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Abstract

This thesis consists of four contributing chapters; two of which are inspired by practical

problems related to emergency department (ED) operations management and the remaining

two are motivated by the theoretical problem related to the time-dependent priority queue.

Unlike classical priority queues, priorities in the time-dependent priority queue depends on the

amount of time an arrival waits for service in addition to the priority class they belong.

The mismatch between the demand for ED services and the available resources have direct

and indirect negative consequences. Moreover, ED physician pay in some jurisdictions reflects

pay-for-performance contracts based on operational benchmarks. To assist in capacity planning

and meeting these benchmarks, in chapter 4, I built a forecasting model to produce short-term

forecasts of ED arrivals. In chapter 5, I empirically investigated the effect of workload on the

productivity of ED services. Specifically, under discretionary work setting, different statistical

models were fitted to identify the effect of workload and census on four measures of ED service

processes, namely, number discharged, length of stay, service time, and waiting time.

The time-dependent priority model was first proposed by Kleinrock (1964), and, more re-

cently, naming it accumulating priority queue (APQ), Stanford et al. (2014) derived the waiting

time distributions for the various priority classes when the queue has a single server. In chapter

6, I derived expressions for the waiting time distributions for a multi-server APQ with Poisson

arrivals for each class, and a common exponential service time distribution. In chapter 7, I

worked with a KPI based service system where there are specific time targets by which each

class of customers should commence their service and a compliance probability indicating the

proportion of customers from that class meeting the target. Recognizing the fact that a cus-

tomer who misses their KPI target is of greater, not lesser importance, I seek to minimize a

weighted sum of the expected amount of excess waiting for each class. When minimizing the

total expected excess, our numerical examples lead to an easily-implemented rule of thumb for

the optimal priority accumulation rates, which can have an immediate impact on health care

delivery.
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Chapter 1

Introduction

Emergency departments (EDs) are an integrated part of modern healthcare systems where pa-

tients arrive with a variety of medical emergencies. Patients in an ED are usually prioritized

based on their level of urgency or acuity and are served according to their relative positioning

on the queue. Long wait times are common in EDs and which is associated not only with

deteriorating health status but also with a decrease in level of satisfaction. Along with system

inefficiencies, a mismatch between demand and supply for ED services is thought of as the

primary cause of delayed care. Despite initiation of ’pay for performance’ from government

funding and diligent efforts to increase efficiencies, emergency department waiting times and

overcrowding continues to be an ongoing problem.

Emergency departments have to contend with patient arrivals with a diverse range of acuities,

occurring at random points in time. They are also subject to time-varying patterns in demand

that can be predicted to some degree, but which can also be subject to random surges. The

service quality, such as, the wait times and the quality of care, are of growing concern not

only to the patients but also to the stakeholders. There always remains political pressure to

minimize ED wait times without sacrificing the quality of care. In this thesis I addressed sev-

eral dimensions of the ED patient care process which will enable ED administrators to make

informed decisions about efficient allocation of resources so as to minimize the wait times and

1
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to maximize the quality of care.

Various efforts to minimize wait times without distorting the quality of care have been

emerged. For instance, empirical as well as analytical models have been used to investigate

ED inefficiencies and wait times. I pursued both of these avenues in the course of this thesis.

The objectives of this thesis are: (i) to accurately forecast future ED arrivals to meet patient

demand, (ii) to empirically investigate the effect of ED workload on servers’ productivity, (iii)

to develop a queue analytic model where patients’ priority depends not only on their level of

acuity but also how long they have waited for the service, and (iv) to develop an optimization

model to minimize total expected excess waiting time once a waiting time target is missed. In

terms of novel contributions, the organization of this thesis is described below.

In chapter 4, I developed an appropriate forecasting model to accurately predict short-term

ED arrivals. The demand for ED services are highly variable over the course of the day. There-

fore, a uniform distribution of ED staffing levels throughout the day to serve patient demand

leads to a mismatch between capacity and demand. In order to minimize wait times, resources

should be distributed such that the gap between the demand and supply of ED services is min-

imized. I propose a combination of time series and regression models, namely, Generalized

Linear Autoregressive Moving Average (GLARMA) models to predict future ED arrivals. I

validate the appropriateness of the forecasting model using the “rolling horizon” approach bor-

rowed from the operations management literature. An accurate short-term (3, 6, 9, 12, and 24

hours in advance) prediction of the ED patient arrivals will inform ED managers on how best

to deploy service resources to meet anticipated demand.

In chapter 5, I looked at service processes. On the service side as well, there exists a

substantial degree of variability in patient treatment time, with a variety of causes such as

variability in patient conditions, server experience, dependence on the resources available, and

other similar factors, based on how many patients are waiting (in the queue) for service. This

phenomenon is known as queue dependent service; that is, the service process depends upon

the length of the queue. Specifically, I investigated how the system workload, patient census,
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and congestion, affect certain ED service measures.

I then turn my attention to the analytical models for wait times. In chapter 6, I derived

the waiting time distributions of different classes of patients under multi-class multi-server

setting where patient priority accrues as a linear function of their wait times. Naming the

model as Accumulating Priority Queue (APQ), Stanford et al. (2014) derived the waiting time

distributions of different priority classes for the single server queue. Together with my co-

authors, I have extended Stanford et al. (2014)’s model in the case of multi-server queues with

a common exponential service time distribution. Under classical priority queue a lower priority

patient continues to wait until all high priority services are completed, so that lower priority

patients’ waiting times are subject to considerable variability, but under APQ, the patient with

highest accumulated priority goes into the service. The multi-server APQ model not only

brings fairness to the priority based service selection system but also keeps waiting times for

all classes of patients within a manageable threshold.

In chapter 7, I developed an optimization model to minimize total expected excess waiting

time. There exist Key Performance Indicator (KPI) based service systems where a time stan-

dard is assigned to a certain class of patients along with a specified compliance probability of

meeting that standard. From a KPI compliance viewpoint customers whose incurred waiting

times already exceed their waiting time target are of greater concern than customers whose

targets may yet be met. This may not be the view of a physician primarily concerned with

clinical outcomes. I formulated an optimization model so as to minimize the frequency and

amount of excess waiting, subject to the constraint that each class of patients meet their time

standard with their specified compliance probability.

The foregoing novel contributions are complemented by chapter 2, which discussed rele-

vant statistical models that I am going to use in this thesis. A detailed description of the process,

data, and variables related to our study ED is outlined in chapter 3. Concluding remarks and

future research directions are presented in chapter 8.

Initially my PhD studies involved the development of theoretical queueing models (chapters
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6 and 7). Among them, chapter-6 has appeared in the journal of “Operations Research for

Health Care” and an extension of chapter-7 is under revision. My empirical works, chapters 4

and 5, are in preparation for submission.



Chapter 2

Review of Statistical Methods

This chapter contains a brief description of the statistical methods that I have used throughout

my thesis.

2.1 Linear Models

The simple linear model was developed to predict one continuous random variable (response

variable, y) for a particular value of an explanatory variable (predictor variable, x). In the simple

linear model, sample values of the response variable and the predictor variable are used to fit a

best straight line equation such that the squared difference between the sampled observations

and the straight line is minimized. The least square method is used to estimate the intercept

and slope parameters of the fitted line and this minimizes the differences between the actual

values and the fitted straight line. Mathematically, a simple linear model expresses the response

variable as a linear function of the predictor variable plus an error term,

yi = β0 + β1xi + εi ; i = 1, 2, . . . , n

where, β0 and β1 are the intercept and slope parameters. The usual assumption of a linear model

is that the errors (εi’s) are independent and identically distributed with zero mean (E[εi] = 0)

5
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and constant variance (V[εi] = σ2). An additional assumption of normality of the error terms

is necessary to conduct parametric tests of the model parameters (εi ∼ N(0, σ2)).

Often predicting a response variable requires more than one predictor variable and one can

extend the simple linear model to multiple (general) linear models as follows,

yi = β0 + β1x1i + β2x2i + . . . + βpxpi + εi ; i = 1, 2, . . . , n,

where, the responses yi, i = 1, . . . , n, are modeled by a linear function of a set of related pre-

dictor variables, x j, j = 1, . . . , p, plus an error term. General linear models constitute a very

useful framework, however, their applicability is not appropriate in some situations: (i) if the

response variable is not continuous (e.g., binary, count), and/or (ii) if the variance of the re-

sponse variable depends on its mean.

2.2 Generalized Linear Models

Generalized linear models (GLM) are extensions of linear models, where the former can model

both the normally and non-normally distributed random variables (responses) as a function of

covariates (predictors, regressors), but the latter is only applicable to the normally distributed

responses where the mean response is expressed as a linear function of the covariates. Gener-

alized linear models overcome the aforementioned shortcomings where the response variable

can take any values (e.g., continuous, binary, count) and the predictors are connected to the

response via a function called the ‘link function’. In GLM, the mean of the response variable,

E(yi) = µi, is related to the linear predictor, ηi = β0 + β1x1i + β2x2i + . . . + βpxpi, through a link

function,

g(µi) = ηi

In addition, the relationship between the mean and the variance of the response variable is

defined by a variance function,
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Var(yi) = φVar(µi),

where, φ is a constant known as a dispersion parameter. We can easily verify that the general

linear model is a special case of GLM, where the link function g(µi) = µi, and the variance

function V(µi) = 1.

The link function provides a transformation to the mean response so that the transformed

mean response is linearly related to the predictors. For example, in Poisson regression the pre-

dictors could be continuous variables that can take on values over the entire real line. However,

the response is a count (the number of arrivals in an emergency department per hour, for exam-

ple). Therefore, the response is constrained to take on whole numbers only with a possibility of

zero counts. The link function in Poisson regression is the log function (log(µ)). It can be seen

that the log function transforms a variable constrained to natural numbers only to a variable

that can take values over the entire real line. In this case, the link function makes the response

compatible with the predictor variables and hence it is possible to make it a linear function

of the predictors plus a random component. If λ is the average rate of arrival in an ED and

x1, x2, . . . , xk are predictors of ED arrivals, then a Poission regression model can be written as,

log(λ) = β0 + β1x1 + β2x2 + . . . + βkxk ; k = 1, 2, . . . ,K

Generally, a response variable whose distribution belongs to the exponential family of distri-

butions can be modeled under the GLM framework. (For instance, Normal, Binomial, Poisson,

Negative Binomial, and Gamma distributions all belong to the exponential family of distri-

butions.) An excellent introduction of GLM is documented in Dobson & Barnett (2011). A

detailed description of the processes for parameter estimation and hypothesis testing are de-

scribed in McCullagh & Nelder (1989). The implementation of GLMs in statistical software

package R and their relevant interpretations are provided in Faraway (2005).
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2.3 Seasonal ARIMA Models

Time series analysis is a statistical procedure that uses chronologically ordered past obser-

vations of a variable to predict its future values. Historical patterns (trend, cycle, seasonal

variation, and irregular fluctuations) observed in a time series can be exploited to produce ac-

curate forecasts. A nice introduction to the time series analysis and forecasting can be found

in Brockwell & Davis (2002). One of the most popular and widely used time series models

is the autoregressive integrated moving average (ARIMA) model. Box & Jenkins (1970) in-

troduced the ARIMA model for non-stationary time series processes. A time series is called

“stationary” if its statistical properties, such as the mean, variance, and autocorrelations, are

constant in time; otherwise the time series is non-stationary. As a basis for visual inspection

of stationarity, one might look at time series plots to see whether the mean or the variance

of the time series changes over time. However, there are formal unit root tests (Ljung-Box

test, Augmented Dickey-Fuller (ADF) test, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test)

to determine whether a time series is stationary or differencing is required to transform the time

series into a stationary series (Makridakis et al. (2008)).

The ARIMA model combines an autoregressive (AR) process and a moving average (MA)

process after “integrating” (I) the time series (i.e., differencing, logging, and/or deflating) to

transform it into a stationary process. The integration applied to the original time series (if

any) must be reversed to obtain a forecast for the original series. This process is automated in

standard software used for time series analyses. If the time series under study appears to be

stationary, then no integration is necessary and the model deduces to the ARMA model. Fur-

thermore, if either the autoregressive or the moving average terms turn out to be insignificant,

the model deduces to a moving average or an autoregressive model, respectively. Therefore,

ARIMA is a general time series modeling framework where AR, MA, and ARMA models are

special cases of the ARIMA model.

The aforementioned ARIMA model is non-seasonal. An extension of this is a seasonal
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ARIMA model where another set of autoregressive, integration, and moving average parame-

ters are incorporated to deal with the seasonality that may be present in a time series. Usually,

a non-seasonal ARIMA model is symbolized as ARIMA(p,d,q) where “p” indicates the num-

ber of AR terms, “d” indicates the order of differencing, and “q” indicates the number of MA

terms. A seasonal ARIMA model is symbolized as ARIMA(p,d,q)*(P,D,Q)s, where the p, d,

q indicates the model orders for the short-term components of the model (as described above)

and P, D, Q indicate the model orders for the seasonal components of the model, where “s”

stands for the seasonal cycle.

I will sequentially describe the building up process of a non-seasonal ARIMA model fol-

lowed by its extension to the seasonal ARIMA model. Let yt be a univariate time series ob-

served at time points, t = 1, 2, . . . ,T .

In an AR process, the current observation yt is modeled as a weighted sum of its past

observations plus an error term. Therefore, an autoregressive model of order p, AR(p), is

defined as,

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + εt (2.1)

where, εt ∼ iidN(0, σ2
t ), and φ1, φ2, . . . , φp are fixed coefficients. The above equation (2.1) is

equivalent to a multiple linear regression of y on the preceding p values of y.

In an MA process, yt is modeled as a weighted sum of past error terms. Therefore, a moving

average model of order q, MA(q), is defined as,

yt = εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (2.2)

where again, εt ∼ iidN(0, σ2
t ), and θ1, θ2, . . . , θq are fixed coefficients. Note that, in equation

(2.2), yt values are regressed on q previous error terms. Since error values are not known,

one cannot estimate parameters using standard regression formulas. A few advanced methods,

such as Durbin’s method, the inverse covariance method, and the variance recursion method,
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implemented in statistical software (i.e., R), can be used to obtain MA parameter estimates.

By combining the two preceding models (2.1 and 2.2), a general non-seasonal autoregres-

sive moving average model of order (p, q), ARMA(p,q) can be written as

yt = φ1yt−1 + φ2yt−2 + . . . + φpyt−p + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (2.3)

where, εt ∼ iidN(0, σ2).

It is often convenient to use a backshift operator Bhyt = yt−h to express the above equation

concisely, i.e.,

yt = φ1Byt + φ2B2yt + . . . + φpBpyt + εt + θ1Bεt + θ2B2εt + . . . + θqBqεt

⇒ (1 − φ1B − φ2B2 − . . . − φpBp)yt = (1 + θ1B + θ2B2 + . . . + θqBq)εt.

Denoting φp(B) = (1 − φ1B − φ2B2 − . . . − φpBp), and, θq(B) = (1 + θ1B + θ2B2 + . . . + θqBq),

the above equation can be further simplified as

φp(B)yt = θq(B)εt. (2.4)

Now, if it appears that the time series under study is not stationary, but rather increasing

approximately linearly with time, the first difference (I(1) = yt−yt−1 = (1−B)yt) may transform

the series to stationary and one replace yt by (1−B)yt in the above equation (2.3). However, if yt

has to be differenced d times to reach stationarity, one needs to replaces yt by ∆dyt = yt − yt−d =

(1 − B)dyt and hence an ARIMA(p, d, q) process can be written as

φp(B)(1 − B)dyt = θq(B)εt (2.5)

So far I have described the non-seasonal ARIMA model. However, extending the non-seasonal

ARIMA to the seasonal ARIMA is trivial. One merely needs to incorporate seasonal AR,
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seasonal differencing, and seasonal MA terms in the model.

Seasonality may be defined as the periodic pattern of fluctuations in the time series val-

ues. Monthly average temperature in a particular area, for example, will exhibit a markedly

periodic behavior every 12 months. As differencing between successive lags may alleviate

non-stationarity due to possible trends in a time series, seasonal differences at successive pe-

riodic lags may reduce non-stationarity caused by seasonality in a time series. That is, the

non-stationarity caused by the season change can be removed by taking seasonal differences.

For the case of monthly average temperature, the difference of the values of the same months

from consecutive years removes seasonality. If D is the degree of seasonal differencing used to

reach stationarity (D can take only integer values 0, 1, 2, . . . ), then the stationary time series

becomes (1 − Bs)Dyt and here s is the seasonal period.

Incorporating the P seasonal autoregressive terms and the Q seasonal moving average

terms, the seasonal part of the process, which is identified by seasonal lags, can be written

as,

ΦP(Bs)(1 − Bs)Dyt = ΘQ(Bs)εt (2.6)

where, ΦP(Bs) = 1 − Φ1,sBs − Φ2,sB2s − . . . − ΦP,sBPs is called the seasonal autoregressive

operator of order P;, and ΘQ(Bs) = 1 − Θ1,sBs − Θ2,sB2s − . . . − ΘQ,sBQs is called the seasonal

moving average operator of order Q.

By incorporating the non-seasonal and seasonal parts of the ARIMA model, one obtain a

seasonal ARIMA model, denoted by ARIMA(p,d,q),(P,D,Q)s as,

φp(B)ΦP(Bs)(1 − B)d(1 − Bs)Dyt = θq(B)ΘQ(Bs)εt (2.7)

For example, if one fixes the parameters at, p = 1, d = 0, q = 1, P = 0,D = 1,Q = 0, s = 12,
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then the above model can be written as,

φ1(B)(1 − B12)yt = θ1(B)εt (2.8)

yt − yt−12 = φ1(yt−1 − yt−13) + εt + θ1εt−1

which is an ARIMA(1,0,1)(0,1,0)12 model where the first term on the left hand side in equation (2.7)

is for the non-seasonal AR(1) process, and the second term is for the seasonal difference. The

right hand side of equation (2.7) is for the non-seasonal MA(1) process.

A detailed description of the parameter estimation processes along with their hypothesis

testing methods for ARIMA models can be found in Brockwell & Davis (2009). Implemeta-

tions of the ARIMA models in the statistical software package R can be found in Shumway &

Stoffer (2010).

2.3.1 Non-stationarity and Unit Root Tests

In addition to graphical inspection of the original time series, there are few statistical tests,

called unit root test, that are used to determine non-stationarity in the observed time series. A

detailed description of such tests can be found in Greene (2011).

2.3.1.1 Augmented Dickey-Fuller (ADF) Test

An ADF Test is an extension of Dickey-Fuller test which accommodates serial correlation. The

test is constructed based on the following autoregressive model,

yt = µ + βt + γyt−1 + γ1∆yt−1 + . . . + γp∆yt−p + εt

The null hypothesis to be tested here is H0 : γ = 1, and the corresponding test statistics is a

conventional t ratio (t-test like statistic),

DFγ =
γ̂ − 1

Estimated Std. Error(γ̂)
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2.3.1.2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test

An alternative to the ADF Test is the KPSS test which is developed to test for non-stationarity

against the null hypothesis that the series is stationary, i.e., H0 : γ = 0. The KPSS test is

formulated based on the following model:

yt = α + βt + γ

t∑
i=1

Zi + εt ; t = 1, 2, . . . ,T

where the vector Zt is an i.i.d. stationary series with mean zero and variance one.

Estimates for α and β parameters can be obtained by ordinary least square estimates under

the null hypothesis. Thus the residuals can be expressed as

et = α̂ + β̂t ; t = 1, 2, . . . ,T

Letting the sequence of partial sums Et =
∑t

i=1 ei, the KPSS statistic can be defined as,

KPSS =

∑t
i=1 ei

T 2σ̂2

where,

σ̂2 =

∑T
t=1 e2

t

T
+ 2

L∑
j=1

(1 −
j

L + 1
)r j, and r j =

∑T
s= j+1 eses− j

T

Critical values for the KPSS statistic are estimated by simulation.

2.3.2 Determination of the Orders AR(p),MA(q),SAR(P),SMA(Q)

The plot of autocorrelation functions (ACF) and the plot of partial autocorrelation functions

(PACF) aid us in determining the possible values of p, q, P, and Q. The autocorrelation function

(ACF) plot shows the correlation of the series with itself at different lags. Therefore, the
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autocorrelation of yt at lag k is the correlation between yt and yt−k,

ρk =
Autocovariance of yt at lag k

Variance of yt

=
Cov(yt, yt−k)

Var(yt)

=
E[(yt − µ)(yt−k − µ)]

E[(yt − µ)]2 .

One can estimate the population autocorrelation function by the sample autocorrelation func-

tion at lag k, defined as, rk = γ̂(k)/̂γ(0), where

γ̂(k) =
1
n

n−k∑
t=1

(yt − ȳn)(yt−k − ȳn) and γ̂(0) = σ̂2 =

n∑
t=1

(yt − ȳn)2

are the sample auto-covariance function at lag k, and sample variance estimator, respectively.

The highest autocorrelation of the stationary time series determines the moving average term,

q to be considered in the model.

A partial autocorrelation is a conditional correlation where the correlation between two

variables is calculated under the assumption that the known values of another set of variables

are already accounted for. Suppose, one has three observations from a time series, Yt, Yt−1

and Yt−2. Then the partial autocorrelation between Yt and Yt−2 is determined after taking into

account how both Yt and Yt−2 are related to Yt−1, i.e., the correlation between Yt and Yt−2 that is

not predicted by Yt−1. Mathematically, it can be written as,

Covariance(Yt,Yt−2|Yt−1)
√

Variance(Yt|Yt−1)Variance(Yt−2|Yt−1)

In general, the partial autocorrelation between Yt and Yt−k is the conditional correlation between

Yt and Yt−k where the condition is on the set of observations that comes between the time

points t and t − k. This correlation can be obtained by correlating the residuals from two

different regressions: (i) regression of Yt on Yt−1,Yt−2, . . . ,Yt−k+1, and (ii) regression of Yt−k on

Yt−1,Yt−2, . . . ,Yt−k+1. Therefore, the partial autocorrelation is the autocorrelation which remains
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at lag k after the effects of shorter lags (1, 2, . . . , k − 1) have been removed by regression.

Notationally, PACF(k) = Corr(yt, yt−k|yt−1, . . . , yt−k+1). If k = 1, then PACF(1) = ACF(1).

The highest partial autocorrelation of the stationary time series determines the autoregressive

term, p to be considered in the model.

In order to obtain the orders for the Seasonal Autoregressive and the Seasonal Moving

Average models, one has to inspect ACF and PACF plots after seasonal differences (if any) at

multiple times of the seasonal period (s). If there are positive spikes in ACF at lag s, 2s, 3s, . . . ,

and a single positive spike in PACF at lag s, then SAR=1. Alternatively, if there is a negative

spike in ACF at lag s, and negative spikes in PACF at lags s, 2s, 3s, . . . , then SMA=1.

2.4 Harmonic Regression

Harmonic analysis explains the variation in a time-series based on frequency rather than time.

A time-series can be transformed into the frequency domain from the time domain using

Fourier transformation. For a long memory time-series where periodic phenomena are ex-

istent, signals are more concentrated on the frequency domain than on time domain. This type

of analysis is known as harmonic analysis, spectral analysis, or Fourier analysis.

In harmonic analysis, a stationary time series with infinite duration and evenly spaced ob-

servation is expressed as a function of sinusoidal periodic signals and a Gaussian (white) noise

(see Babu (2012)). For a time-series Yt, a common model formulation for a finite Fourier series

is,

Yt = µ + a cos(2πωt) + b sin(2πωt) + et

where µ is the mean of the series, ω = 1/T is the fraction of the complete cycle completed in a

single time period, period T is the number of time periods required to complete a single cycle

of the cosine function, and et is the random error term.

Under harmonic regression a time series can be expressed as a combination of cosine (sine)
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waves with differing periods and a number of covariates (as in GLM). Harmonic regression

can also be used under an ARIMA modeling framework, where the random error term et has

a ARMA like structure. A detailed description of the harmonic regression can be found in

Chatfield (2013).

2.4.1 Determination of the Wavelengths Using a Periodogram

An important part is to determine the appropriate set of frequencies to fit in the harmonic

regression model. A periodogram is used to detect the dominant periods of a time series. One

can determine those frequencies (wavelengths) by inspecting the periodogram. Let us partition

the variability of the time-series into different components at frequencies 2π
T ,

4π
T , . . . , π. The

component at frequency, ωk = 2πk
T , is named as the kth harmonic. An equivalent form of the

kth harmonic for k , T
2 can be written as,

ak cos(ωkt) + bk sin(ωkt) = Rk cos(ωkt + φk)

where, Rk =
√

ak + bk, and φk = tan−1
(
−bk
ak

)
.

The periodogram of a time-series data is the plot of TR2
K

4π against ω. The periodogram graphs

a measure of the relative importance of possible frequency values that might explain the oscil-

lation pattern of the observed data.

2.5 Generalized Linear Autoregressive Moving Average

Models

Generalized linear autoregressive moving average (GLARMA) models have been developed to

model discrete valued time series responses. GLARMA models overcome the shortcomings of

both GLMs, which are capable of modeling non-normal data but cannot easily incorporate time

series structures (unless autocorrelation is introduced to the model through a latent process),
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and time series models, which are suitable for time series data but not designed to handle non-

normal responses. GLARMA models are a subclass of generalized state space models, (Davis

et al. (1999)) which have two formulations: parameter driven and observation driven.

I will focus our attention on the observation driven GLARMA models for modeling time-

dependent count data for two important reasons: (i) observation driven GLARMA models are

easy to implement on long time series data with numerous predictors, (ii) they are readily avail-

able in statistical software packages (i.e., “glarma” R-package). Parameter driven GLARMA

models, on the other hand, require high dimensional integrals to be evaluated and are not easy

to interpret.

An excellent introduction of the “glarma” R-package for observation driven time series

regression of counts is documented in Dunsmuir & Scott (2015). Let us denote, Yt as the

random variable for our time series of counts at time t, where t = 1, 2, . . . ,T . Associated with

those count responses, there is a K-dimensional vector of covariates xt. Letting, Ft = {Ys : s <

t, xs : s ≤ t} be the past information on the response series and past and present information on

the covariates, the conditional distribution Yt | Ft ∼ Poisson(λt).

Defining et =
yt−λt
√
λt

, I have,

E(et|Ft−1) =
E(yt|Ft−1) − λt

√
λt

= 0

Therefore, by definition {et} is a martingale difference sequence relative to {yt} (Brockwell &

Davis (2009)). Now let {zt, t ≥ 0} be an ARMA(p, q)-process as defined in (2.3) with noise

given by the martingale difference sequence {et},

zt = φ1zt−1 + φ2zt−2 + . . . + φpzt−p + et + θ1et−1 + θ2et−2 + . . . + θqet−q (2.9)

One property of an ARMA(p, q)-process is that {zt} are causal and there exists a sequence
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{γ j, j = 1, 2, . . .} with
∑∞

j=0 |γ j| < ∞ such that

zt =

∞∑
j=0

γ jet− j = et +

∞∑
j=1

γ jet− j = et + z∗t . (2.10)

the term z∗t , can be regarded as a predictor for zt given the past Ft−1 since E(et) = 0. Therefore,

it is reasonable to define the general Poisson-GLARMA(p, q) model as

log(λt) = xT
t β + z∗t = xT

t β +

∞∑
j=1

γ jet− j. (2.11)

The conditional distribution of yt is specified via the transformed function of past observations

yt−1, yt−2, . . . as et− j =
yt− j−λt
√
λt

. It is reasonable to set et = 0 and z∗t = 0 for t ≤ 0 since there are

no observations for t ≤ 0. Therefore, z∗t as a predictor for zt|Ft−1 can be computed recursively

using the ARMA recursion,

z∗t = φ1zt−1 + φ2zt−2 + . . . + φpzt−p + θ1et−1 + θ2et−2 + . . . + θqet−q

= φ1(z∗t−1 + et−1) + . . . + φp(z∗t−p + et−p) + θ1et−1 + θ2et−2 + . . . + θqet−q

Detailed descriptions of the maximum likelihood method for estimating parameters and their

respective standard errors are described in Davis et al. (2003).

