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Abstract

Some elementary data smoothing techniques emerged during the eighteenth cen-

tury. At that time, smoothing techniques consisted of simple interpolation of the data

and eventually evolved into more complex modern methods. Some of the significant

milestones of smoothing or graduation of population data will be described including

the smoothing methods of W.F. Sheppard in the early twentieth century. Sheppard’s

statistical interests focused on data smoothing, the construction of mathematical ta-

bles and education. Throughout his career, Sheppard consulted Karl Pearson for

advice pertaining to his statistical research. An examination of his correspondence

to Pearson will be presented and his smoothing methods will be described and com-

pared to modern methods such as local polynomial regression and Bayesian smoothing

models.

In the second part of the thesis, the development of Bayesian smoothing will be

presented and a simulation-based Bayesian model will be implemented using histori-

cal data. The object of the Bayesian model is to predict the probability of life using

grouped mortality data. A Metropolis-Hastings MCMC application will be employed

and the results will then be compared to the original eighteenth-century analysis.

Keywords: Data smoothing methods, smoothing, splines, Bayesian smoothing, Shep-

pard, Pearson, life tables, history of statistics.

ii



Acknowledgements

I would like to express my sincere thanks to my advisors Dr. David Bellhouse for

his extensive knowledge in the history of probability and statistics and Dr. Duncan

Murdoch for his expertise in statistical computation. I am genuinely grateful to have

had the opportunity to study and research both the historical and modern methods

of statistics with them.

I would also like to thank my husband Jeff and our three children for their love

and support while working on this thesis.

iii



Contents

Abstract ii

Acknowlegements iii

List of Figures vi

List of Tables viii

List of Appendices ix

1 Introduction 1

2 The Development of Early Smoothing Techniques 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Graunt’s Life Table . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Halley’s Life Table . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Eighteenth-Century Smoothing . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 De Moivre’s Survival Function . . . . . . . . . . . . . . . . . . 7
2.2.2 Smart’s Life Table . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Simpson’s Life Table . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 The Northampton Table . . . . . . . . . . . . . . . . . . . . . 12

2.3 Nineteenth-Century Smoothing . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 The Carlisle Table . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Gompertz-Makeham Law of Mortality . . . . . . . . . . . . . 16
2.3.3 The English Table . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Early Twentieth-Century Smoothing . . . . . . . . . . . . . . . . . . 18
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 The Correspondence from Sheppard to Pearson 21
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Early Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Statistical Correspondence . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Probable Error . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Corrections of Moment Estimates . . . . . . . . . . . . . . . . 30
3.3.3 Methods of Fitting Curves . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Quadrature Formulae . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.5 Tests of Fit and Pearson’s Chi-Square Test . . . . . . . . . . . 38
3.3.6 Numerical Tables . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Later Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Sheppard’s Tables 43
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



4.2 The Construction of Sheppard’s Tables . . . . . . . . . . . . . . . . . 43
4.3 The Probability Integral . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 How Sheppard’s Tables Were Used . . . . . . . . . . . . . . . . . . . 50

5 Sheppard’s Smoothing Methods 53
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Sheppard’s Smoothing Formula in Terms of Central Differences . . . 54
5.3 Sheppard’s Smoothing Formula in Terms of Central Summations . . . 59
5.4 Sheppard’s Smoothing Method Based on the

Method of Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Precursor Methods to Local Polynomial

Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Comparing Sheppard’s Methods to

Modern Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.6.1 Local Polynomial Regression . . . . . . . . . . . . . . . . . . . 67
5.6.2 Bayesian Smoothing Method . . . . . . . . . . . . . . . . . . . 69

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 The Development of Bayesian Smoothing 79
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 The Bayesian View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Bayesian Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4 Bayesian Smoothing and Mortality Data . . . . . . . . . . . . . . . . 82
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Bayesian Smoothing 85
7.1 The Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Preliminary Analysis of the Data . . . . . . . . . . . . . . . . . . . . 85
7.3 The Model: Bayesian Smoothing . . . . . . . . . . . . . . . . . . . . 87
7.4 Metropolis-Hastings MCMC . . . . . . . . . . . . . . . . . . . . . . . 92
7.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8 Conclusion 105

References 106

A Smart’s Life Table 115

B Correspondence from
W.F. Sheppard to K. Pearson 117

C Infant Mortality Data 136

Curriculum Vitae 136

v



List of Figures

2.1 Halley’s estimates of the number of lives at each age. . . . . . . . . . . . 7
2.2 Smart’s estimates (lower curve) and Halley’s estimates of the number of

lives at each age. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Simpson’s estimates (lower curve) and Halley’s estimates of the number of

lives at each age. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Carlisle population curve. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Pearson’s histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Pearson’s diagram of a frequency curve based on observations forming a

series of polygons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Sheppard’s smoothed values (open circles) and the data (solid circles) using
method of least squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Differences between the smoothed values using Sheppard’s method and
local polynomial regression. . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Bayesian smoothing model using k=0.1. . . . . . . . . . . . . . . . . . . 72
5.4 Bayesian smoothing model using k=1. . . . . . . . . . . . . . . . . . . . 73
5.5 Bayesian smoothing model using k=5. . . . . . . . . . . . . . . . . . . . 73
5.6 Bayesian smoothing model using k=10. . . . . . . . . . . . . . . . . . . . 74
5.7 Residual plot using k=5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.8 The 95% credible intervals using k=5. . . . . . . . . . . . . . . . . . . . 75
5.9 Comparison of Sheppard’s smoothed values (open circles), Bayesian smooth-

ing (line) using k=5 and the data (solid circles). . . . . . . . . . . . . . . 76
5.10 Differences between Sheppard’s smoothed values and Bayesian μ(t) eval-

uated yearly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 Cumulative number of deaths per thousand versus age as reported by
Smart (open circles) and group data (solid circles). . . . . . . . . . . . . 86

7.2 Cubic B-splines on [0, 100] corresponding to knots at 0, 2, 5, 10, 20, 30,
40, 50, 60, 70, 80, 90 and 100. . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Prior samples of λ(t) for k = 0.1, 1, 3 and 10. . . . . . . . . . . . . . . . 91
7.4 Trace plots for the last 100,000 iterations for parameters 1 to 15. . . . . . 94
7.5 Trace plots for the last 100,000 iterations for parameters 1 to 15 using

different standard deviations. . . . . . . . . . . . . . . . . . . . . . . . . 95
7.6 λ(t): number of deaths per year. . . . . . . . . . . . . . . . . . . . . . . 96
7.7 λ(t) and rectangles representing the area for each age group cell. . . . . . 96
7.8 Standardized residuals for each age group. . . . . . . . . . . . . . . . . . 97
7.9 Trace plots for the last 100,000 iterations for parameters 1 to 15 using step

function penalty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.10 Trace plots for the last 100,000 iterations using different standard devia-

tions for parameters 1 to 3. . . . . . . . . . . . . . . . . . . . . . . . . . 99

vi



7.11 λ(t) and rectangles representing the area for each age group cell using the
step function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.12 λ(t) with 95% credible intervals. . . . . . . . . . . . . . . . . . . . . . . . 100
7.13 Standardized residuals for each age group using step function. . . . . . . 101
7.14 λ(t) and rectangles representing the area for each age group starting at

age 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.15 Hazard function with 95% credible intervals. . . . . . . . . . . . . . . . . 102
7.16 Comparison of the Bayesian model (line) and Smart’s cumulative distri-

bution (open circles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



List of Tables

2.1 Graunt’s Life Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Halley’s Breslau table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Mortality rates from the Bills of Mortality for London, 1728 to 1737. . . 9
2.4 The Construction of the Northampton Table. . . . . . . . . . . . . . . . 12
2.5 The Carlisle data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Descriptions of the 23 letters from Sheppard to Pearson. . . . . . . . . . 22

4.1 Sheppard’s tables related to the normal curve. . . . . . . . . . . . . . . . 47

5.1 Central differences of u0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Central differences of u7 using the infant dataset. . . . . . . . . . . . . . 58
5.3 Central differences of vi. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 General form for calculating central sums. . . . . . . . . . . . . . . . . . 60
5.5 Central sums using the infant dataset. . . . . . . . . . . . . . . . . . . . 62
5.6 Central sums to obtain v1. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

viii



List of Appendices

Appendix A: Smart’s Life Table . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Appendix B: Correspondence from W.F. Sheppard to K. Pearson . . . . . . . 117
Appendix C: Infant Mortality Data . . . . . . . . . . . . . . . . . . . . . . . . 136

ix



x



Chapter 1

Introduction

In this thesis, historical and modern data smoothing techniques are presented and

compared. The topics would be of interest to the statistical community and for those

with an interest in the history of statistics.

Chapter 2 describes some of the significant milestones of early smoothing meth-

ods beginning in the late seventeenth century. Some of the earliest evidence of smooth-

ing data can be found in the construction of life tables. Since population data contains

irregularities, some adjusting or smoothing of the data is necessary. The collection of

early data was often grouped by age and the gaps in the ages, such as deaths grouped

into ranges with breaks at ages 10, 20, 30 years and so on, required smoothing for

the purpose of interpolation. Elementary smoothing techniques such as visual inter-

polation, averaging, and mathematical interpolation were used to smooth out such

irregularities in the data.

As the quality of data improved, smoothing methods became more advanced.

Parametric and nonparametric models were developed along with graphical meth-

ods and difference formulas. The smoothing method of W.F. Sheppard in the early

twentieth century was a significant milestone in the development of data smoothing.

Sheppard’s statistical career and correspondence to Karl Pearson are described in

1



2 Chapter 1. Introduction

Chapter 3. The correspondence spans three decades and it is obvious they became

very close colleagues and good friends. Although the correspondence is one-sided

(only the letters from Sheppard to Pearson are extant), they provide an interest-

ing background to their statistical ideas and opinions before their manuscripts were

published.

In the letters, Sheppard often asks Pearson for his advice regarding formulas for

the tabulations of his tables related to the normal distribution. These were the first set

of modern tables for the normal distribution based solely on the standard deviation.

Throughout his career, Sheppard increased the accuracy of the tables by obtaining a

higher number of decimals. Chapter 4 describes the methods of construction of his

tables and how they were used.

Sheppard presented his smoothing method in a series of publications from 1912

to 1915. His method involves central differences and summation formulas based on

least squares and is given in Chapter 5. We compare his method to modern smoothing

methods such as local polynomial regression and Bayesian smoothing models.

The development of Bayesian smoothing and applications to the construction of

life tables are given in Chapter 6.

In Chapter 7, a Bayesian smoothing model is developed to predict the probability

of life using eighteenth-century mortality data. The model implements a Metropolis

Hastings MCMC algorithm and the results are compared to the original eighteenth

century analysis.

Chapter 8 provides a conclusion to the thesis. The various smoothing techniques

presented in the thesis are summarized.



Chapter 2

The Development of Early

Smoothing Techniques

2.1 Introduction

This chapter provides an overview of the development of early smoothing techniques

beginning in the seventeenth century. Some of the earliest evidence of smoothing is

found in the construction of life tables. A life table shows the number of persons

alive at each age, and allows inferences to be made, such as the probability of sur-

viving any particular age or the remaining life expectancy for persons at different

ages. Population data contain irregularities and some adjusting or smoothing of the

data is necessary in order to obtain reasonable estimates. The collection of detailed

population data was slow to evolve. With the absence of a population census, early

life tables were constructed from a limited number of observations spanning a short

period of time. The compilers of early life tables did not disclose their exact methods

of construction. However, given the techniques that were available to them at the

time and examining others who used their methods, possible methods of construction

will be described.

3



4 Chapter 2. The Development of Early Smoothing Techniques

2.1.1 Graunt’s Life Table

John Graunt, a London merchant, constructed a life table based on the observations

recorded in the Bills of Mortality for the City of London, England. Starting in the

early seventeenth century, the Bills of Mortality were bulletins published weekly to

show the number deaths to warn residents of possible outbreaks of the bubonic plague.

The London Bills consisted of the number of baptisms and deaths collected from parish

clerks. As the main concern was for risk of recurrent epidemic diseases, only the cause

of death was recorded and not the age at which a person died. Information about the

collection and publication of these data can be found in “London Plague Statistics

in 1665” (Bellhouse 1998). Using the London Bills, Graunt estimated the number of

births and the number of persons living up to age 6, 16, and for every ten years up

to age 86. He determined that for every 100 births, 36 die before the age of 6. Since

the data was not grouped by age, Graunt had to guess the ages at which people had

died given the cause of death. The results were published in 1662 in “National and

political observations made upon the Bills of Mortality” (Graunt 1662) and are shown

in Figure 2.1.

Table 2.1: Graunt’s Life Table.

Age Number Alive Deaths

0 100 36
6 64 24
16 40 15
26 25 9
36 16 6
46 10 4
56 6 3
66 3 2
76 1 1
86 0 . . .

We observe a smooth progression after age 6 where the number of persons living is

approximately equal to five-eighths of the previous one. This gives an annual survival
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rate of about 95.4%, independent of age. The annual mortality rate according to

Graunt’s estimates would then be 1/18. The overall annual mortality rate shown

in his data is 1/27 (Lewin and Valois 2003). Perhaps if Graunt had realized the

discrepancy he would have adjusted the adult mortality rates to increase with age

making the estimates in his table more accurate.

2.1.2 Halley’s Life Table

Nearly thirty years later in 1693, Edmond Halley designed a life table based on mor-

tality data for the valuation of life annuities. Casper Neumann, a Protestant pastor,

collected the data from the parish registers in Breslau from 1687 to 1691. The city of

Breslau in Silesia is now called Wroclaw in Poland. The data consist of the number of

births and the number of deaths including the age at which people had died. Halley

obtained the Breslau data, analysed it and constructed a life table. The Breslau data

show that the population was approximately stationary. A stationary population is

when the number of births equal the number of deaths and the age-specific mortality

rates remain constant over time.

Analysing the data, Halley determined that the total population of Breslau was

approximately 34,000 with a mean of 1238 births per year and 348 deaths in the first

year of life. This gives (1238 + (1238-348))/2 = 1064, the mean number of infants

alive in the first year. Halley rounded this number to start his population table

with 1000 persons alive in the first year of age. Bellhouse (2011) illustrates how the

additional 64 lives were redistributed throughout the early years of life. Halley’s table

is referred to as a life table, although by correct definition, it is a population table

since it displays the mean number of persons alive at each age for Breslau (Greenwood

1941).

Table 2.2 shows Halley’s estimates of the number of persons living at each age

current from 1 to 84. Age current means a person is within that year of life but has not
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reached their birthday of that year. Figure 2.1 show Halley’s estimates of the number

of persons alive as a function of age. Smoothing was necessary due to the irregularities

of the data and the small numbers of deaths at the older ages. Calculating the slope

for the yearly rates we find that Halley used piecewise linear interpolation to smooth

out such irregularities. In general, Halley’s estimates are approximately linear from

age 12 to 78. The curve in Figure 2.1 is exactly linear between the dots.

Table 2.2: Halley’s Breslau table.

Age. Per- Age. Per- Age. Per- Age. Per- Age. Per- Age. Per-
Curt. sons. Curt. sons. Curt. sons. Curt. sons. Curt. sons. Curt. sons.

1 1000 8 680 15 628 22 586 29 539 36 481
2 855 9 670 16 622 23 579 30 531 37 472
3 798 10 661 17 616 24 573 31 523 38 463
4 760 11 653 18 610 25 567 32 515 39 454
5 732 12 646 19 604 26 560 33 507 40 445
6 710 13 640 20 598 27 553 34 499 41 436
7 692 14 634 21 592 28 546 35 490 42 427

Age. Per- Age. Per- Age. Per- Age. Per- Age. Per- Age. Per-
Curt. sons. Curt. sons. Curt. sons. Curt. sons. Curt. sons. Curt. sons.

43 417 50 346 57 272 64 202 71 131 78 58
44 407 51 335 58 262 65 192 72 120 79 49
45 397 52 324 59 252 66 182 73 109 80 41
46 387 53 313 60 242 67 172 74 98 81 34
47 377 54 302 61 232 68 162 75 88 82 28
48 367 55 292 62 222 69 152 76 78 83 23
49 357 56 282 63 212 70 142 77 68 84 20

The results were published in 1693 in Philosophical Transactions titled “An es-

timate of the degrees of the mortality of mankind, drawn from curious tables of the

births and funerals at the City of Breslaw; with an attempt to ascertain the price of

annuities upon lives” (Halley 1693). The table proved to be reliable in the valuation of

annuities. Halley’s table is considered the world’s first life table and has been analysed

extensively from a historical perspective since its publication (Bellhouse 2011a).



2.2. Eighteenth-Century Smoothing 7

Figure 2.1: Halley’s estimates of the number of lives at each age.

In the eighteenth century Halley’s table was used as a source for other works

such as Daniel Bernoulli’s model on smallpox. Bernoulli used Halley’s table in his

calculations to model the probability of dying of smallpox. Adjusting the number of

births from 1238 to 1300 was the only change Bernoulli made to Halley’s estimates

(Bacaër 2011, pp. 21–29).

2.2 Eighteenth-Century Smoothing

2.2.1 De Moivre’s Survival Function

Deriving estimates for annuities using Halley’s life table was a laborious task. In 1725

Abraham De Moivre developed a survival function that simplified the calculations.

De Moivre used the fact that Halley’s table was approximately linear after age 30 and

used this assumption in deriving his survival probability model (De Moivre 1725).

This allowed him to derive formulas for annuities of single lives. To approximate



8 Chapter 2. The Development of Early Smoothing Techniques

annuities of joint lives as a function of the corresponding annuities on single lives,

De Moivre used an exponentially decreasing function. The two assumptions, linear

and exponential, are incompatible but De Moivre did it anyway to obtain a simple

approximation (Bellhouse 2011b, pp. 161–164).

2.2.2 Smart’s Life Table

Nearly 65 years after the publication of Graunt’s life table, the collection of mortality

data in London remained unchanged; parish clerks were required to report only the

cause of death and not the age at which a person had died. In 1726 John Smart,

a clerk at Guildhall London, wanted to construct a life table to estimate annuities

but his design required the number of deaths at each age with observations taken

over several years. Smart describes the problem in his book titled “Tables of Interest,

Discount, Annuities, &c” (1726, p. 113). Smart didn’t feel a change would be made

during his lifetime. However, in less than two years after the publication of his book,

parish clerks were required to include the approximate age of death. By 1737 Smart

felt he had enough observations to construct a life table for the City of London.

Smart’s life table along with the raw data is recorded on a broadside and held

in the Guildhall Library in London (Smart 1738b). Extracted from the London Bills,

the data gives the number of deaths for each year between 1728 to 1737 inclusive

for each age group ranging from birth to greater than 90. Table 2.3 shows the total

number of deaths for each age group and the corresponding number out of 1000.

Smart took the total number of deaths over ten years for each age group and

determined the proportion out of 1000. We find from Smart’s life table in Appendix A

that the yearly rates remain constant over a few years. Smart retained the proportion

of death for each age group given in the data and used piecewise linear interpolation

to obtain the number of lives and deaths for the years between each age group.

Figure 2.2 shows Smart’s estimates for London (lower curve) and Halley’s estimates
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Table 2.3: Mortality rates from the Bills of Mortality for London, 1728 to 1737.

Age Group Total Deaths Out of 1000

0 to 2 103159 386
2 to 5 23505 88
5 to 10 9775 36
10 to 20 8242 31
20 to 30 19776 74
30 to 40 24302 91
40 to 50 23989 90
50 to 60 19693 74
60 to 70 16309 61
70 to 80 10684 40
80 to 90 6450 24
> 90 1266 5

for Breslau (upper curve). Smart estimates higher mortality rates than Halley’s except

for the older ages. Calculating the slope for the yearly rates we find Smart’s curve

is approximately linear from age 21 to 71. From age 21 to 60 the curves are nearly

parallel. The curves are exactly linear between the dots.

Figure 2.2: Smart’s estimates (lower curve) and Halley’s estimates of the number of
lives at each age.
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Smart wrote a letter to George Heathcote and enclosed a copy of his table es-

timates (Smart 1738a). Heathcote was a politician and a member of parliament in

London. Dated February 25th, 1737, Smart explains to Heathcote how his life table

is different than Halley’s. Smart writes

. . . you will find a very great Difference more especially in the early part

of Life. For 1238 Persons dying yearly at Breslau, the Doctor computes

616 of them, which is near one half, attain the age of seventeen: whereas

by my Table, of 1000 Persons, there are but 501 who live to eight years

of Age. But with respect to old Age, the Tables agree well enough for, by

the one, 20 of the 1238, live to eighty four; by the other, 20 in 1000, to

eighty three years of Age. (Smart 1738a)

Smart also explains how the two cities are different:

. . . Breslau is an inland City in Germany, inhabited chiefly by sober, in-

dustrious Peoples, Strangers to Luxury that Parent of all Vices, whereas

London is a City abounding with Luxury amongst the Rich, and Debauch-

ery amongst both of the Rich and Poor. (Smart 1738a)

Smart acknowledges that Breslau and London are different, but like Halley’s table

he assumed the population of London was stationary when he constructed the table.

A consequence of assuming a stationary population is that the characteristics of the

population are independent of time. This means that for each age group the number

of live persons is always the same as that of the original life table. This is not realistic

since most populations vary over time. A life table constructed with this assumption

does not guarantee accurate estimates in the long run. The assumption was not

practical for the city of London as it was with Breslau. At the time, London was

experiencing significant immigration. Smart’s estimates were based on the number of

births, the number of deaths, and the age of death. He did not know the number of

people in the population at each age, which made the table estimates unreliable.
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2.2.3 Simpson’s Life Table

The consequence of Smart’s assumption of a stationary population was quickly rec-

ognized by Thomas Simpson. Simpson (1742) published a revision to Smart’s table

that tried to take into account migration. Simpson changed Smart’s estimates up to

age 25 and kept the remaining estimates the same. Simpson increased the number

of births from 1000 to 1280, and using Halley’s life table as a reference, used linear

interpolation for the younger ages (Hald 1990, pp. 518–519). Figure 2.3 shows Simp-

son’s estimates (lower curve) and Halley’s estimates (upper curve) for the number of

lives at each age. Simpson estimates higher mortality rates than Halley except for

the older ages. Calculating the slope for the yearly rates we find Simpson’s curve is

approximately linear after age 12. The curves are nearly parallel from age 12 to 60.

The curves are exactly linear between dots. Simpson’s table was published in 1742

and used for insurance purposes (Hald 1990, p. 519).

Figure 2.3: Simpson’s estimates (lower curve) and Halley’s estimates of the number
of lives at each age.
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2.2.4 The Northampton Table

Mathematician, philosopher and theologian Richard Price constructed a life table

based on observations from the Register of Mortality at Northampton. The data are

from the burial register of the Parish of All Saints in Northampton, England and

spans 46 years from 1735 to 1780. The first version of the table was compiled using

data from 1735 to 1770. With ten additional years of data in hand, Price revised

and published the table in 1783 in Observations reversionary payments; schemes

for providing annuities for widows, and for persons in old age; on the method of

calculating the values of assurances on lives. The data consist of 4689 deaths and 4220

baptisms, a difference of 469 (or 10%). Price describes his method of construction on

page 358 of his Observations although he is not explicit. William Farr (1848) explains

in the 8th Report of the Registrar General that Price accounted for immigration at

age 20. Based on Farr’s description, W. Sutton (1883) proposes a method for the

construction of the table. The construction of Price’s life table is shown in Table 2.4.

