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6.4.1 Statistical Properties

(a) Blood glucose levels in the clinical trial sample (b) Blood glucose levels in the artificial dataset

Figure 6.7: Distributions fitting (Weibull, Gamma, and LogNormal) on the blood glucose levels

of two datasets (the clinical trial sample and the artificial dataset (100 patients)). Two blood

glucose histograms have very similar shapes.

Exploratory blood glucose data analysis is our first step to validate the generated artificial

datasets. We use graphical techniques (Histograms/densities, Quantiles-Quantiles plot, Em-

pirical Cumulative Distribution Function (ECDF), and Probability-Probability plots) to visual-

ize the statistical properties of the empirical data and thus hypothesize the candidate families

of distributions which would fit well. As we can see in Figure 6.7, blood glucose levels in

both dataset are non-negative continuous and nearly normal distributed. Based on these prop-

erties, we choose the distribution candidates as Weillbull(λ, k), Gamma Γ(k, θ), LogNormal

lnN(µ, σ2).

The parameters in these candidates are estimated using maximum-likelihood methods. We

also use the most popular distribution K-S test to test if the data sample is from a reference

distribution statistically. The distribution fitting results show that all candidate distributions

have very similar AIC values, but LogNormal distribution has statistical significance in K-

S test 1. The fitted LogNormal distributions and other descriptive percentiles are shown in

Table 6.2. As we can see from Table 6.2, the blood glucose levels in the clinical trial sample and
1We reject the null hypothesis that the data sample is drawn from the LogNormal distribution if the p-value is

less than the significance level (0.05).
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Table 6.2: Descriptive percentiles and two fitted LogNormal distributions of blood glucose data

in clinical trial and artificial dataset.

Property Clinical Trial (mmol/L) Artificial (mmol/L)

Min 0.1 0.82

1st Quantile 6.0 6.6

Median 7.1 8.4

Mean 7.166 8.6

3rd Quantile 8.2 10.2

Max 14.5 27.6

Best-fit lnN(1.94, 0.282) (K-S test, p = 0.067) lnN(2.08, 0.382) (K-S test, p = 0.058)

the 100-patients’ artificial dataset share similar statistical properties and distributions, which

indicate that our data generation process is valid.

6.4.2 Prediction Capabilities Evaluation

Now the artificial training dataset is well-generated to have similar statistical properties with

an original clinical dataset. The next step is to evaluate the predictive ability of this artificial

dataset.

In our previous clinical trial, we applied generalized linear-model to predict blood glucose

and determine the feature relevance. In this study, since we now have much larger and more

informative datasets, we can investigate the prediction abilities of complex and non-linear mod-

els. As such, we choose four representative predictive models as: RandomForest (discussed in

Chapter 4), ElasticNet (GLMNET) (discussed in Chapter 5), ANN, and SVM.

The complete training dataset is randomly split into 5 subsets (10%, 20%, 40%, 60%,

and 100%). These percentages are equivalent to the number of patients since the total patient

number is 100. These subsets are used to evaluate the scalability of each model. For each

sub-dataset, we then split 70% of the data for model training, and 30% for model testing. Also,

we have prepared another validation dataset for parameters tuning. The prediction evaluation

metric is the standard MAE (Mean Absolute Error). After the standard parameter tuning (grid

searching) using the validation dataset, each model is well-calibrated to perform prediction

task on the training datasets. We plot their prediction performance in Figure 6.8.

As we can see in the Figure 6.8, the prediction errors of almost all models decrease with

the size of the training data. Simple-structured models, such as GLMNET and SVM, seem do
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Figure 6.8: Solid lines present the models enhanced with temporal weight (TW), dash lines represent

the regular predictive models. We can see that the integration of temporal weights improves the predic-

tion performance for all models. Also, the prediction performance increases with more training data for

most models.

not require too much training data to be converged. The start point is ten patients’ data over

three months, which have the similar size as our entire clinical trial dataset, are sufficient for

them to reach their prediction potentials. However, as for complex-structured models such as

RandomForest and ANN, they certainly require more data to reach their prediction potentials.

Thus, we do believe that our previous clinical dataset might not be sufficient enough to train

complex and non-linear models. Inspired by this fact, we argue that deep learning framework

such as Convolution Neural Network would achieve better prediction results on a large scale

of lifestyle datasets.

