

42

If Sysi is an Interactive System with a set of manageable applications,

InteractiveAppsi = {IntApi1, … IntApin, …} , then MOASysi = {moIntApi1 …,

moIntApiq } where moIntApij is the managed object for application IntApij.

That is, the managed objects associated with an interactive system are the

managed objects for any of the applications it can run that are

manageable.

 MOcoolers = {mocl1, …, mocln }; defines a set of manageable objects for all

type of coolers in the data center.

The previous definition describes the manageable objects within our data center model.

Compute nodes are smallest supported object in the data center model. Considering that

the focus of this research is management and energy consumption, in order to model a

compute node, beside the computing capabilities of the compute node, i.e. MIPS4, we

need to consider its power features and in any supported alternative CPU frequencies (if

any). The following defines the characteristics of a compute node definition in our model.

Definition 12. A Compute Node object is defined as <MIPS, FullLoadPowerConsumption,

ZeroLoadPowerConsumption, StandbyPower>

where

 MIPS = {mips1, mips2,…,mipsL} are the MIPS levels for each processing

frequency level of the CPU; we assume L levels.

 FullLoadPowerConsumption = {powFul1, powFul 2,…, powFul L} is the full

load power (i.e. power consumption when CPU is 100% utilized) for each level of

CPU frequency.

 ZeroLoadPowerConsumption = {powZero1, powZero 2,…, powZero L} is the

zero load power (i.e. power consumption when CPU is 0% utilized) for each level

of CPU frequency.

4
 Million Instructions per Second.

65

for managing an application during a work day would be very similar to the policies for

managing it at night or on a weekend except perhaps for some parameters.

Figure 6-2. Information flow to determine policy.

The Policy repository server contains the policies for the AMs in the management

system. The policy repository could be a database server, an LDAP server or a Directory

Enabled Network (DEN) device. All AMs during their life cycle have access to this

server, to read their respective policies. The first time that an AM has access to the policy

repository is at its initialization, although during its life cycle the AM may access the

repository to get updated policies.

6.3. Arrival of a New Managed Object

The arrival of new MO starts from when the resource managers in the system inform the

management system the arrival of new object at a system in the data center.7 The

resource manager of the system sends information about the new object (MOPhysicalInfo)

to the management system controller; which includes information about the type of the

object and the system on which the object will run. This information is received by the

7
 Note that there might be number of new object arrival notifications in the management system, i.e., for

each of the system; these requests will be queued and processed by the management system.

66

management system controller which maintains a list of MOs and their associated

information. Now, if an AM is needed for the new object, the management system asks

its own resource allocator (as earlier explained management system has its own resource

allocator) to assign a node for its AM. 8Afterward, the management system will initialize

the AM. This flow of work is shown in Figure 6.3.

Note that the focus of this thesis is on automating management activities, so the

administrator specifies MO classes that should have AM and the management system

create a manager for that. In our experiment, we focus on having one manager per MO

though it is not a requirement for the management system. AMs can manage more than

one MO at the time and it can address each of them based on their ids.

 Figure 6-3. Management Work Flow for the Arrival of a New Managed Object.

The management system will associate an AM for the new MO if the administrator had

specified AMs for that class of MOs. The administrator needs to specify the MO classes

that need to have AMs and a manager object class for that class of MOs.

8
 Considering overhead of communication between a manager and its MO another approach for allocating

node to run the manager is asking the system that MO is resident there to allocate a node for the manager.

In this case, the manager is not located in the management system’s system instead the manager is in

system associated its MO.

76

23. Call AM_SetPolicySet algorithm

24. End

6.6. Event Handling

Event handling is done in the management loop. Inside each AM there is an event queue.

There are two kinds of events in an AM: internal events and external events. Internal

events are timer triggers. External events are those that happen in other managers and the

manager is notified by messages will help the manager to notify each other about the

events.