2.5.1 Probability Integral Transforms (PIT)

PIT provides a basis for testing whether a set of observations can reasonably be modeled as

arising from a specified distribution. Specifically, PIT relates the results that the data values

as being a random variable modelled from any given continuous distribution can be converted

to random variables having a uniform distribution (Dodge (2006)). A number of authors have

suggested the use of PIT to examine the validity of the assumed distribution in the GLARMA

model (for example, Dunsmuir & Scott (2015)). In addition to residual plots and Q-Q plots, I

also make use of PIT to check the validity of our proposed model. Czado et al. (2009) derived
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a PIT form which applies to discrete distributions based on the following formulae:

F(t)(u|yt) =


0, if, u ≤ F(yt − 1),

u−F(yt−1)
F(yt)−F(yt−1) , if, F(yt − 1) ≤ u ≤ F(yt),

1, if, u > F(yt).

In the foregoing expression F(yt) and F(yt − 1) are the upper and lower conditional predictive

probabilities, respectively. PIT is thus defined as

F̄(u) =
1

T − 1

T∑
t=2

F(t)(u|yt)

A histogram of the PIT is drawn with a horizontal line at height 1, representing the density

function of the uniform distribution at [0,1].

2.6 Forecast Accuracy Measures

Three different forecast accuracy measures are often used: Root Mean Square Error (RMSE),

Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Those can be

calculated as,

RMS E =

√√
1
n

n∑
i=1

(yi − ŷi)2, (2.12)

MAE =
1
n

n∑
i=1

|yi − ŷi|, (2.13)

and, MAPE = (1/n)
n∑

i=1

(
|yi − ŷi|

|yi|
× 100

)
. (2.14)

Additionally for model selection purposes, I calculated the second order information crite-

rion (AICc) which is the Akaike information criterion (AIC) with a correction for finite sample

sizes which pose greater penalty for extra parameters.
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AICc = AIC +
2k(k + 1)
n − k − 1

. (2.15)

In equation (2.15), n is the sample size, k is the number of parameters, and AIC is defined

as the log-likelihood term penalized by the number of parameters, i.e., AIC = −2LL + 2k.

Increasing number of parameter leads to a larger AIC value whereas the large value of the

likelihood function makes the AIC value smaller. The AICc makes an additional correction for

the number of parameters.

2.7 Cox-proportional Hazard Models

A Cox-Proportional Hazard (Cox-PH) model is a statistical technique developed by Cox (1972)

to model the relationship between the time to an event (survival time) and several explanatory

variables. One advantage of the Cox-PH model over parametric survival models is that no

assumption regarding the survival time distribution is necessary. Under Cox-PH modeling

framework, the log of the hazard function is linearly related to the covariates,

log(h(t; x1, x2, . . . , xp)) = β0 + β1x1 + . . . + βpxp (2.16)

=⇒ h(t; x1, x2, . . . , xp) = h0(t) exp(β1x1) . . . exp(βpxp) (2.17)

where, h0(t) = exp(β0), is the baseline hazard function, i.e., the value of the hazard function

when all the covariates are zero. It is observed from equation (2.17) that the covariates have a

multiplicative effect on the hazard function. Suppose two individuals have first covariate values

x11 and x12 with all other covariate values remaining same. Then the ratio of the two hazard

functions, which is the hazard ratio, can be written as

h(t, X1)
h(t, X2)

=
exp(β1x11)
exp(β1x12)

= exp{β1(x11 − x12)} (2.18)
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The term, exp{β1(x11 − x12)} is the hazard ratio comparing x11 to x12. If β1 = 0, the hazard

ratio becomes 1 (e0 = 1), i.e., there is no effect of covariates on survival. A hazard ratio of 2

indicates individual 1 is twice as likely to die as individual 2 at any time instant.

From equation (2.18), I have, h(t, X1) ∝ h(t, X2), i.e., hazard functions are proportional to

each other and are independent of time. This is why the Cox model is called a proportional

hazard model. The parameters in a Cox-PH model are estimated by maximizing the partial

likelihood function. Interested readers can find detailed estimation procedure in Kalbfleisch &

Prentice (2011).



Chapter 3

ED Process Flow and Data

Description

3.1 ED Process Flow

A schematic diagram of our ED process flow is presented in Figure 3.1. There are two modes of

arrivals in our ED: walk-in and through ambulance or other emergency transportation. Patient

arrivals by ambulance usually go through initial assessment immediately and a charge nurse

decides their level of acuity. On the other hand, walk-in arrivals initially see a business clerk

or charge nurse who swipes their health card and records their chief complaint. Patients then

wait for a triage nurse who will come to assess their conditions.

Patients’ priority levels are determined by a triage nurse after a general assessment of the

chief complaint and overall condition. In Canada, the Canadian Triage and Acuity Scale (CTAS

(2005)) is a guideline for more objective classification of severity where patients are classified

into five priority classes (see Table 3.1). The highest priority class is assigned with a score

of 1 and the score increases as the priority level decreases with a score of 5 for the lowest

priority class. Each class is associated with a specified time target by which a patient must be

22
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Figure 3.1: A simplified emergency department process flow.
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seen in a certain percentage of the time. Once the triage process is complete, patients are then

seen by a unit clerk who continues with the registration process by confirming all demographic

information. Patients then wait in the waiting room for their turn to receive the first physician

assessment.

Table 3.1: CTAS Key Performance Indicators

Category Classification Access Performance Level

1 Resuscitation Immediate 98%
2 Emergency 15 minute 95%
3 Urgent 30 minute 90%
4 Less urgent 60 minute 85%
5 Not urgent 120 minute 80%

According to the level of acuity, patients are then taken into a room for their initial as-

sessment by the attending physician, a resident, or, clinical clerk (third or fourth year medical

student). Residents or clinical clerks are able to initiate investigations and treatment of patients

independent of their clinical supervisors, within the limit of their level of expertise and experi-

ence. Immediate treatment begins for the patients who are considered critically ill while other

patients continue to wait until their turn comes. Patients from whom no further investigation

is required and whose treatment plan is already assigned, are then discharged from the ED.

All other patients who went through some sort of diagnostic procedures will wait for their test

results to arrive. Patients are then reassessed by the attending physician who decides whether

to discharge them, refer them to other facilities, or ask for further investigations. Repeated

reassessments will continue unless the patient is finally discharged from the ED.

3.2 Study Setting

Two years worth of adult ED visit data was collected from an Ontario hospital. Patients who

were registered and triaged between January 1, 2012 to December 31, 2013, were included in

the study. Ethics approval for this study was obtained from this hospital as well. Discrete time
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stamps for operations that an individual patient encounters throughout the ED process flow

(Figure 3.1) have been extracted from the ED database. Among other variables, age, triage

levels, modes of arrival, discharge destinations, were also obtained.

Since the number of arrivals as well as service effort varies significantly from one triage

level to another, I have stratified our analysis by triage level. The studied ED adheres to the

Canadian Triage and Acuity Scale (CTAS) which stratify patients into five acuity level based

on the severity of illness (Table 3.1). I aggregated CTAS categories 1 and 2 and named it the

high acuity patient class, and CTAS categories 3, 4, and 5 and named it the low acuity patient

class.

3.2.1 Missing Value Imputation

Our objective here is to achieve complete information about the arrival times of all the patients

under study. In addition for later use, I need to have complete observations on physician initial

assessments (PIA) and discharge times as well. The dataset consists of individual time stamps

of several service activities for every single patient who flows through the ED service process.

Definition and description of the short-form variable names of our dataset that were used to

obtain values for arrivals, PIA, and discharges are provided in Table 3.2.

Table 3.2: Definition of the variables on which individual time stamps were obtained.

Variable Names Definition

Received Time at which charge nurse swipes patient’s health card.
Triaged Time at which patient was triaged.

TBS Time at which the patient is expected to be seen.
SBMD Time at which patient is seen by an MD.
DTD Time at which decision about patient’s discharge was made.
DC Time at which patient was actually discharged from the ED.

Depart Time at which chart is actually signed out.
TransWard Time at which patient was transfered to another ward.
ConsAdm Time at which consultant decides to admit the patient.

LWBS Time at which patient was observed left without been seen by an MD.
LABS Time at which patient was observed left after been seen by an MD.
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Imputation is the process of substituting suitable values in places where there are missing

values. Missing values are of three types: (i) missing completely at random (no pattern), (ii)

missing at random (can be predicted from other values of the variable), and, (iii) missing not at

random (depends upon unobserved variables). We assumed missing data occurs at random. In

fact the missing data are unlikely to be random, but more likely to relate to the busy periods.

However, this is not likely to lead to major problems due to the level of missing data involved

in most cases.

I predicted the missing data from the observed values of the same variable after controlling

for block of day, day of week, month of year, and triage category. There are several methods

available for missing value imputation. I used single mean imputation to impute missing values

which is the simplest among all imputation methods. Mean imputation uses the mean of the

observed values as a substitute for missing values after matching for similar values of other

variables.

Missing values are evident in the ED data collection process. This is due to the fact that

providing services to a patient takes precedence over recoding data in an ED. A physician

will start the treatment process for a critical patient before record the instant of service time

initiation. In addition, while one observation is missing for one patient, it may not be so

for others. Therefore, missing values can well be scattered across the dataset although one

anticipates a greater preponderance of missing values during congested periods than during

calm ones. During analysis, the major problem for having missing values in the dataset is that

any standard statistical software disregards individual patients with any of their time stamps

missing. Consequently, discarding a large portion of the data may introduce bias and reduces

sample size. Since discarding missing values leads to loss of information, replacing missing

observations through imputation improves the power of the study.

The algorithms used to obtain complete observations for arrival, PIA, and discharge times

using observed and imputed values of the variables described in Table (3.2) are provided below,

• Arrivals: I have considered the patients’ Received time as their arrival time to our ED.
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There were 42 missing values for Received time stamp. The time stamp that follows

Received time stamp is the TBS time stamp. After being received, patients are usually

triaged followed by registration. When patients are being registered, they are assigned

a TBS time stamp. I used TBS time stamp to impute received time stamp values for 35

patients because 35 of the 42 missing received time stamps have TBS time stamps (3.2).

Since TBS time stamps occur a certain time after the Received time stamp, in order to

retrieve respective Received time stamps, I subtracted the average of the differences be-

tween the TBS and Received time stamps from the TBS time stamps for which complete

observations were available. In our study ED, patient volume varied by the day of the

week and by triage category. Therefore, further refinement was done by computing the

averages of the differences between the TBS and Received time stamps after matching

by the day of the week and triage category.

The remaining 7 missing Received time stamps had only corresponding Depart time

stamps available, and I imputed those missing observations by subtracting the average

of the time differences between the Depart and Received time stamps from Depart time

stamps by day of the week and triage category. A schematic diagram of the algorithm

described above to obtain arrival times is provided in Figure 3.2.

• Physician First Assessment (PIA): The Seen by MD (SBMD) time stamp was regarded

as a PIA time. However, there are 10,411 missing SBMD time stamp. The closest time

stamp is TBS and I approximated 9244 of the missing SBMD time from the correspond-

ing TBS time. Since SBMD time stamps occur after TBS time stamps the majority of the

time, I added the average of the differences between TBS and SBMD time stamps with

TBS time to approximate PIA time. Additionally, as patient volume varied by the day

of the week and by triage category, I computed average of the differences after matching

by the day of the week and triage category. The similar procedure was applied to impute

the remaining 1167 missing SBMD time stamps form DC (272), Depart (619), and DTD
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(276), respectively.

• Discharges: Patients’ are considered discharged from an ED when they are released

home or admitted to other facilities of the hospital. Therefore, observed DC and

TransWard time stamps were considered as discharge times. Among 7660 missing time

stamps, 7286 and 374 were imputed from Depart and DTD times, respectively. The

724 of the remaining 768 missing time stamps have ConsAdm time stamps. I imputed

discharge times by adding the average of the differences between the ConsAdm and DC

times with DC times after matching by the day of the week and triage category. A similar

procedure was applied to impute the remaining 44 missing discharge time stamps form

LWBS (12), LABS (3), and Received (29) times, respectively.

3.2.2 Data Processing

Individual time stamps were aggregated to obtain arrival counts for hours, days, and months.

Hourly data were further aggregated to 3-hourly blocks, where a day consists of 8 such blocks

starting from midnight. In this study, our primary unit of analysis is the number of patient

arrivals in such a 3-hour block. Two main advantages of using a 3-hour block are; (i) one

can avoid majority of the zero counts which are dominant in the hourly ED arrival data, (ii) a

frequency of every 3 hours coordinates better with shift changes that occur at (7 a.m. , 10 a.m.,

3 p.m., 6 p.m., and 11 p.m.) than one that is less frequent (like every six hours, for instance).

Temporal variables such as hour-of day, day-of-week, month-of-year, and weekday/holiday

were created using the hourly arrival data. Every 8 blocks were categorized to obtain day-of-

week results whereas 240 blocks were accumulated to obtain month-of-year. Weekday/holiday

is a binary variable representing 1 if the block belongs to a week day and 0 otherwise.

Before fitting forecasting models in chapter 4, I have divided the data set into two parts.

The former is called training dataset which includes the first 22 months of data and will be used

to fit the forecasting models. The latter is the test data set which consists of the remaining last
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2 months of data and will be used to validate the forecasting models.

3.3 Clinical Setting and Data Description

In an emergency department, along with consultation with a physician, an arriving patient

frequently receives other services (diagnostic procedures) if necessary. These inter-connected

activities together determine how long a patient will remain in the emergency department. A

Patient’s service to an emergency department is considered complete once they are discharged

from the emergency department are admitted to a ward/hospital.

3.3.1 Clinical Setting

Emergency departments in Canada are publicly funded so that patients may seek treatment for

any sort of emergency care. Due to the mismatch in demand and capacity, ED often experiences

long wait times and operational inefficiencies. ED staff are mostly salaried employees of the

hospital, and therefore their financial benefits are not affected by the number of patients seen.

The data for our study have been collected from a large urban teaching hospital over a two

year period from January, 2012 to December, 2013. An individual patient journey from arrival

to the ED to exit is considered a single record where patients go through multiple procedures.

There were approximately 44,000 emergency patient visits per year. Our ED contains 2 “red”

areas for critical care; one for trauma care where there are 4 Beds and 2 nurses, and the other

one for cardiac care where there are 4 beds, 2 nurses, and 2 hallway beds. There is a yellow

area in our ED to provide intermediate care; Observation 1 where there are 7 beds, 2 nurses,

and 2 hallway beds, Observation 2 where there are 8 beds and 2 nurses, and ambulance offload

area where there are 4 beds, 1 nurse, and 2 hallway beds. The Rapid Assessment Zone (RAZ)

is another area in our ED where there are 6 beds and 6 reclining chairs, 1 nurse at all times plus

another from noon to midnight.

Among these three zones, high acuity patients are treated in the red and yellow zone areas
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whereas low acuity patients are treated on the RAZ area. Bed capacity for the high acuity

patients totals to 31. Low acuity patients are treated in the 12 treatment beds of RAZ. However,

depending on the variability in demand, actual treatment capacity may vary at any particular

point in time.

The number of ED physicians at any time of the day varies between 1 to 2 in our study

ED (Figure 3.3). Physician shift changes are predetermined and is stagged around different

hours of the day (Figure 3.3). Demand for ED services usually slows down after midnight,

and remains low until start of the morning work hours when demand again starts to peak up.

Therefore, there is only one emergency doctor covering for both high and low acuity patients

areas during late night and early morning hours (2 a.m. to 10 a.m.). At all other times, there

are two dedicated emergency physicians, with one each serving the high and the low acuity

patients, respectively.

Although physicians are dedicated to either high or low acuity patient services, respectively,

their placement alters with the variability in demand for either or both of the high and low

acuity patients. For instance, when there is a substantial need for high acuity patient services,

both physicians work for high acuity patient services. The reverse could happen if there were

no high acuity patient requiring intervention by its physician. Residents are present in our ED

with no authority to prescribe treatment options for patients unless consulted with responsible

attending ED physician.

In this hospital, physicians get paid at a flat rate for their shift of work, with no additional

payment for extra work or overtime. Therefore, stretching out treatment times by providing

additional services does not bring any incentives for the physicians (Song et al. (2015)). How-

ever, the usual practice for physicians is to work extra hours to finish the care process for their

initiated cohort of patients before leaving their shift. Since physician shift changes are stag-

gered throughout the day, there are always a physician to take on new patients and in that case,

in order to finish their shift on time, a physician may stop taking new patients 2 hours prior to

when their shift end.
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Figure 3.3: Staffing level for the emergency department under study in a particular day (24
hours period).
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Similar to other EDs in Canada, this ED follows a standard process flow. A simplified ver-

sion of the processes flow for this ED is presented in Figure 3.4. Upon arrival, a patient’s health

card is swiped by a charge nurse along with documenting the chief reason for the ED visit. A

triage nurse then assesses the patient’s signs and symptoms and assign a priority score. This

ED follows a commonly used 5 point priority scale, namely, the Canadian Triage and Acuity

Scale (CTAS), where 1 denotes the highest level of severity of illness and 5 denotes the lowest.

In this study, CTAS-1 (resuscitation) and CTAS-2 (emergent) patients are considered as high

acuity patients, and CTAS-3 (urgent), CTAS-4 (less-urgent), and CTAS-5 (non-urgent) patients

are considered as low acuity patients. Ancillary services, such as diagnostic testing, transport,

laboratory, and pharmacy, are shared with all patients in the hospital.

Time

Patient 

Arrival

PIA Decision to 

Discharge

Discharged/

Admitted

Patient 

Triaged

Diagnostic 

procedures

Service TimeWaiting Time Waiting Time

Patient Length of Stay

Figure 3.4: Emergency department patient flow process (this figure is not drawn to scale).

After being triaged, patients usually wait in a common waiting room to get the call for

the physician assessment. It is usual practice for ED physician to work on multiple patients

simultaneously. For example, while operation theater for a patient is in preparation, a physi-
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cian may start working on a waiting patient in order to minimize her idle time. If physician

assessment does not require any diagnostic testing or patient require hospital admission, a dis-

charge or admission decision is made immediately. Otherwise, patients may have to go through

different diagnostic procedures based on her sickness under study and then the previous step

is repeated. Finally, once the discharge decision has been made, patients are then discharged

home or admitted to the hospital for further care. Patients ED service can then be considered

as complete.

3.3.2 Data Description and Definitions

Our data consists of 88,189 individual patients treated in an Ontario ED in 2 years between Jan-

uary 1, 2012 to December 31, 2013. Data were de-identified and ethics approval obtained from

the pertinent authority. Times at which a patient received any service during her care process

is documented as a time stamp, for example, received time, triaged time, first physician as-

sessment, and so on. Patient level informations such as age, triage level, discharge destination,

chief complaints, were also included in our dataset.

3.3.2.1 Dependent Variables

As described in Figure 3.4, individual time stamps have been used to calculate our key depen-

dent variables which are going to used in chapter 5. A patient’s ED LOS is defined as the time

from a patient’s registration at the ED to the time patient discharged/admitted from the ED. A

patient’s ED service time is defined as the time from physician’s initial assessment to the ED to

the time a patient discharged or admitted from the ED. Finally, a patient’s ED waiting time is

defined as the time from a patient’s registration at the ED to the time physicians’ start patient’s

initial assessment to the ED.

In order to conduct block-level analysis, a day was divided into 24 one hour blocks and

individual data were aggregated to obtain block-level observations. The number of discharges

per block is the sum of the individuals who have been discharged from that particular block.
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Table 3.3: Definition of response variables for operational performance measures used in chap-
ter 5.

Measure Description and coding

DischHigh Number of high acuity patients discharged from ED per block.
DischLow Number of low acuity patients discharged from ED per block.
LOSHigh High acuity patient length of stay (registration to discharge).
LOSLow Low acuity patient length of stay (registration to discharge).
STHigh High acuity patient service time (initial assessment to discharge).
STLow Low acuity patient service time (initial assessment to discharge).
WTHigh High acuity patient waiting time (registration to initial assessment).
WTLow Low acuity patient waiting time (registration to initial assessment).

3.3.2.2 Independent and Control Variables

Similar to the calculation for the number of discharges, I can also calculate census per block,

the number of arrivals per block, and the number served per block. The census in the ED at

time (t + 1) is obtained by using following formula,

Census(t + 1) = Census(t) + Arrivals(t, t + 1) − Departures(t, t + 1)

where Arrivals(t, t + 1) and Departures(t, t + 1) are the arrivals and departures between time t

and (t + 1), respectively. I have calculated the census for every block (hour) of a day for the

duration of the study period. The formula above however requires us to know the census at the

beginning of the study (at, t = 0).

Since our data starts at the midnight of January 1, 2012, we assumed the census is zero at

time 0. However, I have considered dropping 24 blocks of observation from the beginning and

the end of the study to deal with this truncation.

Since there exist natural variability in dependent variables depending on calendar variables

such as, time of the day, day of the week, week of the month etc., I have used these variables

as control variables in our models. I have incorporated control variables as dummy variables

in our model (for n categories of a variable, I need (n − 1) independent dummy variables).
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Table 3.4: Definitions of independent variables used in chapter 5.

Measure Description and coding

CenHigh Number of high acuity patients in the system (counts).
CenLow Number of low acuity patients in the system (counts).
CenHigh2 Square of number of high acuity patients in the system (counts)
CenLow2 Square of number of high acuity patients in the system (counts)
CenHighLag1 Number of high acuity patients in the system at previous block (counts)
CenLowLag1 Number of low acuity patients in the system at previous block (counts)
HighWorkload Number of high acuity patients in the system divided by

total number of beds for high acuity patients (ratio)
LowWorkload Number of low acuity patients in the system divided by

total number of beds for low acuity patients (ratio)
BusyHigh Indicator variable takes 1 if high census is greater than the number of

high beds
BusyLow Indicator variable takes 1 if low census is greater than the number of

low beds
Admitted Binary variable indicating admitted to hospital beds or discharged home.
Age Age of the patient (continuous variable).

Table 3.5: Definitions of control variables used in chapter 4 and 5.

Measures Description and coding

BoD (1-24) Block of day variables are defined using 23 dummy variables
DoW (Sun-Sat) Day of week variables are defined using 6 dummy variables
MoY (Jan-Dec) Month of year variables are defined using 11 dummy variables



Chapter 4

Forecasting Emergency

Department Arrivals

4.1 Introduction

Emergency department (ED) overcrowding is prevalent in Canada (Bond et al. (2006)) as well

as around the globe (Pines et al. (2011)). An ED becomes overcrowded when the demand

for ED services exceeds the capacity of the ED, which in turn limits the ability of an ED to

provide quality care in a reasonable amount of time (Rowe et al. (2006)). ED overcrowding has

various negative consequences, such as increased wait times, decreased levels of service, poor

patient outcomes, decreased physician productivity, patient suffering, and reduced patient and

provider satisfaction (Derlet & Richards (2000)). Since across-the-board capacity expansion

is not always a viable option due to budgetary constraints, an accurate short-term forecast of

ED arrivals would help ED administrators to prepare in advance how to efficiently manage and

allocate available resources so as to meet the anticipated demand and alleviate ED crowding.

Of course, ED administrators do not have complete control over staffing. On one hand, ED

employees are highly trained individuals who may not open to wait for works that may not

37
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come. On the other hand, hospitals may not afford to pay for keeping employees stand-by.

However, ED administrators may still find a viable option to schedule staff accordingly to

predicted demand or ask staff to stay few extra hours (before beginning of the shift or end of

the shift) during the time of expected surge.

A considerable amount of research has been devoted towards predictions of ED arrivals, on

a daily, weekly, monthly, and yearly forecast basis. However, very few studies have attempted

to forecast ED arrivals for much shorter time into future and no particular method was shown to

have consistent superiority over others. The objective of this chapter is to suggest appropriate

models for short-run (3 hourly) ED arrival predictions. Forecasting short-term arrivals is im-

portant for three main reasons: (i) arrivals are not uniformly distributed throughout the day so

that particular hours of the day have more arrivals than others, (ii) resources are mostly shared

across the ED and the employees work in predetermined shifts within a day, and (iii) short term

forecasts of a surge in load will enable an ED manager to know when to call in supplementary

staff (doctors, nurses, etc.) and other resources.

In almost all jurisdictions, emergency patients are categorized into different priority classes

based on their level of acuity. The Canadian Triage and Acuity Scale (CTAS) in Canada (CTAS

(2005)) is the one where emergency patients are categorized into five priority classes and from

the highest acuity to the lowest. They are arranged as; Resuscitation (1), Emergent (2), Urgent

(3), Less-urgent (4), and Non-urgent (5). The priority of an arriving patient is determined based

on expert clinical assessment. Associated with the wait time targets, a certain percentage of

each acuity patient group should not exceed a particular wait time threshold (Table 4.1). Many

EDs have introduced a separate “urgent care” units to serve lower acuity patients to meet their

service level. However, variability in the demand for ED services impairs maximum utiliza-

tion of the ED resources, and as a result certain performance benchmarks across the acuity

categories often fail to be met.

Time series and regression models are two frequently used models in the literature for ED

arrival predictions. Time series models assume prior arrivals are the most important predic-
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Table 4.1: CTAS Key Performance Indicators

Category Classification Access Performance Level

1 Resuscitation Immediate 98%
2 Emergency 15 minute 95%
3 Urgent 30 minute 90%
4 Less urgent 60 minute 85%
5 Not urgent 120 minute 80%

tors of future arrivals, whereas the regression models assume variables other than the arrivals

themselves are important predictors of future arrivals. Both models have advantages, so a

combination of time series and regression models, namely, Generalized Linear Autoregressive

Moving Average (GLARMA) models were used to predict future arrivals in this chapter. In ad-

dition, Harmonic regression models were used for comparison purposes, because such models

were advocated to produce useful results for short-run prediction of time series data (Côté et al.

(2013)). Separate forecasting models for high and low acuity ED patients were considered due

to differences in arrival patterns, service mechanisms, and capacities (McCarthy et al. (2008),

Sun et al. (2009), Au-Yeung et al. (2009), Chen et al. (2011)).

In order to validate the appropriateness of the forecasting model I adopted the “rolling

horizon” approach from the operations management literature (eg., Sethi & Sorger (1991)).

Starting from the initial segment of the original data the validation process moves one step

forward by a fixed time interval and recalculates accuracy measures every time until the process

reaches the end of the dataset.

The remainder of this chapter is assembled as follows. A detailed literature review is pre-

sented in Section 4.2. In Section 4.3, I present the materials and methods I employed in this

chapter. Detailed results and interpretations are provided in Section 4.4. I discuss the results

of our study in Section 4.5, along with the limitations in Section 4.6, conclusions and future

research directions in Section 4.7.
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4.2 Literature on Forecasting ED Arrivals

The problem of forecasting ED arrivals has been studied extensively in the literature. The

majority of published articles regarding ED were focused on predicting ED arrivals, while

others were interested in forecasting ED crowding (Hoot et al. (2008), Hoot et al. (2009)), ED

bed occupancy (Schweigler et al. (2009)), or a combination of a few of other ED performance

metrics (Hoot et al. (2008), Hoot et al. (2009)). Our focus in this chapter is to predict ED

arrivals and the synopsis of the studies that have used forecasting methods to predict ED arrivals

are provided in the tables 4.2 and 4.3. Different time horizons (daily to yearly) have been used

in the literature to forecast ED arrivals. I am interested in very short-term forecasts, namely,

several hours of a particular day.

Wargon et al. (2009) conducted a systematic review of the models that have been used

to forecast the number of emergency department visits. They identified nine studies through a

Medline search (date of access was 23 September, 2007), and observed that two types of models

were predominant in those studies, namely, time series models and linear regression models.

Therefore, I subdivided our review of literature based on these two modeling strategies because

recent studies also tend to belong to one of these two modeling streams.

4.2.1 Time Series Models

An early attempt at using a time series model to predict ED arrivals was made by Milner

(1988). Among time series models, the autoregressive integrated moving average (ARIMA)

approach was the most widely used model in the literature for ED arrival forecast (Milner

(1988), Tandberg & Qualls (1994), Milner (1997), Reis & Mandl (2003), Champion et al.

(2007), Au-Yeung et al. (2009), Sun et al. (2009), Chan et al. (2011), Boyle et al. (2012)).

