the precursor can be achieved if \(x=m \), and usually happens in two steps, either by water or alcohol condensation.[35-37]

\[
2 \text{M(OR)}_x - m\text{(HO)}_m \rightarrow (\text{OH})_{m-1}\text{(OR)}_x - m\text{-M-O-M(OR)}_x - m\text{(OH)}_m - 1 + \text{H}_2\text{O}
\]

\[
2 \text{M(OR)}_x - m\text{(HO)}_m \rightarrow (\text{OH})_{m-1}\text{(OR)}_x - m\text{-M-O-M(OR)}_x - m\text{-1} + \text{ROH}
\]

The overall reaction can be expressed as:

\[
\text{M(OR)}_x + \frac{X}{2} \text{H}_2\text{O} \rightarrow \text{MOx/2 + X R-OH}
\]

In non-aqueous systems, oxygen is supplied by oxygenated solvents such as alcohol, ethers, ketones or by precursors such as alkoxide and acetylacetonate and will result in metal-oxygen-metal bonds by aldol-like condensation or by ether elimination.[38]

Complete polymerization and solvent loss leads to the liquid "sol" transforming into a solid "gel" phase. This method involves hydrolysis of the metal alkoxide with water and a catalyst, i.e. an acid or a base, condensation into macromolecules, forming a colloidal sol and subsequently three-dimensional network, solvent exchange to remove water by alcohol, and then drying the wet gel using a supercritical fluid to produce the aerogel.

The properties of the sol-gel products depend on the precursors, processing temperature, catalyst, solvents, and solvent removal process [39]. This method also has several advantages over other methods, such as allowing impregnation or co-precipitation, which can be used to introduce dopants. The major advantages of the sol-gel technique include molecular scale mixing, high purity of the precursors, and homogeneity of the sol-gel products, with a high purity of physical, morphological, and chemical properties [40].

Sol-gel method is a promising solution based method to grow nanostructure materials in a reproducible way with relatively good control and a wide selection of precursors. Sol-gel can also be carried out in variety of solvents such as aqueous, organic or supercritical fluids. Supercritical carbon dioxide has been investigated in detail by the Charpentier group as a solvent for preparation of various nanostructures [25, 41, 42] which this thesis examines for the synthesis of nanowires.
2.3 Synthesis of Cu/TiO\textsubscript{2} Nanomaterials

Recently, copper doped titania has gained interest for sacrificial hydrogen production compared to rare and expensive noble metals due to its band gap edge position, cost effectiveness and abundance.[43] Research by Hara et al. (1998) highlighted the potential of Cu\textsubscript{2}O under visible light to produce hydrogen. [44] Banadra et al. (2005) attributed the sacrificial hydrogen production to CuO, which effectively transferred photogenerated electrons to the copper (II) oxide surface, where water reduction took place.[45] Wu et al. prepared copper doped TiO\textsubscript{2} nanoparticles of mixed copper oxides by a wet impregnation method and tested for hydrogen production using a methanol-water mixture. Wang et al. prepared mixed copper oxides of CuO/TiO\textsubscript{2} and mentioned that CuO was not active to produce hydrogen. In their study a lag time of about 5 hours for hydrogen production (time to reduce CuO to Cu\textsubscript{2}O) was clearly shown in Figure 2-9.[46]

The oxidation state of copper in Cu/TiO\textsubscript{2} is a critical factor in the hydrogen evolution reaction as it relates to both the chemical potential and electron-hole separation process. It was found that Cu\textsubscript{2}O doped titania is the most active oxide for photocatalytic hydrogen production and Cu (II) is photocatalytically inactive. [47] Copper doped titanium dioxide catalyst was used in CO\textsubscript{2} conversion to produce fuels such as methanol as a green method to reduce the amount of global warming gas while producing energy at the same time.[48-54]

Several methods were explored to prepare copper doped titanium oxide resulting in mixed oxides or metallic copper with its oxides on the surface of titanium dioxide, as described below. In addition, these methods also produced different morphologies of copper doped titanium dioxide with varying photocatalytic activities.

Teseng et al (2004) used a sol-gel process to prepare mixed oxides of Cu/TiO\textsubscript{2} using copper chloride and copper acetate as the source of copper. Copper chloride precursor showed higher activities compared to copper acetate samples and Cu (I) is the primary active site for photoreduction of CO\textsubscript{2} to methanol. However, this study did not provide any details on catalyst morphology.[55] Parket al. (2015) investigated copper- titanium dioxide double layer film and copper loading for the reduction of CO\textsubscript{2}, with Cu-TiO\textsubscript{2}
being prepared by a solvothermal process. They observed that a double layer configuration was formed (TiO$_2$ at the bottom and Cu-TiO$_2$ as the top layer) at TiO$_2$/5.0 mol% Cu–TiO$_2$. This double layer effectively reduced charge recombination by enhancing surface charge transfer at TiO$_2$ and Cu–TiO$_2$ interface.[56]

Wu et al. (2004) prepared copper doped titania by an impregnation method where a titanium sulfate and copper nitrate mixture were reacted followed by calcination at 400 ºC. Highest amount of photocatalytic hydrogen was produced using 1.2 % wt Cu on titanium nanoparticles. [57] Yu et al. (2010) prepared nanorods of Cu-doped TiO$_2$ by injecting TTIP solution into heated copper (II) acetate in oleic acid. Temperature and reaction time were used to tune the synthesis process for the desired nanorods morphology. This approach produced copper (II) oxide nanorods of 2-5 nm diameter and 2-30 nm length.[58]

Foo et al. (2013) used a wet impregnation method to prepare CuO on the surface of TiO$_2$ which was then reduced under hydrogen stream to form a thin layer of Cu$_2$O on the surface of CuO that was transformed to metallic Cu. In the second step, the thick Cu$_2$O layer was produced by a short oxidation process, and in the final step, prolonged oxidation was used to produce Cu$_2$O on the surface of TiO$_2$ particles (Figure 2-8). Hydrogen production by the photocatalyst at different stages was tested using 40 ml of 10 vol % methanol and 0.04 g catalyst using a 300 watt Xe lamp. It was concluded that Cu-Cu$_2$O thin film was the most active photocatalyst, suggesting that was easy to be reduced to metallic Cu.[59]

In addition to the oxidation state, the shape of nanomaterial, dispersion of dopant also has a strong effect on Cu/TiO$_2$ for hydrogen production. [60] Most currently prepared Cu doped TiO$_2$ morphologies are nanoparticles (NPs) [61], nanofilms [62], hollow spheres [63], nanosheets [64], and nanorods [65]. NPs are primarily used due to their relatively high surface areas to facilitate the required reactions. Nanowires provide a direct path for electron transport compared to the random tortuous path in NPs,[66] and are of great interest for photocatalytic applications. [67] However, to the best of our knowledge, the ability to produce pure Cu (I) doped titania is not reported in the literature.
Figure 2-8: Schematic of structural-phase evolution of Cu loaded on TiO$_2$ photocatalyst at different stages. [59]

Figure 2-9: Photocatalytic activity of the as-synthesized CuOx-TiO$_2$ Photocatalyst and P25 in photocatalytic water reduction to H$_2$ under solar light irradiation. [46]

2.4 Synthesis of Bi/TiO$_2$

Bismuth is one of the most widely examined metals to dope titanium dioxide as it promotes visible light absorption and enhances photocatalytic activities. Enhanced visible light absorption is a result of hybridization of Bi (6p), Bi (6s) with Ti (3d), O (2p)
orbitals, respectively to provide the visible shift. It was found that bismuth titanate exhibits excellent photocatalytic performance for the degradation of methyl orange, Rhodamine B, and self cleaning under visible light conditions compared to undoped TiO$_2$. [68-70] In addition, bismuth titanate showed improved electrical conductivity and is used in piezoelectric devices and memory materials. [71, 72] Hydrothermal methods are commonly used to prepare different morphologies of bismuth titanate such as NPs, microspheres, nanowires, microflowers, nanosheets, nanofibers, nanocubes, nanobelts and nanorods. [73-75] The resulting morphology is governed by operating parameters such as the reaction temperature, pressure, time and the type of starting materials, concentration of reactants, pH, use of surfactant or additives. Hou et al. (2013) prepared different morphologies of Bi$_{12}$TiO$_{20}$ using bismuth nitrate and titanium tetra-isopropoxide as starting materials in a hydrothermal reactor.[75-84]

Bismuth titanate nanocubes were synthesized by a sol-gel hydrothermal method by An'amt et al (2010) where titanium tetra-isopropoxide and bismuth nitrate were used as precursors for titanium and bismuth, respectively.[85] In a typical experiment, the precursors were dissolved in tri-ethanolamine/water mixture then added into an autoclave and baked at 100 ºC to produce nanocubes about 100 nm in size as shown in Figure 2-10.[81] Microspheres of Bi$_4$Ti$_3$O$_{12}$ were prepared using the hydrothermal method by Lin et al. (2012) which showed excellent photocatalytic activities under visible light.[86]

![Figure 2-10: TEM image of Bi–TiO$_2$ synthesized by the sol–gel hydrothermal method.](image)

Nanosize bismuth titanate was prepared with varying shapes and sizes by Pei et al. (2014). They also synthesized bismuth titanate nanorods of 50-200 nm and a band gap of 2.58 eV using the hydrothermal method without any additives. They investigated the
growth mechanism by sampling the reactor at different time intervals during the synthesis process and analyzing them thoroughly. At low temperatures of 80 ºC and even at long reaction times of 24 hours, only nanoparticles were observed. However, at increased temperatures of about 180 ºC, the results differed with time. At short reaction times, NPs were abundant with only a few short and thin nanorods (50 nm). However, as the reaction progressed with time, the diameter and length of these bismuth titanate nanorods increased significantly to reach 50-100 nm and 1 µm, respectively. It was concluded that NPs formed at the beginning of the hydrothermal process to create nucleation seeds, which then grew to nanorods with increased time, emphasizing the critical role of optimum temperature and reaction time as control parameters. These nanorods were tested for degradation of methylene blue dye and Rhodamine B with good photocatalytic performance.

Electrospinning methods also have been used to prepare bismuth titanate nanorods, for example, Chen et al (2014) prepared titanium nanorods using electrospinning methods and combined it with the hydrothermal method to introduce bismuth into TiO₂ nanorods. These nanorods gave a higher photocatalytic activity to degrade methyl orange under visible light compared to electrospinned nanorods. The resulting assembly was found to be Bi₄Ti₃O₁₂ decorating the nanorods of TiO₂.[87] Wet chemical methods were also explored to prepare bismuth titanate pyrochlore nanorods. Oil-in water micro-emulsions were used by Murugesan et al. (2009) to prepare nanorods of 40-50 nm in diameter and about 500 nm in length. The reverse micelle approach was adopted to prepare 20 nm nanoparticles in oil bath at 350 ºC, which was rearranged to form nanorods during calcination at 500 ºC. [88]

The sol-gel method was utilized to prepare bismuth doped TiO₂ nanoparticles using titanium tetra-isopropoxide and bismuth nitrate as precursors in two steps by Sood et al.[89] First, titanium nanoparticles were prepared by mixing dissolved TTIP in ethanol and hydrolyzed in ethanol solution to form a gel. TiO₂ nanoparticles were then collected after the gel was aged for a day, and then were calcined at 450 ºC. Different amounts of bismuth nitrates were dissolved in ethanol-water mixtures, then catalyzed by nitric acid, and added to the prepared titanium sol and homogenized by ultrasonic probe and aged for
10 hours before drying and calcination. The resulting bismuth titanate nanoparticles were evaluated for Alizarin red S degradation with 1% Bi having the highest photocatalytic activity.

2.5 One-Dimensional Nanostructures

One-dimensional (1D) nanostructures (nanowires, nanotubes, nanobelts and nanoribbons) are of interest due to their fascinating physical properties and potential technological applications. [90-92] Recently elongated nanomaterials such as nanorods and nanowires have gained significant attention compared to nanoparticles and nanosheets, which are classified as zero and two dimensions, respectively. One dimension (1D) nanostructured materials are researched in many fields of application such as the photocatalytic degradation of organic pollutants, hydrogen generation, battery applications, chemical sensors, and photovoltaic applications. Their chemical and physical structures provide advantages over other structures such as a greater light to energy conversion, a reduction of electron and hole recombination, providing direct percolation pathways for electron transport (Figure 2-11), and light scattering to enhance photocatalytic performance, while improving the structure of the nanocomposite.[93-107] These materials come with special challenges of controlling growth in a specific direction for preparing desired structure. Although many synthesis methods have been reported in the literature, hydrothermal and solvo-thermal processes are mostly used for the preparation of 1D structure.
Supercritical fluids to prepare nanomaterials are attracting the attention of many research groups as a non-toxic, green, and inexpensive solvent. They work in a less aggressive environment compared to hydrothermal and solvothermal methods that use base/acid or flammable organic solvents. Supercritical solvents such as CO$_2$ can produce highly uniform and complex morphology nanomaterials, especially those with pores. This is due to the excellent diffusion properties, zero surface tension and low viscosity of the supercritical fluids. CO$_2$ at a temperature and pressure about its critical point (31 °C and 7.4 MPa), is transformed to its supercritical state providing liquid-like solvent properties and gas like transport properties helping to maintain the structure and pores of synthesized nanomaterial from collapse. Wakayama et al. (2006) developed a novel template termed nanoscale casting with the help of supercritical CO$_2$ followed by burning the template at 600 °C. Using CO$_2$ as the reaction solvent, they prepared alumina, platinum, platinum-ruthenium in acetone and titanium and calcium carbonate in 2-propanol and methanol, respectively.[108] A similar approach was recently used to deposit Pd on high surface area carbon for hydrogen storage applications using supercritical CO$_2$, which provided better dispersion of 2-5 nm Pd particles and increased hydrogen uptake [109] Also, supercritical CO$_2$ was used as an antisolvent to prepare different nanomaterials. [110, 111] For example, AuPd/TiO$_2$ was also prepared by using supercritical CO$_2$ as an antisolvent during precipitation of mixed precursors of gold,
palladium and titanium for hydrogen generation application. The resulting catalyst consisted of nanoparticles with bimodal distribution of 1-8 nm and 40-70 nm with the dopant forming sites mostly in the size of 0.5-1 nm.[112] In general, supercritical fluids are gaining more attention for preparation of nanomaterials with controlled morphologies as summarized in a recent review article by our research group.[113]

However, to the best of our knowledge, the synthesis of copper doped TiO\textsubscript{2} nanowires, bismuth titanate nanowires, and indium doped titanium nanowires prepared by sol-gel methods in supercritical CO\textsubscript{2} have not been reported in the literature. Of additional interest, it has been reported that indium doping has enhanced the performance of titania in UV and water splitting[114] [115] although In-TiO\textsubscript{2} nanowires have not been reported.

2.6 Polymeric Materials for Metal Oxide Nanowires

Organic polymers are of interest due their advantages of good flexibility, toughness, and separation properties. However, their poor resistance to fouling and high temperatures restricts their application in industrial processes such as membranes used for water purification. On the other hand, inorganic membranes such as ceramic membranes have higher thermal and chemical resistance and subsequently longer lifetimes, although they suffer from poor flexibility, low separation performance, and higher cost. [116-118]

There are many types of polymers to synthesize membranes with variable chemical and physical properties driven by the target application. Particularly, polymers for membranes have been examined which are non-fouling[119-125] Fouling causes deterioration of the membrane performance characterized by declining flux and water permeability by reversible or irreversible blockage of membrane pores from the fouling materials such as natural organic matter, extra cellular polymeric substances and microbial cells. In order to overcome membrane fouling, various approaches have been taken including developing new membrane materials or membrane cleaning processes using mechanical means such as the application of shear.
Polyethersulfone (PES) is widely used as an organic membrane due to its advantages such as high thermal stability and mechanical strength over other types of polymers. However, it suffers high fouling rates and low permeability due to its low hydrophilicity. Lee et al. (2007) conducted a series of experiments to study the relationship between hydrophobicity and fouling by natural organic matter. [117] Fouling by organic matter is strongly observed with hydrophobic membranes compared to hydrophilic ones. It is widely accepted that improving hydrophilicity will reflect positively on membrane flux and reduce adsorption of fouling materials to the membrane surface.[126] By copolymerization with hydrophilic compounds, improvements were made to enhance membrane resistance to fouling through improving hydrophilicity. [118, 127, 128]

Membrane modification is also used to enhance selectivity, reduce fouling, and improve flux by having a more hydrophilic membrane. Membranes can be modified by bulk modifications such as sulfonation, phosphonation, and carboxylation where corresponding functional groups are added to the polymer. [129-132] However, surface modifications are widely used for advantages by maintaining the original characteristics of bulk membrane and flexibility of modified surface of commercially available membranes.[133]

Introduction of carboxylic groups to the polymer backbone is an added advantage in terms of enhancing hydrophilicity; which can also be utilized for coordination of metal oxides and enhancing the thermal stability of the polysulfone polymer. [121] Typical reaction involves two steps to add a - COOH group to main polysulfone chain where polymer solution of polysulfone was activated with n-butyllithium and carboxylic group was introduced by the addition of carbon dioxide (CO$_2$). [134] Figure 2-12 shows a typical reaction of carboxylation of PES polymer. In this thesis, polysulfone polymers were prepared to be modified into nanotubes, functionalize with photocatalyst using available carboxylic and hydroxlyic groups on the polymer backbone. These polymers were selected based on available functional groups and with rigid backbone provided by aromatic rings compared to traditional membrane such as polyether sulfone.
2.7 Synthesis of Nanowires using Supercritical Carbon Dioxide

Supercritical fluids to prepare nanomaterials are attracting the attention of many research groups as a non-toxic, green, and inexpensive solvent. They work in a less aggressive environment compared to hydrothermal and solvothermal methods that use base/acid or flammable organic solvents. Supercritical solvents such as CO$_2$ can produce highly uniform and complex morphology nanomaterials, especially those with pores. This is due to the excellent diffusion properties, zero surface tension and low viscosity of the supercritical fluids. CO$_2$ at a temperature and pressure about its critical point (31 °C and 7.4 MPa), is transformed to its supercritical state providing liquid-like solvent properties and gas like transport properties helping to maintain the structure and pores of synthesized nanomaterial from collapse. Wakayama et al. (2006) developed a novel nanoscale casting template with the help of supercritical CO$_2$ followed by burning the template at 600 °C. Using CO$_2$ as the reaction solvent, they prepared alumina, platinum, platinum-ruthenium in acetone and titanium and calcium carbonate in 2-propanol and methanol, respectively.[108] A similar approach was recently used to deposit Pd on high surface area carbon for hydrogen storage applications using supercritical CO$_2$, which
provided better dispersion of 2-5 nm Pd particles. These increased hydrogen uptake from 12 to a maximum of 18.3 µmol/m² at an optimum loading of 0.4 wt % Pd. [109] Also, supercritical CO₂ was used as an antisolvent to prepare different nanomaterials. [110, 111] For example, AuPd/TiO₂ was also prepared by using supercritical CO₂ as an antisolvent during precipitation of mixed precursors of gold, palladium and titanium for hydrogen generation application. The resulting catalyst consisted of nanoparticles with bimodal distribution of 1-8 nm and 40-70 nm with the dopant forming sites mostly in the size of 0.5-1 nm.[112] In general, supercritical fluids are gaining more attention for preparation of nanomaterials with controlled morphologies as summarized in a recent review article by our research group.[113]

However, to the best of our knowledge, the synthesis of copper doped TiO₂ nanowires, bismuth titanate nanowires, and indium doped titanium nanowires prepared by sol-gel methods in supercritical CO₂ have not been reported in the literature. Of additional interest, it has been reported that indium doping has enhanced the performance of titania in UV and water splitting[114] [115] although In-TiO₂ nanowires have not been reported.
2.8 Objectives of the Research

The overall objective of this research is to investigate supercritical carbon dioxide (scCO₂) as a green solvent for the sol-gel synthesis of doped titanium nanowires using copper, bismuth and indium; while characterizing their photocatalytic and solar cell performance.

