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Figure 4.4 shows the average accuracy and standard deviation values of INS with three

different correction models and SHS method with the correction percentage of a step.

Figure 4.4: Comparison of SHS method and proposed method with three different models
showing error vs correction percentage

Out of the three models, Gaussian model resulted in highest accuracy compared with others.

We hypothesize that this is mainly due to its flexibility in matching the actual velocity curve

by using the available parameters. From these results we observe that the proposed method

with Gaussian model correction outperforms the SHS method with increased average accuracy

and smaller standard deviation. The average error with 15% correction for 40m walk is 1.64.m

(±0.66m) in proposed method with Gaussian while it is 1.94m (±1.24m) in SHS method. We

can deduce that the proposed method is more robust than SHS as observed by the relatively

small standard deviation in the proposed method. The accuracy variation with correction per-

centage shows that a minimum of 5% correction percentage is sufficient for improved accuracy
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and no significant improvement after 15%. Step detection accuracy was 98.7% in these exper-

iments.

With the results from this experiment, we can deduce that the proposed INS system on smart

phone with corrections improves upon the accuracy and robustness of the SHS method.

4.2.2 Heading Correction

Walks with turns along corridors were performed to find the feasibility and accuracy of pro-

posed method with both distance and heading corrections.

20 walks on a corridor around the Thompson Engineering Building at Werstern was first

considered in experiments containing turns. Corridors used in this experiments consisted of

straight paths and 900 angle turns. Start and end points were the same where user walked back

to the same point after walking for 124.36 m in about 120 seconds. In order to compare the

accuracy of each method, two error measurements were calculated.

• Absolute error: Difference between actual end and calculated end

• Distance error: Difference in total distance travelled

Figure 4.5 shows the initial strapdown INS result along with the actual path taken. Because

of accumulation of error present in the accelerometer and gyroscope, calculated path becomes

highly deviated from the actual path. The absolute error in this was 485.6 m (±131.53 m) and

the distance error was 1067.4 m (±248.5 m).

When only the distance correction based on Gaussian velocity model is applied for the ve-

locity, error becomes relatively small. Paths generated by INS with Gaussian model correction

and SHS are shown in figure 4.6.

Absolute error and distance error was 29.8 m (±6.6 m) and 9.1 m (±4.6 m) respectively for

SHS while it was 29.0 m (± 6.6 m) and 8.8 m (±3.8 m) for INS with 4% correction percentage.

Distance error comparison with the correction percentage is shown in figure 4.7.

The distribution of error with this 124 m length path shows a different distribution than the

39 m short straight walk. When the correction percentage exceeds 5%, error becomes relatively

high. This is because of the velocity becoming too dependent on the velocity model rather than
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Figure 4.5: Paths estimated by basic strapdown INS along with the actual path

periodic corrections to keep the drift controlled. In particular, model can deviate from the ac-

tual velocity during turns. This was not considered when deriving the velocity model. But,

standard deviation of the proposed method was always smaller when compared with the SHS

method which shows the robustness of the method.

Distance error values for the three different velocity models for a correction percentage of 4%

are shown in table 4.1 for comparison.

Method Average error(m) Standard Deviation(m)
Gaussian 8.88 3.82

Sinusoidal 18.12 10.14
Sawtooth 16.03 9.73

SHS 9.14 4.63

Table 4.1: Distance error comparison for INS with different models and SHS
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(a) INS (b) SHS

Figure 4.6: Paths estimated by INS with Gaussian model distance correction and SHS method

Both corrections for velocity and heading were applied in to system as the next step. Ab-

solute error was mainly used in comparison of performance of each correction method after

the heading correction. In order to present a fair comparison, heading corrections were naively

applied to SHS system too.

Magnetic Correction

Angle calculated from magnetic field measurements are shown in figure 4.8 for 20 walks along

with the angle calculated by the gyroscope which shows the turns along the path.