We also evaluate the feature temporal re-weighting mechanism. In Figure 6.8, solid lines

present the models enhanced with temporal weight (TW) described in Section 6.3.5 and dash

lines represent the regular predictive models. Obviously, we can see that the integration of
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temporal weights does improve the prediction performance of all models. We can see that

RandomForest-TW (best prediction error are 1.36571 mmol/L) and ANN-TW (1.349877 mmol/L)

outperform other candidates on this training dataset. These MAE values are larger than the one

(0.9273 mmol/L) we reported in the clinical trial studies. However, the clinical trial samples in

fact have much smaller value range as shown in Table 6.2.

This study also suggests a linear model, even with complex regularization such as ElasticNet,

might not be the best prediction model in terms of blood glucose prediction accuracy. How-

ever, compared to the complex models such as ANN, the comprehensibility of the linear model

is very high. This advantage is in fact important and practically valuable for clinical decision

supports.

The artificial blood glucose datasets can also be used for varieties of other machine learn-

ing empirical studies such as blood glucose warnings, missing value imputation, data sparsity

analysis, transfer learning, etc., as our on-going and future research works. Still, they are not

real-world datasets. In order to conduct more reliable empirical studies, we certainly need

large datasets with more feature dimensions and huge data volume. Fortunately, the commer-

cialization of GlucoGuide gives us such opportunities, and we can collect large lifestyle data

worldwide now. The spin-off of GlucoGuide and our future research objectives will be briefly

described in the next chapter.
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GlucoGuide Spin-off

GlucoGuide Corp., established since Feb 2015 (https://glucoguide.com), aims to use ma-

chine learning technologies to tackle the two main challenges of diabetes self-management,

i.e., complexities of data input and lacking of short-term and personalized recommendations, as

detailed in Chapter 3. In particular, we have been researching and developing computer vision-

based approaches to reduce the complexities of lifestyle data input and provide evidence-based

lifestyle recommendations for patients to stabilize their blood glucose effectively.

GlucoGuide has received several rewards and raised approximately 1 million CAD R&D

fundings mainly from NSERC I2I, MITACS, and Angel Investments (See Appendix B for de-

tails). At this point, the main functionalities of GlucoGuide have been developed, and it is at the

stage of promotion and increasing user base. We believe that our user base will explode soon

because many GlucoGuide users believe that it is the best diabetes self-management system

they have seen. We been collaborating with many health organizations such as the nonprofit

organizations like CDA, local Diabetes Education Centers (DECs), and for-profit organizations

like MedPoint).

7.1 Current Status

Stable versions of GlucoGuide mobile clients for both Android and iOS can be downloaded

from Google Play and App Store respectively and used to log lifestyle data and receive advice

and recommendations from data-analytics algorithms. With the current version of GlucoGuide,

users are able to:

• Log and track data, including diet, exercise, sleep, blood glucose, insulin, A1c, weight,

etc., as shown in Figure 7.1. Users can also use reminder functions to one-click log the

data.
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Figure 7.1: Users can use GlucoGuide mobile clients to conveniently log varieties of lifestyle

data and receive recommendations

• Receive evidence-based lifestyle recommendations, some examples are also shown in

Figure 7.1.

• Log the diet data by snapping a photo of the meal and auto-estimate the nutrition facts,

as shown in Figure 7.2;

• Score their meal, based on a novel scoring system, as shown in Figure 7.2. The meal

scoring is a novel feature of GlucoGuide system, as it works with the existing data min-

ing system to give individualized feedback based on personal profile (such as weight,

height, gender, etc.) Note that the meal scoring system is designed to align with the

CDA Guidelines [2] (http://guidelines.diabetes.ca/Browse/Chapter11), and

with consultation from diabetes specialists and experts.

• View all the lifestyle data entered in a secure online logbook (https://myaccount.

glucoguide.com). The data are visualized with charts and trends as shown in Fig-

ure 7.3, and users can also print their logbook and bring them to their health providers;
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Figure 7.2: Log the diet data by snapping a photo of the meal and auto-estimate the nutrition

facts. A overall meal score is also generated to evaluate the whole meal.