The following are the specific objectives of this research which are described in the following Chapters:

- Synthesis and application of bismuth titanate nanowires as photoanodes for dye sensitized solar cells (Chapter 6)
- Photocatalytic hydrogen production using bismuth titanate (Chapter 5)
- Synthesis of copper (I) doped TiO₂ nanowires using a sol-gel method in scCO₂ and its performance for sacrificial hydrogen production (Chapter 3)
- Synthesis of indium doped nanowires and their characterization for sacrificial hydrogen production and activity as photoanode in dye sensitized solar cells (Chapter 4)
- Synthesis of polysulfone membrane material for photocatalytic membrane applications (Chapter 7)
2.9 References

Chapter 3

3 Cu₂O /TiO₂ Nanowires using Supercritical CO₂ for Photocatalytic Hydrogen Production

This work reports a novel method using supercritical CO₂ (ScCO₂) to synthesize copper (I)-titania nanowires for sacrificial hydrogen production. The doped titania nanowires were prepared using a unique sol-gel methodology in ScCO₂ using titanium alkoxide, metal dopant, and acetic acid as the polycondensation agent. This methodology produced uniformly dispersed dopants integrated into nanowires with diameters of 80-100 nm and aspect ratios of 15-25 as observed by SEM. XPS and XANES results confirmed the presence of a single oxidation state of Cu (I). The photocatalytic activity of the prepared nanowires was tested using formaldehyde as a sacrificial agent for hydrogen production in water with solar light irradiation at 100 mW/cm². The copper doped titania showed superior performance compared to other catalysts with 13 times the hydrogen production compared to Degussa P25 and 47 times more than from un-doped titanium dioxide nanowires. The results are attributed to the Cu (I) oxidation state, high aspect ratio nanowires providing access to active sites, and higher dopant dispersion.

3.1 Introduction

In recent years, solar photocatalytic processes are gaining attention for their potential in hydrogen production using water splitting and sacrificial agents.[1] Nano-sized TiO₂ is widely examined for water and wastewater photocatalytic treatment and water splitting for hydrogen production, due to its numerous beneficial aspects including high chemical and thermal stability, non-corrosivity, abundance, and cost effectiveness.[2-4] However, the main barriers of implementing TiO₂ at large scale are the rapid recombination of photo-generated electron/hole pairs and the poor activation of TiO₂ by visible light.[5, 6] Prior investigations showed that doping TiO₂ using various noble and transition metals such as Pt, Au, Pd, Rh, Ni, Cu, Ag, etc. greatly reduces the possibility of electron-hole recombination, resulting in efficient electron-hole separation and stronger photocatalytic
activity of TiO$_2$.[7] [8] Recent studies have shown that sacrificial reagents such as methanol or formaldehyde can inhibit rapid recombination of electron/hole pairs by utilizing the electrons for oxidation.[9] Doping TiO$_2$ also induces a red shift in the absorption spectrum, making it possible for visible light activation to enhance the energy harvesting efficiency of TiO$_2$.[10]

In particular, copper doped titania has gained significant interest for sacrificial hydrogen production compared to rare and expensive noble metals due to its adequate band gap and band edge position in addition to its cost effectiveness and abundance.[11] Work in 1998 by Hara et al. highlighted the potential of using Cu$_2$O under visible light to produce hydrogen. [12] Banadra et al. (2005) attributed the sacrificial hydrogen production to CuO, which effectively transferred photogenerated electrons to the copper (II) oxide surface, where water reduction took place.[13] Wu et al. (2009) prepared copper doped TiO$_2$ nanoparticles of mixed copper oxides by a wet impregnation method and tested for hydrogen production using a methanol-water mixture. Although mixed copper oxide doped TiO$_2$ were photocatalytically active, it was later found that Cu$_2$O doped titania is the most active oxide for photocatalytic hydrogen production.[14] Recently, a more detailed study of Cu$_2$O doped TiO$_2$ produced by hydrogen reduction of a Cu-Cu$_2$O core-shell structure showed that Cu (I) exhibited higher photocatalytic activities compared to Cu (II).[15] In addition to core-shell nanostructures, most currently prepared Cu doped TiO$_2$ morphologies are nanoparticles,[16] nanofilms,[17] hollow spheres,[18] and nanorods.[19] Nanoparticles are primarily used due to their relatively high surface areas to facilitate reactions. Conversely, nanowires provide direct paths for electron transport compared to the random tortuous paths in nanoparticles,[20] and are of great interest to examine sacrificial hydrogen production to probe the catalytic mechanism.

Current techniques to make nanowires include the supercritical fluid liquid-solid mechanism SF-S-L used by the Korgel research group, [21] and vapor-liquid-solid method (V-L-S) by Lieber's research group. [22] However, challenges of these techniques are in making porous materials with high surface area with various metal oxides, such as titania, which would be suitable as catalysts for hydrogen production. Recently, supercritical carbon dioxide (ScCO$_2$) has been shown to provide high aspect
ratio nanofibers/wires of titania with high surface area and porosity.[23] ScCO$_2$ is an inexpensive and green alternative to conventional organic solvents; it is environmentally benign and non-flammable with low viscosity, zero surface tension and high diffusivity, which are favorable for synthesizing fine and uniform nanomaterials with porous nanostructure.[24]

In light of the above discussion, the objective of this work was to synthesize Cu doped TiO$_2$ nanowires using a ScCO$_2$ sol-gel process for sacrificial hydrogen production. To the best of our knowledge, the ability to produce pure Cu (I) doped titania has not been reported in the literature. The performances of produced catalysts were compared with commercial nanoTiO$_2$ particles (P25) and undoped TiO$_2$ nanowires.

3.2 Experimental Details

3.2.1 Chemicals and Materials

Titanium (IV) isopropoxide (TIP) (97%), acetic acid (99.7%), copper (II) acetylacetonate (acac) (99.99%), copper (II) 2-ethylhexanoate (97%), copper (II) methoxide (97%), and formaldehyde solution (36.5%) were purchased from the Aldrich Chemical Company (Oakville, ON, Canada and used without further purification). Instrument grade liquid carbon dioxide (99.99%) from Air Liquide Canada was delivered by a syringe pump (Isco 260D) into a 10 mL view cell reactor equipped with a pressure transducer, heating tape and thermocouple for temperature control. The details of the reactor are provided in Lucky et al.[25]

3.2.2 Synthesis of Cu (I) doped TiO$_2$ nanowires

In a typical experiment, predetermined amounts of titanium isopropoxide (TIP) and desired copper precursor were quickly placed in a 10 mL view cell, followed by addition of acetic acid and CO$_2$, except for undoped TiO$_2$ nanowires in which no copper precursor was added. The view cell was heated to 60 ºC and subsequently pressurized to 5000 psig. A magnetic stirrer was used to ensure uniform mixing of the reactants. The hydrolysis rate was controlled by adjusting metal precursors to acetic acid molar ratios in the range of 1:5-6. During the gelation stage, a dark blue color was observed in about 30 and 40
minutes, which gradually became lighter with time during aging. After five days of aging, the samples were washed with 100 mL of ScCO₂ at a rate of 0.3 mL/min to remove unreacted materials and by-products, and to prevent collapse of the gel network. The prepared copper-doped TiO₂ sol-gel was then calcined in air at 500 °C for 2 hours. The calcination temperature was selected based on the thermal gravimetric analysis (TGA) (results not shown) where removal of organic components occurred at 317 °C.

3.2.3 Characterization of Cu doped TiO₂ Nanowires

The synthesized nanowires’ morphology was characterized by Scanning Electron Microscopy (SEM) (Model LEO 1530) and Transmission Electron Microscopy (TEM) (Model JEOL 2010F) capable of dark field scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy. Samples for SEM imaging were prepared by applying the powder directly to a carbon adhesive tape. For TEM analysis, the powdered samples were dispersed in ethanol by sonication for 15 min and then cast on a copper grid covered with holey carbon film. The BET (Brunauer-Emmett-Teller) surface area and BJH (Barrett-Joyner-Halenda) pore size and volume analysis were determined from nitrogen adsorption and desorption isotherm data obtained at 77 K with a constant-volume adsorption apparatus (Micromeritic Tristar II) using N₂ gas (99.995% pure obtained from Praxair, Canada). The prepared samples were degassed at 150°C overnight before measurements. Structural analysis of the samples was performed using an X-ray powder diffractometer (Rigaku Miniflex XRD, Texas, U.S.A.), fitted with a rotating sample holder, a scintillation counter detector and a divergent beam utilizing a Cu Kα source of X-rays (λ= 1.5418 Å). The XPS analysis was carried out with a Kratos Axis Ultra spectrometer using a monochromatic Al K (alpha) source (15mA, 14kV).

3.2.4 Photocatalytic Hydrogen Production

The experimental setup for photocatalytic sacrificial hydrogen production was reported previously. [26] A pyrex glass photocatalytic reactor (11 cm x 6.3 cm) with a volume of 350 ml was used to carry out the experiments. The majority of experiments were conducted using 50 mg of photocatalyst in 50 ml formaldehyde (0.16 M) solution. Prior to solar irradiation, the solution was agitated at 500 rpm using a magnetic stirrer.
(Heidolph) for 1 hour with simultaneous nitrogen purging at ambient pressure to eliminate oxygen from the solution. The reactor contents were irradiated using a solar simulator (model: SS1 KW, Sciencetech). The solar lamp produces irradiance at 100 mWcm$^{-2}$ at full power (1000 watts), which is similar to the global solar spectrum at sea level. The photocatalytic reactor was air-cooled with an electric fan to keep the temperature constant at ambient conditions. A Gas Chromatography (Schimadzu GC 2014, Heyesep D packed column: 10 m length, 2 mm ID, and 2 µm film thickness, with thermal conductivity detector (TCD)) was utilized for quantification of produced hydrogen. The calibration of the GC was conducted using a 1000 ml gas-sampling bulb (Supelco), which was filled with nitrogen and hydrogen to yield hydrogen calibration gas with desired concentrations.

3.3 Results and Discussion

3.3.1 Morphology and Compositional Characterization of Nanowires

Both undoped TiO$_2$ nanowires and those doped with Cu were synthesized to compare their morphology and photocatalytic activity to provide a better understanding of the effect of copper doping. The morphology of the undoped titanium is clearly a nanowire morphology with high porosity and high aspect ratio as shown in Figure 3-1a. Further characterization was carried out by TEM with a high magnification random site shown in the inset of Figure 3-1b. A single fast fourier transform (FFT) diffraction pattern is observed showing the diffraction pattern of a single titania crystal. Figure 3-1c was constructed by inverse FFT diffraction of the selected site to calculate the lattice distance of the undoped TiO$_2$ nanowires, which are about 0.35nm as shown in Figure 3-1d, which is in agreement with literature values for titania.
Figure 3-1: High resolution TEM image of undoped TiO$_2$ nanowires (a), TEM image of single nanowire with FFT diffraction (b), inverse FFT (c), histogram of lattice in figure c (d).

Cu doped TiO$_2$ nanowires were successfully prepared by the ScCO$_2$ sol-gel synthesis methodology by testing three different precursors (copper (II) Acetylacetonate, copper (II) 2-ethylhexanoate, and copper (II) methoxide) with acetic acid at 60 ºC and 5000 psi. The produced materials were characterized by FTIR as shown in Figure 3-2, which shows 5 mol % copper doping with TIP. However, copper (II) acetylacetonate was selected due to its higher surface area compared with the rest of precursors and its uniform nanowire formation. The FTIR of each precursor with TIP and its product are provided in the Appendix.
Figure 3-2: FTIR spectra of produced copper doped nanowires with different precursor, copper (II) methoxide (green), copper (II) 2-ethylhexanoate (blue), copper (II) Acetylacetonate (red), reacted with TIP and acetic acid at 60 ºC, 5000 psi.

Copper doped nanowires were successfully prepared by the ScCO₂ sol-gel method by mixing the copper (II) acetylacetonate and titanium precursors at 1%, 2%, and 5 mol % of Cu in TiO₂. These samples gave copper doping levels of 0.9, 2, and 5.6 atomic % after calcination, respectively. For simplicity, these samples will be referred to as CuAc1, CuAc2, and CuAc5, respectively. Hereafter, the undoped titanium dioxide nanowire will be referred as TiNW.

The morphology of the synthesized Cu doped TiO₂ nanowires were determined by SEM and TEM with a typical sample shown in Figure 3-3. The TEM image shown in Figure 3-3d indicates that these nanowires are uniform, porous and have high aspect ratios. FTIR results also showed the typical peaks of C=O asymmetric stretching 1701 cm⁻¹ at and the symmetric stretching at 1404 to 1345 cm⁻¹ as shown in Figure 3-4 for CuAc1, CuAc2, and CuAc5.
Figure 3-3: SEM images of copper doped TiO$_2$ nanowires (a), another SEM for copper doped TiO$_2$ nanowires (b), SEM image of undoped TiO$_2$ nanowires (c) TEM image of copper doped TiO$_2$ nanowire(d). Reaction conditions: selected mmole copper acetylacetonate, 10 mmole TIP, 60 mmole acetic acid, 5 ml of CO$_2$, temp 60 °C and pressure 5000 psi.

Figure 3-4: FTIR spectra of produced copper doped nanowires using copper (II) Acetylacetonate as precursor for CuAc5 (red), CuAc2 (blue), and CuAc1 (black).
The ScCO₂ sol-gel is a reproducible method for doping material with excellent dispersion providing good control of the surface parameters critical for nanomaterials. One of the criteria for controlling the selectivity of producing nanowires over nanoparticles is the alkoxide to acetic acid ratio. Nanowires can be produced with alkoxide to acetic acid ratio greater than 4.5 which was optimized in previous work by the Charpentier group.[25]

Figure 3-3 shows the distribution of diameter and aspect ratio of the produced Cu-TiO₂ nanowires determined from the SEM analyses. Nanowire structure was clearly observed for all bimetallic nanomaterials with high aspect ratios (R= length/diameter), mostly in the range of 15 to 25, with diameter distributions ranging from 50 to 150 nm.

![Figure 3-3: Copper doped TiO₂ nanowires: (a) diameter distribution and (b) aspect ratio distribution.](image)

Doping with copper did not change the titanium nanowires morphology, which still gave high aspect ratio's, porous nanowires with an excellent dispersion of copper. This was confirmed by TEM metal mapping of Cu/TiO₂ nanowires as shown in Figure 3-4a. Higher magnifications of the specified location are shown in Figure 3-4b. Figure 3-4c shows the lattice distance of about 0.35 nm as summarized in the histogram shown in Figure 3-4d.
Figure 3-4: High resolution TEM images of Cu doped TiO$_2$ nanowires CuAc1 (a), high magnification of figure a (b-c), histogram of lattice (d).

The similarity of lattice distances between TiNW and CuAc1 and CuAc2 is an excellent indication of no agglomeration of copper at specific sites. However, the copper doped nanowires showed a slight change of morphology at the highest doping level for CuAc5. At copper doping of 5.6 atomic %, formation of nanoparticles about 2 nm on the surface of the nanowires started to form as shown in Figure 3-5.

Figure 3-5: TEM image of CuAc5 (5 Atomic % doped TiO$_2$ nanowires) (a) and high resolution of selected area (b).
To illustrate the degree of Cu dopant metal dispersion throughout the nanowires, TEM mapping using energy dispersive X-ray spectroscopy (EDS) is shown for the copper doped TiO$_2$ in Figure 3-6. Uniform dispersion of Cu throughout the nanowires for samples CuAc1 and CuAc2 can be seen, whereas copper nanoparticles are clearly observed due to the higher loading of copper in CuAc5, which is also reported in the literature but at a lower loading.[27] These results show good dispersion of copper throughout the TiO$_2$ structure, which is attributed to the adopted synthesis methodology utilizing ScCO$_2$ as a solvent and drying agent, which helped in enhancing the precursors’ solubility, preventing collapse of the formed networks during gelation due to the zero surface tension of ScCO$_2$ during the aging and washing stages, as described in detail previously.[28]

Figure 3-6: STEM image of copper doped TiO$_2$ nanowires showing porosity of nanowire (a), and EDS mapping showing dispersion of titanium (b), oxygen (c) and copper (d) within a nanowire. The bar scale is 100 nm.

The surface area of a material decreases with increasing dimensionality. For example, nanoparticles have higher surface areas compared to nanorods and nanowires.[19, 29]
Despite the nanowires structure, the produced nanowires have comparable surface areas to Degussa P25 (also examined in this work for hydrogen production) (50 m2/g). The BET surface area of undoped TiO$_2$ nanowires were measured to be 58 m2/g and copper doped nanowires ranged between 31 to 49 m2/g. The relatively high surface area of nanowires can be attributed to pore formation during the sol-gel synthesis of nanowires and more crucially retaining of the pores by ScCO$_2$ during the drying stage. The Barrett-Joyner-Halenda (BJH) nitrogen adsorption-desorption isotherm provides a more detailed understanding of the porosity (pore volumes and pore areas) compared to BET analysis. The isotherms of the undoped TiO$_2$ and copper doped TiO$_2$ nanowires are shown in Figure 3-7, indicating a typical type IV isotherm.[15] The Cu doped sample shows an average adsorption pore size of 8.2 nm with a pore volume of 0.12 cm3/g and pore area of 59 m2/g.

![Figure 3-7](image)

Figure 3-7: (a) Nitrogen isotherms of copper doped titanium nanowires. Pore volume and pore area distribution are shown in the insertion, (b) Nitrogen isotherms of indium doped titanium nanowires. Pore volume and area distribution are shown in the insertion.

The XRD analysis of the nanowires is shown in Figure 3-8. The calcined samples showed a highly crystalline structure and clear formation of anatase structures with traces of rutile after treatment at 500 °C. The XRD spectra of the Cu$_2$O-TiO$_2$ nanowires indicate that TiO$_2$ is in mainly the anatase phase. A gradual increase of the characteristic peaks at 270
that is related to rutile was observed as the concentration of copper dopant increased. In addition, smaller peaks were noticed in the area between 35° and 45°. The peaks at 36.1°, 38.6°, 44.1°, correspond to copper doping as their intensity increased with an increase in copper loading. However, the sample CuAc5 shows additional X-ray features that reflect the contribution of copper, complementing the TEM image of specific site of copper (quantum dot) on the surface of titanium dioxide consistent with the TEM results.

Figure 3-8: XRD results (a) of anatase titanium dioxide, Titanium dioxide nanowires, and copper doped TiO₂ nanowires (b) zoom of selected range of (a).

Both the chemical oxidation state of copper and titanium and their concentrations were determined by XPS analysis (Figure 3-9a). In all the prepared titania nanowires, copper and titanium were detected. Titanium was confirmed as Ti (IV) with a binding energy Ti 2p3/2 of 458.66 eV and symmetrical peak, which indicates the absence of any traces of titanium (III). Its binding energy peak slightly shifts in the range of 455.15 - 458.68 eV, depending on its interaction with copper (Figure 3-9b). However, in sample CuAc5, which has about 5.6 atomic % Cu, the titanium peak shifts slightly to 458.74 eV. Oxygen peak for all TiNW, CuAc1 and CuAc2 was noticed at 526.55 eV, for CuAc5 sample, it occurs at 527.25 eV which could be attributed to the formation of 12 % Cu (II) as it was confirmed by high resolution XPS in which a shake-up peak is observed between 940-
945 eV as shown in Figure 3-9b. However, none of the other copper doped samples had any amount of Cu (II) as indicated by XPS.

Figure 3-9: XPS results of copper doped TiO2 nanowires. (a) General scans and (b) shows Ti deconvolution.

The copper doped TiO2 sample showed a characteristic binding energy peak of Cu 2p_{3/2} at 932.58 eV, which indicates the existence of Cu (I) in sample CuAc1 and CuAc2. The absence of shakeup peak around Cu 2p_{3/2} 942 eV in both samples confirms that no Cu (II) species is present in these samples, [30] as shown in the deconvoluted XPS spectrum in Figure 3-10a. Furthermore, a shift to higher binding energy was observed as the copper concentration increases (Figure 3-10).
Aldrich), which are and 2. The symmetry variations D → eg. The symmetry variations D → eg. The symmetry variations D → eg.

is dominant (> 99.7 %, Sigma, the features in the XANES spectra are due to the splitting pattern (t2g and eg) of the energy of the d orbitals under an octahedral crystal field followed by local distortion that leads to different local symmetries for anatase (D2d) and rutile (D2h). It can be seen that the most striking difference is the intensity ratio between feature e_{11} and e_{12}, that is, feature e_{11} is dominant in anatase while feature e_{12} is dominant in rutile. The lowering of the Oh symmetry to D2d and D2h leads to the 2p → eg transition further splitting into peak e_{11} and e_{12} at the L3-edge. The symmetry variations between anatase and rutile have an impact on the eg state; therefore, we can track anatase and rutile phases via the relative ratio between features e_{11} and e_{12}. [31] The XANES of the Cu doped TiO2 nanowires (black curve) illustrates well-resolved features of anatase TiO2 that is confidently identified via the intensity ratio between e_{11} and e_{12}. It indicates that the Cu doped TiO2 nanowires are of anatase phase, which is consistent with the XRD results. Compared to the standard anatase (blue curve), the peaks in Cu doped TiO2 are broadened, which is due to the porous structure of the Cu doped TiO2 nanowires (Figure 3-11a). Ti L3,2-edge XANES results of the Cu doped TiO2 nanowires agree well with

Figure 3-10: XPS results of copper doped TiO2 nanowires. (a) shows copper deconvolution peak, (b) shows an increase of binding energy as copper concentration increases.