Table 2.4: The Construction of the Northampton Table.

(1) (2) (3) (4) (5) (6) (7) (8)

Age Deaths
Deaths

Living
Living Less 1300 Living Northampton

Adjusted 10000 under 20 Adjusted Table

0 1529 1529 4689 10000 8700 11649.2 11650
2 362 362 3160 6739 5439 7283 7283
5 201 201 2798 5967 4667 6249 6249
10 189 189 2597 5538 4238 5675 5675
20 373 351 2408 5135 3835 5135 5132
30 329 351 2057 4387 . . . 4387 4385
40 365 365 1706 3638 . . . 3638 3635
50 384 384 1341 2860 . . . 2860 2857
60 378 378 957 2041 . . . 2041 2038
70 358 358 579 1235 . . . 1235 1232
80 199 199 221 471 . . . 471 469
90 22 22 22 47 . . . 47 46
100 . . . . . . 0 21 . . . 0 0

The first two columns in Table 2.4 show the data with the number of deaths for
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each age group. For example, there are 1529 deaths from birth up to age 2, and there

are 362 deaths from age 2 up to age 5, and so on. Price smooths the number of deaths

by averaging the age groups 20 to 30 and 30 to 40 so that they are equal (shown in

bold). Column 4 corresponds to the number of person living if the population was

stationary with the initial value for the number of persons alive from birth to age 2

being the sum of all the deaths from column 3. Column 5 is the number of persons

living for each age group proportionally increased for a population size of 10,000.

Column 6 is smoothed to account for immigration by decreasing up to age group 20

to 30 in column 5 by 1300 (13% of 10,000 instead of the 10% suggested by the data).

Column 7 increases the first five age groups by the proportion (5135/3835) required

to restore the age group 20 to 30 to the original value in column 5. The last column

shows Price’s Northampton table. The differences between the last two columns differ

by no more than 3 between the age 20 and 90.

Price’s Northampton table was constructed properly based on the given data

(Registrar General 1848, p. 291). However, Farr (1853) states that the data did not

accurately represent Northampton because there were a great number of Baptists liv-

ing in the town and they do not baptize infants. This reduced the ratio of christenings

to deaths, which decreased the average life expectancy. The consequence of this was

that the mean duration of life was assumed to be 24 years when it was really about

30 years. The table was used by the Equitable Life Assurance Society and the British

government for 20 years to determine the price of annuities it sold. This led to losses

since the longevity of the annuitants was greater than what the table indicated.
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2.3 Nineteenth-Century Smoothing

2.3.1 The Carlisle Table

Joshua Milne employed a graphical smoothing method in the construction of the

Carlisle Table, a life table based on data from the City of Carlisle. Milne was an

actuary for the Sun Life Assurance Society. The table was published in 1815 in A

Treatise on the Valuation on Annuitities and Assurances on Lives and Survivorships

(Milne 1815). The data were provided by John Heysham, a medical doctor, and was

taken from population data and the Bills of Mortality of two parishes in Carlisle. The

data consist of a census of grouped data for the number of persons living for the years

1780 and 1787. The data include the number of deaths for the same age groups with

birth to 5 given in one year intervals covering the period from 1779 to 1787.

Columns 1 to 3 in Table 2.5 show the data with the number of persons alive for

each age group for the years 1780 and 1787 respectively. The total number of persons

living for the eight-year period is calculated as the sum of the 1780 and 1787 censuses

multipled by 4 and is shown in column 4. Column 5 is the total number of persons

living (column 4) divided by the width of each age group and rounded to the nearest

integer.

Milne begins his graphical approach by constructing rectangles whose base cor-

responds to the widths of each age group and the heights as calculated in column 5

of Table 2.5. For example, the age group birth to 5 has 8772 persons living over a

five year period which represents the area of the first rectangle with the height given

by 8772/5=1754 from column 5. Using his knowledge and experience, Milne drew a

smooth continuous curve through the tops of the rectangles such that any additional

area added to the rectangles was equal to the amount removed. Milne knew to start

the curve high because the infant mortality data showed a high number of deaths in

the first year of life.
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Table 2.5: The Carlisle data.

(1) (2) (3) (4) (5)
Age Population Population Living 8 year total

Group in 1780 in 1787 8 year total at each age

0 to 5 1029 1164 8772 1754
5 to 10 908 1026 7736 1547
10 to 15 715 808 6092 1218
15 to 20 675 763 5752 1150
20 to 30 1328 1501 11316 1132
30 to 40 877 991 7472 747
40 to 50 858 970 7312 731
50 to 60 588 665 5012 501
60 to 70 438 494 3728 373
70 to 80 191 216 1628 163
80 to 90 58 66 496 50
90 to 100 10 11 84 8
100 to 105 2 2 16 . . .

Figure 2.4 is Milne’s graph of the Carlisle population curve (Milne 1815, p. 101).

Milne used the graph for the purpose of illustration but did not include the values for

the horizontal and vertical axes.

Figure 2.4: Carlisle population curve.



16 Chapter 2. The Development of Early Smoothing Techniques

The Carlisle table is constructed from the graph in Figure 2.4. The number of

persons living for each year is determined by finding the year on the horizontal axis

and the corresponding value on the curve. The same graphical interpolation method

can be used to find the number of deaths as illustrated by actuary George King (1883).

The Carlisle table was widely adopted by actuaries and used for many years for

the valuation of annuities (BMJ 1902). The British Medical Journal featured Milne’s

method in its 1902 publication concluding that the graphical method“is simpler, more

elegant, and equally accurate with the analytical method” (BMJ 1902).

2.3.2 Gompertz-Makeham Law of Mortality

Mathematician and actuary Benjamin Gompertz derived a parametric model for the

construction of life tables. The idea of the model was first introduced and published

in Philosophical Transactions in 1820 and 1825, and further developed and presented

to the Royal Society in 1861 (Gompertz 1820, 1825, 1861). The model is known as

the Law of Mortality. Let Dx be the cumulative number of deaths up to age x, then

Dx = Bcx (2.1)

where B and c are constants. Fellow actuary William Makeham revised the model to

improve the accuracy. The model was published in the Journal of the Institute of Ac-

tuaries in 1859 titled “On the Further Development of Gompertz’s Law”. Makeham’s

model includes the addition of a constant term A and is given by

Dx = A+Bcx. (2.2)

The model is useful for smoothing mortality observations and for calculating the value

of life insurance (Hald 1990, p. 513).
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2.3.3 The English Table

Farr constructed the first four English Life Tables. The third life table was published

in 1864 and the method for its construction is described in full in his book, English

Life Table (Farr 1864). The data are based on the 1841 and 1851 population censuses

for England and Wales and the number of deaths for the 17 years from 1838 to 1854

for both males and females from the civil registrations. The data consist of population

and deaths for individual years from birth to age 4, for every five years up to age 15,

and for every ten years up to greater than 95 (Farr 1864, p. xix).

Farr obtained a uniform distribution of deaths using

px =

(
2−mx

2 +mx

)
(2.3)

where px is the probability that someone age x will survive to age x + 1 and mx is

the number of persons dying at age x divided by the mean population at age x. In

other words, mx is the rate at which people are dying in the middle of the year of age

x to x + 1 and is formally known as the central force of mortality. Farr retained the

rates of mortality for ages under 5 given in the data. For the 10-year groups Equation

(2.3) gives the force of mortality for integral ages instead of for the mean of the year

of age.

Farr assumed that the force of mortality (instantaneous mortality rate at age x)

for a country increased in a geometrical progression using the relation μx+t = rtμx

for t years and r10 = μx + 10/μx. Then

−ln(px) =
∫ 1

0

μt+1dt =
r − 1

ln(r)
μx. (2.4)

Transforming into common logarithms we have

−log(px) = k2(r − 1)

log(r)
μx. (2.5)
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where k = log10e. The values for log(px) for ages 3, 4, 7, 12 and every ten years

thereafter were used as the basis for third difference interpolation after dividing the

table into sections. Table divisions were done separately for males and females based

on the analysis of the data. Farr (1864, p. clxvii) obtained the deaths rates for

each year of life and tabulated the results. The yearly mortality rates are given

in logarithms for both male and female from birth to age 109. The computations

involved were extensive and the tables were used for insurance purposes.

2.4 Early Twentieth-Century Smoothing

A special edition on data smoothing methods was published in 1921, Tracts for Com-

puters by E.C. Rhodes and edited by Karl Pearson. This rare publication examines

and compares some of the data smoothing (or graduation) techniques in use at the

time and served in part as the motivation for this thesis. A large amount of experi-

mental and observational data were collected during W.W.I, which prompted serious

discussion on smoothing methods (Rhodes 1921, p. 4). The staff of the Galton Lab-

oratory, UCL were engaged in research for the Admiralty Air Department and Min-

istry of Munitions and the collection of wartime data was related to fuses, elasticity,

propellers, aircraft and ballistics trajectories, and range tables (Galton Laboratory

Wartime Research Papers, UCL Special Collections, Pearson/9). The smoothing

methods of John Spencer (1904), W.S.B. Woolhouse (1869), A. Cauchy (1837), T.

Sprague (1886) and W.F. Sheppard (1914b) are considered. Spencer’s graduation

formula, also known as the summation formula, uses 15 or 21 values tabulated in

order to obtain one smoothed value at a time. The process is repeated with the series

of smoothed values proceeding by constant third differences. The method is simple

for practical use and was widely used by actuaries. Woolhouse’s method uses 15 val-

ues to smooth out the central value, using repeated summations until each value is

smoothed. He was the first person to use differences to smooth data. His method

assumes that the third differences in the given series are negligible and uses parabolic
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interpolation. Cauchy suggests a method of smoothing observations using a known

function, and Sprague uses a graphical approach using osculatory interpolation which

requires previous knowledge and experience of the given data.

Great attention is given to Sheppard’s smoothing method using differences based

on least squares. His method is proven to perform well by having the smallest or

same magnitude of mean square error as the other methods studied in the tract.

Sheppard’s statistical career and correspondence to Pearson is given in Chapters 3,

the construction of his tables in Chapter 4, and his smoothing method in Chapter 5.

2.5 Conclusion

The collection of detailed population data increased and was recorded over longer

periods of time. Elementary smoothing techniques evolved into more complex modern

methods. The progression of smoothing methods began with visual interpolation,

averaging, and mathematical interpolation, and developed into smoothing methods

using parametric and nonparametric models, differences and graphical methods. The

motivation for developing new methods or improving on existing ones is to find a way

to adjust the data that results with smoothed values that are closer to the true values,

and thus reducing the error, while keeping in mind that the new method is suitable

for practical use.

Advanced smoothing methods are employed in the construction of modern life

tables. For example, the construction of life tables in use by Statistics Canada (2015)

involve two methodologies: logistic models and splines. B-splines are used for smooth-

ing the ages of death due to their flexibility. The logistic model replaced the quadratic

model in 2005. Studies show that the mortality rate in countries with higher qual-

ity data tended to follow a logistic curve (Statistics Canada 2015). The process of

smoothing population data continues to be refined as the quality of data improves.
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Chapter 3

The Correspondence from

Sheppard to Pearson

3.1 Background

William Fleetwood Sheppard was born in 1863 in Sydney, Australia. He attended

grammar school in Brisbane and was sent to England to finish his education at Char-

terhouse School. He won a scholarship to Trinity College, Cambridge and was Senior

Wrangler in the Mathematical Tripos of 1884. Sheppard became a Fellow of Trinity

College and published a paper on Bessel functions (Sheppard 1889). Sheppard left

Cambridge to pursue a career in law but returned to his interest in education and

research, and focused on statistics. In 1896, he was appointed Junior Examiner in the

Education Department and later promoted to Assistant Secretary. He retired in 1921

at the age of 58. He then became a Senior Examiner at the Univeristy of London

before moving to Edinburgh in 1926. He worked at the Edinburgh University and

was elected a Fellow of the Royal Society of Edinburgh in 1932 (Sheppard 1938).

21
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3.2 Early Correspondence

At the beginning of his statistical career, Sheppard consulted British statistician Karl

Pearson, a leading pioneer of modern statistics who could provide Sheppard with

statistical advice and expertise. Sheppard wrote a letter to Pearson describing a

manuscript he was working on with Francis Galton and asked if he would review it

when it was completed. This was the first letter of a series of 23 letters that are

archived at University College, London (Pearson 1896–1926). The letters have been

transcribed and can be found in Appendix B. For reference, a brief description of the

letters are given in Table 3.1.

Table 3.1: Descriptions of the 23 letters from Sheppard to Pearson.

Letter No. Date Description

1 3 June 1896 Sheppard describes an unfinished paper he has
been working on with Galton.

2 16 June 1896 Sheppard asks Pearson of any possible employment
opportunities.

3 19 October 1896 Sheppard questions Pearson regarding his method
for finding the moments of a polygon.

4 20 October 1896 Sheppard questions Pearson on his methods on the
fitting of curves.

5 10 May 1899 Short discussion on Sheppard’s work on a quadra-
ture formula. Sheppard offers Pearson a mathe-
matical problem for student examinations.

6 31 March 1900 Sheppard asks Pearson if he has any use for his
quadrature formula. He tells Pearson that his pa-
per on normal correlation will be published.

7 5 April 1900 More discussion with regards to Pearson using
Sheppard’s quadrature formulae and the fitting of
curves.

8 8 April 1900 Quadrature formulae for volumes and for specific
curve-types.

9 4 May 1900 The fitting of curves and the organization of a fu-
ture paper that Pearson is working on.

10 7 May 1900 Brief discussion on the fitting of the “cloudiness
curve.”
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11 18 December 1900 Sheppard tells Pearson he would like to write a
short article about interpolation formulae for sur-
faces.

12 13 Febrary 1901 Sheppard encourages Pearson to write an article
on the mathematical treatment of statistics for the
Times.

13 16 February 1902 Discussion as to where Sheppard’s tables related to
the normal distribution could be published. Per-
sonal writing about Pearson’s health.

14 13 February 1908 Sheppard asks Pearson the proper etiquette for re-
using questions from others’ examination papers
in textbooks.

15 18 May 1911 Sheppard discusses a problem on probability.
16 4 October 1911 Sheppard’s tables related to the normal distribu-

tion including a table of values.
17 23 July 1915 Personal topics regarding Sheppard’s family and

the health of his eldest son.
18 18 October 1916 Brief discussion about a probability problem.
19 10 April 1925 Brief discussion about Sheppard’s tables related

to the normal distribution with some calculated
values.

20 6 September 1925 Discussion about Sheppard’s tables related to the
normal distribution and extending the number of
decimal places.

21 26 November 1925 More discussion about Sheppard’s tables with
some calculated values.

22 2 December 1925 Sheppard desribes 3 of his tables and includes them
in the letter.

23 29 June 1926 Details on Sheppard’s tables related to the normal
distribution. A personal note on Pearson’s opera-
tion.

The letters span three decades from 3 June 1896 to 29 June 1926. The majority

of the correspondence spans the first decade during which time many of Sheppard’s

papers were published. The letters begin very formally with“Dear Sir”and discussions

about statistical methods, but over the course of the thirty years they become informal

where Sheppard speaks of his family and of Pearson’s health. It is obvious that they

became very good colleagues and good friends.

In general, the letters pertain to specific papers that Sheppard was working on
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with the hope of being published. He shares his statistical ideas and methods with

Pearson and frequently asks for his advice on which journal would be the most suitable

for the publication of his manuscripts. Reducing the costs of publishing his methods

and tables was also considered. For example, Sheppard suggests using the derivatives

of a function instead of the differences for his tables to save time and space. Sheppard

estimated his quadrature formula would take up 10 or 11 pages using octavo-sized

paper. The speed of the calculations are discussed throughout the correspondence.

Sheppard knew how many minutes it would take to use his method of interpolation

using a Brunsviga mechanical calculator that he had on loan from the Royal Society.

Sheppard wondered if Charles Vernon Boys, a British physicist and inventor, could

devise a machine to simplify the process of calculating large numerical determinants.

Vernon Boys (1944) designed and constructed an integration machine. Instruments,

such as a planimeter were used for testing what Sheppard called “closeness of fit.” A

planimeter determines the area of a two-dimensional shape.

Sheppard was also interested in teaching. He asks Pearson of any possible em-

ployment opportunities and the average hourly rate for private mathematical coach-

ing. In the early correspondence, Pearson offered Sheppard a position to teach as-

tronomy. However, Sheppard declined stating it wasn’t the best subject for him when

he attended Cambridge. Sheppard knew that Pearson set examinations and offered

a problem that he could use in his examinations. He asks Pearson if questions from

publications are allowed to be used in student examinations. The correspondence

shows the solutions to probability questions that Sheppard had worked out for future

examinations.

The letters suggest that Pearson had a major influence on Sheppard’s statistical

work. Sheppard compares his methods and results to Pearson’s in a non-competitative

way to try to fully understand the statistical concepts. For example, Sheppard dis-

covered that Pearson had published a paper on the normal correlation based on the

multiple integral (the multivariate normal distribution). He had worked out a method
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for normal correlation for the double integral (the bivariate normal distribution) and

found that his method was different than Pearson’s. Sheppard did not always agree

with Pearson’s methods and would offer an explanation as to why. Sometimes he

would give an alternate method and ask for Pearson’s opinion. Sheppard shared

proofs and formulas and referenced Pearson in his published works. Pearson must

have liked Sheppard’s results. He referenced Sheppard’s methods and formulas such

as his corrections of moment estimates for normally grouped data and his quadra-

ture formulas in his own published works (Pearson 1902, 1914a, 1914b). Details of

Pearson’s references will be given later in this chapter.

The letters provide a rare and insightful glimpse into the personal and profes-

sional relationship between Sheppard and Pearson. They give some of the background

details of Sheppard’s methods and formulas that would eventually be published and

adopted by other statisticians.

3.3 Statistical Correspondence

The main theme of their correspondence was the fitting of curves but they also dis-

cussed probable error formulas, moment estimates and corrections to moment esti-

mates for grouped normal data, quadrature formulas, tests of fit, Pearson’s chi-square

test, and tables for the normal density function.

Before proceeding to the specific topics discussed in the correspondence, it is

important to describe some of the statistical terminology and theory that was being

developed at the time. Towards the end of the nineteenth century, asymmetrical

distributions were becoming accepted and new distributions were being developed to

model skewed data. Previously, it was assumed that all continuous statistical data

were normally distributed. Probability distribution functions were called frequency

distributions or curves of frequency. In 1895, Pearson developed four types of fre-

quency curves to model skewed observations (Pearson 1895). By 1916, the number of
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curves had increased to twelve and they became well known as the “Pearson Family

of Frequency Curves” (Stigler 2008). The details of how Pearson derived his family

of curves can be found in §2.3.3. Although they were referred to as parameters, the

constants of the frequency curves were not parameters in the way we define them

today. Quantities such as the mean and standard deviation were expressed, when

possible, in terms of the frequency constants.

Pearson sometimes used the constants of his frequency curves as though they

were parameters but this proved to be consequential. Historian Stephen Stigler (2008)

explains why. Referring to an 1898 paper jointly authored by Pearson and colleague

L.N.G. Filon (Pearson and Filon 1898), Stigler describes a major error when they

incorrectly derived an asymptotically approximate multivariate normal distribution

for the errors of estimation from the expansion of a log-likelihood ratio. The source

of the error was the substitution of integrals for sums in the Taylor expansion. Stigler

points out this was equivalent to replacing the sums with expectations. The Taylor

expansion they used was about the estimates meaning the expectations were then

functions of the estimates and not that of the true values. In other words, there

was no distinction between the estimates and the parameters of the model. Stigler

explains the consequence of the error:

All the expectations are computed as if the estimated values were true

values, and the result is a distribution for errors that does not in any way

depend upon the method used to estimate. (Stigler 2008)

Unfortunately, Pearson lacked the notion of a distribution of true values of the pa-

rameters and “for him there was no ‘true value,’ only a summary estimate in terms

of observed values” (Stigler 2008). At the time, the consequences of the method

went unnoticed. The idea of parametric modelling was not introduced until 1922 by

R.A. Fisher. Fisher presented a method for fitting curves using maximum likelihood

estimation. The new method proved to be superior to Pearson’s method since the

maximum likelihood estimators are asymptotically unbiased consistent, efficient and
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asymptotically normal.

3.3.1 Probable Error

The first letter in the Pearson Papers collection describes an unfinished paper on the

normal curve that Sheppard and Galton had been working on. Sheppard explains

how the paper is entirely theoretical and geometrical without the use of any differen-

tiation or integration. The paper contains new material on the correlation between

normal distributions and that non-normal distributions would only be considered for

the purpose of analysing them into component normal distributions. Sheppard writes

that the paper takes up a great deal of space but he wanted to treat the subject thor-

oughly. Sheppard wanted to know if Pearson would be willing to look at the paper

when it was finished and if he might suggest a suitable journal for its publication.

Sheppard wondered if the paper had a chance of being published in the Philosophical

Transactions. Given the date of the letter and the subject of the unfinished paper,

it appears Sheppard was referring to his paper, “On the geometrical treatment of

the ‘normal curve’ of statistics,” dated October 1897 and published in the Proceed-

ings of the Royal Society of London (Sheppard 1897b). The paper was revised and

republished under the title, “On the application of the theory of error to cases of

normal distributions and normal correlations,” in 1899 in Philosophical Transactions

of the Royal Society (Sheppard 1899c). In the paper, Sheppard makes reference to

Galton, highlighting his contribution on normal correlation. Sheppard includes his

proof of a theorem in bivariate normal correlation, which is now sometimes known as

Sheppard’s theorem on median dichotomy (MacKenzie 1981, p. 97). In addition, the

paper includes methods for evaluating probable error for the frequency constants of

the normal distribution and tables for calculating probable error.

The term “probable error” was first used in the early nineteenth century to

describe what we now call the median error of an estimate (Stigler 2008). If m

is the probable error and σ is the standard deviation, then the probable error is
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m = 0.6745σ. The first and third quantiles of a normal distribution are 0.6745σ

from the mean. The probability that a deviation is greater than the probable error

is 0.5 and is equal to the probability of a deviation less than the probable error. If

the observed deviation is less than 3 times the standard error it is approximately

equivalent to the observed deviation being less than 4.5 times the probable error.

In his 1899c paper, Sheppard gives two applications where probable error can be

used: for computing the discrepancy between the observed values and the true values,

and for hypothesis tests. The hypothesis tests include the test for normality, test for

normal correlation and the test for independence of two distributions. Generally

speaking, for about half the values of X, the discrepancy, d, should be less than the

probable discrepancy, q, and amongst the remaining values the discrepancy should

not be a large multiple of the probable discrepancy. The ratios, d/q, are computed to

determine if they are or are not greater than we might reasonably expect. Sheppard

includes a table of values to compare with the computed ratio values. The method is

similar to the rejection region approach for hypothesis tests that is used today. Let q

be the quartile deviation (probable discrepancy) and m the number of random values.

