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Abstract 

 

The management of patients with epithelial ovarian cancer (EOC) faces two major 

challenges which standard treatments fail to effectively address:  1) Diffuse metastasis as 

a consequence of late stage diagnosis and 2) intra-tumoral heterogeneity, which fuels tumor 

evolution and drives the acquisition of chemotherapeutic resistance.  In this thesis, we 

tested new therapeutic strategies using a 3-dimensional in vitro spheroid culture model that 

mimics key steps of epithelial ovarian cancer metastasis; and another model that mimics 

both temporal and cellular heterogeneity by establishing multiple cell lines from a single 

patient over the course of disease progression.  Using these models, we investigated the 

therapeutic efficacy of three oncolytic viruses for treatment of ovarian cancer: Myxoma 

virus (MYXV), a modified Vaccinia virus (vvDD), and Maraba virus (MRBV).  We 

determined that all three viruses were capable of inducing some level of oncolysis, but that 

spheroid formation limited the replication efficiency of poxviruses (MYXV and vvDD), 

which heavily rely on cell proliferation.  However, upon spheroid reattachment, poxvirus 

oncolysis was restored and prevented cell dispersion.  MRBV was least affected by 

spheroid formation, although there was a capacity for some cell lines to develop resistance 

to MRBV upon spheroid formation.  We discovered MRBV uses the low-density 

lipoprotein receptor (LDLR) to gain entry to host cells and that entry into spheroids was 

affected by dynamic changes in LDLR expression.  However, we observed that this was 

only a partial mediator of MRBV tropism.  In our in vitro assays of tumor heterogeneity, 

we observed temporal changes that directly impact MRBV oncolysis and we identified two 

major groups of subclones in our patient derived cell lines: one that was highly susceptible 

to MRBV, and another set which exhibited 1000-fold reduced susceptibility to MRBV-
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mediated oncolysis.  Differential susceptibility to MRBV virus oncolysis did not strictly 

depend on LDLR expression.  Furthermore, co-culture of virus-sensitive and virus-resistant 

cells conferred sensitization of virus-resistant cells to MRBV oncolysis.  We therefore 

sought other mechanisms which could impact MRBV tropism and found that oncolysis 

could be significantly increased through the induction of TGFβ signaling and epithelial-to-

mesenchymal transition, commonly activated pathways found during ovarian cancer 

metastasis.  Taken together, these findings not only define the differential therapeutic 

efficacies between oncolytic viruses for metastatic EOC, but also identify key trophic 

factors which impact MRBV oncolysis that can be exploited to enhance MRBV-mediated 

oncolysis for EOC in future therapeutic strategies. 
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CHAPTER 1: General Introduction 

1.1 Clinical presentation, frequency, and treatment of epithelial ovarian cancer   

Epithelial ovarian cancer (EOC) represents the 8th most commonly diagnosed 

cancer among women in Canada and ranks 7th globally [1, 2].  Approximately 2,800 

Canadian women (1 in 71 women) and 239,000 women worldwide will be diagnosed every 

year with EOC , which represents ~3.6% of all cancers diagnosed in females [1, 2].  Despite 

this relatively low rate of diagnosis, EOC represents the most lethal gynaecologic 

malignancy in industrialized countries, with approximately 1,750 deaths in Canada yearly 

or 1 in every 91 women [1].  This is largely due to its advanced stage presentation and 

limited therapeutic advances, despite extensive efforts over decades to identify more 

effective alternatives to conventional treatment regimens [3, 4].  

 EOC survival rates progressively decline with advanced staging of the disease.  

When the disease remains confined to the ovary, survival rates are particularly favorable 

with approximately 91% of women surviving beyond 5 years post diagnosis.  However, 

the majority of women are not diagnosed until widespread intraperitoneal metastasis has 

occurred and survival rates are dramatically reduced to 27% [3, 5].  Hence, there has been 

a tremendous effort to develop early detection methods for the diagnosis of EOC.  This is 

exceptionally difficult as the physical symptoms indicative of ovarian cancer are subtle and 

often overlap with more common disorders including dyspepsia, irritable bowel syndrome, 

menstruation, and menopause [6]. These symptoms include abdominal or pelvic pain, 

increased abdominal size or bloating, and feeling full or difficulty eating.  Although not 

one of these symptoms alone is sufficient, a combination of symptoms present are more 

effective for diagnosing EOC [6].  Symptom score systems have been developed to aid in 

the identification of specific individuals at risk of ovarian cancer based on the presentation 
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of single or combinations of symptoms, however the validation of such systems has not 

been effectively performed and the integration of other risk factors including menstrual or 

family history have not been incorporated into their design [6].  In general, although 

combinations of symptoms have higher sensitivity than individual symptoms, their 

specificity is still inadequate as an effective screening tool for diagnosis.  Based on the 

current systems criteria, in a population of 10,000 women, 3 out of 5 cancers may be 

detected, but 500 tests would result in false positives. This can result in patient anxiety, as 

well as unnecessary procedures such as ultrasound of the ovaries, and possibly a surgical 

biopsy. Thus, the positive predictive value would be only 3 of 503 or 0.6% [6]. Therefore, 

there is currently inadequate evidence to recommend the implementation of symptom 

scoring systems for general use.   

A subpopulation of EOC results from inherited mutations, most commonly in 

BRCA1 or 2.  Approximately 5-15% of ovarian cancers are associated with the inheritance 

of BRCA1 or 2 germline mutations.  Therefore, genetic screening can be useful to identify 

those at risk [7].  However, BRCA1 or 2 mutations have roughly only a 10-44% penetrance 

rate for ovarian cancer and the age at which the cancer occurs can be widely variable [8, 

9].  In short, the utility of predictive genetic testing can be limited and positive 

identification of BRCA1 or 2 mutations does not lead to straightforward measures that 

reduce risk.  This in combination with poorly defined symptomology make detection of 

early stage ovarian cancer very difficult.    

Since early detection is relatively uncommon, the treatment of ovarian cancer 

typically involves management of late stage advanced metastatic disease.  Standard 

treatment heavily relies on surgical intervention and optimal de-bulking of metastatic 
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tumors.  Optimal cyto-reduction is typically defined by the removal of tumors greater than 

1 cm in diameter with no or few amounts of residual disease apparent after surgery [10-

12].  This often requires radical resection procedures to remove metastatic lesions including 

intestinal resection, diaphragm stripping or resection, splenectomy and liver resection.  

However, complete cyto-reduction of disseminated tumors is possible in only 25% of cases 

[12, 13].  Therefore, a combination of surgery and platinum based chemotherapy 

(carboplatin and paclitaxel) is almost universally applied, although controversy remains 

over the timing of surgical and chemotherapeutic intervention.  Neoadjuvant 

chemotherapy, in which chemotherapy is applied prior to cyto-reductive surgery, is 

considered more favorable when patients present with comorbidities or with a priori non-

debulkable tumors.  Studies which have compared neoadjuvant chemotherapy vs. primary 

cyto-redutive surgery (surgery prior to chemotherapy) demonstrate decreased surgical 

morbidity and mortality with decreased estimated blood loss, shorter surgical times, less 

intensive-care-unit admissions, fewer bowel resections, and reduced overall lengths of stay 

with neoadjuvant treatment regimens.  Likewise, neoadjuvant therapy has been associated 

with a greater ability to achieve complete resection or optimal debulking and improved 

toxicity [14-19].  Likewise, it has been suggested that patients who initially present with 

large volumes of disease may fare better with neoadjuvant therapy [19]. However, many 

challenge this view by suggesting that although surgical morbidities may be decreased, 

both progression free survival and overall survival in neoadjuvant treatment groups are 

much poorer compared to primary cyto-reductive surgery [20-22].  Moreover, Chi et al. 

argue that patients undergoing primary de-bulking surgery fare much better than the 

neoadjuvant group and that the outcomes documented for neoadjuvant therapy in many of 
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the studies more closely resemble those of patients with large amounts of residual disease 

after debulking [23].  Thus, there is an ongoing debate between the application of 

neoadjuvant and primary cytoreductive surgery which remains unresolved [4]. 

1.2 Origin and pathogenesis of epithelial ovarian cancer 

There has been difficulty in identifying the origins of ovarian cancer from 

traditional epidemiological and pathologic observations due to the fact that these 

approaches assumed that EOC was one disease.  With greater advancement in the 

molecular techniques used to characterize cancer cells, it is now understood that EOC is a 

general term for a larger subset of tumors which may or may not manifest in the ovary and 

are varied in their clinical manifestation and behavior [24, 25].  Traditionally EOC is 

divided into two types based on cell phenotype and underlying genetic traits: type I (low-

grade) and type II (high-grade)[26].  These two larger groups can be further subdivided 

into a number of histologic subtypes: serous, mucinous, endometrioid, clear cell, 

transitional cell, or any combination of these (mixed) [27].  Type I tumors include low- 

grade serous, low-grade endometrioid, clear cell and mucinous carcinomas.  These tumors 

are typically slow growing or indolent and usually present at a lower stage [28].  Type II 

tumors however can present as high-grade serous, high-grade endometrioid and 

undifferentiated histologies and differ from that of Type I tumors in both their morphology, 

(type II typically exhibit papillary, glandular, and solid patterns) as well as their behavior 

[29].  Type II tumors are much more aggressive and typically diagnosed at an advanced 

stage and are unfortunately far more common, as they account for over 75% of ovarian 

carcinoma [24].  Perhaps the most distinguishing difference between the two types of 

ovarian cancer exist at the genetic level [30, 31].  The prototypical type II histotype, high-
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grade serous, which alone accounts for 70% of all ovarian cancers, almost always exhibits 

TP53 mutations, and in fact has the highest rate of TP53 mutations compared to all other 

solid tumors [32].  Type I tumors rarely have mutations in TP53, but do exhibit mutations 

in KRAS, BRAF, or ERBB2 in over two-thirds of low-grade cancers [33-38].  Due to their 

mutation profiles, high grade tumors display much higher degrees of genomic instability 

and cellular heterogeneity than low grade tumors which are typically more genomically 

stable [35, 39].   

There is much debate regarding the cell of origin from which EOC is derived.   To 

best understand the basis of these arguments, comprehension of the embryonic 

development of the reproductive system is required.  The ovary is derived from multiple 

embryonic structures, including the coelomic epithelium, the subcoelomic mesoderm, and 

the primordial germ cells from the yolk sac endoderm.  The rest of the female genital tract, 

including the fallopian tubes, uterus, cervix, and upper vagina, are derived from the 

Müllerian ducts [40].  However, the ovary itself does not contain epithelial cells.  Instead, 

a thin layer of ovarian surface epithelium (OSE) derived from the coelomic epithelium 

covers both the ovarian surface and the serosa of the fallopian tubes, uterus, and the 

peritoneal cavity [41].  Thus, it is difficult to know the origins of the epithelial nature of 

EOC when no truly differentiated epithelium actually exists in the ovary.  In fact, on 

pathological assessment of these tumors, many appear to be derived from the Müllerian 

ducts [42].  For example, serous tumors resemble the cells found in the fallopian tube 

epithelium and endometrioid tumors resemble the cells of the endometrium both of which 

are Müllerian in nature [42]. Thus, the debate over the origins of EOC exists as two major 

theories: 1) the original cancer cell arises from the ovarian surface epithelium (OSE) and 
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that metaplastic changes lead to the development of the cell types observed in the different 

EOC histotypes; and 2) tumors with a Müllerian phenotype (serous, endometrioid and clear 

cell) are derived from Müllerian-type tissue not the OSE (or mesothelium).   

Perhaps the strongest evidence that supports the cell of origin belonging to the OSE 

is the distinct association between number of ovulations and risk of EOC.  This relationship 

was first demonstrated in hens that were raised to produce excessive numbers of eggs 

without breaks in ovulation.  High rates of ovarian adenocarcinomas were documented in 

these hens due to incessant ovulation [43].  It was hypothesized that the OSE cells became 

damaged during ovulation and internalized into the ovary to form cortical inclusion cysts, 

which undergo metaplasia to become differentiated Müllerian-like epithelium and 

ultimately lead to ovarian carcinoma [44].  A similar correlation between number of 

ovulations and ovarian cancer has been observed in women [45].  Particularly, women who 

have decreased ovulatory cycles due to pregnancy, breast-feeding, or oral contraceptive 

use have a significantly reduced lifetime risk of developing ovarian cancer by almost 50% 

[46-48].  However, it must also be noted that this epidemiological evidence to support 

ovulations and risk of EOC is not entirely correlative.   Women with polycystic ovarian 

syndrome, characterized by infrequent ovulatory cycles, are at increased risk for EOC [49].  

Moreover, formulations of oral contraceptives which do not reduce the number of 

ovulations also have observed protective effects [50].  Although there are many theories 

about how the OSE can undergo metaplasia and dysplasia, perhaps the most difficult aspect 

of this theory to accept is that the identification of a true precursor lesion for EOC has not 

been found in the ovary [51, 52].   
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Due to the complex and heterogeneous nature of EOC, it is likely that not one single 

location or etiology can be used to explain all types of EOC.  The majority of mucinous 

tumors display intestinal differentiation or could be of appendiceal or other gastrointestinal 

origin [53].  Transitional cell tumors appear to be derived from urothelium of the urinary 

tract [53].  Endometriosis has also been more definitively linked to both endometrioid and 

clear cell EOCs [54].  For high-grade serous ovarian cancer, it is becoming more widely 

believed to originate from the fallopian tube.  Studies conducted of tubal segments derived 

from women with BRCA mutations or family history of EOC undergoing prophylactic 

bilateral salpingo-oopherectomy (removal of both fallopian tubes and ovaries) showed 

evidence of dysplasia or hyperplastic lesions histologically resembling high-grade serous 

ovarian cancer (HGSOC) at a frequency of 1–5% at the time of the surgery [55-58].  The 

majority of these malignancies were located in the distal fimbriated end of the fallopian 

tube.  It was hypothesized that these tubal epithelial cells then spill onto the surface of the 

ovary and therefore create the appearance of ovarian origin [59].  These regions of 

dysplasia within the fallopian tube have since been named “serous tubal intra-epithelial 

carcinoma” (STIC) and in most cases, these areas demonstrated high levels of p53 

accumulation, even in benign lesions which are now believed to be an even earlier 

precursor lesion than STICs [60].  The examination of fallopian tubes from advanced-stage 

HGSOC showed that 75% had evidence of STIC lesions.  Moreover, in a subset of these 

cases, the exact same TP53 mutation can be observed in both the fallopian tube and the 

cancer tissue, further supporting the site of origin and clonality of the STIC and the tumors 

[61].   

1.3 Genome instability, heterogeneity, and disease recurrence in EOC 
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The pathophysiology of EOC is diverse and can manifest as multiple histotypes with 

varied disease origins and differential behaviors and clinical outcomes.  Thus, it is clear 

that EOC is not a single disease, but a category of malignancies with a very heterogeneous 

nature.  Not only are the clinical manifestations of the disease diverse, EOC is highly 

heterogeneous, both spatially and temporally.  In high-grade EOCs, the overwhelming rate 

of TP53 mutations (>95%) bears a significant contribution to intratumoral heterogeneity 

observed (Fig. 1.1).   

 Genomic instability of EOC- the contribution of TP53 and BRCA1/2 

In HGSOC, mutations in prototypical oncogenes are relatively uncommon [62].  

However, mutations in TP53 and BRCA1 and 2 are the primary contributors of a significant 

level of genome structure variation and render HGSOC highly genomically unstable [63]. 

The tumor suppressor encoded by TP53, p53, has a central role in maintaining genome 

stability within normal cells.  Under stress-free conditions, p53 is monoubiquitinated 

predominantly through the RING-finger ubiquitin ligase, MDM2 and rapidly degraded [64, 

65]. In the event of genotoxic stress, p53 becomes stabilized through phosphorylation by 

many different kinases, the most commonly described being ATM [66].  Additionally, 

acetylation further promotes conformational changes in p53 structure to augment DNA 

binding capacity and induces the transcriptional upregulation of a number of genes 

involved in DNA damage repair, cell cycle arrest, and apoptosis [67-70].   

In normal cells, functioning p53 prevents the accumulation of DNA damage and 

mutation [71].  A loss of functioning p53, either through mutation or deletion, may result 

in the loss of G2/M checkpoint arrest, translocations, amplifications, and aneuploidy 

leading to genomic instability [69, 71-73].  Genomic instability is defined as a high  
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Figure 1.1 EOC tumor heterogeneity- 1) Genome instability drives intracellular 

heterogeneity within a tumor.  Each subpopulation of cells are characterized by their 

own set of mutations and aberrant signaling pathways.  Each subclonal population may 

respond differently to treatment. 2) Changes in the tumor over time due to changes in 

both tumor microenvironment, perhaps as a consequence of therapy, puts selective 

pressure on EOC tumors.  The fittest subclones are selected in a Darwinian fashion to 

repopulate tumors causing changes in behavior of tumors over the course of disease. 3) 

Differences in histotype and genetic mutations between patients create different degrees 

of genomic instability, affect degrees of spatial heterogeneity, and the rate of temporal 

changes, resulting in differences between patient responses to therapy. 
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frequency of DNA alterations within the genome resulting in mutations, chromosomal 

rearrangements or aneuploidy [74].  The majority of TP53 mutations in HGSOC are single 

nucleotide substitutions in the DNA binding domain of the protein resulting in hyper-

stabilization of the protein but inactivation of WT functions [75-79].  Approximately 92% 

of TP53 mutations in HGSOC render the protein non-functional [79].   

The consequence of such mutations and the loss of genomic stability is the development 

of a large number of small regions of copy number gain and loss, which often encompass 

genes that are involved in ovarian tumor progression, such as the small deletions found 

within the retinoblastoma 1, RB1, locus [73].  However, certain p53 mutations result not 

only in the loss of WT tumor suppressor functions, but in some instances can promote a 

gain of function change which results in p53 acting as an oncogene  (via a mechanism 

completely independent of its WT functions) [80].  Genome instability caused by mutations 

in p53 can promote further alterations in genes that contribute to invasion and metastasis 

by activating metastasis associated signaling pathways such as TGFβ and EGFR[81, 82].  

It is possible that up to 20% of TP53 mutations in EOC tumors may be oncogenic [80].  

Other mutations associated with EOC, such as BRCA1 and 2, which occur in approximately 

10% of EOC, further contribute to the high degree of genomic instability observed as both 

BRCA1 and 2 share vital roles in repairing DNA damage [7].  The prevalence of BRCA1 

and 2 mutations is 1/400 to 1/800 in the general population, which varies depending on 

ethnic background, and puts individuals at increased risk for both breast and ovarian cancer 

(and may be associated with prostate cancer) [83-85].  The penetrance rate for these 

heritable mutations in either of these two genes is between 6-65% for ovarian cancer, 

depending on the specific mutation [86].  Over 90% of ovarian cancer patients with a 
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BRCA1 mutation develop HGSOC, as opposed to 70% in EOC patients that do not have 

the mutation [87, 88].  Loss of functional BRCA1 and 2 result in defects in homologous 

recombination repair (HRR), a process involved in repairing double stranded breaks in the 

genome that occur during cellular replication [89].  It has been reported that in up to half 

of ovarian tumors HRR is defective through mutations or even methylation of BRCA1 or 

2 and other putative DNA repair genes, including ATM, RAD50, RAD51C, RAD51D and 

PALB2 [62, 90-93].  Thus, mutations in either BRCA1 or 2 result in further accumulation 

of DNA damage and genome instability within cells.  Furthermore, there is a significant 

amount of evidence to suggest that both p53 and BRCA1 physically interact in response to 

DNA damage and repair [94-99].  In fact, germline mutations in BRCA1 are often 

associated with the causal mutations in TP53 that lead to the accumulation of non-

functional P53 and may mark an important step in the malignant transformation of EOC 

cells [100].   

 Tumor heterogeneity in EOC 

Genetic diversity or heterogeneity within a tumor is the result of an accumulation of 

DNA damage and genomic instability accompanied by an escape from apoptosis in 

individual tumor cells.  These genetic differences result in a high degree of phenotypic 

variability between cells, some of which may be functionally significant and promote 

tumor development, while others represent random genetic mutations with little or no 

biological consequence.  These cell populations may be differentially affected and selected 

for by the tumor microenvironment.  Through this selection process, tumors evolve 

temporally in response to changes in the tumor microenvironment via the Darwinian 

process of natural selection [101].  Therefore, greater genomic instability promotes 
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increased intratumoral cellular heterogeneity, or spatial heterogeneity, resulting in greater 

fitness and survivability of a tumor.  Genetic studies using both microsatellite and single-

nucleotide polymorphism analysis in EOC have identified extensive intratumoral 

heterogeneity [102].  Phylogenetic investigation of the heterogeneous cell populations 

within different regions of EOC tumors shows that the origin of each clonal population is 

derived from a common ancestor, with subsequent evolutionary divergence to create 

genetically distinct cell populations within a tumor [102].  Similar phylogenetic screens of 

EOC metastases also show lineage tracing back to the primary tumor.  These data support 

a model in which EOC cells have a common clonal origin, but become polyclonal with 

both metastatic and primary tumours developing new clones, distinct from one another 

[103].  The extent of this clonal expansion between patients can vary significantly with a 

greater degree of clonal expansion correlating with poorer survival [104].  This is 

particularly true in the context of chemotherapeutic resistance.  Given the substantial 

degree of intratumoral heterogeneity, both intercellularly and temporally, that exists in 

EOC and that the rate of clonal expansion varies throughout the course of disease, not only 

is it likely that no two tumours within a patient are identical, but no two cancers between 

individuals are alike either.  This is a significant problem in designing effective treatment 

regimens in which a single therapy can be applied unilaterally across the patient spectrum. 

 The development of chemotherapeutic resistant EOC 

The majority of patients who undergo chemotherapy will almost inevitably develop 

chemotherapeutic resistance and succumb to recurrent disease.  The time between initial 

diagnosis and the development of resistance to platinum based chemotherapy is typically 

3 years [105, 106].  Recurrence with platinum resistant disease is almost always incurable 
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and death is eventual within 5 years after initial diagnosis [107, 108].  It is during this time 

between disease diagnosis and relapse that clonal expansion is most significant [104].  

Cancers with the greatest degree of genomic instability possess the greatest genetic 

diversity and this heightens the possibility of the emergence of drug resistant clones.  

Phylogenetic studies of patients with recurrent disease document the outgrowth and 

enrichment of cells with a mutation in NF1 after treatment, which has been associated with 

the development of chemotherapeutic resistance [109].  Histologic samples of matched 

fallopian tube and ovary tissue acquired prior to the start of treatment showed the same 

mutation in 1.2% of the primary invasive carcinoma of the fallopian tube and in 7.9% of 

the tumor biopsy, meaning that the resistant disease arose from the clonal expansion of a 

minor subclone that was present prior to treatment [104].  A larger cohort study of similarly 

matched primary tumour and recurrent disease samples demonstrated that only 6% of 

inactivating mutations in NF1 could be seen in primary samples, but the same inactivating 

NF1 mutations were observed in 20% of recurrent disease [109].  This is common example 

of temporal heterogeneity in EOC that is driven by high levels of genome instability and 

selective pressures from the tumour microenvironment.  Interestingly, this selective 

pressure can be so strikingly robust that BRCA2 reversion mutations can be observed post 

chemotherapy in BRCA2 mutated patients to yield functioning BRCA2 capable of repairing 

double stranded DNA breaks induced by treatment [110, 111].  Re-acquisition of BRCA2 

function decreases the effectiveness of chemotherapy and is a strong predictor of platinum 

resistant EOC [110, 111].  A deep sequencing study of primary tumour and metastases 

samples isolated during an autopsy of a patient with a BRCA2 germline mutation showcases 

this reversion phenomenon.  At the time of death, the patient no longer responded to 
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olaparib or carboplatin treatment after the recurrence of her disease.  Upon sequencing of 

the different tumor metastases, 12 different reversion events in BRCA2 could be 

documented contributing to her resistance to both treatments [109].  In the limited studies 

conducted on this phenomenon, reversion in mutated BRCA 1 or 2 occurs in 6% - 46% of 

patients with germline mutations [109, 110]. 

1.4 Biology of ovarian cancer metastasis 

The majority of ovarian cancer patients do not die from primary disease, and instead 

ultimately succumb to metastatic spread of tumors throughout the body. However, unlike 

many other cancers which disseminate to distal sites in the body via the circulatory system 

(which requires intravasation, migration, extravasation and invasion), EOC metastasis is 

not typically blood borne.  Rather, EOC cells detach from the primary tumour as either 

single cells or clusters and are passively carried by peritoneal fluid to seed secondary sites 

throughout the peritoneal cavity [112, 113].  Typical sites for metastases include the 

omentum (a large fold of fatty peritoneal tissue descending from the stomach connecting 

it to other organs), the bladder, large bowel, and colon [113].  Staging of ovarian cancer is 

directly related to the degree of dissemination of metastases through the peritoneum.  Stage 

I refers to cancers being restricted to one or both ovaries.  Stage II refers to cancer that has 

spread from the ovaries to the pelvis, including the uterus and fallopian tubes.  In stage III 

EOC, the cancer has spread from the ovaries microscopically (less than 2cm) to the 

abdominal area outside the pelvis or to pelvic lymph nodes.  Whereas in stage IV, tumors 

have spread to distal organs [114].  Approximately 85% of EOC patients are not diagnosed 

until stage III or IV [115].  It is therefore very important from a treatment standpoint to 
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understand the biological changes in both EOC cells and the tumor microenvironment that 

facilitate the migration of EOC tumors to distal sites (Fig. 1.2). 

 Exfoliation of EOC cells from the primary tumor and epithelial to mesenchymal 

transition 

One of the initial events triggering the exfoliation of EOC cells from the primary 

tumor into the peritoneum is an epithelial-to-mesenchymal transition (EMT) [116-118].  

During this process, cells lose their epithelial characteristics, including the loss of cell-cell 

junctions and apical-basal polarity, and acquire mesenchymal features, characterized by 

stress fiber formation and actin reorganization causing a spindle-shaped morphology [119].  

This process decreases cellular connection to the basement membrane and interaction with 

neighboring cells, which eases detachment from the primary tumor [120].  A loss of E-

cadherin (a glycoprotein present at adherens junctions between cells) is considered 

fundamental to the EMT process [121].  E-cadherin is a transmembrane protein with both 

an extracellular and cytoplasmic region.  Its cytoplasmic domain forms a complex with β-

catenin and αE-catenin, which together binds to actin cytoskeleton [122].  Its extracellular 

domain binds with other proteins related to cell-cell adhesion, including other cadherins 

and nectins, which thereby connect the cytoskeletons of neighbouring cells and facilitate 

the formation of different cell-cell junctions (including tight junctions, adherens junctions, 

and desmosomes) [123, 124].  Thus, the loss of E-cadherin has a significant role in the 

acquisition of a motile phenotype in cancer cells and helps facilitate metastasis.  In ovarian 

cancer, the absence of E-cadherin is associated with greater invasiveness and is a predictor 

of poor patient survival [125, 126]. 
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Figure 1.2. Mechanism of EOC metastasis – Malignant cells slough from the primary 

tumor due to decreased cell- cell adhesion.  While in suspension in the abdominal fluid/ 

ascites, EOC cells adhere to each other and undergo epithelial-to-mesenchymal 

transition to become spheroids.  Spheroids decrease cellular pathways associated with 

proliferation to conserve energy consumption and undergo dormancy to survive low-

nutrient conditions.  Autophagy is induced to promote survival by consuming 

unnecessary proteins and recycling amino acids for the synthesis of proteins necessary 

for survival during cell stress and starvation.  Spheroids are able to reattach and disperse 

to form secondary tumor metastases within the abdominal cavity via mesenchymal-to-

epithelial transition.  Omental metastases are common due to high levels of energy rich 

lipids which promote EOC cell survival.   
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The loss of E-cadherin can be triggered by the activation of a number of 

transcriptional repressors which suppress the transcription of E-cadherin’s encoding gene, 

CDH1 [127].  This may be initiated by different signaling events occurring in the tumor 

microenvironment or tumor-associated stroma.  Transforming growth factor β (TGFβ) has 

been shown to have dual functions in human cancers, acting as both a tumor suppressor 

and a promoter of metastasis [128, 129].  In normal cells and in early carcinogenesis, TGFβ 

acts as a growth inhibitor, inducer of apoptosis, and inhibitor of cell immortalization [130].  