3.3.2 XANES and EXAFS

Figure 3-11a shows the normalized Ti L3,2-edge XANES of the copper doped TiO2 nanowires in comparison with anatase and rutile TiO2 (> 99.7 %, Sigma-Aldrich), which probes the transitions from Ti 2p_{3/2} and 2p_{1/2} states to unoccupied 3d_{5/2} and 2p_{3/2} states. For anatase and rutile TiO2, the features in the XANES spectra are due to the splitting pattern (t2g and eg) of the energy of the d orbitals under an octahedral crystal field followed by local distortion that leads to different local symmetries for anatase (D2d) and rutile (D2h). It can be seen that the most striking difference is the intensity ratio between feature e_{11} and e_{12}, that is, feature e_{11} is dominant in anatase while feature e_{12} is dominant in rutile. The lowering of the Oh symmetry to D2d and D2h leads to the 2p → eg transition further splitting into peak e_{11} and e_{12} at the L3-edge. The symmetry variations between anatase and rutile have an impact on the eg state; therefore, we can track anatase and rutile phases via the relative ratio between features e_{11} and e_{12}. [31] The XANES of the Cu doped TiO2 nanowires (black curve) illustrates well-resolved features of anatase TiO2 that is confidently identified via the intensity ratio between e_{11} and e_{12}. It indicates that the Cu doped TiO2 nanowires are of anatase phase, which is consistent with the XRD results. Compared to the standard anatase (blue curve), the peaks in Cu doped TiO2 are broadened, which is due to the porous structure of the Cu doped TiO2 nanowires (Figure 3-11a). Ti L3,2-edge XANES results of the Cu doped TiO2 nanowires agree well with
their XRD results. Figure 3-11b shows the Cu L3-edge XANES spectrum of the Cu doped TiO2 nanowires. The resonances arise from Cu 2p3/2 to 3d, 4s transitions. The spectrum displays the same features as that of Cu2O which suggests that the doped Cu in the TiO2 nanowires exists as Cu1+, which is consistent with the XPS data. [32, 33]

![Figure 3-11](image)

Figure 3-11: (a) TEY XANES spectra of Cu doped and In doped TiO2 nanowires at Ti L3,2-edge. The spectra of standard TiO2 of anatase and rutile phase are also shown for comparison. (b) TEY XANES spectrum of the Cu doped TiO2 nanowires at Cu L3-edge.

3.3.3 Photocatalytic Hydrogen Production over Cu2O/TiO2 Nanowires

The photocatalytic performance of the Cu doped TiO2 nanowires was compared to that of P25 and undoped TiO2 nanowires using formaldehyde as the sacrificial agent for hydrogen production under solar light (100 mW/cm²). The sacrificial agent loading was optimized by testing hydrogen production using 0.06 M, 0.16 M and 0.24 M formaldehyde and it was found that 0.16 M produced the highest hydrogen using CuAc1 as shown in Figure 3-12.
Figure 3-12: Effect of formaldehyde concentration on hydrogen production under solar light using CuAc1 as photocatalyst.

The results show that Cu$_2$O/TiO$_2$ nanowires at different levels of doping produced the highest amount of hydrogen followed by Degussa P25, followed by undoped TiO$_2$ nanowires. Both undoped catalysts showed a lower rate of hydrogen generation compared to the copper doped nanowires. The highest rate of about 9 µmoles of hydrogen per minute was obtained by sample CuAc1. Although the initial rates of hydrogen production for all the nanowires leveled off after about 120 minutes, the range of hydrogen production for Degussa P25 decreased with time. On the other hand, the copper doped nanowires were stable for about 7 hours of operation. Low hydrogen production using the undoped catalysts is attributed to higher band gap of 3.2 eV compared to 1.7-2.2 of Cu$_2$O/TiO$_2$ with a higher position conduction band compared to pristine TiO$_2$, and effective separation of electron-hole as copper works as a co-catalyst. As shown in Figure 3-13a, the rate of hydrogen production utilizing Cu$_2$O/TiO$_2$ in the 0.16 M formaldehyde solution increased to about 9 µmoles of H$_2$ g cat.$^{-1}$ per minutes and remained constant for 7 hours. The cumulative hydrogen generation using CuAc1 was about 10 times higher than that of P25, and about 47 greater than that of TiNW (undoped TiO$_2$ nanowires).
This result is a promising start for further development of the Cu$_2$O/TiO$_2$ nanowires, especially compared to platinum, gold or other expensive dopants. [26] The most recent CuOx-TiO$_2$ study conducted by Wang et al (2013) showed that the active species for hydrogen production was Cu (I), with Cu (II) having a negative effect on hydrogen production.[34] In that study, 1.3 µmoles g$^{-1}$ of H$_2$ was produced using 42 wt% copper doped TiO$_2$ with a 300 W Xe lamp. In this study, 9 µmoles g$^{-1}$ per min of H$_2$ was produced using a much lower copper loading of 2.3 wt% and solar light of 100 mW/cm2. The better results in this study are attributed to the single active oxide of Cu (I) using the produced nanowires. In addition, the presence of mixed copper oxide in the study of Wang et al. (2013) indicated a lag time of 5 hours before hydrogen production was started. [34] This was not the case in this study, as instantaneous hydrogen production was observed with all copper doped nanowires.

Figure 3-13: Four Replicated experimental results depicting (a) H$_2$ production rate µmole/min (b) H$_2$ production µmole per gram of photocatalyst. Photocatalytic study: TiO$_2$ Degussa P25, undoped TiO$_2$ nanowires (NW), Cu$_2$O/TiO$_2$ nanowires (CuAc1, CuAc2, CuAc5). [HCHO] = 0.16 M, photocatalyst concentration: 1 g/L, light intensity: 100 mW/cm2.

In further explanation of the mechanism based on our experimental data, the H$_2$ production from formaldehyde may be described by the following two equations.[2]

\[
\text{hv, catalyst}
\]
\[
\begin{align*}
\text{CH}_2\text{O} + \text{H}_2\text{O} & \quad \xrightarrow{\text{hv, catalyst}} \quad \text{HCOOH} + \text{H}_2 \\
\text{HCOOH} & \quad \xrightarrow{\text{hv, catalyst}} \quad \text{CO}_2 + \text{H}_2
\end{align*}
\]

According to these equations, a maximum of \(3.9 \times 10^{-5}\) moles (1.17 mg) of HCHO was consumed in 7 hours using the bimetallic Cu\textsubscript{2}O/TiO\textsubscript{2} catalyst, while reactions with P25 TiO\textsubscript{2} resulted in the consumption of \(2.72 \times 10^{-5}\) moles (0.82 mg) of HCHO. This implies that HCHO was always in excess in solution to maintain the rate of hydrogen production constant. Production of formic acid in the solution was confirmed by the decrease in solution pH from almost neutral pH to 6.6-3.8, based on the type of catalyst used. Based on the experimental pH drop and using equation 2, a theoretical estimation showed a 0.7, 1.5 and 2.7 µmoles of HCOOH production in reactions with Cu\textsubscript{2}O/TiO\textsubscript{2}, TiNW and P25, respectively. However, the total amount of hydrogen produced was 1304, 728, and 478 µmoles g-1 for CuAc1, CuAc2 and CuAc5, respectively (Figure 3-13b). These were compared to P25, and undoped titanium nanowires, which produced 130 and 28 µmoles g-1, respectively. It is possible that some CO\textsubscript{2} produced following equation 2 will dissolve and works as a buffer. Therefore, the copper doped nanowires were also the most effective catalyst for higher extents of mineralization of formaldehyde, which is explained by the smallest drop in pH for CuAc1.

Copper stability is a critical parameter for long term use of this catalyst. It was noticed in the literature that deactivation of Cu catalyst occurred resulting in lag time due to the conversion of copper from one oxidation state to another or to metallic copper. In this work, stability of the doped copper titanium nanowires was tested by conducting cyclic sacrificial hydrogen production experiments for three times as shown in Figure 3-14. The consistent rate and extent of hydrogen production indicated excellent stability of the produced catalysts.
Figure 3-14: Cyclic photocatalytic study for hydrogen production using 1% Cu doped TiO$_2$ nanowire (CuAc1), [HCHO] = 0.16 M, photocatalyst concentration: 1 g/L, light intensity: 100 mW/cm2.

Maximum hydrogen production rate produced in this study was compared with those available in literature as shown in Figure 3-15. In the study of Chowdhury et al. (2013), 0.25% Pt doped P25 catalyst showed the maximum hydrogen production of 180 µmoles g$^{-1}$ hr$^{-1}$ as compared to 120 µmoles g$^{-1}$ hr$^{-1}$ for 1.5% Cu$_2$O/TiO$_2$ obtained in this work. However, several disadvantages of Pt are well known in environmental applications, including its scarcity and high cost.[35]
The apparent quantum yield was also calculated over the active solar region of (300-650 nm) for the doped catalysts following equation (3). [36] Average quantum yield of copper doped titanium nanowires was 55% higher than that of the quantum yield of P25 but comparable to the quantum yield of 0.25 % platinum doped titanium dioxide as shown in Table 3-1.

\[
\text{Apparent quantum yield (\%)} = \frac{\text{Number of H}_2\text{molecules}}{\text{Number of incident photons}} \times 2 \times 100 \quad (3)
\]
Table 3-1: Comparison of various mechanisms for hydrogen production over the catalysts.

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>Yield from HCHO calculated from the pH drop (µmoles/g)</th>
<th>Total Yield (µmoles/g)</th>
<th>Quantum yield (%) full solar spectrum (300-650 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$_2$O/TiO$_2$</td>
<td>0.7</td>
<td>130</td>
<td>1.20</td>
</tr>
<tr>
<td>Degussa P25</td>
<td>2.7</td>
<td>130</td>
<td>0.77</td>
</tr>
<tr>
<td>TiNW</td>
<td>1.5</td>
<td>28</td>
<td>0.22</td>
</tr>
<tr>
<td>Pt/TiO$_2$ [26]</td>
<td>-</td>
<td>-</td>
<td>1.24</td>
</tr>
</tbody>
</table>

The attempt to close the hydrogen mass balance based on eqns. (1) and (2) shows that the decrease in solution pH is not commensurate with the consumption of formaldehyde, indicating that water splitting may also have contributed to hydrogen production. Hydrogen is expected to be produced by water splitting in the case of copper doped TiO$_2$, since its conduction band is more negative than TiO$_2$ vs. saturated calomel electrode (SCE) (higher in position) and its valance band is more positive than TiO$_2$.[37] This will enable photogenerated electrons to accumulate at the TiO$_2$ conduction band where water is reduced to produce hydrogen and formaldehyde is oxidized at the hole position as shown in Figure 3-16. HCHO will scavenge any generated holes accumulating at the copper valance band. Unfortunately, due to low consumption of HCHO, we could not confirm this by chemical analysis of HCHO before and after the experiment. However, hydrogen produced by the activation of P25 by solar light is comparable to other values reported in the literature.[38]
Figure 3-16: Mechanism for solar hydrogen production using Cu$_2$O-TiO$_2$ assembly.
3.4 Conclusions

Cu$_2$O/TiO$_2$ nanowires of different loading of Cu were prepared using a unique sol-gel methodology in ScCO$_2$. XANES and XPS analyses indicate the presence of only Cu$^{+1}$ oxidation state in the doped catalysts. The Cu$_2$O/TiO$_2$ nanowires were found to be active photocatalysts for hydrogen production using a solar simulator (100 mW/cm2) involving both water splitting and sacrificial hydrogen production mechanisms. Cu$_2$O/TiO$_2$ nanowires also indicated higher stability compared to Degussa P25 and undoped TiO$_2$ nanowires. The maximum hydrogen production of 1304 μmoles of H$_2$/g-cat for Cu$_2$O/TiO$_2$ with 1% Cu was 10 times greater than that of TiO$_2$ Degussa P25 (130 μmoles of H$_2$/g-catalyst) and about 47 times more than undoped titanium nanowires. All Cu$_2$O/TiO$_2$ nanowires produced a significant amount of hydrogen compared to undoped titanium, which makes copper doped titanium dioxide an excellent photocatalyst for hydrogen production as well as mineralization of organic pollutants such as formaldehyde. These results were attributed to the unique preparation method that enabled highly dispersed dopant and the single active oxidation state of copper as Cu (I).

Doping of titanium dioxide with less expensive transition metals such as copper is a promising choice for photocatalytic sacrificial hydrogen generation compared to pristine TiO$_2$. More importantly, unlike Degussa P25, copper doped TiO$_2$ nanowires showed no deactivation over 3 cycles of experiments with a total duration of 21 hours. Sacrificial hydrogen production using Cu-TiO$_2$ and solar radiation serves the dual purposes of water treatment and hydrogen production from waste.
3.5 References

68

Chapter 4

4 Synthesis and Applications of Indium doped Titanium Nanowires

Indium doped titanium nanowires were prepared using a unique sol-gel methodology in supercritical CO\textsubscript{2} using titanium isopropoxide, indium acetate dopant, and acetic acid with a ratio 1:6 as the polycondensation agent. The methodology produced uniformly dispersed dopants integrated into nanowires with diameters of 80-100 nm and aspect ratios from 15-25 as observed by SEM. XPS results confirmed formation of indium titanate nanowires and their levels of indium compared to titanium. Dye Sensitized Solar Cells (DSSCs) were fabricated and tested with the nanowires under solar light irradiation (100 mW/cm2) using different levels of indium. Indium doping level of 1.0 atomic % with respect to Ti showed the highest performance photoelectric current compared to pristine titanium nanowires confirming the added advantage of indium in these nanowires by enhancing visible light harvesting and reducing electron-hole recombination. At optimum indium doping, the fabricated DSSC cells showed about 2.5 times higher efficiency and photocurrent compared to undoped titanium nanowires. Hydrogen production showed a greater improvement with 26, and 5.7 times of hydrogen produced compared to undoped titanium nanowires and P25 respectively.

4.1 Introduction

Harvesting electrical, thermal, or chemical energy from sunlight as a source of clean, sustainable and cheap energy is gaining increased attention, especially with increased demands for energy and global efforts to reduce greenhouse gases. The demand for energy is expected to increase by about 37 % by 2035 as the population grows while phasing out of coal power generation plants becomes mandated.[1] In the field of sunlight conversion to electricity, photocatalytic reaction, photoelectrochemical production of fuels, titanium dioxide (TiO\textsubscript{2}) has been a base material due to its numerous beneficial properties including chemical and thermal stability, abundance, and cost effectiveness.[2]
However, further development and research is needed to enhance visible light response of TiO$_2$ to harvest more sunlight to energy. Pristine TiO$_2$ is only active in a very limited region of the solar spectrum utilizing 5% of sunlight. Furthermore, more focused work is needed to reduce the high recombination of photogenerated electrons with holes or other chemicals within the application device which negatively impacts its photocatalytic efficiency. [3] [4] An approach that is commonly used to overcome these limitations is doping with transition metals such as Ni, Zr, Cu, Cr, V, Zn, Bi, Fe, and noble metals such as Au, Pt, and Pd. In addition, non-metal dopants such as nitrogen, fluoride, sulfur, and carbon have been examined with varied amounts of success for increased visible light absorption, reduced electron-hole recombination, resulting in a stronger photocatalytic activity of TiO$_2$. [5-16]

Indium oxide thin films are used in solar cell applications due to two important advantages including high electron mobility while being transparent when used as a conductive layer. [17, 18] These advantages are enhanced by doping with hydrogen as TCO or doping with Zn, molybdenum and yttria-zirconia.[19-23] Comparing thin films and nanoparticles or bulk materials in solar cells or photocatalytic applications, nanowires have more advantages of light scattering properties that increase light absorption within the device and increased continuous direct percolation pathways for electrons to be collected.

This work was driven by the hypothesis of combining the advantages of nanowires and indium oxide to prepare indium doped titanium dioxide for photocatalytic applications. High aspect ratio and well defined nanowires are challenging to prepare and very few preparation methods have been reported. Sol-gel in supercritical carbon dioxide (ScCO$_2$) which has been shown to provide high aspect ratio nanofibers/ wires of titania with high surface area and porosity were selected to prepare indium doped titanium nanowires.[24] ScCO$_2$ is an inexpensive and green alternative to conventional organic solvents; it is environmentally benign and non-flammable with low viscosity, zero surface tension and high diffusivity, which are favorable for synthesizing fine and uniform nanomaterials with porous nanostructure.[25] It has also been reported that indium doping enhanced the
photocatalytic performance of titania in water treatment and water splitting although In-TiO$_2$ nanowires have not been reported earlier. [26] [27]

Therefore, this work focuses on the synthesis of indium titanate nanowires at different indium to titanium ratios using a ScCO$_2$ sol-gel process and evaluating their photoelectric performance in DSSC and photocatalytic activity towards hydrogen production using sacrificial agent.

4.2 Experimental Details

4.2.1 Chemicals and Materials

Indium (III) acetate (99.99%), titanium (IV) isopropoxide (TIP) (97%), acetic acid (99.7%), ethylcellulose, and terpineol were purchased from the Aldrich Chemical Company, Oakville, ON, Canada and used without further purification. Instrument grade liquid carbon dioxide (99.99%) from Air Liquide Canada was delivered by a syringe pump (Isco 260D) into a 10 mL view cell reactor equipped with a pressure transducer, heating tape, and thermocouple for temperature control. The details of the reactor are provided in Lucky et al.[28]

4.2.2 Synthesis of Indium Titanate Nanowires

In a typical experiment, predetermined amounts of titanium isopropoxide (TIP) and indium (III) acetate were quickly placed in the 10 ml view cell, followed by the addition of acetic acid, and CO$_2$. The amounts of indium (III) acetate were varied to prepare four different concentrations of indium titanate referred to in this paper as In1, In2, In3, and In4. The view cell was heated to 60 ºC and subsequently pressurized to 5000 psig. A magnetic stirrer was used to ensure uniform mixing of the reactants. The hydrolysis rate was controlled by adjusting metal precursors to acetic acid molar ratios in the range of 1:5-6. During the gelation stage, a light pink color was observed in about 30 and 40 minutes for indium doped titania before changing to white color the next day. After five days of aging, the samples were washed with 100 mL of scCO$_2$ at a rate of 0.3 mL/min to remove unreacted materials and by-products, and to prevent collapse of the gel network. The prepared indium doped TiO$_2$ sol-gel was then calcined in air at 500 ºC for 2 hours.
The calcination temperature was selected based on the thermal gravimetric analysis (TGA) results (not shown) where indium doped catalysts showed removal of organic components at about 450 °C. Similarly undoped titanium dioxide nanowires were prepared without the addition of indium (III) acetate.

4.2.3 Preparation of Photoanode

Indium titanate nanowires were prepared into a paste for coating on conductive glass. The paste was made by dissolving ethylcellulose into ethanol and terpineol mixture (2:1, v/v) and stored in a sealed container to minimize the changes in viscosity due to solvent evaporation. Fluorine doped tin oxide (FTO) glass plates (15 ohms per sq. inch, purchased from Solaronix, Switzerland) were cleaned by detergent wash and sonication for 10 minutes for three times, rinsed with DI water, sonicated in acetone for 5 minutes, washed with isopropanol, and finally dried with nitrogen gas.

Photoanodes were prepared by creating a mask template using packing tape with about 40 µm thickness on the conductive side of the FTO glass. Indium titanate nanowires-paste mixture was applied by doctor-blading with a glass rod, which formulates the active layer of the photoanode. The template tape was lifted after 30 minutes to minimize cracking of the paste. For comparison, the same procedure was done for TiO$_2$ (P25) and undoped titanium nanowires. The coated FTO glass then was calcined to 500 °C under air at a heating rate of 5 °C /min. The resulting films were cooled to 80 °C before immersing for overnight into a dye solution of 0.3 mM cis-diisothiocyanato-bis (2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium (II) bis (tetrabutylammonium), also called N719 dye (purchased from Solaronix, Switzerland) in acetonitrile tert-butyl alcohol (1:1, v/v) solution.

4.2.4 Assembling dye sensitized solar cells (DSSCs)

The solar cell was assembled by combining platinum coated glass as a counter electrode with the photoanode prepared in the previous step. Platinum electrode was washed with a detergent and rinsed with DI water, followed by acetone before regeneration at 350 °C for 30 minutes prior to use. The two electrodes were kept at a distance using 50 µm thick
Surlyn hot-melt gaskets. The cells then were laminated together by pressing them on a hot plate at 100 °C. Iodine / tri-iodide based Iodolyte Z-100 from Solaronix was used as redox electrolyte, which was injected into the cell void by vacuum filling technique through a predrilled hole at the back of the counter electrode. Finally the cell was sealed with hot-melt sheet and a glass slide cover.