If the area of the standard normal distribution between the points x = −p/q and x =

+p/q is φ, then the probability of at least one of the values of δ being greater than p is

1−φ. If φ is chosen such that the probability is 0.5, the corresponding value p will be

the “probable limit” of δ. The tables gives 20 values for m corresponding to the values

of the ratio p/q. For example, when m=1 then p/q=1 and when m=10, p/q=2.716.

For values greater than m=20, Sheppard (1899, p. 123) suggests using Chauvenet’s

criterion for the rejection of one out ofm/ln(4+1/2) observations. William Chauvenet

was an American mathematician and astronomer.

Sheppard gives several examples to illustrate the hypothesis tests using probable

error. For example, a hypothesis test to determine if a distribution is normal is given

using grouped data of the chest measurements of 5,732 local Scottish militia, a famous

dataset from the Edinburgh Medical and Surgical Journal (1817, pp. 260-263). The
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first step is to calculate the mean x̄, and standard deviation s. Sheppard (1897a)

uses a special formula to calculate the standard deviation based on grouped data that

he derived in a previous paper. He uses areas to derive the variance which he calls

the mean square and is similar to the shortcut formula we use today to calculate

the variance for grouped data [
∑

(fx2)− (
∑

(fx))2/n)]/(n− 1) where f is the group

frequency. This was Sheppard’s first published paper in statistics where he developed

corrections to moment estimates for normally grouped data. Details about the paper

can be found in §3.2.2.

In the next step, Sheppard creates new bins of the chest measurements to equal

the midpoint of each class, for example, 33 belongs to the bin 32.5 to 33.5 and 48

belongs to the bin 47.5 to 48.5. He then computes the class-index, αi, for each value

which represents the standardized proportion for each class [(2ni/n)− 1] where ni =∑i
j=1 fj. The middle ten values (35.5 to 44.5) are standardized, zk for k = 1, . . . 10.

Sheppard then calculates x̄+ szk for each class k. The discrepancy values, dk, are the

differences between each midpoint value and x̄+szk. Let φ(zk) be the standard normal

pdf evaluated for each class k, then the standard deviation for each discrepancy is

[s2(1 − α2
k)/4φ(zk)

2 − (1 + 1
2
z2k)]

1/2/
√
n, which when multiplied by 0.67449 gives the

probable discrepancy values qk. For the ten classes, four of the actual discrepancies are

less than the probable discrepancies, and the remaining six are greater. In addition,

the ratios (d/q)k are compared to Sheppard’s probable limit δ, mentioned above, for

m=10. Nine of the ten values are less than the corresponding p/q, and therefore, it

is concluded that the data appear to justify the hypothesis of a normal distribution.

The probable error can be calculated using Table V on pages 159 to 166 of

Sheppard’s 1899c paper. The tables contain values for the mean square (variance),

denoted by N, and the intermediate values (shown in the table between two values

of N) that correspond to the probable values, Q
√
N, where Q=0.67448975... For

example, if the variance is calculated as N= 0.019300, then the value of Q
√
N to

three decimal places is 0.094.



30 Chapter 3. The Correspondence from Sheppard to Pearson

At the time, probable error was used as a measure of the variability of the con-

stants of frequency curves resulting from a random sample. In this case, the probable

error is the standard deviation of the constant multiplied by 0.67449. The convention

of using probable error as a measure of goodness of the sample, rather than the stan-

dard deviation, was adopted since the theory was developed from the normal curve.

At the end of the first letter, Sheppard wrote a post script stating he “should be

much gratified if any of my work would be of use to you in your own investigations.”

In their 1898 paper, Pearson and Filon derived the probable error for the frequency

constants but used a different method than Sheppard (Pearson and Filon 1898). They

used a Bayesian approach with a uniform prior, which was sometimes referred to as

the Gaussian method (Stigler 2008, p. 5). It was a method of inverse probability

and was commonly used over the nineteenth century. As noted by Stigler, Pearson

and Filon’s derivations contained some errors in the distinction between the estimates

and the population parameters. Over time, Pearson distanced himself from his prob-

able error methods in preference for Sheppard’s non-Bayesian methods (MacKenzie

1981, pp. 203-204) and (Stigler 2008). Pearson referenced Sheppard as being the

“fundamental memoirs on the subject” in the editorial appearing in the volume of his

1903 paper titled On the probable error of frequency constants (Pearson 1903, p. 35).

Pearson included Sheppard’s methods for finding the probable error of the frequency

constants for five types of his system of curves. Sheppard’s methods for evaluating the

probable error for the frequency constants involve simple linear functions of frequency

counts using a Taylor expansion when necessary. The probable errors are estimated

and then the moments are found from the variances and covariances of the counts.

3.3.2 Corrections of Moment Estimates

The early correspondence includes references to methods for finding moment esti-

mates. In Letter 3, Sheppard enclosed a manuscript for Pearson to review, suggesting

it might be suitable for the Royal Statistical Society. Sheppard states that he will
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put the mathematical part into a separate paper and asks for Pearson’s advice on

the possibility of it being published in the Philosophical Magazine or the Cambridge

Philosophical Society. It appears Sheppard is referring to his first statistical paper

published in 1897 in the Journal of the Royal Statistical Society (Sheppard 1897a).

The paper summarizes his corrections of moment estimates for normally grouped

data. They were fully presented mathematically in 1898 (Sheppard 1898) and be-

came known as “Sheppard’s corrections” (Aitken 1938).

For continuous frequency distributions, it can be assumed frequencies are cen-

tered at the midpoints of the class intervals when calculating the moments. This

introduces some error and corrections are required. In modern notation, let μn be the

nth central moment, μ∗n the corresponding corrected moment and c the bin width.

Sheppard’s first five corrected moments are:

μ∗1 = μ1 = 0

μ∗2 = μ2 − 1

12
c2

μ∗3 = μ3

μ∗4 = μ4 − 1

2
μ2c

2 +
7

240
c4

μ∗5 = μ5 − 5

6
μ3c

2

In a memoir, after Sheppard’s death, A.C. Aitken highlights an error where

Pearson incorrectly omits the use of the corrections in his 1895 paper (Pearson 1895).

Aitken writes that corrections of the moment estimates should be applied in a certain

case for grouped data and gives Sheppard credit for deriving them (Aitken 1938).

Aitken describes how Sheppard was tactful in pointing out Pearson’s error and because

of this, his corrections were not universally adopted for some time.

Pearson used Sheppard’s corrections of moment estimates throughout his 1902

paper, “On the Systematic Fitting of Curves to Observations and Measurements”

(Pearson 1902). In 1914, Sheppard’s corrections were used in an illustration in the
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Tables for Statisticians and Biometricians, a publication edited by Pearson (Pearson

1914a, 1914b). The first four moments are calculated on the head circumferences

of 1,306 criminals. The data consist of 40 sub-groups and Pearson suggests that 20

sub-groups be used instead, and that Sheppard’s corrections would fully adjust for

the difference (Pearson 1914a, p. lxxvi).

3.3.3 Methods of Fitting Curves

Differences in their statistical views and methods began to surface a few months

into their correspondence. Two back-to-back letters (Letters 3 and 4) reveal some

of these differences. In Letter 3, Sheppard informs Pearson that after reading his

essay on “Skew Variation”, he modified a manuscript he was working on to include a

reference to Pearson’s paper and for illustration to include one of his tables. Sheppard

(1898) was working on his manuscript on corrections of moment estimates which

includes an appendix on the moments of a polygon based on a frequency curve. In

the letter, Sheppard writes that his method for finding the moments of a polygon

based on observations is very different from Pearson’s and that his method “seems

the more correct.” This would have been of interest to Pearson since the moments of

a polygon based on observations were used in his method for fitting frequency curves

to data. Sheppard is referring to Pearson’s 1885 paper titled, “Contributions to the

Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material”

(Pearson 1895). Pearson’s essay on “Skew Variation” was his first paper where he

gives a systematic method for the theoretical fitting of curves. As mentioned earlier,

it was at this time that asymmetrical distributions were becoming accepted for fitting

statistical data and Pearson was a leader in the development. His system of frequency

curves was derived using the following method. A density function, f(x), is defined

as a solution to the differential equation:

df

dx
=

(x− a)f(x)

b0 + b1x+ b2x2
. (3.1)
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The differential equation is based on the logarithm of the density function of the nor-

mal distribution and the probability mass function of the hypergeometric distribution.

The sign of the roots of the characteristic equation in the denominator determine two

main types of curves each containing sub-type curves. The types of curves relate to

the values of the parameters. To find the values of the parameters, Pearson used the

method of moments. He imported the method from physics (mechanics) (Porter 2004,

p. 240). In mechanics, a “moment” is a measure of force about a point of rotation

(center of mass) and is the product of the magnitude of the force by its perpendicular

distance from the point. In statistics, the first four moments represent the mean, dis-

persion of measurements around the mean, skewness and kurtosis. The parameters

in the denominator of the differential equation are expressed in terms of the moments

of the frequency curves. The values of the parameters determine the curve type. Any

Pearson curve can be uniquely determined by the first four non-central moments if

they exist. The nth non-central moment is

μ′n =

∫ ∞

−∞
xnf(x)dx (3.2)

and the nth central moment about the mean μ of the distribution is

μn =

∫ ∞

−∞
(x− μ)nf(x)dx (3.3)

Using a standard conversion formula,

μn =
n∑

j=0

(
n

j

)
(−1)n−jμ′jμn−j (3.4)

the non-central moments can be converted to central moments. Pearson derived the

parameters in the denominator of the differential equation in terms of the central
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moments:

b0 = −σ2(4β2 − 3β1)/D,

a = b1 = β
1/2
1 σ(β2 + 3)/D,

b2 = (2β2 − 3β1 − 6)/D (3.5)

where β1 = μ2
3/μ

3
2, β2 = μ4/μ

2
2, μ2 = σ2 and D = 10β2 − 12β1 − 18. The moments of

the frequency curves are approximated by a formula derived by Pearson. He begins

by constructing rectangles based on observations shown in Figure 3.1. The figure is

taken from page 346 of his 1895 paper (Pearson 1895).

Figure 3.1: Pearson’s histogram.

Pearson defines yr as the height of the rth rectangle and c as the distance between the

midpoints of each rectangle. Polygons are formed by joining the tops of the midpoints

of adjacent rectangles to form a frequency curve shown in Figure 3.2. Pearson refers

to the frequency curve as the “curve of observations.” The diagram of the curve is

from page 349 of his 1895 paper. The ordinates y1, y2, y3, . . . , yr, yr+1, . . . , are the

frequencies of deviations falling within the ranges x1 ± 1/2c, x2 ± 1/2c, x3 ± 1/2c,

. . . , xr ± 1/2c, and so on. The area of the polygon is approximately equal to that of

the curve, and the first non-central moments of the two areas are also approximately

equal. A Taylor expansion is used to approximate the non-central moments. Pearson’s
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Figure 3.2: Pearson’s diagram of a frequency curve based on observations forming a
series of polygons.

nth non-central moment of a series of polygons based on observations is

M′
n =

p∑
r=1

[
2yr

(
xn
r c

2!
+
n(n− 1)

4!
xn−2
r c3+

n(n− 1)(n− 2)(n− 3)

6!
xn−4
r c5+. . .

)]
. (3.6)

Pearson derives the first five sample non-central moments from Equation 3.6 and

then converts them to sample central moments. The sample central moments are

used to estimate the true moments via Equation 3.5. The values of the parameters

in Equation 3.5 are approximated using the data and used to determine the type of

Pearson curve.

In Letter 3, Sheppard explains to Pearson that his methods for finding the mo-

ments of a polygon based on observations give different results and offers an expla-

nation as to why his method seems more correct. To avoid confusion, I will use η to

define the number of observations, since Sheppard and Pearson used n to represent

both the number of observations and the nth moment. Pearson takes the ordinate yr

as proportional to ηr. Sheppard states that this works for a first order approxima-

tion using rectangles, but a polygon is equivalent to a second order approximation.

Taking yr = ηr, it underestimates where the curve is concave to the base and overesti-

mates where the curve is convex to the base, resulting in a larger standard deviation.

In other words, when constructing polygons a correction must be made. To make

it a second order approximation the ordinate should be ηr +
1
2
[ηr − 1

2
(ηr−1 + ηr+1)]
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rather than ηr. Sheppard tells Pearson that he will reference his method in his paper

but “will give the corresponding formula for the nth moment accurately (your M′
n).”

Sheppard is referring to Pearson’s formula (3.6).

Sheppard’s viewpoint becomes clear in his derivation of the moments of a poly-

gon in the appendix titled, “Moments of a Polygon” of his 1898 paper (Sheppard

1898, pp. 378–380). In the paper, Sheppard restates what he wrote in the letter

highlighting the issue as to why a larger standard deviation occurs when the ordi-

nate is proportional to number of observations. The polygon lies inside the spurious

(empirical) curve when the spurious curve is convex, and outside it where it is con-

cave. Therefore, the mean square error of the polygon is greater than the empirical

curve and the mean square error of the empirical curve is greater than the true curve.

Sheppard references Pearson’s derivation of Equation 3.6 in his paper but includes a

correction to estimate the curve more accurately (Sheppard 1898, p. 379). He also

gives an alternate formula to derive the moments based on areas using the formula,

Ar =
1
2
h(zr−1 + zr), rather than the ordinates.

The conversation continues in a second letter written the next day (Letter 4).

It appears that Sheppard is writing in response to an earlier letter from Pearson.

Sheppard thanks Pearson for providing an explanation for his method on curve fitting

and writes that he had misunderstood it. Pearson was fitting a curve that was not

a frequency curve but was related to a frequency curve. Despite the clarification,

Sheppard was still perplexed. Referring to the same diagram (Figure 3.2) mentioned

in the letter the previous day, Sheppard tries to explain the issue. He acknowledges

that the ordinate yr of the curve at every point xr is proportional to the area of the

curve between x ± 1
2
c, but states “there is no finality in this.” Sheppard’s concern is

that when this is applied to a normal distribution, for example, the shape of the new

curve will depend on the value of c. This in turn affects the degree of smoothing and

thus, the fitted curve. Sheppard continues to explain how he looks at the fitting of

curves differently by offering an alternate view:
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Apparently we look at the thing in different ways. I do not try to find

a frequency curve which the numbers given could be successive areas: I

try to find the frequency curve which would result if the causes or what-

ever they are–which regulate the particular magnitude in the individuals

measured acted in the same way on an infinite number of individuals,

the hypothesis being that the particular individuals are a chance selection

from this infinite number. (Pearson 1896–1926)

Sheppard is suggesting that his method finds the theoretical frequency curve rather

than the empirical frequency curve. In his 1899 paper, Sheppard geometrically de-

rives the normal curve and comments in a footnote how his method is different than

Pearson’s method in reference to Figure 3.2. Sheppard acknowledges that Pearson’s

curve of observations converges to the normal curve when n is made “indefinitely

great” (Sheppard 1899c, pp. 120–122).

Subsequently, Sheppard derived a quadrature formulae to approximate the pop-

ulation moments in Equation 3.2 as an alternate method to Pearson’s sample mo-

ments in Equation 3.6. We know from the correspondence that Sheppard spent a

great amount of time deriving the quadrature formulae. In 1902, Pearson references

Sheppard’s quadrature formulae in a paper on the fitting of curves to observational

data (Pearson 1902). More details on the correspondence and the development of

Sheppard’s quadrature formulae are given in the next subsection (§2.3.4).

3.3.4 Quadrature Formulae

In response to Pearson, Sheppard accepts his request to work on the development

of quadrature formulae. Sheppard informs Pearson that he had tried to write out a

formula and to apply it to his curves but found it wasn’t as good as calculating the area

using a direct method (Letter 5). However, several months later, Sheppard appears to

have worked out the derivations of the quadrature formulae and given them to Pearson
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(Letter 6). His quadrature formulae include an extension to volumes that he thought

would be useful for others such as naval architects. Naval architects calculate volumes

of complex shapes (ships’ hulls) to determine displacement. He informs Pearson that

he would like to have them published. Sheppard briefly describes the sketch of a paper

and asks Pearson if he would like to incorporate his quadrature formulae into one of

his own papers as well (Letter 7). A few days later, Sheppard suggests that the two of

them meet in person to discuss the quadrature formulae (Letter 8). The quadrature

formulae were published a few months later (Sheppard 1900), and in 1902, Pearson

referenced them in his own paper and included examples (Pearson 1902). Pearson

refers to the formulae as “Sheppard’s Rule” and compares it to other quadrature rules

available at the time such as Simpson’s Rule. Pearson writes:

Accordingly Mr Sheppard has determined the best coefficients for the

corrections to the chordal and tangential areas when one, two or three

differences only are used. He has provided the following quadrature for-

mulae which seem to me of much interest and practical value. (Pearson

1902, page 275)

Pearson concludes that Sheppard’s formula gives the best approximation when fitting

frequency curves to statistical data. Sheppard’s quadrature formulae provides a way

to use Pearson’s method of moments for the fitting of curves, which gives comparable

results to the method of least squares. Pearson suggests that his method of moments

be used when the method of least squares is too laborious or impractical (Pearson

1902, p. 271).

3.3.5 Tests of Fit and Pearson’s Chi-Square Test

In Letter 7, Sheppard writes to Pearson about his method for estimating the accuracy

of fit. Sheppard states that Pearson’s method of using percentages rather than proba-

ble error seems unsatisfactory. He questions Pearson by stating“if 6% is good, for 500
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observations, surely it may be bad for 2000?” He continues to ask what determines

“what is good & what is not” since “what is good for a curve with 3 constants may

be bad for a curve with 5 constants.” As mentioned, nineteenth-century statisticians

used the terms constants and parameters interchangeably. Sheppard was also con-

cerned with the misfits at different points of the curve since they are not always of

equal weight.

Sheppard sent a lengthy letter to Pearson describing his views on testing the fit

of a curve (Letter 9). In Sheppard’s words, “test of misfit” describes what we call

today “goodness of fit”. In the letter, Sheppard offers an example of fitting a curve

with n classes or bins using an equation with n − 1 constants. Sheppard explains

that if a good fit is achieved you may believe that you have captured the underlying

population distribution, but then if, say, the number of classes are doubled, it may

no longer be a good fit and thus, may not have captured the underlying population

distribution. Sheppard suggested that if the curve is fitted with less than n − 1

constants, there will be many solutions. It appears that Sheppard is asking Pearson

how to determine which fit is best. He continues to discuss life tables and suggests

that depending on the application it may be desirable to have a good fit in certain

parts of the curve, say the beginning rather than in other parts of the curve.

Sheppard then proposes an order of topics for a paper that appears to be in

progress. The three main topics are (1) data manipulation which included smoothing

and interpolation, (2) goodness of fit where Sheppard proposed his modification to

Pearson‘s test of misfit known today as Pearson‘s chi-square test, and (3) analysis such

as variation and the calculation of moments. Sheppard had a great deal of knowledge

of these statistical topics. Goodness of fit problems are discussed in his 1899 paper. A

few years later he published a paper in three parts on the development of smoothing

methods for fitting curves (Sheppard 1914a, 1914, 1915). Sheppard’s least squares

smoothing method was published in 1921 in a book on smoothing methods titled,

Tracts for Computers, which was edited by Pearson (Rhodes 1921). Sheppard later
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published a paper where he derived Pearson‘s chi-square test (Sheppard 1929). Inter-

estingly, Pearson’s famous paper on the chi-square test (Pearson 1900) was published

only a few months after the date of this letter.

3.3.6 Numerical Tables

Throughout the correspondence and more frequently towards the end, Sheppard dis-

cusses the details of his mathematical tables. In Letter 13, Sheppard suggests that

some of the tables were useful for various purposes. The letter corresponds directly to

his publication of tables in 1903 (Sheppard 1903). The first two tables give the values

for Φ(x) for x = 0.00 to x = 6.00 using steps of 0.01 up to 7 and 10 decimal places.

The third and fourth tables give the values for x and the corresponding values of the

evaluated probability density function, φ(t), of the standard normal distribution in

terms of α where α = 2
∫ x

0
φ(t)dt. Sheppard states how the first table is useful for

small values of x and the second table is useful for large values of x, and therefore,

could be used for various purposes such as calculating moments of an area. Shep-

pard explains why the tabulations for the area in the third table stop at α = 0.80.

If it went beyond this value, the differences would increase making the calculations

unmanageable. He also suggests that his tables could be used for interpolation and

determining probable error in testing for normality, but that Pearson might prefer

his chi-square test instead. It appears that Sheppard decided to omit his table on

probable errors that he mentioned in the letter and instead include a short discussion

using an example in the introduction on how to calculate probable error.

The publication containing the four tables based on the standard normal curve

became popular among statisticians. In 1907, Galton included the third table in

his paper (Galton 1907). Pearson was also interested in Sheppard’s tables (Pearson

and Lee 1908, for example p. 61 & 65) and was the editor for their publication

in the 1914 (Volumes 1 and 2) and 1924 editions of Tables for Statisticians and

Biometricians (Pearson 1914a, 1914b, 1924). We know from the correspondance
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from Fisher to Sheppard that statisticians at the Galton Laboratory had access to an

unpublished version of Sheppard’s tables since they needed a higher decimal accuracy

when working on problems that required rigorous conclusions. Sheppard hoped to

eventually have these tables extended and published as well. Additional details on

Sheppard’s tables and his methods of construction are given in Chapter 4.

3.4 Later Correspondence

As the years progressed, the letters became more personal. Sheppard discussed de-

tails about his family and shows concern for Pearson’s health. The longevity of their

relationship suggests that Pearson was highly influential in Sheppard’s statistical ca-

reer. The correspondence offers an interesting background into their personal views

and opinions regarding their work before their papers were published. They provide

insight into the development of their methods at a pivotal time in modern statistics.
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Chapter 4

Sheppard’s Tables

4.1 Background

Sheppard held a lifelong interest in the construction of tables related to the normal

distribution. They were the first set of modern tables for the standard normal dis-

tribution based solely on the standard deviation, i.e. x/σ is used as the argument.

Prior to this, they used a modulus, x/(σ
√
2), or probable error. Initially, the calcula-

tions were carried out to 5 decimal places at wide intervals and were published in 1899

(Sheppard 1899c). The tables were extended to 7 and 10 decimal places and published

in 1903 (Sheppard 1903). The tables were widely used and reproduced unchanged in

successive issues in Tables for Statisticians and Biometricians with Pearson as editor

(Pearson 1914a, 1914b, 1924).

4.2 The Construction of Sheppard’s Tables

Using Sheppard’s notation, the probability density function is defined as

zx =
1√
2π

e−
x2

2 (4.1)

43
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and the upper tail area of the normal curve is

1

2
(1− αx) =

1√
2π

∫ ∞

x

e−
t2

2 dt (4.2)

and the lower tail area of the normal curve is

1

2
(1 + αx) =

1√
2π

∫ x

−∞
e−

t2

2 dt (4.3)

where

αx = 2

∫ x

0

ztdt (4.4)

which is known as the error function, erf(x), defined as the probability of a random

normal variable with mean equal to 0 and variance equal to 1
2
on the range −x to x.