How does a manager will trigger an event in another manager? The AM in need or the

AM that wants to trigger an event sends an UpdateHeartbeat message with eventFlag

equals to EventCode (code to show that the intention of this message is event trigger not

just updating heartbeat based on request) to other AM/s. When an AM receives the event

notification message, it will put the received event in the event queue and upon running

the management loop the event will be de-queued and will be processed. The

management loop goes through each event in the queue and checks its policy set and

invokes policies associated with each event.

The next question is when should a manager trigger an event in another manager? The

answer is that the notification of an event should be specified in a policy as an action. For

example consider an interactive application in which there is an SLA violation. One

action may be to inform its system level AM about its SLA violation, the assumption

being that the system level AM should have a related policy to handle the application’s

SLA violation. The following policy shows this logic (interactive application policy).

On Event: Timer Trigger

If (reponseTime >ERT)

 Send (UpdateHeartbeat, responseTime, SystemAM, EventCode)

end

As explained in our model for interactive applications, the SLA sensor is responseTime if

it is greater than an expected response time (ERT) for specific percent of jobs during last

epoch time there is SLA violation. The action in the policy is to send UpdateHeartbeat

87

7.3 Scenario #1: Single Manager and Scalable Data Center

In this scenario, our simulated data center has the same layout as explained in previous

section, except each chasses has five compute node (in total our data center has 250

compute nodes); simulated servers are Proliant HP DL320. This server has a standby

power consumption of 5Watts; when its idle power consumption is 100 Watts and with a

fully utilized the CPU consumes 300 Watts. The DL320 has an Intel® Xeon® E3-

1200v2 processor which has frequency scaling levels which are 3.07, 3.2, and 4.2 GHz,

which when normalized to the “base level” are 1, 1.07 and 1.37 (refer to the definition of

compute nodes in Definition 12.)

Figure 7-6. Data Center Layout in Scenario # 1 (Each chassis has five servers).

7.3.1 Managed Objects and Classes in Scenario #1

Table 7-1 shows the configuration of the physical layout of the data center. This layout

will also be used for all scenarios in this Chapter.

Table 7-1. Physical Data Center Set of Manageable Objects

dataCenterT SysList={entSys}
Racks={RackT}
RackT={r1,r2,r3,r4,r5,r6,r7,r8,r9,10}

88

r1 = {ch11,ch12,ch13,ch14,ch15}
r2 = {ch21,ch22,ch23,ch24,ch25}
r3 = {ch31,ch32,ch33,ch34,ch35}
r4 = {ch41,ch42,ch43,ch44,ch45}
r5 = {ch51,ch52,ch53,ch54,ch55}
r6 = {ch61,ch62,ch63,ch64,ch65}
r7 = {ch71,ch72,ch73,ch74,ch75}
r8 = {ch81,ch82,ch83,ch84,ch85}
r9 = {ch91,ch92,ch93,ch94,ch95}
r10 = {ch101,ch102,ch103,ch104,ch105}
ch11= {n111,n112,n113,n114,n115}
ch12= {n121,n122,n123,n124,n125}
ch13= {n131,n132,n133,n134,n135}
ch14= {n141,n142,n143,n144,n145}
ch15= {n151,n152,n153,n154,n155}
ch21= {n211,n212,n213,n214,n215}
ch22= {n221,n222,n223,n224,n225}
ch23= {n231,n232,n233,n234,n235}
ch24= {n241,n242,n243,n244,n245}
ch25= {n251,n252,n253,n254,n255}
ch31= {n311,n312,n313,n314,n315}
ch32= {n321,n322,n323,n324,n325}
ch33= {n331,n332,n333,n334,n335}
ch34= {n341,n342,n343,n344,n345}
ch35= {n351,n352,n353,n354,n355}
ch41= {n361,n362,n363,n364,n365}
ch42= {n421,n422,n423,n424,n425}
ch43= {n431,n432,n433,n434,n435}
ch45= {n441,n442,n443,n444,n445}
ch45= {n451,n452,n453,n454,n455}
ch51= {n511,n512,n513,n514,n515}
ch52= {n521,n522,n523,n524,n525}
ch53= {n531,n532,n533,n534,n535}
ch54= {n541,n542,n543,n544,n545}
ch55= {n551,n552,n553,n554,n555}
ch61= {n611,n612,n613,n614,n615}
ch62= {n621,n622,n623,n624,n625}}
ch63= {n631,n632,n633,n634,n635}
ch64= {n641,n642,n643,n644,n645}
ch65= {n651,n652,n653,n654,n655}
ch71= {n711,n712,n713,n714,n715}
ch72= {n721,n722,n723,n724,n725}
ch73= {n731,n732,n733,n734,n735}
ch74= {n741,n742,n743,n744,n745}