4.2.5 Photocatalytic Hydrogen Production

The experimental setup for photocatalytic sacrificial hydrogen production was reported previously. [29] A pyrex glass photocatalytic reactor (11 cm x 6.3 cm) with a volume of 350 ml was used to carry out the experiments. Most of the experiments were conducted using 50 mg of photocatalyst in 50 ml solution using 0.16 M formaldehyde as the sacrificial agent. Prior to solar irradiation, the solution was agitated at 500 rpm using a magnetic stirrer (Heidolph) for 1 hour with simultaneous nitrogen purging at ambient pressure to eliminate oxygen from the solution. The reactor contents were irradiated using a solar simulator (model: SS1 KW, Sciencetech) with a xenon arc lamp, and was continuously stirred at 500 rpm. The solar lamp produces irradiance at full power (1000 watts), which is similar to the global solar spectrum of 100 mWcm⁻². The photocatalytic reactor was air-cooled with an electric fan to keep the temperature constant at ambient conditions. A Gas Chromatography (Shimadzu GC 2014, Heyesep D packed column: 10 m length, 2 mm ID, and 2 µm film thickness, with thermal conductivity detector (TCD)) was utilized for quantification of producing hydrogen. The calibration of the GC was conducted using a 1000 ml gas-sampling bulb (Supelco), which was filled with nitrogen and hydrogen to yield hydrogen calibration gas with desired concentrations.

4.2.6 Characterization of Indium Titanate Nanowires

The synthesized nanowire morphology was characterized by scanning electron microscopy (SEM) (Model LEO 1530) and transmission electron microscopy (TEM) (Model JEOL 2010F) capable of dark field scanning transmission electron microscopy (STEM) and coupled with energy dispersive X-ray spectroscopy. For TEM analysis, the powdered samples were dispersed in ethanol by sonication for 15 min and then cast on a copper grid covered with holey carbon film. Samples for SEM imaging were prepared by
applying the powder directly to a carbon adhesive tape. The BET (Brunauer-Emmett-Teller) surface area and BJH (Barrett-Joyner-Halenda) pore size and volume analysis were determined from nitrogen adsorption and desorption isotherm data obtained at 77 K with a constant-volume adsorption apparatus (Micromeritic Tristar II) using N₂ gas (99.995% pure; obtained from Praxair, Canada). The prepared samples were degassed at 150°C overnight before measurements. Structural analysis of the samples was performed using an X-ray powder diffractometer (Rigaku Miniflex XRD, Texas, U.S.A.), fitted with a rotating sample holder, a scintillation counter detector and a divergent beam utilizing a Cu Kα source of X-rays (λ= 1.5418 Å). The XPS analysis was carried out with a Kratos Axis Ultra spectrometer using a monochromatic Al K (alpha) source (15mA, 14kV). Photocurrent performance of DSSCs was tested under Oriel solar simulator (92250A, AM 1.5 G) equipped with a 150 W Xe lamp and intensity of 100 mW/cm² measured by a Keithley 2420 programmable SourceMeter.

4.3 Results and Discussion

Indium titanate nanowires were successfully prepared by the scCO₂ sol-gel process at different loadings (0.05 g, 0.10 g, 0.22 g, and 0.38 g) of indium (III) acetate with 3.3 g titanium isopropoxide (TIP), 3.5 ml acetic acid and pressurized with scCO₂ at 60 °C and 5000 psi. TiO₂ nanowires were prepared using the same methodology without the addition of indium acetate. The selectivity of producing indium titanate nanowires or TiO₂ nanowires over nanoparticles is dictated by the alkoxide to acetic acid ratio. Nanowires can be produced with alkoxide to acetic acid ratio ≥4.5 as shown previously.[30] The nanowires morphology was examined by TEM and its image is shown in Figure 4-1 for the prepared nanowires. Figure 4-1b shows a higher magnification of indium doped nanowires and at even higher magnification, a single indium titanate nanowire is shown in Figure 4-1c. A dark field image shown in Figure 4-1d demonstrates clear uniformity, aspect ratio and porosity of these nanowires.
Dopant dispersion is a critical parameter for photocatalytic and photoanode in DSSC. To illustrate the degree of dopant metal dispersion throughout the nanowires, TEM mapping using energy dispersive X-ray spectroscopy (EDS) is shown for indium titanate nanowires in Figure 4-2. The nanowires showed uniform dispersion of indium metal throughout the nanowires with indium loadings at 1, 2, and 2.5 atomic % that was confirmed by EDS analysis. This result shows the high dispersion of indium throughout the indium titanate nanowires, attributed to the unique synthesis methodology using scCO$_2$ as a solvent and drying agent. ScCO$_2$ enhanced the precursors’ solubility, preventing the collapse of the formed networks during gelation due to the zero surface tension of scCO$_2$ during the aging and washing stages.
Enhanced dispersion of the indium dopant has been an important factor in producing high surface areas indium titanate nanowires. It is well known that a material's surface area decreases as its dimensionality decreases. For example, nanoparticles have a higher surface area compared to nanorods and nanowires.[31, 32] Despite the formation of nanowires, the produced undoped TiO$_2$ nanowires had comparable surface areas to Degussa P25 (also examined in this work) which we measured at 58 and 50 m2/g, respectively. The BET results of all four samples In1, In2, In3, and In4 nanowires were measured as 113, 109, 100.6 and 112.8 m2/g, respectively. This significant increase in surface area can be attributed to the pores forming during the sol-gel synthesis and retaining of the pores by the scCO$_2$ drying as shown summarized Table 4-1.
Table 4-1: BET results for P25 TiO$_2$, undoped TiO$_2$ nanowires, and indium titanate nanowires In1, In2, In3 and In4.

<table>
<thead>
<tr>
<th>Sample</th>
<th>BET (m2/g)</th>
<th>Micropore area (m2/g)</th>
<th>Ext. surface area (m2/g)</th>
<th>Micropore volume (m3/g)</th>
<th>Pore size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TiNW</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>In 1 (1 %)</td>
<td>113.0</td>
<td>51.7</td>
<td>61.7</td>
<td>0.0114</td>
<td>10.0</td>
</tr>
<tr>
<td>In 2 (2 %)</td>
<td>109.0</td>
<td>43.3</td>
<td>65.7</td>
<td>0.00518</td>
<td>9.8</td>
</tr>
<tr>
<td>In 3 (3 %)</td>
<td>100.6</td>
<td>40.9</td>
<td>59.7</td>
<td>0.00546</td>
<td>6.8</td>
</tr>
<tr>
<td>In 4 (4 %)</td>
<td>112.8</td>
<td>39.4</td>
<td>73.4</td>
<td>0.001312</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Indium titanate nanowires XRD spectra are shown in Figure 4-3. Examination of the indium doped samples shows clearly the anatase TiO$_2$ phase with characteristic peaks at 250, 380, 480, 550, 630, 700 and 760. These are in excellent match to anatase (PDF 01-086-1157). No peaks at 30.660, 35.540, and 51.090 that represent In$_2$O$_3$ were detected at low indium doping in samples In1, In2, and In3. However, In4 with 4% indium loading showed broad of peaks at 2θ=310 and 350 which could be attributed to indium oxide. In addition, doping with indium produced a rutile phase titania at a lower than expected temperature, which has been recently reported.[33] Due to the lack of sensitivity of XRD at this level of indium doping, more conclusive analysis using X-ray Absorption Near Edge Spectroscopy (XANES) and XPS were performed.
Both the chemical oxidation states of indium and titanium and their concentrations were determined by XPS analysis. In all the indium titanate nanowires, the chemical state of titanium was found to be (IV) with a binding energy peak of 2p 3/2 at 458.63 eV, depending on its interaction with the dopant metal as shown in Figure 4-4. The XPS analysis showed a characteristic binding energy peak of In 3d 5/2 at 444.66 eV eV, which indicates the existence of In (III). This confirms successful indium doping into the nanowires (Figure 4-4).
Figure 4.4: XPS of indium titanate nanowires showing indium, oxygen, carbon and titanium binding energies and oxidation states.

4.3.1 XANES and EXAFS

The normalized Ti L\textsubscript{3,2}-edge XANES of the indium doped TiO\textsubscript{2} nanowires in comparison with anatase and rutile TiO\textsubscript{2} (> 99.7%, Sigma-Aldrich), is shown in Figure 4.5a. XANES spectroscopy probes the transitions from Ti 2p\textsubscript{3/2} and 2p\textsubscript{1/2} states to unoccupied 3d\textsubscript{5/2} and 2p\textsubscript{3/2} states. For anatase and rutile TiO\textsubscript{2}, the features in the XANES spectra are due to the splitting pattern (t\textsubscript{2g} and e\textsubscript{g}) of the energy of the d orbitals under an octahedral crystal field followed by local distortion that leads to different local symmetries for anatase (D\textsubscript{2d}) and rutile (D\textsubscript{2h}). It can be seen that the most striking difference is the intensity ratio between feature e\textsubscript{11} and e\textsubscript{12}, that is, feature e\textsubscript{11} is dominant in anatase while feature e\textsubscript{12} is dominant in rutile. The lowering of the O\textsubscript{h} symmetry to D\textsubscript{2d} and D\textsubscript{2h} leads to the 2p → e\textsubscript{g} transition further splitting into peak e\textsubscript{11} and e\textsubscript{12} at the L\textsubscript{3}-edge. The symmetry variations between anatase and rutile have an impact on the e\textsubscript{g} state; therefore, we can track anatase and rutile phases via the relative ratio between features e\textsubscript{11} and e\textsubscript{12}. [34]
The XANES spectroscopy of the In doped TiO₂ nanowires, the e₁₁ and e₁₂ features are observed with similar intensity, indicating that the sample has both anatase and rutile phases. Since the edge jump of the XANES spectrum is proportional to the quantities of the sample, the compositional fractions of the composite sample can be obtained by fitting a linear combination of the spectra of its components to that of the composite. Figure 4-5b shows the linear fitting results of the In doped TiO₂ nanowires. The best fitting curve (red dotted curve) gives the same ratio of e₁₁ and e₁₂ as the experimental one (black solid curve), illustrating that the weight ratio between anatase and rutile in the In doped TiO₂ nanowires is about 2:3. The difference between the fitting and experimental curves (blue dash-dotted curve) is due to the broadening of the experimental spectrum (poor crystallinity and porous structure of the In doped TiO₂ nanowires). Ti L₃,₂-edge XANES results of In doped TiO₂ nanowires agree well with their XRD results.

![Figure 4-5:](image)

Figure 4-5: (a) TEY XANES spectra of In doped TiO₂ nanowires at Ti L₃,₂-edge. The spectra of standard TiO₂ of anatase and rutile phase are also shown for comparison. (b) Linear combination fitting analysis of the In doped TiO₂ nanowires at Ti L₃,₂-edge.

4.3.2 Photocurrent measurements

Photocurrent density-voltage (J-V) curves for P25 TiO₂, undoped TiO₂ nanowires, and indium titanate nanowires In1, In2, In3 and In4 are shown in Figure 4-6. This data was collected using 100mW/cm² solar simulator light and all DSSCs were prepared under the same conditions as described earlier. The open-circuit voltages (Voc) for P25 and sample
TiO$_2$ NW are 0.70 and 0.63 V, respectively. However, all indium doped nanowires showed lower Voc values of 0.601, 0.578, 0.572, and 0.527 V for In1, In2, In3 and In4, respectively. These results show an inverse relation between indium concentration and Voc. The photoelectric performance of a dye sensitized cell can be evaluated by determining the cell efficiency (η) calculated using equation 4-1.

$$\eta = \frac{J_{sc} \times Voc \times FF}{I}$$

4-1

It is clear from these results that indium doping increased the efficiency of all DSSCs except for In4. In1 showed about 2.5 times higher efficiency and 2.4 times the photocurrent density of TiO$_2$ NW in the DSSC measurements. Furthermore, it was noticed that indium doping reduced series resistance of In1 to 455 Ω compared to TiO$_2$ NW with series resistance of 724 Ω. However, Rs increased for the rest of the samples as indium concentration increases. These results indicate that indium addition improved the photoanode performance of the DSSC's with an optimum loading at 1%.

Figure 4-6: Photocurrent density- voltage (J-V) curves for P25 TiO$_2$, undoped TiO$_2$ nanowires, and indium titanate nanowires In1, In2, In3 and In4.
Although Voc is an indication of the chemical potential of the cell, which is a function of nanocrystalline material in the photoanode with respect to chemical potential of the redox electrolyte, the voltage at zero short circuit current (P\text{max}) is used to evaluate the dye sensitized solar cell’s overall electrical power generation. The P\text{max} for all indium titanate nanowire DSSCs was significantly higher than TiO\textsubscript{2} NW's as shown in Figure 4-7. These results can be attributed to their higher photocurrent generation compared to TiO\textsubscript{2} NW as shown in Table 4-2.

\begin{figure}[h]
\centering
\includegraphics[scale=0.5]{power_curves.png}
\caption{Power (mW) curves for undoped TiO\textsubscript{2} nanowires, and indium titanate nanowires In1, In2, In3 and In4.}
\end{figure}
Table 4-2: Photoelectric performance parameters for P25 TiO₂, undoped TiO₂ nanowires, and indium titanate nanowires In1, In2, In3 and In4.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Voc (V)</th>
<th>Jsc(mA/cm²)</th>
<th>P_max(mW)</th>
<th>Fill Factor (%)</th>
<th>η (%)</th>
<th>Rs (Ω)</th>
<th>Rsh (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>0.70</td>
<td>2.23</td>
<td>0.57</td>
<td>70</td>
<td>1.09</td>
<td>50</td>
<td>20473</td>
</tr>
<tr>
<td>TiNW</td>
<td>0.63</td>
<td>0.59</td>
<td>0.50</td>
<td>57</td>
<td>0.21</td>
<td>724</td>
<td>27411</td>
</tr>
<tr>
<td>In 1 (1 %)</td>
<td>0.601</td>
<td>1.413</td>
<td>0.065</td>
<td>60.5</td>
<td>0.51</td>
<td>455</td>
<td>34869</td>
</tr>
<tr>
<td>In 2 (2 %)</td>
<td>0.578</td>
<td>0.868</td>
<td>0.037</td>
<td>59.1</td>
<td>0.30</td>
<td>770</td>
<td>41376</td>
</tr>
<tr>
<td>In 3 (3 %)</td>
<td>0.572</td>
<td>0.805</td>
<td>0.034</td>
<td>58.5</td>
<td>0.27</td>
<td>890</td>
<td>49173</td>
</tr>
<tr>
<td>In 4 (4 %)</td>
<td>0.527</td>
<td>0.374</td>
<td>0.013</td>
<td>50.6</td>
<td>0.10</td>
<td>2291</td>
<td>42748</td>
</tr>
</tbody>
</table>

4.3.3 Electrochemical Impedance Spectroscopy Analysis

Internal evaluation of DSSCs is critical as it deepens our understanding of the competing processes that occur within the novel nanowire photoanode materials produced in this work. Kinetics of the photoelectrochemical processes is critical for determining the limitations and evaluating proposed enhancement approaches. [35] A well established method that can provide detailed knowledge of these competing reactions is electrochemical impedance spectroscopy (EIS).[36] Charge transfer resistance is a limiting factor for DSSCs. Two interfaces in DSSCs where charge transfer can take place are: i) at the Pt/electrolyte interface and ii) at the indium titanate (nanocrystalline material)/dye/electrolyte interface, referred to as R_{Pt} and R_{ct}, respectively. EIS spectra of indium titanate nanowires are shown in Figure 4-8, which were collected using 200 mV AC, -0.5 DC V, and signal frequency 0.1 to 1×10^5 Hz, while the cell was under 1 sun illumination at 100 mW/cm². Two semicircles were observed in all the DSSCs. The first was at a high frequency region with corresponding information about the Pt/electrolyte interface resistance R_{Pt}. The second circle was at the middle frequency region,
corresponding to indium titanate nanowires/dye/electrolyte interface resistance R_{ct}, which was insignificant. However, no semicircle at low frequency was observed which indicates that electron diffusion limitation occurs within the electrolyte. [37]

Fitting the electrochemical impedance spectra to equivalent circuit will enable determination of each internal resistance of the DSSC. The equivalent electrical model consists of resistors that are connected in series with parallel capacitors to reflect chemical capacitance at different interfaces as shown in Figure 4-8c. In this model R1, R2 and R3 represent series resistance, resistance at counter electrode, and resistance at the photoanode respectively. CPE1 and CPE2 represent chemical capacitance at counter electrode/electrolyte and photoanode (nanocrystalline/dye/electrolyte), respectively. The resistance and chemical capacitance results were calculated from the spectra using Z-view software.

The drop in DSSCs efficiency with increasing indium doping concentration can be explained by the EIS spectra results. The increase in charge transfer resistance at the counter electrode of DSSCs with In2, In3, and In4 was observed in the EIS spectra as maximum of the semicircles is in higher frequency, compared to In1 which shifted to the right as a lower frequency as shown Figure 4-8b. These EIS results are in a good agreement with the decreasing efficiency and increased resistance values R_s at open circuit conditions of the corresponding DSSCs obtained from J-V measurement. The increased efficiency of In1 DSSC compared to undoped TiO$_2$ nanowires DSSC prepared using the same synthesis method is attributed to the reduced recombination rate and enhanced light harvesting efficiency, and lower R_s resistance value of 455 for In1 compared to 724 for TiO$_2$ NW. However, as the indium doping concentration increased, the resistance of at the counter electrode increased. The series resistance, R_{Pt} and R_{ct}, are referred to in our fitted model as R1, R2, and R3, respectively. The disappearance of the semicircles at middle and low frequencies is attributed to the fact that R_{ct} is not significant but as its values (R3) are lower than the rest of resistance as shown in Table 4-3.
Figure 4-8: Nyquist plot (a) and the bode plots (b) measured with EIS analyzer for the DSSCs of Indium Titanate nanowires and (c) equivalent circuit.
Table 4-3: Typical EIS parameters calculated by fitting the data to an equivalent circuit for P25 TiO$_2$, undoped TiO$_2$ nanowires, and indium titanate nanowires In1, In2, In3 and In4.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>Efficiency (%)</th>
<th>Rs ()</th>
<th>Rsh ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>4.67</td>
<td>15.16</td>
<td>120</td>
<td>1.09</td>
<td>50</td>
<td>20473</td>
</tr>
<tr>
<td>TiO$_2$ NW</td>
<td>4.15</td>
<td>7.98</td>
<td>202</td>
<td>0.21</td>
<td>724</td>
<td>27411</td>
</tr>
<tr>
<td>In 1 (1 %)</td>
<td>4.18</td>
<td>22.77</td>
<td>28.09</td>
<td>0.51</td>
<td>455</td>
<td>34869</td>
</tr>
<tr>
<td>In 2 (2 %)</td>
<td>4.45</td>
<td>17.62</td>
<td>22.61</td>
<td>0.30</td>
<td>770</td>
<td>41376</td>
</tr>
<tr>
<td>In 3 (3 %)</td>
<td>4.23</td>
<td>18.35</td>
<td>17.84</td>
<td>0.27</td>
<td>890</td>
<td>49173</td>
</tr>
<tr>
<td>In 4 (4 %)</td>
<td>2.5</td>
<td>17.82</td>
<td>19.69</td>
<td>0.10</td>
<td>2291</td>
<td>42748</td>
</tr>
</tbody>
</table>

4.3.4 Photocatalytic Hydrogen Production

Photocatalytic activities of synthesized indium titanate nanowires, undoped TiO$_2$ nanowires, and P25 were investigated for sacrificial hydrogen production, with the results shown in Figure 4-9. Higher hydrogen amounts were produced by indium titanate irrespective of the indium loading level, indicating that indium titanate has a higher photocatalytic activity than pure P25 or undoped TiO$_2$ nanowires. The results showed indium doping with 2 atomic % produced highest amount of hydrogen of 734 µmol/g-hr followed by 1 atomic %, 3 atomic % and 4 atomic% with hydrogen production of 637, 351, and 88 µmol/g-hr, respectively. These are significant improvements compared to the undoped TiO$_2$ nanowires, which produced only 28 µmol/g-hr and 130 µmol/g-hr of P25. The results showed no decline of the catalytic activities for all catalysts over seven hours during the experiment. Optimum indium loading was found to be about 2 atomic %, which produced a significant amount of hydrogen, around 5.7 times more than that of
commercial P25, and 26 more than undoped TiO\textsubscript{2} nanowires. Using supercritical CO\textsubscript{2} as solvent, uniform nanowires with high surface area comparable to the nanoparticles were prepared that provided the required higher sites for reaction to take place with better surface charge transport and separation. In addition, doping with indium produced mixed phase of anatase and rutile as discussed in the XANES section which provided more active boundaries in addition of indium boundaries for reaction to take place and effective charge transport resulting in reduced recombination and enhancing hydrogen generation.