Sheppard (1903, pp. 180-181) outlines his methods of constructing four tables

in his 1903 publication. The first two tables in the paper give the area (4.3) and

the probability density function (4.1) to 7 decimals in terms of x at intervals of 0.01

starting at 0.00 to 4.50. The tables are extended to 10 decimals for values of x from

4.50 to 6.00. The first and second differences are also tabulated. Sheppard constructed

the tables by quadrature and central difference formulas that he developed (Sheppard

1899b). For example, let φ(x) be the probability density function. For values of x = 0

up to 2.50 the quadrature formula (midpoint integration) is given by

∫ x+h

x

φ(t)dt =

(
1 +

1

24
δ2 − 17

5760
δ4 + . . .

)
hφ

(
x+

1

2
h

)
(4.5)

where h = 0.01 and for any function f(x) the first and second central differences are

δf(x) = f(x+
1

2
h)− f(x− 1

2
h)

and

δ2f(x) = f(x+ h)− 2f(x) + f(x− h) (4.6)
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and so on. The probability function φ(x) is evaluated for the intermediate values, x =

0.005, 0.015, 0.025, and so on, by successive multiplication rather than interpolation.

Every tenth value is checked using F.W. Newman’s table (1883) of the function e−y

evaluated for values of y. The values for x = 0.01, 0.02, 0.03, and so on, are obtained

and the corresponding values for φ(x) are found by interpolation. The remainder of

the tables, for x greater than 2.50, the values of φ(x) are calculated using the function

log10φ(x) and the integral is evaluated using the quadrature formula (Sheppard 1903,

p. 180).

The third and fourth tables in the paper give the values of x to 7 decimals

and the probability density function (4.1) to 7 decimals in terms of the area (4.4) at

intervals of 0.01 from 0.00 to 0.80. As mentioned in Chapter 3, Sheppard ended the

table at 0.80 because the calculations become unmanageable beyond this point.

Sheppard provides a list of uses for the four tables. The first and second central

differences are given for the purpose of interpolation. Sheppard developed a method

for extending the accuracy of the tabulations (1899a). His method shows how to

interpolate between the values of x using differences and smoothing to obtain a higher

number of decimals when required. An example is given in his 1903 publication to

show the process. Inverse interpolation is also discussed using examples. Inverse

interpolation is used when the area is known and the standardized variable is required.

Sheppard suggests the tables can be used for tests for normality and for calculating

correlation volumes. An example showing Sheppard’s test for normality is given in

Section §2.3.1. The product of the tabulated probability density function (4.1) for

two independent variables (the bivariate normal distribution for two independent

variables) can be used in calculating correlation volumes.
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4.3 The Probability Integral

Sheppard continued to construct new tables for the standard normal curve until the

end of his life. It was Sheppard’s wish to construct a set of tables to have “as many

decimal places as would ever be required” (Sheppard 1939). Several years were spent

on improving the accuracy by using a higher number of decimals. He consulted

Pearson for advice regarding his tabulations and asked for his recommendation as

to who might be interested in publishing his set of tables having a high number of

decimal places.

When Pearson retired in 1933, Ronald Fisher took over the Galton Laboratory.

He would then have access to Sheppard’s tables. Fisher was still clearing out some

of Pearson’s material in 1936 (Fisher Box 1978, p. 346). At that time, Fisher wrote

to Sheppard on behalf of the British Association Mathematical Tables Committee

for his permission to publish the tables for the normal distribution (Fisher 1936).

Fisher knew that the seven-decimal place table was published but was interested in

publishing a higher accuracy version such as the one that was available at the Galton

Laboratory. In the letter, Fisher writes:

It has been felt by a great many people to be a great pity that the full

table was never published, for it would have been exceedingly useful on

many occasions. (Fisher 1936)

Fisher indicated that the use of these tables would be valuable for the construction of

other tables. Unfortunately, Sheppard died before the tables were ready for publica-

tion. Fisher continued to work on getting the tables published with Sheppard’s son,

N.F. Sheppard (Fisher 1937). They were eventually published in 1939 in a volume

titled, The Probability Integral, prepared by the British Association on Mathematical

Tables (Sheppard 1939).

The volume contains six tables related to the standard normal distribution in-
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cluding differences and derivatives. A summary of the formulas for the six tables

contained in the volume are shown in Table 4.1

Table 4.1: Sheppard’s tables related to the normal curve.

Table I 1
2
(1− αx)/zx for x = 0 to 10 by h=0.01 to 12D

Table II 1
2
(1− αx)/zx for x = 0 to 10 by h=0.10 to 24D

Table III −ln(1
2
(1− αx)) for x = 0 to 10 by h=1.00 to 24D

Table IV −ln(1
2
(1− αx)) for x = 0 to 10 by h=0.10 to 16D

Table V log10(
1
2
(1− αx)) for x = 0 to 10 by h=0.10 to 12D

Table VI log10(
1
2
(1− αx)) for x = 0 to 10 by h=0.01 to 8D

where h is the step-size and D is the number of decimal places.

Table I is the ratio of the tail area of the normal curve to its bounding ordinate,

with reduced derivatives, at intervals of one-hundredth of the standard deviation, to

twelve decimal places.

Table II is the ratio of the tail area of the normal curve to its bounding ordinate,

with reduced derivatives, at intervals of one-tenth of the standard deviation, to twenty-

four decimal places. Since the calculations contained a large number of decimals, the

table was constructed using Laplace’s continued fraction (Sheppard 1939). Laplace’s

continued fraction is given by

ey
2

∫ ∞

y

e−u
2

du =
1

2y

/(
1 +

1/2y2

1 +
2/2y2

1 +
3/2y2

1 + · · ·+
n/2y2

1 + · · ·
)

(4.7)
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If we let y = x/
√
2 and u = t/

√
2 we have

ex
2/2

∫ ∞

x

e−t
2/2dt =

1

x+
1

x+
2

x+
3

x+ · · ·+
n

x+ · · ·

(4.8)

The function (4.2) is used for the calculations in Table I and Table II. Stated in the

introduction of the publication,

Sheppard used the fact that any tabular entry is the sum of the next

tabular entry and its reduced derivatives, all taken positively, while the

reduced derivatives of any entry are simple linear functions, with known

coefficents, of these same quantities. (Sheppard 1939)

Following Sheppard’s method, Table I is constructed by subtabulating Table II to

the interval 0.01. Sheppard’s subtabulations were completed by Mr. F.H. Cleaver

under the direction of the Mathematical Tables Committee of the British Association

using the Association’s National accounting machine. Cleaver was the association’s

first “computer” and was appointed in January, 1938 (Croarken and Campbell-Kelly

2000). Using the fundamental values from Table II, Sheppard constructed Tables III,

IV, and V.

Table III is the negative natural logarithm of the tail area of the normal curve,

for integral multiples of the standard deviation, to twenty-four decimal places and

Table IV is the negative natural logarithm of the tail area of the normal curve, with

reduced derivatives, at intervals of one-tenth of the standard deviation, to sixteen

decimal places. The function

L(x) = −loge
1

2
(1− αx) (4.9)



4.3. The Probability Integral 49

is used to obtain the values for Table III and Table IV.

Table V is the common logarithm of the tail area of the normal curve, with

reduced derivatives, at intervals of one-tenth of the standard deviation, to twelve

decimal places and Table VI is the common logarithm of the tail area of the normal

curve, with second central differences, at intervals of one-hundredth of the standard

deviation, to eight decimal places. The function

l(x) = log10
1

2
(1− αx) (4.10)

is used to obtain the values for Table V and Table VI.

Table IV gives the second central differences. Tables I, II, IV, and V include

derivatives for interpolation. The nth reduced derivative of a function is defined as

fn(x) = hnf (n)(x)/n!. The number of reduced derivatives given varies from 3 to 16.

Sheppard used h as the argument interval so that accurate interpolation could be

obtained using a Taylor expansion.

The Mathematical Tables Committee felt that a table for eight decimal places

would be useful and appointed statistician H.O. Hartley to calculate the tabulations

for Table VI. Hartley followed Cleaver in June 1938 to become the association’s sec-

ond “computer.” Hartley obtained a Ph.D. in mathematics in 1934. He studied at

Humboldt-Universität zu Berlin before going to England to escape the Nazis. Two

of his earliest papers were on computational methods. The advantage of using the

logarithm function is to obtain a higher number of significant digits.

All of the tables were checked for accuracy under the direction of the British

Association Committee. Table III was checked by direct calculation and Tables II,

IV, and V by summing the function and its reduced derivatives for each value of the

argument and comparing the result to the next value. It was noted in the publication

that not one error was found in Sheppard’s calculations confirming his remarkable

precision and dedication. The volume includes the following statement given by the
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Association Committee:

The Committee, in issuing this volume, believe that the completion and

publication of his tables of the probability integral constitute just that

memorial to Sheppard’s unsurpassed labours in the field of Mathematical

Statistics, which he would himself most greatly have appreciated. (Shep-

pard 1939)

Sheppard’s goal for publishing a set of tables having as many decimal places as would

ever be required was finally accomplished.

4.4 How Sheppard’s Tables Were Used

Sheppard’s tables were widely used by statisticians and users of statistics for many

years. They were used for a wide range of applications such as tests for normality,

the fitting of curves, the construction of other tables such as probable error tables,

and the calculation of multivariate normal distributions. As mentioned in Chapter

3, the tables were also used for calculating the moments of an area. Some examples

on how to use the tables are provided by Pearson in Tables for Statisticians and

Biometricians (Pearson 1914a). Abstracts of the tables have been published in books

by statisticians and scientists. For example, a graphical approach is used in fitting a

normal curve to data (Brown 1921, p. 43). Using the values extracted from one of

Sheppard’s tables, a normal curve was superimprosed onto a histogram of bisection

data. Similarily, the tables were used to compare the areas between graduated and

ungraduated curves using Endowment Assurances data (Elderton and Johnson 1969,

pp. 72–73). The same approach is achieved today using statistical software.

William Gosset used Sheppard’s tables when he introduced the t-distribution

under the pseudonym“Student”published in Biometrika in 1908 (Student 1908, p. 24).

Gosset’s employer, Guinness Breweries, did not permit Gosset to publish his work

under his own name. In the paper, Gosset compares the probability of the yield of
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corn per acre between the t-distribution and the normal distribution. The fact that

he referred to them as “Sheppard’s tables” shows how commonplace the tables were

at the time. This would be the same as a reference to a well known method such as

a Taylor expansion in a modern paper.

We know from the correspondance from Fisher to Sheppard that statisticians

at the Galton Laboratory had access to an unpublished version of the tables to a

higher decimal accuracy (Fisher 1936). A higher number of decimals would give the

Laboratory statisticians the increased level of accuracy when working on problems

that required rigorous conclusions. The Laboratory was “most heartily” thankful for

the twelve and sixteen figure tables on loan from Sheppard (Pearson 1914b, p. 10).

In a review of Sheppard’s publication, Hartley indicates that a high degree of

accuracy is required for a variety of scientific problems and in order that rigorous

conclusions may be drawn, a high decimal accuracy of the normal curve is essential

(Hartley 1940). For example, a generalization of Airy’s theory of absorption spectra

leads to the following integral

∫ x1

0

cos(ax− b αx)dx. (4.11)

The integral must be evaluated for large values of the constants a and b. Clearly,

the high number of decimals in Sheppard’s tables would be useful using Sheppard’s

values for αx defined in Equation (4.4).

The tables continued to be published in successive issues of Tables for Statisti-

cians and Biometricians by K. Pearson (Pearson 1914a, 1924) and Biometrika Tables

for Statisticians from 1954 to 1970, by E.S. Pearson and H.O. Hartley (Pearson and

Hartley 1970).
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Chapter 5

Sheppard’s Smoothing Methods

5.1 Background

In the early twentieth century, Sheppard (1912) developed a polynomial smoothing

method. As mentioned in Chapter 2, some of the smoothing methods in use at the

time were developed by Spencer (1904), Woolhouse (1869), Cauchy (1837), Sprague

(1886). Woolhouse and Spencer’s methods were based on local quadratic fitting.

Sheppard’s method was based on local polynomial fitting.

In 1912, Sheppard presented his smoothing method using central differences.

Two years later, he presented an alternate computation method in a series of four

papers using central summations (Sheppard 1914a, 1914b, 1914c, 1915). The alternate

method gives the same result as the method using central differences but is less

computationally intensive if the dataset is large. Sheppard’s smoothing curve can

also be obtained using successive application of the method of ordinary least squares.

Sheppard methodically derives his methods with extensive detail and works through

some practical applications for illustration. In this chapter, Sheppard’s smoothing

methods are described and compared to modern smoothing techniques.

53
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5.2 Sheppard’s Smoothing Formula in Terms of

Central Differences

We begin with a set of predictor variables x corresponding to a set of response variables

u. We consider a sequence of equally-spaced values of x corresponding to a sequence

of values of u. Smoothing consists of replacing the sequence, . . . , u−1, u0, u1, . . . with

another sequence . . . , v−1, v0, v1, . . . such that each v is a “linear compound” of the

corresponding u and n others on each side of it. The smoothed value is

v0 = pnun + pn−1un−1 + · · ·+ p−nu−n. (5.1)

where pn, pn−1, . . . , p−n are coefficients. The expression for v0 is symmetrical about

u0. Sheppard uses the term “linear compound” instead of the term “linear function”

because the method is concerned with the proportion in which the various u’s have to

be compounded in order to produce the required result rather than with functionality.

The problem is to find a polynomial v in x of degree j,

v(x) = a0 + a1x+ a2x
2 + · · ·+ ajx

j. (5.2)

such that
m∑
i=1

(ui − vi)
2 (5.3)

is a minimum for a set of m observations, ui is the set of unsmoothed values and vi are

the corresponding set of smoothed values. Sheppard developed a general solution to

the problem in terms of central differences. The central differences of u0 are calculated

using Table 5.1.
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Table 5.1: Central differences of u0.

x u δu δ2u δ3u δ4u

...
...

x−2 u−2
...

u−1−u−2
...

x−1 u−1 u0−2u−1+u−2
...

u0−u−1 u1−3u0+3u−1−u−2
...

x0 u0 u1−2u0+u−1 u2−4u1+6u0−4u−1+u−2

u1−u0 u2−3u1+3u0−u−1
...

x1 u1 u2−2u1+u0
...

u2−u1
...

x2 u2
...

...
...

It is assumed that the errors of the sequences between the u’s and v’s are in-

dependent and have the same mean square error. Since the problem consists of j+1

equations of condition, the necessary condition for replacing u0 by v0 is that u0 − v0

should only involve differences of u0 of orders of j+1 and upwards. This means that

the smoothed or adjusted value, v0, can be formed by adding these differences. The

expression in Equation (5.1) is symmetrical about u0, so it only involves u0 and its

central differences of even order. Equation (5.1) is rewritten as

v0 = q0u0 + q2δ
2u0 + · · ·+ q2nδ

2nu0 (5.4)

where the q0, q2, . . . , q2n are coefficients, and δ2u0 . . . δ
2nu0 are the even central differ-

ences of u0. The relation between the coefficients in Equation (5.1) and the coefficients

q’s in Equation (5.4) is obtained using binomial coefficients and the coefficients de-

rived from them. The coefficients are chosen by using the mean square error for v0
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subject to the j+1 conditions, and the smoothing formula becomes

v0 = u0+(−1)k 1 · 3 . . . (2k + 1)

1 · 2 . . . k
s=n∑

s=k+1

(s− 1)(s− 2) . . . (s− k)

(2s+ 1)(2s+ 3) . . . (2s+ 2k + 1)
(n+ 1

2
, 2s]δ2su0

(5.5)

The notation for the brackets is calculated as (n + 1
2
, 2s] = (n − s + 1)(n − s +

2) . . . (n + s)/(2s)!. The formula can be used for degree j=2k+1 or j=2k and gives

a single smoothed value for each set of m=2n+1 u’s. The degree of the polynomial

can vary throughout the dataset, and Sheppard suggests grouping the given values

together to determine which order should be used. The number of values on each side

of u0 is called the bandwidth and is denoted by n. Since there are a specified number

of u’s, and the degree, j, is known, the coefficients in (5.5) can be derived. Sheppard

performed the laborious task of deriving all of the coefficients that he thought would

ever be required for practical purposes. He constructed a set of tables of the coeffi-

cients and included them in his paper (Sheppard 1912, pp. 378–382). For example,

if there are m=13 values of u, and the degree j=2, the coefficients for the smoothing

formula are: 1, +0, −6, −8, −45
11
, −12

13
, − 1

13
.

The table of central differences of u0 is extended and the process is repeated to

find the next smoothed value. For instance, if m=13, the first smoothed value, v7, is

obtained using u7 and its even central differences. The second smoothed value, v8, is

obtained using u8 and its even central differences, and so on.

The smoothed values for the ends of the range, e.g. v1, v2, . . . , v6, are obtained

using the formulas for the central differences of v0. For degree j=2k+1 or j=2k, the

formula for the even central differences of v0 is

δ2tv0 = (−1)k−t [t+ 1
2
, k + 1]

t!(k − t)!(n+ 1
2
, 2t]

s=n∑
s=0

s(s− 1) . . . (s− k)

(s− t)[s+ 1
2
, k + 1]

(n+ 1
2
, 2s] δ2su0 (5.6)
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and the formula for the odd central differences of v0 is

μδ2t−1v0 = (−1)k−t [t+ 1
2
, k]

t!(k − t)!(n+ 1
2
, 2t]

s=n∑
s=1

s(s− 1) . . . (s− k)

(s− t)[s+ 1
2
, k]

(n+ 1
2
, 2s] δ2s−1u0.

(5.7)

where t=0, 1, 2, . . . , k. The notation for the brackets are calculated as [t + 1
2
, k] =

(t+ 1
2
)(t+ 1

2
+1) . . . (t+ 1

2
+k−1)/k! and (n+ 1

2
, 2t] = (n−t+1)(n−t+2) . . . (n+t)/(2t)!.

Setting t=0 in Equation (5.6) gives Equation (5.5). Equation (5.6) is modified to get

Equation (5.7). As mentioned, a table of the coefficients can be found in Sheppard’s

1912 paper.

The smoothed values for the ends of the range are obtained by calculating the

first smoothed value and its central differences from a specified set of u’s. For example,

if m=13 and j=2, a table for the central values of v1 to v7 can be constructed using

v7 and its first and second central differences. Calculate v6 = v7 − δv7 then set the

second central difference of v6 equal to the second central difference of v7. Calculate

the first central difference of v6 by δv7 + δ2v6. Repeat the process to find v5 to v1.

The last six smoothed values in the dataset are calculated in a similar manner.

To illustrate Sheppard’s smoothing method using central differences, the first

13 values of the infant mortality dataset found in Appendix C will be used. The

modern definition for mortality rate used by actuaries and scientists is described as

the death rate or the number of deaths scaled to the size of a population per unit of

time. The dataset gives the number of infant deaths under the age of one for every

1000 live births for 42 years and will be referred to as the infant dataset. We will use

m=2n+1=13 and degree j=2. The central differences of u7 are shown in Table 5.2.
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Table 5.2: Central differences of u7 using the infant dataset.

x u δu δ2u δ3u δ4u δ5u δ6u δ7u δ8u δ9u δ10u δ11u δ12u

1870 137
0

1871 137 -6
-6 12

1872 131 6 -16
0 -4 21

1873 131 2 5 -45
2 1 -24 127

1874 133 3 -19 82 -321
5 -18 58 -194 665

1875 138 -15 39 -112 344 -1104
-10 21 -54 150 -439 1323

1876 128 6 -15 38 -95 219 -386
-4 6 -16 55 -220 937

1877 124 12 -31 93 -315 1156
8 -25 77 -260 936

1878 132 -13 46 -167 621
-5 21 -90 361

1879 127 8 -44 194
3 -23 104

1880 130 -15 60
-12 37

1881 118 22
10

1882 128

Taking u7 and the even central differences (shown in bold) from Table 5.2, the

smoothed value is

v7 = c1u7 + c2δ
2u7 + c3δ

4u7 + c4δ
6u7 + c5δ

8u7 + c6δ
10u7 + c7δ

12u7

= 1(128) + 0(6)− 6(−15)− 8(38)− 45

11
(−95)− 12

13
(219)− 1

13
(−386)

= 130.2 (5.8)

The next smoothed value can be obtained by extending Table 5.2 to u8.

The first six smoothed values are obtained by calculating the first and second

central differences of v7 using Equations (5.6) and (5.7). Using Table 5.2 and the
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coefficients from Sheppard’s paper we calculate the first and second differences by

δv7 =
1
2
(c1u7 + c2δu7 + c3δ

3u7 + c4δ
5u7 + c5δ

7u7 + c6δ
9u7 + c7δ

11u7)

= 1
2
(1(−14) + 4(27) +

36

7
(−70) + 20

7
(205) +

5

7
(−659) + 6

91
(2260))

= −0.99451 (5.9)

δ2v7 = c1u7 + c2δ
2u7 + c3δ

4u7 + c4δ
6u7 + c5δ

8u7 + c6δ
10u7 + c7δ

12u7

= 0(128) + 1(6) +
20

7
(−15) + 20

7
(38) +

100

77
(−95) + 25

91
(219) +

2

91
(−386)

= 0.01898 (5.10)

The smoothed value and its first and second central differences from Equations (5.8),

(5.9), and (5.10) are shown in bold in Table 5.3. The table can be constructed

with these values by first obtaining the smoothed value, v6, by v7 − δv7 = 130.2 −
(−0.99451) = 131.2. Set the second central difference of v6 to equal to the second

central difference of v7 to find the first central difference of v6. The first central

difference of v6 is δv7 + δ2v6 = −0.99451− 0.01898 = −1.01349. Repeat the process

to find the smoothed values v5 to v1.

5.3 Sheppard’s Smoothing Formula in Terms of

Central Summations

Sheppard developed a general solution to the problem in terms of central summations.

He based his method on the fact that least squares gives the same result as the method

of moments. The unknown constants in the polynomial can be expressed in terms of

the moments, and the moments in turn can be expressed in terms of successive sums.

It follows that the constants can be expressed in terms of summations. The alternate

computational method follows the same principle and produce the same results as the
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Table 5.3: Central differences of vi.

i vi δvi+1 δ2vi

1 136.5 0.01898
−1.08941

2 135.4 0.01898
−1.07043

3 134.3 0.01898
−1.05145

4 133.2 0.01898
−1.03247

5 132.2 0.01898
−1.01349

6 131.2 0.01898
−0.99451

7 130.2 0.01898

method in terms of central differences but requires significantly less calculations. The

advantage of using central summations is that the sums can be calculated successively

in order to obtain the smoothed values.

The general form to calculate central sums are shown in Table 5.4.

Table 5.4: General form for calculating central sums.

i ui Σ1 Σ2 Σ3

1 u1 u1 u1 u1

2 u2 u1+u2 2u1+u2 3u1+u2

3 u3 u1+u2+u3 3u1+2u2+u3 6u1+3u2+u3
...

...
...