Magnetic field measurements in the corridors of the building were highly irregular. Direct

application of a correction based on magnetic field was not possible at this stage, since the

measurements were affected by local distortions, this will require careful mapping of the mag-

netic field prior to using it as a source of correction.

Spatial constraints

Domain specific corrections were attempted for heading correction which resulted in improved

accuracy for both INS and SHS. Improvements from these corrections were considerable as

shown in table 4.2.

Figure 4.9 shows the paths determined after application of correction for 900 angle turns
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Figure 4.7: Comparison of SHS method and proposed method with Gaussian mdoel showing
error vs correction percentage

for both INS and SHS.

Absolute error was 7.9 m (±4.9 m) for SHS while it was 7.8 m (±4.5 m) for INS after the

application of this correction. Better results were observed with the proposed method in both

average error and standard deviation compared to SHS approach.

If the angular velocity is below a threshold continuosly past a time interval (e.g. for three

seconds), user was assumed to walk straight, hence a correction was applied to maintain the

same walking direction. But, if the accumulated error in the heading direction at the point of

application of this correction is large, it can further increase the drift, although it outputs a

fine accurate path for some walks. The INS path with this correction is shown in figure 4.10

and a reduction in absolute error to 7.1 m (±3.3 m) was observed with the application of this

correction.
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Figure 4.8: Low pass filtered angle calculated from magnetic field measurements along with
the angle calculated by the gyroscope showing irregular measurements due to local distortions

Assuming a strict indoor environment with only 900 angle bends and straight corridors,

more strict correction can be applied. Resultant paths with this correction are depicted in

figure 4.11 and the absolute error was reduced to 3.3 m (±1.6 m)

Absolute and distance error distribution with distance of the walk is shown in figure 4.12

for SHS and proposed method with corrections assuming strict indoor environment with only

900 angle bends and straight corridors.

Experiments of walks with combination of different indoor paths, different devices and

different individuals were performed and analysis was done in proposed approach to show the

robustness of the proposed approach. Three different example paths along with the calculated

path is shown in figure 4.13.

Overall error percentage results are shown in figure 4.14 for comparison.
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Correction Average error(m) Standard Deviation(m)
Velocity 29.0 6.6
velocity and 900 angle 7.8 4.5
velocity 900 angle straight 7.1 3.3
velocity strict 900 and straight 3.3 1.6

Table 4.2: Absolute error comparison with application of different heading corrections

(a) INS (b) SHS

Figure 4.9: Paths estimated by proposed and SHS method with the correction for 900 angle
turn
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Figure 4.10: Paths estimated by proposed and SHS method with the corrections for 900 angle
turns and straight walks

Figure 4.11: Paths estimated by proposed and SHS method with strict corrections for the 900

angle turn and straight walk only.
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(a) Distance Error (b) Absolute Error

Figure 4.12: Absolute and distance error distribution with distance of the walk for SHS and
proposed method with corrections assuming strict indoor environment

Figure 4.13: Paths estimated by proposed method for two different paths
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Figure 4.14: Distance error percentage for four different experiments of walks



Chapter 5

Discussion and Future Work

Indoor localization and tracking systems are currently an active research area because of its

importance as a critical context in future context aware applications.

Current systems for smartphone based indoor tracking are dominated by fingerprinting systems

and SHS based dead reckoning systems. Feasibility of INS based dead reckoning approach was

explored in this thesis.

Competitive results were observed by the proposed INS based system compared to SHS ap-

proach. Error percentage was 4.3% (±3.3%) and 6.0% (±3.7%) for proposed and SHS re-

spectively in experiments of walks consisted of different paths and individuals. Also it can be

observed from figure 4.14 that proposed system resulted with smaller average error and stan-

dard deviation compared to SHS approach always in all experiment categories. A correction

percentage less than 5% is required and sufficient for correction of velocity from the model

for improved accuracy. Gaussian velocity model resulted in higher accuracy than other two

models which is due to its flexibility in matching the actual velocity curve.