Figure 4-9: Hydrogen production using 0.16M formaldehyde, catalyst loading of 1g/L under solar radiation of 100mW/cm2.
Figure 4-10: Total hydrogen produced by indium doped nanowires (In1, In2, In3, and In4), undoped TiO$_2$ nanowires, and undoped P25.
4.4 Conclusion

Indium titanate nanowires at different levels (1-4 atomic %) of indium were prepared and characterized using SEM, TEM and EDS showing uniform indium dispersion within formed nanowires. In addition, this method produced the high surface areas which were double the commercially available nanoparticles P25 and prepared undoped nanowires. Photoelectric current generated by 1.0 atomic % indium was double that produced by undoped TiO$_2$ nanowires and its efficiency was 2.5 times. However, for as a photocatalyst for hydrogen production, indium titanate nanowires showed a greater improvement with 26, and 5.7 times of hydrogen produced compared to undoped titanium nanowires and P25 respectively. These results make indium titanate an excellent photocatalyst for sacrificial hydrogen production.
4.5 References

Bismuth titanate and undoped TiO$_2$ nanowires were prepared using a unique sol-gel methodology in supercritical CO$_2$, using titanium alkoxide, bismuth acetate, and acetic acid as the polycondensation agent. Nanowire formation was confirmed by SEM and TEM for all bismuth titanate and undoped TiO$_2$. X-ray and XPS results confirmed the formation of bismuth titanate nanowires and the level of bismuth doping, while high surface area was confirmed by BET analysis. Sacrificial hydrogen production under solar light irradiation (100 mW/cm2) was evaluated using different bismuth doped titania nanowires. Contrary to the other studies, this study reports for the first time that bismuth titanate is capable of photocatalytic hydrogen production without further doping using any noble or transition metal.
5.1 Introduction

Photocatalysis is a widely studied and applied method for the remediation of waste streams due to the ready availability of relatively inexpensive photocatalyst and capacity for free solar energy to carry out the reactions[1]. A large number of different photocatalytic systems have been investigated in recent years for their environmental applications or alternative energy production.[2] Producing hydrogen from sunlight using solar photocatalysis is a promising alternative for clean energy production. Titanium dioxide is the choice of photocatalyst in many applications due to its low band gap energy and low cost.[3] Further enhancement of its performance has been achieved by doping with noble metals including Pt and Au or transition metals like Cu, Ni, Fe, etc. with focus on reduction of electron-hole recombination or increase in visible light absorption by the photocatalyst. [4]

With increasing environmental concerns and the need for ‘green reagents’, interest in bismuth and its compounds has increased significantly over the last few years.[5] In particular, bismuth titanate has received significant interest for photocatalytic activities in visible light to degrade organic pollutants.[6] Bismuth (III) compounds are useful reagents in organic synthesis because of their low toxicity, low cost and ease of handling. Enhanced visible light absorption is a result of hybridization of Bi (6p), Bi (6s) with Ti (3d), O (2p) orbitals, respectively to provide the visible shift. Photocatalytic removal of organic pollutants in water and wastewater applications has been the main objective of these studies involving this promising photocatalyst. Different morphologies of bismuth titanate are reported with varying photocatalytic performances.[7] Yao et al. (2004) prepared a perovskite phase bismuth titanate nanoparticle with diameter between 10-90 nm that showed excellent photodegradation of methyl orange (90 % removal occurs in about 4 hours). Lin et al. prepared bismuth titanate microspheres using an autoclave method for methyl orange degradation.[8, 9] Recently, bismuth doped TiO$_2$- graphene nanocrystals prepared by an autoclave method by the Charpentier group were tested as a hot carrier transport in dye-sensitized solar cell (DSSC). [10] Bismuth titanate nanorods or nanowires are rarely reported in the literature until recently when Pei et al. (2015) synthesized bismuth titanate nanorods (50-200 nm length and 2 μm diameter) using a
facile hydrothermal process without additives for the visible light photodegradation of methylene blue and Rhodamine B.

Very few studies on photocatalytic hydrogen production using bismuth titanate are reported in the literature compared to its photocatalytic or its ferromagnetic applications.[11, 12] Kudo and Hijii (1999) were the first group of researchers to report evolution of hydrogen from water, albeit at a low rate of 0.6 µmol H₂/hr using layered oxide photocatalysts consisting of Bi³⁺. On the other hand, Merka et al. (2014) demonstrated hydrogen production only after loading bismuth titanate with platinum and platinum/chromium as a co-catalyst.[13, 14] These experimental investigations are in contradiction with density functional theory (DFT) calculations by Murugesan et al.(2015), which indicated that bismuth titanate has all the requirements to produce hydrogen by water splitting, yet no significant hydrogen production was reported using undoped bismuth titanate.[15] The objective of the current work is to synthesize bismuth titanate nanowires with different bismuth to titanium ratios using a ScCO₂ sol-gel process and evaluate their photocatalytic sacrificial hydrogen production potential, helping to rationalize the contradictory results reported in the literature.

5.2 Experimental Details

5.2.1 Chemicals and Materials

Bismuth (III) acetate (99.99%), titanium (IV) isopropoxide (TIP) (97%), acetic acid (99.7%), and formaldehyde solution (36.5%) were purchased from the Aldrich Chemical Company, Oakville, ON, Canada and used without further purification. Instrument grade liquid carbon dioxide (99.99%) from Air Liquide Canada was delivered by a syringe pump (Isco 260D) into a 10 mL view cell reactor equipped with a pressure transducer, heating tape, and thermocouple for temperature control. The details of the reactor are provided in Lucky et al.[16]

5.2.2 Synthesis of Bismuth Titanate Nanowires

In a typical experiment, predetermined amounts of titanium isopropoxide (TIP) and bismuth (III) acetate were quickly placed in the 10 mL view cell, followed by addition of
acetic acid, and CO₂. The amount of bismuth (III) acetate was varied to prepare four different concentrations of bismuth titanate nanowires. The view cell was heated to 60 °C and subsequently pressurized to 5000 psig using ScCO₂. A magnetic stirrer was used to ensure uniform mixing of the reactants. The hydrolysis rate was controlled by adjusting metal precursors to acetic acid molar ratios in the range of 1:5-6. During the gelation stage, a light pink color was observed in about 30 and 40 minutes for bismuth doped titania before changing to white color the next day. After five days of aging, the samples were washed with 100 mL of scCO₂ at a rate of 0.3 mL/min to remove unreacted materials and by-products, and to prevent collapse of the gel network. The prepared bismuth doped TiO₂ sol-gel was then calcined in air at 500 °C for 2 hours. The calcination temperature was selected based on the thermal gravimetric analysis (TGA) results (not shown) where bismuth doped catalysts showed removal of organic components at about 450 °C. Undoped titanium dioxide nanowires were prepared in a similar way without the addition of bismuth (III) acetate.

5.2.3 Characterization of Bismuth Titanate Nanowires

The morphological features of synthesized nanowires were investigated by scanning electron microscopy (SEM) (Model LEO 1530) and transmission electron microscopy (TEM) (Model JEOL 2010F) capable of dark field scanning transmission electron microscopy (STEM) and coupled with energy dispersive X-ray spectroscopy. For TEM characterization, the powdered samples were dispersed in ethanol by sonication for 15 min and then casted on a copper grid covered with holey carbon film. Samples for SEM imaging were prepared by applying the powder directly to a carbon adhesive tape. The BET (Brunauer-Emmett-Teller) surface area and BJH (Barrett-Joyner-Halenda) pore size and volume analysis were determined from nitrogen adsorption and desorption isotherm data obtained at 77 K with a constant-volume adsorption apparatus (Micromeritic Tristar II) using N₂ gas (99.995% pure; obtained from Praxair, Canada). The prepared samples were degassed under nitrogen gas flow at 150°C overnight before measurements. Structural analysis of the samples was performed using an X-ray powder diffractometer (Rigaku Miniflex XRD, Texas, U.S.A.), fitted with a rotating sample holder, a scintillation counter detector and a divergent beam utilizing a Cu Kα source of X-rays.
(\(\lambda=1.5418\ \text{\AA}\)). The XPS analysis was carried out with a Kratos Axis Ultra spectrometer using a monochromatic Al K (alpha) source (15mA, 14kV).

5.2.4 Photocatalytic Hydrogen Production

The experimental setup for photocatalytic sacrificial hydrogen production was reported previously. [17] A pyrex glass photocatalytic reactor (11 cm x 6.3 cm) with a volume of 350 ml was used to carry out the experiments. Most of the experiments were conducted using 50 mg of photocatalyst in 50 ml solution using 0.16 M formaldehyde as the sacrificial agent. Prior to solar irradiation, the solution was agitated at 500 rpm using a magnetic stirrer (Heidolph) for 1 hour with simultaneous nitrogen purging at ambient pressure to eliminate oxygen from the solution. The reactor contents were irradiated using a solar simulator (model: SS1 KW, Scienctech) with a xenon arc lamp. The solar lamp produces irradiance at full power (1000 watts), which is similar to the global solar spectrum at sea level of 100 mWcm\(^{-2}\). The photocatalytic reactor was air-cooled with a fan to keep the temperature constant at ambient conditions.

A Gas Chromatography (Schimadzu GC 2014, Heyesep D packed column: 10 m length, 2 mm ID, and 2 µm film thickness, with thermal conductivity detector (TCD)) was utilized for quantification of produced hydrogen. The calibration of the GC was conducted using a 1000 ml gas-sampling bulb (Supelco), which was filled with nitrogen and hydrogen to yield hydrogen calibration gas with desired concentrations.

5.3 Results and Discussion

The morphology of bismuth titanate and TiO\(_2\) nanowires was examined by SEM, with a typical result shown in Figure 5-1a for bismuth titanate nanowires. The TEM images of bismuth titanate nanowires shown in Figure 5-1 b-c demonstrate clear uniformity and porosity of these nanowires. Higher magnification of selected tips shows the grain boundaries and different orientations of crystalline lattice providing multiple active sites for photocatalytic processes to take place at the boundaries of these grains (about 5 nm) as shown in Figure 5-1d.
Figure 5-1: SEM image of bismuth titanate nanowires (a), and TEM images of single nanowire (b), Higher TEM magnification of b (c) showing grain sizes which is about 5 nm.

Greater details of the bismuth titanate morphology using high resolution TEM are shown in Figure 5-2. A selected site on a bismuth titanate nanowire is shown with grains in different directions with approximate size of 5-7 nm as labeled in Figure 5-2a. Figure 5-2 b-c are for selected sites showing a magnification on the lattice and enhanced image by applying inverse fast fourier transform (FFT) for calculation of the lattice distance, respectively. The lattice distance was calculated to be 0.33 nm by average spacing of 10 lattice spaces as shown in the histogram in Figure 5-2d. Similar processing techniques were applied to the other two sites which showed a lattice distance of 0.33 nm related to anatase phase and the two crossed lattices of 0.35 nm in Figure 5-2e and Figure 5-2 g, respectively.
Figure 5-2: HRTEM images of bismuth titanate nanowire (a), High resolution TEM of selected site 1 (b), enhancement of (b) using inverse FFT (c), histogram of (c) calculating lattice distance (d), enhanced inverse FFT selected site 2 (e), enhanced inverse FFT of cross planes for lattice distance for site 3 (g).

To illustrate the degree of dopant metal dispersion throughout the nanowires, TEM mapping using energy dispersive X-ray spectroscopy (EDS) is shown for bismuth titanate nanowires in Figure 5-3. The nanowires showed uniform dispersion of bismuth metal throughout the nanowires with bismuth loadings of about 1, 2, and 2.5 atomic %. The high degree of dispersion of bismuth throughout the bismuth titanate nanowires is attributed to the synthesis methodology using ScCO$_2$ as a solvent and drying agent. This unique synthesis methodology helped in enhancing the precursors’ solubility, preventing the collapse of formed networks during gelation due to the zero surface tension of ScCO$_2$ during the aging and washing stages as described in details previously.[18]
Figure 5-3: STEM images of bismuth titanate nanowires showing porosity of nanowires as in dark field (a1, b1, c1), EDS mapping shows the dispersion of titanium in (a2, b2, c2), and bismuth within nanowires in (a3, b3, c3) for bismuth loading of 1, 1.4 and 2.5 at % respectively.

Infrared spectroscopic results showed successful condensation during the sol-gel chemistry between TIP and bismuth acetate as three new peaks were formed at 1753, 1701, and 737 cm\(^{-1}\) in the produced gel which can be attributed to C=O and Ti-O stretching. Furthermore, disappearance of absorption peaks at 1116, 990, and 848 cm\(^{-1}\) of TIP is attributed to Ti-O-C and Ti-O stretch vibrations, shown in Figure 5-4a. In addition, it was observed that peaks at 1116 cm\(^{-1}\) and the band around 1375 cm\(^{-1}\) of TIP were decreasing as the amount of bismuth acetate increased from 1.4 mol % to 7 mole %. This is due to more of the titanium alkoxide is reacting with bismuth acetate as shown in Figure 5-4b.[19-22] Furthermore, the bands around 1735 cm\(^{-1}\) and 1430 cm\(^{-1}\) are assigned to COO vibrations of monodentate and bidentate bridging, respectively. It is expected that the bidentate bridging is more likely as the band around 1735 cm\(^{-1}\), also can be assigned to free COO acid in the formed gel.
Figure 5-4: FT-IR spectra of (a) TIP and bismuth acetate and their resulting sol-gel product at 7 mole % bismuth, (b) is comparing the resulting sol-gel of (a) at different loadings of bismuth acetate namely 1.4, 2.5, 5, and 7 mole % bismuth.

The BET surface areas of all four samples of bismuth titanate Bi1, Bi2, Bi3, and Bi4 nanowires were measured as 80, 85, 84 and 99 m²/g, respectively. It is known that the surface area decreases as a material’s dimensionality increases. For example, nanoparticles have higher surface areas compared to nanorods and nanowires.[23, 24] Despite the formation of nanowires, the produced undoped TiO₂ nanowires had comparable surface areas to Degussa P25 (also examined in this work) which was measured as 58 and 50 m²/g, respectively. The relatively high surface area of the nanowires can be attributed to pores formation during the sol-gel synthesis of nanowires and more crucially retaining of the pores by ScCO₂ drying as shown by the dark field STEM images in Figure 5-3.

The crystalline structures of the calcined bismuth titanate nanowires were investigated using X-ray Diffraction. The XRD patterns of bismuth titanate nanowires were compared with XRD spectra of the undoped TiO₂ nanowires that have characteristic peaks at 25⁰,
$38^0, 48^0, 53^0, 55^0, 63^0, 70^0$ and 76^0 shown in Figure 5-5a, which are an excellent match to anatase phase (PDF 01-086-1157). X-Ray diffraction of bismuth titanate nanowires with different loadings showed additional peaks with $2\theta= 27^0$ and 31^0, and 36^0 which are related to bismuth. The bismuth characteristic peak around 27^0 corresponds to the plane [012] of rombohedral bismuth. The peak at 31^0 (Figure 5-5b) shows that the intensity of these peaks increased as the bismuth doping level increased. A shift to lower angle of the anatase peak of $2\theta= 25.5^0$ was observed in Figure 5-5c, with increased bismuth doping confirming the loading of bismuth into titania lattice as reported in literature.[25] This shift can be attributed to doping of the larger ionic radius of bismuth (0.103 nm) into the lattice of titania which is (0.061 nm) as shown in Figure 5-5b. In addition, a gradual change of intensity ratio between peaks at 54^0 and 55^0 occurs, with these two peaks merging into one peak at 54.5^0, as more bismuth was added into the nanowires. This also was the case for peaks at 68.9^0 and 70.4^0 as shown in Figure 5-5a. Moreover, no change was observed for peaks at 48^0 and 62^0 except a drop in intensity of the peak at 48^0 compared to peak at 54.5^0. [26, 27] The change to the titanium dioxide lattice structure confirmed doping of bismuth, which is near the surface as its ions are larger than titania, which may enhance the photocatalytic activity of the bismuth titanate nanowires by increased charge transfer on nanowire surface.
Figure 5-5: XRD results of undoped TiO$_2$ nanowires and bismuth titanate nanowires.

Both the chemical oxidation states of bismuth and titanium and their concentrations were determined by XPS analysis. In all the prepared bismuth titanate nanowires, the chemical state of titanium is (IV) with a binding energy peak at 458.85 eV, depending on its interaction with the dopant metal as shown in Figure 5-6. The XPS analysis showed a characteristic binding energy peak of Bi 4f 7/2 at 159.46 eV, which indicates the existence of Bi (III).
Figure 5-6: XPS results of bismuth titanate nanowire showing (a) titanium (b) bismuth.

5.3.1 Photocatalytic Hydrogen Production

Photocatalytic activities of the synthesized bismuth titanate nanowires and undoped TiO$_2$ nanowires were investigated for sacrificial hydrogen production, with the results shown in Figure 5-7a. Hydrogen generation rates for the tested nanowires and P25 TiO$_2$ are shown in Figure 5-7b. Hydrogen evolution rates were 0.93, 0.20, µmol-hr$^{-1}$ for P25 TiO$_2$ and undoped TiO$_2$ nanowires, respectively. Higher hydrogen amount was produced by bismuth titanate irrespective of bismuth loading, indicating that bismuth titanate has a higher photocatalytic activity than pure P25 or the undoped TiO$_2$ nanowires. The rates of sacrificial hydrogen production using bismuth titanate nanowires were 6.5, 7.9, and 4.8 µmol-hr$^{-1}$ for 1 mol %, 1.4 mol %, and 2.0 mol % bismuth respectively. These results showed that bismuth doping with 1.4 mol % produced highest amount of hydrogen of 1107 µmol/g-hr followed by 1 mol%, and 2 mol% with hydrogen production of 914
μmol/g-hr, and 668 μmol/g-hr, respectively. These are significant improvements compared to the undoped TiO$_2$ nanowires, which produced only 28 μmol/g-hr and 130 μmol/g-hr of P25 TiO$_2$. The results shown in Figure 5-7b indicate that the catalytic activities of all the produced photocatalysts were stable over seven hours of experiment. Optimum bismuth loading was found at about 1.4 mole %, as higher loadings decreased the amount of hydrogen production as shown in Figure 5-8:

![Figure 5-7](image_url)

Figure 5-7: Photocatalytic hydrogen production (a) rate of production (b) by bismuth titanate nanowires, P25, and undoped TiO$_2$ NW.
A previous DFT study suggested that bismuth titanate should be doped with transition metals such as Fe, Ni, Cr, Mn, and V to modify the band gap to enable hydrogen production. [15] In 2014, Merka et al, synthesized non-stoichiometric pyrochlore bismuth titanate using an EDTA template in an aqueous sol-gel method and examined its capability to produce hydrogen. They evaluated three non-stoichiometric bismuth titanate catalysts compared to one stoichiometric bismuth titanate catalyst after photodeposition of 3 wt % platinum as a co-catalyst. The results showed that stoichiometric and Bi$_4$Ti$_3$O$_{12}$ were inactive production with very minimal hydrogen production.[14] However, in this study bismuth titanate nanowires produced significant amounts of hydrogen, around 8 times more than that of commercial P25, and 40 times more than undoped TiO$_2$ nanowires. The initial rates of hydrogen production using bismuth titanate nanowires were much higher compared to P25 and undoped nanowires. Using supercritical CO$_2$ as solvent, uniform nanowires with high surface area comparable to the nanoparticles were prepared that provided the required higher sites for reaction to take place with better surface charge transport and separation. In addition, doping with bismuth reduced the
conduction band energy by about 0.4 eV. This was achieved by combining Ti (3d) and Bi (6p) molecular orbitals at a lower conduction band position. The valance band position was also shifted to a lower positive potential by mixing Bi (6s) and O (2p) orbitals. This shift in the valance band enhanced the migration of photogenerated holes from the TiO$_2$ valance band to the Bi valance band resulting in more effective charge separation. The holes were further consumed by sacrificial formaldehyde in the solution leaving electrons to accumulate on bismuth sites to reduce H$^+$ to hydrogen gas as illustrated in Figure 5-9.