A few other time series models such as, exponential smoothing (Tandberg & Qualls (1994),

Champion et al. (2007), Boyle et al. (2010), Boyle et al. (2012), Bergs et al. (2014)), structural

time series models (Au-Yeung et al. (2009)), multivariate time series models (Jones et al.
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(2009)), and seasonal ARIMA models (Marcilio et al. (2013)) were also used for ED arrival

forecasts.

Different time horizons were considered in the aforementioned studies such as yearly (Mil-

ner (1988), Boyle et al. (2012) Milner (1997)), monthly (Champion et al. (2007), Chan et al.

(2011), Bergs et al. (2014), Boyle et al. (2012)), daily (Reis & Mandl (2003), Au-Yeung et al.

(2009), Sun et al. (2009), Boyle et al. (2012), Marcilio et al. (2013)), and hourly (Tandberg

& Qualls (1994), Jones et al. (2009), Boyle et al. (2012)). Yearly and monthly forecasts are

important for strategic and tactical planning purposes, however, daily and hourly forecasts fa-

cilitate operational planning (Côté et al. (2013)).

Since different types of patients manifest variability in demand for services and availability

of resources, separate forecasting models were proposed in the following studies: for overall

and respiratory-related visits (Reis & Mandl (2003)), for trauma, non-trauma, and pediatric

visits (Chan et al. (2011)), for three acuity categories P1, P2, and P3 (Sun et al. (2009)), and

for walk-in and ambulance arrivals (Au-Yeung et al. (2009)). Therefore, I developed separate

forecasting models for high (CTAS 1 and 2) and low (CTAS 3, 4, and 5) acuity patients because

patients are treated in two different areas based on their level of acuity in our study ED.

I am only aware of two studies that applied time series models to forecast hourly ED ar-

rivals. Tandberg & Qualls (1994) used time series models to forecast hourly ED arrivals using

five different models (raw data, ARIMA, and 3 variants of a moving average model) based

upon 2 years of hourly arrival data. The authors concluded that models based on arithmetic

mean or seasonal indices with a single moving average term provides the most accurate fore-

cast. Jones et al. (2009) on the other hand, advocated for the use of a multivariate time series

model to simultaneously predict 8 different hourly measures including arrival counts, census

counts, and diagnostic order counts. Using hourly data from 3 diverse hospitals for the year

2006, the authors suggested the use of multivariate time series models to accurately forecast

all other measures, except the demand for diagnostic resources.
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4.2.2 Variants of Linear Models

Earlier attempts to use linear regression models to forecast daily ED arrivals are considered by

Holleman et al. (1996) and Rotstein et al. (1997). Using a linear regression model based on 34

months of walk-in clinic and ED daily arrival data, Holleman et al. (1996) argued that calendar

and climate variables efficiently predict daily arrivals explaining 84% of the daily variability.

Rotstein et al. (1997), on the other hand, proposed the analysis of covariance (ANCOVA)

technique based on calendar variables to predict daily ED arrivals using 3 years of historical

daily arrival data. According to Rotstein et al. (1997), 65% of the total variability in daily ED

arrivals was explained by the calendar variables alone. A recent study by Ekström et al. (2015)

reported a significant correlation between the number visits regional medical website between

6 P.M. and midnight and ED visits on the upcoming day (r = 0.77,p < 0.001). Ekström et al.

(2015) claim that the web site visits along with calendar variables are capable of accurately

predicting daily ED arrivals.

Among regression based approaches, McCarthy et al. (2008) selected Poisson regression

to represent the count of hourly ED arrivals as a function of temporal, climatic, and patient

factors. Advocating separate model fitting for high and low acuity patients, McCarthy et al.

(2008) observed that there were more ED visits on Mondays, followed by weekends, relative

to other weekdays, and climatic factors did not strongly influence patient arrivals to the ED.

Marcilio et al. (2013) also argued that climate variables are not a good predictor of daily ED

arrivals, finding rather that calendar variables alone are capable of detecting daily variability

in ED volume. However, Marcilio et al. (2013) applied six different time series and regression

models and showed that GLM and GEE manifested better forecast accuracy than SARIMA and
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three other time series models. Analogously, Boyle et al. (2012) also used both the re-

gression and time series models to develop and validate forecasting models for hourly, daily,

monthly, and yearly ED arrivals.

Finally, Côté et al. (2013) wrote a tutorial on how to use variants of regression-based fore-

casting models to predict hourly, daily, monthly, and yearly ED arrivals. The authors demon-

strated that annual ED arrival data shows a long term growth and hence a trend regression

analysis is appropriate for annual arrivals. However, hourly ED arrivals show a wavelike pat-

tern and therefore Fourier regression is an appropriate method to predict hourly arrivals which

effectively describes the wavelike pattern. For monthly and daily arrival forecasts, the authors

used dummy variables for the months and days, respectively.

4.2.3 Rolling Horizon

The rolling horizon approach is widely used in the production and operations management lit-

erature. A systematic review of the use of rolling horizons in operations management problems

is documented in Chand et al. (2002). Selective articles that applied rolling horizon principle

to dynamic problems in economics, finance, marketing, and control engineering were also in-

cluded in Chand et al. (2002). The theoretical framework of the rolling horizon process is

described in Sethi & Sorger (1991). While exploring the accuracy of the time series methods,

Makridakis et al. (1982) adopted the rolling horizon technique to choose the best method. The

rolling horizon approach has also been applied to health care problems in the form of schedul-

ing (Rohleder & Klassen (2002), Zhang & Vossen (2013), Addis et al. (2014)). I applied the

rolling horizon approach to validate ED arrival forecasts.

4.2.4 Contribution of this Chapter

The closest paper to our work is that of McCarthy et al. (2008) who used Poisson regression

to predict hourly ED arrival counts. Although McCarthy et al. (2008) tested for the depen-

dence of current hourly arrivals on previous hourly arrivals, they did not consider any auto-
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regressive or moving average terms in the model. Furthermore, hourly data consists of many

zero counts (especially during night hours) which should be accounted for by some variant

of a Poisson regression. Therefore, I have used the generalized linear autoregressive moving

average (GLARMA) model to accurately forecast arrivals in 3, 6, 9, and 12 hours in future.

The main contributions of this chapter are the following:

• I developed and validated an appropriate forecasting model (GLARMA) to predict hourly

ED arrival counts based on calendar variables.

• I compared our proposed forecasting model with the existing ones; both time series

models and regression based approach.

• I also compared our proposed forecasting model with the Harmonic regression model

where the sine and cosine functions are used to capture the seasonal variability of the

time series.

• I evaluated an ED forecasting method using a rolling horizon approach.

4.3 Statistical Methods

4.3.1 Seasonal ARIMA models

First we present the seasonal ARIMA model described in chapter 2, which has been applied to

our block arrival data where the discrete time series is expressed as a function of non-seasonal

and seasonal autoregressive terms, non-seasonal and seasonal moving average terms, and non-

seasonal and seasonal differenced terms. The number of difference terms is determined after

taking successive differences until the time series transforms to a stationary process, and the

number of autoregressive and moving average terms are determined by using autocorrelation

(ACF) and partial autocorrelation (PACF) functions. Once the time series is transformed to a



4.3. StatisticalMethods 47

stationary process, the following model is used to forecast future block ED arrivals,

E[Arrivalt] =

p∑
j=1

φ jArrivalt− j +

P∑
j=1

Φ jArrivalt−s j + Errort +

q∑
j=1

θ jErrort− j +

Q∑
j=1

Θ jErrort−s j

where p, P, q, and Q represents the orders of the non-seasonal AR, seasonal AR, non-seasonal

MA, and seasonal MA, respectively. The length of the season is denoted by s which is 8 in our

case (corresponding to 8 3-hour blocks per day).

4.3.2 GLM with Calendar Variables as Predictors

Poisson and Negative Binomial regression models were applied to fit the original data. Unlike

ARIMA models, block arrival counts are assumed to be distributed as Poisson or Negative

Binomial, and the positive skewness of our data justifies their use. The Poisson regression

model requires the variance to be proportional to their mean. However, Negative Binomial

regression is preferred over Poisson regression when the observed variance is notably higher

than the mean. While the Poisson is a one parameter model, the additional parameter in the

Negative Binomial model allows the variance to be adjusted independently of the mean. For

both of these models, the logarithm of the expected block arrivals is expressed as a linear

function of the calendar variable:

log(Arrivali) = α + B BoDi + ∆ DoWi + Γ MoYi + εi ; i = 1, 2, . . . , n

where B,∆, and Γ are vector of coefficients corresponding to the indicator variables for each

of the block of day (BoD), the day of week (DoW), and the month of year (MoY) variables,

respectively.

4.3.3 Harmonic Regression Based on GLM and ARIMA

A Harmonic Regression model was also considered, where the expected block arrival is ex-

pressed as a function of sine and cosine functions. Both the GLM and time series modeling
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framework can incorporate such terms as predictors in the model. The wavelike pattern of our

time series data justifies the use of Fourier terms as predictors in our model. The GLM and

time series representation of the Harmonic Regression can be expressed as follows,

log(Arrivalt) = α + B BoDt + ∆ DoWt + Γ MoYt + η1 sin
(
2πt
k

)
+ η2 cos

(
2πt
k

)
+ εi,

E[Arrivalt] =

p∑
j=1

φ jArrivalt− j +

P∑
j=1

Φ jArrivalt−s j + Errort +

q∑
j=1

θ jErrort− j +

Q∑
j=1

Θ jErrort−s j

+η1 sin
(
2πt
k

)
+ η2 cos

(
2πt
k

)

where t is the block number, 1 for the first block and 5848 for the last block (8 blocks/day *

731 days = 5848 blocks), and k is the value of the period required to complete one cycle of the

time series.

4.3.4 Generalized Linear Autoregressive Moving Average Models

Generalized linear autoregressive moving average (GLARMA) models were developed to ac-

commodate non-Gaussian (discrete valued) time series where successive responses are corre-

lated. An important advantage of using GLARMA over either GLM or ARIMA is that in-

ference on calendar variables are possible when accounting for the serial dependence among

subsequent block arrivals. GLARMA models are easy to fit because the likelihood function is

conditionally specified as a product of conditional distributions which belongs to exponential

family (Dunsmuir & Scott (2015)). Parameter estimates were obtained through the method of

Maximum Likelihood using Fisher scoring or Newton-Raphson iterations.

Generalized linear autoregressive moving average models combine the functionality of

both the ARIMA and the GLM models under the state-space modeling framework. Under this

framework, the logarithm of the expected block arrivals are expressed as a function of calendar
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variables as well as the autoregressive and moving average terms.

log(E[Arrivali]) = α + B BoDi + ∆ DoWi + Γ MoYi +

p∑
i=1

φiZt−i +

q̃∑
i=1

θiet−i ; i = 1, 2, . . . , n

where, q̃ = max(p, q), and the serial dependence in the response process is introduced via

Zt which is a linear combination of past predictive residuals and which satisfies ARMA like

recursions, Zt =
∑p

i=1 φi(Zt−i + et−i) +
∑q

i=1 θiet−i.

4.3.5 Rolling Horizon Approach

I applied a rolling horizon approach to validate our proposed forecasting models. The basis

for the rolling horizon approach is to divide the forecast horizon into multiple periods and then

to update and extend an existing plan in each period (e.g., Sethi et al. (2006)). The number

of future periods for which the forecast is made can be termed as ‘horizon’ and these are the

periods which ‘roll over’ once a forecast for that period is made (Sethi & Sorger (1991)). Our

existing plan is to start the validation process with 13 months of data where the first 12 months

of data are used for model fitting purposes (training data) and the remaining one month for the

validation purposes (test data). The process is then moved forward by one month leaving the

first month out and repeating the same procedure described above. A schematic representation

of how the rolling horizon approach works is displayed in the following Figure 4.1.

Time

Jan MarFeb Apr MayJun Jul AugSep Oct NovDec Jan Feb Mar Apr MayJun Jul AugSep Oct NovDec

Year1 : Initial Fitting Period Year2 : Forecast Horizon

Forecast PeriodsFitting Periods

Figure 4.1: Rolling horizon process flow.
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4.4 Results and Interpretation

4.4.1 Descriptive Analysis

The distribution of emergency patient arrivals for each of the five triage categories is presented

in Figures 4.2 through 4.4 for blocks of the day, days of the week, and months of the year,

respectively. Relevant summary statistics are documented in table 4.4. The three hour blocks

are sequentially arranged from midnight to midnight. Thus it is not surprising that blocks 1, 2,

and 3 have comparatively fewer arrivals than blocks 4, 5, 6, 7, and 8. This sort of daily cycle is

well known in the ED literature, where arrivals continue to grow during the daytime but there

are fewer arrivals overnight. The mean number of arrivals (8.83) per block was highest among

Urgent patients, with maximum reaching to 27 patients, whereas Non-urgent and Resuscitation

patients have comparatively lower mean arrivals per block, 0.32 and 0.63, respectively.

Irrespective of triage categories, Mondays have higher arrivals on average than any other

day of the week. The number of arrivals on the weekend remains low compared to any week-

days. Among 120 average arrivals per day, approximately 70 of them are Urgent, 24 and 18

are Emergent and Less-Urgent, only 5 and 2 are Resuscitation and Non-Urgent. Arrivals vary

around the months of the year without any specific pattern. The lowest number of arrivals for

every triage category has been observed in the month of February. The decrease in numbers of

patients in the month of February is at least in part because there are fewer days in February.

July and August have higher arrivals.In descending order, Urgent, Emergent, Less-Urgent, Re-

suscitation, and Non-Urgent patient categories have on average, 2152, 735, 548, 153, and 78

arrivals per month.
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Figure 4.2: Number of arrivals in an Emergency Department by block of the day, Jan 2012 to
Dec 2013; R:Resuscitation, E:Emergent, U:Urgent, LU:Less-Urgent, NU:Non-Urgent.
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Figure 4.3: Number of arrivals in an Emergency Department by day of the week, Jan 2012 to
Dec 2013; R:Resuscitation, E:Emergent, U:Urgent, LU:Less-Urgent, NU:Non-Urgent.
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Figure 4.4: Number of arrivals in an Emergency Department by month of the year, Jan 2012 to
Dec 2013; R:Resuscitation, E:Emergent, U:Urgent, LU:Less-Urgent, NU:Non-Urgent.
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Table 4.4: Descriptive statistics of the block, day, and month arrivals by CTAS categories.

Horizon Triage Mean Median Max Min Variance StDev

Resuscitation 0.63 0.00 7.00 0.00 0.69 0.83
Emergent 3.02 3.00 14.00 0.00 4.75 2.18

Block Urgent 8.83 8.00 27.00 0.00 22.39 4.73
Less-Urgent 2.25 2.00 12.00 0.00 3.80 1.95
Non-Urgent 0.32 0.00 6.00 0.00 0.39 0.62

Total 15.06 15.00 40.00 0.00 49.67 7.05

Resuscitation 5.04 5.00 15.00 0.00 5.40 2.32
Emergent 24.15 24.00 6.00 9.00 33.88 5.82

Day Urgent 70.65 71.00 108.00 34.00 110.68 10.52
Less-Urgent 18.02 17.00 44.00 4.00 40.05 6.33
Non-Urgent 2.58 2.00 12.00 0.00 3.71 1.93

Total 120.45 121.00 162.00 63.00 166.07 12.89

Resuscitation 153.58 157.00 203.00 122.00 441.91 21.02
Emergent 735.58 718.50 837.00 641.00 2660.95 51.58

Month Urgent 2152.00 2165.00 2360.00 1791.00 17107.65 130.80
Less-Urgent 548.79 556.50 680.00 366.00 6188.61 78.67
Non-Urgent 78.71 79.00 100.00 48.00 189.35 13.76

Total 3668.67 3674.00 4072.00 3058.00 41507.19 203.73
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Since forecasting is done for high and low acuity patients separately, emergency patients

have been classified by combining Resuscitation and Emergency patients, and as low by pool-

ing Urgent, Less-Urgent, and Non-Urgent patients. Figure 4.7 displays arrivals by high and

low acuity patients for blocks of the day, days of the week, and months of the year, from top to

bottom. Related descriptive statistics are shown in table 4.5. Since Urgent arrivals are signifi-

cantly higher than any other triage category, accumulated arrivals for low category are higher

than that of high category. On average, there are approximately 11 arrivals per block for the

low category as compared to 3 arrivals for the high category.

Among days of the week, Monday have slightly higher arrivals for both the high and low

acuity cases. Approximately 91 and 29 low and high acuity arrivals correspond to roughly 120

daily arrivals. The maximum daily arrivals for low acuity patients reached to 130 whereas the

minimum is at 43. Monthly arrivals fluctuate more for low acuity patients than for high acuity

patients. low acuity arrivals are lowest in the month of February, as expected, and highest in

the month of July. On average there are 2779 low category arrivals per month whereas there

are 889 high category arrivals.

Table 4.5: Descriptive statistics of block, day, and month arrivals by Low (CTAS 3,4,5) and
high (CTAS 1,2) categories.

Horizon Triage Mean Median Max Min Variance StDev

low 11.41 11.00 33.00 0.00 32.20 5.67
Block high 3.65 3.00 16.00 0.00 5.80 2.41

Total 15.06 15.00 40.00 0.00 49.67 7.05

high 29.19 29.00 51.00 13.00 39.13 6.26
Day low 91.25 91.00 130.00 43.00 134.61 11.60

Total 120.44 121.00 162.00 63.00 166.07 12.89

high 889.17 883.00 1016.00 770.00 3946.41 62.82
Month low 2779.50 2793.50 3089.00 2216.00 36720.26 191.63

Total 3668.67 3674.00 4072.00 3058.00 41507.19 203.73
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Figure 4.5: Number of arrivals in an Emergency Department by month of the year, Jan 2012 to
Dec 2013.
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Figure 4.6: Number of arrivals in an Emergency Department by month of the year, Jan 2012 to
Dec 2013.
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Figure 4.7: Number of arrivals in an Emergency Department by month of the year, Jan 2012 to
Dec 2013.
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4.4.2 Univariate Analysis

A complete univariate analysis was conducted on calendar variables as presented in table 4.6

for high and low acuity patients, respectively. I tested for the hypothesis that a given block

mean arrivals is significantly different than the overall block mean. Similarly, for the day

of week and for the month of year, I tested whether a particular day’s and month’s mean

arrival are significantly different from the overall daily and monthly means, respectively. All

the block means except block-8 are significantly different from the overall block mean for

both the high and low acuity patient arrivals. Among days of the week, the mean arrivals

for Saturday, Sunday, and Thursday were significantly different from the overall daily mean

for high acuity patients, whereas Monday and Wednesday were moderately significant at 10%

level of significance. It was apparent from visual inspection that Saturday and Sunday had

lower mean patient arrivals than others and the statistical test confirmed this. Only Sunday and

Monday showed a significant difference in mean arrivals for the case of low acuity patients.

None of the monthly mean arrivals manifested a significant difference from the overall mean for

the high acuity patient due to large variability caused by the small number of observations for

monthly data. However for the low acuity patients, the month of July and November showed a

significant difference in mean monthly arrivals as compared to the overall mean. The two years

were not significantly different from each other.
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Table 4.6: Univariate analysis of the calendar (predictor) variables for the high and low acuity
arrivals.

high low
Predictors Mean St Dev p-value Mean St Dev p-value

Block1 2.18 1.49 < 0.001 6.58 2.74 < 0.001
Block2 1.57 1.32 < 0.001 4.47 2.22 < 0.001
Block3 2.34 1.58 < 0.001 7.76 2.95 < 0.001
Block4 5.13 2.41 < 0.001 16.90 4.42 < 0.001
Block5 5.48 2.50 < 0.001 16.68 4.31 < 0.001
Block6 4.65 2.14 < 0.001 14.59 4.16 < 0.001
Block7 4.30 2.18 < 0.001 12.98 3.76 < 0.001
Block8 3.56 1.87 0.196 11.31 3.41 0.453

Mon 30.46 7.14 0.070 96.02 23.91 0.045
Tues 29.47 5.87 0.622 93.95 19.34 0.165
Wed 30.17 5.87 0.091 91.91 20.39 0.765
Thur 31.51 6.81 < 0.001 92.98 21.01 0.420
Fri 28.70 5.61 0.374 89.27 19.54 0.290
Sat 27.61 5.52 0.004 88.28 21.08 0.146
Sun 26.40 5.40 < 0.001 86.73 20.20 0.022

Jan 849.0 25.45 0.268 2799.5 26.16 0.475
Feb 806.0 50.91 0.260 2415.0 281.42 0.318
Mar 864.5 67.17 0.695 2910.0 253.14 0.599
Apr 890.0 107.48 0.993 2661.0 173.94 0.511
May 917.5 79.90 0.704 2795.5 82.73 0.830
Jun 957.0 48.08 0.295 2678.5 149.19 0.513
Jul 935.5 113.84 0.667 3053.5 3053.5 0.005
Aug 928.5 51.61 0.476 2962.5 112.42 0.260
Sep 878.0 72.12 0.862 2734.5 109.60 0.665
Oct 905.5 36.06 0.637 2821.5 26.16 0.264
Nov 869.5 23.33 0.444 2664.5 9.19 0.035
Dec 869.0 35.35 0.567 2858.0 52.32 0.280



4.4. Results and Interpretation 57

4.4.3 Forecasting Outputs with Seasonal Time-Series Models

The fundamental requirement to apply Box-Jenkins ARIMA models to time series data is the

assumption of stationarity. Therefore, the first step of a time series analysis is to check whether

the data is stationary. A simple time series plot can aid in detecting stationarity in the data.

Figure 4.8 shows time series plots for the first 3 months of high and low acuity patients block

arrival data which reflects the behaviour of the whole 2 year of block data. It appears that both

the high and low acuity patient arrival data satisfies the assumption of stationarity. Both the

Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt–Shin (KPSS) (Greene

(2011)) tests reject the hypothesis of non-stationarity.

Table 4.7: Test for stationarity time-series.

high low
Tests Null Hypothesis p-value Decision p-value Decision

ADF Not Trend Stationary < 0.01 Reject < 0.01 Reject
KPSS Not Trend Stationary < 0.01 Reject < 0.01 Reject

Figures 4.9 and 4.10 represents the ACF and PACF (defined in chapter 2) of the original

and seasonal differenced high and low acuity block arrivals, respectively. The dotted lines in

ACF and PACF plots provide the values beyond which the autocorrelations are significantly

different from zero. Starting with a perfect correlation at lag 0, the ACF of the high and low

acuity arrivals show that there is a positive correlation at lag 1 followed by negative correlations

at lags 2, 3, 4, 5, and 6, subsequently followed by positive correlations at lags 7, 8, and 9. A

similar pattern manifested in the lags 10 to 14, 15 to 17, 18 to 22, and so on. On the other hand,

the PACF of the high and low acuity arrivals illustrate that the majority of the correlations in the

data are accounted for by the first 8 lags, which covers a 24-hour period, and the correlations

reduced significantly thereafter. This motivates us to take a seasonal difference of our time-

series data at lag 8 which was also manifested in our descriptive analysis where ED arrivals

have highest peaks at late afternoons and becomes virtually empty at early mornings (daily
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Figure 4.8: Time series plot for the first three months (year 2012) of high and low acuity block
arrival data.
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cycle consists of 8 3-hour blocks).

The ACF and PACF of the differenced data in Figure 4.10 now display only a few large

spikes. Seasonal and non-seasonal autoregressive (AR) and moving average (MA) terms to

be included in our initial Seasonal ARIMA model are identified by the ACF and PACF plots.

The fact that there are only a few spikes at the beginning of the ACF and PACF plot suggests

that zero or at most one or two nonseasonal AR and MA terms are required. A large spike at

lag 8 of the ACF plot suggest inclusion of a seasonal MA term in the model, whereas 4 large

spikes in the PACF plot indicates the necessity of 4 seasonal autoregressive terms in the model.

Therefore, we start by fitting an ARIMA(0,0,0),(4,1,1)8 model followed by different combination of

the non-seasonal and seasonal AR, MA terms.

Table 4.8 listed 13 SARIMA models that produced comparatively low AICc (defined in

chapter 2) values. The smaller the values of AICc, the better the model. In addition to AICc

for training data, I have also reported forecasting accuracy of the SARIMA models on the

test data. For comparative purposes, starting with the initial SARIMA model, a variety of

SARIMA models were considered, changing one parameter at a time (Table 4.8). Among

all these models, the ARIMA(2,0,1),(4,1,1)8 and ARIMA(1,0,2),(4,1,3)8 are the preferred models for

high and low acuity arrivals, respectively. As criteria, the Smallest AICc, RMSE, MAE, and,

MAPE values were used to select the best model. Parameter estimates and their respective

standard errors for ARIMA(2,0,1),(4,1,1)8 and ARIMA(1,0,2),(4,1,3)8 are provided in tables 4.9 and

4.10, respectively. ACF and PACF plots of the residuals in Figure 4.11 show that all but a few

spikes exceed the upper and lower limit and hence provide a good fit. Out of sample forecast

for future 7 days for 56 blocks along with 95% confidence band is presented in Figure 4.12 for

the high and low acuity block arrivals.

The best fitted SARIMA model for the high acuity patient arrival is ARIMA(2,0,1),(4,1,1)8 .

This means that the data needs to be differenced seasonally once (at lag 8 for block arrivals)

and the response series (the high acuity arrivals) depend on four seasonally lagged previous

observations, one seasonally lagged error term, two previous observations, and one previous
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Figure 4.9: ACF of high and low acuity block arrivals (top row) and PACF for the high and low
acuity block arrivals (bottom row), respectively.
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Figure 4.10: ACF of the seasonally difference (order 8) high and low acuity block arrivals (top
row) and PACF of the seasonally difference (order 8) high and low acuity block arrival (bottom
row), respectively.
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Table 4.8: Performance of different seasonal ARIMA models for high and low acuity arrivals.

high low
Models AICc RMSE MAE MAPE AICc RMSE MAE MAPE

ARIMA(0,0,0)(4,1,1)8 22535.37 2.013 1.577 91.803 28809.23 3.845 2.928 99.795
ARIMA(1,0,0)(4,1,1)8 22523.21 2.013 1.578 91.803 28810.91 3.852 2.937 99.795
ARIMA(0,0,1)(4,1,1)8 22509.62 2.013 1.578 91.803 28793.15 3.843 2.927 99.795
ARIMA(1,0,1)(4,1,1)8 22501.77 2.013 1.578 91.803 28748.76 3.836 2.927 99.795
ARIMA(1,0,2)(4,1,1)8 22501.37 2.013 1.578 91.803 28743.26 3.835 2.928 99.795
ARIMA(2,0,1)(4,1,1)8 22500.80 2.012 1.577 91.803 28744.24 3.853 2.935 99.795
ARIMA(2,0,2)(4,1,1)8 22502.97 2.013 1.578 91.803 28745.04 3.835 2.925 99.795
ARIMA(1,0,2)(4,1,2)8 22504.26 2.013 1.578 91.803 28743.94 3.835 2.928 99.795
ARIMA(1,0,2)(4,1,3)8 22505.20 2.012 1.578 91.803 28690.81 3.802 2.887 99.795
ARIMA(1,0,2)(4,1,4)8 22507.59 2.012 1.579 91.803 48745.21 3.848 2.931 99.795
ARIMA(1,0,2)(5,1,3)8 22507.32 2.013 1.578 91.803 28747.57 3.835 2.929 99.795
ARIMA(1,0,2)(5,1,2)8 22505.22 2.013 1.578 91.803 28745.66 3.836 2.929 99.795
ARIMA(1,0,2)(5,1,1)8 22507.51 2.013 1.578 91.803 28744.83 3.837 2.929 99.795

error term. Similarly for the best fitted SARIMA model for the low acuity patient arrivals, the

ARIMA(2,0,1),(4,1,1)8 model means that the data needs to be differenced seasonally (at lag 8 for

block arrivals) once and the response series (high acuity arrivals) depends on four seasonally

lagged previous observations, three seasonally lagged error terms, one previous observations,

and two previous error terms.

Table 4.9: Parameter estimates of seasonal ARIMA(2,0,1)(4,1,1)8 model for high acuity arrivals.