Although diverse walking experiments were utilized to demonstrate the performance of the

proposed method, limitations and further development steps are discussed below.

• Experiments were performed only on indoor flat surfaces

Proposed method was only tested for walking along flat surfaces. With the current imple-

mentation, special cases like walking along sloped surfaces and climbing staircases may

not provide accurate location estimation because of deviation of actual velocity from the

52
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velocity model that was employed.

• Our experiments did not include movements other than walking such as running or jump-

ing. In order to accomodate these special movements, identification of the special move-

ment from acceleration/gyroscope signal patterns is required. Then corrections from

special velocity or movement models and other special corrections can be applied to

the basic INS system. Research on activity classification algorithms can be utilized in

movement identification. Further improvements in experiments need to include variety

of indoor environments.

• Analysis was performed offline on a server rather than on the smartphone platform.

Indoor localization application should ideally be included in the smart phone itself with-

out the support of any external systems. This is required for security and privacy rea-

sons as well as sparing the data usage of the user. Transmission of all sensor data in

real time used a bandwidth of 0.85 Mbps (including both upload and download). This

transmission can be avoided by implementing calculations in the mobile phone itself.

Application development on resource constraint environments needs special attention on

how the resources are handled in the program code itself. So, in search of the perfor-

mance of proposed method, implementation on a server was carried out for pragmatic

reasons such as faster development and easier troubleshooting. In moving the analysis

to a smartphone, simple calculations with lower memory requirements are essential. In

this thesis, simple methods were employed in implementation so that it can be easily

deployed on to a resource constrained smart phone with an efficient implementation.

• Experiments were performed only for one common orientation of the phone at hip level.

In first steps of evaluating the performance of proposed approach, analysis for one ori-

entation is sufficient, since the the proposed method is independent of the orientation of

the phone. Acceleration and angular velocity components along the walking direction,

which were calculated by orientation of the phone, were used in this method. Hence

extention of same equations to calculate Eular angles for other orientations of the phone

can incorporate other orientations easily. This will include the scenario of smartphone

being on trouser pocket too.
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• With the use of FSM method, step detection accuracy was around 98% in these experi-

ments. Identification of correct acceleration samples which belong to each step is impor-

tant in this application. When dealing with more individuals, more reliable methods of

threshold selection are required since general threshold values are not feasible with every

individual. ROC curve approach suggested and tested by Diaz et al. is a good candidate

for the selection and fine tuning of thresholds used for step detection [34].

• In the prototype system of this thesis, orientation was calculated using gravity compo-

nent accessed by Android API. Tracking of orientation using Kalman filter state can be

suggested as a further improvement. Instead of gravity sensor based calculation, gyro-

scope output can be used to keep track of the orientation after a initialization as used

by many foot mounted sensor applications [38]. Then, orientation errors can also be re-

lated to positioning errors which allows orientation to be corrected with the application

of velocity and heading errors using a advanced Kalman tranfer matrix.

• Magnetic sensor usage for correction of heading direction was not successful due to

severe local distortions of magnetic field. Advanced magnetic calibration methods which

has the capability to produce good results even with such local disturbances, can be

utilized in corrections.

• Simple velocity models based on Sinusoidal, saw tooth and Gaussian were used in this

thesis to model the actual velocity at hip level. More accurate actual velocity curves

can be obtained by advanced velocity measurement systems such as video processing

systems. When the velocity curve is more reliable, more accurate advanced velocity

models can be generated using approaches like non linear regression which will result in

improved accuracy.

• Kaman filter framework was used to apply the corrections in to basic INS system in the

proposed method. Kalman filter was utilized instead of more advanced Particle filter be-

cause it requires too much computational resources. We have shown that with a simpler

approach, we are still able to achieve better accuracy.
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• Due to the variety of infrastructure, devices and deployment effort requirements and lack

of uniform testing methods, comparison of different approaches is relatively difficult

[27]. So, in this thesis, a SHS system which is the current best method in dead reckoning

approach, was re-implemented for the comparison purposes. As a next step, other exist-

ing methods can also be re-implemented with similar indoor environment conditions.