Figure 5-9: Schematic energy levels and photocatalytic hydrogen production by bismuth titanate nanowires.
5.4 Conclusions

Bismuth titanate nanowires with high photocatalytic activity to produce sacrificial hydrogen were successfully synthesized using a ScCO$_2$ sol-gel methodology. Significant amounts of hydrogen was produced by these nanowires irrespective of the bismuth loading level compared to commercial P25 and undoped titanium nanowires. This is attributed to their high surface areas and most importantly to the large number of grain boundaries that created active sites for reactions to take place. Energy band alignments with respect to TiO$_2$ and water reduction potential enabled efficient electron-hole separation and improved the charge transfer to bismuth for hydrogen generation. Bismuth titanate nanowires are promising for hydrogen generation with about 8 times more hydrogen than that produced by P25 and 40 times undoped TiO$_2$ nanowires prepared using similar approach and tested under similar conditions.
5.5 References

Bismuth titanate nanowires were prepared using a unique sol-gel methodology in supercritical CO\textsubscript{2} using titanium alkoxide, acetic acid as the polycondensation agent, and bismuth dopant to prepare 1.4 - 7 atomic % catalyst. The methodology produced uniformly dispersed dopants integrated into nanowires with diameters from 80-100 nm and high aspect ratios from 15-25 as observed by SEM. XPS results confirmed the formation and the composition of bismuth titanate nanowires. The performance of various dye sensitized solar cells (DSSC) using different levels of bismuth in the nanowires were evaluated using solar light irradiation at 100 mW/cm2. A bismuth doping level of 1.4 mol % with respect to Ti showed superior photoelectric performance in the DSSC cells, which was about 7.5 and 1.5 times greater compared to pure titanium nanowires and P25, respectively. Adding bismuth into the nanowires enhanced the harvesting of visible light and reduced the recombination of electron and holes.
6.1 Introduction

Nano-sized TiO$_2$ is the most widely examined photocatalyst for many photocatalytic and photoelectrical applications due to its numerous beneficial properties including high chemical and thermal stability, non-corrosivity, abundance, and cost effectiveness.[1] Despite all the benefits, poor activation of TiO$_2$ by visible light (TiO$_2$ absorbs only about 5% sunlight) and the rapid recombination of photo-generated electron/hole pairs have limited its efficiency, requiring future improvements for large scale application.[2][3] Many investigations have been conducted to decrease the effect of the charge recombination and to increase the efficiency of solar light utilization, with a focus on doping TiO$_2$ using various noble and transition metals such as Pt, Au, Pd, Rh, Ni, Cu, Ag, etc. [4][5] Doping TiO$_2$ also induces a red shift in the absorption spectrum, making it possible for visible light activation, enhancing the energy harvesting efficiency of this semiconductor.[6]

In particular, bismuth titanate has gained significant research interest for photocatalytic activities in visible light to degrade organic pollutants. [7] Enhanced visible light absorption is a result of hybridization of Bi (6p), Bi (6s) with Ti (3d), O (2p) orbitals, respectively to provide the visible shift. Bismuth titanate has been widely studied in the literature, with many reports on different preparation methods, that have yielded different morphologies with varying photocatalytic performances. [8-10] Yao et al. (2004) prepared perovskite phase nanoparticles of bismuth titanate with diameter between 10-90 nm that showed excellent photodegradation of methyl orange (90 % removal occurred in about 4 hours). [11] However, only a few studies on dye sensitized solar cells using bismuth titanate as photoanode are reported in the literature compared to its photocatalytic or ferromagnetic applications.[12, 13] In addition, bismuth titanate nanorods or nanowires are rarely reported in literature (Pei et al., 2015). Recently, bismuth doped TiO$_2$-graphene nanocrystals prepared by an autoclave method were tested as a hot carrier transport in DSSCs. [14] Limited photo-generated electrons in solar cells is due to low excitation energy available from direct sunlight at the titanium dioxide photoanode. The energy required for excitation of TiO$_2$ is about 3.2 eV, which lies in the UV region of sunlight. Even a slight extension of absorption spectra in the visible range
would contribute significantly to generation of electrons. These photogenerated electrons with their corresponding holes should be managed in DSSC’s for reduced recombination. Photogenerated electrons can recombine with excited dye molecules or recombine with holes at the surface of the nanostructure material. However, recombination with dye molecules is not critical due to the small lifetime of excited dye molecules.[15] Furthermore, collection of injected electrons can be improved by reducing the percolation pathways by using nanowires in the photoanode, which have direct percolation pathways to thin conductive oxide (TCO) as compared to the tortuous paths in nanoparticles. For these reasons, selection of the doping material that has a high electron mobility, prepared with efficient metal dispersion to reduce recombination sites is considered an effective method to improve the photoanode performance. [16]

Recently, supercritical carbon dioxide (ScCO₂) has been shown to produce high aspect ratio nanofibers/wires of titania with high surface areas and porosities.[17] ScCO₂ is an inexpensive and green alternative to conventional organic solvents; it is environmentally benign and non-flammable with low viscosity, zero surface tension and high diffusivity, which are favorable for synthesizing fine and uniform nanomaterials with porous nanostructure.[18] However, nanowires with high aspect ratio and well defined structures are yet challenging to prepare and to the best of our knowledge very limited preparation methods are reported if any and specially tested for dye sensitized solar cell application. Therefore, this work focuses on the synthesis and characterization of bismuth titanate nanowires with different bismuth to titanium ratios using a scCO₂ sol-gel process. The performances of produced nanomaterials for DSSC application were evaluated.

6.2 Experimental Details

6.2.1 Chemicals and Materials

Bismuth (III) acetate (99.99%), titanium (IV) isopropoxide (TIP) (97%), acetic acid (99.7%), ethylcellulose, and terpineol were purchased from the Aldrich Chemical Company, Oakville, ON, Canada and used without further purification. Instrument grade liquid carbon dioxide (99.99%) from Air Liquide Canada was delivered by a syringe pump (Isco 260D) into a 10 mL view cell reactor equipped with a pressure transducer,
heating tape, and thermocouple for temperature control. The details of the reactor are provided in an earlier publication (Lucky et al.[19]).

6.2.2 Synthesis of Bismuth Titanate Nanowires

In a typical experiment, predetermined amounts of titanium isopropoxide (TIP) and bismuth (III) acetate were quickly placed in the 10 mL view cell, followed by addition of acetic acid, and CO₂. The amount of bismuth (III) acetate was varied to prepare four different concentrations of bismuth titanate, with bismuth loadings of about 1, 2, 2.5, and 7 atomic %, hereafter referred as Bi1, Bi2, Bi3, and Bi4. The view cell was heated to 60 °C and subsequently pressurized to 5000 psig. A magnetic stirrer was used to ensure uniform mixing of the reactants. The hydrolysis rate was controlled by adjusting metal precursors to acetic acid molar ratios in the range of 1:5-6. During the gelation stage, a light pink color was observed in about 30-40 minutes for bismuth doped titania before changing to white color the next day. After five days of aging, the samples were washed with 100 mL of ScCO₂ at a rate of 0.3 mL/min to remove unreacted materials and byproducts, and to prevent collapse of the gel network. The prepared bismuth doped TiO₂ sol-gel was then calcined in air at 500 °C for 2 hours. The calcination temperature was selected based on the thermal gravimetric analysis (TGA) results (not shown) where bismuth doped catalysts showed removal of organic components at about 450 °C. Similarly, undoped titanium dioxide nanowires were prepared without the addition of bismuth (III) acetate.

6.2.3 Preparation of Photoanode

Bismuth titanate nanowires were mixed into a paste for coating on conductive glass. The paste was made by dissolving ethyl cellulose into ethanol and terpineol mixture (2:1, v/v), then stored in a sealed container to minimize the changes in viscosity due to solvent evaporation. Fluorine doped tin oxide (FTO) glass plates (15 ohms per sq. inch, Solaronix, Switzerland) were cleaned by detergent wash and sonication for 10 minutes for three times, rinsed with DI water, sonicated in acetone for 5 minutes, washed with isopropanol, and finally dried with nitrogen gas.
The photoanode was prepared by creating a mask template using packing tape with about 40 µm thickness on the conductive side of the FTO glass. The bismuth titanate nanowires paste mixture was applied by doctor-blading with a glass rod, which formulates the active layer of the photoanode. The template tape was lifted after 30 minutes to minimize cracking of the paste. For comparison, the same procedure was followed for TiO₂ (P25) and undoped titanium nanowires. The coated FTO glass was then calcined at 500 ºC under air at a heating rate of 5 ºC /min in a muffle furnace. The resulting films were cooled to 80 ºC before immersed for overnight into a dye solution of 0.3 mM cis-di-isothio-cyanato-bis (2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium (II) bis (tetrabutylammonium), also called N719 dye (Solaronix, Switzerland) in acetonitrile/tert-butyl alcohol (1:1, v/v) solution.

6.2.4 Assembling dye sensitized solar cells (DSSCs)

The solar cells were assembled by combining platinum coated glass as the counter electrode with the prepared photoanode mentioned above. Platinum electrode was washed with a detergent, then rinsed with DI water followed by acetone before regeneration at 350 ºC for 30 minutes prior to use. The two electrodes were kept at a distance using 50 µm thick Surlyn hot-melt gaskets. The cells were then laminated together by pressing them on a hotplate at 100 ºC. Iodine / tri-iodide (Iodolyte Z-100 from Solaronix) was used as the redox electrolyte, which was injected into the cell void by vacuum filling technique through a predrilled hole at the back of the counter electrode. Finally the cell was sealed with hot-melt seal and a glass slide cover.

6.2.5 Characterization of Bismuth Titanate Nanowires

The synthesized nanowire morphology was characterized by scanning electron microscopy (SEM) (Model LEO 1530) and transmission electron microscopy (TEM) (Model JEOL 2010F) capable of dark field scanning transmission electron microscopy (STEM) and coupled with energy dispersive X-ray spectroscopy. For TEM analysis, the powdered samples were dispersed in ethanol by sonication for 15 min and then cast on a copper grid covered with holey carbon film. Samples for SEM imaging were prepared by applying the powder directly to a carbon adhesive tape. The BET (Brunauer-Emmett-
Teller) surface area and BJH (Barrett-Joyner-Halenda) pore size and volume analysis were determined from nitrogen adsorption and desorption isotherm data obtained at 77 K with a constant-volume adsorption apparatus (Micromeritic Tristar II) using N\textsubscript{2} gas (99.995% pure; obtained from Praxair, Canada). The prepared samples were degassed at 150°C overnight before measurements. Structural analysis of the samples was performed using an X-ray powder diffractometer (Rigaku Miniflex XRD, Texas, U.S.A.), fitted with a rotating sample holder, a scintillation counter detector and a divergent beam utilizing a Cu K\textalpha source of X-rays (\(\lambda = 1.5418\) Å). The XPS analysis was carried out with a Kratos Axis Ultra spectrometer using a monochromatic Al K (alpha) source (15mA, 14kV). Photocurrent performance of the DSSCs was tested under Oriel solar simulator (92250A, AM 1.5 G) equipped with a 150 W Xe lamp and intensity of 100 mW/cm2 measured by a Keithley 2420 programmable SourceMeter.

6.3 Results and Discussion

Bismuth titanate nanowires were successfully prepared by the ScCO\textsubscript{2} sol-gel process at different loadings of bismuth using bismuth (III) acetate in addition to undoped TiO\textsubscript{2} nanowires using the same methodology. The nanowires morphology was examined by SEM, with a typical result shown in Figure 6-1a for TiO\textsubscript{2} nanowires. The TEM image of bismuth titanate nanowires shown in Figure 6-1b demonstrates clear uniformity with a high aspect ratio. Figure 6-1c is a high TEM image magnification of selected tips showing the high porosity of these nanowires.
The selectivity of producing bismuth titanate nanowires or TiO$_2$ nanowires over nanoparticles is dictated by the alkoxide to acetic acid ratio. Nanowires can be produced with alkoxide to acetic acid ratios ≥4.5 according to earlier research conducted in our group.[20]

To illustrate the degree of metal dopant dispersion throughout the nanowires, TEM mapping using energy dispersive X-ray spectroscopy (EDS) is shown for the bismuth titanate nanowires in Figure 6-2. The nanowires show uniform dispersion of bismuth metal throughout the nanowires, with a bismuth loading of 1, 2, and 2.5 atomic %. This excellent dispersion of bismuth throughout the nanowires is attributed to the synthesis methodology using ScCO$_2$ as a solvent and drying agent. Sc-CO$_2$ will enhance the
precursors’ solubility, preventing the collapse of formed networks during the gelation stage due to the zero surface tension of ScCO$_2$ during the aging and washing stages as described in detail previously.[20]

Figure 6-2: STEM image of bismuth titanate nanowires showing porosity of nanowire. EDS mapping shows the dispersion of titanium and bismuth within a nanowire.

The BET surface areas of the prepared bismuth titanate nanowires Bi1, Bi2, Bi3, and Bi4 were measured as 80, 85, 84 and 99 m2/g, respectively. It is known that the surface area increases as a material’s dimensionality increases. For example, nanoparticles have higher surface areas compared to nanorods and nanowires.[21, 22] Despite the formation of nanowires, the produced undoped TiO$_2$ nanowires had comparable surface areas to Degussa P25 nanoparticles (also examined in this work) which we measured as 58 and 50
m²/g, respectively. The relatively high surface area of the bismuth doped nanowires can be attributed to pores formation during their sol-gel synthesis retaining the pores by scCO₂ drying as shown by the dark field STEM images in Figure 6-2.

The XRD patterns of the bismuth titanate nanowires were compared with XRD spectra of the anatase TiO₂ phase with characteristic peaks at 25°, 38°, 48°, 53°, 55°, 63°, 70° and 76° shown in Figure 6-3a, which are an excellent match to anatase (PDF 01-086-1157). X-Ray diffraction of bismuth titanate showed broad peaks in addition to the anatase peaks with 2θ= 27° and 30°, and 36° which increased as the bismuth doping level increased as shown in Figure 6-3b. A shift to a lower angle of the anatase peak of 2θ= 25.5° was observed with bismuth doping, which is in line with reported literature. Due to the larger ionic radius of Bi³⁺ (0.103 nm) compared to Ti⁴⁺ (0.061 nm), it replaces the Ti ions in the nanostructure. However, as the bismuth level increased only a slight shift to a higher angle is observed as shown in Figure 6-3c. This can be attributed to the increased amount of bismuth. One characteristic bismuth peak is around 27°, corresponding to the plane [012] of rombohedral bismuth. In addition, a gradual change of intensity ratio between peaks at 54° and 55° occurs, with these two peaks merging into one peak at 54.5°, as more bismuth is added into the nanowires. This was also the case for peaks at 68.9° and 70.4° as shown in Figure 6-3d. Moreover, no change was observed for peaks at 48° and 62° except a drop in intensity of the peak at 48° compared to peak at 54.5°, which is in agreement with literature.[23]
Figure 6-3: XRD results of titanium dioxide nanowires, bismuth titanate nanowires (a) XRD overview (b, c, and d) selected ranges of magnification.
Both the chemical oxidation states of bismuth and titanium elements and their concentrations within the nanowires were determined by XPS analysis. In all the prepared bismuth titanate nanowires, the chemical state of titanium is (IV) with a binding energy peak at 458.85 eV, depending on its interaction with the dopant metal as shown in Figure 6-4. The XPS analysis showed a characteristic binding energy peak of Bi 4f 7/2 at 159.46 eV, which indicates the existence of Bi (III).

![Figure 6-4: XPS results of bismuth titanate nanowire high resolution scan for the following elements (a) oxygen (b) Titanium (c) carbon (d) bismuth.](image)

6.3.1 Photocurrent measurements

To evaluate the effectiveness of this synthesis method to produce highly dispersed bismuth dopant, its effect on DSSC's photocurrent density-voltage (J-V) curves were measured for P25 TiO₂, undoped TiO₂ nanowires, and bismuth titanate nanowires Bi₁,
Bi2, Bi3 and Bi4 as shown in Figure 6-5. The open-circuit voltages (Voc) for P25 TiO2 and sample Bi1 are comparable with values of 0.70 and 0.71 V, respectively. However, the undoped TiO2 nanowires showed a lower Voc value of 0.63 V with the rest of the dye sensitized solar cells measured as 0.67,0.67,0.65 V for Bi2, Bi3, and Bi4, respectively. Although Voc is an indication of the chemical potential of the cell, which is a function of the nanocrystalline materials at the photoanode with respect to the chemical potential of the redox electrolyte, the voltage at zero short circuit current (Vmax) is used to evaluate the DSSC overall electrical efficiency. The Voc for all the cells were comparable except for the best performing ones are P25 and Bi1 as shown in Table 6-1.

The cell efficiency (η) was calculated using the equation below:

$$\eta = \frac{J_{sc} \times \text{Voc} \times \text{FF}}{I}$$ \hspace{1cm} (6-1)

where, Jsc is the short current density (mA/cm²), the maximum cell voltage is Vmax (volt), Fill factor (FF) and I represents the incident light intensity (mW/cm²). It is clear from these results that bismuth doping increased the efficiency compared to the undoped TiO2 NW by 7.5 times. This tremendous improvement can be attributed to bismuth doping at 1.4 atomic % for sample Bi1 had 8 times less series resistance than the undoped titanium nanowires and has about 5.5 times the photocurrent density. However, as bismuth doping increased, the Rs resistance also increased while the photocurrent dropped, which negatively impacted the cell performance. The total power produced in a dye sensitized cell is a critical factor, which reflects the total electrochemical productivity of each cell. Similar results can be observed for cell power, which are shown in Figure 6-6. The Bi1 and P25 TiO2 showed the highest cell powers while the TiO2 NW is the lowest. Power generation behaved in the same manner as photocurrent, with increasing concentration of bismuth the power output decreased.
Table 6-1: Photoelectric performance parameters for P25 TiO$_2$, undoped TiO$_2$ nanowires, and bismuth titanate nanowires Bi1, Bi2, Bi3 and Bi4 and irradiation of 100 mW/cm2.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Voc (V)</th>
<th>Jsc(mA/cm2)</th>
<th>V$_{max}$(V)</th>
<th>Fill Factor (%)</th>
<th>η (%)</th>
<th>Rs (Ω)</th>
<th>Rsh (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>0.70</td>
<td>2.23</td>
<td>0.57</td>
<td>70</td>
<td>1.09</td>
<td>50</td>
<td>20473</td>
</tr>
<tr>
<td>TiO$_2$ NW</td>
<td>0.63</td>
<td>0.59</td>
<td>0.50</td>
<td>57</td>
<td>0.21</td>
<td>724</td>
<td>27411</td>
</tr>
<tr>
<td>Bi 1 (1.4 %)</td>
<td>0.71</td>
<td>3.22</td>
<td>0.56</td>
<td>69</td>
<td>1.58</td>
<td>90</td>
<td>24338</td>
</tr>
<tr>
<td>Bi 2 (2.5 %)</td>
<td>0.67</td>
<td>1.37</td>
<td>0.52</td>
<td>64</td>
<td>0.59</td>
<td>261</td>
<td>26374</td>
</tr>
<tr>
<td>Bi 3 (5 %)</td>
<td>0.67</td>
<td>1.08</td>
<td>0.50</td>
<td>62</td>
<td>0.45</td>
<td>357</td>
<td>30032</td>
</tr>
<tr>
<td>Bi 4 (7 %)</td>
<td>0.65</td>
<td>0.71</td>
<td>0.49</td>
<td>61</td>
<td>0.28</td>
<td>535</td>
<td>33409</td>
</tr>
</tbody>
</table>
Figure 6-5: Photocurrent density- voltage (J-V) curves for P25 TiO$_2$, undoped TiO$_2$ nanowires, and bismuth titanate nanowires Bi1, Bi2, Bi3 and Bi4 at irradiation of 100 mW/cm2.

Figure 6-6: Power curves for undoped TiO$_2$ nanowires, and bismuth titanate nanowires Bi1, Bi2, Bi3 and Bi4 and irradiation of 100 mW/cm2.
6.3.2 Electrochemical Impedance Spectroscopy Analysis

Internal evaluation of dye sensitized solar cells is critical as it deepens our understanding of the competing processes that occur within our novel nanowire photoanode materials. The knowledge of the kinetics of the photoelectrochemical processes is critical for determining the limitations and evaluating proposed enhancement approaches. A well established method is electrochemical impedance spectroscopy (EIS), which can provide detailed knowledge of these competing reactions.[24] Charge transfer resistance is a limiting factor for the dye sensitized solar cell. Two interfaces in DSSCs where this can take place, namely, charge transfer resistance at the Pt/electrolyte interface and at the bismuth titanate (nanocrystalline material)/dye/electrolyte interface, are referred to as R_{Pt} and R_{ct}, respectively.

EIS spectra of bismuth titanate nanowires, shown in Figure 6-7, were collected using 200 mV AC, -0.5 DC V, and signal frequency 0.1 to 1×10^5 Hz, while the cell was under 1 sun illumination at 100 mW/cm². Two semicircles were observed at low levels of bismuth doping in sample Bi1. The smaller semicircle was at a high frequency region with corresponding information about the Pt/electrolyte interface resistance R_{Pt}. The second circle was at the middle frequency region, corresponding to bismuth titanate nanowires/dye/electrolyte interface resistance R_{ct}. However, no semicircle was observed at low frequency which indicated insignificant electron diffusion limitation within the electrolyte. [25] The drop in DSSCs efficiency with increasing bismuth doping concentration can be explained by the EIS spectra results. The increase in charge transfer of DSSCs Bi1, Bi2, Bi3, and Bi4 was observed in the EIS spectra as the magnitude of these semicircles increased in Figure 6-7. These EIS results are in a good agreement with the decreasing efficiency and increased resistance values Rs at open circuit conditions of the corresponding DSSCs. The increased efficiency of Bi1 DSSC compared to undoped TiO$_2$ nanowires DSSC prepared using the same synthesis method is attributed to the reduced recombination rate and enhanced light harvesting efficiency, and lower Rs resistance value of 90 for Bi1 compared to 724 for TiO$_2$ NW. However, as the bismuth doping concentration increased, charge transfer within the solar cells also increased. The disappearance of the small semicircle at low frequency's corresponding to
\(R_{R} \) in samples Bi2, Bi3 and Bi4 is attributed to the fact that \(R_{ct} \) being the predominant resistance for these dye sensitized solar cells.

\[\text{Impedance Spectroscopy} \]

(a)

\[\text{Frequency (Hz)} \]

(b)

(c)

Figure 6-7: Nyquist plot (a) and the Bode plots (b) measured with EIS analyzer for the DSSCs of bismuth titanate nanowires, and (c) equivalent circuit.