89

ch75= {n751,n752,n753,n754,n755}
ch81= {n811,n812,n813,n814,n815}
ch82= {n821,n822,n823,n824,n825}
ch83= {n831,n832,n833,n834,n835}
ch84= {n841,n842,n843,n844,n845}
ch85= {n851,n852,n853,n854,n855}
ch91= {n911,n912,n913,n914,n915}
ch92= {n921,n922,n923,n924,n925}
ch93= {n931,n932,n933,n934,n935}
ch94= {n941,n942,n943,n944,n945}
ch95= {n951,n952,n953,n954,n955}
ch101= {n1011,n1012,n1013,n1014,n1015}
ch102= {n1021,n1022,n1023,n1024,n1025}
ch103= {n1031,n1032,n1033,n1034,n1035}
ch104= {n1041,n1042,n1043,n1044,n1045}
ch105= {n1051,n1052,n1053,n1054,n1055}
where ni, is a nodeT
ThermalModel =< coolerList, RedTemp, ThermalMap > = <{coolerT}, 35,
DMatrix>

nodeT

MIPS={1 1.04 1.4 }
FullLoadPowerConsumption= {300, 336, 448}
ZeroLoadPowerConsumption={100, 100, 128}
StandbyPower= 5

coolerT CoP_Equ= 0.0068*T2+0.0008*T+0.458

In this experiment, a web server is hosted in the data center and 90 compute nodes are

allocated to the web server. The workload for this web server is a scaled up workload

based on the web server workload for the world cup 1999 traffic [20]. Note that original

workload log has 9500 http request arrivals per second; in our experiment we scaled up

the workload to have, an average 10 times of the original workload i.e. 95000 http

requests per second. The workload is specified via file of jobs (see Table 7-2, a sample of

the workload (Workload.txt) is provided in Appendix B).

We consider the system to be one enterprise system, which contains one enterprise

application – a web server. A manager is attached to the web server which monitors its

SLA and takes actions (see Table 7-8) based on its active policies. For this web server,

we consider an SLA violation to occur when the response time is more than two seconds

for 90% of workload that has been done in last epoch time (here 60 seconds). Two

different profile policies (SLA and Green) have been defined and are compared in terms

90

of the total number of SLA violations and total energy consumption. The following tables

contain configuration parameters to set up the management system.

On top of the physical objects, we have modeled an Enterprise system and Enterprise

application. Table 7-2 shows the definition of this system and application based on our

definitions in previous chapters. The enterprise system has a single resource manager

with MHR is its resource allocation algorithm (Minimum Heat Recirculation; see

Algorithm 2.) which utilizes all nodes of the system. First come first served (FCFS) is the

scheduling algorithm in the system. The application makes use of all 90 nodes.

Table 7-2. Manageable Objects Scenario#1.

In this scenario we have EntAppClass and NodeClass (refer to Table 7-3) as classes of

managed objects in this scenario. NodeClass is defined since the actuators of application

need access to change the status of nodes belonging to the application. Therefore, we

define a class for nodes which just has actuators and there is no manager attached to it.

The managed object associated with EntAppClass and NodeClass are application entApp

and nodeT. EntAppClass has sensors, events, and actuators. NodeClass just has a set of

actuators for changing the CPU working frequency and status (sleep or active).