In ovarian and other cancers, TGFβ is an important modulator of EMT.  TGFβ signaling is 

initiated when the ligand binds to a receptor complex that possess serine/threonine kinase 

activity.  TGFβ binds to the TGFβ type II receptor (TβRII), followed by the recruitment of 

the TGFβ type I receptor which is trans-phosphorylated by TβRII [131].  Activation of the 

TGFβ type I receptor is the main component of the TGFβ receptor complex and controls 

downstream signaling of various pathways, including the SMAD dependent pathway from 

which many EMT-mediated effects are driven (including the loss of E-cadherin) [128].  

Two receptor regulated SMADs (SMAD 2 and 3) are phosphorylated by the TGFβ type I 

receptor, causing their disassociation from the receptor complex and their interaction with 

SMAD4 in the cytoplasm [128, 132].  This SMAD complex then translocates into the 

nucleus where it associates with a number of DNA binding partners and acts as a 

transcriptional regulator of TGFβ target genes, including SNAIL, SLUG, and ZEB2 which 

act as a transcriptional repressors of CDH1 [127].  Furthermore, SNAIL repression of E-

cadherin expression allows for the dissociation of desmosomes and the dissolution of cell 

junction complexes [125, 133].   
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TGFβ induction of EMT is further exemplified by the loss of other epithelial 

markers including ZO-1, occludins, claudins, cytokeratins and the induction of more 

mesenchymal markers, including N-cadherin, vimentin, and fibronectin [134].  The 

transformed cells, which look more like fibroblasts upon undergoing EMT, acquire a more 

invasive phenotype [120].  The reorganization of the actin cytoskeleton leads to the 

formation of actin stress fibers, which are anchored to focal adhesion complexes and aid in 

the formation of filipodia which promotes cell migration [120].  After the cells have 

detached from the primary tumor as single cells or clusters, they spread to the peritoneum 

and are carried by the physiological movement of the peritoneal fluid [113].   

 Transit of ovarian cancer cells throughout the peritoneum 

A consequence of advanced metastasis is the formation of an exudative fluid within 

the peritoneum called ascites. This fluid accumulates and aids in the passive transit of 

ovarian cancer cells to distal sites within the abdomen [135].  More than one-third of 

patients present with ascites at the time of diagnosis and almost all have ascites with 

recurrent disease [136].  Clinically, the presentation and progression of ascites is correlated 

with poor survival [136, 137].  The presence of ascites strongly impacts the quality of life 

of patients as it causes debilitating symptoms such as abdominal swelling and pain, early 

satiety, and compromised gastrointestinal, urinary, and respiratory systems [138].  Under 

normal physiological conditions, capillary membranes of the peritoneum continuously 

produce lubricating fluid to cover serosal surfaces which allows the easy passage of solutes 

between the peritoneum and adjacent organs.  Two-thirds of this fluid is reabsorbed by the 

lymphatic channels of the diaphragm and is directed to the subclavian vein to allow 

drainage [139].  In advanced metastasis, these lymphatic channels often become obstructed 
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with tumor cells and heightened fluid production is induced by tumor cells due to the 

increased leakiness of tumor vasculature from angiogenesis [139-141].  Thus, there is an 

accumulation of abdominal fluid due to defects in drainage and increased fluid production.       

As single cells floating in suspension in the peritoneal fluid, EOC cells become 

susceptible to a process of cell death called anoikis.  Anoikis acts as a protective mechanism 

induced when epithelial cells detach from the extracellular matrix and helps prevent ectopic 

cell growth [142].  As a mechanism to avoid death due to detachment or as a consequence 

of clustered detachment from the primary tumor, EOC cells in suspension will form 

multicellular aggregates called spheroids [143].  It is believed that spheroids may survive 

anoikis through the upregulation of the anti-apoptotic protein Bcl-xL [144].  EMT plays an 

important role in the efficiency of spheroid formation by EOC cells.  Blocking SMAD 

dependent TGFβ signaling and EMT particularly through the Snail transcription factor, 

profoundly inhibits the ability of EOC cells to form spheroids and reduces their metastatic 

potential [145].   

Spheroids undergo a number of biological changes in their behavior to help 

promote EOC cell survival while in suspension.  As another mechanism of avoiding death 

due to starvation within the low-nutrient conditions of the ascites, spheroids have been 

shown to undergo a period of dormancy to support nutrient conservation. This occurs due 

to the downregulation of signaling pathways associated with metabolism and cell 

proliferation, such as the AKT pathway [146, 147].  Furthermore, spheroids can undergo 

autophagy, a cellular process initiated under periods of stress in which vesicles engulf 

cytoplasmic organelles and fuse with lysosomes to promote hydrolysis, thus utilizing 

intracellular proteins and lipids to temporarily sustain energy production [148, 149].  If 
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prolonged, autophagy of cells is lethal.  However acute induction of autophagy can not 

only promote survival in low nutrient conditions, but also permit cancer cell survival in 

response to cytotoxic drugs [150, 151].  For example, the mechanisms of action for 

platinum based chemotherapies is to target key components of the cell cycle and induce 

apoptosis in proliferating cell populations [152].  Thus, targeting dormant EOC cells in 

spheroids is considerably more challenging [148].  Furthermore, the expression of Bcl-xL 

in spheroids, which allows EOC cells to escape anoikis, contributes to their resistance to 

chemotherapy induced apoptosis [144].  Some studies suggest EOC spheroids are enriched 

for cells with stem-like properties marked by their gene expression profiles of Notch1, 

Nanog, Cdcp1, CD34, and Myc, which are upregulated by 10-2000 fold and have increased 

ALDH activity [153].  This may also contribute to chemotherapeutic resistance, increased 

invasion abilities, and resistance to hypoxic conditions.   

 Spheroid reattachment and secondary metastasis 

Although EOC spheroids are capable of reattaching throughout the peritoneum onto 

any mesothelial lined site, the location for reattachment is not entirely random.  The most 

common sites for distant metastases are the omentum, diaphragm, and small bowel [113].  

The first steps of invasion require an interaction between the EOC cells and the 

mesothelium.  Integrins exhibit a key functional role in this process.  β1-integrins on EOC 

cells can heterodimerize with a number of α-integrin subunits found on the mesothelium 

to promote adhesion [143, 154].  Similarly, blocking vascular cell adhesion molecule 1 

(VCAM-1) on mesothelial cells or α4β1-integrins on EOC cells can restrict adhesion and 

prevent metastasis in xenograft models [155].  The interaction of integrins between the 

mesothelium and EOC cells is aided by an upregulation of matrix metalloproteinase 2 
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(MMP-2), which cleaves the extracellular matrix proteins vitronectin and fibronectin into 

smaller pieces on the mesothelial cells.  Thus, binding to these smaller integrins on the 

mesothelium is enhanced [156, 157].  The CD44 cancer stem cell marker has also been 

shown to aid in adhesion to the peritoneal mesothelium, which could support the model 

that spheroids enriched for stem cells have enhanced metastatic abilities. This may be a 

possible mechanism for the observed selection of more highly aggressive cancer cells in 

secondary tumors [158].   

Interestingly, since EMT has been shown to be important in spheroid formation and 

migration, mesenchymal-to-epithelial transition (MET) has been demonstrated as a key 

morphological modification that promotes EOC spheroid invasion and adhesion [116, 

145].  Transcriptional changes in reattaching spheroids parallel those of cells undergoing 

MET [116, 145].  Likewise, metastasis and the dispersion of cells from reattaching 

spheroids was decreased when MET was restricted [145].   

After EOC spheroids attach to a secondary site and invade, effective growth of 

these newly seeded tumors must be supported by the transformation or modification of the 

secondary site.  For example, after reattachment and dispersion of EOC spheroids, EOC 

cells promote the production of vascular endothelial growth factors (VEGF) in both an 

autocrine and paracrine fashion to develop new vasculature to support their growth [159].  

High levels of VEGF within the ascites and in serum are associated with EOC tumor 

progression and poor prognosis [160].  Therefore, the microenvironment of disseminated 

tumors plays a significant role in the success of secondary tumor growth.  Implantation of 

EOC spheroid metastases to the omentum is enhanced through TGFβ production by EOC 

cells, which transforms normal fibroblasts in the omentum into cancer associated 
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fibroblasts (CAFs) that contribute to EOC adhesion and invasion [161].  The preferential 

cultivation of the omentum is supported by a microenvironment rich in adipocytes, which 

aid in homing, invasion, and growth of EOC cells [162].  Inhibition of the IL-8 receptor 

using a neutralizing antibody markedly reduced the amount of omental metastases in an in 

vivo mouse model of EOC metastasis, emphasizing the importance of IL-8 secretion by 

adipocytes to increase omental homing of EOC cells [162].  Furthermore, because 

adipocytes store triglycerides, the omentum provides energy-dense lipids to EOC cells to 

promote their growth.  Indeed, omental metastases display an increase in the expression of 

FABP4, which binds long chain fatty acids on adipocytes.  Inhibition of FABP4 in an in 

vitro co-culture of EOC cells with adipocytes strongly reduced lipid accumulation in cancer 

cells and invasion were dramatically reduced [162].  Likewise, in vivo metastasis models 

in FABP4 -/- mice showed significant reductions in tumor burden paralleled by a reduction 

in microvessel density and tumor cell proliferation [162].  These results further support the 

notion that adipocytes act as major mediators of ovarian cancer metastasis to the omentum 

as they fuel rapid tumor growth through fatty acid metabolism.   

1.5 Oncolytic virotherapy for the treatment of cancer 

The use of viruses as therapeutic agents against cancer has distinct advantages over 

current chemotherapeutic strategies and other conventional small molecule drugs.  The 

biological dysregulation often observed in cancer cells can provide a favorable 

environment for virus replication.  Viruses are often dependent on cell cycling of host cells 

to produce progeny.  Thus, uncontrolled cellular replication and resistance to apoptosis in 

cancer cells provides a suitable niche for virus amplification.  Moreover, the tumor 

microenvironment of many cancers is highly immunosuppressive, and is associated with 
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decreased immune surveillance from lymphocytes due to downregulation of antigen 

presentation and decreased immunostimulatory cytokine production.  These same features 

provide a concomitant loss in host cell defenses to pathogens, thereby making them more 

susceptible to viral infection.  Furthermore, virus efficacy can be augmented, either through 

genetic modifications that allow better targeting of cancer cells, or through combinations 

with specific adjuvants [163, 164].   

Before the concept of using viruses for cancer therapy, there had been a slow trickle of 

reports of cancer regression coinciding with virus infection [165-167].  The first clinical 

use of a virus for cancer treatment was in the early 20th century when rabies virus was used 

to vaccinate a woman with cervical cancer [168].  However, the dangers in using native 

wild-type (WT) viruses limited their use in a clinical setting.  With modern advances in 

genetic modification techniques, engineered viruses have been designed with cancer 

selective tropism and restricted replication, thus spawning a resurgence in the popularity 

of viral oncolytics over the past 20 years.  The following sections review both advances in 

basic research and the clinical application of viruses for the treatment of cancer and 

specifically EOC.    

 Basics of virology 

A virus is an obligate intracellular parasite with a genome consisting of either DNA 

or RNA that may be single stranded (ss) with either positive  or negative sense (+/ -) or it 

may be double stranded (ds) [169].   Virus genomes contain genes required for the infection 

and replication of a virus in a host cell.  The production of viral proteins promote the 

synthesis of viral components, assembly, maturation and packaging of virus particles or 

virions.  Viruses are acellular genetic parasites that hijack cellular machinery (eg. 
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polymerases, ribosomes) to provide the resources required for their own replication. The 

appropriation of host cell systems in the replication of viruses varies depending on the viral 

genome content, size, and proteins packaged with the virus [169].  A minimal virus consists 

of a virus genome and a proteinaceous coat called the capsid [170].  Virus infection begins 

with entry into a host cell.  This involves virus attachment to the cell, penetration into the 

cytoplasm, and uncoating of the virus to release its genome into the cell [171].  Enveloped 

viruses typically mediate attachment through the expression of virus glycoproteins that 

bind to cell surface receptors, whereas non-enveloped viruses may rely on a single protein 

or multiprotein structure to attach [170, 172].  Typically, non-enveloped viruses enter the 

cytoplasm through the endocytic pathway or disruption of cell membrane integrity [171, 

173, 174].  Enveloped viruses enter either through membrane fusion or through endocytic 

vesicles followed by the fusion of the virus envelope with the vesicle membrane, which 

can mediate the release of the capsid and genome into the cell [171, 172].  For other viruses, 

penetration sometimes triggers a change in the microenvironment, such as acidification of 

the endocytic compartment, to allow the uncoating of the virus which releases its genome 

and capsid into cytoplasm [171, 175].  The specific details in location of virus uncoating 

and the process varies depending on the virus.  Most DNA viruses are transported to the 

nucleus through a nuclear pore to allow transcription of virus genomes using cell 

replication machinery, such as RNA polymerase II [176].  For this reason, viruses are often 

dependent on the host cell cycle.  The mechanism for production of viral mRNA, 

translocation, and translation vary but for dsDNA viruses, it occurs in a similar fashion as 

in the host cell using host cell machinery [177].  ssDNA viruses may use cellular enzymes 

to generate dsDNA before proceeding.  For some RNA viruses (+ssRNA), their genome 
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can act as mRNA and interact directly with ribosomes to be translated with the subsequent 

polyprotein being cleaved to produce individual viral proteins.  -ssRNA or dsRNA require 

packaging of a viral polymerase to transcribe viral mRNA [177].  Due to their small 

genome sizes, viruses often maximize their coding potential by including overlapping 

genes and can be alternatively spliced to permit more than one protein to be produced from 

a single genome region [171]. 

 After the production of viral proteins, virus assembly usually occurs in the cellular 

compartment where genome replication takes place.  Virus components include the virus 

genome, any accessory proteins, capsid/structural proteins, and envelope proteins (if it is 

an enveloped virus).  Typically, assembly centers on capsid and structural proteins forming 

a scaffold for the virus genome to enter [178].  Viral glycoproteins may incorporate into 

cell membranes for viruses to acquire upon egress [179].  The specific mechanisms for 

viral protein packaging and assembly differ for each virus but generally rely on intricate 

localization signals and chance [180].  The release of non-enveloped viruses typically 

occurs during lysis of infected cells [181].  For enveloped viruses, budding occurs through 

a cell membrane after virus assembly leading to the acquisition of the envelope [182].  This 

may be the plasma membrane in which case this budding releases the mature infectious 

virus and may or may not induce lysis, or it may be a membrane acquired from an 

intracellular organelle membrane [183].  If it is the latter, the nascent virion is then 

transported in a vesicle to the plasma membrane for release by fusion of the vesicle to the 

plasma membrane [183]. 

 Inherent oncolytic virus selectivity for cancer cells 
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Cancer cells acquire a number of generally observed adaptations during the process 

of becoming malignant.  As reviewed above, this includes uncontrolled entry into S-phase, 

loss of functional apoptotic pathways, mutations in tumor suppressors including p53, 

suppression of tumor targeting cell-mediated immune surveillance, and decreased 

production of immunostimulatory effectors molecules [184].  These same features of 

cancer cells which may make them resistant to many conventional chemotherapeutics or 

small molecule inhibitors are in fact favorable characteristics for viral infection and 

production.  Viruses often require cycling host cells to replicate and benefit from immune 

evasion strategies to avoid systemic clearance [164].  Most if not all of these characteristics 

are capable of being modulated by viral proteins in order to replicate effectively in a host 

cell.  However, many viruses do not encode additional genes that modulate these systems 

and instead will preferentially infect host cells which possess such features; this endows 

them with inherent cancer cell selectivity.   

A list of naturally “cancer-specific” viruses includes reovirus, vesicular stomatitis 

virus (VSV), Newcastle disease virus, and parvovirus [164].  As these viruses do not 

encode genes which alter the host cell’s response to virus, they rely on the inherent defects 

in anti-viral immunity through tumor-specific inactivation of protein kinase R (PKR) and 

interferon (IFN) response pathways [185].  PKR is a highly conserved cytoplasmic RNA 

virus sensor which signals through the eIF2-α protein to terminate the translation of viral 

transcripts.  Furthermore its activation stimulates the production of a family of antiviral 

cytokines, IFNs, which trigger a cascade of antiviral responses within the cell and in 

neighboring cells to shut down replication or induce apoptosis to prevent virus spreading.  

In cancers with inactivating RAS mutations, PKR signaling is typically impaired, allowing 
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productive replication of reovirus, VSV, and Newcastle disease virus [185-189].  Impaired 

IFN signaling, either through inactivating mutations or epigenetic silencing, is found in a 

diverse range of cancers at both early and late stages of disease, meaning it is likely an 

early mechanism of immune dysfunction that persists through tumor progression and 

metastasis [190].  This defect renders cancer cells significantly more vulnerable to virus 

infection and can help oncolytic viruses selectively replicate in cancer cells, while 

safeguarding normal cells with intact IFN-signalling from virus infection.  This selective 

feature permits cancer specific oncolysis by a number of viruses including, Myxoma virus 

(MYXV) [191].   

Aside from direct infection and oncolysis of tumor cells, viruses have been 

strategically applied to target other aspects of tumor growth.  A secondary feature of some 

oncolytic viruses not only involves direct oncolysis of tumor cells but also targeting and 

inducing lysis of the tumor vasculature, thereby restricting nutrient supply to growing 

tumors.  This could be due to direct infection of tumor endothelial cells and the expression 

of viral proteins with antiangiogenic properties, although the mechanism is still unclear 

[192]. 

 Many malignancies also demonstrate an overexpression of virus receptors 

compared to normal cells, which increases permissiveness to virus infection.  For example, 

many melanoma tumors upregulate both I-CAM and DAF which are used by 

coxsackievirus to mediate virus infection of host cells [193, 194].  Furthermore, echovirus 

demonstrates specificity for ovarian cancer cells with upregulated expression of α2β1 

integrin, while poliovirus requires the overexpression of CD55 [195, 196].  Despite 

abundant expression of these receptors on normal cells, coxsackievirus, echovirus, and 
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poliovirus are likely limited in their ability to infect non-cancerous cells via additional 

factors, such as a functional IFN response.  

 Interestingly, some viruses also display anti-tumoral effects independent from 

direct infection and cell killing.  For instance, although the parvovirus NS1 protein can 

induce apoptosis of transformed cells, it also exhibits oncosuppressive behavior by 

preventing further transformation and tumorigenesis [197, 198].  Infection of BALB/c mice 

with parvovirus prior to engraftment with syngeneic sarcoma cells led to graft rejection 

despite the fact these sarcoma cells are resistant to parvovirus infection [199].  Similarly, 

replication defective cytomegalovirus was able to prevent tumor growth and metastasis in 

mice despite the absence of a productive virus infection [200].  The mechanisms by which 

these viruses are able to induce an anti-tumoral effect is most likely modulated by increased 

immune surveillance caused by virus infection acting as an adjuvant to stimulate anti-tumor 

immunity (Fig. 1.3).   

 Engineered viruses that improve tumor targeting and oncolytic efficacy 

Many virus genes necessary for replication in normal tissues are redundant (not 

necessary) for replication in cancer cells (due to the inherent changes in cancer cells, 

described in previous sections).  Therefore much effort has been placed into creating virus 

deletion mutants defective in these replication genes (essential for replication in normal 

cells) to improve their tumor cell selectivity.  Thymidine kinases (TKs; TK-1 and TK-2) 

are highly conserved enzymes which catalyze the phosphorylation of deoxythymidine into 

deoxythymidine monophosphate, a precursor to deoxythymidine triphosphate, which is 

incorporated into replicating DNA. [201].  TKs are therefore important for cell division, 

and in non-malignant cells, are expressed only during the cell cycle [202].  Thus, many 
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viruses encode their own TKs to provide nucleotides to promote the replication of their 

own genomes, even when the cells are not dividing and cellular TKs are not expressed.  

The creation of TK deletion mutants in various oncolytic viruses, including herpes simplex 

virus (HSV) and vaccinia virus (VACV), aids in restricting virus replication to cycling cells 

that have expression of cellular TK and have high phosphorylated deoxynucleotide pools 

for the virus to usurp [203, 204].  Furthermore, the overexpression of TK can be observed 

in many malignancies including bladder, breast, and colorectal cancers leading to 

significantly higher expression of TK compared to normal cycling cells.  This provides 

more favorable conditions for virus replication and subsequent oncolysis [205-207].   

The introduction of non-viral genes in an oncolytic virus is another strategy to help 

improve virus efficacy.  Typically, the addition of non-viral DNA (when not for improving 

tumor cell specificity) is done either to increase bystander cytotoxicity of the virus to 

neighboring tumor cells, enhance anti-tumor immunity, introduce pro-drug converting 

enzymes, or include safeguarding suicide genes that restrict uncontrolled virus infection 

and killing.  Perhaps the most common and rapidly expanding field in oncolytics research 

is the activation of the immune system to stimulate anti-tumor immunity and improve 

bystander cytotoxicity after virus infection.  A commonly introduced gene designed to 

stimulate enhanced anti-tumor immunity is CD40L, the ligand which binds to the CD40 

receptor found on many monocytes, dendritic cells, and B lymphocytes.  Viruses which 

have been engineered to express this ligand include adenovirus and VACV [208, 209].  

Oncolysis of tumor cells by these viruses induces a massive release in tumor associated 

antigens and provides co-stimulatory danger signals.  Moreover, arming oncolytics with 

CD40L further aids in inducing direct apoptosis of tumor cells and triggers a cascade of  
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Figure 1.3. Preferential viral replication in cancer cells- viral infection and 

replication in healthy tissues is normally restricted by highly conserved antiviral 

signaling through IFN.  Many tumor cells decrease IFN and other antiviral signaling 

molecules to help in immune evasion rendering them more susceptible to virus 

infection.  Selection of viruses with natural tropism for cancer associated signaling 

pathways and mutations, or engineering viruses to have improved cancer selective 

properties promotes virus replication that is more restricted to cancer cells.  Productive 

virus infection results in cell killing, virus release, and spread to neighboring cancer 

cells.  
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immunostimulatory signaling events to reduce the immunosuppressive environment of a 

tumor.  In vivo xenograft models of endometrial cancer using CD40L armed adenovirus 

showed increased potency over WT adenovirus infection via three mechanisms: 1) 

Increased recruitment and activation of antigen presenting cells (APCs) leading to the 

production of T-cell associated cytokines which stimulated robust cytotoxic T cell 

responses against tumors, 2) direct apoptosis of CD40L tumor cells by CD40 expressing 

cells caused by infection with CD40L expressing adenovirus; and 3) Direct oncolysis from 

adenovirus infection [208].  Thus, viruses can also be applied as a way to counteract tumor 

mediated immune evasion and immune suppression.   

 Clinical trials with oncolytic viruses 

The first engineered virus to enter clinical trials in humans was a strain of 

adenovirus with two deletion mutations called, ONYX-015 or Adenovirus dl1520.  This 

strain of adenovirus was engineered as a hybrid of adenovirus serotypes 2/5 and expressed 

mutations in the E1B-55K and E3B genome regions, thus rendering it only able to replicate 

in cancer cells with p53 mutations [210].  Over 10 clinical trials have been performed using 

the virus, leading all the way up to phase III which demonstrated that the virus was 

generally well-tolerated with patients experiencing flu like symptoms [211, 212].  

Importantly, the virus was shown to be tumor selective, but replication was fairly transient 

and typically lasted less than 10 days.  Moreover, replication was highly variable and was 

affected by tumor histology with a 0-14% tumor regression rate [211].  However, the 

clinical findings were important indicators of the strengths of oncolytics and of the hurdles 

that needed to be overcome.  A broad range of adenoviral serotype 5 vectors have been 

assessed clinically with no serious toxicity. However, strong antibody mediated 



32 
 

neutralization of the virus has repeatedly been observed with intravenous injections [213, 

214].  A majority of patients have pre-existing antibodies to adenovirus serotype 5 thus 

limiting its clinical utility [213, 215].   

Newer strategies with engineered viruses almost always contain an 

immunostimulatory component to augment the antitumor response.  The most clinically 

advanced construct of herpes simplex virus, OncoVexGM-CSF contains deletions in both the 

γ-34.5 gene, which renders the virus susceptible to PKR and eIF2α antiviral responses and 

also results in neuroattenuation, and ICP47 which re-enables MHC I presentation in host 

cells [216-221].  Furthermore, OncoVexGM-CSF also contains Granulocyte-macrophage 

colony-stimulating factor (GM-CSF), a glycoprotein secreted by macrophages, T cells, 

mast cells, and NK cells, and functions as a cytokine to stimulate stem cell differentiation 

into granulocytes and monocytes for greater immunogenicity [217].  Phase II studies with 

OncoVexGM-CSF in stage IIIc and IV melanoma showed that it was well tolerated with only 

transient flu like symptoms.   Importantly, 26% of the 50 patients enrolled showed either 

complete response (n=8) or partial response (n=5) [222].  OncoVexGM-CSF was rapidly 

inactivated in the blood as many people have pre-existing immunity to many strains of 

herpes viruses and this likely contributed to the relatively low success rate.  However, of 

patients who responded, regression of both intratumorally injected and distal lesions was 

observed and maintained for 7- 31 months with an additional 10 patients who exhibited 

stable disease for 3 months [222].  Overall, survival after 1 year was 58% and 51% after 

two years thus stimulating the progression of OncoVex GM-CSF to ongoing phase III trials 

with melanoma and squamous cell carcinoma of the head and neck [223].  
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 Improvements in vector delivery and design have propelled further advancement of 

oncolytics through clinical trials.  An oncolytic pox virus, JX-594, designed using a TK 

deletion mutant of vaccinia virus and armed with GM-CSF has demonstrated significant 

therapeutic utility in phase I-II dose escalation trials of hepatocellular carcinoma patients.  

Infection with this virus resulted in virus replication and successful expression of GM-CSF 

in tumors, which induced tumor necrosis, devascularisation, systemic dissemination of the 

virus and targeting of distant tumors [224].  Importantly, these studies also demonstrated 

an ability to treat patients with JX-594 despite having high neutralizing antibody titers.  