Fitting the electrochemical impedance spectra to an equivalent circuit enables determination of each internal resistance of these DSSCs. The equivalent electrical model consists of resistors that are connected in series with parallel capacitors to reflect chemical capacitance at different interfaces as shown in Figure 6-7c. In this model R1, R2 and R3 represents series resistance, resistance at the counter electrode, and resistance at the photoanode, respectively. CPE1 and CPE2 represent the chemical capacitance at
the counter electrode/electrolyte and the photoanode (nanocrystalline/dye/electrolyte), respectively. The resistance and chemical capacitance results were calculated from the spectra using Z-view software with typical results summarized along with the efficiency of each DSSC presented in Table 6-2.

Table 6-2: Typical EIS parameters calculated by fitting the data to equivalent circuit for P25 TiO$_2$, undoped TiO$_2$ nanowires, and bismuth titanate nanowires Bi1, Bi2, Bi3 and Bi4.

<table>
<thead>
<tr>
<th>Sample</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>Efficiency (%)</th>
<th>Rs (Ω)</th>
<th>Rsh (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>4.67</td>
<td>15.16</td>
<td>120</td>
<td>1.09</td>
<td>50</td>
<td>20473</td>
</tr>
<tr>
<td>TiO$_2$ NW</td>
<td>4.15</td>
<td>7.98</td>
<td>202</td>
<td>0.21</td>
<td>724</td>
<td>27411</td>
</tr>
<tr>
<td>Bi 1 (1.4 %)</td>
<td>6.67</td>
<td>7.30</td>
<td>52.4</td>
<td>1.58</td>
<td>90</td>
<td>24338</td>
</tr>
<tr>
<td>Bi 2 (2.5 %)</td>
<td>4.99</td>
<td>12.40</td>
<td>115</td>
<td>0.59</td>
<td>261</td>
<td>26374</td>
</tr>
<tr>
<td>Bi 3 (5 %)</td>
<td>4.50</td>
<td>21.29</td>
<td>167</td>
<td>0.45</td>
<td>357</td>
<td>30032</td>
</tr>
<tr>
<td>Bi 4 (7 %)</td>
<td>4.42</td>
<td>0.61</td>
<td>202</td>
<td>0.28</td>
<td>535</td>
<td>33409</td>
</tr>
</tbody>
</table>

EIS results are in agreement with the J-V measurements, which showed that bismuth doping improved the DSSC efficiency in general compared to undoped TiO$_2$ NW and dropped as bismuth doping increased. EIS showed that R1 which is the sheet resistance did not change much, except for sample Bi1. However, the resistance at the counter electrode was affected by the bismuth titanate doping and the transition of morphology from nanoparticles as in P25 to nanowires. The most critical resistance is the photoanode resistance (R3), which showed bismuth doping at 1.4 % caused 4 times less resistance compared to undoped titanium nanowires. This lower resistance enhances electron flow reducing the chances for recombination to take place. This resistance also increased as a function of bismuth concentration; having comparable resistance to the undoped titanium dioxide at 7% bismuth doped titanium nanowires.
Electron lifetimes in DSSCs is a critical parameter that greatly influences its performance. The photogenerated electrons with longer lifetime can be more effectively transported through the active nanocrystalline phase to FTO glass, then to the counter electrode to reduce the electrolyte and help in regeneration of the dye; thereby completing their cycle lifetime and generating power. Shorter life-time electrons are due to recombination with dye or electrolyte negatively affecting the DSSC performance. Electron lifetimes can be calculated from the middle peak of the Nyquist plot using a characteristic frequency (ω_{max}) with the following equation 6-2.

$$\tau_e = \frac{1}{\omega_{\text{max}}} \quad 6-2$$

The shift of the peak frequency of the middle semicircle to a lower frequency is an indication of a longer electron life-time, as easily seen in the Bode-phase plot shown in Figure 6-7b. Doping with bismuth at the lowest (Bi1) level showed the longest electron lifetime of 3.7 ms, followed by both P25 and Bi2 with 2.4 ms, 1.6 ms and 2.0 ms for Bi3 and Bi4, respectively. In addition, we noticed that pristine TiO$_2$ NW's showed a lower electron lifetime compared to P25.

Table 6-3: Electron lifetime P25 TiO$_2$, undoped TiO$_2$ nanowires, and bismuth titanate nanowires Bi1, Bi2, Bi3 and Bi4.

<table>
<thead>
<tr>
<th>Sample</th>
<th>τ_e (ms)</th>
<th>ω_{max} (Hz)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>2.4</td>
<td>413.4</td>
<td>1.09</td>
</tr>
<tr>
<td>TiO$_2$ NW</td>
<td>1.6</td>
<td>628.3</td>
<td>0.21</td>
</tr>
<tr>
<td>Bi 1 (1.4 %)</td>
<td>3.7</td>
<td>272.0</td>
<td>1.58</td>
</tr>
<tr>
<td>Bi 2 (2.5 %)</td>
<td>2.4</td>
<td>413.4</td>
<td>0.59</td>
</tr>
<tr>
<td>Bi 3 (5 %)</td>
<td>1.6</td>
<td>628.3</td>
<td>0.45</td>
</tr>
<tr>
<td>Bi 4 (7 %)</td>
<td>2.0</td>
<td>509.6</td>
<td>0.28</td>
</tr>
</tbody>
</table>
6.4 Conclusions

Bismuth titanate nanowires with high aspect ratios and various loadings of Bi were successfully synthesized using sol-gel in ScCO$_2$, a green solvent. The performance of the produced bismuth doped nanowires for dye sensitized solar cell application was evaluated. A bismuth doping level of 1.4 mol % was found as the most effective in reduction of recombination of electron compared to pristine TiO$_2$ nanowires and P25 nanoparticles. The electron life time of 1.4 mol % Bi-titanate nanowire, P25 nanoparticles, and pristine TiO$_2$ nanowires was 3.7 ms, 2.4 ms, and 1.6 ms, respectively, with corresponding solar cell efficiency of 1.58%, 1.09%, and 0.21%. In addition, bismuth enhanced charge transfer at low levels of doping. It was also noticed that bismuth doping at 2.5 mol % showed lower charge resistance of 115 Ω compared to P25 at 120 Ω and TiO$_2$ NW at 202 Ω. These improvements are attributed to better bismuth dispersion while having a high surface area. These were found to improve electron transport due to lower resistance within the bismuth titanate layers, and reduced recombination time as shown by the electron lifetime. Doping of titanium dioxide with less expensive transition metals such as bismuth is a promising choice for enhancing the dye sensitized solar cell performance compared to pristine TiO$_2$. The nanowires provided a direct transport pathway which improved electron collection of photogenerated electrons.
6.5 References

Chapter 7

7 Synthesis of polysulfone membrane materials for photocatalytic membrane reactor

7.1 Introduction

Limited and contaminated water resources are a serious current problem that the world is facing. Challenges of both high and oscillating energy costs, reuse of contaminated water, efficiency of water treatment and emerging pollutants such as endocrine disruptors are global concerns.[1] In both developed and developing countries, reliable low cost water treatment technologies are required for sustainability. In addition to supplying treated water for use in municipalities, natural disasters such as earthquakes and flooding create additional need for economical, efficient and portable water treatment technologies that can also be used in remote areas.

In many parts of the world, sea water is a source of relatively clean water except for the high salinity content. Desalination of sea water is often used for producing potable water in many coastal cities, especially in middle-eastern countries. [2] Many traditional methods for desalination, especially thermally driven ones such as multiple effect distillation, multi stage flash, vapor compression distillation, have shown their limited cost efficiency compared to membrane based processes such as reverse osmosis and nanofiltration. According to General Des Eaux and US Filter, the world wide desalination market is estimated to be $70 billion by 2020. [3]

Membrane technology offers many advantages over the conventional thermal methods for desalination, although the application of membrane technology faces the major challenge of fouling.[4] Fouling causes deterioration of the membrane performance characterized by declining flux and water permeability by reversible or irreversible blockage of membrane pores from the fouling materials such as natural organic matter, extra cellular polymeric substances and microbial cells. In order to overcome membrane fouling, various approaches have been taken including developing new membrane materials or membrane cleaning processes using mechanical means such as the
application of shear. The current methods to reduce membrane fouling focus on enhancing their hydrophilicity to reduce deposition of the hydrophobic fouling component. [5-7] Based on this approach, several studies have been conducted to improve the hydrophilicity of polymeric membranes by surface modification, bulk modification, and the addition of inorganic nanostructured fillers such as zeolites, titanium, aluminum oxide and zirconium oxide nanoparticles. [8-14] Hybrid materials that combine both the flexibility of the polymer component and the strength of the inorganic component provide a new promising route to next generation membrane materials. These well-ordered nanostructured materials provide a promising route for developing next-generation photocatalytic membrane materials that could reduce fouling and reduce cost of operation.

New nanostructured membrane materials are required to deal with emerging pollutants such as endocrine disrupting hormones, while complying with stringent drinking water qualities such as the new limits for boron in seawater desalination. [15-17] The challenge in preparing these next-generation hybrid membranes is to synthesize these materials with a well defined structure while uniformly dispersing the inorganic component throughout the polymer membrane. Here the challenges include the dispersion of the inorganic component, forming well aligned nanostructures, controlling the pore size and distribution while reducing any aggregation of nanoparticles. [18] Current approaches in nanotechnology are extremely expensive involving multi-step synthetic approaches that are difficult to scale up. However recent advances in nanoscience, using one pot-synthetic technique with supercritical fluids, provide a new low cost scalable route to prepare these materials.

Organic-inorganic hybrid membranes which combine the advantages of conventional polymeric membranes used in water treatment, with the advantages of the latest development of inorganic nanomaterials are useful for such application. Titanium dioxide (TiO₂) at the nanostructure level can be utilized as the inorganic component of the proposed hybrid. The various nanostructures will include TiO₂ nanoparticles, nanowires or nanotubes with a chemical linkage to the polymer backbone rather than physical entrapping within the polymer. It is expected that introducing inorganic nanomaterials
will improve the membrane’s physical and chemical characteristics such as enhanced mechanical strength, operating temperature and ability to reduce fouling. [19, 20] Synthesizing polymeric membranes with predesigned specific sites (-COOH, OH) to coordinate TiO$_2$ is critical for development of this dual functional membranes. Monomers with carboxylic and hydroxyl functional groups will be utilized for subsequent step-growth polymerization of the desired polymers.

There are many types of polymers to synthesize membranes with variable chemical and physical properties driven by the target application. Polyethersulfone (PES) is widely used as an organic membrane due to its advantages such as high thermal stability and mechanical strength over other types of polymers. However, it suffers high fouling rates and low permeability due to its low hydrophilicity. Lee et al. (2007) conducted a series of experiments to study the relationship between hydrophobicity and fouling by natural organic matter. [6] Fouling by organic matter is strongly observed with hydrophobic membranes compared to hydrophilic ones. It is widely accepted that improving hydrophilicity will reflect positively on membrane flux and reduce adsorption of fouling materials to the membrane surface.[21] By copolymerization with hydrophilic compounds, improvements were made to enhance membrane resistance to fouling through improving hydrophilicity. [7, 22, 23]

The addition of inorganic nanoparticles such as titanium dioxide (TiO$_2$), a semiconductor photocatalyst, has been examined to enhance permeability and antifouling due to unique photocatalytic properties.[24] Most current methods involve physical entrapping of TiO$_2$ in the membrane by physical blending during the casting stage or deposition on the surface of the membrane. These approaches result in membranes with lower performance compared to membranes that have chemical bonding of TiO$_2$ to the polymer part of the membrane.[25] The benefits of such approach were demonstrated by polyamide membranes with carboxylic acid groups and functionalized with TiO$_2$ nanoparticles. These membranes showed photo-bactericidal effect on E-coli during UV light illumination and possessed self cleaning properties. [26-28]
One of the most challenging aspects of current nanotechnology is how to synthesize a well defined nanostructured material with accuracy and low cost. These two concerns drive the most current research on the synthesis of nanostructured materials. Significant success has been achieved in synthesizing inorganic and metallic nanostructure materials such as nanoparticles, nanotubes, nanorods, nanofibers, nanopillar, nanowires, and nanosheets in recent years. [29-34] The template approach was utilized successfully for nanofabrication of cylindrical polystyrene-block-poly (ethylene oxide) (PS-b-PEO) copolymers. [35] They utilized anodic aluminum oxide (AAO) membranes with pore diameters in the range of 150-400 nm, and a thickness of 60 µm purchased from Whatman. The membrane was placed on top of 5% diluted PS-b-PEO solution which was placed on top of a glass slide. Membrane pores were wetted with polymer solution by capillary forces. Filled membrane was kept at room temperature to allow slow room temperature evaporation of solvent (benzene) and subsequent vacuum drying for complete removal of the solvent. PS-b-PEO nanotubes were obtained by removal of the membrane template using a 5% wt sodium hydroxide solution for about 20 minutes. In this research polysulfone polymers were prepared to be modified into nanotubes, functionalize with photocatalyst using available carboxylic and hydroxlyic groups on the polymer backbone. These polymers were selected based on available functional groups and with rigid backbone provided by aromatic rings compared to traditional membrane such as polyether sulfone.

7.2 Experimental details

7.2.1 Chemicals and Materials

4,4-bis(4-hydroxyphenyl) valeric acid, bis(4-chlorophenyl) sulfone, 4,4-bis(4-hydroxyphenyl) valeric acid, 2-[Bis(4-hydroxyphenyl)methyl]benzoic acid, terephthaloyl chloride, Sodium Hydroxide, toluene (HPLC grade), N-Methyl-2-pyrrolidone (NMP), P25, and bisphenol A, hydrochloric acid (37%), anhydrous tetrahydrofuran (THF, ≥99.9%), potassium carbonate (K₂CO₃) was dried in vacuum over overnight at 60 °C to remove moisture. All chemicals were purchased from Sigma-Aldrich Canada and used as received, except for potassium carbonate. Anodic aluminum membrane (AAO), Anodisc 47 was purchased from Whatman.
7.2.2 Characterization

Scanning electron microscopy images were collected using a Leo (Zeiss) 1540XB SEM. Imaging was performed at either low voltage (1 kV) for morphology or at 10 kV for backscatter imaging. Samples were coated with osmium metal in a Filgen OPC80T. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra were measured using a Nicolet 6700 FTIR spectrometer (Thermo Scientific) equipped with a smart iTR (diamond ATR). The spectra were recorded in the range of 600-4000 cm\(^{-1}\) with a resolution of 4 cm\(^{-1}\) over 32 scans. Thermogravimetric analysis (TGA) was performed using a TA Q500 TGA at a heating rate of 10 °C/min under an inert (nitrogen) atmosphere. The molecular weight and PDIs of produced polyether sulfone polymers were measured by gel permeation chromatography (GPC) with a Viscotek instrument using triple detectors (RI, LS, and V) referenced to PS standards (1 ml/min, at 30 °C).

7.2.3 Results and discussions

Different starting materials to be reacted with bis (4-chlorophenyl) sulfone were selected to synthesize a novel polymer that has specific functional groups such as -COOH groups to enable coordination with TiO\(_2\) nanoparticles. Condensation copolymerization approach was utilized due to its ability for design of specific backbone of polymer and functional groups from condensation reactions of starting monomers bearing target functional groups.

7.2.4 Synthesis of Polysulfone using 4,4-bis(4-hydroxyphenyl) valeric acid

4,4-bis(4-hydroxyphenyl) valeric acid and bis (4-chlorophenyl) sulfone were used to synthesize polymer containing -COOH groups. In a typical procedure, 5.08 g of 4,4-bis (4-hydroxyphenyl) valeric acid was dissolved into 30 ml NMP, 20 ml of toluene, 5.1 g of bis(4-chlorophenyl) sulfone, and 6g of potassium carbonate was dried in a vacuum oven were added into a 3 neck flask. The mixture was heated to about 120°C after the addition of toluene to remove water by azeotropic distillation under inert gas (N\(_2\)) and continuous mixing. The mixture was cooled to room temperature and bis (4-chlorophenyl) sulfone was added. The mixture was heated gradually to 170°C for about 24 hours. The reaction
produced a viscous material which was diluted with 3:1 tetrahydrofuran (THF) and hydrochloric acid (HCl) mixture to remove inorganic salt. Polycondensate was precipitated into water; the filtrate was re-dissolved into THF then precipitated again into methanol. The product was dried for 24 hours under reduced pressure at 60°C. The reaction scheme is shown in Figure 7-1. From GPC measurements (with polystyrene standard) it was shown that the average molecular weight (Mw) of the produced polymer was 10674 Da. with polydispersity (Mw/Mn) of 1.544. GPC detail results are shown in Table 7-1. The FTIR measurement in Figure 7-2 shows comparative spectra of the starting materials and the produced polymer. Observed bands at 1095-1030 cm$^{-1}$ are in the stretching vibrations range of O=S=O. Vibration in range of 1715-1685 cm$^{-1}$ and 1628-1622 cm$^{-1}$ are typical of C=O of carboxylic acid groups and C=C respectively. While, weak stretching in 3070-3010 cm$^{-1}$ and 1590- 1480 cm$^{-1}$ can be assigned to C-H and aromatic ring vibrations, respectively. Titanium dioxide nanoparticles of 21 nm size was used to functionalize 4,4'-Bis(4-hydroxyphenyl) valeric acid using by refluxing it in isopropanol solution for 12 hours. The resulted functionalized monomer FTIR spectra was compared to its produced polymer showing reduced carboxylic acid stretching at 3300 cm$^{-1}$ and 1715 cm$^{-1}$ ranges in Figure 7-3.
Figure 7-1: A reaction scheme of polycondensation of 4,4’-bis(4-hydroxyphenyl) valeric acid and bis(4-chlorophenyl) sulfone.

Figure 7-2: FTIR spectra of starting materials Bis(4-chlorophenyl) sulfone (blue), 4,4’ Bis(4-hydroxyphenyl) valeric acid (green) and produced polymer (red).
Figure 7-3: FTIR spectra of produced polymer formed from Bis (4-chlorophenyl) sulfone with 4,4' Bis (4-hydroxyphenyl) valeric acid (red) and TiO$_2$ of 21nm functionalized 4,4' Bis(4-hydroxyphenyl) valeric acid (black).

Table 7-1: GPC Analysis Results for bis (4-chlorophenyl) sulfone polymerizing with 4,4'-bis(4-hydroxyphenyl) valeric acid.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak RV</td>
<td>15.78 (ml)</td>
</tr>
<tr>
<td>Weight-average Molecular Number (Mn)</td>
<td>10764 Daltons</td>
</tr>
<tr>
<td>Number -average Molecular Weight (Mw)</td>
<td>16620 Daltons</td>
</tr>
<tr>
<td>Z-average molecular weight (Mz)</td>
<td>24117 Daltons</td>
</tr>
<tr>
<td>Peak molecular weight (Mp)</td>
<td>16199 Daltons</td>
</tr>
<tr>
<td>Polydispersity Pd (Mw/Mn)</td>
<td>1.544</td>
</tr>
</tbody>
</table>
7.2.5 Synthesis of polysulfone using 2-[Bis(4-
hydroxyphenyl)methyl]benzoic acid (Phenolphthalin)

Following a similar procedure as mentioned above, 6.3 mmoles of 2-[Bis(4-
hydroxyphenyl)methyl]benzoic acid dissolved in 30 ml NMP, 14.5 mmoles of potassium
carbonate, and 20 ml toluene were added into a 3 neck flask. The mixture was then
heated to 120°C to remove water by azeotropic distillation under inert gas and continuous
mixing for 4 hours. The mixture was then cooled to room temperature and 6.3 mmoles of
bis(4-chlorophenyl) sulfone were added. The mixture was heated gradually to 170°C then
the temperature was fixed for about 24 hours. The reaction produced a viscous material
which was diluted with 3:1 tetrahydrofuran (THF) and hydrochloric acid (HCl) mixture
to remove the inorganic salt. The produced polymer was precipitated into water; the
filtrate was re-dissolved into THF, and then was re-precipitated into methanol. The
product was dried for 2 days under reduced pressure at 60°C. GPC analysis was carried
out by dissolving 3 mg/l of produced polymer in THF to determine the degree of
polymerization. The reaction scheme is shown in Figure 7-4. The produced polymer
showed three times the molecular weight (36730 Da) and with less polydispersion index
(1.276) than the polymer prepared with 4,4'-Bis(4-hydroxyphenyl) valeric acid as shown
in Table 7-2. The FTIR showed a typical C=O at 1713 cm⁻¹, ring medium stretching at
1583-1486 cm⁻¹, O=S=O at 1070 cm⁻¹, and C-O-C in the range of 1293-1230 cm⁻¹ as
shown in Figure 7-5. While functionalized monomer with TiO2 nanoparticles spectra is
shown in Figure 7-6 compared to produced polymer and the monomer after calcination
at 500 °C.
Figure 7-4: A reaction scheme of polycondensation of 2-[Bis(4-hydroxyphenyl)methyl]benzoic acid and bis(4-chlorophenyl) sulfone.