Manageable Object

entSys

Id=1
Type=Enterprise
Workload= {entApp}
Queue
ResManagers= {MHR) }
Sched= {FCFS}
Racks= {r1,r2,r3,r4}

entApp

Id=1
startTime=1
duration=0
computeNodes:<90,90>
computeIntensity=(1,1000)
workload=WorkLoad1.txt
SLA=(2,90%,60s)
terminationTime=0

91

Application level MO class EntAppClass actuators are as follows:

 increaseFreqFullyUtilized(id): which increases the frequency of all fully utilized

nodes of application with given id.

 activateAllSleepNodes(id): which activates all sleeping nodes of application with

given id.

 activateHalfSleepNodes(id): which activates half of the sleeping nodes of

application with given id.

 increaseFreqBusyNodes(id): which increases the frequency of all busy nodes of

application with given id.

 decreaseFreqAllBusyNodes(id),in which decrease frequency of all busy nodes of

application with given id.

 sleepAllidleNodes(id): which puts to sleep all idle nodes of application with

given id.

EntAppClass has an internal timer (Timer1) when triggered causes the managed object

class event. Note that this experiment shows one of the implications of MOProperties;

timer value is one of MOProperties variable.

According to our model, for an enterprise application with given id, the response time for

the last epoch time window is defined as an SLA sensor i.e. reponseTimeInLastEpoch(id)

in the definition of EntAppClass.

Table 7-3. Managed Object Classes (EntAppClass, NodeClass) for Scenario#1

En
tA

p
p

C
la

ss

MOs= {entApp}
Event= {Timer1TriggerEvent}
Sensor={ reponseTimeInLastEpoch(id)}
Actuator={ increaseFreqFullyUtilized, activateAllSleepNodes, activateHlafSleepNodes,
increaseFreqBusyNodes, decreaseFreqAllBusyNodes, sleepAllidleNodes}
MOProperties={ (Timer1Vlaue,60s)}

N
o

d
e

C
la

ss
 MOs= {nodeT}

Event= { }
Sensor={ }
Actuator={ increaseFreq(id), activateNode(id),SleepNode(id),decreaseFreq(id)}
MOProperties={ }

92

Table 7-3 shows managed object class in the simulation scenario i.e. EntAppClass and

NodeClass. The list of all instances of AM classes which, in this case, are associated with

managed object classes is illustrated in Table 7-6. In this scenario, we just have one AM

i.e. AMEntAppClass and no pair. The manager, in this scenario has two policy sets.

Following tables show data center set of manageable objects and classes and their

associated AM classes, and the topology of the management system in this scenario.

Table 7-4. Data Center Set Of Manageable Object.

Set of Manageable object

MODC={dataCenterT}

MORacks={ rackT}

MOnode= {nodeT}

MOEntrpriseSys= { EntSys}

MOApps= {entApp}

Table 7-5. Data Center Managed Object Class.

Managed Object Class

MOClassesDC= { EntAppClass, NodeClass }

Table 7-6. AM Classes and MO Classes.

AM Class MO class

AMEntAppClass EntAppClass, NodeClass

Table 7-7. AM Pairs and Management Topology.

AMPair {}

TDC V={ AMEntAppClass }
E=AMPair

94

Note that reponseTimeInLastEpoch is defined in the list of EntAppClass MO class

sensors. Last argument of SLAViolationCheck function is application id, in our scenario

we just have one application with id=1.