φ1 φ2 θ1 Φ1 Φ2 Φ3 Φ4 Θ1

Coefficient 0.1552 0.0398 -0.0820 0.0061 -0.0291 -0.0136 -0.0297 -0.9895

St. Error 0.0873 0.0135 0.0131 0.0142 0.0132 0.0139 0.0132 0.0025

Table 4.10: Parameter estimates of seasonal ARIMA(1,0,2)(4,1,3)8 model for low arrivals.

φ1 θ1 θ2 Φ1 Φ2 Φ3 Φ4 Θ1 Θ2 Θ3

Coefficient 0.9942 -0.9504 -0.0285 -0.4172 -0.9802 0.0249 -0.0003 -0.5539 0.5416 -0.9755

St. Error 0.0038 0.0141 0.0138 0.0174 0.0168 0.0169 0.0146 0.0110 0.0090 0.0078

Forecasts for future high and low acuity block arrivals are made using the above parameter
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estimates and corresponding values for lagged arrivals and error terms.
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Figure 4.11: ACF of the residuals of the final model for high and low acuity block arrivals
(top row) and PACF of the residuals of the final model for high and low acuity block arrivals
(bottom row).
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Figure 4.12: One month of preceding block arrival data with 56 blocks (7 days) ahead forecast
with 95% confidence interval for high (top) and low (bottom) acuity arrivals.
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4.4.4 Forecasting Outputs for GLM with Calendar Variables

We modeled here the log of the expected mean arrival per block as a function of calendar

variables, such as, block of the day, day of the week, and months of the year. The reason for

using the log link function is to safeguard the expected arrival value from producing a negative

value. Since the dependent variable is a count, we used both Poisson and Negative Binomial

regression. The accuracy of the Poisson and negative binomial regression models for the high

and low acuity arrivals were compared in terms of AIC, RMSE, MAE, and MAPE in table

4.11. Both the models produced similar results, with the Poisson model marginally superior

than the Negative Binomial model. Moreover, Poisson regression is a one parameter model

and is less complicated than the negative binomial model. Therefore, I advocate the use of the

Poisson regression model as long as both models produce similar results. Comparison of the

GLM models with SARIMA and GLARMA models will be discussed later in this chapter.

Table 4.11: Performance comparison of GLM models.

high low
Models AIC RMSE MAE MAPE AIC RMSE MAE MAPE

Poisson 21525 2.040 1.624 91.820 28049 3.763 2.838 99.795
Negative Binomial 21528 2.040 1.624 91.820 28046 3.763 2.839 99.795

Results of the parameter estimates along with their respective standard errors and p-values

for both the Poisson and negative binomial regression models for the high and low acuity ar-

rivals are presented in table 4.12 and 4.13, respectively. For the block variables I have consid-

ered the midnight block (12 A.M. - 3 A.M.) as the reference category so that every other block

can be compared with the midnight block. Similarly for the variables day of the week, month

of the year, and year, Sunday, January, and the year 2012 were used as reference categories,

respectively.

When comparing with Block 1 (12 A.M. - 3 A.M.), for both the high and low acuity arrivals,

all other blocks but block 2 (12 A.M. - 3 A.M.) were significant with p-values (< 0.001).

Except for block 2 (12 A.M. - 3 A.M.), the remaining blocks have positive coefficients meaning
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Table 4.12: Parameter estimates of Poisson and Negative Binomial model for high acuity ar-
rivals.

Regressors Poisson Negative Binomial
Coeff SE p-value Coeff SE p-value

Intercept 0.818 0.039 < .001 0.818 0.039 < .001
3 A.M.-6 A.M. -0.279 0.040 < .001 -0.279 0.040 < .001
6 A.M.-9 A.M. 0.063 0.036 0.080 0.063 0.036 0.080
9 A.M.-12 P.M. 0.697 0.031 < .001 0.697 0.031 < .001
12 P.M.-3 P.M. 0.759 0.031 < .001 0.759 0.031 < .001
3 P.M.-6 P.M. 0.608 0.031 < .001 0.608 0.031 < .001
6 P.M.-9 P.M. 0.551 0.032 < .001 0.551 0.032 < .001
9 P.M.-12 A.M. 0.375 0.033 < .001 0.375 0.033 < .001
Monday 0.142 0.027 < .001 0.142 0.027 < .001
Tuesday 0.110 0.027 < .001 0.110 0.027 < .001
Wednesday 0.119 0.027 < .001 0.119 0.027 < .001
Thursday 0.164 0.026 < .001 0.164 0.026 < .001
Friday 0.073 0.027 0.007 0.073 0.027 0.007
Saturday 0.023 0.027 0.391 0.023 0.027 0.392
February 0.008 0.034 0.806 0.008 0.034 0.806
March 0.012 0.034 0.718 0.012 0.034 0.718
April 0.058 0.033 0.084 0.058 0.033 0.084
May 0.053 0.033 0.111 0.053 0.033 0.111
June 0.117 0.033 < .001 0.117 0.033 < .001
July 0.079 0.033 0.017 0.079 0.033 0.017
August 0.060 0.033 0.073 0.060 0.033 0.073
September 0.052 0.034 0.120 0.052 0.034 0.120
October 0.051 0.033 0.124 0.051 0.033 0.124
November 0.046 0.041 0.260 0.046 0.041 0.260
December 0.049 0.041 0.229 0.049 0.041 0.229
Year 2013 -1.076 0.039 < .001 -1.076 0.039 < .001
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Table 4.13: Parameter estimates of Poisson and Negative Binomial model for low acuity ar-
rivals.

Regressors Poisson Negative Binomial
Coeff SE p-value Coeff SE p-value

Intercept 1.834 0.022 < .001 1.835 0.023 < .001
3 A.M.-6 A.M. -0.399 0.023 < .001 -0.399 0.023 < .001
6 A.M.-9 A.M. 0.155 0.020 < .001 0.155 0.020 < .001
9 A.M.-12 P.M. 0.932 0.017 < .001 0.931 0.018 < .001
12 P.M.-3 P.M. 0.925 0.018 < .001 0.925 0.018 < .001
3 P.M.-6 P.M. 0.790 0.018 < .001 0.790 0.018 < .001
6 P.M.-9 P.M. 0.677 0.018 < .001 0.677 0.018 < .001
9 P.M.-12 A.M. 0.544 0.018 < .001 0.544 0.019 < .001
Monday 0.111 0.015 < .001 0.110 0.015 < .001
Tuesday 0.076 0.015 < .001 0.074 0.015 < .001
Wednesday 0.035 0.015 0.021 0.033 0.015 0.031
Thursday 0.054 0.015 < .001 0.053 0.015 < .001
Friday 0.035 0.015 0.022 0.033 0.015 0.032
Saturday -0.018 0.015 0.233 -0.018 0.015 0.241
February -0.061 0.019 0.001 -0.062 0.020 0.002
March 0.042 0.018 0.021 0.042 0.019 0.025
April -0.018 0.019 0.332 -0.018 0.019 0.336
May -0.000 0.018 0.984 -0.000 0.019 0.982
June -0.006 0.019 0.715 -0.007 0.019 0.718
July 0.085 0.018 < .001 0.086 0.019 < .001
August 0.059 0.018 0.001 0.058 0.019 0.002
September 0.014 0.019 0.447 0.014 0.019 0.460
October 0.007 0.018 0.700 0.006 0.019 0.720
November -0.009 0.023 0.691 -0.009 0.023 0.695
December 0.036 0.022 0.114 0.036 0.023 0.118
Year 2013 -0.001 0.014 0.972 -0.001 0.014 0.965
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that arrivals during those blocks are higher on average relative to block 1. For days of the

week, all the weekdays appeared to be significant with p-values (< 0.001) when compared with

Sunday. Note that Saturday was not significantly different than Sunday. Positive coefficient

values for weekdays (Monday to Friday) suggest that average arrivals on those days are higher

compared to that of Sundays. The months of June and July were significant for both the high

and low acuity arrivals, while the month of February was only significantly different for the low.

Average arrivals during July and August are higher relative to January, whereas the average

arrival for February is lower than that of January. This is partly due to the month of February

having comparably fewer days than other months of a year. Arrivals for the year 2013 were

significantly different than for year 2012 for high acuity arrivals but were not significantly

different for low acuity arrivals. This implies that even though population growth and aging

population contributes to an increase in average arrivals year after year, this may not be to a

statically significant degree between any two consecutive years.

Tables 4.12 and 4.13 shows the effect of block of day, day of week, and month of year

on the mean high and low acuity patient arrivals, respectively. A significant positive (negative)

coefficient value indicates an increase (decrease) in the mean arrivals of that particular category

as compared to the reference category. For instance, from Table 4.12, coefficient for Monday

(0.142) tells us that compared to Sunday, on average Monday will have approximately 15.26%

(e0.142−1 = 0.1526) more high acuity patient arrivals, provided other variables remain constant.

Similarly from table 4.13, coefficient for February (-0.061) tells us that compared to January,

on average February will have 5.92% (1 − e−0.061 = 0.0592) less low acuity patient arrivals,

provided other variables remain constant.

We presented diagnostic plots for Poisson regression only. Figure 4.14 presents four sub-

plots for model diagnostics for each of high and low acuity arrivals, respectively. I observed

that the Poisson model is a good predictive model for our data. All the model assumptions

are also satisfied, as is evident from Figure 4.14. No significant pattern in the residual versus

predicted plot suggests that homogeneity of variance assumption is satisfied. The Normal Q-Q
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plot demonstrated that the normality assumption is satisfied, because all the points are on or
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Figure 4.13: Residual analysis of the fitted Poisson model for the high acuity arrivals.
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Figure 4.14: Residual analysis of the fitted Poisson model for the low acuity arrivals.
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near the straight line. The Cook statistic shows what are the influential observations in the data

set.

4.4.5 Forecasting Outputs for Harmonic Regression

In this section, we present the results from fitting the Harmonic regression model to our time

series data. Both the GLM (Poisson) and the ARIMA regression models were fitted considering

the sine and cosine functions as covariates to predict the high and low acuity block arrivals.

It turns out that the use of Fourier terms and the calendar variables as predictors serves the

same purpose, i.e., both sets of predictor capture the seasonal variability that present in our

data. Therefore they are multi-collinear (correlated predictors), and both sets of predictors in

the model add no extra information as compared to the one set in the model. The output for

Harmonic Regression thus omits calendar variables as predictors.

The first step of the Harmonic regression is to determine an appropriate set of frequencies

(wavelengths) that are required to complete a full seasonal cycle. The Pediogram is a very use-

ful tool in describing the frequencies of a time series data. It is a Fast Fourier Transform (FFT)

based non parametric method which is used to identify the dominant periods (or frequencies)

of a time series. The Periodogram plot shows a high peak at a frequency if the time series has

a strong sinusoidal signal at that frequency.

Figure 4.15 represents the periodogram plots for high and low acuity block arrivals, respec-

tively. A dominant long spike at frequency 0.125 and a short spike at frequency 0.251 were

manifested for both the high and low acuity arrivals. This means that strong sinusoidal signal

appeared to be present at those frequencies. The reciprocal of the frequencies determines the

period required to complete a full sinusoidal cycle. Therefore, I used 8 and 4 as our periods

in the sine and cosine terms of our Harmonic regression model. The 8-period (24-hour) cycle

is a-priori expected because of the day of the week effect, however, the more interesting is the

4-period (12-hour) cycle. I suspect this is due to the fact that most blocks 12 hours apart are

subject to very different levels of congestion.
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Figure 4.15: Periodogram plots for the high and low acuity arrivals.
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The accuracy measures to compare relative performances of the Harmonic regression based

on GLM and time series models for the high and low acuity arrivals were presented in table

4.14. Although accuracy measures are very similar for both modeling strategies, Harmonic

regression based on GLM is slightly superior to Harmonic regression based on the time series

model for our block arrival data.

Table 4.14: Performance comparison of the GLM and ARIMA (including harmonic terms).

high low
Models RMSE MAE MAPE (%) RMSE MAE MAPE (%)

GLM (Poisson) 1.985 1.551 91.803 3.891 2.954 99.795
ARIMA 1.992 1.558 91.803 3.914 2.997 99.795

The parameter estimates, standard errors, and the significance levels of the Fourier terms

of our Harmonic regression model based on GLM appear in table 4.15. Although all the coeffi-

cients were statistically significant, the coefficient for sin(2πt/4) is marginally significant while

other coefficients were highly significant. Similar output for the Harmonic regression based on

ARIMA model for the high and low acuity arrivals were presented in tables 4.16 and 4.17.

Table 4.15: Parameter estimates of Poisson model with harmonic terms as predictors for high
and low arrivals.

Regressors high low
Coeff SE p-value Coeff SE p-value

Intercept 1.214 0.007 < .001 2.345 0.004 < .001
sin(2πt/8) -0.541 0.011 < .001 -0.547 0.006 < .001
cos(2πt/8) -0.150 0.010 < .001 -0.173 0.005 < .001
sin(2πt/4) 0.030 0.010 0.003 0.011 0.005 0.058
cos(2πt/4) 0.229 0.010 < .001 0.266 0.006 < .001
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Table 4.16: Parameter estimates of ARIMA(1,0,2) model with Fourier terms as predictors for
high arrivals.

φ1 θ1 θ2 Intercept sin(2πt/8) cos(2πt/8) sin(2πt/4) cos(2πt/4)

Coefficient 0.199 -0.124 0.042 3.664 -1.711 -0.621 0.251 0.604

St. Error 0.218 0.217 0.023 0.031 0.040 0.040 0.036 0.036

Table 4.17: Parameter estimates of ARIMA(1,0,2) model with fourier terms as predictors for low
arrivals.

φ1 θ1 θ2 Intercept sin(2πt/8) cos(2πt/8) sin(2πt/4) cos(2πt/4)

Coefficient 0.993 -0.959 -0.018 11.436 -5.262 -2.197 0.637 2.300

St. Error 0.003 0.014 0.013 0.158 0.069 0.069 0.068 0.068

4.4.6 Forecasting Outputs for the Generalized Linear Autoregressive Mov-

ing Average model

Under the GLARMA model framework, I fit a Poisson regression model with calendar vari-

ables as predictors with different combinations of autoregressive and moving average terms.

There are two significant autoregressive terms and one significant moving average term in-

cluded in the model for high acuity arrivals (GLARMA(2,1)). However, for the low acuity ar-

rivals only one significant autoregressive term and two significant moving average terms were

included (GLARMA(1,2)). The full model and reduced model outputs have been documented

in tables 4.19 and 4.20, respectively. I observed that the same predictors were significant as

seen in ARIMA or GLM models, with the exception of the autoregressive and moving average

term included in the model.

For high acuity arrivals, a significant Likelihood Ratio test (p-value< 0.001) and a Wald

test (p-value< 0.001) ensures the appropriateness of GLARMA model over GLM having the

same structure of the covariates. GLARMA(2,1) was the best fitted model for high acuity ar-

rivals with lowest AIC value (20495). Similarly, for low acuity arrivals, significant Likelihood

Ratio test (p-value=0.007) and Wald test (p-value=0.008) ensures the appropriateness of the
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GLARMA model over the GLM having the same structure of the covariates. GLARMA(1,2)

was the best fitted model for low acuity arrivals with lowest AIC value (20675).

Forecast accuracy measures for the high and low acuity GLARMA models were docu-

mented in table 4.18. Comparing accuracy measures of GLARMA model with that of SARIMA,

GLM, and Harmonic regression, we observed that the GLARMA model produced the lowest

values for AIC, MAE, and RMSE. Therefore, GLARMA model should be considered the best

model to produce forecast for our ED block arrival data.

All the mean block arrivals were significant when compared with the reference midnight

block 1 (12 A.M.-3 A.M.) for both the high and low acuity arrivals. Compared to Sunday,

all the weekdays were significantly different in mean high and low acuity arrivals but not the

Saturday. Therefore, as suggested in our initial analysis, the day of the week variable was

classified as Monday, weekend, with the other weekdays aggregated in the reduced model. Four

of the months appeared to be significant relative to January, and among them, two were winter

months (February and March) and the other two were summer months (July and August). The

month was classified as February, July, and an aggregate for the rest of the year on the final

model. Thus following our initial analysis, the year variable will be removed as a predictor in

our reduced model. Therefore, the predictors for our final model consist of all categories of

block variable, day of the week variable categorized as Monday, weekend, and other weekdays,

month of the year variable categorized as February, July, and rest of the year, and one moving

average term.

Table 4.18: Forecast accuracy measures for best fitted high and low acuity GLARMA models.

high low
Models AIC RMSE MAE MAPE AIC RMSE MAE MAPE

GLARMA(2,1) 20495 1.070 0.827 91.801 – – – –
GLARMA(1,2) – – – – 20675 1.139 0.861 99.792
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Table 4.19: Parameter estimates of the full GLARMA model for high and low acuity arrivals.

high low
Regressors Coeff SE p-value Coeff SE p-value

Intercept 0.848 0.029 < 0.001 1.853 0.022 < 0.001
3 A.M.-6 A.M. -0.326 0.038 < 0.001 -0.386 0.022 < 0.001
6 A.M.-9 A.M. 0.069 0.034 0.042 0.164 0.019 < 0.001
9 A.M.-12 P.M. 0.854 0.029 < 0.001 0.943 0.016 < 0.001
12 P.M.-3 P.M. 0.920 0.029 < 0.001 0.930 0.017 < 0.001
3 P.M.-6 P.M. 0.757 0.030 < 0.001 0.796 0.017 < 0.001
6 P.M.-9 P.M. 0.678 0.030 < 0.001 0.679 0.017 < 0.001
9 P.M.-12 A.M. 0.490 0.031 < 0.001 0.542 0.017 < 0.001
Monday 0.141 0.027 < 0.001 0.112 0.015 < 0.001
Tuesday 0.105 0.027 < 0.001 0.074 0.015 < 0.001
Wednesday 0.130 0.027 < 0.001 0.033 0.015 0.028
Thursday 0.176 0.027 < 0.001 0.054 0.015 < 0.001
Friday 0.079 0.028 0.004 0.032 0.015 0.034
Saturday 0.038 0.028 0.169 -0.020 0.015 0.181
February 0.028 0.037 0.437 -0.063 0.020 0.002
March 0.016 0.036 0.644 0.042 0.019 0.030
April 0.077 0.036 0.033 -0.019 0.020 0.340
May 0.071 0.036 0.047 -0.001 0.019 0.953
June 0.154 0.035 < 0.001 -0.007 0.020 0.719
July 0.093 0.035 0.008 0.085 0.019 < 0.001
August 0.085 0.035 0.017 0.058 0.019 0.002
September 0.069 0.036 0.057 0.013 0.019 0.486
October 0.057 0.036 0.112 0.006 0.019 0.758
November 0.053 0.036 0.142 -0.014 0.020 0.460
December 0.023 0.036 0.527 0.020 0.019 0.286
Year 2013 0.082 0.014 < 0.001 -0.046 0.008 < 0.001
AR(1) – – – 0.011 0.003 0.003
AR(2) 0.015 0.006 0.021 – – –
MA(1) 0.024 0.006 < 0.001 – – –
MA(2) – – – 0.004 0.003 0.278
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Table 4.20: Parameter estimates of the reduced GLARMA model for high and low acuity
arrivals.

high low
Regressors Coeff SE p-value Coeff SE p-value

Intercept 0.702 0.028 < 0.001 1.830 0.016 < 0.001
3 A.M.-6 A.M. -0.325 0.037 < 0.001 -0.386 0.022 < 0.001
6 A.M.-9 A.M. 0.069 0.034 0.042 0.165 0.019 < 0.001
9 A.M.-12 P.M. 0.853 0.029 < 0.001 0.943 0.017 < 0.001
12 P.M.-3 P.M. 0.920 0.029 < 0.001 0.930 0.017 < 0.001
3 P.M.-6 P.M. 0.757 0.030 < 0.001 0.796 0.017 < 0.001
6 P.M.-9 P.M. 0.678 0.030 < 0.001 0.679 0.017 < 0.001
9 P.M.-12 A.M. 0.490 0.031 < 0.001 0.542 0.017 < 0.001
Monday 0.102 0.017 < 0.001 0.058 0.009 < 0.001
Weekend 0.119 0.024 < 0.001 0.121 0.013 < 0.001
February -0.032 0.028 0.249 -0.073 0.016 < 0.001
July 0.031 0.026 0.232 0.075 0.014 < 0.001
AR(1) – – – 0.013 0.003 < 0.001
AR(2) 0.020 0.006 0.001 – – –
MA(1) 0.030 0.006 < 0.001 – – –
MA(2) – – – 0.007 0.003 0.066

A pictorial representation of the residual analysis of the fitted GLARMA model for high

and low acuity arrivals are provided in Figures 4.16 and 4.17. The first subplot (top-left) is

the ACF plot of the residuals, which indicates that the serial correlation present in the data

has adequately been dealt with (all spikes within control limit). The residual versus time plot

(top-right) satisfies the stationarity assumption of the time series. The Probability Integral

Transform (PIT) histogram (bottom-left) suggests that the Poisson model for the counts is

appropriate for this data, as all the bars are clustered around 1. The Q-Q plot (bottom-right)

shows reasonable conformity with normality.
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Figure 4.16: Residual analysis of the fitted GLARMA model for high acuity arrivals.
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Figure 4.17: Residual analysis of the fitted GLARMA model for low acuity arrivals.
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4.4.7 Rolling Horizon Approach to Produce Forecast

The validity of a forecasting model is assessed by comparing the forecast values with the

actual values. Therefore, the sample data is first divided into two datasets, namely, training and

test data. Forecasting models are fitted using training data and forecasts are then made for the

length of the test data. Using the difference between the actual test data values and the forecast,

certain methods were developed to measure the accuracy of the forecasting model.

There are no defined rules on how to divide the sample data into training and test data.

However, there is a consensus among researchers about the use of as many data points for the

model fitting purposes as possible, which leads to a notably larger amount of data points in the

training dataset than in the test dataset. Initially I divided two years worth of data into training

data, which consists of 22 months of data points and the test data which contains 2 months

of data points. But our ED data shows seasonal variability by hours of the day, days of the

week, and months of the year. For instance, a similar number of arrivals are expected at mid-

nights everyday, every Mondays of a week, and the month of January every year. Therefore,

to include seemingly similar values, a better way would be to separate the sample data such

that the training data completes a cycle. I adopted the “Rolling Horizon” approach from oper-

ations management literature which serves our purpose. A description of the Rolling Horizon

approach is documented in the method section (4.3.5).

Several accuracy measures were calculated using monthly forecast values for all 12 months

of the year 2013, one month at a time based on the immediately preceding 12 months of data.

A step-by-step approach to calculate rolling horizon forecast along with different accuracy

measures are described below,

(i) A GLARMA model was fitted to the block arrival data from January, 2012 to December,

2012.

(ii) Forecast values for block arrivals for the month of January, 2013 were calculated based

on the best fitted GLARMA model.
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(iii) Forecast values for the month of January, 2013 were then compared with the observed

values by calculating RMSE, MAE, maximum difference, correlation, and what percent-

age of observed values falls within the 80% and 95% confidence bound of the forecast

values.

(iv) The training data was then move forward one month and a new GLARMA model was

fitted to the data from February, 2012 to January, 2013 followed by calculation of the

accuracy measures based on observed versus forecast values.

(v) Steps (ii) to (iv) were repeated until calculation for all the months of year 2013 is com-

pleted.

Tables 4.21 and 4.22 shows the results of all such calculations for the high and low acuity

arrivals, respectively.

Table 4.21: Accuracy measures of 12 months rolling horizon fore-
casts for high acuity arrivals.

Months Measures % Within Max Diff † Corr‡

RMSE MAE 95% 80%

Jan 1.918 1.496 96.774 81.854 7.759 0.545
Feb 2.151 1.655 93.300 82.14 8.405 0.562
Mar 1.991 1.550 93.951 82.661 6.860 0.598
Apr 2.078 1.594 95.833 82.083 9.00 0.593
May 2.029 1.563 94.758 84.677 8.475 0.602
Jun 2.095 1.642 95.000 77.083 6.589 0.579
Jul 2.175 1.667 93.950 81.040 10.531 0.595
Aug 1.758 1.408 95.967 76.612 5.562 0.635
Sep 2.059 1.609 95.397 85.774 7.911 0.609
Oct 1.944 1.580 96.370 79.435 6.010 0.645
Nov 1.831 1.454 93.333 76.666 4.927 0.639
Dec 2.092 1.629 94.3548 82.258 9.507 0.525
† maximum of absolute differences between actual and forecast

arrivals.
‡ correlation between actual and forecast arrivals.

One observes that the correlation between rolling horizon forecasts and the actual values

are around 60% for the high acuity arrivals whereas for low acuity arrivals it is around 80%.
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Table 4.22: Accuracy measures of 12 months rolling horizon fore-
casts for low acuity arrivals.

Months Measures % Within Max Diff † Corr‡

RMSE MAE 95% 80%

Jan 3.288 2.677 96.370 79.838 11.533 0.799
Feb 3.750 2.887 92.857 76.785 9.282 0.746
Mar 3.204 2.464 94.354 80.241 7.692 0.795
Apr 3.572 2.854 94.166 79.166 12.236 0.770
May 3.401 2.638 95.967 79.838 14.388 0.797
Jun 3.608 2.819 95.000 77.916 10.431 0.764
Jul 3.233 2.475 95.564 79.032 11.302 0.805
Aug 3.474 2.828 95.967 78.629 12.031 0.809
Sep 3.459 2.623 95.397 81.171 14.321 0.795
Oct 3.509 2.702 94.758 82.661 11.409 0.810
Nov 3.354 2.647 94.583 80.833 9.564 0.803
Dec 4.116 3.055 94.354 81.451 12.838 0.743
† maximum of the differences between actual and forecast ar-

rivals.
‡ correlation between actual and forecast arrivals.

The maximum difference between actual and forecast values for any block during the months

of year 2013 ranges from 5 to 9 for high acuity arrivals and 9 to 14 for the low acuity arrivals.

The lowest RMSE and MAE value for high acuity arrivals were observed for the rolling horizon

month of August, 2013 whereas that of low acuity arrivals were observed for the rolling horizon

month of March, 2013. The percentage of actual values that fall inside the 80% and 95%

forecast bands conforms with the stated percentage.

The plot for the forecast values and the observed values for high acuity arrivals for the first

six rolling horizon months are presented in Figure 4.18 with the same for the remaining six

months shown in Figure 4.19. Similar plots for low acuity arrivals are displayed in 4.20 and

4.21. The blue dots represent the actual values while the red line represent the forecast values.

I see close resemblance in each of these 12 graphs.

Finally, the density plots for the high and low acuity arrivals for the residuals are displayed

in Figures 4.22 and 4.23, respectively. The residuals appear to be normally distributed for all

the months which satisfies the assumption of the GLARMA model fit.
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Figure 4.22: Density plot of residuals for the high acuity rolling horizon forecast .
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Figure 4.23: Density plot of residuals for the low acuity rolling horizon forecast.
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A sample of the first 24 blocks from the month of January, 2013 have been selected to

show how the actual values differs from the forecast values, and how many of the actual values

are contained in the 80% and 95% forecast confidence intervals. It has been observed from

table 4.23 that the actual values for blocks 12 and 15 are not contained in the 95% forecast

confidence interval, whereas those observed for all other blocks are. Two out of 24 actual

values outside 95% confidence limit is equivalent to approximately 8% out. Therefore, 95% of

the actual values are not contained in the confidence interval as proposed. However, this is an

expected randomness phenomenon, and the confidence intervals are defined under a probability

construct which remains true only if the experiment is continued for a long period of time.

A counter intuitive example is observed from table 4.24 where all of the 24 actual values

for low acuity arrivals are contained in the 95% confidence interval. Although only 95% of the

actual values are expected to fall within these confidence intervals, from the selected 24 blocks,

100% of the actual low acuity arrivals are within 95% confidence interval by random chance.

However, if the experiment were to be run for a sufficiently long time period, approximately

95% of the actual values will be contained in the proposed 95% confidence interval.
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Table 4.23: Point and interval forecast for the first 24 blocks of January based on past 12
months of fitted data.