Figure 7-5: FTIR spectra of starting materials Bis(4-chlorophenyl) sulfone (black), 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid (blue) and their produced polymer by condensation reaction (red).
Figure 7-6: FTIR spectra of formed from Bis(4-chlorophenyl) sulfone with 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid (red), TiO$_2$ functionalized 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid (blue) and calcined at 500 °C (purple).

Table 7-2: GPC Analysis Results for produced polysulfone polymer by reacting bis(4-chlorophenyl) sulfone with 2-[Bis(4-hydroxyphenyl) methyl] benzoic acid.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak RV</td>
<td>15.00 (ml)</td>
</tr>
<tr>
<td>Weight-average Molecular Number (Mn)</td>
<td>36730 Daltons</td>
</tr>
<tr>
<td>Number-average Molecular Weight (Mw)</td>
<td>46855 Daltons</td>
</tr>
<tr>
<td>Z-average molecular weight (Mz)</td>
<td>55681 Daltons</td>
</tr>
<tr>
<td>Peak molecular weight (Mp)</td>
<td>54179 Daltons</td>
</tr>
<tr>
<td>Polydispersity Pd (Mw/Mn)</td>
<td>1.276</td>
</tr>
</tbody>
</table>
7.2.6 Synthesis of polysulfone using mixture of 4,4’-Bis(4-hydroxyphenyl) valeric acid and 2-[Bis(4-hydroxyphenyl)methyl]benzoic acid

A mixed carboxylic acid bearing groups was introduced into polysulfone polymer by reacting a mixture of 10 mmoles of 4,4’-Bis(4-hydroxyphenyl) valeric acid and 5 mmoles of 2-[Bis(4-hydroxyphenyl)methyl]benzoic acid dissolved in 60 ml NMP and 40 ml toluene. The reaction was catalyzed by adding 32 mmoles of potassium carbonate, and was carried in a 200 ml three-neck flask. The mixture was then heated to 120°C to remove water by azeotropic distillation under inert gas and continuous mixing for 4 hours. The mixture was then cooled to room temperature and 15 mmoles of bis (4-chlorophenyl) sulfone were added. The reaction scheme is shown in Figure 7-7. The mixture was heated gradually to 170°C, and the temperature was kept constant for about 24 hours. The reaction produced a viscous material which was diluted with 3:1 tetrahydrofuran (THF) and hydrochloric acid (HCl) mixture to remove inorganic salt. The produced polymer was precipitated into water; the filtrate was re-dissolved into THF followed by re-precipitation of methanol. The product was dried for 2 days under reduced pressure at 60°C. GPC analysis was used to determine produced polymer molecular weight (Mw=4526 Da) and showed that under these reaction conditions, wide range molecular distributions was obtained by having a polydispersion value of 2.5 as shown in Table 7-3. Figure 7-8 shows the C=O vibration peak in the produced polymer shifted to lower value o 1583 cm⁻¹ and the rest of peaks were observed within the expected values discussed above.
Figure 7-7: Reaction schematic of Bis(4-chlorophenyl) sulfone, with 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid, and 4,4'-Bis(4-hydroxyphenyl) valeric acid.

Figure 7-8: FTIR spectra of starting materials Bis(4-chlorophenyl) sulfone (blue), 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid (pink), 4,4'-Bis(4-hydroxyphenyl) valeric acid (green) and their produced polymer (red).
Table 7-3: GPC Analysis Results for mixed polysulfone prepared by reacting bis(4-chlorophenyl) sulfone with 2-[Bis(4-hydroxyphenyl) methyl] benzoic acid and 4,4′-Bis(4-hydroxyphenyl) valeric acid mixture.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak RV</td>
<td>19.400 (ml)</td>
</tr>
<tr>
<td>Weight-average Molecular Number (Mn)</td>
<td>4625 Daltons</td>
</tr>
<tr>
<td>Number-average Molecular Weight (Mw)</td>
<td>11897 Daltons</td>
</tr>
<tr>
<td>Z-average molecular weight (Mz)</td>
<td>28169 Daltons</td>
</tr>
<tr>
<td>Peak molecular weight (Mp)</td>
<td>3376 Daltons</td>
</tr>
<tr>
<td>Polydispersity Pd (Mw/Mn)</td>
<td>2.572</td>
</tr>
</tbody>
</table>

7.2.7 Synthesis of polysulfone using Terephthaloyl Chloride, bis(4-chlorophenyl)sulfone, and 4,4′-bis(4-hydroxyphenyl) valeric acid

This approach was used to strengthen the backbone of the polysulfone polymer while still controlling the amount of carboxylic group of the final polymer. Terephthaloyl chloride was used to introduce more aromatics with carboxylic group and reactivity for condensation polymerization with hydroxyl groups. Typical condensation synthesis procedure was carried out in a 200 ml three-necked flask, which was equipped with a refluxing dean-stark condenser to eliminate condensation by-products under constant nitrogen flow. The reaction mixture was 21 mmoles of 4,4′-Bis(4-hydroxyphenyl) valeric acid, 44 mmoles of potassium carbonate dissolved into a mixture of 60 ml NMP and 40 ml toluene. The mixture was then heated to 120°C to remove water by azeotropic distillation under inert gas and continuous mixing for 4 hours. The mixture was then cooled to room temperature and 10.5 mmoles of terephthaloyl chloride, and 10.5 mmoles bis(4-chlorophenyl) sulfone were added. The mixture was heated gradually to 170°C, keeping the temperature fixed for about 24 hours and the reaction scheme is shown in Figure 7-9. The produced viscous material was diluted with 3:1 tetrahydrofuran (THF).
and hydrochloric acid (HCl) mixture then was precipitated into water and filtered. The polymer then was re-dissolved into THF followed by reprecipitation in methanol and dried for 2 days under reduced pressure at 60°C. FTIR analysis for this polymer showed two different C=O stretching peaks at 1732, and 1709 cm\(^{-1}\) and stretching vibration of aromatic rings at 1661 cm\(^{-1}\) as shown in Figure 7-10. Wide range molecular weight distribution was also observed as the polydispersity value showed in Table 7-4.

![Figure 7-9: Reaction schematic of polysulfone by reacting terephthaloyl chloride, 4,4'-dichlorodiphenylsulfone and 4,4'-bis(4-hydroxyphenyl) valeric acid.](image)
Figure 7-10: FTIR spectra of mixed produced polysulfone (red) prepared by reacting bis(4-chlorophenyl) sulfone (green), terephthaloyl chloride (blue), with 4,4'-Bis(4-hydroxyphenyl) valeric acid (pink).

Table 7-4: GPC Analysis Results of synthesized mixed polysulfone prepared by reacting terephthaloyl chloride, bis(4-chlorophenyl) sulfone with 4,4'-Bis(4-hydroxyphenyl) valeric acid.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak RV</td>
<td>18.693 (ml)</td>
</tr>
<tr>
<td>Weight-average Molecular Number (Mn)</td>
<td>3826 Daltons</td>
</tr>
<tr>
<td>Number -average Molecular Weight (Mw)</td>
<td>11526 Daltons</td>
</tr>
<tr>
<td>Z-average molecular weight (Mz)</td>
<td>194741 Daltons</td>
</tr>
<tr>
<td>Peak molecular weight (Mp)</td>
<td>2909 Daltons</td>
</tr>
<tr>
<td>Polydispersity Pd (Mw/Mn)</td>
<td>3.013</td>
</tr>
</tbody>
</table>
7.2.8 Preparation of polymeric Nanotubes

The synthesis of polymeric nanotubes was investigated to produce membrane that can be used for filtration and functionalized with TiO$_2$ for photoactive membrane. Initially, nanotubes of produced polysulfone were synthesized using the melt-wetting approach. Here, polysulfone pellets were heated to the polymer T_g and sandwiched between two glass slides to make a polymer film. Then anodic aluminum oxide (AAO) membrane template with an average pore size of 200 nm and thickness of about 60 μm (see Figure 7-11) was placed on top of the polymer. The polymer was introduced into the pore channels of the aluminum oxide membrane by capillary forces using two approaches. First approach was by using heated vacuum oven for about 24 hours. The second approach was by preparing 30 % polymer solution in a Petri dish and placed the AAO into it. Capillary forces draw the polymer solution into AAO template and coated the internal walls of the membrane. Removal of the aluminum oxide template was carried out using 5 % NaOH solution for about 15 minutes. The sample was then washed with deionized water several times. Figure 7-12 summarizes the different steps involved in the polymer nanotube synthesis using AAO template.

The resulting free standing nanotubes were prepared for examination by scanning electron microscope (SEM). The samples were prepared by a deposition of a thin layer of osmium nanoparticles using sputtering over the polymer surface to enhance conductivity while facilitating a high quality image. The SEM images showed an array of highly ordered nanotubes with density of the polysulfone nanotubes similar to the density of nonpores in the original AAO template with almost complete filling of all the nanopores with no or minimum deformation as shown in Figure 7-13. Furthermore, SEM image of a single nanotube provided more morphological information about its internal diameter of about 100 nm and tubes thickness of about 40 nm as shown in Figure 7-14.
Figure 7-11: SEM image of Aluminum Oxide membrane coated with platinum nanoparticles part of imaging requirement.

Figure 7-12: Aluminum oxide membrane template approach to prepare polymeric nanotubes.
Figure 7-13: An overview of polysulfone nanotubes prepared by the template assisted method.

Figure 7-14: SEM of an individual polysulfone nanotubes showing opening of 100 nm and wall thickness of 50 nm. Scale on image is 100 nm.
7.3 Conclusions

Four novel polysulfone polymers were prepared using two different sulfonated reagents (bis(4-chlorophenyl)sulfone, and terephthaloyl chloride) and two reagents to introduce required carboxylic groups for TiO$_2$ coordination (4,4’-Bis(4-hydroxyphenyl) valeric acid and 2-[Bis(4-hydroxyphenyl)methyl]benzoic acid). Gel permeation chromatography (GPC) confirmed the polymerization by determining average molecular weight of all the produced polymers. In addition, successful synthesis of polymeric nanotubes using AAO template method using these produced polysulfone polymers with specific sites for titanium nanoparticles coordination, will pave the way for organic-inorganic hybrid membrane for photocatalytic membrane applications to degrade organic pollutants and reduce fouling on its surface. Polysulfone polymer produced by reacting 2-[Bis(4-hydroxyphenyl)methyl]benzoic acid with bis(4-chlorophenyl) sulfone would be the best of all the four produced polysulfone due to its higher molecular weight that would make it strong polymer can with stand high filtration pressure. Photocatalytic evaluation for membrane with functionalized TiO$_2$ or other suitable photocatalyst should be carried out in a reactor that enables both filtration and light irradiation.
7.4 References

Chapter 8

8 Conclusions, and Recommendations for Future work

This research used a sol-gel method catalyzed by acetic acid in supercritical CO$_2$ to prepare highly active metal oxide nanowires with high aspect ratios and surface areas that contributed to their improved photocatalytic activities. The advantage of this preparation method is simplicity and scalability to produce larger quantities of nanowires without the use of harmful solvents.

A novel selective method was presented to produce copper (I) titania nanowires using supercritical CO$_2$ (scCO$_2$) synthesis methodology suitable for hydrogen production using a sacrificial agent. The doped titania nanowires were prepared using a unique sol-gel methodology in scCO$_2$ using titanium alkoxide, metal dopant, and acetic acid as the polycondensation agent. This sol-gel methodology produced uniformly dispersed dopants integrated into nanowires having diameters of 80 -100 nm and aspect ratios from 15-25 as observed by SEM. XPS and XANES results confirmed a single oxidation state of Cu (I).

The photocatalytic activity of the prepared nanowires was tested using formaldehyde as a sacrificial agent for hydrogen production in water under solar light irradiation (100 mW/cm2). The copper doped titania showed superior performance for hydrogen production of about 10 times compared to Degussa P25, and out 47 times compare to undoped titanium dioxide nanowires. The results are attributed to the Cu (I) oxidation state and high aspect ratio nanowires and providing access to active sites for reactions due to higher dopant dispersion.

Using indium acetate and titanium isopropoxide as precursors for sol-gel synthesis in supercritical CO$_2$ resulted in high aspect ratio and high surface areas of indium titanate nanowires that has more than double the surface area of P25. The methodology produced uniformly dispersed dopants integrated into nanowires was confirmed by EDS and TEM images. XPS results confirmed formation of indium doping and its oxidation state. The Dye Sensitized Solar Cells (DSSC) performance under solar light irradiation (100
mW/cm2) was evaluated using different levels of indium doping. At 1 atomic % indium with respect to Ti, photoelectric current was double and DSSC efficiency was improved by a factor of 2.5 times compared to pristine titanium nanowires as a result of indium doping into these nanowires. Sacrificial hydrogen production under solar light irradiation (100 mW/cm2) was also evaluated using different indium doped titania nanowires. Indium doping at 1.0 atomic % showed improved hydrogen production which was 5.7 and 26 times higher than that produced by commercially P25 and undoped TiO$_2$ nanowires, respectively.

The bismuth titanate nanowires were prepared using a unique sol-gel methodology in supercritical CO$_2$ using titanium alkoxide, bismuth acetate, and acetic acid as the polycondensation agent. The methodology produced uniformly dispersed dopants integrated into nanowires with diameters of 80 -100 nm and aspect ratio from 15-25 as observed by SEM. XPS results confirmed formation of bismuth titanate nanowires and their levels of bismuth doping. The Dye Sensitized Solar Cells (DSSC) performance under solar light irradiation (100 mW/cm2) was evaluated using different levels of bismuth. Bismuth doping level of 1.4 mol % with respect to Ti showed superior performance 1.5, 7.5 times higher efficiency compared to P25 and undoped TiO$_2$ nanowires, respectively. In addition, the produced photocurrent was 1.5 and 5.5 times higher than that produced by P25 and pristine titanium nanowires. These results confirm the added advantage of bismuth into these nanowires by enhancing visible light harvesting and electron-hole reduced recombination. Sacrificial hydrogen production under solar light irradiation (100 mW/cm2) was also evaluated using different mol% bismuth doped titania nanowires. Bismuth doping at 1.4 mol % produced 8 times more hydrogen than P25 photocatalyst and 40 times more hydrogen compared to undoped Ti nanowires. These results are attributed to enhanced visible light harvesting and reduced electron-hole recombination. Contrary to the other studies, this study reports for the first time that bismuth titanate is capable of photocatalytic hydrogen production without noble metal or transition metals doping. This work showed that doping titanium nanowires enhanced their performance as photocatalyst or active photoanode for solar cells. However, the enhancement level depends on the type of dopant and its doping concentration as shown in this research.
Furthermore, four polysulfone were synthesized using condensation polymerization to be utilized in photocatalytic membrane reactor using these metal oxide nanowires. The focus was to create a strong backbone polymer with carboxylic functional groups for titanium dioxide nanowires to coordinate to. The formed polysulfone polymer from reaction of 2-[Bis(4-hydroxyphenyl)methyl] benzoic acid with bis(4-chlorophenyl) sulfone produced high molecular weight that makes it an excellent material with high mechanical strength for further development in photocatalytic membrane reactor.

To summarize this research work, copper, indium and bismuth doping in general improved hydrogen production and DSSC performance at optimized metal doing concentration compared to undoped TiO₂ nanowires prepared using the same approach. In addition, utilizing sol-gel ScCO₂ enabled successful synthesis of nanowires with high aspect ratios and high surface areas as it improved dispersion of precursors and prevented collapse of formed nanostructures. Figure 8-1 compares the three metals doping improvements over undoped TiO₂ nanowires for both hydrogen production and solar cell performance. However, bismuth doping would be an excellent choice for DSSC application and copper (I) metal doping would be for hydrogen application.

Future work should focus on exploring the synthesis and applications of trimetallic nanowires using sol-gel in supercritical CO₂, which can provide a unique combination of metal oxides at different levels to have a wide range of photocatalysts for applications such as hydrogen production, remediation of contaminated water streams, industrial wastewater, battery applications by using trimetallic lithium based nanowires, electrothermal nanomaterials, and dye sensitized solar cell. In addition, more detailed studies need to be undertaken to understand the mechanism of metal oxide nanowire formation. In addition, although the presented methodology is scalable, detailed reaction engineering studies are required to show how to scale-up this methodology and demonstrate it using continuous reactor processes.
Figure 8-1: Shows the number of folds of hydrogen produced of the three different metal doping into nanowires compared to commercial P25 and undoped TiO$_2$ nanowires (a) and folds of efficiency of DSSC compared to undoped TiO$_2$ nanowires.
Appendices

Appendix A: Copyright release
Order History

<table>
<thead>
<tr>
<th>License #</th>
<th>Order Date</th>
<th>Journal/Title</th>
<th>Type of use</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>3842831338861</td>
<td>04/05/2016</td>
<td>Journal of Polymer Science Part B: Polymer Physics</td>
<td>Templated nanostructured PS-b-PEO nanotubes, Dissertation/Thesis</td>
<td>0.00 CAD</td>
</tr>
<tr>
<td>3842831181303</td>
<td>04/05/2016</td>
<td>Polymer Journal</td>
<td>Nanocables Prepared from Polyamide 66 nanotubes Enveloping Pt nanowires by a Secondary-template Method</td>
<td>0.00 CAD</td>
</tr>
<tr>
<td>3842821241945</td>
<td>04/05/2016</td>
<td>European Polymer Journal</td>
<td>Comparison of redox initiated graft polymerisation and sulfonation for hydrophilisation of polyethersulfone nanofiltration membranes</td>
<td>0.00 CAD</td>
</tr>
<tr>
<td>3791611011344</td>
<td>01/17/2016</td>
<td>Journal of Membrane Science</td>
<td>New UV-photographed nanofiltration membranes for the treatment of colored textile dye effluents</td>
<td>0.00 CAD</td>
</tr>
<tr>
<td>3790980025128</td>
<td>01/16/2016</td>
<td>Catalysis Today</td>
<td>A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification</td>
<td>0.00 CAD</td>
</tr>
<tr>
<td>3790971400442</td>
<td>01/16/2016</td>
<td>Powder Technology</td>
<td>Combustion synthesis of TiO2 nanoparticles as photocatalyst</td>
<td>0.00 CAD</td>
</tr>
<tr>
<td>3790940009206</td>
<td>01/16/2016</td>
<td>Journal of Environmental Sciences</td>
<td>Review of the progress in preparing nano TiO2: An important environmental engineering material</td>
<td>0.00 CAD</td>
</tr>
<tr>
<td>License #</td>
<td>Order Date</td>
<td>Journal</td>
<td>Title</td>
<td>Type of Use</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>3740470559076</td>
<td>11/01/2015</td>
<td>Nanoscale</td>
<td>Non-noble metal Cu-loaded TiO₂ for enhanced photocatalytic H₂ production</td>
<td>Thesis/Dissertation</td>
</tr>
<tr>
<td>3410940705601</td>
<td>06/16/2014</td>
<td>Surface Science</td>
<td>"In situ" XPS study of band structures at Cu₂O/TiO₂ heterojunctions interface</td>
<td>reuse in a journal/magazine</td>
</tr>
</tbody>
</table>
Curriculum Vitae

Name: Qasem Alsharari

Post-secondary Education and Degrees:

- KFUPM Dhahran, Saudi Arabia 1997, BSc. Industrial Chemistry
- KFUPM Dhahran, Saudi Arabia 2007, MSc. Environmental Sciences
- The University of Western Ontario London, Ontario, Canada 2016, Ph.D.

Honours and Awards:

Related Work Experience:

- Teaching Assistant The University of Western Ontario 2010-2013
- Quality Manager, Saudi Aramco Refinery Senior Lab Scientist, RT Laboratory 1997-2008