Table 7-8. Policy definition for Scenario#1

SLA Profile For
AM Attached to
Enterprise App

PL0:
On Event: Timer1TriggerEvent
 If (SLAViolationCheck (90%,reponseTimeInLastEpoch,2, id)>0)
 begin
 increaseFreqBusyNodes(id) activateAllSleepNodes(id) |
activateAllSleepNodes(id)
 End

Green Profile
For AM
Attached to
Enterprise App

PL1:
On Event: Timer1trigger
 If (SLAViolationCheck(90%,reponseTimeInLastEpoch,2, id)>0)
 begin
 increaseFreqFullyUtilized(id) activateHalfSleepNodes
|activateHalfSleepNodes(id)
 end
PL2:
On Event: Timer1trigger
 If (SLAViolationCheck(90%,reponseTimeInLastEpoch,2, id)<0)
 begin
 decreaseFreqAllBusyNodes(id) sleepAllidleNodes(id)|
sleepAllidleNodes(id)
 End

The simulation results are shown in Table 7-9. Even with these trivial policies, there is

improvement in computing; the application with Green policies consumes less power

than the SLA based policies. With the SLA based polices, the total energy consumption

(cooling and computing power) is not available through the simulation since the inlet

temperature exceeded the red temperature 475 times and as a result the simulator could

not calculate the power consumed. In a real data center, the temperature should not

exceed the red temperature; in the simulator higher than red temperature causes the

cooling power to be negative value.

95

Table 7-9. Results for Scenario #1

Profile Policy Green SLA

Computing power of Web server (Watt) 7.7 * 10^8 9.6*10^8

total energy consumption

(Watt ˟ Simulation Time)

1.9*10^9 N/A

Mean power consumption (Watt) 26982 N/A

Number of times crossing red temperature 0 475

SLA Violation 132 38

The main objective of this experiment was to introduce in some detail how the abstract

model introduced previously can be used to model a data center, applications,

management objects and classes and to illustrate the scalability of data center simulator;

it also illustrates the impact of policy based management to manage energy consumption

and SLA violations.

7.4 Scenario #2: Hierarchical Autonomic Manager
Arrangement

In this scenario, we develop and illustrate a hierarchical arrangement of managers. A

hierarchy of managers corresponds well with the expected managed elements in the data

center. By having multiple levels of AMs, we aim to get better performance in terms of

total energy consumption of the whole data center while trying to minimize the violations

to service level agreements (SLA). Prior to getting to discussing details of the second

scenario simulation, we illustrate hierarchical data center management.

7.4.1 Hierarchical Management System

A hierarchical management structure can be based on the physical arrangement of

elements, from blade server, to rack, to cluster. For instance, a manager (AM) at the

cluster level can manage the layer below it, namely the racks. In each rack, a particular

AM could then make decisions about, for example, the number of active servers. The

116

The actuators for the enterprise system object class include allocating a node to an

application (allocateNode(application)) and, releasing a node from an application

(releaseANode(applicationID)).

For the enterprise applications, we have two events: triggerTimer1 (i.e. defined as its

MOProperties) and CooperationEvent. CooperationEvent is triggered by the system level

AM in the management system. When, the system level AM wants to allocate a node to

an application in need and there is no node available to allocate, the system level AM

needs to notify all applications inside the system. This is done via an event trigger in our

management system. As explained in section 6.6, the system level AM needs to send an

UpdateHeartbeat message with EventCode to all of its application AMs. This event

(message) is named as CooperationEvent in application managers.

There are also actuators for then enterprise application class (EntAppClass) which their

descriptions are as follows:

 increaseFreqFullyUtilized(id): which increases the frequency of all fully utilized

nodes of the application with given id (if possible).

 activateAllSleepNodes(id): which activates all sleeping nodes of application with

given id.

 activateHalfSleepNodes(id): which activates half of the sleeping nodes of

application with given id.

 increaseFreqBusyNodes(id): which increases the frequency of all busy nodes of

the application with given id.

 decreaseFreqAllBusyNodes(id): in which decrease frequency of all busy nodes of

the application with given id.

 sleepAllidleNodes(id): which puts to sleep all idle nodes of the application with

given id.

Upon arrival of any application in the data center it gets its own id and this id will be sent

to the AM as configuration parameter i.e. explained in Chapter 6 Algorithm 5. Table 21

illustrates the MO classes in this scenario. EntAppClass has Ent_Application as its