Blocks Arrivals Forecast 95% CI 80% CI
Lower Upper Lower Upper

1 6 2.25 0.00 5.99 0.00 4.69
2 4 1.65 0.00 5.39 0.00 4.09
3 2 2.13 0.00 5.87 0.00 4.57
4 3 4.88 1.14 8.62 2.44 7.32
5 2 5.25 1.52 8.99 2.81 7.70
6 6 4.69 0.95 8.43 2.25 7.13
7 5 4.14 0.40 7.88 1.70 6.58
8 1 3.54 0.00 7.28 1.10 5.98
9 2 2.08 0.00 5.82 0.00 4.52
10 4 1.56 0.00 5.30 0.00 4.00
11 3 2.19 0.00 5.92 0.00 4.63
12 11 4.87 0.00 8.61 2.43 7.32
13 8 5.40 1.66 9.14 2.96 7.84
14 6 4.50 0.76 8.24 2.06 6.94
15 12 4.39 0.65 8.13 1.95 6.83
16 5 3.63 0.00 7.37 1.19 6.07
17 2 2.08 0.00 5.82 0.00 4.52
18 1 1.59 0.00 5.33 0.00 4.03
19 1 2.18 0.00 5.92 0.00 4.63
20 4 5.08 1.34 8.82 2.64 7.52
21 4 5.46 1.72 9.20 3.02 7.90
22 4 4.93 1.19 8.67 2.49 7.37
23 4 4.60 0.87 8.34 2.16 7.05
24 2 3.47 0.00 7.21 1.03 5.91
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Table 4.24: Point and interval forecast for low acuity arrivals for the first 24 blocks of January
based on past 12 months of fitted data.

Blocks Arrivals Forecast 95% CI 80% CI
Lower Upper Lower Upper

1 10 6.88 0.00 13.79 2.36 11.39
2 9 4.66 0.00 11.57 0.14 9.17
3 9 8.19 1.27 15.10 3.67 12.70
4 19 17.63 10.72 24.55 13.12 22.15
5 23 17.04 10.13 23.95 12.52 21.55
6 18 15.03 8.12 21.94 10.51 19.54
7 20 13.33 6.42 20.24 8.82 17.85
8 8 11.63 4.71 18.54 7.11 16.14
9 3 6.93 0.02 13.85 2.42 11.45
10 4 4.73 0.00 11.65 0.22 9.25
11 13 7.87 0.96 14.78 3.36 12.39
12 23 17.27 10.36 24.18 12.75 21.78
13 18 17.53 10.62 24.45 13.02 22.05
14 20 14.67 7.76 21.59 10.16 19.19
15 15 13.27 6.36 20.18 8.76 17.79
16 15 11.73 4.82 18.64 7.21 16.25
17 3 6.85 0.00 13.76 2.33 11.36
18 4 4.71 0.00 11.63 0.20 9.23
19 5 8.10 1.19 15.02 3.59 12.62
20 24 17.45 10.53 24.36 12.93 21.96
21 18 17.48 10.57 24.39 12.97 22.00
22 16 15.09 8.17 22.00 10.57 19.60
23 14 13.33 6.41 20.24 8.81 17.84
24 9 11.76 4.85 18.68 7.25 16.28
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4.5 Discussion

In this chapter, several forecasting models were investigated to identify the appropriate model

for accurate short term ED arrival prediction. Separate forecasting models for high and low

acuity patients were developed due to the fact that the arrival pattern as well as the resources

to serve them vary between these two categories. Four different forecasting models, namely,

SARIMA, GLM, Harmonic regression, and GLARMA models were considered.

Our results suggest that GLARMA is the most appropriate forecasting model to accurately

forecast short-term ED arrival counts. Our finding also indicates that when an appropriate

model is used, calendar variables alone are capable of producing accurate short-term forecast

for ED arrivals. Accurate prediction of ED arrivals can have a direct implication on ED admin-

istrative decisions. At any point in time, having a particular workload, if an ED administrator

can predict how much arrivals are expected in 3, 6, 9, and 12 hours in future, then s/he can take

steps to have more resources in order to meet future needs.

Several other authors (Rotstein et al. (1997), Marcilio et al. (2013)) advocated the sole

use of calendar variables in predicting ED patient visits. However, the method proposed here

differs in that it can model count responses after controlling for serial correlation present in

time series data. The GLARMA model, which is the mixture of a generalized linear model and

a time series model, demonstrated the capability of making inferences based only on calendar

variables (predictors) while taking into consideration the serial dependence among subsequent

ED arrivals through incorporating autoregressive and/or moving average components into the

model.

Few other authors (Reis & Mandl (2003), Chan et al. (2011), Au-Yeung et al. (2009))

considered fitting separate models dividing ED arrivals by some categories other than by their

respective acuity. Based on the arrival pattern, I am aware of only one study (Sun et al. (2009))

that uses acuity categories as the basis for model fitting categorization. However, they did not

aggregate the acuity categories based on how patients are being served in an ED.
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It is to be noted that ED workload is very difficult to estimate and depends on a multi-

tude of factors. Forecasting arrivals is a necessary component to predict workload, but may

not be sufficient. There are other factors that affect ED workload. These include activities

elsewhere. For instance, long-term care beds in the community for patients being discharged

from in-patient units. Nurse staffing level have an impact as well. We have also seen that it is

impractical to have physicians, nurses, diagnostic services, and so forth on stand-by (salaried

or non-salaried). One solution would be to allocate more employees when more arrivals are

expected or ask for overtime either before or after a shift to alleviate a surge.

While physician staffing is more directly related to new arrivals, nursing staff have to pro-

vide inpatient nursing care to the patients who are scheduled to be admitted to the hospital but

for whom no bed is yet available. Therefore, in order to accurately predict workload for ED

staff, one has to include the workload of those patients who are remaining in the ED while new

arrivals continue to register. It is very difficult to predict how many of these patients will be

there at any given point in time, there are multitude of factors impacting ED workload, and

I intend to work on many of them in future. However, I have addressed some of these as-

pects in chapter 5, where I empirically investigated the effect of workload on ED performance

measures, such as, number discharged, service time, waiting time, and length of stay.

4.6 Limitations

An obvious limitation of our study is the degree to which it can be generalized. I have collected

data from a single hospital whose characteristics (patient population, severity of illness, etc)

may vary in many ways from other hospitals. Therefore the exact same model may not prove

to be applicable to other hospital settings. However, if the variable of interest is measured as

counts and successive responses are serially correlated then GLARMA is the more appropriate

model to use.

There were 42 missing arrival entries out of 88189 ED arrivals which contributes to only
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0.05% of the collected data. This would have been a limitation if we would have observed

higher percentages of missing values. Moreover, mean imputation was done to fill-up those

missing values after controlling for the block of day, day of week, and month of year.

I did not have access to other socio-demographic variables which may affect ED arrivals. If

I could have obtained such data, their effects on ED arrivals may have been tested to supplement

or add value to previous researches.

Even though inclusion of climate variables will make the forecasting model more complete,

it will simultaneously make the model complicated as well. Historically climate variables were

shown to have statistically insignificant predictability on ED arrival prediction. However, in our

particular case of ED arrival forecasting, the effect of climate variables on future ED arrivals

could be explored.

4.7 Conclusion and future research

Our analysis suggests the use of the GLARMA model to accurately predict short term ED

arrivals which in turn help ED managers to efficiently allocate ED resources to meet future

demands. Although a relatively high forecast error was detected occasionally for particular

blocks, calendar variables alone can reasonably predict future ED arrivals when serial correla-

tion among successive block arrivals is accounted for. Thus, a reliable forecasting model for

short term ED arrival forecasts can be formulated and implemented with an automated system

for better management of ED resources.

Forecasting models for ED patient arrivals based on calendar variables are easy to formulate

and can be automated for future use. A more complicated time series model that takes frac-

tional differences to make the time-series stationary could be constructed (Granger & Joyeux

(1980)). One may also consider using estimating equation techniques (Liang & Zeger (1986))

to forecast ED arrivals. Generalized estimating equation, which does not require the response

distribution to be known, is one such technique where first two moments are enough to fully

specify the likelihood (quasi) function to estimate the parameters of the model. A robust sand-
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wich estimator for the variance is also available to construct confidence intervals for the pa-

rameters of interest.



Chapter 5

Empirical Analysis of an

Emergency Department Service

Process

5.1 Introduction

The efficient operation of an emergency department (ED)’s service process is necessary to

avoid overcrowding and other undesirable consequences. Patient care delivery in an emer-

gency department (ED) depends on the prompt yet accurate operation of many interconnected

activities, such as registration, triage, nurse or physician assessment, diagnosis, consultation

and treatment from specialists if necessary, and ultimately, discharge home or admission to a

hospital bed. EDs possess a service system where multiple streams of diverse patient types

appear for service, and for which the servers have multitasking capabilities. The servers also

have discretion over to whom, when, and how to provide such services.

Emergency department resources and capacity are usually limited. However, the demand

for ED services is gradually increasing over time due to an aging population and the availability

95
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of new technologies. The Ontario Ministry of Health and Long-Term Care (2010) observed an

approximate 6% increase in the number of emergency department visits from 2004/05 through

2008/09, while operating costs increased by about 28%. A report by the Canadian Institute

for Health Information (2014) shows that patients who are admitted to hospital spend almost

five times longer in ED than their non-admitted counterparts. In fact, 10% spend more than

28 hours in the ED after admission while waiting for beds. Such discharge delays naturally

contribute to ED overcrowding.

This chapter presents the results of an empirical investigation applied to an ED of an On-

tario hospital. An empirical investigation of such ED performance measures will help ED

administrators to better understand how ED behaves under different conditions. Successful

application of operations management principles can help service managers to manage and al-

locate resources efficiently. Operations management researchers have advocated the need for

more empirical studies to investigate the extent to which human behavior may alter the rela-

tionship between operational variables and performance (eg., Boudreau et al. (2003), Jouini

et al. (2008)). Particularly in healthcare, to clearly understand the relationship between server

response to workload and productivity, detailed empirical investigations are necessary (KC &

Terwiesch (2009), KC & Terwiesch (2012)).

Failure to account for the effect of workload on productivity can result in poor perfor-

mance (Kuntz et al. (2014), Tan & Netessine (2014)), imbalance in physical resources (Green

& Nguyen (2001)) and in labour (Green et al. (2013)). Therefore, proper understanding of

the relationship between workload and productivity will aid in better management of the ED

resources and thus will maximize utilization and minimize waste of expensive resources. The

goal of this chapter is thus to contribute to the emergency medicine and operations manage-

ment literature by empirically investigating the impact of patient workload on four measures

of services: number discharged, ED LOS, service time, and waiting time. Our study will have

an emphasis on the effect of high and low acuity workload on service measures for both high

and low acuity patients.
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This chapter is organized as follows: in Section 5.2, the related literature is reviewed.

A description of the hypotheses under study and their development are discussed in Section

5.3. Research settings and the statistical model specifications to address the hypotheses are

described in Section 5.4. In Section 5.5, we report the results from the analysis of an emergency

department patient flow. Discussion, concluding remarks and future research directions appear

in Sections 5.6 and 5.7.

5.2 Related Literature

We divided the existing body of literature into two parts: literature related to ED and literatures

not related to the ED.

5.2.1 Empirical Literature Related to ED

5.2.1.1 Emergency Medicine Literature

Schull et al. (2007) studied the effect of low acuity ED patients on the waiting time of medium

and high acuity patients. Applying an autoregression model to one year of ED visit data from

Ontario hospitals, the authors observed that low acuity ED patients are associated with a neg-

ligible increase in ED LOS and time to first physician contact for medium and high acuity

waiting time. On the other hand, McCarthy et al. (2009) used discrete time survival analysis

on one year of data from 5 EDs to conclude that ED crowding statistically delayed patients’

waiting and boarding times, but not the treatment time. To determine the association between

the hospital census variables and ED LOS, Lucas et al. (2009) applied a stepwise multiple

regression model to five weeks of data from five hospitals and observed a significant positive

relationship between ED LOS and hospital level census. However, the relationship of the ED

LOS and ED census was marginally significant.
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5.2.1.2 Operations Management Literature

Empirically investigating the effect of patient census on total service rate and service rate per

patient, Armony et al. (2011) observed evidence of a state dependent service rate (which in-

volved both speed-up and slow-down mechanisms). Using 5 years of data from an Israeli

hospital, the authors found that, as a function of patient census, the service rate first decreases

then increases then again decreases, with some noise in the tails due to small sample sizes.

Batt & Terwiesch (2012) identified the mechanisms that lead to state dependent services. Iden-

tifying task reduction and early task initiation as speed-up mechanism and multitasking and

interference as slow-down mechanisms, the authors obtained evidence of the existence of such

mechanisms while analyzing 3 years of ED visit data from an urban teaching hospital using

survival analysis and a count regression model. The authors also developed a discrete event

simulation model, and used it to establish that ignoring state-dependent service times leads

to modeling errors and could cause hospitals to over-invest in human and physical resources.

In contrast, KC (2013) looked at the multitasking behavior of physicians in a busy ED using

overall performance measures such as processing time, throughput rate, and output quality.

Defining the busy period as the amount of time needed to serve a given number of patients

without interruption, KC (2013) showed that busy period has a U-shaped response to the level

of physician multitasking. The term “U-shaped relationship” means that an increase in the

explanatory variable is associated with an initial reduction in the response, followed by an

increase after a particular value of that explanatory variable.

In a discretionary work setting, Berry Jaeker et al. (2013) tested the hypothesis that re-

source availability induces demand based on 2 years and 7 months of patient-level data from

two academic hospitals. The authors had shown that increased capacity is associated with an

increased wait time, and an increase in physician’s capacity for ordering diagnostic tests in-

creased the probability of more diagnostic tests being ordered. In contrast, to investigate the

effect of workload on system productivity, Green et al. (2013) investigated how fluctuations in

nurse workload due to irregularities in scheduling and/or unpredictable demand had a direct
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impact on absenteeism. The authors observed that there is a positive association between high

demand and nurse absenteeism. Using 10 months of ED data from a large New York City hos-

pital, Green et al. (2013) found that the uncertain shortage of service capacity created by nurse

absenteeism should be taken into account when matching supply with anticipated demand.

Song et al. (2015) carried out an empirical investigation of the impact of queue pooling

on throughput times in a discretionary task setting (servers have freedom to choose whom,

when, and how to serve). Four years (2007-2010) of patient level emergency department (ED)

data were used to show that patients’ lengths of stay are longer when physicians are assigned

patients from a pooled queue, compared to when each physician has a dedicated queue. In

order to support their findings, Song et al. (2015) have used “social loafing theory”, which

suggests that when work is shared individuals subconsciously exert less effort, to propose that

dedicated queues provide physicians with greater ownership concerning their workload than

pooled queues, enabling them to more effectively manage their work.

5.2.2 Other Related Empirical Literature

Using data on patient transport services and cardiothoracic surgery, KC & Terwiesch (2009)

conducted an econometric analysis to observe the impact of workload on service time and

patient safety. The authors argued that the workers accelerate the service rate as the workload

increases. However, the authors also noticed that long periods of increased workload leads to

decrease in service rate and quality of care. In a separate study KC & Terwiesch (2012) found

that when the ICU occupancy is high, patients are likely to be discharged early, which in turn

increases the likelihood of patient readmission. Bartel et al. (2014) investigated the role of

inpatient and outpatient care in reducing readmission and mortality.

Berry Jaeker et al. (2012), using data from 283 hospitals, observed that high congestion

increases patients’ hospital length of stay. Berry Jaeker & Tucker (2013), on the other hand,

examined the impact of patient load on Length of Stay (LOS), with a special focus on the

“spillover” effect of patient load across the two main types of patients within a hospital: medi-
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cal and surgical. Separating the congestion effect (increased LOS) from the workload smooth-

ing effect (decreased LOS), Berry Jaeker et al. (2013) showed that when hospitals become

busy, workers prioritize some types of patients by systematically shortening the LOS of other

types of patients. In the context of an Intensive Care Unit (ICU), Chan et al. (2013) measured

how congestion in an ICU can lead to delays in boarding (transferring patient) from the ED to

the ICU and consequently impact patients’ ICU LOS.

Beyond healthcare related studies, using a laboratory experiment on inventory lines, Schultz

et al. (1998) showed that the workers’ processing times are not independent of the state of the

system. Based on the data from a restaurant chain Tan & Netessine (2014) observed that when

overall workload is small, servers expend more and more sales effort with the increase in work-

load at a cost of slower service speed. However, after a certain workload threshold, servers start

to reduce their sales efforts and work more promptly with the further rise in workload.

Important differences between our study and most related studies are described below:

(i) Batt & Terwiesch (2012) address speed-up and slow-down mechanisms with a definition

of workload based on diagnostic procedures, whereas we define workload as the census

at time t divided by available resources at time t. Moreover, our objective is to show

how the speed-up and slow-down mechanisms work separately for high and low acuity

patients.

(ii) Song et al. (2015) compared ED performance measures based on whether a patient was

served under a dedicated queue versus a pooled queue with a fair patient routing con-

straint, whereas we are interested in studying the effect of workload on productivity.

Although our ED has dedicated queues for high and low acuity patients, resources are

often shared across these queues, and

(iii) Berry Jaeker & Tucker (2013) studied the effect of workload of one group to the produc-

tivity of the other group (spillover effect) by separating hospital patients into two groups;

medical and surgical. We focus on the spillover effect of workload on productivity by
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separating ED patients into two groups; high and low acuity.

5.3 Hypotheses Development

We grouped resuscitation and emergency patients (i.e., CTAS categories 1 and 2) together

to form the high acuity patient category and urgent, less-urgent, and non-urgent patients to

form the low acuity patient category. When comparing high exposure to high response or low

exposure to low response, we use the word “same type” of patients. Similarly, when comparing

low exposure to high response or high exposure to low response, we use the word “other type”

of patients. Since we are interested in investigating the impact of increased workload on four

different ED service measures (namely, number discharged, length of stay, service time, and

waiting time), we have grouped our hypotheses accordingly.

5.3.1 Expected Patient Discharge

Previous operations management literature suggests that physicians’ medical decisions and

speed can be influenced by how many patients are currently in the hospital (Batt & Terwiesch

(2012), KC & Terwiesch (2012), Kuntz et al. (2014)). Patients in our study ED are treated in

two separate areas depending on their severity (i.e., in the high or low acuity group). Therefore,

we investigate the speed-up and slow-down effects of high and low acuity census on the average

number of high and low acuity patient discharges, respectively.

HYPOTHESIS 1: The mean number of patients discharged increases with an increase in the

same type of patient census.

Berry Jaeker & Tucker (2013) tested the “spillover” effect of medical and surgical workload

on the other type of patients LOS. Although physicians in our study ED are assigned exclu-

sively to serve a stream of patients in a dedicated area, there may be crossover due to medical

emergencies or to minimize physicians’ idle time. Thus we expect the following:
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HYPOTHESIS 2: The mean number of patients discharged increases with the increase in the

other type of patient census.

5.3.2 Patient Length of Stay

Next, we discuss the hypotheses concerning the effect of the state of the system on patient

length of stay (LOS). Lucas et al. (2009) studies the effect of hospital census variables on ED

LOS and observed that ED census is significantly positively correlated with ED LOS. How-

ever, significant association between ED LOS and ED census was not observed from multiple

regression output when controlled for other census variables (i.e., hospital, ICU, Telemetry).

In a hospital setting, Berry Jaeker et al. (2012) demonstrated that controlling for patient condi-

tions, high current patient inventory (congestion) is associated an increased LOS. Additionally,

Berry Jaeker & Tucker (2013) showed that when services are shared, additional demand of one

type of patient can create congestion for all types of patients. Thus we expect,

HYPOTHESIS 3: Increased census of the same or other type of patient is associated with an

increased LOS.

Using data from a large Israeli hospital Armony et al. (2011) studied the cause of long

delays in transfers from the ED to an inpatient ward (IWs) and concluded that those delays are

not only caused by a lack of beds, but also by 13 other plausible causes. The authors observed

that on average it takes 3.2 hours to transfer a patient from an ED to an IW, and pointed out

that the admission process as well as the wait for the respective physician and nurse are the

significant contributors to these delays. Thus we expect,

HYPOTHESIS 4: Patients who are admitted to hospital beds have longer LOS than patients

who are discharged home.

(Support for this hypothesis is also found in the report by the Ontario Ministry of Health

and Long-Term Care (2010)).
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5.3.3 Patient Waiting Time

In an ER, almost everyone is delayed. Only CTAS 1 patients tend to be seen immediately.

Thus, patients’ waiting time are longer if the ED is congested. The congestion occurs despite

reduced service time for the service of interest because customers’ total LOS become longer

Berry Jaeker & Tucker (2013). Therefore, if the workload increases, this will result in a higher

probability of waiting, and an increase in average waiting time for the patients. Thus we expect,

HYPOTHESIS 5: Increased workload of the same type of patient is associated with an in-

creased waiting time.

HYPOTHESIS 6: Increased workload of the other type of patient is associated with an in-

creased waiting time.

5.3.4 Patient Service Time

We constructed several hypotheses concerning the effect of workload on the patients’ service

time. Classical queueing theory generally assumes that the service time is independent of the

state of the system (Wolff (1989)). This assumption does not hold for many service systems

(i.e., hospitals, outbound call centers) where servers have discretion over whom and how to

provide services. The existence of the speedup and slowdown mechanisms in an ED was

considered by Armony et al. (2011). Analyzing the effect of workload on service time, Batt &

Terwiesch (2012) tested these hypotheses and obtained evidence in favor of these hypotheses.

Since resources are shared, our interest is to look at the effect of high and low acuity workload

on the high and low acuity service times. For a shared service, Berry Jaeker & Tucker (2013)

showed that when services are shared, additional demand of one type can create delay for all

types of customers. Thus we expect,

HYPOTHESIS 7: As workload of the same type of patient increases, patient service times

initially decrease then increase.

HYPOTHESIS 8: As workload of the other type of patient increases, patient service times
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initially decrease then increase.

A summary of our hypotheses and proposed models are summarized in the following table.

Table 5.1: Summary of the hypotheses and proposed models.

Metric Hypotheses Model

Number Discharged 1. The mean number of patients discharged increases Poisson Regression
with an increase in the same type of patient census.
2. The mean number of patients discharged increases Poisson Regression
with the increase in the other type of patient census.

Length of Stay 3. Increased census of the same or other type of patient Cox-PH Model
is associated with an increased LOS.
4. Patients who are admitted to hospital beds have longer Cox-PH Model
LOS than patients who are discharged home.

Waiting Time 5. Increased workload of the same type of patient Cox-PH Model
is associated with an increased waiting time.
6. Increased workload of the other type of patient Cox-PH Model
is associated with an increased waiting time.

Service Time 7. As workload of the same type of patient increases, Cox-PH Model
patient service time initially decreases then increases.
8. As workload of the other type of patient increases, Cox-PH Model
patient service time initially decreases then increases.
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5.4 Model Specifications

We first introduce and define necessary variables required for our model formulation. Different

response, explanatory, and control variables used in our models are presented in the Tables 5.2,

5.3, and 5.4, respectively.

Table 5.2: Definitions of response variables for operational performance measure.

Measure Description and coding

DischHigh Number of high acuity patients discharged from ED per block.
DischLow Number of low acuity patients discharged from ED per block.
LOSHigh High acuity patient length of stay (registration to discharge).
LOSLow Low acuity patient length of stay (registration to discharge).
STHigh High acuity patient service time (initial assessment to discharge).
STLow Low acuity patient service time (initial assessment to discharge).
WTHigh High acuity patient waiting time (registration to initial assessment).
WTLow Low acuity patient waiting time (registration to initial assessment).

Table 5.3: Definitions of explanatory variables for operational performance measure.

Measure Description and coding

CenHigh Number of high acuity patients in the system (counts).
CenLow Number of low acuity patients in the system (counts).
CenHigh2 Square of number of high acuity patients in the system (counts)
CenLow2 Square of number of high acuity patients in the system (counts)
CenHighLag1 Number of high acuity patients in the system at previous block (counts)
CenLowLag1 Number of low acuity patients in the system at previous block (counts)
HighWorkload Number of high acuity patients in the system divided by

total number of beds for high acuity patients (ratio)
LowWorkload Number of low acuity patients in the system divided by

total number of beds for low acuity patients (ratio)
BusyHigh Indicator variable takes 1 if high census is greater than the number of

high beds
BusyLow Indicator variable takes 1 if low census is greater than the number of

low beds
Admitted Binary variable indicating admitted to hospital beds or discharged home.
Age Age of the patient (continuous variable).

Different indicies and parameters used in our models are listed in the following Table 5.5.
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Table 5.4: Definitions of control variables for operational performance measure.

Measures Description and coding

BoD (1-24) Block of day variables are defined using 23 dummy variables
DoW (Mon-Sun) Day of week variables are defined using 6 dummy variables
MoY (Jan-Dec) Month of year variables are defined using 11 dummy variables

Table 5.5: Definitions of the indicies and parameters used in our models.

Notations Description and coding

i Index for patient observations (total 88189).
b Index for hourly blocks (total 24 × 731, for 2 years of data).
α Coefficient for covarites related to high acuity response variable.
β Coefficient for covarites related to low acuity response variable.
Λ Vector of coefficients for calendar variables related to

high acuity response variable.
Γ Vector of coefficients for calendar variables related to

low acuity response variable.
ε Errors for high acuity.
ε Errors for low acuity.

5.4.1 Model for Hypotheses 1 and 2 : Number Discharged & Census

We are interested to see how workload impacts the amount of discharge per 1-hour block. The

number discharged per block is a count random variable, and generalized linear models are

used to predict the expected number of discharges as a function of various predictor variables.

In the formulation below, the log link function has been used, i.e., log of the number of expected

discharge per block is linearly related to the predictor variables. Positive β values indicates an

increase in the number discharged as a result of an increase in the predictor variables.

log(E(DischHighb)) = α0 + α1CenHighlag1b + α2CenLowlag1b + α3CenHighLag2b +

α4CenLowLag2b + Λ controlsb + εb

log(E(DischLowb)) = β0 + β1CenHighlag1b + β2CenLowlag1b + β3CenHighLag2b +

β4CenLowLag2b + Γ controlsb + εb
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where the subscript b denotes the hourly block of the day.

5.4.2 Model for Hypotheses 3 and 4 : LOS & Census

We used survival models to test our hypotheses regarding LOS. Patient LOS can be thought of

as a time-to-event data where event is the discharge from an ED. Survival analysis allows us to

predict a patient’s likelihood of LOS in any given block (hour) based on an underlying hazard

function scaled by the patient’s and ED’s characteristics (similar to Berry Jaeker & Tucker

(2013)). We used time-varying baseline hazard function (as used in KC & Terwiesch (2012))

and included calender variables to account for seasonal variability.

For the ease of interpretation, we report the hazard ratio which is the ratio of two hazard

rates. The value of a hazard ratio more than 1 indicates that as the workload increases, patients

are more likely to be discharged compared to the baseline condition, while a hazard ratio less

than 1 means patients are less likely to be discharged as the workload increases. For instance, a

hazard ratio of 1.05 states that a 1% increase in the workload is associated with a 5% increase

in the expected number of discharges after controlling for all the covariates.

log(h(LOS Highi)) = α0 + α1CenHighi + α2CenLowi + α3CenHigh2
i + α4CenLow2

i +

α5CenHighLag1i + α6CenLowLag1i + α7BusyHighi +

α8BusyLowi + α9AdmitHospi + ΛControlsi + εi

log(h(LOS Lowi)) = β0 + β1CenHighi + β2CenLowi + β3CenHigh2
i + β4CenLow2

i +

β5CenHighLag1i + β6CenLowLag1i + β7BusyHighi +

β8BusyLowi + β9AdmitHospi + ΓControlsi + εi
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5.4.3 Model for Hypothesis 5 and 6 : Waiting Time & Workload

Similar to the previous subsection, we used the Cox-PH model to test the hypotheses regarding

the impact of workload on ED waiting time as follows:

log(h(WT Highi)) = η0 + η1CenHighi + η2CenLowi + η3CenHigh2
i + η4CenLow2

i +

η5CenHighLag1i + η6CenLowLag1i + η7BusyHighi +

η8BusyLowi + η9Admittedi + η10Agei + ΛControlsi + εi

log(h(WT Lowi)) = η + η1CenHighi + η2CenLowi + η3CenHigh2
i + η4CenLow2

i +

η5CenHighLag1i + η6CenLowLag1i + η7BusyHighi +

η8BusyLowi + η9Admittedi + η10Agei + ΓControlsi + εi

where the subscript i denotes individual patients. A positive η coefficient relates an increase in

mean service time with an increase in the covariate values.