Phase I-II dose escalating trial in patients with advanced liver cancer showed significant 

improvement in overall survival of patients correlating with high doses of JX-594 [225].  

In this dose group, 35% of patients had a long-term survival benefit of greater than 2 years 

after 4 weeks of dosing suggesting a durable therapeutic benefit.  The mechanisms of action 

for these antitumor effects were direct oncolysis of tumor, acute vascular disruption, and 

immune stimulation through antibody generation and increased tumor-infiltrating 

lymphocytes [225].  Thus phase III clinical trials with JX-594 began in late 2015 and are 

ongoing with hepatocellular carcinoma patients actively being enrolled [226].    

The advent of oncolytic virotherapy as a new and viable therapeutic option for a 

breadth of malignancies has sparked tremendous enthusiasm among not only researchers 

but patients as well.  In 2005, China approved an oncolytic adenovirus called H101 for the 

treatment of head and neck cancers [227].  This brought with it a wave of medical tourism 

to the country after claims it could shrink tumors but never went so far as to say it could 

improve overall survival.  Late in 2015, the Food and Drug Administration approved its 

first oncolytic virus for use in the United States called, TVEC, an oncolytic herpes simplex 
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virus highly similar to OncoVexGM-CSF with an additional insertion of the US11 gene, 

encoding a tegument protein.  This alteration increases the efficiency of virus replication 

[228].  Phase III trials demonstrated clinical effectiveness through a significant reduction 

in tumor size and an increase in overall survival by 4.4 months although the result fell just 

short of being statistically significant [229].  However, therapeutic efficacy and survival 

may be improved with combinations with other cancer immunotherapies.  More than likely, 

these represent just two of many oncolytic viruses that are making their way down the 

pipeline for clinical approval. 

 Clinical trials of oncolytic viruses in ovarian cancer 

Adenovirus 

Due to the almost universal presence of TP53 mutations in HGSOC, it is logical to 

investigate the therapeutic efficacy of oncolytic viruses which selectively replicate in tumor 

cells harboring this mutation.  Among the first clinical trials in EOC patients using an 

oncolytic virus was a phase I clinical trial using the adenovirus construct ONYX-015, 

which was designed to preferentially replicate in p53-deficient tumor cells.  Repeated 

intraperitoneal injections of virus were delivered in 16 patients ranging from 1x109pfu-

1x1011pfu.  Although the treatment appeared safe (symptoms were generally mild, and a 

maximum tolerated dose was not reached), no clear therapeutic benefit was observed 

despite successful virus replication.  This may be due to the presence of neutralizing 

antibodies in 46% patients prior to the start of treatment, which increased significantly over 

the treatment, potentially limiting viral replication.  Moreover, 6/7 of the remaining patients 

without prior existence of neutralizing antibodies developed them over the course of 

treatment [230].  It is also possible that the minimal therapeutic benefit observed could be 
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due to variable expression of the coxsackie adenovirus receptor required by adenovirus to 

bind and enter cells.  To improve delivery and uptake of adenovirus to target EOC cells, 

other strains of adenovirus have been engineered with modified viral capsid proteins, 

including an integrin binding motif to target other overexpressed integrin receptors on EOC 

[231].  In a phase I clinical trial with the capsid protein modified adenovirus, Ad5-Δ24-

RGD, stable disease was observed in 15/21 patients.  However, no partial or complete 

responses were noted [232].   

Although little therapeutic efficacy was demonstrated in reducing tumor size or 

improving overall survival, other adenoviruses have demonstrated an ability to improve 

quality of life.  The clinically approved adenovirus construct, H101, which too is restricted 

to replicating in TP53-mutated cells, was shown in a phase I clinical trial to reduce ascites 

burden in EOC patients.  Outcomes were grouped as either complete response (no 

recurrence of ascites), partial response (recurrence of ascites <50% of volume), or no 

response (recurrence of ascites > 50%, requiring paracentesis).  Of 9 patients treated over 

a 30 day trial, 3 patients had complete responses, 2 had partial responses, and 4 had no 

response with no adverse effects.  The interval between paracenteses before and after H101 

treatment went from a mean of 12.4+/-3.4 days to 39.9 +/- 11.6 days thus demonstrating 

H101’s potential in improving patient quality of life [233].  

Measles virus 

Rather than engineering viruses to have increased tumor cell selectivity, other 

clinical trials have focussed on viruses with innate tropism for tumor associated proteins.  

Measles virus requires expression of CD46 cell surface receptor to bind and enter target 

cells and this is highly overexpressed in many carcinomas, including EOC [234, 235].  To 
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examine virus replication in real time, a measles virus strain with an engineered carcino-

embryonic antigen (MV-CEA) was generated such that CEA levels could be used as a 

surrogate for virus replication.  Intraperitoneal injection of MV-CEA was performed in 6 

cycles over 4 weeks at 7 different doses in 21 patients with platinum resistant ovarian 

cancer.  Although 13 of 15 tumors which were immunohistologically positive for CD46 

showed overexpression of the receptor, the best objective response was disease 

stabilization in 14/21 patients with effects lasting from 54-277 days.  Although no 

statistically significant assessments could be made on the effects on overall survival, the 

median survival rate was 12 months (ranging between 1.3- 38.4 months) and is relatively 

favorable compared to historic averages of 6 months in this patient population.  With no 

dose limiting toxicities or treatment-induced immunosuppression, no increase in anti-CEA 

antibodies, no increase in anti-MV antibody titers, or virus shedding in urine or saliva, 

these findings are promising for the continued development of measles virus as an 

oncolytic for EOC [236]. 

Additional phase I studies have been conducted with other strains of measles that 

were modified to facilitate in vivo imaging of virus infection and replication. In particular, 

a specific measles virus strain has been altered to express a sodium-iodide importer (MV-

NIS).  Unlike MV-CEA, which was engineered to allow for assessment of viral replication 

using CEA protein levels as a surrogate marker, the MV-NIS strain permits the 

visualization of virus replication in tissues in vivo.  In a similar treatment regimen as 

described for MV-CEA, 16 patients with platinum and taxol resistant EOC were treated for 

4 weeks with 6 cycles of high dose virus treatment (1x108-1x109 vpu).  Median survival 

was 26.5 months, and 2/3 patients treated with 1x108 vpu and 11/13 patients treated with 
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1x109 vpu exhibited stable disease. This was in agreement with patients from the previous 

MV-CEA trial treated with the same doses, and improvement in overall survival correlated 

with higher dosing of both MV-CEA and MV-NIS.  NIS uptake was observed for 3/13 

patients treated with the higher dose of MV-NIS and the intratumoral expression of NIS 

correlated with longer progression free survival.   

Interestingly, although no measles virus specific antibodies were developed over 

the course of treatment, tumor specific T cell activation and IFNγ production was induced 

to two EOC antigens, FRα and IGBP2, and continued even after treatment stopped.  Thus, 

not only is measles potentially a highly effective oncolytic for EOC based on its direct 

targeting and oncolysis of tumor cells, it may also possess immunotherapeutic advantages 

to augment virus oncolysis.  Thus phase II trials comparing MV-NIS intraperitoneal 

administration to chemotherapy in patients with recurrent EOC and low disease burden 

have been designed and other phase I/II trials which test MV-NIS infected mesenchymal 

cell carrier delivery systems are being assessed [237, 238].     

Reovirus 

One of the earliest oncolytics to be used to treat ovarian cancer in clinical trials was 

reovirus serotype 3 also knowns as, Reolysin.  This relatively small and quickly replicating 

virus preferentially infects cells with activated RAS.  There are two ongoing clinical trials 

with Reolysin in EOC.  A randomized phase II clinical study with Reolysin in combination 

with paclitaxel vs paclitaxel alone in patients with recurrent EOC, fallopian tube, or 

primary peritoneal cancers.  Although the study is ongoing, it is no longer recruiting 

patients and results have not been published [239].  The second clinical trial with Reolysin 

is a phase I/II trial in patients with metastatic ovarian, peritoneal, or fallopian tube cancers 
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using intravenous and intraperitoneal injection [240].  As of 2010, viral replication in 

peritoneal and ovarian cancer cells could be observed after IV injection and is the first 

observation of reovirus to penetrate and replicate within the peritoneum and ascites [241].  

However, official conclusions from the study have not been published.  Recently the FDA 

gave orphan drug designation to Reolysin for the treatment of ovarian cancer [242]  

Vaccinia Virus 

The phase I clinical trial with JX-594 previously described in Section 1.5.3 included 

2 patients with recurrent ovarian cancer.  One of the two patients received a low dose of 

JX-594 and did not have observable virus present in tumors but did exhibit stable disease 

for more than 4 weeks after treatment. The other patient received the second-highest dose 

and had replicating virus present in her tumors and exhibited stable disease for more than 

16 weeks [243].  A phase II clinical study was designed to specifically investigate the 

potential therapeutic efficacy of JX-594 for ovarian cancer patients, but was withdrawn 

prior to the enrollment of patients [244].    

 Other vaccinia virus vectors have been engineered to induce the expression of 

tumor associated antigen NY-ESO1 (vaccinia-NY-ESO1) in infected tumor cells and have 

been used in phase II clinical trials as a vaccination strategy against both melanoma and 

ovarian cancer followed by booster vaccinations with fowl pox-NY-ESO1.  In melanoma 

and ovarian cancer patients, both cytotoxic T cells and T helper cells were induced in a 

high proportion of patients (20/22).  Patients who were seronegative for viral antibodies 

and remained seronegative, but developed T cell responses, and/or patients who 

seroconverted and developed T cell responses showed improved overall survival of 52.4 

months and 48.4 months respectively compared to those that elicited no response (median 
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survival of 14.5 months).  Furthermore, cytotoxic T cells extracted from EOC patients were 

able to induce lysis of NY-ESO1 positive tumor cells, thus providing clinical evidence and 

promising efficacy for the application of poxvirus oncolytics as immunotherapeutic 

vaccines against EOC [245].  Similar vaccination strategies with other modified vaccinia 

viruses are currently undergoing clinical trials.  One example includes the p53 expressing 

P53MVA strain, which induces the expression of p53 in vaccinia virus infected tumors.  

Used in combination with gemcitabine, P53MVA was designed to help build more 

effective immune responses to tumor cells expressing mutated P53.  This phase I clinical 

trial is ongoing and actively recruiting patients [246]. (Table 1.1). 

 Pre-clinical development of novel oncolytic viruses for the treatment of metastatic 

heterogeneous EOC 

Although progress is being made in the development of viruses for the treatment of 

ovarian cancer, few agents have been evaluated in metastatic disease models, and none to 

our knowledge have been investigated in the context of both spatial and temporal 

heterogeneity.  It is clear that both tumor heterogeneity and metastasis act as major hurdles 

in the development of clinically efficacious therapies to treat EOC. Therefore we sought to 

investigate the therapeutic potential of three oncolytic viruses, Myxoma virus, a strain of 

vaccinia virus (vvDD), and Maraba virus (MRBV), to overcome the most commonly 

neglected and lethal aspects of EOC. 

Myxoma virus 

Myxoma virus (MYXV) is a dsDNA enveloped virus and a member of the 

Poxviridae family.  The Lausanne strain of MYXV contains a large 161.8 kbp genome and 
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encodes 171 genes, a large proportion of which produce immunomodulatory and host-

interactive factors, which aid in its subversion of the host immune system and other anti-

viral responses [247-249].  Unlike other poxviruses such as VACV, which is capable of 

infecting a broad range of hosts, MYXV replication is restricted to lagomorphs and only 

causes pathogenesis in European rabbits [250-252].  MYXV virus co-evolved with the 

Sylvilagus genus (cottontail rabbit) which can be found endemically in Brazil.  Although it 

replicates robustly and may be transferred efficiently from host to host, it causes no serious 

disease in its normal host [253].  The virus is passively transmitted through mosquitoes and 

other biting arthropods [254-257].  In its natural host, the cotton tail rabbit, MYXV causes 

a cutaneous fibroma at the site of inoculation.  However in European rabbits, MYXV 

infection is lethal, causing disseminated disease called, myxomatosis [258].  In the 1950s, 

MYXV was introduced into Australia as a pesticide against encroaching European rabbits.  

With lethality rates as high as 99.8% huge declines in the rabbit population were observed 

making MYXV one of the most successful examples of a biological agent as a pesticide 

[253].  Lethality from myxomatosis is typically observed between 8-12 days after infection 

with virus shedding from ocular and nasal discharge and multiple cutaneous swellings and 

lesions which can be transmitted through contact or biting insects [259, 260].  MYXV’s 

success in rabbits derives from its ability to effectively circumvent a wide range of host 

innate and adaptive immune responses.  MYXV encodes many mimetics of host immune 

receptors (also known as viroceptors) which sequester immune responses to infection. This 

includes the viroceptor M-T7, which antagonizes the effects of rabbit IFN-γ [261].  

Moreover, M-T7 can promiscuously bind to the heparin-binding domain of a broad range 

of chemokines to significantly reduce macrophage and other immune cell influx to the site  
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SD- stable disease, CR- Complete response, PR- partial, response, NR- no response, OS 
overall survival 

Table 1.1 Oncolytic viruses used in clinical trials with ovarian cancer patients 
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of infection [261, 262].  However, the MYXV host range is extremely narrow.  It is 

virtually non-pathogenic for any host outside the lagomorph family and fails to replicate 

efficiently in any non-rabbit host, even severely immunodeficient mice [263, 264].   

Despite its narrow host range, MYXV is able to broadly infect human cancer cells.  

This is primarily due to two factors: 1) many cancer cells are unable to produce a potent 

anti-viral response through the synergistic interaction between IFN and tumor necrosis 

factor α (TNFα), which normally blocks MYXV virus replication and transmission in non-

cancerous human cells [265, 266]; and 2) malignant transformation of many cancers 

induces constitutive activation of a number of intracellular pathways including the 

activation of AKT [267].  Pharmacological manipulation of AKT phosphorylation directly 

impacts MYXV tropism for human cancer cells [268].  It is thought that because MYXV 

has such broad cancer cell specificity that these two factors are the main determinants of 

MYXV tropism for cancer cells, rather than the expression of any particular cell surface 

receptor [269, 270].  For these reasons, and its otherwise highly restricted species 

specificity, MYXV can act as a highly specific oncolytic virus for cancer cells with a 

promising safety profile.  MYXV demonstrates cancer cell-specific viral replication in a 

number of cancer types, including glioma, medulloblastoma, melanoma, pancreatic cancer, 

acute myeloid leukemia (AML), and ovarian cancer [271-276].  In AML, MYXV has been 

shown to effectively kill primary leukemic hematopoietic stem and progenitor cells derived 

from patients without inducing lysis or altering the behavior of normal hematopoetic stem 

cells [271].  Furthermore, MYXV has been shown to work synergistically with 

chemotherapeutic agents in models of pancreatic cancer that have acquired resistance to 

gemcitabine [277].  Resistance to gemcitabine is associated with increased levels of pAKT, 
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thereby selecting for cells with greater MYXV permissivity.  Combination treatment 

regimens of MYXV and gemcitabine demonstrate enhanced survival in disseminated 

pancreatic cancer models than either treatment alone and may suggest novel therapeutic 

alternatives for this disease [277].   

The activation of PI3K/AKT pathway can be found in up to 70% of ovarian cancers 

and is associated with poor overall survival and progression free survival [278-282].  Thus, 

we postulate that MYXV may act as a potent oncolytic in the most aggressive EOC cells 

which harbor activating mutations or dysregulated signaling of AKT.  Our lab has 

demonstrated that MYXV can effectively replicate and kill EOC cell lines and has varying 

oncolytic efficacy for cells isolated directly from EOC-patient ascites [275].  Furthermore, 

infection of spheroids formed from EOC cell lines demonstrate decreased reattachment and 

dispersion in our in vitro models of EOC metastasis [275].  These oncolytic effects were 

correlated with changes in activation of AKT between adherent and spheroid EOC cells 

[275].  MYXV replication is also directly modulated by the mutational status of TP53 and 

preferentially replicates in cancers with dysfunctional or deleted TP53 (which is found in 

>95% of HGSOC cases) [283].  These findings suggest that MYXV may work as a targeted 

therapeutic for the treatment of metastatic EOC and possibly for type II EOCs in which 

pAKT is most highly induced and TP53 mutations are ubiquitous.   

Double deleted vaccinia virus (vvDD) 

 Similar to MYXV, VACV belongs to the poxviridae family, is enveloped, and is 

also has a genome composed of dsDNA.  However, unlike MYXV, VACV is capable of 

replicating in a diverse range of mammalian hosts including humans, allowing for abundant 

preclinical research to be conducted in many different animal systems [269].  Much of its 
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genome encodes for enzymes required for its replication, such that it can replicate with 

little dependence on host cell machinery.  This includes a DNA dependent RNA 

polymerase, numerous transcription factors, a number of capping and methylating 

enzymes, a poly(A) polymerase, and many immunomodulatory proteins [269, 284].  To 

encode all these proteins, VACV has a very large genome with over 190kbp needed for 

approximately 270 genes [285].  Moreover, by encoding most of the genes required for its 

replication, VACV does not need to enter the nucleus and its replication is entirely 

cytoplasmic, thereby eliminating any risk of viral gene integration in the host genome 

[286].  It is this large genome that makes poxviruses effective gene therapy vehicles for the 

delivery and expression of up to 25kb foreign DNA without significantly compromising 

virus particle integrity [287].  However, despite its large genome, VACV completes its 

replication cycle within 24hrs of infection and produces relatively high titers of virus [288].  

Furthermore, its historical use as the vaccination agent in the eradication of smallpox has 

allowed for extensive characterisation of clinical effects in human (compared to any other 

virus) [289].  Thus, VACV pathogenesis in both preclinical and clinical settings is well 

defined, with clear symptomology and safety profiles outlined.   

 VACV is capable of inducing robust immune responses mediated through both T 

cell activation and antibody responses, which can induce potent bystander effects to 

augment anti-tumor immunity [290].  For this reason, VACV is considered a promising 

oncolytic for the treatment of cancer.  VACV has typically been applied in cancer therapy 

as either a gene therapy vehicle to deliver tumor specific therapeutic genes, a direct 

oncolytic that can replicate and kill within cancer cells specifically, or as a cancer vaccine 

which expresses tumor antigens or immunostimulatory agents.  
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VACV entry into target cells occurs via the expression of a multi-protein fusion 

complex carried by the virion and may be dependent on interaction with cell surface 

glycosaminoglycans or other undefined cell moieties that promote direct virus membrane 

fusion with the plasma membrane [291].  Alternatively, some strains of VACV can also 

use the endocytic pathway under low pH conditions, however inhibition of endosomal 

acidification prevents virus entry [292].  Upon entry and initial rounds of viral mRNA 

translation and protein production, vaccinia growth factor (VGF) is produced, which binds 

the EGF receptor and signals through the ERK1/2 pathway to stimulate the production of 

thymidine kinase (TK) in the host cell and increase nucleotide pools to provide sufficient 

availability of nucleotides for the production of new virions [293-295].  In addition, VACV 

encodes its own TK (vTK) to further promote phosphorylation of deoxythymidine, 

contributing to higher nucleotide pools for the incorporation into replicating VACV 

genomes [296].  In replicating cancer cells, available nucleotides for genome incorporation 

are abundant, thus the need for vTK and VGF are considered dispensable for VACV 

replication [297].  Therefore, to promote cancer specific viral replication, a construct of 

VACV with a double deletions of vTK and VGF was created, called vvDD.  This created 

enhanced cell tropism for cells with constitutive EGFR or ERK1/2 activation [298].  By 

this same logic, cancers with activating mutations in KRAS downstream of EGFR also 

promote vvDD replication [299].  Infections of both resting and dividing NIH-3T3 cells 

demonstrated restricted vvDD replication compared to WT in resting cells but equivalent 

virus production in actively dividing cells [298].  Currently, strains with additional 

modifications to the vvDD backbone have gone on to clinical trials in patients with 

superficial injectable tumors [300].  
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General poxvirus replication lifecycle  

Poxviruses encode the necessary enzymes and proteins to allow replication within 

the host cytoplasm.  The binding of poxvirus virions is mediated by the expression of 

surface glycosaminoglycans on target cells or by components of the extracellular matrix 

[301-305].  The full replicative cycle depends on three waves of viral mRNA and protein 

synthesis known as early, intermediate, and late [284, 306].  After cell surface binding, 

poxvirus membranes fuse with cell membranes to release the virus core into the cytoplasm 

[307].  Along with the virus, packaged viral RNA polymerase and transcription factors 

initiate the first wave of viral gene expression (including the production of vTK in VACV).  

Approximately half of the 200+ genes encoded by VACV are transcribed during early 

infection [284]. These genes include intracellular modulators that inhibit apoptosis and 

block IFN signaling and prevent anti-viral responses [308].  Through a poorly understood 

mechanism, core uncoating is initiated causing dissolution of the core structure, releasing 

viral DNA into the cytoplasm which can be used as a template for DNA replication and the 

subsequent intermediate and late stages of virus lifecycle.  Unlike the early stage, the 

subsequent intermediate and late stages require host transcription factors to contribute to 

the efficiency of viral gene expression [299, 309-312].  Late genes are required for the 

assembly of virus particles.  The assembly of virions occurs in compartmentalized regions 

of the cytoplasm known as viral factories, which largely exclude cell organelles [286]. The 

process of forming infectious progeny is known as morphogenesis. The first visible 

structures are crescent shaped and made from lipid and protein, which subsequently 

elongates to form an oval or spherical structure that encloses the virus core components, 

creating an immature virion [313].  The viral DNA genome becomes packaged within the 
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immature virion, and as the core proteins are cleaved the virus acquires a characteristic 

brick-shaped structure which is fully infectious.  These are known as intracellular mature 

virions (IMV). For the majority of progeny virions, morphogenesis ends here and IMV are 

released after cell lysis [313].  However, a subset of IMV will be transported away from 

the viral factories via microtubule trafficking to acquire an envelope, typically from golgi-

derived membranes forming intracellular enveloped viruses (IEV) [314-319].  During 

egress of the virus from the cell, the IEV loses one of its outer membranes and fuses to the 

cell membrane to form cell-associated enveloped virus [320-323].  This articulated form 

of the virus can either help aid spread of the virus through direct cell-cell contact, or it may 

be released freely as extracellular enveloped virus [324].  For both MYXV and VACV 

based oncolytics, the IMV and IEV are used, since the majority of virions remain in these 

forms.   

Maraba Virus 

Maraba virus (MRBV) is an insect virus originally derived from female Brazilian 

sand flies in 1983.  Following the initial characterization of MRBV in 1984, MRBV was 

believed to be a strain of vesicular stomatitis virus (VSV), belonging to the Rhabdoviridae 

family, based on a number of complement fixation assays.  It is antigenically related to the 

New Jersey, Indiana, Cocal, Alagoas, and Carajas strains of VSV [325].  Rhabdoviruses 

are a family of bullet-shaped, enveloped viruses whose genomes consist of negative sense 

single stranded RNA and encode only 5 genes.  The prototypical Rhabdovirus, VSV, is 

made up of 11,161 nucleotides.  The outer most layer consists of a lipid envelope with 

incorporated glycoproteins (G), which allows virus binding and entry into the host cell 

[326, 327].  Currently, it is unknown what cell surface receptor the MRBV G protein binds 
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to mediate virus entry.  However, due to the diverse species tropism, it is believed that the 

receptor is ubiquitously expressed.  The middle layer consists of a matrix (M) protein which 

forms a bridge between the viral envelope and its genome [328].  The inner core is made 

up of the virus RNA genome tightly coiled around nucleocapsid protein (N) [329].  This 

core associates with both the large polymerase protein (L) and the phosphoprotein (P) 

[330]. (Fig. 1.4)  

Interestingly, MRBV, Indiana, Alagoas, and Cocal are so antigenically similar that 

they were indistinguishable from one another based on the laboratory methods used at the 

time [331].  Isolations from human sera revealed high neutralizing antibody titers 

indicating that human infection with these viruses was common, but this only manifested 

in 3-4 day illness with fever, headache, myalgia, and malaise [332].  With improvements 

in genome sequencing over many years, stratification of VSV strains became more feasible 

with VSV becoming divided into two serotypes, New Jersey and Indiana.  Based on the 

sequences of its glycoprotein and phosphoprotein genes, MRBV was later classified as a 

vesiculovirus with a distinct lineage within the Indiana serotype [333].  In the burgeoning 

field of oncolytic virotherapy, VSV demonstrated potent oncolytic activity and specificity 

for cancer cells in both in vitro and in vivo models [334-336].  However, the concern of 

pre-existing neutralizing antibodies against VSV raises the possibility of diminished 

systemic therapy for human cancer.  Serological studies with VSV in both human and non-

human animal models demonstrates differential serum neutralization of VSV between 

cancer patients and those of healthy subjects.  Interestingly, both MRBV and pseudotyped 

VSV with MRBV glycoprotein were able to evade both non-immune and immune 

mediated serum neutralization and retained parental virus growth kinetics and tropism.   
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Figure 1.4. Rhabdovirus structure and genome organization- Rhabdoviruses 

are transcribed in a sequential manner with genes at the 3’ end being transcribed in 

higher numbers than those at the 5’ end.  Nucleocapsid proteins are transcribed at 

the highest level to maintain RNA genome stability and viral packaging.  

Phosphoproteins play an important role in initiating and stabilizing L and N during 

transcription, translation, and genome replication during virus replication.  Matrix 

protein maintains structural integrity of the virus and acts as an anchor for G protein 

incorporation in the virus membrane.  Glycoprotein expression at the virus surface 

is required for virus binding and entry into the host cell.  Packaged polymerases are 

important for transcription and replication of virus genomes.   
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Therefore, although there is high genetic sequence similarity between these two viruses, it 

is clear that MRBV is a serologically distinct member of the Rhabdoviridae family [337].   

VSV replication lifecycle 

Rhabdovirus binding to the host membrane is pH dependent as G protein folding is 

influenced by pH [327].  Entry is facilitated by clatharin-dependent endocytosis of virions 

and trafficked through the cytoplasm via microtubule transport [338, 339].  Through an 

undefined mechanism, the endosome becomes multi-vesicular, causing fusion of the virus 

envelope with the internal vesicles in a pH dependent fashion [340, 341].  These internal 

vesicles then fuse back with the membrane of the endosome releasing the virus core into 

the cytoplasm of the cell [342].  The genome serves as both a template for genome 

replication and for transcription of virus genes.  Upon entry into the cytoplasm, the virus 

is uncoated and the M protein dissociates from the virus core leaving the N-RNA complex 

associated with both L and P proteins [343, 344].  The P protein is post translationally 

modified to promote homodimer formation, which is important for the interaction with the 

N and L proteins [330, 345].  Interaction of the L protein with the N-RNA is mediated 

through the P protein to initiate transcription [330, 346].  The L protein acts as the catalytic 

subunit of the viral polymerase and with the P protein forms an RNA dependent RNA 

polymerase (RdRp).  Together with host cell elongation factor 1α, guanylyl transferase, 

and heat shock protein 60, this complex facilitates transcription of viral genes [347, 348].  

As the RNA genome is non-segmented, transcription is sequential with genes at the 3’ end 

being transcribed in greater abundance than those at the 5’ end [349, 350].   