7.2 Future Research Objectives

The current GlucoGuide system has already provided a comprehensive platform covering nearly

every aspect of diabetes self-management. For example, GlucoGuide is able to record detailed

information about each meal including the meal photos, specific food items in the meal, serving

and portion size, meal score, etc. As such, our future lifestyle feature vector can be expanded

to hundreds of thousands of dimensions. It is possible that in the future we can discover more

relationships between food items and blood glucose levels and provide more personalized and

detailed recommendations. Such as “Reducing 20% of the portion size of your home-made

sandwich to avoid high 2-hour blood glucose level“ or “30 minutes Yoga after dinner would be

the most effective way for you to control your fasting blood glucose“.

In fact, for a large feature vector, a huge amount of qualified training data are required to

fully describe the varieties of each feature and their relationships. Complex machine learning

frameworks are also needed to discover knowledge hidden in the big lifestyle data. Collect

such big lifestyle data and mine them with varieties of machine learning frameworks will be

our main future research objective.



74 Chapter 7. GlucoGuide Spin-off

Figure 7.3: Users can review and print all their data using GlucoGuide online logbook.



Chapter 8

Conclusions

The efficiency of self-management for Type-2 Diabetes (T2D) is well-known but remains

highly challenging to implement for both patients and doctors in the practice. Based on the

challenges we discovered in the current diabetes management systems, we have proposed three

research questions and evaluated a novel system called GlucoGuide to answer them. We sum-

marize the answers to these questions as follows:

• Can we use classification models to generate real-time food guideline to help pa-
tients proactively manage their diet?
Answer: Evaluation results of our food classification tool show that it can achieve around

95% classification accuracy using RandomForest model on the proposed feature vector

combining textual and nutrient features. Thus, we can conclude that patients could re-

ceive empirically reliable real-time food recommendations using our tool. Note that our

food classes are subjective and labeled by health experts, which means they are not per-

sonalized and be changed over time.

• Can we predict T2D patients’ blood glucose level merely using lifestyle data and
discrete fingerstick-based blood glucose samples?
Answer: Evaluation results show that the MAEs of the proposed blood glucose predic-

tion framework are similar to the state-of-the-art results on both the real dataset and the

artificial datasets, using merely the lifestyle data and discrete blood glucose samples. In

fact, to the best of our knowledge, most related blood glucose prediction works are fo-

cused on CGM datasets mainly for T1D patients. We could not find the benchmarks of

blood glucose prediction for T2D’s lifestyle data but we believe there will be more simi-

lar research works in machine learning and computational diabetes management areas in

the future.

Also, we find that the prediction performance improved with temporal re-weighting
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mechanisms. We believe that the performance can be further improved by using deep

learning framework on a large scale of lifestyle data.

• Can we provide clinically effective lifestyle recommendations based on the outcomes
of blood glucose prediction?
Answer: Our clinical trial results suggest that GlucoGuide system could help T2D pa-

tients to alleviate their diabetes conditions based on two standard clinical blood tests. Our

adherence model also predicted that the more they adhere to GlucoGuide recommenda-

tions, the better the glucose control they would achieve. However, the main difference

of diabetes practice between the control group and intervention group is the usage of the

entire GlucoGuide system. Thus, it is difficult to point out and compare the clinical ef-

fectiveness of each component of GlucoGuide. In the future, more specific clinical trials

are needed to distinguish the effectiveness of each component.

Our work can be regarded as a proof of concept in integrating machine learning, mobile com-

puting, and medical knowledge into a mobile intelligent system that can benefit people with

chronic diseases, such as diabetes. We hope that our work could inspire future interdisciplinary

researchers to apply machine learning and mobile computing into the treatment and manage-

ment of other diseases.

GlucoGuide now is a university spin-off, allowing us to collect a large scale of practical

diabetic lifestyle data in terms of dimensions and volume. We can then design and implement

more advanced models to analyze the data and generate more personalized and effective rec-

ommendations. We hope our work would have potential impact on the entire diabetes treatment

and management area.
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Table A.1: Recommendation List

Type Condition Recommendation Templates
Carbohydrates Exceeds carbs tar-

get and has the

largest coefficient
• By examining your uploaded health data we have

seen that your carbohydrate and blood glucose lev-

els are related. Consider reducing the proportion

of carbohydrates you eat at dinner to better control

your after dinner blood glucose. For example, try

replacing some of the bread, rice or pasta in a meal

with an extra portion of meat or vegetables, both of

which have a lower carbohydrate content and often

help with satiety.