Maximum likelihood methods have been used to estimate the model parameters.

5.4.4 Model for Hypotheses 7 and 8 : Service Time & Workload

To test the hypotheses about the impact of workload on ED service time, we again used the

Cox-PH model.

log(h(S T Highi)) = θ0 + θ1CenHighi + θ2CenLowi + θ3CenHigh2
i + θ4CenLow2

i +

θ5CenHighLag1i + θ6CenLowLag1i + θ7BusyHighi +

θ8BusyLowi + θ9Admittedi + θ10Agei + θ11Controlsi + εi

log(h(S T Lowi)) = θ + θ1CenHighi + θ2CenLowi + θ3CenHigh2
i + θ4CenLow2

i +

θ5CenHighLag1i + θ6CenLowLag1i + θ7BusyHighi +

θ8BusyLowi + θ9Admittedi + θ10Agei + θ11Controlsi + εi
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where the subscript i denotes individual patients. A positive θ coefficient indicates an increase

in mean service time with an increase in the covariate values. We have conducted all our

statistical analyses using the free statistical software package R (R Core Team (2013)).

5.5 Results and Interpretation

5.5.1 Descriptive analysis

We display descriptive statistics for our continuous response variables LOS, waiting time, and

service time through box plots in Figure 5.1. It is apparent from the box plots that all three

duration measures are right skewed. There are some excessively high values that can be con-

sidered as outliers. Therefore, we considered the values within three times the interquartile

range as the legitimate observations. We then produced box plots for high and low acuity

patients separately for patient LOS, waiting time, and service time, respectively (Figure 5.2).

Right skewness is still present in all cases for both the high and low acuity patients. This is due

to the fact that a small number of individuals are experiencing excessive delays.

There are differences in median LOS, waiting time, and service time between high and low

acuity patients (Figure 5.2). In our ED, the ratio of high to low acuity patient presentations is

about 1:3. The median LOS for high acuity patients is significantly higher than that of the low

acuity patients. This is due to the fact that high acuity patients require significant amount of

time and resources to render the appropriate treatment. Additionally, time in the ED will also

be higher for the high acuity patients, because they are much more likely to need admission

and are therefore likely to suffer significant delays in the ED. Median service times, on the

other hand, are higher for high acuity patients solely due to higher requirement for resources

and time. A lower median waiting time for high acuity patients is to be expected, as they have

higher priority to get served, and their patient volume is substantially smaller as well.
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Figure 5.1: Boxplots of length of stay, waiting time and service time, respectively, from left to
right, with high and low acuity patients merged into a single class.
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Figure 5.2: Boxplot of high and low acuity patients separately for length of stay, waiting time
and service time, respectively, from left to right.
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5.5.2 Statistical Assessment of the Hypotheses

5.5.2.1 Hypotheses 1 and 2: Number Discharged and Census

The number of discharged patients per block is a count random variable which is skewed to

the right. We ran a goodness-of-fit test to see which of the theoretical distributions is best fit

for our data. We used generalized additive models for location, scale, and shape (GAMLSS) to

fit different candidate distributions to the number discharged per block. GAMLSS is a broader

regression type model framework that can handle highly skewed and kurtotic discrete and con-

tinuous distributions, as well as the exponential family of distributions to describe the response

variable. A detailed description of the GEMLSS models can be obtained in Stasinopoulos &

Rigby (2007). We made use of the goodness-of-fit capability of the ‘gamlss’ package in R to

obtain the best fitted theoretical distribution to our data.

Among all the candidate models, we tabulated and plotted the four best models that fit our

block number of discharge data for high and low acuity patients, as assessed by the Akaike

Information criterion (AIC). Table 5.6 presents the AIC values for the possible models that

performed best. Graphical representation of the empirical and theoretical probability distribu-

tions for the high and low acuity patients are displayed in Figures 5.3 and 5.4, respectively.

The smallest AIC value in Table 5.6 corresponds to the negative binomial distribution for both

the high (51147.59) and low (78060.44) acuity patients. Additionally, the Figures 5.3 and 5.4

indicate that negative binomial is the best fitted distribution for both of our high and low acuity

discharge data. Therefore, we fit the GLM where the response variable (number discharged)

is distributed as a negative binomial distribution with the link function being the log. The

degrees of freedom in Table 5.6 equals the number of parameters estimated for each of these

distributions.

The effect of high and low acuity census on the high and low acuity discharges (hypotheses

1 and 2) is presented in Table 5.7. It is to be noted that the current block’s census has not been

considered as a predictor for the current block’s discharge. This is due to the fact that the surge
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Figure 5.3: Fitted distributions for high acuity patient discharge where solid bars represents
empirical distribution and the line bars with dot represents theoretical distribution.
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Table 5.6: Model selection using Akaike Information Criterion for the high and low acuity
patients, respectively.

Distributions High Acuity Discharge Low Acuity Discharge
degrees of freedom AIC degrees of freedom AIC

Poisson 1 51359.45 1 79579.50
Negative Binomial 2 51147.59 2 78060.44
Poisson Inverse Gaussian 2 51149.35 2 78103.69
Sichel 3 51149.59 3 78062.44

in current block census is not manifested until the service process proceeds to the next time

block.

We find support for hypothesis 1 (Table 5.7). An increase in the high (low) acuity census in

earlier blocks does increase the expected number of high (low) discharges at the current block

(p-value < 0.001). Holding everything else constant, an increase of one patient in the high

acuity census during the previous block is associated with an 5.6% increase in the expected

number of high acuity discharge (e0.055 = 1.056).

Table 5.7: Negative binomial regression output for high and low acuity patient discharges based
on high and low acuity censuses, after controlling for calendar variables.

Predictors High Acuity Low Acuity
Coef St. Err p-value Coef St. Err p-value

Intercept -0.973 0.061 < .001 0.796 0.034 < .001
High Census (lag1) 0.055 0.004 < .001 -0.013 0.002 < .001
Low Census (lag1) 0.003 0.002 0.168 0.022 0.001 < .001
High Census (lag2) 0.024 0.004 < .001 0.003 0.002 0.165
Low Census (lag2) -0.002 0.002 0.356 0.008 0.001 < .001
High Census (lag1)2 -0.003 0.000 < 001 0.001 0.000 0.991
Low Census (lag1)2 0.002 0.000 0.630 -0.003 0.000 < 001
BoD(Dummy) Control Control Control Control Control Control
DoW(Dummy) Control Control Control Control Control Control
MoY(Dummy) Control Control Control Control Control Control

The support for hypothesis 2 is mixed. Although the high acuity census significantly de-

creases the expected number of low acuity discharges (-0.013, p-value < 0.001), the low acuity
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census does not significantly decrease the high acuity expected number of discharge (0.003,

p-value = 0.168). Holding everything else constant, a unit increase in high census at previ-

ous block is associated with a 1.3% decrease in the expected number of low acuity discharge

(e−0.013 = 0.987).

5.5.2.2 Hypotheses 3 and 4: Length of Stay and Workload

We used the Cox-Proportional Hazard (CoxPH) model to investigate the effect of census and

admission status indicator on the patients LOS (hypotheses 3, and 4). A positive coefficient

indicates that the hazard rate is increasing, and consequently the survival time is shortening.

An opposite interpretation for the hazard and survival functions hold for a negative coefficient

value. Although the sign of the coefficients are easily interpretable, the same is not true for the

magnitudes. Rather, we interpret exponentiated coefficients (hazard ratios) which represent a

multiplicative effect in the model.

Based on Table 5.8, we do not find support for hypothesis 3. An increase in same type of

patient census does not significantly increase same type of patient LOS. For instance, holding

everything else constant, a unit increase in high acuity census at departure increases the hazard

of high acuity LOS by 1.7%
(
1 − e0.017

)
, i.e., LOS decreases. A possible explanation for such

a phenomenon may be the following: as the congestion at departure increases more patients

are discharged from the ED to accommodate incoming patients which reduces the overall LOS

(or, servers are working at a greater speed to compensate for the factors that push the LOS

upward). While looking at the effect of other type of census on other type of patient LOS, only

high acuity census increases the low acuity LOS, but not vice versa. We observed that a unit

increase in high acuity census is associated with a 1.5% increase in the low acuity LOS. We

also noticed that the square terms are either not significant or produced very small coefficient

values, which refutes the possibility of the increase (or decrease) of LOS followed by a decrease

(or increase).

Finally, We do find support for hypothesis 4 (Table 5.8). Patients admitted to hospital beds
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have higher LOS than those who are discharged to home. This is true for both the high and

low acuity patients (negative coefficients -0.992 and -1.701 for high and low acuity patients,

respectively). Compared to discharged patients, there is a 60.3% reduction in hazard of LOS

for admitted patients, holding everything else constant.

5.5.2.3 Hypotheses 5 and 6: Waiting Time and Workload

We tested here the effect of high and low acuity patient workload on the high and low acuity

patient waiting times. We find support for hypothesis 5 (5.9). An increase in the same type of

patient workload is associated with an increase in the waiting time. We observed from Table

5.9 that the current and lag workload values for high acuity patients are significantly affecting

the high acuity patient waiting times (p-value < 0.01). Similarly, the current and lag low

acuity patient workload are significantly affecting the low acuity patient waiting times (p-value

< 0.01). The magnitude of the effect is comparatively high, i.e., a unit increase in workload

values for high and low acuity patients is likely to increase high and low acuity patient waiting

times by approximately 60 and 20 percent, respectively.

However, we do not find complete support for hypothesis 6. High acuity workload sig-

nificantly affects low acuity waiting time, but the opposite is not true. This is the reverse of

what we found for the service time. Quadratic workload terms are found to be not significantly

affecting the waiting times, and the magnitude of effect is minimal. Therefore, according to the

data, the patient waiting times continues to increase with an increase in census .
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5.5.2.4 Hypotheses 7 and 8: Service Time and Workload

In order to model the service times (time it takes to treat a patient), we used the Cox-PH model.

We wish to reiterate that positive coefficients are indicative of increasing hazard and shortening

survival times, whereas negative coefficients are suggestive of decreasing hazard and expanding

survival times. We do find support for hypothesis 7. For the same type of patient, service times

initially decrease as a function of patient workload, followed by an increase (p-value < 0.01).

For example, one unit increase is high workload is associated with a 82.7% increase in hazard

of service time, holding everything else constant. Consequently, a unit increase in the square

of the high acuity census is associated with a 60.6% reduction in hazard of service time.

We do not find complete support for hypothesis 8. The low acuity workload significantly

affect the high acuity service time (p-value < 0.01), but the opposite is not true (p-value=

0.138). A possible explanation is that when low acuity workload is low, low acuity resources

may be used in the high acuity area which is less likely to happen when the low acuity workload

is high.

Turning our attention to low acuity patient service times, we noticed that only the low

acuity census (linear and quadratic) terms are found to be significant. An additional increase in

low acuity workload is associated with a 26.7 percent decrease in the low acuity patient service

times, keeping all other factors constant. Conversely, after controlling other factors, low acuity

service times are decreased by 5.3 percent with an additional increase in the square of the low

acuity patient workload.
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5.6 Discussion

In this chapter, we empirically investigated the effect of workload on server productivity based

on 2 years of hospital ED data. Four performance measures(the number of patients discharged

per hour, as well as the patient LOS, service times, and waiting times) are used to test the

hypotheses regarding the effect of workload, patient census, system congestion, and patients

who require admission. In addition, we divided our patient population between a high and a

low acuity category, and looked at the effect of the same and opposite type of patient workload

on patient service performance for both classes.

Our analyses revealed that server productivity increased with an increase in the system

workload. We observed that an increase in the same type of patient census is associated with an

increase in the average number discharged for both the high and low acuity patients. However,

such an increase in the average discharge was not observed for an increase in the opposite type

of patient census. Furthermore, an increase in the high acuity census was associated with a

decrease in the average low acuity number discharged. This may well be due to the fact that

resources may sometimes be pulled out from the low acuity area in order to relieve high acuity

patient demand. We also observed that an increase in workload of the same or opposite type of

patient is associated with an initial decrease in the LOS and service time; however, in the case

of a sustained increase in workload, there is a subsequent decrease in these measures. Patients

who required admission were found to have longer LOS than those who were discharged home.

We observed that patient treatment times were affected by the census level in our ED.

Since an increase in the same type of patient census increases the average number of patient

discharged, a decision regarding the addition of resources should not only depend upon the

number of patient waiting for service, but also upon how fast the servers are serving them.

At the same time, ED managers also need to ensure that speedy service does not compromise

the quality of care. Therefore, our study suggests that ED resource allocation should take into

account the workload dependent service processes we have observed.
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Our analyses suggest that increased workload is associated with an increased productivity

(reduction in patient LOS and service time). However, the increased productivity is shown

to be constrained by a threshold point after which the productivity diminishes. Server fatigue

due to overwork was considered as a potential factor responsible for decreasing productivity

in previous literature. We contrasted the number of patients discharged at the end of the shift

with the same quantity at the beginning of the shift, and observe a significantly lower number

of patients discharged at the end of the shift. Therefore, if an increase in demand for services

is persistent, ED management should call for additional resources during a physician’s work

shift rather than at the end of his/her shift so long as this is an actionable decision.

Our work contributed to the emergency medicine and operations management literature

in several ways. Firstly, we showed that, when workload increases, in addition to the speed-

up and slow-down of the ED services, there exists cross-over effects from the high and low

acuity patient workload on the low and high patient queue performance measures. Secondly,

we demonstrated that under persistent high workload, server performance at the beginning of

the shift is significantly higher than that at the end of the shift. In order to maintain the service

level, additional resources should be called upon to supplement the current server. Finally, we

revealed that ED patients who require admission spend more time in the ED as compare to

those who are discharged.

Speed-up and slow-down mechanisms are manifested in all our data analyses, which is

consistent with the previous research (Batt & Terwiesch (2012)). We used system load and

census variables to predict four different ED queue measures, whereas Batt & Terwiesch (2012)

used system load and number of diagnostic tests ordered as covariates to predict task time and

service time. The ”quicker at first, slower later” service phenomenon was also observed by KC

(2013) while analyzing the effect of physician multitasking on ED performance improvement.

Similar to Berry Jaeker & Tucker (2013), but in a different context, we observed the ex-

istence of spillover effect of high and low workload and census on ED queue performance

measures for the opposite class of patients. However, the effect was sometimes observed in
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one direction only. For example, both the high and low acuity census significantly affects the

high acuity service times, but only low acuity patient census affect low acuity patient service

times. Our observation of longer LOS for admitted patients than for those discharged in con-

sistent with the previous work of Armony et al. (2011).

5.7 Limitations and Future Work

Our dataset is comprised primarily of time stamps during the ED service process; it is lacking

patient demographic information. More precise results could have been obtained if patient de-

mographics were controlled for in our statistical analyses. Furthermore, our results are based

on a single hospital ED. Studies based on multiple EDs would have provided a more general-

izable result. Finally, one could contemplate a more extensive statistical model which includes

the impact of interaction between covariates on the service quality measures.

Data from other hospitals might suggest that the number discharged follows a different

distribution than either the Poisson or Negative Binomial, and hence a different GLM model

might need to be fitted under such circumstances. Parametric survival models, such as, accel-

erated failure time (AFT) models are natural alternatives to the Cox-PH models (Kalbfleisch &

Prentice (2011)). AFT models can be used to model time to event data, such as, patient LOS,

service time, and waiting time.



Chapter 6

A multi-class multi-server

accumulating priority queue with

application to health care

6.1 Introduction

One way of dealing with waiting line problems in the presence of diverse client needs is a

priority queueing mechanism. A practical example from the field of health care would be

the acuity rating systems which have been employed in many countries to classify emergency

patients according to their level of severity. In the context of emergency medicine, the Canadian

Triage and Acuity Scale [CTAS (2005)] and the Australian Triage Scale [ATS (2000)] (on

which CTAS is based) are two examples, where patients are classified into five priority classes

(see Table 6.1, below). Each class is associated with a specified performance target assessed

in terms of a set of Key Performance Indicators (KPIs). Each KPI comprises a threshold time

standard, along with the proportion of patients who should not exceed that time standard. These

standards are ostensibly based upon clinical need, although the case can be made that for the

123
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lower acuity classes, the KPIs reflect performance benchmarks more than clinical need.

Table 6.1: CTAS Key Performance Indicators

Category Classification Access Performance Level

1 Resuscitation Immediate 98%
2 Emergency 15 minute 95%
3 Urgent 30 minute 90%
4 Less urgent 60 minute 85%
5 Not urgent 120 minute 80%

A different situation where a prioritized system arises in health care is in hip and knee

replacement surgery (Arnett et al. (2003)), where distinctions are made among various elective

classes (see Table 6.2 below).

Table 6.2: Key Performance Indicators for Hip and Knee Replacement Surgery, Canada

Category Wait Time Target

Emergency Immediate to 24 hours
Urgent, priority 1 Within 30 days
Urgent, priority 2 Within 90 days
Scheduled Consultation within 3 mos,

Treatment in next 6 mos

There is no reason to presume, a priori, that the stipulated KPIs for each customer class

will be met under a classical priority service discipline, for any given set of patient presentation

rates. It might well be the case in a two-class system, for instance, that high-priority patients

may receive better service than their specified target, while the service level of the low priority

patients misses its target. This indicates the need for a priority mechanism that can provide the

extra degree of flexibility required to align the observed performance levels with the specified

KPIs. The first model to do this was due to Kleinrock (1964), who let customers from a given

class (say, k; k ∈ {1, 2, . . . ,K} where K denotes the number of classes) accumulate ‘priority’ at

a rate bk > 0, where bk > b j for k < j. In this way, a customer from a non-urgent class who

experiences a very long wait will eventually accumulate sufficient priority to access the server

even when some customers from a more urgent class may be present, and at an earlier time
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point than if a static priority mechanism were in place.

Kleinrock (1964)’s analysis gave a set of recursive formulae for the mean waiting time

before service for each class. However, as illustrated in the two previous examples, the per-

formance of a queueing system in a health care setting is usually specified by the tail of the

waiting time distribution for each class, and not by the average waiting times. With this in

mind, Stanford et al. (2013) recently reconsidered Kleinrock’s model, which they renamed

the “accumulating priority queue” (APQ), and obtained the waiting time distribution for each

priority class in the single server setting.

It can be argued that a variant of the accumulated priority approach is being used already in

certain priority health care settings, on an implicit level at least, whenever the deciding health

care professional factors the time spent waiting as well as the patient’s acuity level in the

decision to select the next patient for treatment. In fact, Hay et al. (2006) in their simulation

model present an approach employing what they call “operational priority”, in which each

patient is assessed, and assigned an initial priority score which then increases over time.

This note is the first to present distributional results of a queueing-theoretic form for an

APQ in a multi-server setting. The results that we present have restricted applicability, in

that they require us to assume that all treatment times are exponentially distributed with the

same mean. As such, they could be applied in settings such as hip and knee surgery, where

treatment durations are comparable for all patient groups (except for Emergency cases such

as hip fractures, which are handled separately). The present model cannot be applied in an

Emergency Department setting, where treatment times are clearly different for patients of the

various acuity levels. (This case is the subject of ongoing work, for which substantial further

analytical effort is required.)

The purposes of this note are two-fold. In the first instance, we wish to present the exact

transform of the waiting time distribution for each class in the case where treatment times are

identical. The second purpose is to carry out numerical investigations to assess the performance

of the multi-server APQ model. Typically, for a multi-server system with two or three classes
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and KPIs with a doubling time benchmark (such as was seen for the lower classes under CTAS

and ATS), we are interested in addressing questions such as which are the limiting KPIs, what

are the optimal accumulation rates to assign, and what is the maximal traffic load that can be

accommodated by a given number of servers.

The remainder of the paper is arranged as follows. In the next section we describe the

model. Section 3 contains our derivation of the waiting time distribution for each class. A

series of numerical investigations are reported in section 4, where we also present a method for

choosing the optimal value of the accumulation rates to satisfy given performance objectives

in the two-class case. The final section of the paper gives conclusions and future research

directions.

6.2 Description of the Model

The model considered in this note is essentially that in Kleinrock (1964) and Stanford et al.

(2014), but with c > 1 servers, and it is restricted to the case of a common exponential service

time distribution for all classes. Customers of class-k, k = 1, 2, . . . ,K arrive to the queue

according to a Poisson process with rate λk. If a server is free when the customer of class-k

arrives, then that customer enters service immediately. Otherwise, they wait in the queue for

service, accumulating priority at rate bk where b1 > b2 > . . . > bK , so class-1 here is the

highest priority class, and class-K the lowest. Thus a customer of type k arriving at time t

will have accumulated priority bk(t′ − t) by time t′. If all servers are busy, then at the time of

the next service completion, the customer that enters service will be the one with the highest

accumulated priority at that instant. The common exponential service time distribution has

mean 1/µ and Laplace Stieltjes Transform (LST) B̃(s) = µ/(µ + s). All inter-arrival times and

service times are independent of one another. As in Stanford et al. (2014), throughout this note,

the LST of a random variable with distribution function F will be denoted by F̃.

In the interests of tractability, we restrict ourselves to the case where the service times
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are exponentially-distributed with a common mean. Whereas, in a single server queue, the

commencement of service for a waiting customer occurs when the service of the preceding

customer is completed, in multi-server queue, it occurs when one of the servers becomes free.

In the single-server case there are no ongoing services to worry about but, in the multi-server

case, the future evolution of the queue will depend on the stage of service of those customers

whose service is continuing.

Specifically we need to know the minimal residual service time among the continuing cus-

tomers, in order to specify when the next customer can move into service. For non-exponential

distributions, this task is tractable only when the number of servers is small, and the service

time distributions are simple extensions of the exponential, such as Erlang distributions of low

order, or mixtures of two exponentials. Even in the case where the other service times are ex-

ponential, but with class-dependent means, to characterize the minimum residual time we need

to know the mix of continuing customers, and the different possibilities for such a mix make

the analysis, at least, very complicated. Furthermore, it is at present unclear how the reordering

of service times in an APQ setting affects the duration of the busy periods.

For these reasons, we have opted to solve the common exponential case first and, as we

have already noted, it can be a good model for situations such as hip and knee surgery. We

are pursuing the non-identical service time case in ongoing work, both analytically and, as

in Xiong et al. (2013) via a near-perfect simulation approach which can be applied to this

situation.

6.3 Waiting Time Distributions

We turn now to finding the distribution of the waiting time before service commences for the

various classes. Let W̃ (k)(s) denote the Laplace transform of the stationary waiting time distri-

bution for customers of class-k; k = 1, 2, . . . ,K. We begin by observing that the waiting time

prior to service is strictly positive only if an arrival finds all c servers busy, and otherwise it is 0.
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Any priority mechanism that selects among waiting customers with service time requirements

drawn from the same distribution will have no impact upon the chance that an arrival finds all

of the servers busy, which can be identified from the corresponding M/M/c queue.

With C(A, c) being the probability that all servers are simultaneously busy in a stationary

M/M/c queue with A = λ/µ and λ =
∑K

i=1 λi, it immediately follows that

W̃ (k)(s) = (1 −C(A, c)) + C(A, c)W̃ (k)
+ (s); k = 1, 2, . . . ,K. (6.1)

where W̃ (k)
+ (s) is the LST of the class-k waiting time distribution, conditional on it being posi-

tive, that is, conditional on a class-k customer arriving to find all servers busy.

Thus we need to find W̃ (k)
+ (s), the LST of the class-k waiting time distribution, conditional

on an arrival of class-k finding all servers busy. In the following lemma we will denote this by

W̃ (k)
+ (s; µ, c), to explicitly state the dependence of the results on the number of servers c and the

common service rate µ for all classes.

Lemma 6.3.1 Consider the accumulating priority queue where all classes have exponentially

distributed service times, with common mean 1/µ. Then

W̃ (k)
+ (s; µ, c) = W̃ (k)

+ (s; cµ, 1); k = 1, 2, . . . ,K. (6.2)

Proof: When all servers are busy, the times between service completions are exponentially

distributed with parameter cµ since there are c exponential servers, each serving at rate µ.

Thus, the times between service completions have the same distribution as if there were a

single exponential server working at rate cµ. Service completion times correspond to times at

which the next customer is selected for service, which we can think of as the service selection

process. Since the service selection processes have the same distribution in both cases, the

distributions of the waiting times until service commences for all classes will also be identical

in both cases. �

It follows directly from Lemma 6.3.1 that the waiting time LST for delayed customers in the



6.3. Waiting Time Distributions 129

multi-server case can be obtained directly from the single-server results with service rate cµ.

We give below the critical formulas from Stanford et al. (2014) for the single-server model,

to provide an intuitive appreciation for the nature of the algorithm. The interested reader is

directed to Stanford et al. (2014) for the detailed analysis.

The results in Stanford et al. (2014) rely on the concept of a customer ‘becoming accred-

ited at level k’, and this, in turn, is expressed in terms of ‘the maximum priority process’

(M1(t), . . . ,MK(t)) which is defined precisely there. Intuitively speaking, Mk(t) is the maxi-

mum possible priority that a customer of class k can have at time t, given the history of the

process up to the time that the current customer entered service. If there is no customer in

service at time t, then Mk(t) = 0 for all k = 1, . . . ,K. We say that a customer of class i ≤ k

becomes ‘accredited at level k’ when its priority exceeds Mk+1(t). Once this happens, it is

not possible for any customer of class j > k to enter service before the customer that has be-

come accredited at level k. In Corollary 7.3 of Stanford et al. (2014), the authors establish that

customers of class i ≤ k become accredited at level k according to a Poisson process at rate

λi(bi − bk+1)/bi.

Thus in particular, class-k become accredited at level k according to a Poisson process at

rate λk(1 − bk+1/bk). Since any such customer cannot become accredited at a higher level,

this fraction (1 − bk+1/bk) of class-k customers are served during a cycle related to customers

who have managed to gain accreditation at level k. The remaining fraction (bk+1/bk) of class-k

customers enter service at one of accreditation levels k+1 through n, all of which are achievable

by class-(k + 1) customers. It is established in Stanford et al. (2014) that the class-k customers

who fail to become accredited at level k perceive a scaled version of the class-(k + 1) waiting

time distribution.

We can now summarize the results for the waiting time distributions. Let ρi = λi/cµ for

1 ≤ i ≤ K, and ρ =
∑K

i=1 ρi = λ/cµ, and σk =
∑k

j=1 ρ j(b j − bk+1)/b j. Finally, we define W̃ (k)
acc(s)

to be the LST of the waiting time of a class-k customer who is served at accreditation level k.

The LSTs W̃ (k)
+ (s) are calculated for k = K − 1,K − 2, ..., 1 starting from W̃ (K)

+ (s) = W̃ (K)
acc (s)
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using the recursion

W̃ (k)
+ (s) =

(
bk+1

bk

)
W̃ (k+1)

+

(
bk+1

bk
s
)

+

(
1 −

bk+1

bk

)
W̃ (k)

acc(s) (6.3)

where W̃ (k)
acc(s) is given by

W̃ (k)
acc(s) =

 (1 − ρ)
(1 − σk)

+ W̃ (k+1)
+

(
bk+1

bk
s
) k∑

j=1

ρ j(bk+1/b j)
(1 − σk)

+

K∑
j=k+1

ρ j

(1 − σk)
W̃ ( j)

+

(
b j

bk
s
) W̃ (k,0)

acc (s). (6.4)

The term W̃ (k,0)
acc (s) above is defined in Stanford et al. (2014), and requires further substitutions

in terms of other random variables which the interested reader will find defined there. We list

the necessary formulas for the determination of W̃ (k,0)
acc (s) in the Appendix.