The fundamental difference for genome replication is the requirement of newly 

synthesized L, N and P protein complexes, whereas transcription requires predominantly 
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just L and P complexes [351].  During replication, the full genome is duplicated to produce 

an anti-genome, which subsequently acts as a template for the production of the full-length 

genome [352].  Because the promoter region of the anti-genome is more efficient than that 

of the genome promoter, more genomic copies of the RNA are made than anti-genome 

[352].  It is thought that the P protein maintains the N protein in a soluble encapsidated 

form [353, 354].  Both the genome and anti-genome contain localization signals to promote 

their replication and incorporation into new virions [355].  Virus assembly occurs at the 

cell membrane, where viral proteins are transported through different mechanisms.  G 

protein is transported to the plasma membrane through the secretory route, however the 

mechanism for M protein transport remains undefined [356, 357].  The core comprised of 

N-RNA, P, and L proteins is transported in a microtubule dependent manner to the plasma 

membrane, where it associates with M proteins [339, 358].  Finally, the M protein recruits 

a number of cellular proteins which help facilitate M protein ubiquitination and virus 

budding from the membrane [359, 360]. 

MRBV cancer cell tropism 

Maraba virus was first discovered to possess cancer cell specific tropism in a screen 

of a number of Rhabdoviruses in a panel of cancer cell lines. Maraba was discovered to be 

the most potent of these viruses, even more so than VSV.  Further modifications of the 

virus were introduced through point mutations in both the M (L123W) and G (Q242R) 

proteins, which rendered the virus more virulent but also more vulnerable to IFN responses.  

With a 100x greater maximum tolerated dose than WT MRBV, the MG1 construct of 

MRBV showed durable curative responses in syngeneic murine models of colon carcinoma 

and ovarian xenograft models [361].  Additional modifications to MRBV MG1 have been 
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engineered to produce an IFN decoy receptor (MG1IDE) upon successful replication of the 

virus, thereby reducing the capacity for IFN mediated resistance to MRBV in IFN-

responsive cancer cells.  Furthermore, normal cells were protected against MG1IDE 

oncolysis as only a small subpopulation were capable of being infected.  Thus, without 

productive virus replication, insufficient levels of the IFN decoy receptor could be 

produced to render the uninfected cells sensitive to virus infection [362].  Based on its 

broad acting cancer cell specificity and the relatively cell independent nature of replication, 

it is unclear whether additional trophic factors exist which may affect MRBV replication 

other than IFN response.   

It is abundantly clear that effective MRBV based oncolysis is not strictly due to its 

direct infection and oncolysis of cancer cells, but also because of its immunostimulatory 

activity.  In syngeneic murine models of metastatic melanoma, MG1-induced dendritic cell 

(DC) and natural killer (NK) cell activation was vital to effective oncolysis of cancer cells 

and reducing lung metastases.  Infection and replication of MG1 in DCs induced DC 

maturation, which allowed for priming of NK cells to mediate NK cell cytotoxicity of 

tumor metastases [363].  However, MRBV alone is a relatively weak inducer of anti-

tumoral adaptive T cell immune responses.  Therefore MRBV application has since 

evolved to be utilized as a vaccine vector.  Other syngeneic melanoma models have applied 

adenovirus vector based delivery of melanoma tumor associated antigens (Ad-hDCT) to 

prime CD8+T cell responses prior to MRBV administration.  Although no hDCT-specific 

T cells could be observed 10 days after Ad-hDCT was administered, administration of 

MG1-hDCT 12 days after Ad-hDCT elicited a strong recall response from CD8+ T cells.  

Optimal administration of secondary MG1-hDCT 9 days after Ad-hDCT showed reduction 
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of melanoma metastases and tumor burden, which significantly improved survival and 20% 

of mice were cured [364].  Thus, current phase I/II clinical trials being carried out have 

adopted a similar prime boost vaccine strategy with adenovirus vectors engineered to 

express the MAGE A3 tumor associated antigen (AdMA3) followed by MG1MA3 

administration [365].   

1.6 Experimental objectives and hypothesis 

 Oncolytic virotherapy represents a burgeoning field in cancer therapy.  The 

development of engineered viruses with improved cancer cell tropism, specificity, and 

efficacy represent the most recent advances in virotherapy.  Furthermore, many different 

pre-clinical and clinical trials have made it evident that viruses have central roles in 

immunostimulatory functions aside from strictly inducing oncolysis of tumors.  However, 

important questions remain unresolved in establishing the clinical utility of viruses for 

cancer therapy, specifically ovarian cancer therapy.  Few studies have investigated the 

therapeutic effect of viruses in intraperitoneally disseminated EOC metastases.  EOC 

spheroids undergo substantial morphological and signaling changes in pathways which are 

known to directly impact virus replication.  Thus it remains to be determined what impact 

spheroid mediated metastasis has on viral oncolysis.  Currently, only one study conducted 

by our research program has attempted to investigate how these factors impact MYXV 

oncolysis, and it remains unclear whether or not MYXV represents the best virotherapy for 

the treatment of metastatic EOC or whether more effective virotherapies exist.  Previous 

trials with MYXV, vvDD, and MRBV have demonstrated that all three viruses have 

significant oncolytic activity and potential clinical benefit.  However, the trophic factors 

which dictate their specificity are differentially represented within EOC tumors during 
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metastasis and across the patient population.  Therefore we sought to determine how 

dynamic changes in EOC biology during metastasis and between EOC cell lines impact 

their viral kinetics in an in vitro metastasis model.   

 Additionally, we sought to investigate cell mediators of MRBV infection and 

replication as they have yet to be elucidated. Published research on VSV has shown that 

few host cell dependent factors are required for virus replication.  This suggests that VSV 

and other highly similar viruses (such as MRBV) may be less susceptible to the various 

biological changes that occur in EOC cells.  Studies with MRBV have shown diverse cell 

tropism for a number of homogenous cancer cell lines, but it is unclear whether or not 

MRBV oncolysis will be impacted by intercellular differences within a heterogeneous 

tumor.  Thus, we sought to discover potential cell mediators that may impact MRBV and 

whether modulation of those factors could improve MRBV oncolysis.  Based on the 

complex and transforming nature of EOC cells during spheroid formation and metastasis 

as well as the high degree of intratumoral heterogeneity between cells within a tumor and 

over time, we hypothesize that these biological differences will directly impact oncolytic 

virus killing by MYXV, vvDD, and MRBV MG1 in EOC cells.   
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CHAPTER 2: Evidence for differential viral oncolytic efficacy in an in vitro model of 

epithelial ovarian cancer metastasis 
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Shepherd, T.G 

A version of this chapter has been published in Molecular Therapy – Oncolytics 

 

2.1 Introduction 

Epithelial ovarian cancer (EOC) is the most lethal gynaecologic malignancy and 

represents the sixth most commonly diagnosed cancer amongst women in the developed 

world [1].  A lack of effective therapeutic options, coupled with the highly heterogeneous 

nature of EOC, and being typically diagnosed at an advanced metastatic stage, contribute 

to the lethality of EOC [2, 3].  Current therapeutic strategies involve exhaustive 

cytoreductive surgery and post- operative platinum- and taxane-based chemotherapy [4-6].  

However, effective treatment is complicated by the manifestation of EOC as multiple 

histotypes, which are differentially responsive to platinum- and taxane-based combination 

chemotherapy treatments [7].  Furthermore, patients that initially respond well to platinum 

therapy almost inevitably relapse with chemo-resistant disease resulting in reduced overall 

survival.  Thus, there is a critical need for targeted and durable therapeutic alternatives 

beyond the standard first-line chemotherapeutic agents [8-10].  

Oncolytic virotherapy promotes viral infection and lysing of cancer cells.  The specific 

nature of oncolytic virus therapy stems from the selection of non- or lowpathogenic non-

human viruses that display tropism for cancer-associated genetic mutations or aberrant 

signaling [11].  Myxoma virus (MYXV) is a European rabbit-specific poxvirus that has not 

been shown to cause disease in humans and is used as a pesticide to control Australian 

rabbit populations [12].  MYXV displays tropism for cancer cells with up-regulation in 

active AKT signaling and dysfunctional p53, which is found in essentially all high-grade 
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EOC [13].  Conversely, vvDD is an engineered poxvirus with deleted vaccinia growth 

factor and viral thymidine kinase genes, which limit its infection to cells harbouring 

upregulated EGFR/RAS signaling commonly observed in low-grade EOCs [14].  Point 

mutations in the strain of MRBV used in this study modify the matrix protein (M) and 

glycoprotein (G) effectively boosting its replicative capacity in cancer cells while 

rendering it unable to counteract an antiviral type I interferon response in healthy cells.  

Though its specific tropism for cancer cells is relatively undefined, MRBV has been shown 

to have potent oncolytic effects in a broad range of cancer cells, including EOC [15].  

The mode of EOC metastasis is unique among most solid malignancies, and therefore 

it likely possesses distinct and novel mechanisms. EOC metastasis occurs via the shedding 

of malignant cells from the primary tumor into the peritoneal cavity; this can occur in the 

context of ascites, an exudative fluid commonly associated with advanced-stage disease. 

Single cells in suspension within the ascites are susceptible to death through anoikis; thus 

aggregation of single cells into multicellular spheroids facilitates escape from cell death 

[16, 17].  Furthermore, EOC spheroid survival is maintained in the low-nutrient 

environment of the ascites by undergoing cellular quiescence and autophagy [18, 19].  This 

tumour cell dormancy phenotype within spheroids is thought to allow persistence of 

microscopic EOC secondary deposits after treatment with first-line chemotherapeutics and 

support growth under more favorable conditions [20]. In addition, spheroids have an 

enhanced capacity to attach and invade mesothelial-lined surfaces in the peritoneal space 

promoting the formation of secondary tumor nodules [16].  

In our current study, we hypothesize that in the context of metastatic ovarian cancer, 

the ability to kill dormant tumour cells is essential to eradicate the potential for disease 

recurrence. In this study, we compare three oncolytic viruses, MYXV, vvDD and MRBV, 
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in an in vitro spheroid culture model of ovarian cancer metastasis to determine whether 

they have the potential to kill dormant tumour cells residing in spheroids.   

2.2 Results 

Oncolytic effects of MYXV, vvDD and MRBV in ovarian cancer cell lines.  

To begin to define the optimal oncolytic viral approach to the eradication of dormant 

EOC cells in spheroids, we applied three different viruses in an in vitro three-dimensional 

spheroid culture system, which we have established to model metastatic EOC (Fig. 2.1). 

Distinct molecular characteristics typify the lifecycle of metastatic ovarian cancer cells as 

they move from a proliferative state in the solid tumour to the resting state in ascites-

suspended spheroids and finally when these structures attach to a secondary site and cells 

proliferate to form a metastatic lesion. Herein, we performed oncolytic infections using 

proliferating adherent EOC cell lines, spheroids cultured in suspension, and spheroid 

reattachment to tissue culture substratum to determine whether molecular and cellular 

changes at these specific steps would affect oncolytic virus cell killing efficacy. We 

selected the established HEYA8, SKOV3 and OVCAR8 cell lines since they have been 

well-characterized genomically (Suppl. Fig. A1) and have been predicted to represent 

different EOC subtypes based on this data [21].  

First, we performed parallel viral infections of adherent EOC cell lines with 

established spheroids in suspension (Fig. 2.2a). Even in proliferating adherent cultures, we 

found that MYXV, vvDD, and MRBV were capable of inducing oncolysis of EOC lines 

with differential killing capacities among the three viruses and across cell lines (Fig 2.2).  

MYXV displayed the least potent killing and was unable to induce significant oncolysis at 

less than an MOI 1 in all cell lines (Fig 2.2b).  vvDD exhibited oncolysis at similar  
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suspension culture 
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a 3  days seed transfer 
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Adherent cells Suspended cells Spheroids Re-attached 
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Spheroids in patient 

ascites 

Peritoneal tumor 

implants 
Figure 2.1 In vitro three-dimensional spheroid model system of ovarian cancer 

metastasis.  (a) Ovarian cancer cells are grown as adherent proliferating monolayer 

cultures, and are transferred to Ultra-Low Attachment tissue culture plastic-ware where 

they naturally form multicellular aggregates, or spheroids, when in suspension culture. 

Spheroids are subsequently transferred back to standard tissue culture plastic to 

facilitate adhesion and growth of cells out of viable spheroids. (b) Phase contrast 

images of ovarian cancer cells in each of the culture conditions outlined in panel a. (c) 

Left: Phase contrast microscopic image of freshly-collected ovarian cancer patient 

ascites indicating the presence of spheroids in suspension. Right: Image representing 

ovarian tumour nodules implanted on the peritoneal wall of an ovarian cancer patient 

at the time of laparoscopic surgery.  
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concentrations as MYXV, but was able to induce greater loss of viability in comparison.  

Among the three EOC cell lines, OVCAR8 cells displayed greatest sensitivity to vvDD 

and MYXV infection whereas SKOV3 cells were most resistant in adherent culture 

infections.  In a similar fashion, when tested using ovarian cancer patient ascites-derived 

primary cultures, vvDD yielded better oncolytic activity than MYXV in the majority of 

clinical samples (Suppl. Fig. A2.1).  Although both MYXV and vvDD were able to induce 

modest oncolysis of EOC cell lines in adherent culture, infection-mediated cell killing was 

dramatically reduced in EOC spheroids for all cell lines tested (Fig. 2.2c).  vvDD was 

completely ineffective at inducing oncolysis of SKOV3 spheroids, but it did maintain some 

oncolytic activity in HEYA8 and OVCAR8 spheroids.  

These findings using MYXV and vvDD were in stark contrast to results of MRBV 

infection, which induced robust oncolysis-mediated cell killing across all EOC cell lines 

in adherent culture even at an MOI of 0.001 (Fig. 2.2b).  In contrast, MRBV infection of 

heterogeneous patient-derived cells yielded highly variable oncolytic effects with one 

sample exhibiting robust MRBV-mediated loss in cell viability similar to established EOC 

cell lines (Suppl. Fig. A1). However, a potent oncolytic effect was observed in MRBV-

infected HEYA8 and SKOV3 spheroids where dramatic loss of cellular viability was 

evident with as little as MOI 0.01 at three days post-infection. Interestingly, we observed 

a significant reduction in MRBV oncolytic effects in OVCAR8 spheroids compared with 

adherent cells suggesting that EOC cells may have the capacity to acquire resistance against 

MRBV infection in three-dimensional spheroid form (Fig. 2.2c).  

MRBV is faster at inducing oncolysis of EOC cells than MYXV and vvDD.    

We hypothesized that the potent oncolysis of EOC cells by MRBV may be due to 

a rapid ability to replicate its small RNA-based genome, allowing it to complete multiple   
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Adherent culture Spheroid culture 

Figure 2.2 Analysis of MYXV, vvDD, and MRBV oncolytic-mediated killing of 

EOC cell lines in adherent and spheroid culture. (a) Schematic representation of 

viral infection of ovarian cancer cells in adherent and spheroid culture. (b) HEYA8, 

SKOV3, and OVCAR8 cells were infected at increasing concentrations to a maximum 

of multiplicity of infection (MOI) 10, as indicated; UV-inactivated virus was used at a 

MOI of 10. Cell viability was measured after 72 hours using CellTiter-Glo. (c) HEYA8, 

SKOV3, and OVCAR8 cells were seeded to Ultra-Low Attachment dishes to form 

spheroids over 3 days, then infected at the indicated doses; spheroid cell viability was 

assayed as in panel b (*P < 0.05). EOC, epithelial ovarian cancer; MYXV, Myxoma 

virus. 

b c 
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rounds of infection within the experimental time frame of 72 hours.   MRBV contrasts the 

large poxviruses, MYXV and vvDD, which have been shown to take up to several days to 

complete their life cycle, thus they may only complete a single round of infection within 

72 hours.    

To assess this directly in our system, we sought to compare viral infection kinetics 

among MYXV, vvDD, and MRBV in both adherent and spheroid cultures.   Cells were 

infected with an MOI 10 to maximize infection of all cells at the initial time point.   We 

then assayed cell viability as an initial surrogate to observe virus infection over five days.  

In adherent culture, we found that MRBV was able to induce oncolysis in both HEYA8 

and OVCAR8 cells within 24 hours of infection (Fig. 2.3a).   In support of our previous 

findings (Fig. 2.2b), MRBV exhibited a significant delay of infection in adherent SKOV3 

cells taking over 48 hours to die from MRBV infection.   In contrast, complete oncolysis 

of adherent EOC cells by MYXV and vvDD  

required up to five days.  

We have previously shown that MYXV replication is attenuated in EOC spheroids 

compared to infection of adherent monolayer cells [22].  Therefore, we tested the kinetics 

of MYXV, vvDD, and MRBV infection in spheroids to compare directly with our results 

using proliferating adherent cell lines.   We found that MYXV was largely ineffective at 

inducing detectable oncolysis in EOC spheroids by three days, but cell viability was 

reduced in HEYA8 and OVCAR8 spheroids by five days post-infection (Fig. 2.3b). 

Although a 72-hour infection of EOC spheroids with vvDD yielded little oncolysis, 

extending the time course to five days was sufficient for marked loss of HEYA8 and 

OVCAR8 spheroid cell viability.   Time course infections with MRBV resulted in cell 

death between 48 and 72 hours for both HEYA8 and SKOV3 spheroids.  Interestingly,  
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Figure 2.3 Rapid kinetics of MRBV-mediated killing of EOC cells and spheroids 

compared with MYXV and vvDD. (a) MRBV-mediated cell killing is observed 

within 24 h in adherent EOC cells, but requires longer incubation in SKOV3 cells. 

Oncolysis of adherent cells by MYXV and vvDD is considerably slower. (b) MRBV 

produces rapid cell killing in spheroids, but there is an incomplete oncolytic effect in 

SKOV3 and OVCAR8 spheroids. EOC spheroids have reduced viability due to vvDD 

infection by 5 d, yet remain relatively resistant to MYXV infection. (* p<0.05)  
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OVCAR8 spheroids were relatively resistant to MRBV mediated cell killing with a limited 

extent of cell death similar to what we observed for vvDD.  This significantly contrasts 

MRBV infections of adherent EOC cell lines, including OVCAR8 cells, which displayed 

significant cell death within 24 hours. These unexpected results reinforce the idea that the 

potential underlying mechanisms governing oncolytic efficacy in EOC cells may be quite 

dynamic, and stress the importance of preclinical testing in complementary in vitro model 

systems.  

MRBV produces significantly more virus progeny than MYXV and vvDD.   

We postulated that the observed differences in oncolytic effect among the three 

viruses in our spheroid culture system were also impacted by the efficiency of total virus 

production.  To assess this directly, we infected adherent cells and spheroids and titrated 

total infectious virus particles. MRBV infection of adherent EOC cell lines yielded 

significantly more infectious viral progeny compared to both vvDD (7- to 17-fold increase) 

and MYXV (90- to 400-fold increase) (Table 2.1).  Moreover, the number of viral progeny 

produced from MRBV infection in adherent culture was relatively similar among the three 

EOC cell lines.  In spheroids, however, infectious progeny produced by MRBV infection 

was more variable among cell lines. MRBV infection of SKOV3 spheroids yielded 16-fold 

less virus and OVCAR8 spheroids yielded 69-fold less than HEYA8 spheroids (Table 2.1).  

These MRBV titers were congruent with our results of cell viability demonstrating reduced 

MRBV oncolysis of OVCAR8 spheroids (Fig. 2.2c).  The number of viral progeny 

produced from vvDD infections was similarly reduced in spheroids among cell lines tested.  

In fact, both MYXV and vvDD were able to produce only a 0.2- to 3.2-fold increase in 

viral progeny than what was used to initiate infection.  Again, this result suggests that EOC 

spheroids possess physical or molecular changes in cells that significantly impact the  
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Table 2.1. Quantification of oncolytic virus production in infected adherent ovarian 

cancer cells and spheroids.  

  

  

 Adherent culturea   

HEYA8  SKOV3  OVCAR8  

MYXV  1.38±0.08 x105  5.37±0.21 x105  1.30±0.13 x105  

vvDD  7.78±1.22 x106  2.78±0.35 x106  2.83±0.59 x106  

MRBV  5.52±1.55 x107  4.82±1.11 x107  2.38±0.43 x107  

      

  

  

 Spheroid cultureb   

HEYA8  SKOV3  OVCAR8  

MYXV  8.54±2.07 x105  1.75±0.33 x105  1.12±0.34 x105  

vvDD  1.60±0.21 x106  3.12±1.58 x105  6.04±1.39 x105  

MRBV  1.09±0.15 x108  6.80±0.78 x106  1.58±0.41 x106  

a- In adherent culture, 2.5 x 104 cells were infected in 24-well dishes at MOI 10 

(2.5 x 105 pfu). b- In spheroid culture, 5 x 104 cells were infected in 24-well ULA 

cluster plates at MOI 10 (5 x 105 pfu).   
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replicative life cycle or amplification for both MYXV and vvDD in these dynamic 

structures.  

Activation of MYXV and vvDD oncolysis upon spheroid reattachment.    

 

We use spheroid reattachment as a general method to assess cell viability within 

these structures, as well as to model metastasis formation due to adhesion of spheroids to 

secondary sites. To this end, EOC spheroids were infected for 72 hours prior to transfer to 

adherent culture for spheroid reattachment (Fig. 2.4a).  Spheroid cells are allowed to 

reattach and disperse for another 72 hours, after which the dispersion area of cells from 

infected spheroids was quantified (Fig. 2.4b).   Despite lacking a significant oncolytic cell-

killing effect in spheroids while in suspension, oncolysis mediated by both MYXV and 

vvDD was activated upon spheroid reattachment and significantly reduced the ability of 

cells to disperse from spheroids and form a viable monolayer (Fig. 2.4c and 2.4d).  Reduced 

dispersion was apparent within 24 hours after reattachment and sustained for up to 4 days 

(Supplementary Fig A2.2).  Due to its dramatic impact on spheroid cell viability, MRBV 

infection completely prevented reattachment of HEYA8 and SKOV3 spheroids (Fig. 2.4c 

and Supplementary Fig. A2.2).   Although our previous results of cell viability indicated a 

marginal effect of vvDD infection on OVCAR8 spheroids (Fig. 2.2c), vvDD completely 

prevented OVCAR8 spheroid reattachment suggesting a significant reduction of cell 

viability in these structures.  Interestingly, and in marked contrast to vvDD, MRBV-

infected OVCAR8 spheroid cells were still capable of reattaching and dispersing, but to a 

lesser extent than mock-infected controls (Fig. 2.4c and 2.4d, and Supplementary Fig. A1).     

We next sought to examine the direct oncolytic effect of all three viruses on 

established reattached spheroids (Fig. 2.5a).  This facilitates our ability to evaluate their 

potential to target metastases, as well as determine whether insensitivity to oncolytic virus 

infection observed in suspension spheroids also existed in reattached spheroid nodules.  
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Figure 2.4 MYXV and vvDD oncolysis is reactivated after spheroid reattachment. (a) 

Schematic representation of spheroid infection followed by reattachment to standard tissue 

culture-treated plastic. (b) Representative image of dispersion area quantification as denoted 

by dashed outline. (c) HEYA8, SKOV3 and OVCAR8 cells were seeded to form spheroids 

then infected with MYXV, vvDD, or MRBV for 72 h. Infected spheroids were transferred 

to adherent culture to allow reattachment for 72 h, then fixed and stained. Spheroid 

reattachment was either completely absent (indicating lack of viable cells), or dispersion of 

cells from the attached spheroid was significantly reduced (indicating re-activation of 

oncolytic activity upon reattachment to adherent culture). Scale bar: 1mm. (d) 

Quantification of mean dispersion area was performed using ImageJ software. (* p<0.05).   
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We observed virus infection of attached spheroids with treatment of MYXV, vvDD, and 

MRBV within 24 hours using green fluorescent protein (GFP) expression as a marker (Fig. 

2.5b); this resulted in cytopathic effect in the dispersing adherent cells emanating from 

attached spheroids while leaving the spheroid cores relatively intact (Fig. 2.5c).  These 

findings further emphasize the requirement of cells to be adherent to promote MYXV and 

vvDD induced oncolysis. Similar to reduced cytopathic efficacy observed in MRBV 

infection of OVCAR8 spheroids, we observed reduced GFP expression in MRBV-infected 

OVCAR8 attached spheroids when compared with MRBV-infected HEYA8 and SKOV3 

attached spheroids, suggesting decreased viral entry or replicative potential in  

OVCAR8 spheroids.     

MRBV entry into EOC spheroid cells is significantly reduced.   

Since we had observed an appreciable difference for MYXV and vvDD to induce 

oncolysis of spheroids, and slower infection kinetics of spheroids by MRBV particularly 

in OVCAR8 spheroids, we sought to determine the efficiency of virus entry into adherent 

cells and spheroids.  To achieve this end, we titrated both the amount of virus remaining 

in the supernatant and that which had entered the cell. Although we had observed a 

significant reduction in oncolytic efficacy in EOC spheroids for MYXV and vvDD (Fig. 

2.2b and 2.2c), there was no significant difference for either MYXV or vvDD to enter 

adherent or spheroids cells (Fig. 2.6a).  In contrast, we observed a significant reduction in 

the ability of MRBV to enter spheroids for all three EOC cell lines when compared with 

adherent cells.      
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Figure 2.5 Reattached EOC spheroids are susceptible to MRBV infection. (a) Schematic representation of the 

infection of reattached spheroids. (b) HEYA8, SKOV3 and OVCAR8 cells were seeded to form spheroids, 

transferred to adherent culture to attach and disperse for 72 h, and then infected with MYXV, vvDD, or MRBV. 

Bright field and fluorescence images were captured at 24 h post-infection and images were merged using Adobe 

Photoshop software. (c) After 72 h of infection, SKOV3 and HEYA8 spheroids and dispersing cells are completely 

eradicated by MRBV infection, yet OVCAR8 spheroids and dispersing cells exhibit less oncolytic-mediated cell 

death. Infection by vvDD is more effective to reduce viable cells than MYXV for all reattached spheroids. Scale 

bar: 1 mm.  
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MRBV binding and infection of EOC spheroids requires low density lipoprotein 

receptor (LDLR) expression.    

To investigate the acquired mechanism determining the enhanced ability of MRBV 

to enter adherent EOC cells compared with spheroids, we postulated this was due to 

changes in the expression of a cell surface receptor required for MRBV entry.  Previous 

studies have identified the LDLR as a cell surface receptor that is used by the closely-

related vesicular stomatitis virus (VSV). Since the glycoprotein responsible for binding 

and entry of host cells by VSV shares 80% amino acid sequence homology with MRBV 

glycoprotein, we sought to determine if the mechanism of MRBV entry in EOC cells was 

LDLR mediated.  Indeed, we observed a consistent decrease in the expression of LDLR 

protein expression in day-3 spheroids when compared with adherent cells among multiple 

EOC cell lines (Fig. 2.6b).  To test this mechanism further, we performed siRNA 

knockdown of LDLR to validate whether LDLR is required by MRBV to gain entry to host 

cells.  LDLR knockdown in SKOV3 cells (Fig. 2.6c) resulted in a significant decrease in 

MRBV entry (Fig. 2.6d), and a resultant increase in cell viability in MRBV infected cells 

as compared with knockdown control SKOV3 cells (Fig. 2.6e). In contrast, knockdown of 

LDLR had no effect on cell viability due to infection with MYXV or vvDD.    