With the results from this experiment, it is observed that dead reckoning systems employing

low cost sensors cannot track users for a long period of time because of the exponentially ac-

cumulating drift from the actual location even with external corrections. So, dead reckoning

can only be used to track only for a short time period using frequent initiations from reliable

external location fixes. Fingerprinting systems, GPS fixes can be used for these initializations

opportunistically. Indoor mapping guidance systems can use these dead reckoning systems to

guide indoor passengers in an efficient way. This leads to a hybrid method implementations.

These have already been explored with the use of maps and particle filters.

Finally, better combination of all these approaches should grow in to a navigation system in-

doors which will fit in to any type of indoors.
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Appendix A

Prototype System Architecture

In order to analyze the feasibility of the proposed method with the accuracy results, a proto-

type system was built using several hardware and software systems. Sensor data of a smart

phone carried by a walking user was captured online and stored. Then this data was used of-

fline in analysis algorithms. The prototype system consists of four main nodes named Mobile

Node, Velocity Measurement Node, Server Node and Analysis Node and the architecture of

the overall system is depicted in figure A.1.

Figure A.1: Architecture of the prototype system used for experiments.

The main data capturing component is the Mobile Node which is the smart phone with

necessary sensors, mounted on the hip of the walking user. Once started, mobile node captures
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the readings from the selected sensors and transmits them to the server node in realtime. The

Velocity measurement node which consists of actual walking dynamics measurement unit, also

transfers the data to the Server node. Data from velocity measurement node is used in devel-

opment of actual velocity models and data from mobile unit is used in the actual positioning

system operation. So, in this experiment, mobile node and the velocity measurement node

does not necesasarily need to read and transmit at the same time. Server node accepts the data,

stores them in the database and makes them available for further use. Analysis node extracts

the data from the server node for the main analysis, interprets the results and sends them back

again to the server node for storing and advaced user oriented display options.

A.1 Mobile Node

Android (an open source mobile operating system) based smart phone manufactured by Sam-

sung was selected as the mobile node in this experiment. Android allows easy integration of

external applications and resource access though available API. Smart phone details are sum-

marized in table A.1.

Model Samsung Galaxy S3 Mini I8190N LG Nexus 5
Platform Android v4.1 Android v5.0

Resources 1GHz dual-core CPU, 1GB RAM 2.3GHz Quad-core CPU, 2GB RAM

Table A.1: Details of the smartphones used in experiments

Phone was placed in a case connected to hip level belt vertically. This positioning is not

a highly restricted mounting and is a common way of holding the phone. However, in these

experiments, phone was placed facing walking direction, so that the Roll angle approximated

to zero.

A custom Android application was made for the phone to run in this experiment which per-

forms the following tasks and the application interface is shown in the figure A.2.

• Sensor access

Following sensors were used in this experiment. Sensor readings are relative to phone
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Figure A.2: Interface of custom Android application developed for smartphone.

body which are based on the reference axis system depicted in figure A.3 and each read-

ing consists the timestamp.

– Linear Acceleration Sensor

This sensor provides the 3-dimentional vector for acceleration along each axis with-

out the gravity.

– Gravity Sensor

The 3-dimentional vector with the acceleration due to gravity.

– Gyroscope Sensor

The 3-dimentional vector with the rotational velocity of the phone around each axis.

– Magnetometer Sensor

The 3-dimentional vector with magnetic field intensity in each direction of the

phone.

• Reading frequency

Different sensor types have different rates at which the readings can be accessed based

on hardware capabilities. API allows the use of two reading rate types called Normal
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Figure A.3: Cartesian reference system on smartphone (local) frame.

Delay and Fastest. For the sensor types used in this experiment, normal delay frequency

was 20 samples per second (20 Hz) and fastest was 100 Hz. Rate of 100 samples per

second was used throughout the experiments in this thesis.