6.4 Numerical Investigations

Our purpose in working with the Accumulating Priority Queue (APQ) is to identify a selection

scheme that can be applied to different acuity-based triage categories, which factors patients’

waiting times into the decision of who to treat next, and which is flexible enough to enable a

collection of Key Performance Indicators (KPIs) written in terms of distributional tails to be

met. A classical priority mechanism does not achieve this: either the collection of KPIs is met

for a given set of patient presentation rates, or it is not. What makes the APQ more flexible in

this regard is that we are free to select the accumulation rates bk; k = 1, 2, . . . ,K. That is, we

see the priority accumulation rates in a performance setting, as values to be determined that

could be adjusted in the event of non-compliance, precisely so as to achieve compliance of all

KPIs at a given staffing level, if it is at all possible to achieve compliance. Such a view will

be medically appropriate as long as the triage categories and the KPIs themselves have been
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chosen well to ensure proper care for all patient acuity levels.

We caution that the mechanism is not intended to be used in a situation where the bk’s

are selected for individual patients by medical professionals in an attempt to reflect clinical

perceptions of the severity of that patient’s condition. It is the role of the allocation to triage

categories to ensure that patients receive appropriate treatment.

Our first numerical example is loosely drawn from the CTAS model, except for the fact that

we assume that all patient classes have the same treatment time distribution, which is unlikely

to occur in reality in an Emergency department. We focus on three priority classes based on the

KPIs for the urgent (CTAS-3), less urgent (CTAS-4) and non-urgent (CTAS-5) patients with

the APQ mechanism. The key performance indicator (KPI) for CTAS-3 (urgent) patients is that

they will have to be seen within 30 minutes at least 90% of the time. The KPI requirements

for CTAS-4 (less urgent) and CTAS-5 (non urgent) patients require the commencement of

treatment within one hour at least 85% of the time and within two hours for at least 80% of the

time, respectively.

The Gaver-Stehfest (GS) algorithm (Gaver (1966) and Stehfest (1970)) with 8 points has

been used to invert the LSTs of the waiting time distributions. As a check, since the Gaver-

Stehfest numerical inversion is in fact an approximation, the results were verified with lengthy

simulation experiments, with each simulation run being carried out for one million customers.

Our initial results are for a two-class, two-server APQ model comparing CTAS-3 KPI for

class-1 with the CTAS-4 KPI for class-2, based on the following parameters: the arrival rates

are λ1 = 0.9 and λ2 = 0.8 for class-1 and class-2 patients, respectively, while service times for

both classes are exponentially distributed with mean 1/µ = 1. The accumulation rate, b1, for

class-1 (CTAS-3) is set to one, whereas the accumulation rate for class-2 (CTAS-4) assumes

one of three values: b2 = 0, 0.5 and 1.

Figures 6.1 and 6.2 present the resulting class-1 and class-2 waiting time distributions re-

spectively, where Gaver-Stehfest evaluations overlay the simulation results. The fact that no

discrepancy can be discerned between the graphs underscores the accuracy of the GS inversion
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with only 8 points. We see from Figure 6.1 that the class-1 requirements were met for values

of b2 ≤ 0.17. If class-2 patients were to accumulate priority at a higher rate, the class-1 KPI

would fail to be met. Similarly, from Figure 6.2, we see that as long as class-2 patients are

accumulating priority at rates b2 sufficiently close to 1, they are complying with the class-2

KPI. The combination of these statements means that for the given scenario, there is no class-2

accumulation rate b2 that simultaneously satisfies both KPIs. In order to do so, an additional

server would be required.
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Figure 6.1: The waiting time distribution function for class-1, with arrival rates λ1 = 0.9 and
λ2 = 0.8 and accumulation rates b1 = 1 and b2 = 0, 0.5, 1; simulation (solid line) and Gaver-
Stehfest 8 point evaluation (dashed line).
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Figure 6.2: The waiting time distribution function for class-2, with arrival rates λ1 = 0.9 and
λ2 = 0.8 and accumulation rates b1 = 1 and b2 = 0, 0.5, 1; simulation (solid line) and Gaver-
Stehfest 8 point evaluation (dashed line).
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Determining the Limiting Key Performance Indicator

For any given set of arrival rates λi; i = 1, 2, service rate µ, accumulation rates b2 (with

b1 arbitrarily set to 1) and number of servers c that correspond to a stable (ρ < 1) queueing

system, one can determine the waiting time distribution functions for the various classes as in

the two foregoing Figures (6.1, 6.2). We seek now to address a more comprehensive question:

at what utilisation levels (ρ), and for what values of b2 = b, do the different classes of customers

meet their KPI targets? We have prepared a set of figures to respond to this question, with the

total utilisation level on the x-axis and permissible b2 = b values for a specified class along

the y-axis. The goal is to determine a “feasible region” comprising a combination of overall

utilisation and specified accumulation rate, for which all classes of customer meet their KPI

targets. Initially considering the two-class case where both the class-1 and class-2 customers

meet their targets, we varied our utilisation rates to see for what values of b2 both the classes

meet their targets, with b1 fixed at unity, for differing numbers of servers. The feasible region

comprises those points below the red curve (indicating the maximal rate b2 for which the class-

1 KPI is still met), and above the blue curve (indicating the minimal rate b2 for which the

class-2 KPI is still met). On the basis of the traffic patterns, one may use these or similar

graphs to identify an appropriate b2 and/or the number of servers to ensure compliance with

both targets.

In Figure 6.3, we have plotted four graphs for the single server, two server, three server

and five server cases, respectively. The utilisation levels vary along the horizontal axis while

the b2 values vary along the vertical axis. If we look at each graph closely, it is evident that

above a certain utilisation level, there is no value of b2 such that both classes simultaneously

meet their KPI targets. For example, in the single server case, any utilisation level above 82%

is such that either class-1 or class-2 patients will fail to meet their targets for any value of b2

, and there are values of b2 for which both classes fail to meet their targets. One observation

we have from the sequence of graphs is that as the number of servers increases, the highest

utilisation level for which both classes meet their targets for some value of b2 also increases.
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This result is anticipated, as it reflects a well-known property of multi-server queues: as the

number of servers increases, the utilisation level required to produce the same level of delay

also increases.

Figure 6.3: Permissible range of values of 0 < b2 = b < 1 to meet the class-1 and class-2 KPI
where b1 is set to 1 and arrival rates for both classes are considered equal, for one, two, three
and five server cases, respectively (left to right, top to bottom).

Algorithm for finding maximum ρ and optimum b

We observe that in the foregoing examples, depending upon our choice of b2, the range of

utilizations satisfying both KPIs changed. We consider the optimal value of b2 to be the one for
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which both KPIs are satisfied for the largest range of the utilization ρ, with the ratio between

the arrival rates held constant. The shape of the graphs in Figure 6.3 suggests a procedure for

finding the optimal value of b2 for a given pair of class-1 and class-2 KPIs and a given number

of servers. For example, if we choose b2 equal to about 0.26 in the single-server case, both

KPIs will be satisfied for ρ ≤ 82% roughly, while in the five server case, we should choose

b2 to be about 0.39. A modified bisection algorithm that can be used to find the optimal value

of b2 for any two-class system is provided in the appendix. The algorithm, when run for the

same parameters as were used in Figure 6.3, leads to the pairs of maximum utilisation ρmax and

optimal accumulation rate b∗2 given in Table 6.3.

Table 6.3: Maximum ρ and optimal b2

Number of Servers ρmax b∗2
1 81.7% 0.257
2 90.5% 0.335
3 93.5% 0.361
5 96.0% 0.380

For a given number c of servers, and specified KPIs, the value of b∗2 that is reported by

the above algorithm will ensure that both KPIs are met for the widest range of traffic load

possible. In a situation where, at any time, we won’t know the traffic parameters precisely,

we would argue that this is the best choice of b2. Furthermore, although it is highly unlikely

that the arrival and service rates and number of servers would all conspire to yield a precise

utilisation of ρmax in any given application, a choice of b2 = b∗2 will allow for the maximal

possible increase in future demand before another server would be required.

Table 6.3 reveals that as the number of servers increases, both the maximum utilization rate

ρmax and the optimal accumulation rate b∗2 increase as well. From Figure 6.3 it appears to be

the case that as the number of servers increases, the accumulation rate of the bounding curve

for KPI 2 becomes steeper, leading to the higher point of intersection.

We now turn our attention to the development of similar graphs in some three class, two

server scenarios. We have considered equal arrival rates (33% for each) for Figures 6.4 and 6.5
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and unequal arrival rates (37.5%, 50%, and 12.5%, for class-1, class-2, and class-3 patients,

respectively) for Figures 6.6 and 6.7. The service rate was set to unity as before. Utilisation

levels were varied on the horizontal axis while b3 was varied over the vertical axis, subject

to 0 < b3 < b2. For Figures 6.4 and 6.6, we have fixed b1 = 1, b2 = 0.9 and let b3 vary

accordingly. However, for Figures 6.5 and 6.7, we have fixed b1 = 1, b2 = 0.4 so that b3 can

only vary between 0 and 0.4. In graphs 6.4 and 6.6, a utilisation is reached such that no value

of b3 can lead to compliance with the class-1 KPI, prior to any limitation being observed for

the class-3 KPI. Even in a queue with absolute priority for class-3 (i.e. b3 = 0), its KPI would

be met, while having a positive value of b3 adversely affects the quality of service seen by the

higher priority customers.

In Figures 6.5 and 6.7, we observe that the situation is less severe overall, since b2 = 0.4.

It is still the case, however, that an impact is seen first for the class-1 KPI as ρ increases.
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Figure 6.4: Permissible range of values of 0 < b3 < 0.9 to meet the class-1, class-2 and class-3
KPI where b1 = 1 and b2 = 0.9 and arrival rates for all classes are considered equal.

Figure 6.5: Permissible range of values of 0 < b3 < 0.4 to meet the class-1, class-2 and class-3
KPI where b1 = 1 and b2 = 0.4 and arrival rates for all classes are considered equal.
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Figure 6.6: Permissible range of values of 0 < b3 < 0.9 to meet the class-1, class-2 and class-3
KPI where b1 = 1 and b2 = 0.9 and arrival rates are considered unequal (37.5%,50%,12.5%,
respectively).

Figure 6.7: Permissible range of values of 0 < b3 < 0.4 to meet the class-1, class-2 and class-3
KPI where b1 = 1 and b2 = 0.4 and arrival rates are considered unequal (37.5%,50%,12.5%,
respectively).
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Applying the bisection algorithm to the 3-class, two server cases considered here, with

b2 = 0.4 and b3 allowed to vary, one obtains the results listed in Table 6.4.

The use of these and similar graphs provides insight into the behavior of the multi-server,

multi-class APQ. Depending on the service requirements of different classes of customers, one

may fine-tune their respective accumulation rates to try to achieve their performance standard.

Table 6.4: Maximum ρ and optimal b3

Three Classes (Two Servers) ρmax b∗3
Equal arrival rate 87.1% 0.071

Unequal arrival rate 83.5% 0.064

6.5 Conclusion and Future Research

We have presented a multi-server APQ model for an arbitrary number of customer classes,

for which all service times are selected from a common exponential distribution. An obvious

extension of our current model is to the situation where the rate of service differs for different

classes of patients. However, such a problem is far from trivial analytically, since the duration

of a queueing period in a multi-server context will depend on the mix of customers that is in

service when the queueing period starts, via the fact that this mix affects the distribution of the

time the initial service completions occur.

The extension to non-exponential service time distributions can be considered as effectively

intractable in the multi-server context, although some results might be possible in the case

of a small number of servers for small-order Erlang distributions, which are built upon the

exponential.

The present APQ models, both single-server and multi-server, enable one to ascertain

whether a given set of accumulation rates will enable compliance with a given set of KPIs

for a given traffic pattern of patient arrival and service rates. This may not be an absolute cri-
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teria in a clinical settings (e.g. ED) where either the KPI’s are not scientifically defined or the

waiting time credits are not allowed to the lower acuity patients (CTAS 4 and 5) as compared

to higher acuity patients (CTAS 4). However, the APQ models can help identify other, better

time limits for the KPI based performance systems.

We have also considered a particular optimization problem related to the model, namely, the

selection of the “best” accumulation rate which allows for the maximum possible utilisation

that complies with the KPIs. Another pertinent optimization problem relates to an inherent

flaw in KPIs based solely on a target time and compliance probability: patients who exceed the

standard are of no consequence, so long as they are few enough in number that the relevant KPI

is met. In fact, when such rare events do occur, one would wish to minimize any additional

amount of time such patients wait. One such criterion would be the minimization of the total

or average amount of excess waiting beyond the specified targets. This topic is among those

we hope to address in future work.

Implementation of our model in an emergency department suffers from two clinical diffi-

culties. First, patients in each CTAS category may take variable amounts of time to be assessed

and treated. Second, different physicians (servers) may take different amounts of time to assess

and treat the same individual. In order to overcome those difficulties one should employ a sim-

ulation model where different service time distributions for each CTAS class patients can be

assigned and an estimate (along with variability) of the time a server takes to treat a particular

CTAS class patient may be obtained from the POWER study (Dreyer et al. (2009)). This is

another avenue of future reasearch that we hope to pursue.
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6.7 Appendices

Appendix A: Relevant waiting time formulas

We present below the remaining formulas needed for the determination of W̃ (k,0)
acc (s) which

appears in (6.4), for reasons of completeness. The derivation of these expressions can be found

in Stanford et al. (2013).

The terms W̃ (k,0)
acc (s) are given by

W̃ (k,0)
acc (s) =

{µθk−1 −
∑k

i=1 λi(bk − bk+1)/bi}{̃γk(sbk+1/bk) − θ̃k−1(s)}

{1 − bk+1/bk}{s − (
∑k

i=1 λibk/bi)(1 − θ̃k−1(s))}
. (6.5)

where θ̃k(s), k = 1, 2, . . . ,K is the LST of the duration of a busy period during which

customers “gain accreditation relative to class-k + 1” (see Stanford et al. (2013)) and

1
µθk

=
dθ̃k(s)

ds

∣∣∣∣∣∣
s=0

(6.6)

is the mean of a random variable with LST θ̃k(s).

Due to the assumption that customers have a common exponential service time distribution,

θ̃k(s) =
(cµ + s + Λk) −

√
(cµ + s + Λk)2 − 4Λkcµ
2Λk

(6.7)

where

Λk =

k∑
i=1

λi(1 − bk+1/bi). (6.8)

Finally, γ̃k(s) is the solution to the functional equation γ̃k(s) = θ̃k−1(s + (
∑k

i=1 λi(bk −

bk+1)/bi)(1 − γ̃k(s)).
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Appendix B: Algorithm for finding maximum ρ and optimum b

1. Set (ρL, bL) = (0, 0.5) and (ρU , bU) = (1, 0.5). It is necessarily the case that both the class-

1 and class-2 KPIs must be satisfied when the load is given by ρL and the accumulation

rate of class-2 traffic is given by bL, so we know that ρL < ρmax. It is possible that the

class-1 KPI is satisfied when the load is given by ρU for some low values of bU . However

the class-2 KPI will certainly not be satisfied for any value of bU when ρU = 1, because

a non-priority queue with this load is unstable. So we know that ρU > ρmax.

2. Set ρM = (ρL + ρU)/2 and bM = (bL + bU)/2.

3. Evaluate whether one, both, or neither of the KPIs is met with utilisation level ρM and

accumulation rate bM. If neither is satisfied, then we know that ρM > ρmax and so we set

(ρU , bU) = (ρM, bM); if both are satisfied, then we know that ρM < ρmax and so we set

(ρL, bL) = (ρM, bM). In both cases, return to Step 2.

4. In the case where one KPI is satisfied at the point (ρM, bM), while the other is not, we

need to search for an appropriate new value of bM. This is done as follows:

(a) If KPI 1, but not KPI 2, is met, then set bL
M = bM and bU

M = 1. If KPI 2, but not KPI

1, is met, then set bL
M = 0 and bU

M = bM.

(b) Set bM
M = (bL

M + bU
M)/2. If neither KPI is satisfied at the point (ρM, bM

M), then we

know that ρM > ρmax and so we set (ρU , bU) = (ρM, bM
M); if both KPIs are met at the

point (ρM, bM
M), then we know that ρM < ρmax and so we set (ρL, bL) = (ρM, bM

M). In

both cases, return to Step 2.

If KPI 1, but not KPI 2, is met at the point (ρM, bM
M), then set bL

M = bM
M. Return to

Step 4(b).

If KPI 2, but not KPI 1, is met at the point (ρM, bM
M), then set bU

M = bM
M. Return to

step 4(b).

5. Once ρU −ρL < ε, for some precision level ε, the algorithm reports (ρmax, b∗2) = (ρM, bM).



Chapter 7

An Optimization Problem for

Queues Operating under Waiting

Time Targets

7.1 Introduction

In many situations, a health care or other service system attends to a number of distinct cus-

tomer populations with differing urgencies for commencement of service. One ready example

arises in the field of emergency medicine, which serves the needs of patients whose lives are

in imminent danger, those of moderate urgency, and others with comparatively minor com-

plaints. The Canadian Triage and Acuity Scale CTAS (2005), (see Table 7.1, below) as well

as the Australasian Triage Scale ATS (2000) on which it was based, identify five distinct pa-

tient populations, and sets a service standard for commencement of service for each group.

These standards specify a delay target and a corresponding compliance probability p for each

class, such that the chance a patient from the given class will be seen by the delay target (i.e.,

commence treatment) is at least p.

145
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Table 7.1: CTAS Key Performance Indicators

Category Classification Access Performance Level

1 Resuscitation Immediate 98%
2 Emergency 15 minute 95%
3 Urgent 30 minute 90%
4 Less urgent 60 minute 85%
5 Not urgent 120 minute 80%

CTAS is an example of a set of Key Performance Indicators (KPIs) comprising delay tar-

gets di and corresponding compliance probabilities pi; i = 1, 2, . . . , 5. KPIs are widely used in

health care, both for “visible” queues such as those in Emergency departments, as well as “in-

visible” queues or waiting lists, such as in (Arnett et al. (2003)), which pertains to hip and knee

replacement surgery. Britain’s National Health Service (NHS) uses KPIs for a diverse range of

health services, including, for example, mental health (Dodd (2011)), Accident & Emergency

department (NHS-Stockport (2014)), Cancer time to treatment (NHS-Leeds (2013)), and Diag-

nostic tests (TheGuardian (2011)), to name a few. Similar trends can be found in many Western

countries.

At face value, there appears to be a close link between systems operating to KPI delay

targets and service systems offering specified lead times for the delivery of a particular service

(see, for instance, Keskinocak et al. (2001), Çelik & Maglaras (2008), Akan et al. (2012)).

However, lead time problems are typically characterized by a revenue stream, and are typically

concerned with the “right” lead time to offer for a specified request as a function of the orders

presently in the service system in order to maximize profit or minimize a penalty function. In

contrast to this, the delay targets in KPI problems are fixed, and in the health care field where

they predominate, they usually having been set by medical professionals in response to the

perceived clinical need of the various patient classes. Furthermore, they are typically set prior

to any consideration of the traffic characteristics of the patient classes (frequency of demand,

treatment time distributions, etc.). It then falls to the health care professionals responsible for

the operation of the particular facility to determine a patient selection rule (in queueing terms,
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a service discipline) so that the KPIs are all met.

In essence, the selection of a suitable service discipline to accommodate the differing delay

target needs of the various patient classes in a KPI-driven system is inherently challenging. Not

only is a first-come, first served (FCFS) discipline ill-suited to the task, but in all likelihood a

standard priority mechanism will fail as well: patients of lower priority are subject to repeated

overtaking by recent higher priority arrivals, with no consequence being given for the time

such lower priority patients have already spent in the system. What is needed is a system

which factors both the time that customers have spent in the system as well as their acuity

level so as to better adhere to the stated delay targets. In other words, patients from the various

classes should be allowed to accrue priority credit while they wait, at a rate that reflects their

relative urgency for treatment. The determination of the average waiting times for a queue

operating under such a policy was first considered by Kleinrock (1964). Recently, Stanford

et al. (2014) determined the waiting time distributions for the various patient classes in what

they have called the Accumulating Priority Queue (APQ).

In a nutshell, the advantage of an APQ approach for systems operating under KPIs is that it

enables each class of customers to progress fairly towards eventual access to a server by its own

waiting time target. Customers can still be overtaken by others of greater urgency or acuity,

but they will not be overtaken indefinitely, due to the growing accumulated priority the longer

a customer waits.

At the same time, when seen from another perspective, systems designed to respond solely

to stated KPIs suffer a fundamental flaw: no consideration is given for the consequences of

those patients whose waiting time exceeds the standards. This inability of KPIs to reflect the

increased (rather than diminished) urgency of patients whose wait exceeds the specified target

was one of the points commented upon by Dr. Chris Baggoley of Australia’s Expert Panel

Review of Elective Surgery and Emergency Access Targets in a 2012 keynote address (Davies

& Little (2012)).

This paper responds to this oversight by presenting an optimization model to minimize the
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total expected excess delay beyond the target delays for health systems operating under KPIs.

We then generalize the model by seeking to minimize a weighted average of the total expected

excess over all classes of customers. We seek solutions to the model using the Accumulating

Priority Queue (APQ) service discipline. Loosely speaking, the ability to choose the priority

accumulation rates for the various classes provide an extra margin of flexibility over the stan-

dard non-preemptive priority discipline to ensure that the traffic patterns observed in the system

for the classes of customers adhere to the stated KPIs.

When minimizing the total expected excess waiting time, it will be seen that our numerical

examples reveal that this leads to an easily implemented rule of thumb for the optimal priority

accumulation rates which can have an immediate impact on health care delivery. The rule of

thumb says that the patients from each class should accumulate priority at a rate in inverse

proportion to their delay targets. When this is done, patients from any class whose waiting

time is approaching their delay target will tend to have similar accumulated priorities to that

point in time, thereby ensuring comparable likelihoods of waiting time excess.

It should be stressed that there is no obligation upon a health facility governed by a set of

KPIs to implement the same strategy for all its patient classes. In Emergency departments,

one would never make a Resuscitation or Emergency patient wait for someone of lower acu-

ity. However, one could still envisage this as part of an APQ setting merely by allowing for

infinitely-large accumulation rates for these patient classes.

The rest of the paper is organized as follows. In section 2, we present the optimization

problems for both the general case, and its restriction to Accumulating Priority service disci-

pline. We end the section by addressing the matter of convexity of the corresponding APQ

optimization problem.

Section 3 relates the Laplace transforms of the waiting time distributions and expected

excesses. We show that when one resorts to a numerical inversion of the pertinent waiting time

transform to compute the probabilities, the corresponding numerical inversion of the expected

excess waiting time is obtained with minimal additional effort. Due to its simplicity and ease of
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implementation, Section 4 presents our preferred numerical inversion method, Gaver-Stehfest

algorithm (Gaver (1966), Stehfest (1970)), and present the functional relationships needed to

obtain the numerical results that follow.

In section 5, we present a series of numerical examples which explore the optimal behaviour

of the APQ. The nature and impact of our various results and insights are summarized in the

Conclusions section.

7.2 Formulation of the Optimization Problem

Consider a queue featuring either a single server or many servers, which attend(s) to L indepen-

dent classes of customers with distinct KPIs of the form discussed in the introduction. Arrivals

for the nth class of customers are from a Poisson process at rate λn; n = 1, 2, . . . , L. All service

time distributions are known, and they may differ from class to class.

We presume that the queue is operating under a particular service discipline a ∈ A (that

is, a rule for selecting the next customer to enter service), where A denotes the set of per-

missible work-conserving (server is not idle unless queue is empty) disciplines. The set A

includes FCFS, last-come, first served (LCFS), Random Order of Service (ROS) and both

Non-preemptive (NP) and Preemptive Resume (PR) disciplines, among others. We presume

that the queue has been operating sufficiently long to have reached stationarity.

LettingWn denote the stationary class-n waiting time random variable, define the following

for n = 1, 2, . . . , L:

• Wn(x) = P(Wn ≤ x) is the cumulative distribution function,

• S n(x) = P(Wn > x) = 1 −Wn(x) is the survival function, and

• wn(x) = dWn(x)/dx is the probability density function of the stationary class-n waiting

time distribution.

We will denote the respective Laplace transforms of these quantities, and all others to be
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defined below, by a ˜ throughout the paper.

The expected amount of excess waiting time Hn(dn) for a typical class-n customer beyond

a specified delay dn, henceforth abbreviated the “expected excess”, can be determined from

Hn(dn) =

∫ ∞

dn

(x − dn)wn(x)dx =

∫ ∞

dn

S n(x)dx. (7.1)

The latter integral above is obtained by integrating the former one by parts. The quantity

λnHn(dn) can be interpreted as the expected amount of excess waiting for class-n customers per

unit of time.

For such a queue as described above, the general form of the optimization problem can be

stated as follows. We seek to minimize a weighted average of the total expected excess waiting

per unit time over all permissible customer selection strategies,

mina∈A Z =
∑L

n=1 αnλnHn(dn)

subject to Wn(dn) ≥ pn ; n = 1, 2, . . . , L;

where, αn, n = 1, 2, . . . , L denote the respective weights for the excess waiting for class-n

customers. A priori, we observe that the stated problem might be infeasible. If feasible, we

observe that there might conceivably be more than one optimal solution.

7.2.1 Formulating the APQ Optimization Problem

In Stanford et al. (2014), the APQ model first introduced by Kleinrock (1964), was reconsid-

ered, and the stationary waiting time distributions for each class of customer were determined.

Kleinrock (1964)’s model presumed that waiting customers of the ith priority class accrue pri-

ority “credit” at a rate bi ≥ 0, where bi ≥ b j if class i is considered to be of higher priority to

class j. In what follows, we presume that a lower class index means a higher priority, so that

class 1 has top priority and class L has the lowest priority. We note that the APQ discipline is

work-conserving.
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The APQ is a simple yet flexible scheduling model which allows both the priority of the

customer (or acuity of the patient in health care applications ) as well as its time spent waiting

to be factored into the decision as to which customer next enters service. Setting bi = B > 0 ∀i,

a first-come first-served queue that aggregates all customer classes is obtained. Setting bL = 1

while bi = bi+1 ∗ M; i = 1, 2, . . . , L − 1, a classical non-preemptive priority model is obtained

in the limit as M → ∞.

To date, analytical solutions for the waiting time distributions exist for two cases: Stanford

et al. (2014) presents the solution for the single-server case where each class may have its own

specified service time distribution, while Sharif et al. (2014) addresses the multi-server case

when all service times are drawn from the same exponential service time distribution, with

service rate µ.

LetAAPQ denote the set of APQ service disciplines. The resulting APQ optimization prob-

lem then reduces to the selection of the best accumulation rates bi; i = 1, 2, . . . , L in order to

minimize the weighted average excess:

mina∈AAPQ Z =
∑L

n=1 αnλnHn(dn)

subject to Wn(dn) ≥ pn ; n = 1, 2, . . . , L;

bn ≥ bn+1 ; n = 1, 2, . . . , L − 1;

bL ≥ 0;

where, αn, n = 1, 2, . . . , L again denotes the respective weight for the excess waiting for class-n

customers. It is to be noted that the role of αn’s is not to make higher priority customers gain

priority faster (that’s the role of bn’s), rather αn’s provide greater weight to waiting times of

the given class of customers, and as such, assess a greater penalty for incurred waits by those

customers.
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7.3 Convexity in the Two-class APQ Optimization Problem

It is immediately a matter of interest as to whether the APQ optimization problem is convex in

the decision variables bi. Unfortunately, as even the simplest numerical examples in the 2-class

case show later, the expected class-1 excess H1(d1) can have a negative curvature over some

or all of its range as a function of its parameters, so we have been unable to infer convexity

of the resulting weighted average even in the simplest case based upon mixtures of convex

functions. We can establish, however, that the expected class-2 excess H2(d2) is convex in b2

in a two-class problem, and we can infer that the same will hold true for the lowest class L as

a function of its accumulation rate bL in a multi-class APQ problem.

Since it is the ratio b2/b1 of the priority accumulation rates rather than their individual

values that determine which customer will be selected in the two-class case, we can arbitrarily

set b1 = 1 and investigate the behaviour as a function of one variable b2 = b where 0 ≤ b ≤ 1.

Henceforth, we state explicitly the dependence upon b of our preceding probability func-

tions Wn(b, x), S n(b, x), wn(b, x) and Hn(b, dn); n = 1, 2, . . . , L, as our goal is to establish that

H2(b, d2) is a convex function of b. To do so, we first need to establish an important lemma,

whose proof has been relegated to the appendix.