2.3 Discussion 

  

Most ovarian cancer patients are diagnosed with late-stage metastatic disease, are 

subjected to multiple successive recurrences, and will eventually succumb to 

chemotherapy-resistant disease.  Thus, the first objective of this study was to test the 

potential of MYXV, vvDD, and MRBV as therapeutic alternatives to conventional 

chemotherapeutics for the treatment of metastatic EOC. A second important objective was 
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Figure 2.6 Efficient MRBV entry into ovarian cancer cells requires LDLR 

expression. (a) HEYA8, SKOV3 and OVCAR8 cells were seeded to adherent and 

spheroid culture, and infected with MRBV, vvDD and MYXV for 1 h at 4ºC to allow 

adsorption. Virus titers from cell lysates are shown relative to total virus collected (i.e., 

supernatant + cells). MRBV titers were determined using supernatant only.  Virus 

treatment in the absence of cells were used as controls.  MRBV binding was 

significantly reduced in EOC spheroids for all three cell lines tested when compared 

with MYXV and vvDD. (b) LDLR protein expression is reduced in ovarian cancer day-

3 spheroids as compared with proliferating adherent cells; this results was also observed 

in the HEY and OVCAR3 cell lines. (c) Western blot demonstrating siRNAmediated 

LDLR knockdown performed by transient transfection of SKOV3 cells. (d) MRBV 

binding is reduced in SKOV3 cells with LDLR knockdown as compared with siNT 

control transfected cells. (e) LDLR knockdown significantly decreases MRBV-

mediated oncolytic SKOV3 cell death as determined by CellTiter-Glo after 24 h, 

whereas there is no effect on viability after MYXV and vvDD infection. (* p<0.05; ** 

p<0.01)  
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to demonstrate that testing viral oncolytics in a uniquely different culture-based model 

system, i.e. three-dimensional spheroids, can elicit unforeseen results and uncover 

important mechanisms controlling virus infection and efficacy. MRBV is clearly the most 

potent oncolytic virus among the EOC cell lines that we tested in both proliferating 

adherent cells and quiescent 3D spheroids. In addition, we are the first to discover that 

endogenous down-regulation of LDLR protein expression in spheroids has the potential to 

reduce MRBV oncolytic efficacy. Although the larger and slower poxviruses MYXV and 

vvDD were less infectious and produced less virus progeny in ovarian cancer cell lines and 

spheroids, virus-infected spheroids displayed reduced capacity to reattach and grow due to 

reactivation of virus infection. Given our results, we propose that early in vitro testing of 

viral oncolytic agents should consider using an experimentally-tractable cell culture system 

such as ours that mimics unique mechanisms of disease metastasis.   

We observed significant differential effects of the three viruses among the three cell 

lines and when assessing the different steps of metastasis as modeled in our culture system, 

particularly when comparing adherent to spheroid cells (summarized in Table 2.2). In 

adherent culture, MRBV clearly exhibited the highest oncolytic activity. Adherent 

monolayer cultures represent proliferating ovarian cancer cells with intact growth factor 

signaling. In contrast, overall efficacy was reduced among the three viruses in spheroids. 

In particular, the almost universal MRBV oncolytic efficacy was dramatically reduced in 

OVCAR8 spheroids. We demonstrate that one of the key receptors MRBV utilizes to bind 

and enter ovarian cancer cells is LDLR; surprisingly, we also show that the LDLR receptor 

is down-regulated in spheroids compared with adherent proliferating ovarian cancer cells. 

This could be related to the dormant phenotype and the fact that the overall anabolic 

metabolism is reduced in spheroids [18, 19, 23]. It has been reported previously that  
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Table 2.2 Summary of overall results for MYXV, vvDD and MRBV oncolytic efficacy in ovarian 

cancer adherent cells and spheroids.  

  

  

HEYA8   SKOV3  OVCAR8  

ADH  SPH  ADH  SPH  ADH  SPH  

MYXV  +  -  +  -  +  -  

vvDD  ++  +  +    - ++  ++  

MRBV  +++++ ++++  +++++  ++++  +++++  +  
- No killing 

+     EC50 MOI 10 

++  EC50 MOI 1 

+++  EC50 MOI 0.1 

++++ EC50 MOI 0.01 

+++++ EC50 MOI 0.001 

  



96 
 

densely-packed cells down-regulate LDLR resulting in decreased cholesterol metabolism 

in gynaecologic cancer cell lines [24, 25].   It is possible that this same effect of LDLR 

down-regulation is occurring in densely-packed cells comprising EOC spheroids thereby 

reducing initial virus entry. It is important to note, however, that after this initial delay in 

virus entry, MRBV is capable to infecting spheroid cells and producing infectious viral 

progeny albeit with slower kinetics compared with adherent proliferating cells. We 

postulate that the dormant phenotype observed in cultured spheroids is analogous to 

microregions of tumours that are avascular or lack essential growth factor and nutrient 

availability. To that end, it would be important to address LDLR expression level in ovarian 

tumours directly, and assess whether modifications can be made to increase MRBV 

binding and entry to the potentially resistant subpopulations due to altered metabolism.  

MRBV is the most potent of the three oncolytic viruses tested. It exhibited the 

greatest killing in the three cell lines. It had the fastest kinetics and generated the most 

infectious progeny. This is most likely supported by the fact that MRBV is a rhabdovirus 

with a short life cycle and small genome. This has also been observed for MRBV in other 

cancer cell systems, and its related family members, such as the most widely-studied 

rhabdovirus, VSV [15, 26]. MRBV was originally identified from a large biorepository of 

rhabdoviruses as having potent activity in several different cancer cell lines [15]. This 

group also developed the double point mutant MRBV MG1, which exhibited enhanced 

growth in cancer cells and reduced effects in normal cells. MRBV is rapidly entering 

clinical trials with engineered vectors expressing tumour-associated antigens (TAAs), such 

as MAGE A3 [27]. We postulate that identifying similar TAAs specific for ovarian cancer, 

perhaps other MAGE proteins [28], could be rapidly applied to develop clinically-useful 

MRBV oncolytic viral vectors. It has become increasingly evident that oncolytic virus 
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efficacy in vivo relies on eliciting an active immune response, which may lead to more 

durable anti-tumour effects in the long-term [29].  We recognize that the cell culture-based 

system used in this report is unable to assess the contribution of the immune system; 

however, we argue that our in vitro ovarian cancer spheroid metastasis model is a useful, 

rapid and widely-amenable experimental tool for initial testing of novel oncolytic vectors 

across histologic and molecularly-defined cancer subtypes, particularly using patient-

derived malignant tumour cells.  

Generally speaking, ovarian cancer spheroids are more restrictive to viral oncolysis. 

One argument could be made regarding the general physical structure of spheroid that may 

make them less readily infected by viruses. Interestingly, we found that for MYXV and 

vvDD viruses there was no difference in binding of these viruses to adherent monolayer 

cultured cells compared with 3D spheroids in suspension. However, the ability of these 

two different viruses to complete their lifecycle was dramatically restricted in spheroids. 

In this case, this is most likely due to the inherent phenotype of ovarian cancer cells in 

spheroids, namely down-regulation of AKT signaling, induction of autophagy, and a 

cellular quiescent phenotype [18, 19, 23]. Oncolytic viruses typically rely on overactive or 

mutant growth factor signaling to promote their life cycle and this constitutes a critical 

cancer-specific tropism [30]. We have shown in other reports that the AKT signaling 

pathway is markedly down-regulated in ovarian cancer cell spheroids, and this directly 

affected MYXV oncolytic efficacy [22]. Soares and colleagues have shown that increased 

levels of phosphorylated AKT are required for late-stage vvDD morphogenesis and 

production of virus progeny [31].  Likewise, phosphorylated AKT is also required for 

permissive infection of MYXV; however, the specific stage of the requirement is currently 

undefined [32].   In our previous study we demonstrated that activated AKT levels are 
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significantly reduced within spheroids as compared with adherent EOC cells, but this 

activity is re-instated upon spheroid reattachment [19]. Our present results are in agreement 

with this phenomenon, since reattachment of spheroids triggered the re-activation of 

MYXV and vvDD-mediated oncolytic killing of dispersing cells.  

MYXV and vvDD reach late-stage virus production in spheroids yet are restricted 

to cause cell death. This restriction is quickly relieved upon spheroid reattachment when 

the dormant-to-proliferative switch occurs [19] and cells are again susceptible to viral-

mediated oncolytic cell death. This result is consistent with our previous study using 

MYXV in patient-derived spheroids [22]. We use spheroid reattachment as a model of 

intraperitoneal metastatic seeding of malignant cells akin to what is observed in patients 

[16, 17, 33, 34]. In fact, OVCAR8-generated spheroids were dramatically susceptible to 

vvDD-induced cell death when using spheroid re-attachment as an assay. It would be 

interesting to determine what mechanisms are utilized by vvDD to affect OVCAR8 

spheroid cells compared with MRBV, an agent that was largely ineffective only in 

OVCAR8 spheroids. This knowledge may uncover novel strategies to engineer MRBV to 

make it more widely applicable to ovarian tumours of different histologies and 

pathobiologies across the ovarian cancer patient spectrum. Given our results, we propose 

that tumour-homing oncolytic viruses could be potent therapeutic agents with particularly 

high tropism and efficacy to seek and destroy these persistent microscopic structures in a 

patient after surgical debulking of macroscopic disease.  
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2.4 Materials and methods 

Cell culture  

HEYA8, SKOV3, HEY, Vero, HeLa, and BGMK cell lines were cultured in DMEM 

(Wisent) supplemented with 5% fetal bovine serum (FBS; Wisent). OVCAR8 and 

OVCAR3 cells were cultured DMEM/F12 (Wisent) containing 10% FBS. All cell lines 

were cultured in a humidified environment at 37ºC with 5% CO2.  

Ascites fluid obtained from ovarian cancer patients at the time of debulking surgery or 

paracentesis was used to generate primary cell cultures as described previously [22]. Cells 

were cultured in DMEM/F12 media supplemented with 10% FBS and grown in a 37°C 

humidified atmosphere of 95% air and 5% CO2. Since these represent primary cell cultures, 

all experiments were performed between passages 3 and 5. All patient-derived cells were 

used in accordance with institutional human research ethics board approval (UWO HSREB 

12668E).  

  

Virus production   

MYXV, vvDD, MRBV were amplified in BGMK, HeLa, and Vero cell lines, respectively.  

BGMK cells were infected with MYXV at MOI 10 for 1 h.  After 48 h of infection, cells 

were harvested and lysed, cell debris was pelleted by centrifugation and supernatant with 

MYXV were purified [35].  HeLa cells were infected with vvDD at MOI 0.1 and 60 h after 

infection cells and virus were harvested and purified similar to MYXV.  Vero cells were 

infected with MRBV at MOI 0.01.  After 20 h of infection, supernatant was collected and 

virus was purified using a 0.2 μM filter.  All virus constructs have been engineered 

previously to express green fluorescent protein (GFP) from endogenous viral promoters: 

MYXV [36, 37], vvDD[14], MRBV [26]. The MRBV MG1 mutant strain used in these 

experiments has been described previously [26].  
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Viral titer quantification 

Quantification of MYXV, vvDD, and MRBV titers were performed using BGMK, HeLa, 

and Vero cells, respectively.  Virus titers were determined through limiting dilutions of 

virus on BGMK, HeLa, or Vero.  Agarose overlays and plaque assays were performed to 

determine virus concentration.   

Adherent culture   HEYA8, SKOV3, and OVCAR8 cells were seeded at 25 000 cells/well 

of a 24-well plate and infected with MYXV, vvDD, or MRBV at MOI 10.  After 48 h 

MRBV infection, and 4 d after MYXV and vvDD infection, cells and supernatant were 

harvested together for virus content.   MYXV, vvDD, and MRBV were titrated on BGMK, 

HeLa, and Vero cell lines, respectively.  

Spheroid culture   HEYA8, SKOV3, and OVCAR8 cells were seeded at 50 000 cells/well 

of a 24-well ultra-low attachment (ULA) cluster plate and allowed to form spheroids for 3 

d. Spheroids were then infected while in suspension with MYXV, vvDD, or MRBV at 

MOI 10. Seventy-two hours after MRBV infection, and 5 d after MYXV and vvDD 

infection, spheroids and supernatant were harvested together for virus content.   Spheroids 

were triturated using a 26-gauge needle and titered as described above.  

Virus infection of EOC cells  

HEYA8, SKOV3, and OVCAR8 were seeded at 5 000 cells/well of a 96-well plate and 

were infected the following day with MYXV, vvDD, or MRBV at a multiplicity of 

infection (MOI) 0.001, 0.01, 0.1, 1, and 10.  The appropriate UV-inactivated virus at MOI 

10 or no virus (mock infected) was used as controls.  Seventy-two hours post infection, 

viability was assayed using CellTiter-Glo® Luminescent Cell Viability Assay (Promega).    
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For infection of EOC spheroids, cells were seeded at 50 000 cells/well of a 24-well 

ULA cluster plate (Corning) and spheroids were allowed to form over 72 h. Spheroids were 

then infected at MOI 0.01, 0.1, 1, and 10, using the same controls as described for adherent 

cell infections.  

For infection of reattached spheroids, spheroids were formed as previously 

described, in the absence of virus, and transferred to 6-well tissue culture-treated plates for 

reattachment.   Forty-eight hours after reattachment, spheroids were then infected at MOI 

10 based on the initial seeding of 50 000 cells/well of a 24-well ULA plate.   Spheroids 

were imaged 24 h after infection then fixed and stained at 72 h post-infection using 

HEMA3 (Fisher HealthCare™).  Phase contrast and fluorescence images of infected cells 

and spheroids were captured during each experiment using a Leica DMI 4000B inverted 

microscope.  Fluorescence and phase contrast overlays were generated using Adobe 

Photoshop.  

Kinetics of infection and cell viability  

HEYA8, SKOV3, and OVCAR8 cells were seeded as described above for both adherent 

and spheroid cultures.  Cells were then infected with an MOI 10 to allow for maximum 

virus infection and achieve synchronous virus lifecycle among all cells within the culture.  

Viability was then assayed using CellTiter-Glo® at 12, 24, 36, 48, 72 h, and 4 and 5 d after 

infection for adherent cultures and at 24 h intervals for up to 6 d with spheroids. To assay 

cell viability in spheroids, spheroids were collected and pelleted, followed by resuspension 

in CellTiter-Glo® and trituration with a 26-gauge needle. Luminescence was measured 

using a Wallac Plate Reader (PerkinElmer).  

Spheroid reattachment quantification  
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Cells were seeded at 50 000 cells/well of a 24-well ULA cluster plate to form spheroids 

over 72 h. Spheroids were infected with MYXV, vvDD, or MRBV at MOI 10.  Spheroids 

were reattached by transferring to 6-well tissue culture plates.   Spheroids were permitted 

to attach and disperse for an additional 72 h prior to fixing and staining using HEMA3™.   

Dispersion areas were calculated using ImageJ 1.48 software (NIH) by subtracting the area 

of the core spheroid from the total area of the dispersion zone.  

Virus entry quantification  

Adherent cells and spheroids were infected with MOI 10 MYXV, vvDD, and MRBV for 

1 h at 4ºC to allow virus infection of cells, but to prevent virus uncoating that would affect 

subsequent quantification of infectious virus titers.  After 1 h of virus adsorption, 

supernatant and cells were separated and cell pellets were washed twice with PBS.  

Spheroids and adherent cells were triturated as described above to ensure that all non-

adsorbed virus was released.  Virus content from supernatants and cell pellets were titrated 

separately to quantify the proportion of virus that had entered adherent cells and spheroids.  

Immunoblotting  

Cell lysates were generated using a modified radioimmunoprecipitation assay (RIPA) 

buffer [50 mM HEPES pH7.4, 150 mM NaCl, 10% glycerol, 1.5 mM MgCl2, 1 nM EGTA, 

1 nM sodium orthovanadate, 10 mM sodium pyrophosphate, 10 mM NaF, 1% Triton X 

100, 1% sodium deoxycholate, 0.1% SDS, 1 mM PMSF, 1× protease inhibitor cocktail 

(Roche, Laval, QC)] as described previously [38].  Lysates were incubated on ice for 20 

minutes and vortexed to ensure complete lysis.  Lysates from day-3 spheroids were 

triturated using a 26-gauge needle to help facilitate lysis.  Protein concentrations were then 

determined by Bradford assay using Protein Assay Dye Reagent (BioRad, Mississauga, 

ON). Thirty micrograms of each lysate was run on an 8% SDS PAGE gel and transferred 
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to a polyvinylidene difluoride membrane (PVDF; Roche).  Blots were blocked with 5% 

skim milk in Tris-buffered saline with Tween 20 (TBST; 10 mM Tris-HCl, pH 8.0, 150 

mM NaCl, 0.1% Tween 20).  After 1 h of blocking, blots were incubated on a rocking 

platform shaker at 4ºC overnight with specific antibodies at 1:1000 dilution in bovine 

serum albumin (BSA)/TBST [anti-LDLR (Abcam, ab14056; Cambridge, MA); anti-actin  

(Sigma)].  Blots were washed using TBST and incubated with peroxidase-conjugated anti-

rabbit IgG (GE Healthcare) at 1:10 000 dilution, 5% skim milk/TBST (LDLR) or 5% 

BSA/TBST (actin), for 1 h at room temperature.  Blots were washed again using TBST 

followed by incubation with Luminata™ Forte Western HRP Substrate (Millipore) and 

visualization of bands with the ChemiDoc™ MP System (BioRad).   

LDL Receptor Knockdown  

SKOV3 cells were seeded in 48-well dishes and transfected the next day with siLDLR 

SMARTPool RNA or the siNT non-targeting control RNA using DharmaFECT 1 

transfection reagent (Dharmacon).  At 48 h post-transfection, cells were used for infection 

experiments [virus entry (MRBV at MOI 0.1) and cell viability (MYXV and vvDD at MOI 

1; MRBV at MOI 0.1)] as described above.   

Statistical Analysis  

Statistical significance was determined by unpaired two-tailed Student’s t-test or one-way 

analysis of variance (ANOVA) using GraphPad Prism 6.  Statistical significance was set 

at p<0.05.   
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2.5 Supplementary information  

 

Supplementary Table A2.1. Summary of gene mutations identified in the three cell lines 

used in this study.  

  TP53  KRAS  BRAF  PIK3CA  ERBB2  ARID1A  CTNNB1  

HeyA8    G12D; AMP  G464E  AMP        

SkOV3    AMP    H1047R  AMP  Q586*    

OVCAR8  Y126 splice  P121H      G776V    Q26R  

Data from Domcke et al. (2013) Ranking ovarian cancer cell lines by suitability as HGSOC 

models. Nat Commun 4: 212   
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Supplementary Figure A2.1. Differential oncolytic efficacy in ovarian cancer patient ascites-

derived primary cells. Primary cultures of four independent ascites samples (EOC56, EOC63, 

EOC118 and EOC105) were infected with MYXV, vvDD and MRBV in adherent culture at increasing 

concentrations to a maximum of MOI 10, as indicated. UV-inactivated virus was used at an MOI of 10.  

Cell viability was measured after 72 h of infection using CellTiter-Glo®.  
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Supplementary Figure A2.2. Time course of infected spheroid reattachment. Spheroids were formed 

using HEYA8 (a), SKOV3 (b) and OVCAR8 (c) cells for three days, infected, then followed by 

reattachment to adherent culture as described in Figure 4. Spheroids were fixed and stained every 24 h 

for up to 4 d. Spheroid attachment and cell dispersion area was significantly reduced by all virus 

infections, however OVCAR8 spheroids exhibited reduced oncolytic efficacy by MYXV and MRBV 

infection. Scale bar: 1 mm. 
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CHAPTER 3: Spatial and temporal epithelial ovarian cancer cell heterogeneity  

can impact Maraba virus oncolytic potential 

 
Tong, J. G., Valdes, Y.R., Barrett, J.W., Bell, J.C., Stojdl, D., DiMattia, G.E., Shepherd, T.G.  

A version of this chapter is in preparation for submission to Gynecologic Oncology 

 

3.1 Introduction 

Diagnosis of high grade serous epithelial ovarian cancer, the most common ovarian cancer, 

late in metastasis and the inevitable acquisition of chemotherapeutic resistance are the 

major contributors to the lethality of this disease [1, 2].  This chemoresistance is fueled by 

profound genomic instability caused by DNA repair pathway deficiencies and universal 

loss of TP53 which also results in a high degree of intratumoral cellular heterogeneity [3, 

4].   As seen in many cancers, intratumoural heterogeneity results in a high degree of 

phenotypic variability which can manifest as differential responses to different therapies.  

Debulking surgery either before or after adjuvant chemotherapy is the standard treatment 

for ovarian cancer patients with metastatic disease.  Under this treatment regimen, 

epithelial ovarian cancer (EOC) is still the most lethal gynaecologic malignancy in the 

developed world with a 5-year survival rate of less than a 30% [5-7]. Following 

chemotherapy, the selection and expansion of platinum-resistant EOC cells results in the 

recurrence of aggressive disease that is largely incurable with second-line treatment options 

[8-10].  Thus, there is significant clinical need for more effective therapeutics that target 

disease heterogeneity more effectively, thereby increasing progression-free survival for 

these patients. 

Cancer cells not only gain survival- and growth-enhancing properties through the 

selection and expansion of specific clones within a tumour, they also lose many 

intracellular pathogen defense mechanisms and induce immunosuppressive mechanisms.  
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Oncolytic virotherapy (OV) exploits these defects in intracellular defense to selectively 

replicate in malignant cells.  Additional changes in the tumour microenvironment, such as 

decreased immune surveillance, also enhance virus targeting of cancers.  For example, 

mutations in interferon (IFN) and in other proteins in this signaling pathway are frequently 

seen in cancer cells as they are major drivers of antitumor immunity [11-13].  However, 

type I IFNs are also key antiviral signaling molecules found in all somatic cells, thereby 

allowing cancer cells to be selectively infected and killed by OVs [14].  Many 

rhadbdoviruses, including Maraba virus (MRBV), represent promising OV vectors because 

of their susceptibility to IFN signaling, as well as other innate and adaptive immune 

responses, making these viruses relatively non-pathogenic in humans.  Thus, the 

immunological deficits in cancer cells deficient confer increased susceptibility to these 

viruses.  Currently, a construct of MRBV armed with the MAGE A3 tumor associated 

antigen, is being evaluated in a phase I/II clinical trial in conjunction with a similarly armed 

adenovirus to investigate their immunostimulatory activity and oncolytic potential.   

In a previous cross-comparison of several OVs, we observed potent oncolytic 

effects of MRBV in several EOC cell lines [15].  Infections of EOC cell lines cultured as 

either adherent cells or three-dimensional spheroids in suspension revealed that MRBV 

was the most potent of the viruses tested at inducing oncolysis.  Furthermore, we identified 

the low-density lipoprotein receptor (LDLR) and its family members as partial mediators 

of MRBV entry, which may be used to predetermine MRBV oncolysis of cancer cells.  

However, the potential for resistance to MRBV treatment has yet to be determined in a 

heterogeneous tumor model. 
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Our previous analyses described the variability of virus oncolysis of EOC cells 

derived from independent patients. Herein, our objective was to examine the efficacy of 

MRBV infection and oncolytic killing in the context of the temporal and spatial 

heterogeneity of malignant EOC cells present in a patient with metastatic disease. Direct 

analysis of multiple isolates from an individual patient with metastatic high-grade serous 

ovarian cancer (HGSOC) of the ovary may provide evidence for intratumoral heterogeneity 

impacting MRBV oncolytic efficacy. Moreover, it is unclear whether temporal changes in 

a tumour cell population, particularly after chemotherapy, may cause molecular and 

cellular changes that affect MRBV infection and oncolysis. Thus, we hypothesized that the 

high degree of tumour cell heterogeneity in HGSOC of the ovary would yield differential 

MRBV oncolytic efficacy.   

3.2 Results 

MRBV oncolysis can be impacted by HGSOC tumour cell heterogeneity 

We commonly isolate cancer cells from the ascites of patients with metastatic EOC to 

perform in vitro cell culture experimentation [16]. In one case, we received four 

independent isolates from a single patient over 14 months of disease progression and 

treatment (Fig. 3.1a). To investigate the effects of temporal heterogeneity on EOC cell 

susceptibility to MRBV, we used these newly-derived continuous HGSOC cell lines to 

assess oncolytic infection and cell killing. Using a range of MOI from 0.001 to 10, we 

observed that iOvCa105 and iOvCa147 cell lines, which were the first and last isolates 

received, were highly sensitive to MRBV with complete oncolysis achieved by an MOI 

0.01 after 3 d post-infection.  This result was in stark contrast to iOvCa131 and iOvCa142 

cell lines isolated from the same patient, where complete oncolysis was not achieved at any 
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virus concentration and partial oncolysis was observed only at MRBV concentrations as 

high as MOI of 1 after 3 d (Fig. 3.1b).  

These results indicated that the HGSOC metastatic cell population in this patient 

was dynamic and heterogeneous with respect to MRBV sensitivity. We had generated 

several subclones from the iOvCa147 cell line by limiting-dilution subculturing. Using a 

set of seven different subcloned cell lines, we performed MRBV infections as described 

above and viability was measured 3 d post-infection.  We observed two distinct responses 

to MRBV infection from the clones: one group of four subclones exhibited complete 

oncolysis at less than or equal to an MOI of 0.1, and another group of three subclones 

(iOvCa 147-B3, G4, G7) exhibiting 1000-fold reduced sensitivity to MRBV, where 

complete oncolysis was not achieved even at an MOI of 10 (Fig 3.2a).  Indeed, we readily 

observed a widespread cytopathic effect (CPE) and readily detectable green fluorescent 

protein (GFP) expression from MRBV infected cells, signifying productive MRBV 

replication in iOvCa147-F8 sensitive cells. However, we observed only modest CPE and 

GFP-positivity in the resistant iOvCa147-G4 cell line (Fig. 3.2b). Taken together, these 

results represent an important example of both temporal and spatial heterogeneity in 

metastatic HGSOC of the ovary and its impact on MRBV oncolytic efficacy. 