...
...

n un Σui Σ(Σ1
i ) Σ(Σ2

i )

Sheppard transforms the formula for the even central differences (5.6) into a

formula involving successive sums. The formula can be found on page 104 of his

1914b paper. Setting t=0 the smoothing formula in terms of central summations for

degree j=2 or 3 is

vi = A(Σ1
i+h − Σ1

i−h−1) + B(Σ2
i+h−1 + Σ2

i−h+1) + C(Σ3
i+h−2 − Σ3

i−h+1) (5.11)
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where A, B, and C are coefficients and h is the bandwidth. Similar to the smoothing

formulas using central differences, Sheppard derived the coefficients for the central

sums and included them in his paper (Sheppard 1914b, p. 181). For example, if

m=13 and j=2, the coefficients are A=− 11
143

, B= 11
143

and C=− 2
143

. An extended

formula is given for higher degrees of j.

All of the central smoothed values can be obtained using Equation 5.11. Alter-

natively, for a large dataset, the first three central smoothed values can be calculated

using Equation 5.11 and then the third central difference can be obtained using a

formula given by Sheppard on page 177 of his 1914b paper. Using the third central

difference we can obtain the second and first central differences and the next smoothed

value. The process is repeated to find the remaining central smoothed values.

The formula in Equation (5.11) gives all the central smoothed values in the

dataset. A similar method is used to obtain the smoothed values corresponding to

the bandwidth at the ends of the range. Taking the first set of m values, a summation

table is constructed such that the successive sums are calculated upwards rather than

downwards. Three values from the table are used to calculate the first smoothed value

and its first and second central differences using the following three formulas:

v1 = α1Σ
1
1 − α2Σ

2
2 + α3Σ

3
3 (5.12)

δv1 = −β1Σ
1
1 + β2Σ

2
2 − β3Σ

3
3 (5.13)

δ2v1 = γ1Σ
1
1 − γ2Σ

2
2 + γ3Σ

3
3 (5.14)

The coefficients, αi, βi, and γi, are found using formulas on page 156 of Sheppard’s

1915 paper. We can then find v2, v3, . . . , v6 using v1 and its first and second central

differences in a similar manner to how we obtained v6, v5, . . . , v1 using v7 and its first

and second differences, shown in Table 5.3. For the last set ofm values, the summation

table is constructed such that the successive sums are calculated downwards as shown
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in Table 5.4. The last smoothed value and its first and second central differences are

obtained and the remaining smoothed values are calculated in a similar manner.

To illustrate the method in terms of central sums we will use the first 15 ob-

servations from the same infant dataset mentioned above. Taking the first 15 values

of u, we can obtain three central smoothed values. The central sums for the first 15

values of u are shown in Table 5.5

Table 5.5: Central sums using the infant dataset.

i ui Σ1 Σ2 Σ3

1 137 137 137 137
2 137 274 411 548
3 131 405 816 1364
4 131 536 1352 2716
5 133 669 2021 4737
6 138 807 2828 7565
7 128 935 3763 11328
8 124 1059 4822 16150
9 132 1191 6013 22163
10 127 1318 7331 29494
11 130 1448 8779 38273
12 118 1566 10345 48618
13 128 1694 12039 60657
14 125 1819 13858 74515
15 126 1945 15803 90318

Taking the values shown in bold in Table 5.5, we calculate the following three smoothed

values using Equation (5.11):

v7 = A(Σ1
13 − Σ1

0) + B(Σ2
12 + Σ2

0) + C(Σ3
11 − Σ3

0)

= − 11

143
(1694− 0) +

11

143
(10345 + 0)− 2

143
(38273− 0)

= 130.2 (5.15)
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v8 = A(Σ1
14 − Σ1

1) + B(Σ2
13 + Σ2

1) + C(Σ3
12 − Σ3

1)

= − 11

143
(1819− 137) +

11

143
(12039 + 137)− 2

143
(48618− 137)

= 129.2 (5.16)

v9 = A(Σ1
15 − Σ1

2) + B(Σ2
14 + Σ2

2) + C(Σ3
13 − Σ3

2)

= − 11

143
(1945− 274) +

11

143
(13858 + 411)− 2

143
(60657− 548)

= 128.4 (5.17)

Table 5.5 is extended to obtain the remaining smoothed values, v10 to v36. The same

set of coefficients are used for each smoothed value. As mentioned, an alternate way

for large datasets is to find the central differences of v7, v8, and v9 to obtain the

next smoothed value. The process is repeated to find the remaining central smoothed

values.

To find the smoothed values for the first six u’s we construct a table of sums

using the first 13 u’s. The sums are shown in Table 5.6.

Table 5.6: Central sums to obtain v1.

i ui Σ1 Σ2 Σ3

1 137 1694 11677 57942
2 137 1557 9983 36282
3 131 1420 8426 36282
4 131 1289 7006 27856
5 131 1158 5717 20850
6 138 1025 4559 15133
7 128 887 3534 10574
8 124 759 2647 7040
9 132 635 1888 4393
10 127 503 1253 2505
11 130 376 750 1252
12 118 246 374 502
13 128 128 128 128
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The values shown in bold in Table 5.6 are used in the formula for obtaining v1. The

first smoothed value and its first and second differences are calculated by the following

three equations:

v1 = α1Σ
1
1 − α2Σ

2
2 + α3Σ

3
3

=
517

1001
(1694)− 154

1001
(9983) +

22

1001
(36282)

= 136.5 (5.18)

δv1 = −β1Σ
1
1 + β2Σ

2
2 − β3Σ

3
3

= − 154

1001
(1694)− 66

1001
(9983)− 11

1001
(36282)

= −1.0989 (5.19)

δ2v1 = γ1Σ
1
1 − γ2Σ

2
2 + γ3Σ

3
3

=
22

1001
(1694)− 11

1001
(9983) +

2

1001
(36282)

= 0.01898 (5.20)

Taking v1 and its central differences we can calculate the smoothed values v2 to v6

in a similar manner as Table 5.3. As mentiond, the last six smoothed values of the

dataset are obtained in a similar manner.
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5.4 Sheppard’s Smoothing Method Based on the

Method of Least Squares

As mentioned, Sheppard’s smoothed values can be obtained with successive applica-

tion of ordinary least squares. The method of least squares considers an odd num-

ber of equally-spaced x values corresponding to y values. A polynomial, such as

y = a0 + a1x + a2x
2, is fitted to the data. The smoothed value is obtained for the

central value by evaluating the polynomial at x=0. Moving one step to the right of

the dataset, the process is repeated to obtain the next smoothed value. The smoothed

values for the ends of the range are obtained by using the fitted values from the first

and last polynomials.

Sheppard illustrated his method using central sums using the infant dataset

(Sheppard 1914b). For comparison, the smoothing method was reproduced in R

using least squares. Using m=13 points and a moving quadratic polynomial fitted

by method of least squares the results were the same as Sheppard’s. The resulting

smoothed values (open circles) are shown in Figure 5.1.

Sheppard’s method obtains the smoothed values but they do not visually lie

on a ’smooth’ curve. However, Sheppard wanted to find the best solution based on

the mean square error of the smoothed values. Sheppard states that his smooth-

ing methods in terms of central differences and central summations are equivalent to

using the method of moments or least squares. Due to the amount of calculations

required he informs the reader that the simplest method to use is central summations.

Throughout his papers, Sheppard compares his smoothing method to other methods

available at the time such as Spencer’s graduation formula (Spencer 1904). He con-

cludes that his method is the “best method” by using the smallest mean square error

of the smoothed values as a criterion.



66 Chapter 5. Sheppard’s Smoothing Methods

Figure 5.1: Sheppard’s smoothed values (open circles) and the data (solid circles)
using method of least squares.

5.5 Precursor Methods to Local Polynomial

Regression

Sheppard’s smoothing method was a precursor to local polynomial regression using a

uniform kernel. Another precursor to local polynomial regression is Robert Hender-

son’s smoothing method developed in 1916. Henderson developed a weighted local

cubic fitting method. If wh is the weight function for h = −m,. . . ,m, then the local

cubic fit at i is
m∑

h=−m
f(h)whui+h (5.21)

where ui+h are the observed number of deaths and f(h) is a cubic polynomial whose

coefficients have the property that the smoother reproduces the data if they are cubic.

If Wh is symmetric then f is quadratic.

Frederick Macaulay describes E.T. Whittaker (1923) and along with Henderson

(1924) smoothing methods in his 1931 book, The Smoothing of Time Series. The
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Whittaker–Henderson graduation method is based on the minimization of an objective

function:

f(u1, u2, . . . , un) =
n∑

h=1

wh(uh − vh)
2 + λ

n−k∑
h=1

(Δkuh)
2 (5.22)

where λ is a constant parameter, w1, w2,. . . ,wn are the weights attributed to the

squared deviations between the observed and graduated values, and Δkuh is the kth

forward difference of uh and defined as:

Δkuh =
k∑

i=0

(−1)i
(
k

i

)
uh+k−i (5.23)

The weights can be chosen such that less importance is placed on the number of deaths

for the older ages where there are fewer individuals alive. In this case, the weights

can be chosen to be inversely proportional to the estimated variance of the observed

number of deaths. In his book, Macaulay shows how the the Whittaker–Henderson

method can be used for time series models.

5.6 Comparing Sheppard’s Methods to

Modern Methods

5.6.1 Local Polynomial Regression

Sheppard’s smoothing method is similar to local polynomial regression using a uniform

kernel. Local polynomial regression is based on estimating g(x0) for any value x0,

using data in the immediate neighbourhood of x0. Using a Taylor series about x0, we

have

g(x) = g(x0) + (x− x0)g
(1)(x0) +

1
2
(x− x0)

2g(2)(x0) + . . . (5.24)
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Let βj = g(j)(x0)/j!, for j = 0,1,. . . ,p, then a local approximation to g(x) is

g(x)
.
=

p∑
j=0

(x− x0)
jβj. (5.25)

Local polynomial regression is weighted least squares where the weights are taken to

be high for x values close to x0 and lower for x values further away from x0. Sheppard

used a uniform kernel for choosing the weights:

Wh(x) =

⎧⎪⎨
⎪⎩

1
2h
, if − h < x < h

0, otherwise

(5.26)

The parameter h is called the bandwidth. Wh(x − x0) takes on the value 1
2h

for all

x values within a radius of h units of x0, and it takes on the value 0 for all x values

further away from x0. The weighted least squares problem is to minimize

n∑
i=1

(
yi −

p∑
j=0

(xi − x0)
jβj

)2

Wh(xi − x0) (5.27)

with respect to β0, β1, . . . , βp.

Sheppard used a quadratic polynomial withm=13 values to illustrate his method

using the infant death dataset. To compare his method to local polynomial regres-

sion with a uniform kernel, a bandwidth h=6 was used. The differences between

Sheppard’s smoothed values and the smoothed values obtained using local polyno-

mial regression are given in Figure 5.2. The values are identical except for the first

and last six values representing half the bandwidth. Sheppard used the first and last

polynomials to find the ends of the range, whereas local polynomial regression uses

an asymmetrical bandwidth to obtain the ends of the range. For example, the sixth

value is smoothed by using the first 12 values (5 to the left and 6 to the right) rather

than 13 and evaluating the polynomial at x6.
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Figure 5.2: Differences between the smoothed values using Sheppard’s method and
local polynomial regression.

5.6.2 Bayesian Smoothing Method

Sheppard’s smoothing method was compared to modern Bayesian smoothing. Since

the dataset consists of the number of infant deaths per 1000 live births spanning 42

years from 1870 to 1911, a continuous smoothing function is desired to represent the

rate of deaths per year. The function is modelled by

μ(t) =

p∑
i=1

bi(t)βi = Bβ (5.28)

where t is the year, βi for i = 1 . . . p are unknown parameters, bi(t) are basis functions

and p is the number of basis functions. In vector notation, B is an n× p matrix and

β is a p × 1 vector. A cubic B-spline basis was chosen as the basis for this model.

The dimension of the B-spline basis is the number of knots plus the degree of the

polynomial plus an intercept. The location of the knots can be chosen to be at the

predictor variables or any other suitable location depending on the model. For our
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model, they are chosen to be at the predictor variables from 1870 to 1911. More

details on the B-spline basis can be found in §6.3. We define the total proportion of

deaths for each year as

μj =

∫ tj+1

tj

μ(t) dt (5.29)

We assume the data which consists of the proportion of deaths for each year follows

a normal distribution. This gives the following likelihood function:

g(y1, . . . , yn|β1, . . . , βn) =
n∏

j=1

1√
2πσ2

exp

(
− 1

2σ2
(yj − μ(tj))

2

)
(5.30)

where yj is the proportion of deaths per year, μj is the mean death rate for each year

and n is the number of years. A possible prior distribution is given by

f(β1, . . . , βn) ∝ exp

(
− k

2

∫ ∞

0

(μ′′(t))2dt
)

(5.31)

where k is a constant. The exponent in the prior distribution is known as a smoothing

function or penalty function in other contexts. These functions penalize the roughness

of a curve. As k → 0 the prior allows μ(t) to be less smooth and as k →∞ the prior

forces μ
′′
(t) = 0, ie. μ(t) tends to a straight line. For our parameterization, the

prior distribution is an improper Gaussian density in the parameters β. The prior

distribution can be written as:

f(β1, . . . , βn) ∝ exp

(
− k

2

∫ ∞

0

(μ′′(t))2dt
)

= −k

2
βtSβ (5.32)

where S is a p× p matrix. The derivation of the solution of the integral is shown in

§6.3. Ignoring the constant 1√
2πσ2

in the likelihood (5.30), since it does not depend on

the parameters, the posterior distribution with unknown mean and known variance
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becomes

f(β1, . . . , βn|y1, . . . , yn) ∝
n∏

j=1

exp

(
− 1

2σ2
(yj − μ(tj))

2

)
exp

(
− k

2

∫ ∞

0

(μ′′(t))2dt
)

= exp

(
− 1

2σ2
(y −Bβ)t(y −Bβ)

)
+ exp

(
− k

2
βtSβ

)
(5.33)

The exponent in the posterior distribution can be simplified as

−1

2

(
σ−2(y −Bβ)t(y −Bβ) + kβtSβ

)

= −1

2

(
σ−2(yty − 2βtBty + βtBtBβ) + kβtSβ

)

= −1

2

(
βt

(
BtB

σ2
+ kS

)
β − 2βtB

ty

σ2
+

yty

σ2

)
(5.34)

Completing the square centered around

θ =

(
BtB

σ2
+ kS

)−1
Bty

σ2
(5.35)

gives

−1

2

(
βt

(
BtB

σ2
+kS

)
β−2βt

(
BtB

σ2
+kS

)
θ+θt

(
BtB

σ2
+kS

)
θ−θt

(
BtB

σ2
+kS

)
θ+

yty

σ2

)

= −1

2

(
(β − θ)t

(
BtB

σ2
+ kS

)
(β − θ)− θt

(
BtB

σ2
+ kS

)
θ +

yty

σ2

)
(5.36)

Ignoring the last two terms, since they do not depend on β, the posterior distribution

is

f(β|y) ∝ exp

[
− 1

2

(
(β − θ)t

(
BtB

σ2
+ kS

)
(β − θ)

)]
. (5.37)

The posterior is a multivariate normal distribution where the mean of β has expected

value θ = (B
tB
σ2 + kS)−1B

ty
σ2 and variance equal to (B

tB
σ2 + kS)−1.
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Figures 5.3 to 5.6 show μ(t) using k = 0.1, 1, 5 and 10. The parameter σ2 is

assumed to be known and set to equal 1. As k increases the curve becomes more

smooth. When k = 0.1 the curve is too wiggly and not what we would expect for a

curve showing the number of infant deaths. When k = 10 the curve appears to be

too smooth and underfits the data. When k = 5 the curve is what we would expect

to find and does not underfit or overfit the data. Figure 5.10 shows the residual plot

when k = 5.

Figure 5.3: Bayesian smoothing model using k=0.1.
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Figure 5.4: Bayesian smoothing model using k=1.

Figure 5.5: Bayesian smoothing model using k=5.
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Figure 5.6: Bayesian smoothing model using k=10.

Figure 5.7: Residual plot using k=5.
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Credible intervals are constructed using

E(μ(tj)) = (Bβ)j = (Bθ)j (5.38)

and

Var(μ(tj)) = diag(BΣBt) (5.39)

where Σ = (B
tB
σ2 + kS)−1 is the variance of β. The 95% credible interval for μ(tj) is

(Bθ)j ± (1.96)
√

diag(BΣBt) (5.40)

The 95% credible intervals are shown in Figure 5.8. There is a 95% probability that

μ(tj) lies between the upper and lower bands.

Figure 5.8: The 95% credible intervals using k=5.
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Figure 5.9 compares Sheppard’s smoothed values (open circles) and the Bayesian

model with k=5. Figure 5.10 shows the differences between Sheppard’s smoothed

values and the Bayesian model μ(t) evaluated yearly.

The Bayesian model is similar to Sheppard’s smoothed values. However, the

Bayesian model fits the data more closely. The model takes the entire dataset into

consideration whereas Sheppard’s method uses a fixed bandwidth. This leads to

Sheppard’s values not being consistently smooth throughout the range of the data.

The smoothed values for 1882 and 1883 are too high when compared to the smoothed

values for the years on either side (1881 and 1884). There is a discontinuity between

1886 and 1887, while the smoothed values are linear before and after these years. The

rest of Sheppard’s smoothed values are similar to the Bayesian fit.

Figure 5.9: Comparison of Sheppard’s smoothed values (open circles), Bayesian
smoothing (line) using k=5 and the data (solid circles).
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Figure 5.10: Differences between Sheppard’s smoothed values and Bayesian μ(t) eval-
uated yearly.

5.7 Conclusion

Sheppard’s smoothing method requires datasets with equally-spaced values of x. A

disadvantage of his method is the problem at the boundaries. As we have seen, if

m = 13, the first six and the last six values of the dataset are smoothed using the

first and last fitted polynomials. This results in not having all of the values smoothed

in the same way.

It was Sheppard’s attempt with his smoothing method to find the best solution

based on the mean square error of the smoothed values. If least squares is used to

fit the entire dataset, the sum of the errors is zero but the curve is comprised of

perturbations. On the other hand, if a perfectly smooth curve is fitted to the data,

such as a parabola, the result will be a large mean square error. With regards to the

process of smoothing, Sheppard writes,

But this is not a scientific method, unless some criterion is adopted for
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deciding which of the possible new sequences is the best; and it is difficult

to apply such a criterion except to the sequence as a whole, in which case

the process becomes one of “fitting.” (Sheppard 1912)

The problem is to find a balance between smoothing and fitting. It is still the same

issue as today where there is a trade-off between smoothing and bias.

Sheppard’s smoothing methods were adopted by other scientists such as Cather-

ine W.M. Sherriff (Sherriff 1920), geneticist Julia Bell (Rhodes 1921), and mathemati-

cian Oskar Anderson (Anderson 1927). Sherriff worked on graduation formulae by

fitting higher order parabolas using Sheppard’s method and wrote an article describing

the relationship between Sheppard’s and Spencer’s graduation formulae. Her conclu-

sions state that Sheppard’s method removes errors more successfully than Spencer’s

formula since Sheppard’s method is based on least squares. Oskar Anderson used

Sheppard’s method using central differences for time series models.



Chapter 6

The Development of Bayesian

Smoothing

6.1 Background

This chapter provides an overview of the development of Bayesian smoothing.

In 1763 Richard Price presented a paper (Price and Bayes 1763) to the Royal

Statistical Society showing the proof of Bayes’ theorem. Price was the compiler

of the Northampton life table discussed in Chapter 2. The paper was published

in Philosophical Transactions posthumously after Thomas Bayes’ death. Bayes was

a mathematician, philosopher and Presbyterian minister. The paper begins with

an introduction written by Price on the philosophical basis of Bayesian probability

followed by an essay written by Bayes outlining his theorem. Mathematician Pierre

Simon Laplace introduced the same theorem independently in 1774 in the Mém. de

l’Académie royale des sciences presentés par divers savans. Laplace was working

on a problem between 1774 and 1781 on birth ratios. Using the birth records in

Paris spanning 26 years between 1745 to 1770, Laplace conducted a test to see if the

probability of a birth being male was greater than 1/2. He calculated the probability

79
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of a birth being male using a uniform prior as 0.50971. Using birth records from

London spanning 93 years between 1664 to 1756, Laplace calculated the probability

of a birth being male (using a uniform prior) as 0.51346. Based on the data from both

Paris and London, the probability of there being more males in London than Paris

given the data (still using a uniform prior) was 1
410,458

. Laplace (1781) concluded there

was likely a probable cause, such as climate, food, or customs for London having a

higher ratio of male births than Paris. This was the beginning of the Bayesian view.

6.2 The Bayesian View

In the Bayesian approach, we model uncertainty as a distribution of the parameters.

The prior distribution represents our uncertainty before viewing the data. The pos-

terior distribution (the conditional distribution of unknown parameters (unobserved

data) given the observed data) represents our uncertainty after viewing the data.

Bayes’ theorem implies that the posterior distribution is proportional to the product

of the prior distribution and the likelihood. The likelihood is the weight given to each

of the unobservable events given the occurrence of the unknown parameters. The

prior distribution is an initial estimate of the probability of the unknown parameters

based on prior knowledge or experience. It is subjective since personal beliefs can

vary from person to person. New evidence can change our beliefs, and thus Bayes’

theorem allows for the model to be updated with revised probabilities. Bayesian

statistics is predictive meaning we can find the conditional probability distribution of

the next observation given the data. In contrast to the frequentist approach, we use

the empirical distribution of the statistic over all the samples obtained rather than

the sampling distribution over all possible repetitions.

As mentioned in Chapter 3, Bayes theorem was routinely used during the nine-

teenth century and was referred to as the Gaussian method of inverse probability

(Stigler 2008, p. 5). Its use had diminished by the early twentieth century but inter-
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est was renewed by mid-twentieth century by statisticians such as H. Jeffreys (1946),

L.J. Savage (1954), B. De Finetti (1961, 1974), and D.V. Lindley (1965).

6.3 Bayesian Smoothing

The fundamentals of Bayesian smoothing were first introduced in 1970 by statisticians

George Kimeldorf and Grace Wahba. Kimeldorf and Wahba (1970) explored the re-

lationships between Bayesian estimation and spline smoothing in A correspondence

between Bayesian estimation on stochastic processes and smoothing by splines. They

proved that polynomial spline smoothing is equivalent to Bayesian estimation under

a class of improper Gaussian prior distributions. Wahba extended the methodology

in 1978 in Improper priors, spline smoothing and the problem of guarding against

model errors in regression. She showed that spline and generalized spline smoothing

is equivalent to Bayesian estimation with a partially improper Gaussian prior. The

commonly used roughness penalty (quadratic) is equivalent to a partially improper

Gaussian prior in the sense that the smoothing spline estimator can be interpreted

as the mean of the corresponding Gaussian posterior. Wahba includes some compu-

tational tricks for the methods described in the paper.

The development of Bayesian smoothing went through a period of computa-

tional difficulty. The formulas presented by Kimeldorf and Wahba were not practical

given the computing power available at the time. Statisticians paid little attention

to Bayesian smoothing splines in the early 1970’s and few papers were published

by the mainstream statistical journals. By the late 1970’s an increase in computing

power and the implementation of simulation methods became available, and smooth-

ing splines could be calculated for large datasets. Additionally, a good data-based

method for choosing the smoothing paramater was found and multivariate smoothing

methods were developed.