• Data Transmission

Sensor reading data is transmitted to server node using the data connectivity of the phone

(Wifi or cellular data). Standard client-server communication in REST (Representational

State Transfer) architecture on HTTP protocol was used in this process. Measurements

were transmitted in batches after been formatted in JSON data format. JSON format was

chosen because of the integration efficiency with the chosen webservice in server node

providing easy reading, handling and storing capabilities.

In a walking experiment, application waits for 10 seconds after pressing the start button to start

reading and transmitting sensor data. This allows the user to press start and place the phone

accordingly.

Actual time, actual number of steps and actual walking length were also recorded along with

the sensor data for each walking experiment.
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A.2 Velocity Measurement Node

As a supporting waveform for the actual velocty model derivation which is used for correc-

tions, hip level velocity was measured by a system commonly used in robot indoor localization

applications. Robot indoor localization system by “Hagisonic” called “StarGazer Indoor Posi-

tioning System” was used in these experiments [40]. This system is shown in figure A.4.

Figure A.4: Hagisonic StarGazer system

System details from the manufacturer are summarized in table A.2.

Model HSG-A-03
Measurement Time 10 times/sec
Repetitive precision 2 cm
Hardware interface UART

Communication protocol User protocol based on ASCII code

Table A.2: Details of Stargazer indoor positioning system

System consists of an infrared projector, an infrared camera and a processing unit connected

by an UART interface. Location is estimated using passive labels placed on the ceiling. An

example of a label is shown in figure A.5

Basic operation is summarized below and is depicted in figure A.6.
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Figure A.5: A label used with Stargazer system

• IR projector projects IR towards the passive label

• IR camera aquires the reflected IR and it is converted in to a image

• Digital image processing on aquired image calculates the position and direction

• Output the calculated location periodically via UART (Universal Asynchronous Receiver

Transmitter) interface using proprietary protocol based on ASCII.

System operates in two modes named 1) Alone and 2) Map mode. In alone mode, only one

label is processed and the estimated location is relative to the single label and coverage is

limited. Map mode estimates the distance in a cordinate system based on one selected label

across multiple labels covering an area of interest. Map mode requires the proper placing of

labels without any dead zones and a prior survey thougth them so that labels are learnt and

stored in device memory. Once the mapping process is completed, system outputs the location

accurately with a frequency of 10Hz through the UART interface. In the operation of the

device, serial communication allowed through UART interface enables the reading of data as

well as sending commands to the device.
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Figure A.6: Demonstration of Stargazer operation in MapMode. From product manual [40]

4x4 labels (shown in figure A.5) in map mode were used in this experiment. In order to make

it flexibe and fit on to this experiment setup, two major modifications were required.

• Power Supply requirement

System required 5V supply for the processing board and 12V supply for the infrared

camera and emmitter operation with an average current of 5mA and 90mA respectively.

This power supply was implemented by a 12V battery with a 7.0 Ah capacity providing

5V voltage using a voltage regulator.

• UART connectivity to server

UART interface available in the device communicates with a baudrate of 115200 bits/second.

Since a wireless connection to the server is more preferable in this setting, serial coom-

munication was achieved using Zigbee protocol. Serial communication capability in

transparent mode configuration of two Xbee radio devices were utilized. One radio mod-

ule was configured as a leaf node and connected to the stargazer device while the other

radio was connected to the server after configured as a cordinator.

Data bits received from the device are coded in ASCII and packets are formed using a for-

mat described in the manuafacturer’s manual. So, a custom program was written in Java to

implement that specific protocol and enable following operations.
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• Read data from the system

• Write user input commands to the system

• Store positioning data received from the system in database. (Data was stored in the

same database which is used for sensor data by web service)

A.3 Server Node

Other three nodes are connected to the server node using different communication protocols as

below.