Low-density lipoprotein receptor (LDLR) is required for efficient MRBV entry of 

sensitive HGSOC cells 

As a first step to determine factors affecting differential MRBV oncolysis in 

HGSOC cell subpopulations, we sought to determine whether MRBV entry was altered 

between sensitive and resistant subclone cell lines.  Since we have previously established  
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MRBV Figure 3.1. Temporal changes in tumor biology differentially impacts MRBV 

oncolysis. a) iOvCA105, iOvCa131, iOvCa142, and iOvCa147 patient samples were 

derived from multiple ascites isolates over the course of one year of a single patients’ 

disease. iOvCa105 were isolated October 2010 after first relapse with platinum sensitive 

disease.  iOvCa 131, 142, and 147 were collected one year later between October 2011 

to December 2011 after the acquisition of platinum resistance. b) Cells were seeded at 

10,000 cells/well of a 96-well plate and infected with replication competent or UV 

inactivated MRBV.  Cells were assayed for viability using CellTiter-Glo® reagent at 

72 h after infection.  
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Figure 3.2. Intratumoral cellular heterogeneity differentially impacts MRBV oncolysis. a) Subclones 

from iOvCa147 were generated through limiting dilution assay and single cell expansion to create 

homogeneous cell lines from a heterogeneous cell population. Cells were seeded at 10,000 cells/well of a 96-

well plate and infected 24 h after seeding.  Cells were assayed for viability using CellTiter-Glo at 72 h after 

infection. b) Images of infected cells were taken at 72 h post infection using bright field and fluorescence 

microscopy at 5x magnification. 
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a link between the expression of LDLR and MRBV entry [15], we also sought to determine 

if differences in the levels of LDLR expression between the iOvCa147-F8 and iOvCa147-

G4 subclones could affect MRBV entry and cell susceptibility to MRBV.  We infected 

iOvCa147-F8 and -G4 cell lines with MRBV for one hour after which we quantified the 

remaining virus in the media.  We observed that nearly 25% of MRBV entered iOvCa147-

F8 cells, yet only 5% of MRBV entered iOvCa147-G4 cells (Fig. 3.3a).   

We previously reported reduced LDLR expression in EOC cell lines during 

spheroid formation which correlated which decreased MRBV entry into spheroid cells, and 

this was confirmed by siRNA-mediated knockdown of LDLR expression in adherent cells 

[15].   In fact, analysis of gene copy-number alterations in serous ovarian adenocarcinoma 

using The Cancer Genome Atlas data revealed that approximately 14% of HGSOC tumours 

show LDLR gene amplification with elevated mRNA expression levels (Suppl. Fig. A3.1). 

Therefore, we determined whether LDLR was differentially expressed between sensitive 

and resistant clonal lines.  We examined LDLR expression in iOvCa147-F8 and iOvCa147-

G4 cells with and without MRBV infection.  Indeed, iOvCa147-F8 cells expressed two-

fold higher LDLR as compared with iOvCa147-G4 cells.  In response to both UV-

inactivated MRBV (binds and enters cells, but does not replicate) and replication-

competent MRBV, LDLR expression was decreased in iOvCa147-F8 cells. This may 

indicate virus-binding to the LDLR, followed by endocytosis and lysosomal degradation 

of the internalized receptor [17].  This result was distinct from iOvCa147-G4 cells as the 

lower LDLR expression in this line did not change in response to virus (Fig 3.3b).   

After observing similar correlative data linking LDLR expression with virus 

infectivity in iOvCa147-F8 and -G4 cells, we sought to determine if decreased LDLR 
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would impact the susceptibility of sensitive HGSOC cells to virus infection.  As expected, 

siRNA-mediated LDLR knockdown in two MRBV-sensitive subclone cell lines, 

iOvCa147-F8 and -E2 (Fig. 3.3c), was sufficient to significantly decrease MRBV entry 

(Fig. 3.3d, Suppl. Fig. 3.2).  An inhibitor of LDL-related receptors, RAP, was sufficient to 

impact MRBV entry in iOvCa147-E2 clones but not F8 (Fig. 3.3d).  Thus, we suspect that 

LDLR is the primary mediator controlling virus entry over its related family members.  

Given that EOC cells require sufficient LDLR expression to mediate efficient 

MRBV entry, we sought to determine whether endogenous LDLR expression was 

sufficient to predict HGSOC cell susceptibility to MRBV oncolysis.  We assessed LDLR 

expression in the four independent isolates, iOvCa105, iOvCa131, iOvCa142, and 

iOvCa147, and all seven subclone cell lines generated from iOvCa147, yet failed to observe 

a correlation between LDLR expression and sensitivity or resistance (Suppl. Fig. A3.3).  

This suggests that although LDLR regulates MRBV entry into HGSOC cells, its expression 

alone is not sufficient to predict sensitivity to MRBV oncolytic infection.   

Secreted factors do not impact MRBV infection of sensitive or resistant HGSOC cells.   

We next sought to determine whether MRBV-resistant HGSOC produce secreted 

factors that would reduce infection of sensitive cells. Since type I IFN response to MRBV 

infection can elicit a robust anti-viral response in normal cells, we investigated whether 

MRBV-resistant HGSOC cells possessed an intact IFN response. We performed 

quantitative RT-PCR analysis of IFNB1 mRNA expression in sensitive iOvCa147-F8 cells, 

and two resistant subclones, iOvCa147-G4 and -B3, in response to MRBV infection.  

Neither MRBV-sensitive nor -resistant HGSOC subclone cell lines elicited a potent IFN 
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antiviral signaling response after MRBV infection, whereas the positive control A549 

human lung adenocarcinoma cell line responded with a robust increase in IFNB1 

expression (Fig 3.4a).  Thus we sought to determine if any other secreted factors elicited 

an effect on cell sensitivity to MRBV.  We performed treatments of iOvCa147-F8 and -G4 

cell lines with conditioned media (reciprocal media swap; media change or no media 

change served as controls) immediately prior to MRBV infection.  Forty-eight hours after 

infection, we observed that none of the conditions altered sensitivity or resistance to 

MRBV oncolytic infection (Fig 3.4b).  Since extracellular factors other than IFNB1 may 

affect HGSOC cell sensitivity to MRBV infection, we performed conditioned media 

experiments as described above, but after MRBV infection.  Again, we detected no 

differences in cell viability that would indicate transfer of resistance factors between 

iOvCa147-F8 and -G4 subclone cell lines (Fig 3.4c).   

Direct contact in MRBV-sensitive and -resistant cell co-cultures can restore efficient 

oncolysis.   

Lastly, we sought to determine whether or not direct interaction of MRBV-sensitive 

and –resistant cells within a heterogeneous tumour cell population might impact oncolytic 

efficacy. We predicted that efficient MRBV infection and oncolysis would be restored 

since the original iOvCa147 cell line was quite sensitive to MRBV oncolytic infection (Fig. 

3.1b).  To recapitulate various iterations of a heterogeneous tumour population, we co-

cultured iOvCa147-F8 and iOvCa147-G4 cells at different ratios. Indeed, we observed 

increased sensitization to MRBV-mediated cell death at each co-culture ratio compared 

with the expected cell viability for each individual subclone cell line (Fig. 3.5a).  In fact, 

where co-cultures consisted of an equal ratio of sensitive and resistant cells the viability  
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 Figure 3.3. Differences in sensitivity between subclones are partially due to differences LDLR expression 

and MRBV entry. a) F8 and G4 cells were seeded at 75,000 cells/ well of a 24 well plate. 24 h after seeding, 

cells were infected with MOI 1 MRBV.  1 h after infection, supernatants were collected and uninfected virus 

was titered on vero cells.  Supernatants from a no-cell infection were titered as a control for total inoculated 

virus. b) Cells were seeded at 300,000 cells/well of a 6-well plate. Cells were infected with MRBV at MOI 1 

and cells were harvested for protein at 20 h after infection. c) Cells were seeded at 20,000 cells/well of a 48-

well plate. Cells were transfected for with siNT or siLDLR.  48hrs after transfection, wells were harvested for 

lysates; and unharvested cells were d) treated with 100nM of RAP for 1hr then infected with MRBV for 1hr. 

Media was collected for titering of uninfected virus. No-cell infections were performed as controls.  Virus was 

titered on vero cells via plaque assay. 
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was reduced to the level routinely achieved with the MRBV-sensitive iOvCa147-F8 cells 

alone.  Individual fluorescence labeling of iOvCa147-F8 cells (DiI) and iOvCa147-G4 cells 

(CMAC) prior to co-culture and infection (MRBV expressing GFP) confirmed the 

increased presence of MRBV-infected iOvCa147-G4 cells (both CMAC and GFP positive) 

when cultured with infected iOvCa147-F8 cells (DiI and GFP positive) (Fig. 3.5b).  Indeed, 

quantification of co-stained GFP and CMAC cells revealed a 9 fold increase in the number 

of infected iOvCa147-G4 cells when co-cultured at an equal ratio with iOvCa147-F8 cells 

when compared to MRBV infection of iOvCa1470G4 cells alone (Fig. 3.5c).  These 

observations were further validated when iOvCa147-F8 cells were co-cultured with 

iOvCa147-G4 cells, but physically separated by a porous Transwell membrane to allow 

transfer of secreted factors and virus during active infection (Fig. 3.4b and c). We observed 

no enhanced sensitivity of iOvCa147-G4 cells when cells were cultured separately from 

the iOvCa14-F8 cells confirming the need for physical contact between sensitive and 

resistant cells to mediate sensitization (Fig. 3.5d).  These findings support MRBV as an 

effective therapeutic agent to infect and kill HGSOC cells throughout a heterogeneous 

tumour, as long as sufficient subpopulations of sensitive cells are present to support 

oncolytic replicative infection.   

3.3 Discussion 

There is currently a dire and unmet need for therapeutic alternatives for the 

treatment of metastatic EOC due to the high rate of therapeutic resistance.  This is largely 

a result of genomic instability driving disease heterogeneity.  We previously showed 

MRBV to be a potent oncolytic in EOC cells in both adherent and spheroid culture, thus 

we sought to evaluate the impact of disease heterogeneity on MRBV oncolysis.  Using 4  
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Figure 3.4. Extracellular factors do not confer sensitivity to MRBV a) Cells were seeded at 500,000 

cells/well of a 6-well plate. The next day, cells were infected for 6 h with MRBV MOI 1 or UV MOI 1.  

RNA was isolated and qRT-PCR was performed using human-specific IFNB1 primers and SYBR Green 

detection. b) Cells were seeded at 10,000 cells/well of a 96-well plate. 16 h later, fresh media was either 

replaced, swapped, or unchanged between F8 and G4 subclone cells.  Cells were then infected with MRBV 

at MOI 0.1 for 1 h followed by media change. CellTiter-Glo® assays were performed for cell viability 48 h 

after infection. c) Cells were seeded at 10,000 cells/well of a 96-well plate.  16 h later, cells were infected 

with MRBV at MOI 0.1 for 1 h followed by media change. At 12 h, fresh media was either replaced or 

media was swapped between F8 and G4 subclone cells. CellTiter-Glo® assays were performed for cell 

viability 48 h after infection 
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  Figure 3.5.  MRBV sensitivity can be conferred to resistant cells through co-culture 

and cell-cell contact. a) F8 and G4 cells were seeded to a total of 100,000 cells/well of 

a 24well plate.  No virus controls of each cell mixture were used as controls to determine 

relative viability.  Viability was assessed 48hrs after infection using CellTiter-Glo®.  

b) Fluorescence images of co-cultured cells F8 (red) and G4 (blue) were taken 16 h 

after infection with MRBV MOI 0.1.  Infected F8 cells appear yellow.  Infected G4 

cells appear turquoise.  c) Infected G4 cells were counted for each co-culture 

concentration and normalized to the total number of G4 cells to determine percent 

infectivity.  d) Physical separation of cells was achieved through culturing cells in 

0.4uM pore transwell plates.  Media was shared between both top and bottom chambers. 

100,000 cells total were seeded in a 24-well transwell plate.  25,000 cells were seeded 

in the top chamber while 75,000 cells were seeded in the bottom chambers.  24 h after 

seeding, media was changed and cells were cultured and infected with 2.5ml media 

containing 50,000 vpu (MOI 0.5) of MRBV. 48 h after infection, viability of cells in 

the bottom chamber was measured using CellTiter-Glo®. 
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ascites-derived primary EOC cell lines, which were isolated directly from the same patient, 

we observed differential oncolytic efficacies for MRBV in EOC from a temporal 

perspective.  Likewise, clones generated from one of these heterogeneous samples were 

differentially sensitive to MRBV oncolysis despite having been cloned from a sample that 

is largely sensitive to MRBV.  These findings highlight the potential impact that disease 

heterogeneity can have on therapeutic efficacy particularly in disease models in which 

genomic instability is an outstanding feature.  Our data represent the first evidence to 

highlight the impact of both temporal and spatially heterogeneity in EOC on oncolytic virus 

therapy.  Given our results, we propose that in vitro testing of therapeutics should consider 

using cell culture systems which recapitulate the disease heterogeneity found in EOC from 

a temporal and spatial perspective.  These findings not only imply that disease 

heterogeneity can impact MRBV, but also show that in a largely sensitive heterogeneous 

tumour, there can exist resistant cells which could potentially be selected for to give rise to 

MRBV resistant tumours after treatment.   

Previously, we have reported that expression of LDLR could mediate the entry of 

MRBV in target cells [15].  Although we further validated that this receptor is in fact 

important for mediating MRBV entry, we found that LDLR expression across a 

heterogeneous tumour did not solely dictate cell sensitivity to MRBV.  We found that we 

could sensitize G4 cells to MRBV mediated oncolysis when co-cultured with as little as 

10% F8 cells and achieve oncolytic effects of 100% infected F8 cells when as little as 25% 

of the co-culture is made up of sensitive F8 cells.  As physical contact between these cell 

populations is needed to facilitate this sensitization, we speculate that perhaps the 

formation of a virological synapse to allow direct cell-cell transmission could permit 
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MRBV infection of resistant cell populations.  Extensive studies with HIV have shown 

more efficient virus transmission through direct cell-cell contact than cell-free virus spread 

[18].  This occurs when virus assembly components polarize at the site of the synaptic 

junction allowing for direct transfer of mature virus to an adjacent cell rather than having 

large excesses of cell-free virus [19, 20].  This is true for other viruses including vesicular 

stomatitis virus (VSV) which can spread directly between cells [21].  In fact, intravenously 

injected VSV is rarely observed as cell-free particles in vivo and are normally rapidly 

sequestered by cells (either by infection or adhesion) [22].  Surface attachment of VSV has 

been shown to modulate infectivity by augmenting viral passage between cells.  VSV-G 

(glycoprotein) pseudotyped HIV-derived particles exhibit prolonged retention on the cell 

surface which mediate direct cell-cell transfer of virus and increase infectivity by 20-130 

fold [23].  Therefore we speculate that MRBV, which has greater than 80% sequence 

homology with the VSV glycoprotein and was initially thought to be a vesiculovirus may 

be transmitted in a similar fashion between sensitive and resistant clones [24, 25].  These 

findings imply that perhaps only a subpopulation of cells need to be initially infected to 

obtain oncolysis of an entire heterogeneous tumour.   

Moreover, our findings support the notion that MRBV may be more effective and 

broad acting than other precision therapies since its infectivity is not entirely dependent on 

the expression of a single tropic factor, such as LDLR expression.  Likewise, the capacity 

for resistance to MRBV treatment in heterogeneous cell populations can arise 

independently of LDLR expression as observed in the iOvCa 131 and 142 patient samples.  

This suggests that these heterogeneous populations initially have too few sensitive cells 

permissive to infection to facilitate sensitization of resistance cells and that the resistance 
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of the overall tumour may be insurmountable.  Alternatively, it could be that other 

undefined intracellular factors affect productive virus replication.  Ilkow et al. recently 

reported that fibroblasts could be sensitized to VSV killing through pretreatment with 

TGFβ.  This led to production of fibroblast growth factor 2 (FGF2) and subsequent 

reduction in retinoic acid-inducible gene I (RIG-I) which is responsible for virus detection, 

IFN production, and induction of innate antiviral responses against RNA viruses [26].  It 

is possible that upregulated signaling within the TGFβ pathway, which is commonly 

observed in ovarian cancer, may promote or sensitize certain EOC clones to MRBV 

oncolysis.  It would be interesting to determine what, if any, impact endogenous TGFβ 

signaling during EMT in ovarian cancer metastasis would have on MRBV oncolysis.  This 

approach could uncover novel strategies to better exploit MRBV for broader therapeutic 

use in treating EOC over the course of disease progression and in preventing disease 

resistance to MRBV therapy.  Given our results, we propose that perhaps the use of cell 

carrier systems for MRBV may be more efficient in transmitting MRBV to resistant cells 

in heterogeneous populations via direct cell-cell contact rather than cell-free spread [22].    

3.4 Materials and methods 

Cell Culture 

Ascites fluid obtained from ovarian cancer patients at the time of debulking surgery or 

paracentesis was used to generate primary cell cultures as described previously [27]. 

iOvCa-105, 131, 142, and iOvCa147 lines were isolated after removal of non-cancer cells 

by differential trypsinization from the mixed ascites-derived cultures from the same 

patient. Histopathological assessment concluded that this patient’s ovaries displayed a 

mixed morphology tumour consisting of 70% serous and 30% clear cell adenocarcinoma. 
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She presented with metastasized stage IIIC disease. The iOvCa147 line was used in a 

limiting dilution series with each well of two 96-well cluster dishes seeded with 0.3 

cells/well. Clonal lines isolated in this manner were subjected to STR analysis, which 

verified that they originated from the iOvCa147 line. STR analysis confirmed that all four 

lines were derived from the same patient. The resulting lines were cultured in Dulbecco’s 

Modified Eagle medium/ F12 (Wisent) supplemented with 10% FBS (Wisent).  Cells were 

grown in a 37ᵒC humidified atmosphere of 95% air and 5% CO2.  Adherent cells were 

maintained on tissue culture treated polystyrene (Sarstedt, Newton, NC). Non adherent 

cells and spheroids were maintained on Ultra-Low Attachment (ULA®) cultureware 

(Corning, Corning, NY), which is coated with a hydrophilic, neutrally charged hydrogel to 

prevent cell attachment. All patient-derived cells were used in accordance with institutional 

human research ethics board of approval (UWO HSREB 12668E).  

Generation of clones 

Clones were generated through limiting dilution of iOvCa147 cells in a 96-well plate.  Cells 

were seeded at 1 cell/well and cultured in DMEM/F12 (Wisent) supplemented with 10% 

FBS.   Cells were expanded to generate all 7 clones used, which included - B3, C8, E2, 

F5, F8, G4, and G7. 

Virus production 

Vero cells were infected with MRBV at MOI 0.01.  Twenty hours after infection, 

supernatant was collected and virus was purified using a 0.2 micron filter.  The MRBV 

MG1 mutant strain used in these experiments has been described previously.   

Virus infection of EOC cells 
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Primary EOC cells were seeded at 10,000 cells/well of a 96-well plate and were infected 

the following day at MOIs of 0.001, 0.01, 0.1, 1, or 10.  The appropriate UV-inactivated 

virus at an MOI of 10 or no virus (mock infected) was used as controls.  Seventy-two hours 

after infection, viability was assayed using the CellTiter-Glo® Luminescent Cell Viability 

Assay, which is based on quantitation of ATP levels (Promega, Madison, WI).  For 

infection of EOC spheroids, cells were seeded at 50,000 cells/well of a 24-well ULA cluster 

plate (Corning, Corning, NY) and spheroids were allowed to form over 72 h. Spheroids 

were then infected at MOIs of 0.01, 0.1, 1, or 10 using the same controls as described for 

adherent cell infections.  Phase contrast and fluorescent images of infected cells and 

spheroids were captured during each experiment using a Leica DMI 4000B inverted 

microscope. 

Virus entry quantitation 

iOvCa147-F8 and iOvCa147- G4 cells were infected with MRBV at an MOI 1 at 4ᵒC to 

allow virus infection of cells.   1hr after infection, supernatants containing uninfected virus 

was removed and titrated on vero cells. Virus titers were determined through limiting 

dilutions of virus.  Agarose overlay and plaque assay was performed to determine virus 

concentration.  A no cell infection was performed as a negative control to determine virus 

concentration at 0% infection.  

LDL receptor knockdown  

iOvCa147-F8 and E2 cells were seeded in 48-well dishes and transfected 16 h after seeding 

with siLDLR sMARTPool RNA or with siNT nontargeting control RNA using 
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DharmaFECT1 transfection reagent (Dharmacon). At 48 h post-transfection, cells were 

used for infection experiments (virus entry and cell viability) as described above.   

Media swapping experiments 

Media swap after infection 

Cells were seeded at 10,000 cells/well of a 96-well plate.  Sixteen hours post seeding, cells 

were infected with MRBV at an MOI of 0.1 for 1 h followed by media change. At 12 h, 

fresh media was either replaced, swapped between iOvCa147- F8 and iOvCa147- G4 

subclone cells, or were unchanged.  CellTiter-Glo® assays were performed for cell 

viability 48 h after infection. 

Media Swap before infection 

Cells were seeded at 10,000 cells/well of a 96-well plate.  Sixteen hours after seeding, 

conditioned media from both iOvCa147- F8 and iOvCa147- G4 was either replaced with 

fresh medium, swapped between the two clones, or remained unchanged.  Cells were then 

infected at MOI 0.1 and viability was assessed 48 h after infection.  

Quantitative RT-PCR 

iOvCa147- F8, G4, and B3 clones were seeded at 500,000 cells / well of a 6-well plate.  

Sixteen hours post seeding, cells were infected with MRBV at an MOI of 1 or UV 

inactivated MRBV at an MOI of 1 for 6 h.  The A549 lung cancer epithelial cell line was 

used as a positive control for an IFN response.  Total RNA was isolated from both non-

infected and infected clones and A549 cells using Qiagen RNeasy Mini Kit (Qiagen, 

Valencia, CA). Purified RNA was quantified using an ND-1000 spectrophotometer 
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(NanoDrop technologies, Wilmington, DE). Reverse transcription was performed using 

total RNA isolated and Superscript II reverse transcriptase (Invitrogen) as per 

manufacturer’s instructions. PCR reactions were carried out using Brilliant SYBR Green 

QPCR Master Mix (Agilent Technologies/Stratagene) and a Stratagene Mx3000P machine 

with data exported to Microsoft Excel for analysis.  IFNβ1 and GAPDH primers were used 

and were previously described [28].  GAPDH served as an internal control for RNA input 

and quantification was performed using the ∆∆Ct method (Livak and Schmittgen 2001).   

Co-culture experiments 

Co-cultures of iOvCa147-F8 and G4 cells were seeded in 24-well plates at a total of 

100,000 cells/ well.  Wells of 100% iOvCa147- F8 and G4 cells were used as positive 

controls for MRBV effects on viability.  An increasing proportion of iOvCa147- F8 cells 

were titrated into the G4 co-culture (G4:F8 ratio: 98:2, 90:10, 75:25, 50:50, and 25:75).  

Sixteen hours post seeding, cells were infected with MRBV at an MOI of 0.05 and viability 

was measured 48 h after infection using CellTiter-glo.   

Stained co-culture images 

Confluent 10cm plates of iOvCa147-F8 cells were stained with Molecular ProbesTM 

Lipophilic Tracer DiI at 1:500 (ThermoFisher Scientific, Waltham, MA).  Confluent 10cm 

plates of iOvCa147-G4 cells were stained with CellTrackerTM Blue CMAC Dye 1:500 

(ThermoFisher Scientific, Waltham, MA).  Cells were stained for 1 h.  Subsequent seeding 

and infection of cells was performed as described above.  Images were captured at 24hrs 

post infection using a Leica DMI 4000B inverted microscope.  

Immunoblotting 
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Cell lysates were generated using a modified radioimmunoprecipitation assay (RIPA) 

buffer ((50mM HEPES pH 7.4, 150mM NaCl, 10% glycerol, 1.5mM MgCl2, 1nM ethylene 

glycol tetraacetic acid, 1nM sodium orthovanadate, 10mM sodium pyrophosphate, 10mM 

sodium fluoride, 1% triton X 100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 

1mM phenylmethylsulfonyl fluoride, 1x protease inhibitor cocktail (Roche, Laval, QC)) as 

described previously [15]. Lysates were incubated on ice for 20 minutes and vortexed to 

ensure complete lysis.  Protein concentrations were determined by Bradford assay using 

Protein Assay Dye Reagent (BioRad, Mississauga, ON).  Thirty micrograms of lysates 

were run on an 8% sodium dodecyl sulphate-polyacrylamide electrophoresis gel and 

transferred to a polyvinylidene difluoride membrane (Roche, Mississauga, ON).  Blots 

were blocked with 5% skim milk in Tris-bffered saline with Tween 20 (TBST; 10mM Tris-

HCl, pH 8.0, 150mM NaCl, 0.1% Tween 20).  After 1 hr of blocking, blots were incubated 

overnight on a rocking platform shaker at 4ᵒC with specific antibodies at 1:1000 dilution 

in BSA/ TBST (anti-LDLR (Abcam, ab14056; Cambridge, MA); anti-actin (Sigma)).  

Blots were washed using TBST and incubated with peroxidase- conjugated anti-rabbit IgG 

(GE Healthcare) for 1hr at 1:10,000 dilution, in 5% skim milk/TBST for the LDLR 

antibody, or 5% BSA/TBST for actin at room temperature.  Blots were washed again using 

TBST followed by incubation with Luminata Forte Western horseradish peroxidase 

substrate (Millipore, Etobicoke, ON) and visualized with the ChemiDoc MP System 

(BioRad, Mississauga, ON).   

Statistical Analysis Statistical significance was determined by either unpaired two-tailed 

Student’s t-test or one-way analysis of variance using GraphPad Prism 6 (GraphPad 

Software, San Diego, CA).  Statistical Significance was set at p<0.05. 
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3.5 Supplementary Information  

  

Supplementary Figure A3.1 The LDLR gene is altered in a significant fraction of ovarian serous cancers. 

(A) Mutation and gene copy-number status for LDLR across human cancers as determined used The Cancer 

Genome Atlas (TCGA) Provisional datasets accessed from cBioPortal as of November 12, 2015. Ovarian cancer 

(serous adenocarcinoma) has the highest rate of LDLR gene mutation and copy-number changes as compared 

with all other malignancies characterized to date. (B) Oncoprint of serous ovarian tumours harbouring LDLR 

mutations, copy-number changes, and gene expression changes (z-score > 2) from the TCGA Provisional 

dataset. Only tumour samples with alterations (13%; 78/599 samples) are displayed for clarity. (C) LDLR gene 

expression as compared with copy-number status among all serous ovarian tumours from the TCGA Provisional 

dataset. 
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Supplementary Figure A3.2 siLDLR smart pool knockdown and impact on clone 

viability- a)Individual siLDLR siRNA from the siLDLR smartPool. Cells were seeded at 

20,000 cells/well of a 48 well dish.  Cells were transfected with each siLDLR siRNA for 

48 h. 4 wells were harvested for each protein lysate b) and remaining wells were infected 

with F8 MRBV MOI 0.05 for 48 h then viability was measured using CellTiter-Glo®.  c) 

Cells were seeded and transfected as described in a).  48 h after transfection, 100nM of 

RAP was added for 30 minutes followed by infection with MRBV for 1h.  Media was then 

removed.  48 h after infection, viability was measured by CellTiter-Glo®. 
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Supplementary Figure A3.3-LDLR expression does not consistently correlate with 

MRBV sensitivity across heterogeneous ascites cells or its subclonal populations.   