• Blood glucose was a little high after yesterday’s

meal. Try this trick: Heighten the flavour of your

foods with herbs, spices, vinegars, and mustards.

They’re all low calorie or calorie free and thus

don’t raise blood glucose levels.

• Based on your uploaded data, GlucoGuide has

found that carbohydrates are very linked to high

after-meal blood sugar. Consider reducing the to-

tal carbohydrates of the dinner meal by replacing

some of the grains in your meal (ex. rice, pasta,

bread) with vegetables or protein.
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Protein Exceeds protein

target and has the

largest coefficient
• Based on your uploaded data, GlucoGuide has

found that your protein intake is linked to your

blood glucose levels. To improve your blood glu-

cose levels try eating a smaller portion of protein

at meals. Ideally, we should all be eating between

0.8 - 1.8 grams of protein per kilogram of body

weight, and protein should make up 20% of our

total calories that we eat each day.
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Fat Exceeds fat target

and has the largest

coefficient
• Blood glucose was a little high yesterday. Think

about what you ate: was there a way you could

have made it a little healthier? Perhaps scaling

back the portion size, decreasing the amount of sat-

urated fat you have at dinner could make the differ-

ence. We’ve send a trend between your blood glu-

cose and the amount of fat you eat, so that would

be a good place to start!

• By examining your uploaded data, we have seen a

trend between the amount of fat you have at dinner

and your blood glucose levels. Try reducing the

portion size of the foods that have a high fat con-

tent, and increasing your intake of carbohydrates

and protein. For example, in your evening meal,

have a salad with garbanzo beans or black beans

added in to get extra protein, or try having a 1/2

cup of low-fat or non-fat yogurt with berries for

dessert.

• To improve your blood glucose levels try eating

foods with less saturated fat at meals. Ideally fat

should make up 30% of our total calories that we

eat each day. Lighten up on fats. For example,

decrease the amount of butter, oil, salad dressing,

cream cheese, sour cream and other fats you use.

They’re loaded with calories and some have un-

healthy saturated fat.
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Carb Ratio Carb ratio exceeds

target ratio and has

the largest coeffi-

cient

• Great healthy eating choices - by incorporating

whole grains and protein-rich Greek yogurt you

are fueling your body with the nutrients you need.

Keep seeking out ways to add those vegetables for

extra punch.

Protein Ratio Exceeds protein

ratio target and

has the largest

coefficient

• Based on your uploaded data, GlucoGuide has

found that your protein intake is linked to your

blood glucose levels. To improve your blood glu-

cose levels try eating a smaller portion of protein

at meals. Ideally, we should all be eating between

0.8 - 1.8 grams of protein per kilogram of body

weight, and protein should make up 20% of our

total calories that we eat each day.

Fat Ratio Exceeds fat ratio

target and has the

largest coefficient
• Great work incorporating an extra serving of veg-

gies to your meals. Looking to lighten up on satu-

rated fats. Look at the nutrition facts of butter, oil,

salad dressing, cream cheese or sour cream. Some

varieties are loaded with calories and too much un-

healthy saturated fat. Consider reducing your por-

tions or replacing them with lower-fat varieties.
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Step Counts Detected inactive

and has the largest

coefficient
• Your blood glucose levels have been a little high

before dinner the last two days. Consider adding

a short walk before dinner or between dinner and

your blood glucose measurement two hours after

dinner.

Aerobic Detected inactive

and has the largest

coefficient
• Your blood glucose levels have been a little high

before dinner the last two days. Consider adding

a moderate exercises before dinner or between

dinner and your blood glucose measurement two

hours after dinner.

• Physical activity is anything that increases your

heart rate. It is beneficial as it improves blood flow

to organs and helps body in the production of in-

sulin. Try reaching your training heart rate today

to improve your cardiovascular health!

Blood Glucose

Reminder

Missing blood glu-

cose testing for ad-

jacent three days
• Please remember to upload your evening blood

glucose: before and two hours after dinner.
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Data Record Re-

minder

Missing data up-

loading for adja-

cent three days
• Please remember to record and upload your

evening data: blood glucose before and two hours

after dinner, what you ate, your blood pressure and

step count.