In 1990 Wahba published a book titled Spline Models for Observational Data
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describing Bayesian smoothing in extensive detail. Topics include splines, partial

splines, estimating the smoothing parameter, and Bayesian intervals. Wahba shows

that all smoothing spline models have a Bayesian interpretation. The smoothing

spline estimator is equivalent to the mean of the posterior. This allows for inferences

to be made using Bayesian credible intervals. Wahba’s book was published around

the same time Markov Chain Monte Carlo (MCMC) methods were starting to be con-

fidently accepted and used by mainstream statisticians. In general, MCMC methods

are based on sampling from an approximate distribution and then correcting the sam-

ples to better approximate the target distribution (posterior distribution). Robert and

Casella (2011) give an interesting short history of MCMC. These simulation methods

are useful when direct sampling from the posterior distribution is difficult. As we

have seen in Chapter 5, if a conjugate prior is used the posterior distribution can be

easily determined since it is a closed form. If a conjugate prior is not available, as is

the case for most Bayesian models, a computational sampling method is implemented

to approximate the posterior distribution.

MCMC methods include the Metropolis (1953) and Metropolis-Hastings (1970)

algorithms and the Gibbs sampler (Geman and Geman 1984). In general, the algo-

rithms are used to draw samples (iteratively) from the target distribution and update

the parameters. The Metropolis and Metropolis-Hastings algorithms require knowing

the joint density function of the target distribution up to a constant of proportion-

ality. The Gibbs sampler is a special case of the Metropolis-Hastings algorithm and

requires knowing all of the conditional target distributions.

6.4 Bayesian Smoothing and Mortality Data

Bayesian smoothing has many applications. A selection of Bayesian smoothing or

graduation methods using mortality data include Kimeldorf and Jones (1967), Hick-

man and Miller (1977), Cornfield and Detre (1977), Carlin (1992), Congdon (2009),
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Luoma et al. (2012), and Dellaportas et al. (2001). Kimeldorf and Jones (1967) give

a theoretical method of graduation based on what they refer to as ‘personal probabil-

ity’ also known as Bayesian statistics. They include a numerical example to compare

their method to Whittaker’s method. Whittaker’s method is algebraically similar

but proceeds from a frequentist point of view regarding the parameters as fixed and

does not take recent observations into account. Hickman and Miller (1977) review

Kimeldorf and Jones’s paper and attempt to develop a way for actuaries to deal with

some of the technical issues they identified in their method. Cornfield and Detre

(1977) derive the moments of the posterior probability distribution function. Carlin

(1992) provides simple Bayesian models (non-parametric) for smoothing data using

Monte Carlo techniques and the Gibbs sampler with the hope of making Bayesian

smoothing more feasible for actuaries. Congdon (2009) used Bayesian smoothing to

model life expectancy for 1,118 small areas in Eastern England over a five-year period

1999 to 2003. Luoma et al. (2012) proposed a two-dimensional (cohort) smoothing

spline method using mortality data.

Dellaportas et al. (2001) show how simulation-based Bayesian smoothing can be

used to construct life tables. Four advantages to using Bayesian inference over other

methods are given: the parameters have a straightforward interpretation (the use of

prior distributions avoids overparameterization), the non-normality of the likelihood

means that the least square estimates are inadequate, application to incomplete life

tables can use simulation-based computation, and quantities such as the joint lifetime

of a couple or the median lifetime of a person can be derived from the posterior

densities. A non-linear logistic Bayesian model, a model accounting for extra-binomial

variation, and a log-normal Bayesian model are derived. They illustrate and compare

the three models using mortality data from 1988 to 1992 of English and Welsh females

which is defined as a complete life table. An incomplete or abridged life table is

comprised of mortality data collected by age groups at five year intervals rather than

individual years except for the first five years which are in two intervals, [0, 1) and

[1, 5). Incomplete life tables are common in countries that do not collect and record
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vital statistics adequately. The incomplete table is extended to a complete life table

using an MCMC strategy by sampling from a model that is proportional to the full

model used with the complete life table. The results are compared using boxplots of

the posterior marginal distributions.

Simulation-based Bayesian smoothing has been extended to applications such

as environmental studies, finance, actuarial science, spatial and biological statistics,

physics and astronomy, and medicine. An adaptive MCMC method was introduced

in 2001 by H. Haario, E. Saksman and J. Tamminen. Advances in MCMC methods

involve adaptive Metropolis-Hastings random walk samplers and Metropolis within a

Gibbs sampler. Innovations in MCMC methods continue to be developed to enhance

Bayesian inference.

6.5 Conclusion

The Bayesian approach has a long history but the development of Bayesian smoothing

was slow to evolve. The posterior distribution is seldom in closed form which requires

computing power; the implementation of MCMC methods made many calculations

feasible. Bayesian smoothing is used in a wide range of applications including mod-

elling mortality data for the construction of life tables. Bayesian smoothing can be

used to smooth out the irregularities of complete and incomplete life tables while tak-

ing into account past observations. Advances in simulation-based Bayesian smoothing

are ongoing.



Chapter 7

Bayesian Smoothing

7.1 The Objective

The objective of the Bayesian model described in this chapter is to predict the prob-

ability of life using eighteenth-century mortality data and modern smoothing tech-

niques, and compare the results to eighteenth-century smoothing methods.

7.2 Preliminary Analysis of the Data

The data comes from the Bills of Mortality recorded on a broadside held in the

Guildhall Library, London, England (Smart 1738b). As mentioned in Chapter 2,

starting in the early seventeenth century, the Bills of Mortality for the City of London

were published weekly to warn residents of possible outbreaks of the bubonic plague.

John Smart, a clerk at the Guildhall in London, was the first to compile the data and

construct a life table (see Appendix A) in order to estimate annuities (Hald, 1990,

p.518). More details about the table are discussed in Chapter 2.
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The data gives the number of deaths for each year between 1728 to 1737 inclusive

for each age group ranging from birth to greater than 90 years of age. Table 2.3 shows

the aggregate data of the number of deaths for the decade corresponding to the twelve

age groups. Smart made the convenient assumption that the population in London

was stationary. Observing Smart’s life table in Appendix A we find the yearly rates

remain constant over a few years and conclude that the resulting smoothed values

are piecewise linear. The cumulative number of deaths per thousand versus age as

reported by Smart is shown in Figure 7.1. The solid circles denote the rates for each

age group given in the dataset. The open circles denote Smart’s calculations for the

yearly rates. We observe that the plot (Figure 7.1) displays some curvature. This

is because it is the cumulative distribution of Smart’s life table which is piecewise

linear.

Figure 7.1: Cumulative number of deaths per thousand versus age as reported by
Smart (open circles) and group data (solid circles).
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7.3 The Model: Bayesian Smoothing

In general, a Bayesian posterior distribution is given by posterior ∝ likelihood × prior

f(a1, . . . , an|y1, . . . , yn) ∝ g(y1, . . . , yn|a1, . . . , an)× f(a1, . . . , an). (7.1)

Our goal is to model the number of deaths for each year of life from birth to 100.

Let λ(t) be a continuous function that represents the instantaneous rate of death per

year at age t. We assume deaths for each year follow a Poisson process. Since the

aggregate data is the total number of deaths for the decade grouped by age and we

want to predict the number of deaths for each year, a smooth continuous function is

desired. The function is modelled by

λ(t) =

p∑
i=1

aibi(t) (7.2)

where t is the age in years, ai for i = 1 . . . p are unknown parameters, bi(t) are basis

functions and p is the number of basis functions.

A cubic B-spline basis is constructed using the built-in R function bs(). The

dimension of the B-spline basis is the number of knots plus the degree of the polyno-

mial plus an intercept. The location of the knots can be chosen to be at the predictor

variables or any other suitable location depending on the model. Figure 7.2 shows cu-

bic B-splines on the interval [0, 100] at the age group boundaries. The knot locations

have been highlighted using as upward ticks in the x-axis.

We define the total death rate for each age group as

λj =

∫ tj+1

tj

λ(t) dt (7.3)

where each age group j consists of ages tj < t < tj+1.
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Figure 7.2: Cubic B-splines on [0, 100] corresponding to knots at 0, 2, 5, 10, 20, 30,
40, 50, 60, 70, 80, 90 and 100.

Because we assumed a Poisson process for deaths, the number of deaths follows

a Poisson distribution in each age group cell. This gives the following likelihood

function:

g(y1, . . . , yn|a1, . . . , an) =
n∏

j=1

λ
yj
j e−λj

yj!
(7.4)

where yj is the death count for each age group, λj is the total death rate for each age

group and n is the number of groups. A possible prior distribution is given by

f(a1, . . . , an) ∝ exp

(
− k

∫ ∞

0

(λ′′(t))2dt
)

(7.5)

where k is a constant. The exponent in the prior distribution is known as a smoothing

function or penalty function in other contexts. These functions penalize the roughness

of a curve. As k → 0 the prior allows λ(t) to be less smooth and as k →∞ the prior

forces λ
′′
(t) = 0, ie. λ(t) tends to a straight line. For our parameterization, the prior

distribution is an improper Gaussian density in the parameters a. The posterior

becomes

f(a1, . . . , an|y1, . . . , yn) ∝
( n∏

j=1

λ
yj
j e−λj

yj!

)
exp

(
− k

∫ ∞

0

(λ′′(t))2dt
)

(7.6)
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Taking the natural log and ignoring the constant yj!, since it does not depend on the

parameters, the log posterior distribution becomes

log f(a1, . . . , an|y1, . . . , yn) =
n∑

j=1

(yjlog(λj)− λj)− k

∫ ∞

0

(λ′′(t))2dt. (7.7)

where the log of the constant of proportionality has been suppressed. The log prior

distribution can be written as

log f(a) = −k
∫ ∞

0

(λ′′(t))2dt = −katSa (7.8)

where a is a vector of the unknown parameters and S is a p × p covariance matrix.

This can be shown by recalling Equation (7.2). For a third degree polynomial, the

basis function bi(t) is a polynomial between the knots, ie. for tj < t < tj+1 it is given

by

bi(t) = cij1 + cij2t+ cij3t
2 + cij4t

3 (7.9)

and the second derivative is

b′′i (t) = 2cij3 + 6cij4t. (7.10)

Taking products of terms from (7.10) we have

b′′i (t)b
′′
l (t) = (2cij3 + 6cij4t)(2clj3 + 6clj4t)

= 4cij3clj3 + 12cij3clj4t+ 12cij4tclj3 + 36cij4tclj4t

= 4cij3clj3 + (12cij3clj4 + 12cij4clj3)t+ (36cij4clj4)t
2. (7.11)

To find the elements of the coefficient matrix S we can first look at one of the intervals
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between knots:

∫ tj+1

tj

(λ′′(t))2dt =
∫ tj+1

tj

(
p∑

i=1

aib
′′
i (t)

)2

dt

=

∫ tj+1

tj

[
p∑

i=1

aib
′′
i (t)

][
p∑

l=1

alb
′′
l (t)

]
dt

=

∫ tj+1

tj

[
p∑

i=1

p∑
l=1

aib
′′
i (t)alb

′′
l (t)

]
dt

=

∫ tj+1

tj

[
at(b′′i (t)b

′′
l (t))a

]
dt

= at

[∫ tj+1

tj

(b′′i (t)b
′′
l (t))dt

]
a

= atSja (7.12)

for i and l = 1, . . . , p (the number of basis functions) and j = 1, . . . , n (the number

of intervals). Sj is a matrix of integrals. Then,

S =
n∑

j=1

Sj . (7.13)

As mentioned, this gives an improper prior. To make it proper we assume that by

age 100 there are no persons still alive. The conditions λ(100) = 0 and λ
′
(100) = 0

would hold; we penalize departures from these assumptions by adding the penalty

b100b
t
100 + b

′
100b

′t
100 to kS to make the improper log prior distribution at Equation

(7.8) a proper log prior distribution as follows:

f(a) = −atΣ−1a (7.14)

where the inverse covariance matrix is

Σ−1 = kS+ b100b
t
100 + b

′
100b

′t
100. (7.15)
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We also assume that λ(t) ≥ 0 for 0 ≤ t ≤ 100; we only partially enforce this restriction

by truncating the multivariate normal prior so that the condition holds at t = 0, 1,

2, . . . , 100.

Simulations were used to determine the value of the constant k. The log prior

distribution is a truncated multivariate Gaussian distribution with mean vector 0

and covariance matrix Σ−1. Ten random samples were obtained using the built-in

R function mvrnorm() for different values of the constant k. Boundary knots were

placed at 0 and 100, and the interior knots were placed at the eleven locations of the

right-hand boundary of each age group. Figure 7.3 shows ten random samples of λ(t)

using values of k = 0.1, 1, 3 and 10.

Figure 7.3: Prior samples of λ(t) for k = 0.1, 1, 3 and 10.

For each value of k the number of deaths decrease with age. As k increases there
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does not appear to be any significant change in linearity. The maximum value for the

number of deaths is reached when k = 0.1. Taking the vertical range into account for

each plot, this gives the most curvature for the lowest age group cells when compared

to the other values of k. This value of k is used as the initial smoothing parameter.

7.4 Metropolis-Hastings MCMC

A Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm was imple-

mented and used to simulate a sequence of parameters, a, of the posterior distribu-

tion. The posterior distribution, f(a|y), is called the target distribution. An arbitrary

set of values a0 are chosen as a starting point for the parameters. Each iteration of

the algorithm follows four steps to update al to al+1.:

1. Propose a new value a∗ from h(a∗|y) using a∗ = al + ND(0, σ), where ND is a

vector of D independent and identically distributed normals.

2. Calculate r =
f(a∗|y)
f(al|y)

3. Sample u ∼ U[0,1].

4. If u < r, accept the proposal and set al+1 = a∗, otherwise reject the proposal

and set al+1 = al.

The initial set-up for the Metropolis-Hastings MCMC simulation includes a cubic

B-spline basis on the interval [0, 100] with knots at the left-hand boundary of each age

group except for 0. The dimension of the basis for our model is the number of interior

knots plus the degree of the polynomial plus the intercept (D= 11+3+1 = 15). The

covariance matrix is a 15 × 15 matrix, and thus, there are 15 unknown parameters.

Each ali is the ith component of al to form the proposal a∗.

Since we assume that the data is Poisson distributed the mean and variance

should be equal, however, this is not the case in our data. Multiple observations have

been taken across many years. A transformation of the data was made calculating
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the mean and variance for each year of the data. If Yj ∼ Poisson(λj), then we need

to find c such that

E(cYj) = λj = Var(cYj) (7.16)

is true. We tried values of c ranging between 0.01 to 0.08. For our model 0.04 is used

for the transformation of the data.

Proposing a random move in step 1 we use a mean of 0 and standard deviation

1. The starting value for each parameter, ai, is 1. We assume k = 0.1 for the constant

of the log prior distribution since this value gives the maximum number of deaths for

birth given in Figure 7.3. In addition, the condition λ(t) ≥ 0 is implemented.

7.5 Analysis

Using 400,000 iterations with a burn-in of 300,000, the acceptance rate was 19%.

Acceptance rates between 15 and 40 percent are ideal (Gelman, Roberts, and Gilks

1996). The sequences for the last 100,000 iterations for each parameter are shown in

the trace plots in Figure 7.4. We observe that the sequences improve as the order of

the parameters increase. The last plot is ideal since it does not exhibit any pattern

or trend. In other words, we want unpredictability which indicates good mixing.

We adjusted the standard deviations for each of the parameters are implemented to

try and improve the mixing of the lower ordered of parameter values. The standard

deviation for each parameter was calulated using the last 100,000 iterations. The

standard deviations were (in the order of parameter): 16, 14, 11, 9, 9, 12, 11, 10,

10, 9, 8, 7, 6, 2, and 0.7. Running the simulation using these standard deviations

resulted in a low acceptance rate of 0.05%. This is not a surprise since the lower order

of parameters converged but did not mix well in the first run of the simulation, and

thus, replacing the standard deviations with standard deviations that are known not

to mix well gives poor results. The trace plots using different standard deviations for

each parameter are shown in Figure 7.5. If the acceptance rate is too low, we shrink
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all the jumps proportionally. The model was re-run using the standard deviations (in

the order of parameter): 16, 14, 11, 9, 9, 12, 11, 10, 10, 9, 8, 7, 6, 2, and 0.7. divided

by 10, the magnitude of the 8th parameter. The was because the 8th parameter gave

good results in the trace plot in Figure 7.5. The results of the new trace plots were

not improved.

Figure 7.4: Trace plots for the last 100,000 iterations for parameters 1 to 15.

Using the standard deviations from the run of the first simulation, further anal-

ysis was explored. The parameters were calculated by computing the mean of the last

100,000 simulations for each sequence of parameter values. The set of means, ā, were
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Figure 7.5: Trace plots for the last 100,000 iterations for parameters 1 to 15 using
different standard deviations.

used to evaluate the function λ(t) and is shown in Figure 7.6. The graph exhibits the

features we would expect from a plot showing the number of deaths at each age, ie.

starting with a high number of deaths and decreasing as age increases. However, we

would expect there to be more curvature between birth to ten years of age because

the number of infant deaths was high when the data was collected in the eighteenth

century due to disease and illness. Less curvature is required for the higher ages since

we would assume less disturbances to effect the number of deaths. Adding more knots
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at the lower ages would make very little difference to the fit because curvature is being

controlled by k. Figure 7.7 shows the function λ(t) and rectangles to represent the

data for each age group.

Figure 7.6: λ(t): number of deaths per year.

Figure 7.7: λ(t) and rectangles representing the area for each age group cell.
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The standardized residuals for each age group are shown in Figure 7.8. They

were calculated using the following formula:

εj =
(yj − ŷj)√

ŷj
(7.17)

Figure 7.8: Standardized residuals for each age group.

The residuals are large for birth, 2 and 5 years of age. This is caused by having

too much penalty at these age intervals.

To improve on the fit of the model, a step function penalty was implemented.

As mentioned, less smoothing is acheived when the constant k is small. The value

k = 0.0001 was used for birth, 2 and 5, and k = 1 for the remaining ages. The

value k = 0 could not be used for the younger age groups since it made the inverse

covariance matrix singular, and thus, making the log prior distribution improper.

The acceptance rate using the step function penalty was 25%. The trace plots

for the last 100,000 iterations are shown in Figure 7.9 with standard devations for

the parameters set to 1. We observe that parameters 1 and 3 show a trend. Different
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standard deviations were tested in an attempt to improve the trace plots for parame-

ters 1 and 3. Figure 7.10 show the resulting trace plots using standard devations set

to 10, 5 and 5 for the first three parameters respectively. These standard deviations

show significant improvement that the model is mixing well. The acceptance rate was

24.6%.

Figure 7.9: Trace plots for the last 100,000 iterations for parameters 1 to 15 using
step function penalty.
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Figure 7.10: Trace plots for the last 100,000 iterations using different standard devi-
ations for parameters 1 to 3.

Figure 7.11 shows the number of deaths (curve) and rectangles representing the

data for each age group. Figure 7.12 shows the 95% pointwise credible intervals

where the vertical range is limited to 250. There is a 95% probability that λ(t) lies

between the upper and lower bands. The standardized residuals show an interesting

oscillating pattern in Figure 7.13 and Figure 7.14 show the number of deaths (curve)

and rectangles representing the data for each age group starting at age 2. We observe

that the model has been improved by using the step function for the younger ages.
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Figure 7.11: λ(t) and rectangles representing the area for each age group cell using
the step function.

Figure 7.12: λ(t) with 95% credible intervals.
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Figure 7.13: Standardized residuals for each age group using step function.

Figure 7.14: λ(t) and rectangles representing the area for each age group starting at
age 2.
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For comparison, the hazard function is shown in Figure 7.15 with 95% credible

bands. The hazard function is the instantaneous death rate divided by the survival

function:
λ(t)∫∞

x
λ(t)dt

. (7.18)

We observe that starting around age 80 the credible bands begin to widen when

compared to the credible bands shown in Figure 7.12.

Figure 7.15: Hazard function with 95% credible intervals.

The modern Bayesian smoothing model gives comparable results to that of

Smart’s life table. Figure 7.16 shows the cumulative number of deaths from the

data (solid circles), the Bayesian model (line), and Smart’s life table (open circles).
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Figure 7.16: Comparison of the Bayesian model (line) and Smart’s cumulative distri-
bution (open circles).

7.6 Conclusion

An advantage of using Bayesian smoothing is that the model is flexible. This means

the amount of smoothing can be controlled. The location and number of knots can be

determined beforehand and assessed using the plots. The trace plots give a graphical

way to measure uncertainty and adjust the model as necessary. The acceptance rate

is another way to evaluate the performance of the model and to assess if the estimates

will be reliable.

This Bayesian model is not an optimal model for smoothing mortality data. How-

ever, the purpose of the model was to predict the probability of life using eighteenth-

century mortality data and compare the results to the original eighteenth-century

analysis. The results show that the Bayesian model works well for this purpose.
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Chapter 8

Conclusion

We have looked at some of the significant milestones of data smoothing techniques be-

ginning with Graunt’s life table in the seventeenth century. The ingenuity of Halley’s

life table made it highly influential in various works during the eighteenth century. El-

ementary smoothing technqiues eventually evolved into complex methods. The large

amount of data collected during W.W.I caused an emergence of more advanced meth-

ods such as the smoothing method of Sheppard. A rare glimpse into his statistical

career and professional relationship with Pearson is provided by the correspondence.

Throughout his career, Sheppard retained an interest in the construction of tables

based on the normal distribution. The tabulations for his tables would have been

computationally intensive and the level of precision demonstrate Sheppard’s dedica-

tion and skill in practical computation.

Sheppard’s smoothing method is not simple to use in practice when compared

to other methods such as Spencer’s graduation formula. As Sheppard demonstrated,

his method has a smaller mean square error and a better fit than Spencer’s formula.

However, for everyday practical use, simpler methods can provide a good enough ap-

proximation to the true values. Sheppard’s smoothing method would have been useful

for situations that required a high level of precision. This is similiar to his tables based
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on the normal distribution having a high number of decimals. For everyday practical

use by users of statistics or statisticians, 4 or 5 decimal places is sufficient. However,

there are some problems in statistics and science that require rigorous conclusions,

and therefore, a higher number of decimals is necessary.

The smoothing methods discussed in this thesis are:

1. Early smoothing techniques: visual or piecewise linear interpolation, averaging

(Halley, 1693; Smart, 1738; Simpson, 1742; Price, 1783)

2. Referencing other graduation tables (Smart, 1738; Simpson, 1742; De Moivre,

1725)

3. Graphical methods (Milne, 1815; Sprague, 1886)

4. Parametric models (Gompertz, 1820; Makeham, 1859)

5. Mathematical functions (Graunt, 1662; De Moivre, 1725; Cauchy, 1837)

6. Osculatory interpolation (Sprague, 1886)

7. Difference equation methods (Woolhouse, 1869; Sheppard, 1912–1915)

8. Summation and adjusted averaging (Spencer, 1904)

9. Methods using Mathematical formulae (Farr, 1864; Sheppard, 1912–1915)

10. Local polynomial regression

11. Logistic models

12. Splines, B-splines

13. Bayesian Smoothing

As the collection of detailed population data increased and covered longer periods

of time, the methods of design and construction of life tables improved. Early life table

compilers faced the challenge of determining estimates using sparse or incomplete

data. It is the same issue today when working with data from countries that do not

reliably collect and record vital statistics. As discussed, advanced techniques such as

Bayesian smoothing can be implemented to address the issue.
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royale des sciences de Paris 9, pp. 383–485.