Cells were seeded at 500,000 cells/ well of a 6 well plate.  Lysates were generated 24hrs 

after seeding.  Parallel wells were used for infection to verify MRBV sensitivity.    
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Supplementary Figure A3.4- LDLR expression in adherent and spheroid iOvCa147 

parental line and F8 and G4 clones. A) Cells were seeded at 500,000 cells/ well of 6-

well plate and harvested for lysate 24 h after seeding.  B) cells were seeded at 50,000 cells/ 

well of a 24-well ULA plate and spheroids were formed over 72 h. Spheroids were then 

infected with MRBV MOI 0.1 for 48 h and viability was assessed using CellTiter-Glo®  
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CHAPTER 4: Transforming growth factor-beta signaling mediated induction of 

epithelial-to-mesenchymal transition in ovarian cancer ascites-derived spheroid cells 

augments Maraba virus-mediated oncolysis  

In preparation for submission to Cancer Biology & Therapy 

Tong, J.G., Rafehi, S., Valdes, Y.R., Bertrand, M., McGee, J., Prefontaine, M., Sugimoto, A., Bell, J.C, 

Stojdl, D., DiMattia, G.E., Shepherd, T.G. 

 

4.1 Introduction  

Epithelial ovarian cancer (EOC) metastasis is unique amongst carcinomas in that 

its primary route is not via the bloodstream or lymphatics.  Rather it occurs through the 

direct shedding of malignant cells from a primary tumour on the ovary into the peritoneal 

fluid (ascites) and subsequent dissemination of these cells throughout the peritoneum [1, 

2].  During this process, shed cells are capable of forming multicellular aggregates, or 

spheroids, with the concurrent induction of epithelial-to-mesenchymal transition (EMT) 

[3].  EMT in ovarian cancer enhances metastasis by a general decrease in cell adhesion 

within the primary tumour yet promotes cell migration and invasion during secondary 

tumour formation.  EMT is characterized by reduced epithelial features, including the loss 

of cell-cell junctions and apical-basal polarity, and acquired mesenchymal features, such 

as stress fiber formation and actin reorganization causing a spindle-shaped morphology [4, 

5].  Loss of E-cadherin is considered fundamental to this process and can occur through 

the activation of a number of transcriptional repressor proteins, such as Snail, that actively 

repress expression from the CDH1 gene encoding E-cadherin [1, 6-8].  Snail expression is 

robustly induced through endogenous transforming growth factor-beta (TGFβ) signalling 

activation in ascites-derived cells to promote EMT during EOC spheroid formation [3, 9]. 

The activation of an EMT-like phenotype has been associated with greater chemotherapy 

resistance, cell motility, and cancer stem-cell characteristics; thus, EMT is considered to 

be reflective of more aggressive tumour behaviour[10].  Therefore, the development of 
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therapies which can better target EOC tumour cells which undergo EMT during tumour 

progression and metastasis is essential to improving clinical outcomes.   

 We have previously demonstrated that a derivative of Maraba virus (MG1, herein 

referred to as MRBV), is a potent inducer of oncolysis in EOC lines and that the low-

density lipoprotein receptor (LDLR) can mediate efficient MRBV infection [11].  Thus, 

MRBV oncolysis is delayed and in some cases completely abrogated due to the down-

regulation of LDLR expression in EOC spheroids [11].  However, LDLR expression was 

not the sole determining factor for susceptibility to MRBV infection since we failed to 

observe any correlation between LDLR expression and MRBV oncolysis (Tong et al, in 

preparation).  Furthermore, we were able to increase sensitivity to MRBV independently 

from LDLR expression through co-culturing of sensitive and resistant cells.  Therefore we 

speculate that intracellular signaling events downstream of virus entry could also influence 

MRBV replication.  Ilkow et al., recently demonstrated that cancer associated fibroblasts 

could have enhanced sensitivity to a number of oncolytic viruses, including VSV, when 

pre-treated with TGFβ [12].  This is due to an observable decrease in antiviral transcripts, 

including RIG-I, rendering cancer associated fibroblasts more susceptible to virus 

oncolysis.  Since induction of EMT is a canonical response of epithelium-derived cells to 

TGFβ, we sought to determine whether MRBV oncolytic activity is modulated by 

endogenous TGFβ signalling in ovarian cancer ascites-derived spheroids during this robust 

EMT response.   

4.2 Results  

Spheroid formation of EOC ascites-derived cells promotes robust MRBV-mediated 

oncolysis 
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We have demonstrated previously that by treating several ovarian cancer cell lines 

with three different oncolytic viruses—Myxoma virus, double-deleted vaccinia and 

Maraba virus (MRBV)— the greatest oncolytic effect was observed using MRBV, yet it 

yielded less cancer cell killing in cells cultured as three-dimensional spheroids [11]. This 

finding was similar to our results using MYXV infection of primary cells isolated directly 

from the malignant ascites of ovarian cancer patients, where MYXV had impaired 

oncolytic efficacy in cultured spheroids [13]. To extend these studies, we sought to 

determine whether MRBV oncolytic potential would also be hindered in ovarian cancer 

ascites-derived spheroids. The MG1 strain of MRBV [14] was used to infect (MOI of 0.1) 

ascites cells isolated from nine independent ovarian cancer patients that were cultured as 

both adherent cells and spheroids.   Surprisingly, we observed a significant reduction in 

cell viability in all nine ascites-derived cells due to MRBV-mediated oncolysis, but only 

when cultured as spheroids (Fig. 4.1a).  This effect was in stark contrast to MRBV infection 

of adherent cells where minimal or no oncolysis was observed.  Collectively, spheroids 

generated using EOC ascites-derived cells exhibited a nearly 4-fold greater degree of 

MRBV-mediated oncolysis in comparison with matched cells in monolayer culture (79.2% 

vs. 21.5% cell killing, respectively) (Fig. 4.1b).  This MRBV oncolytic effect was readily 

evident with a decrease in overall spheroid integrity (Fig. 4.1c), which corresponded 

directly with our observed decrease in cell viability in these structures.  This indicates that 

the majority of cells present in the malignant ascites of ovarian cancer patients can be 

infected effectively by MRBV, but may require one or more acquired properties of 

spheroids to render them susceptible to MRBV-mediated oncolysis. 
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UV-inactive MRBV 

MRBV 

Figure 4.1. Spheroid formation sensitizes ascites-derived cells to MRBV oncolysis. 
a) Ascites-derived cells were used at passage 3.  Cells were seeded at 50,000 cells/ well 

of a 24 well adherent plate or in ULA plate to form spheroids.  Adherent cells were 

infected with either UV inactivated or MRBV at an MOI of 0.1 24 h after seeding.  

Spheroids were infected at the same concentrations 72 h after seeding.  48 h after 

infection, adherent and spheroid cells were assayed for viability using CellTiter-Glo® 

reagent.  Relative viability was determined by normalizing MRBV infected cells to their 

own UV infected adherent or spheroid control. b) Individual patient samples assayed 

were pooled as biological replicates and t-test was performed to determine statistical 

significance between adherent and spheroid MRBV infected cells. c) Images of 

spheroids were taken 48 h after infection when viability was being assayed. 
 

**** 
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TGFβ treatment sensitizes adherent ascites-derived cells to MRBV-induced oncolysis. 

There are numerous alterations that can occur in ovarian cancer ascites-derived 

spheroids as compared with cells in monolayer culture, including the induction of 

epithelial-to-mesenchymal transition (EMT) due to endogenous activation of transforming 

growth factor-beta (TGFβ) signaling in these structures [3]. The presence of TGFβ 

signalling in ovarian cancer primary cell spheroids may directly impact MRBV infectivity 

since the presence of this pathway in tumour stroma has been recently implicated in 

modulating MRBV oncolysis in animal models [12]. To directly test whether TGFβ 

signaling could sensitize ascites-derived monolayer cells to MRBV oncolysis, we pre-

treated the cells with 5 ng/mL of TGFβ for 48 h prior to infecting with MRBV at an MOI 

of 0.1. This is a time point at which we have observed robust transcriptional and 

translational changes in EMT-associated proteins and the resultant morphological changes 

characteriztic of EMT [3].  In almost every patient-derived sample (9 out of 10), we 

observed enhanced MRBV-mediated oncolysis in TGFβ-treated cells (Fig. 4.2a), with a 

significant reduction in overall cell viability (Fig. 4.2b).  We verified TGFβ induction of 

EMT cell morphological changes, and readily observed a robust cytopathic effect due to 

MRBV infection in these co-treated cell samples (Fig. 4.2c). 

TGFβ signaling inhibition prevents MRBV oncolysis of EOC ascites-derived 

spheroids.   

Inhibition of TGFβ receptor signalling using small molecule inhibitors is an 

effective approach to block its downstream effects, including EMT [15]. Indeed, we have 

demonstrated that treatment of ascites-derived spheroid cells with the type I receptor 

inhibitor SB-431542 effectively blocks endogenous TGFβ signalling and the induced EMT  
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Figure 4.2. TGFβ treatment sensitizes adherent ascites-derived cells to MRBV 

oncolysis. a) Ascites-derived cells were seeded at 50,000 cells/ well of a 24 well plate. 24 h 

after seeding, cell were Treated with 10nM of TGFβ or DMSO as a control.  Forty-eight 

hours after treatment, cells were then infected with MRBV or UV inactivated MRBV at an 

MOI of 0.1 for 48 h after which cell viability was assayed using CellTiter-Glo®.  Relative 

viability was determined by normalizing TGFβ treated cells to the DMSO control. b) 

Individual assays from different patient samples were pooled as biological replicates and 

statistical significance was determined by student’s t-test.  C) Images were  captured at 48h 

after infection when cell viability was being performed.   
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phenotype in these structures [3]. To determine whether the sensitization of EOC ascites-

derived spheroids to MRBV oncolysis is due to endogenous TGFβ signalling, we treated 

with 5 μM SB-431542 at the time of seeding cells to form spheroids followed by MRBV 

infection (MOI of 0.1) at 72 h.  In all four patient samples tested, we observed a complete 

blockade in the ability of MRBV to achieve effective killing of EOC ascites-derived 

spheroids, as compared with infections of untreated cells (Fig. 4.3a).  In line with previous 

findings, we observed significant effects on  spheroid formation due to SB-431542 

treatment alone with smaller and less dense clusters (Fig. 4.3b), but this has little effect on 

overall spheroid cell viability on its own (data not shown, and [3]).  Thus, the enhanced 

oncolytic effect due to MRBV infection that we observed in EOC ascites-derived spheroids 

is largely controlled by endogenous TGFβ receptor signalling.   

Enhanced MRBV oncolysis is not a result of enhanced virus entry, changes in LDL 

receptor expression, or changes in IFN-β1 antiviral responses.   

Since MRBV is highly related to vesicular stomatitis virus [16-19], it utilizes the 

low density lipoprotein receptor as its primary means for binding and entering host cells 

[11].  In fact, we have evidence that this is at least one mechanism by which MRBV may 

have differential ability to gain access to ovarian cancer cells for efficient oncolysis [11] 

(and Tong et al, in preparation).  To address this further in the current study, we first 

determined whether activated TGFβ signalling influences MRBV entry of ascites-derived 

cells.  Direct MRBV entry assays were performed in which we infected adherent cells pre-

treated with 5 ng/mL TGFβ1 ligand and compared them to untreated controls.  After only 

1 h of MRBV infection, we removed culture supernatant and titrated virus that remained 

unbound and available for infection using Vero cells.  We observed no significant  
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Figure 4.3. Inhibition of signaling through TGF-β type I receptor in spheroids prevents sensitization 

to MRBV oncolysis.  a) EOC ascites-derived cells were seeded at 50,000 cells/well ULA plate.  At the 

time of seeding, 5nM of the TGFβ inhibitor, SB-431542, was used to treat cells or DMSO as control.  

Seventy-two hours after seeding, spheroids were infected with MRBV or UV inactivated MRBV at MOI 

0.1 for 48 h after which viability was assayed using CellTiter-Glo®. b) Images of treated spheroids were 

taken 48 h after infection at the time viability was being assessed.   
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differences between TGFβ-treated and untreated samples (Fig. 4.4a), thus strongly 

suggesting that activated TGFβ signaling did not increase MRBV oncolytic efficacy via 

enhanced virus entry. In addition, we did not observe either increased LDLR expression in 

TGFβ-treated monolayer cells or decreased LDLR expression in SB-431542-treated 

spheroids (Fig. 4.4b).  

A common mechanism by which cells can potently block MRBV infection is by 

the induction of a robust type I interferon response, a hallmark of which is the rapid 

expression of IFNβ1 from infected cells [14]. However, we observed no significant 

differences in IFNB1 mRNA expression among TGFβ-treated monolayer cells and SB-

431542-treated spheroids and their respective controls after 8 h of MRBV infection (Fig. 

4.4c); we confirmed a robust induction of  IFNB1 expression in A549 cells, which are 

known to elicit a type I interferon response to virus infection [20].  Although anti-viral 

responses may be regulated by TGFβ signalling in some tumour contexts to affect MRBV 

infectivity [12], our results imply that this is not likely to be the mechanism utilized by 

ovarian cancer ascites-derived spheroids.   

TGFβ-induced EMT via Snail is required for efficient MRBV oncolysis of ovarian 

cancer ascites-derived spheroids.   

Both the endogenous TGFβ signalling during spheroid formation and TGFβ-

treatment of monolayer ascites-derived cells induced an EMT response as defined by 

decreased E-cadherin and increased Snail expression (Fig. 4.5a), in line with our previous 

report [3].  Since Snail is the most consistently upregulated EMT product in both spheroids 

and TGFβ-treated monolayer cells and is a key regulator of EMT induction in these cells  
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Figure 4.4. Sensitization to MRBV by TGFβ treatment and spheroid formation is not due to 

increased virus entry, changes in LDLR expression, or IFNβ signaling. a) Ascites-derived cells were 

seeded at 50,000 cells/well of a 24 well plate.  Twenty-four hours later, cells were then treated with 10nM 

of TGFβ or DMSO.  Forty-eight hours after treatment, cells were then infected with MRBV at an MOI 

of 0.1 for 1 h.  After 1 h, supernatant was collected with uninfected virus.  No cell control infection was 

also performed as a negative control to mimic 0% infection.  Unadsorbed virus was titrated via plaque 

assay on Vero cells.  b) Cells were seeded at 50,000 cells/well of a 24 well ULA plate to form spheroids 

or in adherent culture to harvest for protein and RNA.  SB treated spheroids were treated at the time of 

seeding.  TGFβ treated cells were treated 24 h after seeding.  Forty-eight hours after treatment wells were 

harvested for protein.  c) Unharvested wells were then infected with MRBV at an MOI of 0.1 or a no 

virus control. Eight hours after infection, cells were harvested for RNA and qPCR was performed for 

human IFNβ1.  Infection of A549 cells in monolayer were used as a positive control for IFNβ1 response 
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(Rafehi & Shepherd, unpublished), we performed siRNA-mediated knockdown 

experiments of SNAI1 in EOC ascites-derived spheroids.  In three out of the four patient 

samples tested, we observed significant reduction of MRBV-mediated oncolysis as a result 

of SNAI1 knockdown in spheroids (Fig. 4.5b). In fact, the sample that failed to elicit a 

Snail-dependent response via knockdown (EOC287) did not respond to TGFβ1 to induce 

Snail in monolayer cells, nor did it decrease Snail expression upon SB-431542 treatment 

of spheroids (Fig. 4.5a), perhaps indicating that this sample has uncoupled TGFβ signalling 

regulation of Snail and EMT.   Taken together, it is likely that the EMT phenotype as 

regulated by TGFβ signalling in ovarian cancer ascites-derived spheroid cells is a chief 

regulator of MRBV oncolysis of cells found in these structures.  

4.3 Discussion 

The process of spheroid formation in EOC has been postulated to create important 

reservoirs for malignant EOC cells associated with increased metastasis in advanced stages 

of the disease [21-23].  We have previously shown that the induction of EMT through 

endogenous activation of TGFβ signaling can increase spheroid migration and invasiveness 

and confer greater resistance to standard chemotherapies such as carboplatin [3].  We have 

identified a novel tropic factor of MRBV that promotes the oncolysis of cells which are 

upregulated in the specific factors that make EOC spheroids more aggressive, invasive, 

and chemoresistant.   

Similarly to what has previously been observed, we found that endogenous TGFβ 

signaling in EOC ascites-derived spheroids could dramatically sensitize EOC cells to  
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Figure 4.5 Sensitivity to MRBV correlates with markers of EMT and knockdown of Snail 

prevents ascites derived spheroid sensitization. a) Adherent and spheroid cells were seeded as 

previously described.  Lysates were generated and probed with human E-cadherin, Snail, and Actin 

antibodies.  b) Cells were seeded at 300,000 cells/ well of a 6 well plate and transfected with siSnail or 

non-targeting control. Seventy-two hours after transfection, cells were trypsinized and re-seeded at  

50,000 cells/well of a 24 well ULA plate to form spheroids.  Seventy-two hours later, cells were infected 

with MRBV at an MOI of 0.1 and viability was assessed 48 h after infection using CellTiter-Glo® 
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MRBV induced oncolysis [12].  However, unlike what was described by Ilkow et al., we 

did not observe significant differences in antiviral responses of ascites-derived cells to 

MRBV infection upon TGFβ treatment or spheroid formation.  Instead, we specifically 

identified that through TGFβ type I receptor activation, the subsequent EMT response 

induced through SNAIL upregulation is capable of sensitizing EOC ascites cells to MRBV.   

  It is important to note that enhanced viral oncolysis of EOC spheroids is context 

dependent as previously we have documented that MRBV oncolysis is delayed or even 

abrogated in spheroids form from EOC cell lines [11].  Likewise, TGFβ treatment of EOC 

cell lines does not result in sensitization to MRBV.  It remains to be determined the precise 

biological differences between ascites-derived EOC cells and that of established cell lines 

which may be important in determining their sensitivity to MRBV.  It is likely that the 

restricted ability for EOC cell lines to induce a complete EMT response with corresponding 

morphological changes and transcriptional activation of EMT associated genes prevents 

EOC cell lines from being sensitized to MRBV when cultured as spheroids or when treated 

with TGFβ [24-26].  Decreased expression of SMAD4, which is an essential factor in EMT, 

has been described in several ovarian cancer cell lines which results in a loss of sensitivity 

to TGFβ treatment and corresponding growth inhibition [27].  Furthermore, it is unlikely 

that the heterogeneous population of cells from the ascites are entirely cancerous, but 

instead likely represents a combination of cancerous cells, cancer associated fibroblasts, 

and normal cells and therefore may have differential responses to TGFβ [28-30].  However, 

QPCR of IFNβ1 transcripts from MRBV infected EOC ascites derived cells shows little 

upregulation in IFNβ1 in response to infection suggesting a defect in initiating an antiviral 

response which is characteristic of abnormal cells.  Aside from the direct oncolysis of 
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cancer cells, targeting cancer associated fibroblasts in the ascites would also be vital in 

limiting the aggressive metastatic behavior of EOC tumours [31].  Specifically, TGFβ’s 

contributions to ovarian tumour invasiveness and motility are largely controlled by 

affecting the transcriptional profile of cancer associated fibroblasts in the tumour 

microenvironment [32].   

Although previous studies have shown an association of EMT with greater 

sensitization of cancer cells, including ovarian, to oncolytic virus induced cell death by 

adenovirus and herpes virus, the mechanisms by which the viruses sensitize cancer cells 

are distinctly different.  Both adenovirus and herpes virus show decreases in virus entry in 

epithelial cells due to virus receptors required for entry being trapped in tight-junctions.  

During EMT however, the mesenchymal phenotype promoted a loss of tight and adherens 

junctions, allowing more freely accessible receptors to increase virus entry [34, 35].  We 

observed no difference in entry of MRBV in patient samples which had been treated with 

TGFβ in monolayer or SB-431542 in spheroids, nor increases in LDLR expression from 

adherent to spheroid culture conditions.  Therefore we believe the sensitization to MRBV 

occurs intracellularly and is imparted by active TGFβ signaling and EMT rather than 

increased entry to mesenchymal-like cells.  TGFβ ligands are present and active in 

malignant ascites from ovarian cancer patients [26]. We have demonstrated that active 

maintenance of endogenous TGFβ signaling promotes EMT in spheroids and is required 

for efficient re-attachment and dispersion [8].  Furthermore, spheroids that have undergone 

EMT have been found to be enriched for cells with stem-like characteristics with increased 

resistance to apoptosis and contribute to more aggressive secondary tumour growth [10, 

33].  Therefore, a heightened mesenchymal and stem-like phenotype of EOC tumors and 
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metastases could serve as important predictive biomarkers for MRBV to act as a potent 

therapeutic against the invasive and chemo-resistant cells.  

 The use of MRBV in combination with current therapeutic approaches may be 

advisable to best tackle advanced metastatic disease.  Current therapeutic strategies 

centered on surgery and platinum based chemotherapy could be applied to enrich for cell 

populations which may have chemoresistant disease due to elevated TGFβ signaling.  This 

process could select for cell populations which may be best suited and better targeted by 

MRBV to promote oncolysis of the most aggressive tumour cell types which contribute to 

therapy resistant and recurrent disease.   

4.4 Materials and methods 

Cell Culture  

Vero and A549 cells were cultured in Dulbecco’s Modified Eagle Medium (Wisent) 

and supplemented with 5% fetal bovine serum (Wisent).  Cell lines were cultured in a 

humidified environment at 37ᵒC with 5%CO2.  Both cell lines were generously donated by 

Dr. Joseph Myrmyk. 

Ascites fluid obtained from ovarian cancer patients at the time of debulking surgery 

or paracentesis was used to generate primary cell cultures as described previously [13].  All 

patient samples were cultured in Dulbecco’s Modified Eagle medium/ F12 (Wisent) 

supplemented with 10% FBS (Wisent).  Cells were grown in a 37ᵒC humidified atmosphere 

of 95% air and 5% CO2.  Adherent cells were maintained on tissue culture treated 

polystyrene (Sarstedt, Newton, NC). Non-adherent cells and spheroids were maintained on 

Ultra-Low Attachment (ULA®) cultureware (Corning, Corning, NY), which is coated with 
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a hydrophilic, neutrally charged hydrogel to prevent cell attachment. All patient-derived 

cells were used in accordance with institutional human research ethics board of approval 

(UWO HSREB 12668E).   

Virus production 

MRBV MG1 was generated as previously described [14].  Vero cells were infected at MOI 

0.01.  Twenty hours after infection, supernatant was collected and virus was purified using 

a 0.2micron filter.  MRBV MG1 mutant strain used in these experiments has been 

described previously [14].   

Virus infection of EOC cells 

Primary EOC cells were seeded at 50,000 cells/well of a 24-well plate and were infected 

the following day at MOI 0.1.  Spheroids were formed using 50,000 cells/ well in a 24-

well ULA plate (Corning, Corning, NY) over 72 h prior to infection.  The appropriate UV-

inactivated virus at MOI 0.1 or no virus (mock infected) was used as controls.  Forty-eight 

hours after infection, viability was assayed using CellTiter-Glo Luminescent Cell Viability 

Assay (Promega, Madison, WI).  Phase contrast images of cells and spheroids were 

captured during each experiment using a Leica DMI 4000B inverted microscope. 

TGFβ signaling modulation  

Recombinant TGFβ1 was purchased from Millipore (Temecula, CA), prepared in distilled 

water, and used at a concentration of 5 ng/mL [38].  Adherent cells were treated with 

recombinant human TGFβ1 24 h after seeding for 48 h to induce and EMT response.  

Images were captured using a Leica DMI 4000B inverted microscope prior to cells being 

harvested for analysis.  The TGFβ type I receptor small molecular inhibitor, SB-431542 
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(Sigma) was prepared in DMSO and used at a concentration of 5 μM [39].  Spheroids were 

treated with SB-431542 or DMSO vehicle control at the time of seeding to ULA plates.  

Seventy-two hours after seeding and treatment, spheroids were imaged and harvested for 

analysis.    

Cell Viability 

Adherent culture  

Cells were kept in their original 24-well plates and 75ul of CellTiter-Glo® reagent 

(Promega, Madison, WI) was added to each well and diluted at a 1:1 ratio with media as 

per manufacturer’s instructions.  Ten minutes after the addition of the diluted reagent, cell 

lysates were harvested and placed in white walled 96-well microplates and luminescence 

signal was detected using a Wallac 1420 Victor 2 Spectrophotometer (Perkin-Elmer, 

Waltham, MA).  Results were normalized to vehicle treated adherent controls.   

Spheroid culture 

Spheroids were collected, pelleted, and left in 100ul of media.  CellTiter-Glo® reagent was 

added at a 1:1 ratio with media as previously described and as per manufacturer’s 

instructions.  Samples were triturated using a 26 ½ guage needle until spheroids were no 

longer visible.  Samples were then added to a white-walled 96 well microplate and 

luminescence was detected as described above and normalized to vehicle-treated contorl 

spheroids.   

Quantitative RT-PCR 

EOC ascites-derived cells cultured as both adherent and spheroids were harvested from 24-

well plates seeded at 50,000 cells/well.  The A549 lung cancer epithelial cell line was used 

as a positive control for an IFN-β1response.  Total RNA was isolated from both non-
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infected and infected clones and A549 cells using Qiagen RNeasy Mini Kit (Qiagen, 

Valencia, CA). Purified RNA was quantified using an ND-1000 spectrophotometer 

(NanoDrop technologies, Wilmington, DE).  Reverse transcription was performed using 

total RNA isolated and Superscript II reverse transcriptase (Invitrogen) as per 

manufacturer’s instructions. PCR reactions were carried out using Brilliant SYBR Green 

QPCR Master Mix (Agilent Technologies/Stratagene) and a Stratagene Mx3000P machine 

with data exported to Microsoft Excel for analysis.  IFNβ1 and GAPDH primers were used 

and were previously described [40].  GAPDH served as an internal control for RNA input 

and quantification was performed using the ∆∆Ct method [41].   

Virus entry quantitation 

iOvCa147-F8 and iOvCa147- G4 cells were infected with MRBV at an MOI of 1 at 4ᵒC to 

allow virus infection of cells.  One hour after infection, supernatants containing uninfected 

virus was removed and titrated on vero cells. Virus titers were determined through limiting 

dilutions of virus.  Agarose overlay and plaque assay was performed to determine virus 

concentration.  A no cell infection was performed as a negative control to determine virus 

concentration at 0% infection.  

Immunoblotting 

Adherent and spheroid cells were washed once in cold phosphate-buffered saline (PBS), 

dissolved in lysis buffer (50 mM HEPES pH7.4, 150 mM NaCl, 10% glycerol, 1.5 mM 

MgCl2, 1 mM EGTA, 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 10 

mM NaF, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1 mM PMSF, 1x 

protease inhibitor cocktail (Roche, Laval, Quebec, Canada)), clarified by centrifugation 
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(20 min at 15,000g), and quantified by Bradford analysis (Bio-Rad Laboratories, 

Mississauga, Ontario, Canada). Western blotting of protein lysates was performed as 

described previously [3]. Antibodies against E-cadherin (#3195) and SNAIL (#3879) were 

purchased from Cell Signaling technologies (Danvers, MA).   LDLR antibody was 

purchased from Abcam (ab14056; Cambridge, MA). Anti- actin antibody (A2006) was 

purchased from Sigma (Mississauga, ON). Blots were washed using TBST and incubated 

with peroxidase-conjugated anti-chicken IgY (Ab97135) for 1 h at 1:10,000 dilution, 5% 

skim milk/TBST for the LDLR antibody, or peroxidase-conjugated anti-rabbit IgG 

1:10,000 dilution 5% BSA/TBST for actin, E-cadherin, and SNAIL at room temperature.  