• Mobile Node: HTTP protocol based client server communication

• Velocity Measurement Node: Zigbee serial communication

• Analysis Node: TCP/IP communication enabled by MongoDB Java driver

Web service can be considered as the main component in the server node. In practice, software

bundles are used for web service implementations so that they are well integrated to each other

making it easy to develop the application. LAMP (Linux Apache MySql Php) and MEAN

(MongoDB Express AngularJS NodeJS) are two major open source software bundles in use

currently. MEAN stack, being the newest and most flexible bundle available, was used to im-

plement the web service in server node. Web API interface was built in NodeJS language with

Express framework and database was created using MongoDB which is an no-sql, document

based system. Webservice followed the standard RESTful architecture by providing standard

operations as below over HTTP protocol.

• GET : Output data for calculations or display purposes. e.g. get the current position to

display in the browser

• POST : Receives data into the database. e.g. Insertion of sensor readings in JSON format

with a data label for each sensor type.

• DELETE : Deletes selected measurement reading collection. e.g. delete the old position

data
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• UPDATE : This operation was not implemented since no modifications were needed for

the data itself.

Server node was running the web service on port 8080 which allowed using “http://< server

address>/api” for above operations.

Mongo database, which was accessible through the default port 27070, was used for standard

database actions. Store and select actions on data were performed using NodeJS mongoose

package (in web service) and Java Mongo driver (in Stargazer data and Analysis node connec-

tion).

A.4 Analysis Node

After the online data collection process, main analysis and algorithms were implemented in

matlab. Aquired data was made available to matlab by using files created through intermediate

Java application accessing the MongoDB through MongoDB java driver.

Calculated data was analyzed using plots and tools available in Matlab and location data were

passed back to Mongo database to be used in other visualization (eg. In a web page) through

webservice in server node.



Appendix B

Kalman Filter

Bayesian Filters are used in many applications to estimate the “State of a dynamic system

probabilistically. In Bayesian filter, state of a system is represented by a probability distribution

function called “Belief” and is defined in equation B.1 [41]. xt and zt are system state vector

and measurement vector on system at time t respectively.

Bel(xt) = p(xt|z1, ...., zt) (B.1)

Current belief of the state depends on measurements of system up to the current time. Normally

in applications, systems are modeled using Markov process in which it is assumed that, current

state depends only on the previous state. When Markov assumption is made, Bayesian state

estimation can be simplified by current state being an update on previous state.

Different approaches have been proposed to implement the Bayesian filter and Kalman Filter

is the most popular implementation used in many applications.

Kalman filter further assumes,

• Probability distribution or the belief of the system state is always Gaussian distributed

• Relationship between current and previous state is linear i.e. system evolves linearly.

In Kalman filter with above assumptions, next system state xt+1 is predicted by equation B.2

using current state xt. F is defined as the “State transition matrix” which defines the linear

70
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relationship and Q is the noise variance of the state.

xt+1 = F ∗ xt + Q (B.2)

Any measurement on the system can be related to the current state using the measurement

matrix H using equation B.3 where yt is the measurement with error variance denoted by R.

yt = H ∗ xt + R (B.3)

Estimate of the next state x̂ is defined using equation B.4 where G is “Kalman Gain” and α is

the “Innovation” which is defined in equation B.5.

ˆxt+1 = F ∗ x̂t + Gt ∗ αt (B.4)

αt = yt − H ∗ x̂t (B.5)

Value of Kalman gain which minimizes the variance of the estimate state (Error covariance

matrix denoted by K) is solved by differentiation and the result is shown in equation B.6.

G = Kt ∗ H′ ∗ (H ∗ Kt ∗ H′ + R)−1 (B.6)

Corresponding minimum value of error correlation is denoted in equation B.7.

Kt+1 = Kt −G ∗ H ∗ Kt (B.7)

Kalman filter employs two stages in above steps as prediction and update. Prediction estimates

the next state according to transition matrix and update phase updates the estimate using the

measurement for optimum solution. This process is repeated to track the state of the dynamic

system continuously. Process is described with examples by Hargrave [42].
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