Luoma, Arto, Anne Puustelli, and Lasse Koskinen (2012). “A Bayesian smoothing
spline method for mortality modelling”. In: Annals of Actuarial Science 6, pp. 284–
306.

Makeham, William M. (1859). “On the law of mortality and the construction of an-
nuity tables”. In: Journal of the Institute of Actuaries 8, pp. 301–310.

Medical, The Edinburgh and Surgical Journal (1817). “Statement on the sizes of men
in different counties of Scotland”. In: The Edinburgh Medical and Surgical Journal
13, pp. 260–262.

Metropolis, N. et al. (1953). “Equations of state calculations by fast computing ma-
chines”. In: Journal of Chemical Physics 21, pp. 1087–1092.

Newman, F.W. (1883). “Table of the descending exponential function to twelve or
fourteen places of decimals”. In: Transactions of the Cambridge Philosophical Soci-
ety 13, pp. 145–241.

Pearson, K. (1895). “Contributions to the mathematical theory of evolution. II. Skew
variation in homogeneous material”. In: Philosophical Transactions A 186, pp. 343–
414.

Pearson, K. (1900). “On the criterion that a given system of deviations from the prob-
able in the case of a correlated system of variables is such that it can be reasonable
supposed to have arisen from random sampling”. In: Philosophical Magazine Series
5 50, pp. 157–175.

Pearson, K. (1902). “On the systematic fitting of curves to observations and measure-
ments”. In: Biometrika 1, pp. 265–303.



112 REFERENCES

Pearson, K. (1903). “On the probable errors of frequency constants”. In: Biometrika
2.3, pp. 273–281.

Pearson, K. and L.N.G. Filon (1898). “Mathematical contributions to the theory of
evolution. IV. On the probable errors of frequency constants and on the influence
of random selection on variation and correlation”. In: Philosophical Transactions A
191, pp. 229–311.

Pearson, K. and Alice Lee (1908). “On the generalised probable error in multiple
normal correlation”. In: Biometrika 6.1, pp. 59–68.

Price, Richard and Thomas Bayes (1763). “An Essay towards solving a problem in
the Doctrine of Chances. By the Late Rev. Mr. Bayes, F.R.S. Communicated by
Mr. Price, in a Letter to John Canton, A.M.F.R.S.” In: Philosophical Transactions
53, pp. 370–418.

Robert, Christian and George Casella (2011). “A short history of Markov chain Monte
Carlo: subjective recollections from incomplete data”. In: Statistical Science 0,
pp. 1–14.

Sheppard, N.F. (1938). “W.F. Sheppard: Personal History”. In: Annals of Eugenics
8, pp. 1–9.

Sheppard, W.F. (1889).“On some expressions of a function of a single variable in terms
of Bessel’s functions”. In: Quarterly Journal of Pure and Applied Mathematics 23,
pp. 223–260.

Sheppard, W.F. (1897a). “On the calculation of the average square, cube & c., of
a large number of magnitudes”. In: Journal of the Royal Statistical Society 60,
pp. 698–703.

Sheppard, W.F. (1897b). “On the geometrical treatment of the ’normal curve’ of
statistics”. In: Proceedings of the Royal Society of London 62, pp. 170–173.

Sheppard, W.F. (1898). “On the calculation of the most probable values of frequency
constants, for data arranged according to equidistant divisions of a scale”. In: Pro-
ceedings of the London Mathematical Society 29, pp. 353–380.

Sheppard, W.F. (1899a). “A method for extending the accuracy of certain mathe-
matical tables”. In: Proceedings of the London Mathematical Society 31, pp. 423–
448.

Sheppard, W.F. (1899b).“Central-Difference Formulae”. In: Proceedings of the London
Mathematical Society 31, pp. 479–482.



ARTICLES 113

Sheppard, W.F. (1899c). “On the application of the theory of error to cases of normal
distribution and normal correlation”. In: Philosophical Transactions A 192, pp. 101–
167.

Sheppard, W.F. (1900). “Some quadrature-formulae”. In: Proceedings of the London
Mathematical Society 32, pp. 258–277.

Sheppard, W.F. (1903). “New tables of the probability integral”. In: Biometrika 2,
pp. 174–190.

Sheppard, W.F. (1912). “Reduction of errors by means of negligible differences”.
In: Proceedings of the Vth International Congress of Mathematics, Cambridge 2,
pp. 348–384.

Sheppard, W.F. (1914a). “Fitting of polynomial by method of least squares”. In:
Proceedings of the London Mathematical Society 13, pp. 97–108.

Sheppard, W.F. (1914b). “Graduation by reduction of mean square error Part I”. In:
Journal of the Institute of Actuaries 48, pp. 171–185.

Sheppard, W.F. (1914c). “Graduation by reduction of mean square error Part II”. In:
Journal of the Institute of Actuaries 48, pp. 390–412.

Sheppard, W.F. (1915). “Graduation by reduction of mean square error Part III”. In:
Journal of the Institute of Actuaries 49, pp. 148–157.

Sheppard, W.F. (1929). “The fit of a formula for discrepant observations”. In: Philo-
sophical Transactions A 228, pp. 115–150.

Sherriff, Catherine W.M. (1920).“On a Class of Graduation Formulae”. In: Proceedings
of the Royal Society of Edinburgh 40, pp. 112–128.

Smart, John (1738a). “A letter from Mr. Smart to George Heathcote Esq., re inclosing
tables extracted from ye bills of mortality for the last ten years, and from them
shewing the probabilities of life, in order to estimate annuities &c”. In: Journal
Book of Scientific Meetings of the Royal Society.

Spencer, John (1904). “On the graduation of the rates of sickness and mortality pre-
sented by the experience of the Manchester Unity of Oddfellows during the period
1893–97”. In: Journal of the Institute of Actuaries 38, pp. 334–343.

Sprague, T. (1886). “The graphic method of adjusting mortality tables. A descrip-
tion of its objects, and its advantages as compared with other methods, and an
application of it to obtain a graduated mortality table from Mr. A.J. Finlaison’s
observations on the mortality of the female government annuitants, 4 years and
upwards after purchase”. In: Journal of the Institute of Actuaries 26, pp. 77–120.



114 REFERENCES

Stigler, Stephen (2008). “Karl Pearson’s theoretical errors and the advances they
inspired”. In: Statistical Science 23, pp. 261–274.

Student (1908). “The probable error of a mean”. In: Biometrika 6.1, pp. 1–25.

Sutton, William (1883). “On the method used by Dr. Price in the construction of
the Northampton Mortality Table”. In: Journal of the Institute of Actuaries 18,
pp. 107–122.

Vernon Boys, Charles (1944). “Obituary Notices of Fellows of the Royal Society”. In:
The Royal Society 4.13, pp. 771–788.

Wahba, Grace (1978).“Improper priors, spline smoothing and the problem of guarding
against model errors in regression”. In: Journal of the Royal Statistical Society Series
B 40.3, pp. 364–372.

Whittaker, E.T. (1923). “On a new method of graduation”. In: Proceedings of the
Edinburgh Mathematical Society 41, pp. 63–75.

Woolhouse, W.S.B. (1869). “Explanation of a new method of adjusting mortality
tables; with some observations upon Mr. Makeham’s modification of Gompertz’s
Theory”. In: Journal of the Institute of Actuaries 15, pp. 389–410.

Other Sources

Fisher, R. (1936). Fisher Correspondence. Correspondence from Fisher to W.F. Shep-
pard. url: http://hdl.handle.net/2440/67994 (visited on 09/04/2014).

Fisher, R. (1937). Fisher Correspondence. Correspondence from Fisher to N.F. Shep-
pard. url: http://hdl.handle.net/2440/67992 (visited on 09/04/2014).

Graunt, John (1662). “National and political observations made upon the bills of
mortality”. In: Bills of Mortality, London, pp. 23–127.

Pearson, Karl (1896–1926). “Sheppard, William Fleetwood”. In: Pearson Papers. Cor-
respondence from W.F. Sheppard to Pearson. University College London Archives,
Special Collections, Pearson/11/1/18/77.

Smart, John (1738b). “A Table Showing the Probabilities of Life”. In: The Bills of
Mortality for the City of London. Guildhall Library, London, England.

Statistics-Canada (2015).Methods for Constructing Life Tables for Canada, Provinces
and Territories. url: http://www.statcan.gc.ca/pub/84-538-x/84-538-
x2013001-eng.htm (visited on 12/02/2015).



Appendix A

Smart’s Life Table

John Smart’s table (1738) showing the probabilities of life by observations made from

the Bills of Mortality for the City of London from 1728–1737.

Age Live Deaths Age Live Deaths

Born 1,000 0 10 490 5
1 710 290 11 486 4
2 614 96 12 482 4
3 564 50 13 479 3
4 539 25 14 477 2
5 526 13 15 475 2
6 516 10 16 473 2
7 508 8 17 471 2
8 501 7 18 468 3
9 495 6 19 464 4

Age Live Deaths Age Live Deaths

20 459 5 30 385 9
21 453 6 31 376 9
22 447 6 32 367 9
23 440 7 33 358 9
24 433 7 34 349 9
25 426 7 35 340 9
26 418 8 36 331 9
27 410 8 37 322 9
28 402 8 38 313 9
29 394 8 39 304 9
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Age Live Deaths Age Live Deaths

40 294 10 50 204 8
41 284 10 51 196 8
42 274 10 52 188 8
43 264 10 53 180 8
44 255 9 54 172 8
45 246 9 55 165 7
46 237 9 56 158 7
47 228 9 57 151 7
48 220 8 58 144 7
49 212 8 59 137 7

Age Live Deaths Age Live Deaths

60 130 7 70 69 6
61 123 7 71 64 5
62 117 6 72 59 5
63 111 6 73 54 5
64 105 6 74 49 5
65 99 6 75 45 4
66 93 6 76 41 4
67 87 6 77 38 3
68 81 6 78 35 3
69 75 6 79 32 3

Age Live Deaths Age Live Deaths

80 29 3 90 5 1
81 26 3 91 4 1
82 23 3 92 3 1
83 20 3 93 2 1
84 17 3 94 1 1
85 14 3 95 0 1
86 12 2
87 10 2
88 8 2
89 6 2



Appendix B

Correspondence from

W.F. Sheppard to K. Pearson

I have transcribed and included footnotes for 23 letters from W.F. Sheppard to K.
Pearson archived at University College London, London (UCL Archives Special Col-
lections PEARSON/11/1/18/77). The letters are presented in chronological order.

Letter 1

2 Temple Gardens, E.C.

3 June ’96

Dear Sir,

I believe Mr. Galton spoke to you a short time ago with regard to our unfinished
paper of mine on the “normal curve” in relation to statistics. He thought that you
might be willing to look through it when finished, in order to see whether it would
be suitable for the Royal Society, and whether, if submitted to them, there would be
any chance of it being published in the Phil. Trans.1

I had hoped to get on with the paper during the spring, but circumstances have
prevented my doing so, and there does not seem much probability of my completing
it before the end of the year. If, however, you would be kind enough to look at the
paper, I do not see why I should not send you what I have already done, so that you

1Paper was first published in 1897 “On the geometrical treatment of the ‘normal curve’ of statis-
tics”. in Proceedings of the Royal Society of London 62, pp. 170–173, and revised and republished in
1899 ”On the application of the theory of error to cases of normal distribution and normal correlation”
in Philosophical Transactions A 192, pp. 101–167.
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might read it at your leisure, and I could at the same time give a sketch of what I
propose to add in order to complete the paper.

It deals almost entirely with the normal curve, and with correlation between
normal distributions, non-normal distributions being only considered for the purpose
of analysing them into component normal distributions. As regards results, there is
a good deal of new matter in the part relating to correlation; but the work is entirely
theoretical, & the greater part of the paper consists in the application of geometrical
methods so as to obtain results which are already known. On this account I have
been doubtful whether the paper was really suitable for the Phil. Trans.

The portion already finished occupies a good deal of space, but I have purposely
treated the subject thoroughly. As I have wished to make it intelligible to others
besides the few who have so far worked at it. You would read through it very rapidly,
and I think you would find a good deal of the geometrical work interesting, though
I admit that some is rather tedious. There is no use of diffn. or int., except by
geometrical methods, though there is a certain amount of analytical work to be added.

I could send you the paper by post, or could call on you some time & discuss
the matter with you, if you prefer that. Almost any time would suit me, as I have
few definite engagements just at present.

Yours faithfully,

W.F. Sheppard

I may add that I should be much gratified if any of my work would be of use to you
in your own investigations.

Letter 2

2 Temple Gardens, E.C.

16 June ’96

Dear Mr. Pearson,

Thanks for the Czuber,2 which—when rid of the “theory of error” jargon—ought
to be interesting. I will return it to you by Aug. 1st. It will be a good training for
any summer holiday in Germany.

I should be very pleased of any work that you can put in any way, either private
coaching or classwork. My financial condition precludes the single-minded devotion
to marginal annotations, which is necessary for success at the bar; and even if this

2Emanuel Czuber was an Austrian mathematician. Pearson had probably sent Sheppard a book.
The mostly likely candidate is one published in 1891, Theorie der Beobachtungsfehler Teubner,
Leipzig. English translation, as The theory of errors of observation.
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were not so, I think I should be wanting to spread myself over other things. So I hope
ultimately to get some permanent post in London, probably something involving
administrative educational work, and in the mean time I am anxious to get as much
teaching work as I can.

Yours very truly,

W.F. Sheppard

I am ready for pupils all through the summer, except definitely for two or three weeks
in August.

Letter 3

2 Temple Gardens, E.C.

19 Oct. 1896

Dear Mr. Pearson,

I send you this M.S., on an isolated point, as I think you may like to see it before
it is published. When I wrote the first draft of it I did not know that you had gone
into the subject at all, as I had not read your “Skew Variation” essay thoroughly.3 I
have since introduced a reference to this, and taken for illustration one of your tables.
You will see that my result is very different from yours, and mine seems the more
correct. Where the flaw in your reasoning comes in is that you take the ordinate yr,
as proportional to the number nr. This is correct for a first approx., but a 1st approx.
corresponds to a figure of frequency composed of rectangles. A polygon is equivalent
to a 2nd approx., & for a 2nd approx., the ordinate would be nr+

1
2
[nr− 1

2
(nr−1+nr+1)].

Hence by taking it (= nr) you make it too small where the curve is concave to the
base, i.e. (usually) at the centre, & too great where the curve is convex to the base,
i.e. at the extremities, so that the value obtained for the S.D. be too great. (Instead
of the central ordinate of the compartment I find it more convenient to deal with the
bounding ordinates 1

2
(nr−1 + nr) and

1
2
(nr + nr+1), but the result would be the same

to this order of approx.) Its to a 3rd approx., introducing Δ2, but his happens to
make no alteration in the value of the average, though it introduces a small term into
the S.D.

I have put this M.S. in as untechnical language as possible, as I thought it
might be suitable for the statistical society. I am putting the mathematical part
into a separate paper, which will give the corresponding formula for the nth moment
accurately (your M′

n ). This might be suitable for the Phil. Mag. or the Cambridge

3Sheppard is referring to Pearson’s 1885 paper, “Contributions to the mathematical theory of
evolution. II. Skew variation in homogeneous material” in Philosophical Transactions A 186, pp.
343–414.
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Phil. Soc.4 Perhaps you could advise me about this.

Yours sincerely,

W.F. Sheppard. (P.T.O.)

P.S. Can you tell me what is the recognised scale of fees for mathematical coachings?
I have been in the habit of charging 10/6 an hour, but it has been suggested to me
that this is too high for elementary work, e.g. Cambridge Little–So, & that it should
only be about 7/ an hour. You ought to be in a position to know-I have enquired of
one or two people, but they have not been able to tell me. W.F.S.

Letter 4

2 Temple Gardens,

20 Oct. ’96

Dear Mr. Pearson,

I find it rather hard to give an answer with regard to the lecturing in Astronomy.
The principal reason is that I am not certain what I may be doing after Christmas:
it is no use counting one’s chickens etc., but it is not fair to undertake work & find
oneself compelled to give it up very soon. Partly for this reason, and partly because
I want to get on as far as possible before Christmas with what I can prepare for
publication, I was anxious to keep free just at present from any distant engagements.
A secondary reason—which however could be overcome—is that Astronomy is just the
one subject in which the smattering acquired at Cambridge has failed to interest me;
and a smart student would discover my ignorance at once. But if you find yourself in
a difficulty with regard to getting a lecturer, I shall be glad to do what I can; though,
as I have explained, I feel inclined to hope I amy not be called upon.

I am much obliged for your explanation of your method of “fitting” the curve.
I must confess I had misunderstood it. I had not realised that you sought a curve
which was not the curve of frequency but was related to it in a particular way: and
I will modify the note in my MS accordingly. But I don’t yet see what your curve
is in the case of (e.g.) a normal distribution; apparently the ordinate yr of the curve
at every point xr is to be proportional to the area of the curve of frequency between
xr − 1

2
c and xr +

1
2
c; but there is no finality in this, as the shape of the new curve

will depend on the value of c. Apparently we look at the thing in different ways. I
do not try to find a frequency curve of which the numbers given could be successive
areas: I try to find the frequency curve which would result if the causes or whatever

4Sheppard’s manuscript was published in 1898 “On the calculation of the most probable values of
frequency constants, for data arranged according to equidistant divisions of a scale” in Proceedings
of the London Mathematical Society 29, pp. 353–380. He refers to Pearson’s method of moments in
the Appendix title “Moments of a Polygon” pp. 378–380
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they are—which regulate the particular magnitude in the individuals measured acted
in the same way on an infinite number of individuals, the hypothesis being that the
particular individuals are a chance selection from this infinite number. My language
is neither philosophical nor clear (this is not a pleonasm), but the hour is late for
Proc. R.S. And then the geometrical discussion of “normal” distributions ab initio,
which would have to be relegated to some Transactions. I find that while working
out formulae on scribbling—paper takes some time, bringing them into intelligible
language takes a good deal more, and numerical illustrations take still more, so that
my progress seems to be very slow.

I hope the influenza will disappear shortly.

Yours sincerely,

W.F. Sheppard.

Letter 5

2 Temple Gardens, E.C.

10 May ’99

Dear Mr. Pearson,

The Phil. Mag. would not have the paper, so I have sent it on to the London
Math. Society to take its chance.

I have not been doing anything lately as to the quadrature. I had a try at using
them for my curves giving correlation-volumes, but found that it was no good, & that
it was simpler to calculate the areas by a direct formula. The curves are of the form

z ∝ e−Csec
2 1
2
x, and they have infinitely close contact with the base at the extremities

±π.
If you have plenty of spare copies of your paper on correlation of parametric

heights, I should be very glad of one.

I suppose you sometimes set examination papers. I hit on a rather nice question
the other day (in finding powers of tan(671

2

◦
) =

√
2 + 1): the fundamental formula is

not given in Hall & Knight, & only in a generalised form in [Chrystal?]. (I have not
got [Serret?]). “Having given the successive powers of

√
an + 1 − a, up to the nth,

to a certain number of places of decimals, find a formula for calculating the powers
of
√
an + 1 + a to the same number of places. Hence find the values of 1

2
(
√
26 + 5)10

correct to ten places of decimals.” or “If Pn

Qn
is the nth convergent to

√
an + 1, show

that (a +
√
an + 1)n = Pn + Qn

√
an + 1. Hence show that (5 +

√
26)6 differs from

1060902 by less than 10−6, and find the value of 1
2
(5+

√
26)10 correct to ten places of

decimals.” (Ans. 5517851251.00000 00000)
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You might make some such question out of it.

I hope you are all right again.

Yours sincerely,

W.F. Sheppard.

Letter 6

To K.P. at Gatwick Surrey

2 Temple Gardens, E.C.

31.3.00

Dear Mr. Pearson,

Have you made any use yet (for any paper to be published) of the quadrature
formulae I sent you last year? If not, I should rather like to work them up into a short
paper.5 I had thought of looking up authorities to see what formulae there were in
actual use: but that would take time, and it would be simpler to put forward what I
have got already. I have looked at a few books, & they never seem to be much beyond
Simpson’s rule, or the more elementary “trapezoidal rule”. I have never come across
Parmentier’s rule in print: if you can give me a reference to it, & to any others, I
should be much obliged.

My long-delayed paper on the calculation of normal-correlation double-integral
only went to the Camb. Phil. Soc. a couple of months ago,6 & I see you have presented
a paper to the R.S. on the same subject, but for multiple integral. I wonder whether
our methods are at all the same? My paper is now going through the press, but I am
not certain when it will be out.

Yours sincerely,

W.F. Sheppard.

Your formula d2z
dxpq

= d2z
dxpdxq

is, I suppose, the same as the x = w.r.θ on p.146 of my

Phil. Trans. paper. My formulae are based on this ( dV
dD

= −z).

5Sheppard published a paper on quadrature formulae in 1900 titled, “Some quadrature-formulae”
in the Proceedings of the London Mathematical Society 32, pp. 258–277.

6Sheppard is referring to his 1900 paper “On the calculation of the double-integral expressing
normal correlation” in Transactions of the Cambridge Philosophical Society 19, pp. 23–66.
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Letter 7

To K.P. at Gatwick, Surrey

2 Temple Gardens, E.C.

5 April 1900

Dear Mr. Pearson,

Your method certainly seems to be different from mine: I should find it difficult
to work out correlation-coeffs with the rapidity you describe.

As regards the quadrature formulae, I do not want you to restrict your use of
them: it is only a question of giving them with the proofs. I have just been writing out
a sketch of a paper, which, if printed, would run to some 10 or 11 8vo pages, it gives
the principal formulae (with extension to calculation of volumes), & the methods by
which they are obtained. I could send this to you on your return to town, so that
you might compare it with what you have yourself written, & see whether it could be
incorporated in your paper.7

I hope that in considering the fit of curves to observations you take account of
probable error. The method of estimating accuracy of fit by percentages always seems
to me unsatisfactory: if 6% is good, for 500 observations, surely it may be bad for
2000? And how do you decide what is good & what is not? What is good for a curve
with 3 constants may be bad for a curve with 5 constants. And moreover misfits at
different points of the curve are not really of equal weight. Perhaps you have worked
out a comprehensive method of dealing with this.