Blots were washed again using TBST followed by incubation with Luminata Forte Western 

horseradish peroxidase substrate (Millipore, Etobicoke, ON) and visualized with the 

ChemiDoc MP System (BioRad, Mississauga, ON).   

SNAI1 knockdown  

Ascites-derived EOC cells were seeded at 500,000 cells/well of a 6-well dish.  After 16 h, 

cells were tranfected with siSNAIL SMARTPool RNA or siNT non-targeting control 

siRNA using DharmaFECT1 transfection reagent (Dharmacon). At 72 h post-transfection, 

cells were trypsinized and used to form spheroids at 50,000 cells/ well in 24-well ULA 

plates.  Virus infection and viability assays were performed as described above.  Protein 

was harvested from replicate wells at the time point when cell viability was assessed to 

verify Snail protein knockdown.   

Statistical Analysis 
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Statistical significance was determined by unpaired two-tailed Student’s t-test or one-way 

analysis of variance using GraphPad Prism 6 (GraphPad Software, San Diego, CA).  

Statistical Significance was set at p<0.05. 
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CHAPTER 5: General Discussion 

5.1 Summary of overall findings 

 Viral oncolytic therapy cannot be regarded as a universally efficacious treatment 

for cancer, but rather a broad strategic category of therapies that have vastly different 

impacts on the cells they infect, the tumor microenvironment, and the immune system 

which results in a spectrum of outcomes for patients.  The efficacy of oncolytic virotherapy 

is highly dependent on a number of dynamic variables which are differentially regulated 

during EOC metastasis and disease progression.  Thus, the efficacy of a virus is highly 

contextual and may not be universally effective across all disease stages or a broad patient 

population.  Within a single tumor, we observed variance in susceptibility to oncolysis 

which suggests that tumor cells could be selected for to give rise to cells resistant to viral 

therapy.  This implies that virus therapy faces the same challenges that most cancer 

therapies have to conquer: tumor heterogeneity and preventing treatment resistance.  

However, by defining the specific factors that regulate effective virus replication, oncolytic 

viruses are unlike conventional chemotherapies in that they can be genetically engineered 

and designed to improve their oncolysis in contexts which would normally limit their 

replication.  In characterizing both virus and host factors that influence MXYV, vvDD, and 

MRBV replication in an in vitro model of EOC, we found virus size, dynamic signaling 

processes during spheroid formation, dormancy, and both intercellular and temporal 

heterogeneity could impact virus infectivity, replication, and oncolysis.  These findings lay 

a foundation for the strategic design of future oncolytic viruses which can best circumvent 

conventional treatment barriers to effectively treat EOC. 

5.2 Oncolytic virus replication and tumor dormancy 
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Tumor dormancy in EOC is thought to allow the persistence of microscopic tumor 

lesions after front-line treatment with chemotherapeutic drugs.  In the context of metastatic 

ovarian cancer, the ability to target and kill dormant cancer cells is essential to eradicate 

disease recurrence, and decrease the high proportion of patients which experience relapse.  

Multi-cellular spheroids are not only a delivery mechanism to promote metastasis, but a 

reservoir for supporting tumor cell dormancy in EOC [1, 2].  In our assessment of oncolytic 

virus efficacy in dormant EOC spheroids, we observed significant reduction in the 

replication efficiency and induction of lysis from large poxviruses, including MYXV and 

vvDD.  However smaller viruses, like MRBV were able to efficiently replicate, albeit to a 

slightly reduced capacity in EOC spheroids made from cell lines [3].  Given that the 

oncolysis by MYXV and vvDD was induced immediately upon spheroid reattachment 

rather than requiring multiple days to complete replication as was observed in adherent cell 

infections, it is likely that viral replication is progressing within spheroids but is restricted 

at a late stage such that completion of oncolysis can only be observed upon reattachment.  

Similarly, expression of GFP by MYXV and vvDD in both adherent and spheroid EOC 

cells implies at least early gene expression of the viruses in both culture conditions as viral 

GFP expression is under the control of a synthetic early/late promoter.  Given that the first 

wave of poxvirus transcription is driven by RNA polymerases and transcription factors 

packaged with the virus, it is logical that virus replication in spheroids may be restricted in 

later stages that are more heavily dependent on host cell factors [4-8].  This would imply 

restriction possibly during intermediate or late stages of the viral life cycle perhaps during, 

morphogenesis, packaging, or egress in both MYXV and vvDD.   
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During morphogenesis, assembling virions require abundant lipid and protein 

within cytoplasmic viral factories to enclose the virus core components [9].  We have 

previously documented the role of autophagy in the degradation of many cellular 

components during quiescence in spheroids [10].  It is possible that the digestion of cellular 

organelles and proteins that are non-essential to cell survival through autophagy is 

sequestering vital components required for membrane wrapping of maturing virions.  

Similarly, intracellular acquisition of poxvirus envelopes requires trafficking through 

golgi-derived membranes.  However, golgi-derived membranes are commonly redirected 

for the formation of autophagosomes during autophagy and this may curtail viral envelope 

incorporation in spheroids [11].  Electron microscopy based studies of the intracellular 

components of spheroids is one future experiment which could be performed to determine 

the stage of poxvirus replication within spheroids.   

 Independent of the potential affect that autophagy may have on late stage viral 

replication in spheroids, it is possible that poxviruses do not represent an effective 

oncolytic therapy for the treatment of dormant cancer cells regardless of their morphology 

(adherent or spheroid).  It is likely that poxvirus replication is highly dependent on cell 

cycle progression [12, 13].  For instance, effective replication of MYXV requires the 

activation of mammalian p21-activated kinase 1 (PAK1) which is phosphorylated during 

mitosis and is important for cell cycle regulation [14].  Decreased phosphorylation of 

PAK1 does not impact virus entry or early virus gene expression but impedes MYXV 

before late gene expression and viral DNA replication, thus restricting the production of 

virus progeny [15].  Furthermore, a number of poxviruses have been shown to encode 

genes which act as viral mimetics of cellular anaphase-promoting protein complexes [13].  
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This regulates the progression of the host cell through mitosis and promotes poxvirus 

growth, thus emphasizing the significance of cellular replication for poxvirus replication.  

Dependence of MYXV on AKT signaling and vvDD on EGFR/ERK activation and 

abundant deoxynucleotide pools are unfavorable requirements for virus replication in 

dormant cells, particularly for viruses with sizeable genomes [16, 17].  Unfortunately, not 

only are these unfavorable conditions found in EOC spheroids but both AKT and ERK are 

among the most common signaling pathways to be suppressed in many dormant and 

resilient forms of pancreatic, colorectal, head and neck, and breast cancer metastases [18-

21].  Likewise, the expression of both host cell TK (on which vvDD is dependent) and 

ribonucleotide reductase, which is integral for the synthesis of dNTP, are nearly 

undetectable in resting G0 cells, and this represents as an important rate limiting step in the 

synthesis of the large DNA genomes of progeny virions [22, 23].  dNTP pools required for 

DNA synthesis are 20x lower in resting cells than those that are actively replicating [22].  

Thus, although there may be potential clinical therapeutic benefits of these larger 

poxviruses for highly proliferative cancer cells, they may be subject to the same limitations 

as chemotherapeutic drugs in indolent cancers.   

 Interestingly, MRBV oncolysis of spheroids was relatively resistant to tumor 

dormancy.  Thus far, no host cell factors have been identified for MRBV replication and 

its replication may be relatively independent of the host cell cycle.  Genome-wide siRNA 

screens to identify potential host factors necessary for VSV replication did not link any 

genes associated with cell cycle [24].  Furthermore, efficient replication of MRBV in 

dormant EOC ascites-derived spheroids suggests complete independence of MRBV from 

host cell replication.  The comparatively small genome size of MRBV implies a reduced 
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dependence on abundant ribonucleic acid pools for mRNA synthesis and genome 

replication for each progeny virion, potentially allowing for more virus progeny to be 

produced per round of infection, as we observed.  Thus, it is likely MRBV represents a 

more viable therapeutic option for the treatment of slow growing, indolent cancers which 

are associated with greater chemotherapeutic resistance. 

5.3 Primary cells vs. established cell lines for in vitro assays 

Comparative analysis of MRBV infected primary cells versus established cell lines 

reveals remarkable incongruencies in their overall response to infection.  Not only did we 

observe relative resistance of primary EOC ascites-derived cells to MRBV in adherent 

culture when compared to EOC cell lines, but there was also dramatic sensitization to 

MRBV-induced oncolysis of spheroids formed from ascites-derived cells, compared to 

EOC cell line spheroids.  These seemingly contradictory results raise many questions 

regarding the nature of cells that are used during in vitro assays which aim to recapitulate 

clinically relevant responses.   

Cell lines are enriched populations of immortalized cancer cells and therefore are a 

favorable model for understanding the behavior of tumor cells. However most have been 

long removed from patients and have transformed significantly over decades of in vitro 

culture.  In contrast, the nature of ascites-derived cells and other primary cell isolates is 

heterogeneous.  The cellular component of malignant ascites consists of variable 

proportions of tumor cells, mesothelial cells, fibroblasts, macrophages, white blood cells, 

and red blood cells which perhaps more accurately mimics the microenvironment of tumors 

[25].  It is evident that fibroblasts have significant contributions to the microenvironment 

of tumors and can alter behavior of cancer cells to promote increased metastasis and 
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aggressiveness.  Therefore, the absence of these cells from cell line models potentially 

limits our ability to understand the complex interaction between tumor stroma and 

malignant cells and therefore the context in which a treatment can function.  However, in 

heterogeneous ascites-derived cell populations it is unclear what proportion of cells are 

truly malignant thereby obscuring the interpretation of the results from molecular analyses.  

To accurately interpret our conflicting data between EOC cell lines and primary ascites 

infected with MRBV, further characterization of the ascites-derived cells is necessary.  

Given that ascites contains both malignant and non-malignant cellular components 

it is logical to expect greater death in transformed cell lines compared to ascites-derived 

cells from MRBV infection.  However, it is unclear why spheroid formation of ascites cells 

significantly increases susceptibility to MRBV-induced death over both adherent culture 

of ascites cells and even spheroids formed from cell lines.  In comparing TGFβ responses 

between adherent and spheroid EOC cell lines, we observed inconsistent changes in EMT 

markers across the lines and often only partial effects (unpublished data), whereas the 

induction of EMT in EOC ascites-derived cells was almost universal upon spheroid 

formation or TGFβ treatment [26].  This may be due to cellular defects in the TGFβ/SMAD 

signaling pathway in many EOC cell lines [27-30].  It is well established that cell line 

models fail to respond to TGFβ signalling or fully emulate the morphological and 

behavioral changes of EMT [31-36].  We speculated that this key difference between 

ascites-derived cells and EOC cell lines may be a mechanism governing differential MRBV 

responses.  

 TGFβ has dynamic functions in cancer and its behavior is highly contextual [37].  

In pre-malignancy, TGFβ functions as a tumor suppressor and induces apoptosis or 
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cytostasis in malignant cells.   However in malignant progression, cells can circumvent the 

tumor suppressive effects of TGFβ either through inactivation of core pathway 

components, such as TGFβ receptors, or through alterations downstream of TGFβ that 

disable only the tumor-suppressive arm of this pathway.  This latter mode of circumvention 

allows cancer cells to freely usurp the remaining TGFβ functions to acquire invasive 

properties (EMT), produce autocrine mitogens, and release pro-metastatic cytokines.  The 

induction of EMT through TGFβ signaling has essential functions in promoting metastasis, 

migration, chemo-resistance, and stem-like behavior in diverse cancers and many of its 

markers can act as predictive features for patient prognosis [26, 38-44].  For this reason, 

we used primary ascites-derived cells which consistently recapitulates this biologically 

relevant phenomenon to investigate the impact of TGFβ and EMT on MRBV replication.   

 It is likely that the sensitization to MRBV by TGFβ treatment or spheroid 

formation observed in ascites-derived cells may due to the oncolysis of non-cancerous that 

have undergone EMT rather than strictly tumor cells given that the non-cancerous cell 

population comprises up to 99% of the cellular component of ascites (although it is 

uncertain how generalizable this is across samples) [25].  However, it is unclear why non-

cancerous cells become sensitive to oncolytic death after adopting a mesenchymal 

phenotype.  Other groups that have described an association between virus infection and 

EMT have proposed increased receptor availability for virus binding after acquiring a 

mesenchymal phenotype.  However, we observed that neither LDLR expression nor virus 

entry are changed in TGFβ treated cells, so it remains unclear exactly what promotes 

sensitization of mesenchymal-like cells to MRBV.  Treatment of fibroblasts with TGFβ or 

FGF2 has been shown to induce desmoplasia (proliferation of reactive fibroblasts), a 
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hallmark of many epithelial tumors which promotes the transformation of normal 

fibroblasts into cancer-associated fibroblasts [45].  Cancer-associated fibroblasts 

demonstrate decreased IFNβ production and antiviral signaling compared to their normal 

counterparts.  Infection of normal fibroblasts with VSV demonstrates a robust induction of 

IFNβ and associated antiviral genes, while pre-treatment of the same fibroblasts with TGFβ 

show reduced antiviral responses [46].  However, while TGFβ pre-treatment can negatively 

impact IFNβ production, we demonstrated that the MRBV resistant ascites-derived cells 

grown in adherent culture lack an effective antiviral IFNβ response to MRBV infection 

without TGFβ pre-treatment.  Thus this explanation is still insufficient to explain the 

sensitization of ascites-derived cells to activated TGFβ signaling.  Moreover, it suggests a 

potentially unconventional mesenchymal-like phenotype of the cells we culture directly 

from the ascites.    

One study has illustrated an important function of TGFβ in inducing ER stress and 

the upregulation of a number of proteins associated in the unfolded protein response (UPR), 

XBP1, ATF6, and GRP-78 in lung fibroblasts [47].  ER stress induced by the accumulation 

of unfolded proteins from TGFβ treatment also causes EMT and pulmonary fibrosis [47, 

48].  Interestingly, inhibition of these same UPR pathways causes mild ER stress due to an 

accumulation of unfolded proteins similar to that observed during TGFβ treatment in lung 

fibroblasts [49].  Mild ER stress caused by unfolded protein accumulation prior to MRBV 

infection has been shown to rewire cancer cells to become sensitized to caspase-2 

dependent apoptosis upon MRBV infection [49].  This sensitization was independent of 

changes in antiviral cytokines such as IFNβ [49].  Further investigation into the 

mechanisms of TGFβ induced sensitization of ascites-derived cells to MRBV oncolysis 
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should include the characterization of ER stress and UPR responses after TGFβ treatment 

and spheroid formation to determine their functional relevance in mediating sensitivity to 

MRBV.   

5.4 Tumor heterogeneity and precision therapy in oncolytic virotherapy 

The development of personalized treatment regimens for individuals with cancer, 

including EOC, has been a major therapeutic directive in order to combat the 

heterogeneous nature of cancer across broad patient populations.  We selected SKOV3, 

OVCAR8, and HEY A8 based on their characterized genetic mutations and therefore 

predicted susceptibility to killing based on the known viral trophic factors for each virus.  

We predicted both OVCAR8 and SKOV3 cells with TP53 and PIK3CA mutations to be 

most susceptible to MYXV killing, while cells with mutations in KRAS, OVCAR8 and 

HEY A8, to be more susceptible to vvDD [50].  Interestingly, we found no correlation 

between known viral trophic factors in the EOC cell lines and susceptibility to virus killing.  

This was not surprising as intratumoral heterogeneity in EOC may be quite substantial and 

viral tropism is dependent on multiple factors and not tumor suppressor mutation/oncogene 

activation status alone.  This is clearly exhibited in our temporal and spatial heterogeneity 

models of EOC and the differential oncolytic efficacy of MRBV.   

Many in vitro models demonstrate diverse tumor cell heterogeneity which can give 

rise to differential treatment responses even in cell lines classified as being homogenous.  

For example, single nucleus genome sequencing of just 50 cells from the breast cancer cell 

line, SK-BR-3, which has previously been determined to be monoclonal and genomically 

stable[51, 52], reveals significant heterogeneity between cells with single nucleotide 

variants, copy number alterations, and structural variants.  Further characterization of these 
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variants revealed 409 non-synonymous variants and 1,452 structural variants, many of 

which occurred in cancer genes [53].  Additionally, unique barcoding of individual cells 

from the non-small cell lung cancer cell line HCC827 revealed a common mechanism for 

acquired resistance to erlotinib treatment.  HCC827 harbor an activating mutation in EGFR 

conferring sensitivity to the EGFR inhibitor erlotinib.  Of a total of approximately 1 million 

cells each with a distinct barcode, 462 barcodes were expanded and enriched after erlotinib 

treatment to give rise to erlotinib resistance.   If this resistance was driven mostly by de 

novo mutations, distinct barcodes would emerge as independent replicates.  Instead, this 

enrichment and expansion of a limited number of barcodes suggests the existence of 

resistant cell populations prior to treatment and extensive heterogeneity within the cell line 

[54].  Furthermore, the study shows that acquired tumor resistance to erlotinib treatment 

can arise from a starting subclonal population of cells which make up only 0.05% of the 

population.  These data suggest that the application of oncolytic viruses strictly as targeted 

therapies for the direct oncolysis of tumors with specific mutations or aberrant signaling 

pathways may be subject to similar Darwinian selective pressures and result in acquired 

resistance.  The possibility of acquired resistance through this mechanism would be more 

likely in genomically unstable cancers with high intratumoral heterogeneity such as EOC, 

where the probability of spontaneously developing a mutation to confer virus resistance 

would be greater [55].   

 Alternatively, we demonstrated that resistance to MRBV could be overcome by co-

culturing resistant EOC cells with sensitive cells.  Therefore, it is reasonable to believe that 

genomic instability may in fact benefit MRBV oncolysis as it increases the probability of 

having MRBV sensitive clones that can confer sensitivity to neighbouring resistant cells.  
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Under our co-culture conditions we demonstrated that as few as 25% of co-cultured cells 

need to be sensitive to confer MRBV sensitivity to resistant cells.  Likely, genomic 

instability will differentially impact patients depending on the random nature of tumor cell 

mutagenesis.  However, the acquisition of specific mutations which support tumor survival 

and metastasis, such as activating mutations in TGFβ [56], may be more common across 

many cancers and consequentially aid in mediating MRBV oncolysis.  Many breast, 

melanomas, and prostate cancers acquire mutations in the SMAD transcriptional 

complexes which alter cytostatic gene responses but maintain the core signaling 

components of the TGFβ pathway to enhance migration, invasion, and immune evasion.  

CD44+/CD24lo cells, which have been associated with cancer stemness and poorer 

metastasis-free survival, have been shown in human breast cancers to be driven by 

activations in the TGFβ pathway [57].  Therefore there is also reason to believe that 

heterogeneity could increase tumor cell susceptibility to MRBV infection.  Future studies 

investigating the dynamics of TGFβ signaling across heterogeneous EOC cells and 

mediating MRBV sensitization should be considered and perhaps assessed via co-culture 

viability assays of MRBV-sensitive TGFβ-responsive cells and MRBV-resistant TGFβ-

unresponsive cells. 

Although we showed that MYXV had variable success in EOC cells, it may be 

possible to apply the virus as an adjuvant to promote greater MRBV infection and 

replication in a combination therapeutic approach similar to AdMA3 and MRBV [58].  

Subverting the challenges of tumor heterogeneity in MRBV replication through 

modulating cancer cell gene expression with an initial infection with MXYV may 

theoretically be feasible.  Though MYXV demonstrated the least potent oncolytic activity, 
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it may alternatively function as a potent gene delivery vehicle [59-61].  In the three EOC 

cell lines cultured as both adherent and spheroids, MYXV demonstrated the highest degree 

of infection in of all three viruses tested.  We broadly observed MYXV infection of 

approximately 40% of EOC cells and GFP expression indicative of early gene expression.  

This suggests the differential oncolytic efficacy of MYXV for EOC may be a result of 

restriction later in the virus lifecycle and that MYXV entry and early gene expression may 

not be as strongly impacted by tumor heterogeneity or cell morphology.  By comparison, 

EOC spheroids formed from cell lines and clones which were resistant to MRBV oncolysis 

had as little as 5% of cells permissive to infection.  Identification of both LDLR expression 

and TGFβ activation as trophic factors which impact MRBV replication could support the 

concept of engineering either an LDLR or TGFβ type I activated receptor expressing 

MYXV under the control of an early/late promoter [62].  Given the large cloning capacity 

of poxviruses, both constructs would be feasible to engineer.  This strategy may broaden 

tumor cell tropism for a subsequent MRBV infection.  The expression of LDLR or TGFβ 

type I activated receptor after MYXV infection and early gene expression could support 

greater replication and oncolysis by a subsequent MRBV infection in the absence of 

MYXV oncolysis.  Given that we have demonstrated complete oncolysis of heterogeneous 

tumor populations with as little as 25% of cells being permissive to MRBV, a pre-treatment 

of tumor cells with MYXV-LDLR or MYXV-TGFβ type I activate receptor could 

proportionally increase the number of cells permissive to MRBV infection and induce 

complete oncolysis in heterogeneous tumors or even across patients largely resistant to 

MRBV.  In theory, this strategy could induce oncolysis of tumor cells regardless of the cell 

cycle stage so long as MYXV production of LDLR or TGFβ type I receptor is under the 
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control of the early/late promoter [62].  Furthermore, a dual virus administration strategy 

may enhance immune responses to both viruses and tumor cells.  Investigation on the 

feasibility of this conceptual treatment regimen would have to be explored in future studies.   

5.5 Antitumor immunity and oncolytic viruses 

The growing field of oncolytic therapy is increasingly recognizing the importance 

of immune stimulation in promoting cancer cell death [63].  The majority of newly 

developed applications of viral therapies incorporate some form of immune stimulation by 

the virus.  Thus, the host-pathogen interaction is an important limiting factor in our ability 

to fully assess the potential therapeutic benefit of the viruses we have evaluated in EOC 

cells in vitro.  Although we have identified important viral trophic factors impacting 

MRBV oncolysis and the impact intratumoral heterogeneity may have on virus killing, the 

biological significance of tumor heterogeneity in MRBV killing would need to be assessed 

in the context of an active immune response.  Perhaps MRBV-induced oncolysis of a 

subpopulation of tumor cells may promote robust antitumor immunity which may be 

sufficient to overcome the cellular complexity in tumor heterogeneity.  Assessing this may 

be particularly difficult in pre-clinical models of cancer as mouse xenograft models of EOC 

using heterogeneous primary human cancer cells use immunocompromised animals.  

Syngeneic models using murine cancer cell lines are little better as the tumors are much 

less heterogeneous.  In immune competent syngeneic murine melanoma models using B16-

F10 cells, Pol et al. show relatively poor induction of both cytotoxic and helper T cell 

activation after infection with armed MRBV-hDCT (melanoma associated antigen, 

dopachrome tautomerase).  This is likely due to an intact type I IFN response in B16 cells, 

which limits productive viral replication in vivo and restricts robust activation of the 
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adaptive immune system against the tumor [64].  Antitumor immune stimulation in 

heterogeneous tumor models in which a mixed population of virus-sensitive and virus-

resistant cells would be more informative in comprehending MRBV induction of antitumor 

immunity.  Transgenic mouse models of EOC may be one of the few pre-clinical models 

to fully evaluate the potential impact of tumor heterogeneity on MRBV in the context of 

an active immune system.  However, few if any, biologically relevant HGSOC transgenic 

mouse models have been characterized in terms of their ability to recapitulate tumor 

heterogeneity or stimulate immune function [65, 66].  Alternatively, humanized mouse 

models with xenografted human immune systems and tumor tissues may be another model 

to assess MRBV oncolysis in a heterogeneous tumor model in the context of a competent 

immune system [67, 68].   However, mismatching human leukocyte antigen (HLA) from 

tumors and hematopoetic cells and stem cells (used to recapitulate human immune system) 

is known to cause severe graft vs. host disease or lack of response [69].  Therefore, either 

matching HLA is required or co-transplantation of human tumors and human peripheral 

blood mononucleocytes into immunodeficient mice are required for the analysis of the 

immune response to tumor [70].  Thus, assessing the impact of tumor heterogeneity on 

MRBV oncolysis in the context of a fully competent immune system is exceedingly 

challenging given the systems that currently exist to model EOC.  

Though the oncolytic activity for both MYXV and vvDD may not be particularly 

potent in tumor dormancy, their ability to induce early gene transcription and large cloning 

capacity permits the application of poxviruses in diverse contexts aside from direct cancer 

cell infection and oncolysis.  Poxviruses could be used as vectors armed with tumor-

associated antigens to aid in tumor cell recognition by the immune system even in the 
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absence of virus amplification and oncolysis [71-73].  For EOC patients, increased anti-

tumor immunity as measured by tumor infiltrating lymphocytes is a robust prognostic 

indicator of outcome [74]. Furthermore, their restricted replication within the cytoplasm 

eliminates the risk of viral gene integration into the host genome and potential oncogenesis 

of host cells.  Recombinant MYXV armed with an IL15Rα-IL15 fusion protein, which 

functions as an immunostimulatory cytokine, demonstrates potent stimulation of both 

innate and adaptive immune responses. Through cytotoxic lymphocyte proliferation and 

significantly greater NK cell tumor infiltration in a murine melanoma model, a cessation 

of tumor growth and prolonged survival was achieved [61].   

Prime-boost administration of sequential infections with armed poxviruses has 

been evaluated in clinical trials with promising results.  Infection of EOC and melanoma 

patients with vaccinia virus armed with the tumor-associated antigen NY-ESO1, followed 

by a booster vaccination with fowl pox virus armed with the same antigen, elicited 

enhanced cytotoxic and helper T cell responses against tumors in 20/22 patients in a phase 

II clinical trial.  Patients who developed T cell responses in the presence or absence of 

neutralizing antibodies demonstrated improved overall survival compared to those who did 

not develop T cell responses (52.4 months vs. 14.5 months).  T cells extracted from 

responsive patients demonstrated immune recognition and cytotoxicity of NY-ESO1 

expressing tumors in ex vivo models providing evidence for the efficacy of poxvirus based 

immunotherapeutic vaccines against EOC [75].   

5.6 Conclusions 

This work highlights the aspects of cancer which continue to plague the 

development of effective therapies and perhaps limited the therapeutic benefit of early 
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clinical trials with oncolytic viruses.  The use of oncolytic viruses in in vitro models of 

EOC which aim to recapitulate the most common hurdles for effective therapy emphasize 

ongoing challenges but also new opportunities for improved treatment.  Although both 

metastasis and tumor heterogeneity remain major obstacles, characterization of viral 

trophic factors and their kinetics within EOC cells reveal new contexts in which viruses 

can be applied to combat these treatment barriers and hopefully improve outcomes. New 

insights into the syngeneic relationship between viruses and the immune system provide 

novel avenues to develop virus therapy to help overcome these longstanding impediments.  

The expanding repertoire of oncolytic viruses and their application in combination with 

each other provides a growing arsenal of agents to diversify the current options for cancer 

therapy and stimulate anti-tumor immunity in ways that standard chemotherapy and 

surgery fail to confront.  The challenges and opportunities presented here for oncolytic 

virus use in EOC reveal a new framework for designing viruses to surmount the complexity 

of EOC tumors and heterogeneity.   
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