• We’ve missed you the past couple days. Please

upload your dinner, blood glucose, blood pressure

and step count today. Way to meet your step count

goals the last few days!
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Blood Glucose

Target

Reach blood glu-

cose targets
• Yesterday’s blood glucose levels look great. Way

to go! Healthy choices, incorporating lots of veg-

gies and fruits means that your body will get the

nutrients it needs.

• Awesome - blood glucose levels are looking really

good.

• Please upload what you’ve been eating for dinner.

Blood glucose is looking great lately, and we want

to see how you’ve achieved such success!

• You are doing well - blood glucose and blood pres-

sure are looking good today. Based on your up-

loaded data, GlucoGuide has found that carbo-

hydrates are very linked to high after-meal blood

sugar. Continue to replace some of the grains in

your meal (ex. rice, pasta, bread) with vegetables

or protein.

• Your blood glucose levels have been a little more

elevated than normal the last few days. Is there

something you’re doing differently?

• Your blood glucose was very high this morning af-

ter your meal. This may happen once in a while,

but it is better to keep levels steady. Food that has

fibre, protein, and healthy fats helps us do that. For

example, eating a meal with veggies and hummus

instead of chips and dip will keep your blood glu-

cose levels lower.

• Your blood glucose was quite low - if you aren’t

planning on having dinner, have a small snack,

with about 15 g of carbohydrates, such as an ap-

ple, an orange or a pear.
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Blood Glucose

Warning

Abnormal blood

glucose levels

detected
• It looks like your blood glucose was very variable

today. To even out blood glucose swings, try to eat

smaller meals every 2-4 hours that include some

protein, fat, carbohydrates and fibre.

• It looks like your blood glucose was very variable

today. To even out blood glucose swings, try to eat

smaller meals every 2-4 hours that include some

protein, fat, carbohydrates and fibre.

• Your fasted blood glucose was quite low tonight -

we would like to monitor this. Please take your

blood glucose two hours after your meal.

• Your after dinner glucose level was very low

tonight. We’d like to monitor this. Please have

something to eat with at least 15 grams of carbo-

hydrates and repeat the measure in two hours.

• You are making great healthy choices! Remem-

ber to reward yourself - decide what kind of re-

ward would work best for you: maybe it’s praise

from your doctor, a new pair of running shoes, or

some time for reading a good book. Use the reward

you choose to treat yourself when you’ve reached

a goal.
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Step Count Target Reach step count

target
• Great work uploading your data. Your daily step

counts are looking good: small steps towards

change, added together can yield big results for

your health and wellness.

• Blood pressure is looking good! Keep it up with

that step count, yesterday - 8000+! Fantastic.

• Small changes today will yield great results when

added together. Your step count is great, the next

step is adding those veggies and healthy snacks!

• Go for that step goal! Plan ahead: set aside time

in your day for activity, and you’re more likely to

follow through with it.

• 10,000+ steps yesterday! Awesome!

• Blood glucose levels and step count are looking

great. Keep it up - your healthy lifestyle can help

reduce your risk of disease!
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Encouragement No data driven rec-

ommendation gen-

erated and/or over-

all well performed

• Make small goals and then plan to celebrate when

you accomplish them! Reward is an important part

of goal setting. Ideas include: a relaxing walk, a

movie, a good book, or a chat with an old friend.

• Good work uploading your data. By uploading ac-

curate and complete information about your din-

ners we will be able to see what affects your blood

glucose most.

• Fantastic job uploading your data. Through

healthy eating and physical activity you are di-

rectly and positively affecting your health. Re-

member - slow and steady wins the race!

• BP looked good yesterday! You can now move to

just monitoring dinner. Keep on uploading your

dinner data accurately and completely, so that we

can find what is affecting your blood glucose most.
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Rewards and Fundings

• The 1st prize for the best Clinical Research Presentation at the 2nd Annual Diabetes

Research Day by the Schulich School of Medicine & Dentistry in Nov 2011.

• 79,000 CAD R&D funding from 2014 NSERC Idea to Innovation Grants.

• Angel Investments from Jordann Capital Management Inc since 2014.

• 125,000 CAD R&D funding from 2016 NSERC Idea to Innovation Grants.

• 146,000 CAD R&D funding from 2016 MITACS Accelerate.
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