Yours sincerely,

W.F. Sheppard

Letter 8

To K.P. at Gatwick

2 Temple Gardens, E.C.

8 April 1900

Dear Mr. Pearson,

I think that full treatment of the quadrature formulae, with extension to volumes
(useful for naval architects etc.), might might[sic] your paper too bulky. However, I
should like to discuss the subject with you, and will come to see you any time that

7Pearson references Sheppard’s quadrature formulae paper 1900 “Some quadrature-formulae” in
the Proceedings of the London Mathematical Society 32, pp. 258–277 in his 1902 “On the systematic
fitting of curves to observations and measurements” in Biometrika 1, pp. 265–303.
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suits you on April 25th or 26th (or 24th if you prefer it). I will bring what I have
on the quadrature-formulae, & on curves of the form *sketch of a concave curve*. (I
do not know whether you consider these at all): & also might be able to make some
rough notes on measurement of fit. But in this question of fit there are difficulties as
to moment-methods, which I should like to discuss with you.

Does your paper touch on interpolation & calculation or ordinates? I have dealt
with these, as regards “quasi-normal” curves *sketch of normal curve*, in a recent
paper to L.M.S.8 You may be interested to know that the paper contains very full
tables relating to curve of error, abscissa being in terms of S.D.

Remember me to any of the Charterhouse people you may meet: I am sorry to
say I have not been down there for two or three years. I hope you find the Shackleford
air invigorating. I met an inhabitant the other day, who seemed to have thriven on it:
a Miss Walker, I think—an art student in London, but lives with an aunt, I believe,
at Shackleford.

I am indoors with a cold, but hope to get away at Easter, to revive.

Yours sincerely,

W.F. Sheppard

Letter 9

2 Temple Gardens, E.C.,

4 May 1900

Dear Mr. Pearson,

My θ + 1
2
instead of θ seems quite correct: I enclose proof, written in a slightly

different form.

I somehow went off on quite a wrong talk at the end of our discussion today.
You are quite right in saying that one does not make an appreciable difference in the
fit of a curve of a particular type by altering the constants within the limits they must
reasonably have according to the data. My objection is—why take that type? If you
have eight classes, and if you take a curve with seven constants, the equation being
such that 2 must be positive, you can fit the curve to the data perfectly. But that
seems to me to prove nothing. At any rate, it does not prove that the actual curve
of frequency is of that type: for if you had taken 16 classes large discrepancies might
have appeared. All that you would really be doing, so far as I can tell, would be
finding an equation by means of which you could interpolate for intermediate values

8Sheppard is referring to his 1900 paper “Some quadrature-formulae” in the Proceedings of the
London Mathematical Society 32, pp. 258–277.
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of the variable: or to put things in my language, you would be finding an anscillary
curve which would give a constant first difference. This of course is important, but
it does not get you very far on the way to answering the question—what is the law
that the frequency in the total “population” follows?

When you take less than n−1 arbitrary constants, so that the curve only partially
fits the data, it seems to me that there are any number of replies to the question, how
to measure the misfit. It is a practical question, depending on the circumstances.
If you are dealing with deaths, for the purpose of life assurance, it is much more
important to get an accurate fit at the early part of the curve, and any misfits for
group lives must be heavily weighted. The relative weights will depend on the rate of
interest!

Perhaps I may put my objection more clearly like this. You take, say, 10,000
obsvs. & you get an actual curve *sketch of right-skewed curve with noise* you try the
normal curve, & find the misfit puts it out of court. You then try a generalise prob-
curve, and find it fits in so closely that *sketch of right-skewed curve with smoothing*
the misfit by your method is such as might be due to randomness. In other words,
the “wobbles” are actually about a line which does not differ from your theoretical
curve by more than the amount permissible by probability-laws. Now take 1,000,000
instead of 10,000. The wobbles, generally speaking will close in to about 1

10
, on the

actual line. But how do you know that this closing in will not bring them right away in
several places, from your theoretical curve—assuming that the means, mean squares,
etc., (up to the order required) are unaltered?

What I should have liked to discuss with you—only it is a very big subject—is
the lines on which a more complete paper of the kind you have in hand might go. I
think there are three main heads:

I. Manipulation of data without reference to theory as to nature of frequency
including smoothing, interpolation, determination of ordinate (true) of the actual
frequency-curve, etc. It appears to me that your proposed test of misfit comes under
the head of “smoothing”. (Possible errors of measurement also come under this.)

II. Investigation of question whether suggested laws of frequency hold; & analysis
of the classes of cases for which particular laws hold. My suggested modification of
your test comes under this.

III. Dealing with particular data on the assumption of their satisfying certain
laws. Here, of course, the bulk of your work as regards variation etc. comes in. But
the validity of a good deal of it seems to depend on the previous establishment, under
II, of the assumed law. Calcs. of moments etc. are incidental to II and III, not to I.
Perhaps this is not very clear.

Yours sincerely,

W.F. Sheppard
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Letter 10

2 Temple Gardens, E.C.

7.5.00

“Cloudiness-curve”.—Taking range as known to be from 0 to 11, & something
slightly ([?] at upper end), I let M1 = 7.4487 (6.9687 for range from −1

2
to 10,

M2 = 76.310, μ2 = 20.827. For your Type I this will give z ∝ 1
x.3171(11−x).9123 , which is

fairly close to yours. I have not a planimeter, and therefore cannot test closeness of
fit.

W.F.S.

Letter 11

2 Temple Gardens, E.C.

18.12.00

Dear Pearson,

I should be very glad to contribute to the “Journal”, if I can hit on anything.
But just at present I hardly feel sufficiently settled to start anything. I should like
some time or other to write an article on the testing of hypothesis: but it involves a
good deal of arithmetical work.

I think I could very well get out a short article on interpolation-formulae for
surfaces. I should have illustrated my article in the R.S.S. Journal by applying the
method to a case of this kind9 (the example given in my Camb. Phil. Soc. Paper on
the

∫∫
, in which a double quartile classification has to be deduced from the data10):

but the article was rather long without it, so I could not put it in. Would this be too
technical for “Biometrika”?

Thanks for the coeffs in interpolation-formula. I kept these out of the paper, as
I did not want to imperil its being printed.

Yours sincerely,

9By the date of this letter, Sheppard had published a paper in the Journal of the Royal Statistical
Society in 1897 titled, “On the calculation of the average square, cube & c., of a large number of
magnitudes” 60, pp. 698–703.

10Sheppard is referring to his 1900 paper “On the calculation of the double-integral expressing
normal correlation” in Transactions of the Cambridge Philosophical Society 19, pp. 23–66.
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W.F. Sheppard

Letter 12

163 Kensington Road, S.E.

13.2.01.

Dear Pearson,

I was talking today to Hugh Chisholm, who is editing the Times’ supplement
to the Encyclopedia Britannica and he told me there was to be no article on math-
ematical treatment of statistics as he (or his predecessor or superior) had not been
able to get your assistance. Don’t you think this is a great pity? It would not take
you long to write a brief article. Chisholm is very anxious to have you in the list of
contributors and the subject ought really to receive mention.

Yours sincerely,

W.F. Sheppard

Edgeworth is writing an article on errors of observation; but this only touches the
fringe of it.

Letter 13

30 Oxford Road, Ealing, W.

16.2.02

Dear Pearson,

Thanks for your letter. I am sorry to hear you also are laid up. I should have
been inclined to suggest bed rather than sitting over the fire, but no doubt you know
what is best!

As to the Tables, I quite understand the impossibilities of producing them in full
in Biometrika at present.11 As to what is the best thing to do, I should be obliged if
you would, as you suggest, write to Forsyth. But it is very much a question of who
is likely to want to buy them. Originally I rather favoured the idea of the Cambridge
Press, with the object of issuing a volume of tables for statisticians (if you felt inclined
to support the project) of which this should be a part: but now I rather fight shy of
such an undertaking. Also that would have meant 4to, whereas for these tables alone
perhaps 8vo would be better.

11Sheppard’s tables based on the standard normal curve were published in 1903 “New tables of
the probability integral” in Biometrika 2, pp. 174–190.
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But as a single volume by the Camb. Press they might be 8vo. Putting that
question aside, I don’t very much care how they are produced, & would much rather
leave it to your (or Forsyth’s) opinion as to the method that would make them most
useful. Only I am afraid it would not do to ask for a grant of a definite sum from the
B.A.: I can’t afford to run the risk of their costing me even 5 pounds to 10 pounds.
Assuming then that (when completed) you could help me to get them accepted either
by Royal Society or by Camb. Press or by B.A., the question is whether you would
like to issue a portion in Biometrika. Do you think Table I would be useful to you
if cut down to 5 decimal places? Davenport’s little book has a 4-place table 1

2
α: my

Phil. Trans. Paper has a 5-place table of z, but by differences of .05 only. A 5-place
table seems accurate enough for most practical purposes-‘even if no. of observations
exceeded 100,000 the inaccuracy is usually a good deal less than the P.E.: & it has
the advantage that you need only print the 1st differences (I suppose the derived
differences, not the true 1st diffces). I merely make the suggestion as it would enable
you to get the table into less space.

As to the other tables, Table II of course gives very little more than Table I for
small values of x, but for large values it gives a good deal more information. It is
therefore, useful for various purposes—e.g. for calculating moments of the area. (I
did think of calculating moments up to the 4th, but doubted if the tables would be
worth printing. Edgeworth asked me about such tables, some time ago.) Table III
stops at x = .80, because of the increasing differences. I have gone throughout on the
principle of making tables useful for interpolation (that is the reason, for instance,
why I take log1+α

1−α rather than log 1
1−α as the argument in Table IV): and you will

find that Table III if extended much beyond .80 becomes unmanageable, even if the
intervals in α are reduced.

Table V you probably don’t much care about as you prefer your χ2 method: but
I don’t think that question is thoroughly thrashed out yet. I have an idea, by the
way, of offering you a short paper later on, on the representation of data by math.
formulae, under the two heads (1) best values of constants, assuming a particular
form of equation (2) test whether this form may reasonably be accepted as the (or
”a”) right one. But it wants some thinking about.

There are one or two things I want to ask you about, as I am shamefully behind-
hand in my reading. E.g. has any spare mathematician tried to simplify the process
of calculating large numerical determinants or is it quite impossible? (I wish Vernon
Boys would devise a machine for the purpose.) And have you anywhere gone into
the question of what is the “typical” value in non-normal distributions? You like the
“mode”. But I suppose that sometimes there is a tendency for the correlation-surface
in multiple space time i.e. for large no. of correlated observations—to show a simple
hump; and, if so, that seems to give the proper typical values for all the observations
jointly. Have your data got as far as this?

Yours sincerely,
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W.F. Sheppard

Letter 14

Orwell Lodge, Ringstead Road, Sutton, Surrey

13.2.08

Dear Pearson,

Can you tell me what is the etiquette as to using questions in other people’s
examination-papers for text-book purposes? C.S. Jackson, of Woolwich, is writing
a book on elementary dynamics (on modern lines, I suspect); and he says there
are a great many questions in University College papers—published annually in the
calendar, I suppose—which he would like to utilise. I suppose there is no objection
to this? Are these exam-papers published in collected form?

Yours sincerely,

W.F. Sheppard

Letter 15

Braybrooke, Worcester Rd, Sutton, Surrey

18.5.11

Dear Pearson,

It was stupid of me not to see your reasoning: but one soon gets rusty. I do not
feel very sure yet.

Generalised, the (incidental) question seems to be this. A, B, C, ... are indi-
viduals (people, houses, etc.) m of them, m large. Probability that A is a bachelor
is θ1, probability that B is a widow is θ2, probability that C is over 6’0” high is θ3,
probability that D is inhabited is θ4.

These probabilities are supposed not to be independent; is it, e.g. supposed
impossible that the replies to the question “Is A a bachelor” etc. should all be “yes”.
What is the most probable (or mean) no. of affirmative replies to these questions?
You, I think, would say θ1 + θ2 + θ3 + . . . ; or, at any rate, if θ1 = θ2 = · · · = θ4 then
the no. is mθ. I suspect this is right, on the general ground that correlation doesn’t
come in when we are dealing with 1st moments; though I am rather lazy about it.
But will the S.D. from this no. be

√
mθ(1− θ)? I feel pretty sure that it won’t on

account of the correlation.
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Now as to the bearings, it is true that, taking any one house by itself, the
probability that it has r cases exactly is n!

r!(n−r)!(
m−1
m

)
n−r

( 1
m
)
n
; &, this being so for

each house, the most probable no. of houses having r is m times above on the
argument on preceding page. But the probability for each house is a multiple-integral
probability; a kind of average for all the possible combinations of no. in this house
with the corresponding no. in the other houses. I don’t therefore see how you can treat
the case as being the same as if you took the m houses successively with independent
probabilities θ in each case. If the 1st house has r, the no. of cases for the other
houses is altered from (m−1)

m
r to (n− r).

I therefore don’t feel that you can treat the question except by taking the pos-
sibilities for each case & doing multiple summations, as the authors have done.

Yoursever,

W.F. Sheppard

Letter 16

Sutton

4.10.11

I am not quite sure what tables Everett requires for his further calculations you
were mentioning: but are you quite sure none of my M.S. tables would be of use? I
have, e.g. to 10 places approx. up to x = 6.00 by .01 and tables of x to 7 places,
accurate for log (1+α)

(1−α) up to 6.00.

x log10
1
2 (1− α) 1

10 Δ

5.98 1.0475428015 266823721
5.99 1.0208604294 267247568
6.00 0.9941356726 267671444

x log10
(1+α)
(1−α) Δ

5.98 4.7441096 46596
5.99 4.7487691 46554
6.00 4.7534245 46511

W.F.S.
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Letter 17

Braybrooke, Worcester Rd, Sutton

23.7.15

Dear Pearson,

I should be very glad to suggest one or two questions, but I feel it rather difficult
to estimate the standard required. I will look at the syllabus, and think it over in the
next day or two.

Except for my eldest boy, who is away (since March) for open-air cure of ner-
vousness & general weakness, we are all well: & my wife & I are pretty busy. We
are moving in Sept. to Berkhamsted (Herts), where all the boys will be able to go
to the school as day-boys. I hope that will be our last move, at any rate before I
retire, which will not be many years now. Whether my eldest boy will be able to
start school at once, I don’t know: he may have to have another term or two of the
open-air treatment. It certainly has done him good.

What with arragenments for the move & house-getting, some special constable
work & occasional drills, I don’t have much spare time just now. And I shall get very
little when we have moved: the longer journey means an extra hour out of every day.

You don’t say anything about yourselves. I hope the boy is getting all right.

Yours sincerely,

W.F. Sheppard

Letter 18

Cardrona, Berkhamsted, Herts

18.10.16

Dear Pearson,

The firm that offered to keep the Brunsvigas in order was Messers J.H. Maxwell
& Co., The Albany 21 Mawdsley St. Bolton. Probably these are the same that
Elderton referred to.

As regards your problem, I think it is a matter not of further terms in h (the
breadth of trapezette) but of further terms depending on the numbers from different
parts of the range. Having got *sketch of curve with bins showing n1, n2 and so forth*
approximate values for the constants, you want to vary them so that the probability
of occurrence of n1, n2, n3, . . . shall be a maximum. I have an idea that this was dealt
with in some paper in Biometrika, but I may be wrong. I am afraid I can’t solve the
problem offhand.
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Your sincerely,

W.F. Sheppard

Letter 19

Berkhamsted

10.4.25

Why have a separate antilog table at all? A log table is quite good enough,
provided you don’t use Everett’s formula, e.g. to find N if log10N= .9831868583
etc.: n = 96203, log10n = .983186858386153 etc., log10(1 − θ) = −[5]17569 etc.,
loge(1− θ) = .[5]40454 etc.: then proceed by successive approx. Of course an antilog
table is quicker, but people not accustomed to them are apt to make mistakes, and
there is the inference to consider. Hope you will have Easter diner.

W.F.S.

Letter 20

Cardrona, Berkhamsted, Herts

6.9.25

Dear Pearson,

You may remember our discussion of interpolating for logs to several places. I
have not seen Thompson’s new Table: but I have seen the notice of it in Nature for
Jan 24, and I still think that the “direct” method of interpolation—i.e. using the
derivatives of the function, not the differences—is the best. It not only saves about 1

3

of the cost of printing (since differences need not be printed at all), but is also quicker.

I have set out on the sheet herewith the process for finding the log of the no.
given in Nature, which I suppose is also given in the book itself. You will see that
(besides single arithmetic—adding etc.) it involves (1) division of 15 or 18 figs by 5
figs (2) four mult. of 404543598 by 9 figs (3) mult, of 18 figs by 18 figs or, alternatively,
mult. of 18 figs by 9 figs & division of the product (which remains on the register)
by 9 figs. The whole thing takes about 1

4
hour on my old Brunsviga: with practice,

& a better machine, one might do it quicker.

On the second sheet I mention the continued-fraction convergent method. I have
used this a good deal for finding 20-place logs from Callet, who gives only logs of nos.
up to 1200. For that purpose it is very useful: so it would be for finding, say, 30-place
logs from a table with 5-figure nos. For 20 place logs, 5-figures there is no advantage
in it: but it is interesting.
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Yours sincerely,

W.F. Sheppard

Letter 21

”Cardrona”, Berkhamsted, Herts

26.11.25

Dear Pearson,

Sorry I could not manage to come to the biostats last night. No: I don’t want
any of my tables returned to me at present. The 1

2
(1−α)

z
is calculated independently.

You don’t say whether you want to borrow my existing 1
2
(1−α)

z
table. You are

quite at liberty to do so: indeed it would be an advantage, given risk of fire, to have
a copy somewhere. The table is 0.0/0.1/10.0 = 24 places approx. (20 certain), but
you won’t want all that. From the table as it stands I have taken the time of an
interpolation to 12 places (i.e. 12 sig. figs.). Working to 12 places, this took 8 mins.:
but I was not accustomed to the table. Then I did another, to 12 places but keeping
2 extra figs. in the calculations. This took 7 mins. If you made a copy of the table
to 14 places only (12 places plus 2 extra figs), so that there would not be so much
hunting for the figures, you ought to be able to do a 12-place interpolation in 5 mins.;
which is good enough until a table by intervals of .01 is constructed.

The object of the table was to give a ready means of calculating 1
2
(1 − α). For

z one seems to need such tables as e−θ (1) for θ = .000 to .999 (2) for θ = .000000 to
.000 999, etc. I don’t know whether these exist. I forget at the moment how Glaisher’s
& Newman’s tables in Trans. Camb. Phil. Soc.12

I want to send the table mentioned above to the R.S., even if they don’t print it.
Action has been hung up in order to investigate degree of accuracy: but I am inclined
to drop this, & cut the table down to 20 figs. That is, all that will be wanted in this
generation.

I think I told you I have also table of log10
1
2
(1−α) to 12 places. I could do it to

16 approx., but it didn’t seem worth while. An interpolation would take 6 or 7 mins.,
as signs have to be studied: then you will have to use a log table. You can borrow
this also if you like. Just at the moment I am working on a paper, which might be
suitable for Biometrika, on construction of illustrative cases of frequency dists: using
a table of 100 values of x taken strictly at random.

12J.W.L. Glaisher (1883) “Tables of the Exponential Function” in Transactions of the Cambridge
Philosophical Society 13, pp. 243–272. F.W. Newman (1883) “Table of the descending exponential
function to twelve or fourteen places of decimals” in Transactions of the Cambridge Philosophical
Society 13, pp. 145–241.
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Yours sincerely,

W.F. Sheppard

(missed tonight’s post by oversight)

Letter 22

”Cardrona”, Berkhamsted, Herts

2.12.25

Dear Pearson

Here are the 3 basic tables I mentioned, with notes on interpolation from them:
also 2 others which I do not know whether you have seen.

You can either make such extracts as you like, or keep them by you for the
present.

When you return them, you might also return the other tables you have. I think
they are 0102, 0115, 0129.

I want to extract the covers & replace them by shorter notes, as they tell me
where to look for the rough copies, which I can use when I want them, as I do
occasionally now.

I would like to send the 3 tables (0028, 0198, 0199) to the R.S., especially as my
Brunsviga is on loan from them & I want them to see the sort of things it is being
used for. Would you present them for me, or should I get Whittaker? I could get
them ready by some time in Jan.: I am rather tied up now until Xmas.

Thanks for P.C. about Glaisher and Newman. I am inclined to think we need new
exponential tables printed: mostly ex, not e−x. (Eg. To find 1√

2π
e−.123456, multiply

1√
2π
e−.124 by e+.000544: it is much safer.)

Yours sincerely,

W.F. Sheppard

Letter 23

”Cardrona”, Berkhamsted, Herts

29.6.26

Dear Pearson,

Thanks: yes, that is the lot. I do hope your op. will be successful.
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As regards tables, I don’t seem to have any tables of z for the smaller values of
x to more than 9 dec. places, & those only approx. What I think you need, in these
days of machines, are tables for calculating z by a series of multiplications, not by
interpolation. The enclosed sheet shows the scheme. You might put someone on to
it!

Yours sincerely,

W.F. Sheppard

Tables for calculating z to (say) 18 figures.

1

2
x2 = θ

n = integer next above θ

(1) Preliminary table of 1√
2π
e−n to 12 figures for such (integral) values of n as are

wanted: say n = 0 to 100.

(2) Table of eφ − 1 to 18 places for φ = .000 to .999

(3) Similar table (18 places, = but not greater than 15 figures) for φ = .000 000 to
.000 999

(4) Similar table (18 places, = but not greater than 12 figs) for φ = .000 000 000 to
.000 000 999 (for φ < .000 000 000, eφ − 1 = φ)

If only 12 figures were catered for, only (1)-(3) would be required, (1)&(2) being to
12 figures & (3) to 9 figures.



Appendix C

Infant Mortality Data

The infant mortality dataset is from the Seventy-fourth Report (1911) of the Registrar-

General, London, England (1913). The table lists the number of deaths under one

year of age for every 1000 live births for 42 years from 1870 to 1911.

Year Deaths Year Deaths Year Deaths

1870 137 1890 135 1910 92
1871 137 1891 136 1911 94
1872 131 1892 133
1873 131 1893 131
1874 133 1894 125
1875 138 1895 133
1876 128 1896 127
1877 124 1897 125
1878 132 1898 123
1879 127 1899 123
1880 130 1900 126
1881 118 1901 119
1882 128 1902 118
1883 125 1903 114
1884 126 1904 115
1885 127 1905 107
1886 129 1906 101
1887 127 1907 105
1888 125 1908 100
1889 128 1909 96

136



Curriculum Vitae

Name: Lori Murray

Post-Secondary A.R.C.T. in Piano and Music Pedagogy, 2000
Education and The Royal Conservatory of Toronto
Degrees:

Hon. B. Sc. in Mathematical Sciences with Distinction, 2010
The University of Western Ontario

Master of Science in Statistics, 2012
The University of Western Ontario

Honors and Dean’s Honor List, 2006-2010
Awards: The University of Western Ontario

Faculty of Science Graduate Teaching Award, 2011
The University of Western Ontario

Research Poster Award, 2012
Statistical Society of Canada

Teaching: Introductory Statistics Course, 2012–Present
The University of Western Ontario

R Statistical Software Workshops, February 2016

Papers Presented: Poster Session, 2012
Award for Best Poster Presentation
Statistical Society of Canada

Publications:

Murray, L.L. and Bellhouse, D.R. (2014). A reconstruction of Halley’s 1701 map of
magnetic declination. Imago Mundi, to appear.

137


	Data Smoothing Techniques: Historical and Modern
	Recommended Citation

	~0445558.pdf