Lemma 1. The stationary waiting time random variableW2 for class-2 customers in a stable

two-class APQ can be expressed as the sum of two dependent random variables

W2 =W + Y (7.2)

whereW denotes the stationary waiting time random variable in the M/G/1 FCFS comparator

queue, and Y refers to a compound Poisson random variable

Y = η1 + η2 + . . . + ηN (7.3)
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where the random variable N denotes the number of class-1 customers to accredit duringW,

and ηi; i = 1, 2, . . . denote a sequence of i.i.d. busy period random variables for an M/G/1

queue with arrivals at rate λ1(1−b) and whose service times are drawn from the class-1 service

time distribution. (In (7.3), it is to be understood that if N = 0, then Y = 0.)
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Figure 7.1: Impact of change in Accumulation Rate

Theorem 1. Given all the foregoing definitions, the function S2(b, x) is a monotonically de-

creasing convex function in b for 0 ≤ b ≤ 1,∀x ≥ 0.

Proof. We proceed by calculating (∂/∂b)S2(b, x) from first principles:

(∂/∂b)[S2(b, x)] = lim
4b→0

{
S2(b + 4b, x) − S2(b, x)

4b

}

Reconsider the revised service discipline used in Lemma 1. From Figure 1, which presumes

that we have conditioned upon W = t, closer inspection of the accreditation process reveals

that the N Poisson events underpinning Y are those that occur at rate λ1 during the first (1 − b)

portion ofW. If the class-2 accreditation rate were to change to b +4b, then only those events
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occurring during the first (1−b−4b) portion ofW would contribute to the compound Poisson

process delaying our tagged customer.

Due to the independence of compound Poisson processes arising from Poisson events in

non-overlapping intervals, we can write Y = Y1 +Y2 where Y1 is the compound Poisson process

corresponding to the N1 accreditation events that occurred during the first (1 − b − 4b) portion

of W, and Y2 is the compound Poisson process corresponding to the N2 accreditation events

occurring during the subsequent (4b) portion ofW. Thus we obtain immediately

S2(b, x) = P(W + Y1 + Y2 > x); S2(b + 4b, x) = P(W + Y1 > x).

Therefore

S2(b + 4b, x) − S2(b, x) = −[P(W + Y1 + Y2 > x) − P(W + Y1 > x)]

= −[P(W + Y1 ≤ x; W + Y1 + Y2 > x)] < 0.

Now for sufficiently small 4b, the probability of two or more events in a small period of

duration 4bW is o(4bW). Similarly, the probability of one such event is λ14bW + o(4bW).

Substituting the terms as appropriate and removing the conditioning upon W, one readily

obtains

(∂/∂b)[S2(b, x)] = −λ1E({W × I(W + Y + η > x)} < 0. (7.4)

[In (7.4), I(A) denotes the indicator function for the event A, equal to 1 if the event occurs, and

0 otherwise.]

Since the partial derivative is negative ∀x, this establishes that S2(b, x) is a monotonically

decreasing function of b. Furthermore, as b increases, Y decreases in distribution, since the rate

of the corresponding underlying Poisson process at rate λ1(1− b) decreases. Consequently, the

probability associated with the indicator function decreases, so that the derivative is a strictly

increasing function of b, and the convexity immediately follows. �
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Corollary 1. The excess function H2(b, d2) above is monotonically decreasing and strictly

convex in b for 0 ≤ b ≤ 1 for every fixed d2 ≥ 0.

Proof. This follows immediately from Theorem 1 and H2(b, d2) =
∫ ∞

u=d2
S2(b, u)du. �

Corollary 2. The excess function HL(bL, dL) for the lowest priority class in a stable L-class

APQ is strictly convex in bL for 0 ≤ bL ≤ bL−1, for every fixed dL ≥ 0.

Proof. The lowest priority class (class N) observes the unfinished workload in the correspond-

ing M/G/1 FCFS queue at its arrival instants. By Corollary 7.3 in Stanford et al. (2014), the

higher classes 1, 2, . . . , L − 1 gain accreditation over class-L customers according to a Poisson

process at rate
∑L−1

i=1 λi(1 − bL/bi). The rest follows by direct analogy to the proof of the two-

class case. �

While the class-1 expected excess function is not always convex, we can establish in the

single-server case that it is monotonically non-decreasing in b for all values of d1.

Theorem 2. For single-server systems, the function S1(b, x) is a monotonically non-decreasing

function in b for 0 ≤ b ≤ 1,∀x ≥ 0.

Proof. We compare sample paths in two stable APQ systems with fixed arrival rates, common

service rate, and with the class-1 accumulation rate set to b1 = 1. The sequences of arrival

instants and service requirements for all customers in the two systems are the same. The only

difference is that in the former case, the class-2 arrival rate is b2 = b where 0 ≤ b ≤ 1 − ∆b,

whereas in the latter it is b2 = b + ∆b ≤ 1, for small ∆b ≥ 0.

The busy periods of the queues in the two systems are the same, since the unfinished work-

load functions for both systems would be the same. The APQ service discipline merely re-
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arranges the order in which some customers are served, relative to any other work-conserving

discipline.

Consider a delayed class-1 customer in the former APQ system; we will refer to it as the

“tagged” customer. In the latter system, all of the class-2 customers formerly served ahead

of the tagged customer will still be served ahead of them. It may be the case that due to the

increased rate of priority accumulation, some class-2 customer formerly present upon the ar-

rival of the tagged class-1 customer might have completed service. However, all of the service

times completed by the server in the former system prior to the tagged customer’s entry would

still be completed under the latter. The only difference is that there may be some more class-2

customer(s) who formerly were selected for service after the tagged customer, who now under

the higher priority accumulation rate b2 = b + ∆b might enter service ahead of it, leading to a

longer waiting time. As the probability of such an event is positive, it follows that S1(b, x) is a

monotonically non-decreasing function in b for 0 ≤ b ≤ 1,∀x ≥ 0.�

Corollary 3. For single-server systems, the excess function H1(b, d1) above is monotonically

non-decreasing in b for 0 ≤ b ≤ 1 for every fixed d2 ≥ 0.

Proof. This follows immediately from Theorem 2 and H1(b, d1) =
∫ ∞

u=d1
S1(b, u)du. �

Remark. The same line of proof cannot be used in the multi-server case, since the re-arranging

of service times can lead to customers being served by different servers, and even to separate

periods of time when all servers are busy. Nonetheless, we conjecture that the claim is still true

in the multi-server case.
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7.4 Relationship between the Transforms of the Waiting Time

CDF and the Excess Wait

In this section, we once again consider an arbitrary service discipline for which the stationary

waiting time distribution can be specified in terms of its Laplace-Stieltjes transform for each

class of customers. While many such queueing systems have been analyzed successfully in

this way, it is frequently the case that one cannot invert the LST analytically. In such cases,

one commonly resorts to one of many effective procedures available (for example, Brigham &

Morrow (1967), Gaver (1966), Stehfest (1970)) which numerically invert the LST to recover

the desired probabilities. We establish in this section that the numerical evaluation of the ex-

pected excess per customer is a straightforward matter via numerical inversion for any service

discipline for which the waiting time LSTs are readily available. We do so by establishing that

the transform of the amount of excess waiting time can be expressed in terms of the waiting

time LST which we use to evaluate KPI compliance. The implication is that the objective func-

tion which seeks to minimize the amount of excess can be evaluated with minimal extra effort

beyond assessing whether KPI compliance has been achieved.

The Laplace transforms of wn(t), Wn(t), S n(t), and Hn(t) are given by

w̃n(s) =

∫ ∞

t=0
e−stwn(t)dt =

∫ ∞

t=0
e−stdWn(t)

W̃n(s) =

∫ ∞

t=0
e−stWn(t)dt

S̃ n(s) =

∫ ∞

t=0
e−stS n(t)dt

H̃n(s) =

∫ ∞

t=0
e−stHn(t)dt

Standard properties of Laplace transforms imply that

W̃n(s) =
w̃n(s)

s
(7.5)
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and

S̃ n(s) =
1
s
− W̃n(s). (7.6)

From (7.1), it follows that H′n(t) = −S n(t), so that when integrating by parts,

H̃n(s) =

∫ ∞

t=0
Hn(t)e−stdt

=

[
Hn(t)e−st

−s

]∞
0

+

∫ ∞

t=0

e−st

s
H′n(t)dt

=
Hn(0)

s
−

1
s

S̃ n(s).

Let mn = mean class-n waiting time. Since Hn(0) =
∫ ∞

x=0
S n(x)dx = mn,

H̃n(s) =
mn

s
−

1
s2 +

w̃n(s)
s2 . (7.7)

It is immediately apparent from (7.7) that the evaluation transform of the expected excess per

customer H̃n(s) is readily obtained for any value of s once the corresponding evaluation has

been carried out for the transform of the waiting time distribution w̃n(s). In the next section,

we present the specific numerical inversion approach we use to achieve both tasks.

7.5 The Utility of Gaver-Stehfest Numerical Inversion for

Evaluating Expected Excess

The numerical inversion of Laplace transforms has been an alternative to analytical inver-

sion since the Fast Fourier Transform (FFT) technique gained popularity Brigham & Morrow

(1967). Whereas the FFT can require hundreds of evaluations for a single time point of inter-

est, there are alternatives that require only a handful of evaluations. The one we use has come

to be known as Gaver-Stehfest numerical inversion; it is so named because the pioneering

probabilistic work of Gaver (1966) was later refined algorithmically by Stehfest (1970).

Given a real-valued function f (t); t ≥ 0 whose Laplace transform is f̃ (s), then the Gaver-
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Stehfest method for numerical Laplace transform inversion at the point t is given by the fol-

lowing (Gaver (1966), Stehfest (1970)):

f (t) =
ln2
t

K∑
k=1

Vk f̃
(
ln2
t
× k

)
(7.8)

where the values Vk are the Gaver-Stehfest coefficients of order K (always even), half of which

are positive and half negative numbers. These coefficients, as derived by Gaver, are combina-

torial terms arising in order statistics, with the useful by-product that they always sum to 0.

Typically K = 8 points provides two significant digits of accuracy, which is quite adequate for

assessing waiting times. The table that provides the coefficients for K = 2; 4; 6; 8 is provided

in the appendix.

In light of (7.5) and (7.8), the Gaver-Stehfest evaluation of the class-n waiting time distri-

bution, n = 1, 2, . . . ,N is achieved via

Wn(t) =
ln2
t

K∑
k=1

Vk

w̃n

(
ln2
t × k

)(
ln2
t × k

) =

K∑
k=1

Vk

k
w̃n

(
ln2
t
× k

)
. (7.9)

Meanwhile, the Gaver-Stehfest numerical evaluation of the class-n expected excess per cus-

tomer function, n = 1, 2, . . . ,N is given by

Hn(t) =
ln2
t

K∑
k=1

Vk H̃n

(
ln2
t
× k

)

=
ln2
t

K∑
k=1

Vk

 mn

( ln2
t × k)

−
1

( ln2
t × k)2

+
w̃( ln2

t × k)

( ln2
t × k)2


=

K∑
k=1

Vk

k

mn −
1

( ln2
t × k)

+
w̃( ln2

t × k)

( ln2
t × k)

 . (7.10)

It is readily apparent from a comparison of (7.9) and (7.10) that minimal extra effort is

involved in determining the expected excess per customer beyond the specified thresholds

Hn(dn); n = 1, 2, . . . ,N once the evaluations of the corresponding compliance probabilities

Wn(dn) have been performed.
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7.5.1 Necessary Formulae from the APQ Multi-server Model

To complete the optimization approach, we specify below the waiting time LSTs for each class

of customers. We do this for the case of a multi-server APQ with c servers and N = 2 priority

classes, where the service times for all classes are exponentially distributed at rate µ. We start

with the specification of w̃2(s).

Theorem 3. The Laplace-Stieltjes transform w̃2(s) of the class-2 waiting time distribution can

be written as

w̃2(s) = w̃(s + λ1(1 − b)(1 − η̃1(s))) (7.11)

where η̃1(s) is the Laplace-Stieltjes transform of the duration of a busy period of accrediting

customers, and is obtained as the solution to the functional equation

η̃1(s) = cµ/(cµ + [s + λ1(1 − b)(1 − η̃1(s))]). (7.12)

Furthermore, the LST w̃(s) represents the LST of the waiting time in an M/M/c queue, and is

given by

w̃(s) = [1 −C(A, c)] + C(A, c)
[
(cµ − λ)/(cµ − λ + s)

]
. (7.13)

where C(A, c) = Ac

c!(1−ρ)/(
∑c−1

i=0
Ai

i! + Ac

c!(1−ρ) ) is the probability an arrival finds all c servers busy in

an M/M/c queue with A = λ/µ.

Proof. As a result of (7.2), the Laplace-Stieltjes transform of the class-2 waiting time distri-

bution can be decomposed into the initial workloadW followed by a delay represented by the

compound Poisson process Y , where the number of terms N in the compound Poisson process

represents the accrediting customers that arrive duringW. Now, the distribution of the initial

workload W found by an arrival from a Poisson process is identical to that of the stationary

waiting time in an M/M/c queue, whose LST is given by (7.13).
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During periods when all c servers are busy, the duration of times between customers enter-

ing service are exponentially distributed at rate cµ. As such, periods during which all servers

are busy in an M/M/c queue with service at rate µ are indistinguishable, probabilistically, from

busy periods in an M/M/1 queue with service at rate cµ (see, for instance, Sharif et al. (2014)).

Thus, according to the revised service discipline introduced in the proof of Lemma 1, each

of the accrediting customers to arrive duringW adds an amount to the waiting time equal to

a busy period of accrediting customers, and is thus equivalent to a busy period in an M/M/1

queue with service at rate cµ and arrivals at rate λ1(1 − b). The functional equation for the

LST η̃1(s) of such a busy period is seen to be given by (7.12). Remembering that N is Poisson

distributed duringW at rate λ1(1 − b), one readily obtains (7.11). �

The class-2 waiting time distribution will play a role in the determination of the class-1

waiting time distribution, so we choose to combine (7.11) and (7.13) to obtain the following

expression for w̃2(s):

w̃2(s) = [1 −C(A, c)] + C(A, c)w̃2(s|busy) (7.14)

where w̃2(s|busy) denotes the LST of the class-2 waiting time distribution, conditional upon an

arrival finding all servers busy, which is given by

w̃2(s|busy) =

[
cµ − λ

cµ − λ + [s + λ1(1 − b)(1 − η̃1(s))]

]
. (7.15)

The functional equation (7.12) gives rise to a quadratic equation in η̃1(s) which can be factored

to yield

η̃1(s) =
(1 + s

cµ + ρH) − [(1 + s
cµ + ρH)2 − 4ρH]1/2

2ρH
(7.16)

where ρH ≡ λ1(1−b)/(cµ). The equations (7.14) through (7.16) are the functional forms needed

for the implementation of Gaver-Stehfest numerical evaluation for class-2 customers.

We conclude with the specification of w̃1(s).
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Theorem 4. The Laplace-Stieltjes transform w̃1(s) of the class-1 waiting time distribution can

be written as

w̃1(s) = [1 −C(A, c)] + C(A, c)w̃1(s|busy) (7.17)

where w̃1(s|busy) denotes the LST of the class-1 waiting time distribution, conditional upon an

arrival finding all servers busy. In turn, w̃1(s|busy) is given by

w̃1(s|busy) =
[
(1 − b)w̃(acc)

1 (s) + bw̃2(bs|busy)
]

(7.18)

where w̃(acc)
1 (s) denotes the LST of the waiting time of those class-1 customers who gain ac-

creditation, and is given by

w̃(acc)
1 (s) = w̃(0)

1 (s)
[(

1 − ρ
1 − ρH

)
+

(
ρ − ρH

1 − ρH

)
w̃2(bs|busy)

]
(7.19)

where

w̃(0)
1 (s) =

µ(1 − ρH)[̃η1(bs) − B(s)]
(1 − b) × (s − λ1 + λ1B(s))

(7.20)

for B(s) = cµ/(cµ + s).

Proof. Since service times for all customer classes follow the same exponential distribution,

the re-ordering of customers does not change the long-run fraction of time that all c servers are

busy, given by C(A, c). Since class-1 arrivals constitute a Poisson process, C(A, c) is also the

chance such an arrival will find all servers busy (and hence be delayed). This justifies (7.17).

Turning to w̃1(s|busy), we employ the equivalent formulation during waiting times used in

Theorem 3 above: namely, that of a single server with exponentially distributed service times at

rate cµ. We are then free to invoke Corollary 8.4 in Stanford et al. (2014), which leads directly

to (7.18).

Equation (7.19) similarly comes from the last equation in Stanford et al. (2014) Corollary

8.4, and w̃(0)
1 (s) from earlier definitions therein. �
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7.6 Numerical Experiments

A series of experiments were run for the APQ discipline, to determine the numerical behavior

of the expected excess per customer functions for each class, as well as various weighted

averages of the individual excess functions.

In the first set of experiments, the results of which are presented in Figures 2 and 3, we

have considered a 2-class, 2-server APQ in which the customer arrival rates for both classes

are kept the same, while the server occupancy changes from 80% in Figure 2 to 95% in Figure

3.
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Figure 7.2: Two-class two-server APQ with equal arrival rates (80% occupancy)
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Figure 7.3: Two-class two-server APQ with equal arrival rates (95% occupancy)

Figures 2(a) and 3(a) present the expected excess waiting time per customer for a class-2

customer as a function of the priority accumulation rate for class-2 customers, b. The corre-

sponding results for class-1 customers are presented in Figures 2(b) and 3(b). The expected

excess increases with b for class-1 customers, as anticipated. The expected excess decreases

for class-2 customers, and the class-2 figures are seen to be convex, both as established in

Corollary 1.
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Figures 2(c) and 3(c) display the total expected amount of excess waiting time (i.e. when

the two classes are assigned equal weights α1 = α2 = 1). A comparison of the figures reveals

that the optimal accumulation rate b is quite insensitive to the occupancy level, with the optimal

value of b being very close to one half in all cases. Furthermore, generally speaking, the total

expected excess function is reasonably flat in the vicinity of the optimal b value. The actual to-

tal expected excess wait itself varies considerably with a change in occupancy, from a minimum

of the order of 0.1 at 80% occupancy, to a minimum on the order of 7 at 95% occupancy. The

fact that the optimal b is slightly less than 1/2 in all cases is not surprising, when one considers

the fact that the class-2 target delay is twice as long for class-2 customers as it is for class-1

customers. What is perhaps not anticipated is just how insensitive the optimal b value is to a

change in occupancy, and the flatness of the objective function (total expected excess) in the

vicinity of the optimal value. Thus, when an equal weight is placed on excess waiting for both

classes and the arrival rates are the same, a rule of thumb that works well is to set the priority

accumulation rates in inverse proportion to the target delays. In this way, customers from the

different classes approaching their respective delay targets will have accumulated comparable

amounts of credit, as one would expect.

Figures 2(d)and 3(d) display the weighted total expected waiting time excess with α1 =

2α2 = 2. One observes that the occupancy definitely influences the optimal value of b. The

optimal value of b is about b = 0.34 at 80% occupancy, and about b = 0.16 at 95% occupancy.

Thus, no simple rule of thumb can be employed when differing weights are applied; a more

detailed analysis using the methodology presented herein is needed to determine the optimal

accumulation rates for a given configuration.

Figure 4 presents the comparable results when 80% of the arrivals belong to class 1, at an

occupancy level of 95%. One notable change is that the average excess per customer for class-

2 customers is typically an order of magnitude larger than that for class-1 customers. When

the occupancy is large enough, as in Figure 4(d), then the weighted total expected amount of

excess is minimized when b2 is practically zero. In other words, in this case it is nearly optimal
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to resort to a standard non-preemptive priority queue.

Figures 5 presents the comparable results when 80% of the arrivals belong to class 2, at

an occupancy level of 95%. Qualitatively, the results are consistent with those of Figures

2 through 4. The biggest difference seems to be the individual expected loss per customer

curves for class-1 and class-2 customers. As the occupancy increases, these curves seem to be

approaching a linear form in b.

At this point, we sought to verify that the rule of thumb did indeed manifest itself in other

settings when the ratio of the delay targets was not a factor of 2. In Figure 6, we present the

results for an equal mixture of class-1 and class-2 customers, at an occupancy level of 95%,

when the class-2 delay target was three times as long as the class-1 delay target. As anticipated,

we see that the minimum of the total expected excess waiting time occurred when b2 is close

to 1/3, which is consistent with the rule of thumb. Furthermore, the optimal value of b2 in the

weighted total expected excess is smaller than in the pure expected excess scenario, just as had

been the case with all the foregoing examples.

For a final set of examples, we present in Figures 7 and 8 the results we obtained for a

three-class, two-server APQ with equal arrival rates at a 90% occupancy. The three delay

targets satisfy d3 = 2d2 = 4d1. We again have arbitrarily set b1 = 1. We present the expected

excess per customer for each of the three classes, as well as the total expected excess waiting

time. In Figure 11, we have fixed b2 = 1/2 to be consistent with the rule of thumb from the

two-class case, and allowed b3 to range over the interval 0 ≤ b3 ≤ b2 = 1/2. We observed

that the minimum total expected excess occurs when b3 is close to 1/4, as one would expect

from the rule of thumb. In Figure 12, we reversed the situation, fixing b3 = 1/4 and we

allowed b2 to vary over the interval 1/4 = b3 ≤ b2 ≤ 1. Once again, as anticipated, the

optimal accumulation rate for b2 occurs close to b2 = 1/2. We note in particular that the

expected excess wait time per class-3 customer is not a convex function of b2, which makes

sense: as the priority accumulation rate for class-2 customers increases, it does so at the relative

disadvantage to class-1 and class-3 customers, who in the former case are losing priority over
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Figure 7.4: Two-class two-server APQ with 80% class-1 arrivals (95% occupancy)
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Figure 7.5: Two-class two-server APQ with 80% class-2 arrivals (95% occupancy)

class-2 customers, and in the latter case, are losing priority to class-2 customers.

We conclude this section by commenting on the utility of different KPI compliance stan-



7.6. Numerical Experiments 169

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0
5

0.1
0

0.1
5

0.2
0

Priority Accumulation Rate (b)

Cla
ss

−2
 Ex

pe
cte

d E
xc

es
s W

ait a

●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0

0.1
0

0.2
0

0.3
0

Priority Accumulation Rate (b)

Cla
ss

−1
 Ex

pe
cte

d E
xc

es
s W

ait b

●

●

●

●

●
●
●
●
●
●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.1
5

0.2
0

0.2
5

0.3
0

Priority Accumulation Rate (b)

To
tal

 Ex
pe

cte
d E

xc
es

s W
ait

c

●
●
●
●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.2
0.3

0.4
0.5

Priority Accumulation Rate (b)

Pr
ior

itiz
ed

 Ex
pe

cte
d E

xc
es

s W
ait d

Figure 7.6: Two-class two-server APQ with equal arrivals (80% occupancy) where delay target
for class-2 is 3 times that of class-1.
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Figure 7.7: Two-class two-server APQ with equal arrivals (95% occupancy) where delay target
for class-2 is 3 times that of class-1.
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Figure 7.8: Three-class two-server APQ with equal arrivals (90% occupancy) where b1 and b2

are fixed at 1 and 1/2, respectively, while b3 varies between 0 and 1/2, and the delay target for
class-3 is 2 times that of class-2 and 4 times that of class-1.
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Figure 7.9: Three-class two-server APQ with equal arrivals (90% occupancy) where b1 and b3

are fixed at 1 and 1/4, respectively, while b2 varies between 1/4 and 1, and the delay target for
class-3 is 2 times that of class-2 and 4 times that of class-1.
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dards in the total expected excess and the weighted total expected excess cases. As for the

former, we have observed throughout our examples that the rule of thumb works to ensure that

each class of customers has virtually the same chance of exceeding its delay target. In order

for all of the KPIs to be satisfied, this means that the APQ must adhere to the most stringent

compliance standard. In such a context, the other KPI compliance standards will be exceeded,

and are in effect irrelevant, so that there is no need for lesser compliance standards than the

most stringent one.

In the weighted total excess case, however, the optimal accumulation rates tend to be

smaller than their counterparts in the total expected excess case. This means that the chance

of non-compliance increases as the acuity decreases (i.e. the priority class index increases).

In such a setting, more generous compliance standards for customers of lower acuity makes

sense.

7.7 Conclusions and Future Research

In this paper, we have presented a general optimization problem for queueing systems operating

under waiting time targets. Our optimization problem reflects the fact that customers who miss

their waiting time targets are in fact of greater concern than those who meet them, and Key

Performance Indicators (KPIs) on their own do not address this fact. Formally, our goal was

to minimize a weighted average of the total expected excess waiting per unit time over all

permissible customer selection strategies.

We have also established that the individual terms in our objective function, which represent

the expected excess waiting time per customer for each class, are readily obtained as a by-

product of the computation of the probabilities of KPI compliance whenever the latter are

being evaluated via numerical inversion of their Laplace-Stieltjes transform.

While the aforementioned optimization problem can be applied to any work conserving

queueing discipline, we have established that the Accumulating Priority Queue, where cus-
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tomers are selected for service based both on their priority class and the amount of time they

have spent waiting for service, is well-suited to the goal of minimizing the excess waiting be-

yond the delay targets. In order to provide an intuition as to how the priority accumulation

rates (bn’s) works under APQ, let us consider a two class case. In particular one should first

establish that one can fix one rate and vary the other to explore all cases. Having fixed b1 = 1,

then 0 < b2 < 1 tells us where we are between the classical priority situation where waiting

time has no impact (b2 = 0) and the FCFS case where there are no distinction in the classes

(b2 = 1). In other words, it tells us where we are in the mix between classical priority and the

FCFS, in the intermediate zone where class matters but waiting time, too.

By providing the decision maker with the added flexibility of determining the best priority

accumulation rates for each class, one can achieve the desired balance between the amount of

excess waiting that occurs in each class. When equal weight are used, the system seeks to mini-

mize the total expected waiting time. Our numerical examples have established that the optimal

APQ strategy in this case is well-approximated by a “rule of thumb” which accumulates prior-

ity for customers of a given class in inverse proportion to their delay target. This ensures that all

customers approaching their waiting time targets will have accumulated comparable amounts

of priority, so that each customer sees nearly the same probability of exceeding their respective

targets. Consequently, all acuity classes will observe comparable levels of compliance. In the

more general case where the weights placed on the excess waiting times are different, no rule

of thumb exists; however, the optimal arrangement can nonetheless be determined according

to the procedures herein.

One underlying constant in our studies has been the assumption of a common service time

distribution for all customer classes. An obvious extension of our model would be to the situ-

ation where different classes have differing service time requirements. Until now, no suitable

APQ model for the multi-class, multi-server APQ model with differing service time distribu-

tions has been been developed, but such work is under way at present.

There may well be appropriate settings for this model involving certain non-work-conserving
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queues, such as call centres with fully and partially trained agents. Customers with standard

requirements could be seen by any agent, while customers with specialized needs (typically,

these customers would be of higher priority) could only be served by a subset of the agents.

The optimization problem in such a setting would rely upon the availability of the waiting time

LSTs for the different classes of customer.
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7.9 Appendices

Appendix A: Gaver-Stehfest Coefficients

Table 7.2: Coefficients for the Gaver-Stehfest Algorithm

V2 V4 V6 V8

2 -2 1 -1/3
-2 26 -49 145/3

-48 366 -906
24 -858 16394/3

810 -43130/3
-270 18730

-35840/3
8960/3

Appendix B: Proof of Lemma 1

We employ the same viewpoint to express the class-2 stationary waiting timeW2 as was

employed in Theorem 9.1 of Stanford et al. (2014). This is done by rearranging the service
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discipline in such a way that preserves the total waiting time experienced by a tagged arrival

from that class.

Consider such a tagged class-2 customer. It will wait for all of the work present in the

system upon its arrival, plus that which arrives later but will be served ahead of it. Since the

tagged customer is from the lowest priority class, and is an arrival from a Poisson process,

the distribution of the work it finds in system at such instants equals the distribution of the

stationary unfinished workload, by the “Poisson-arrivals-see-time averages” (PASTA) property

of the Poisson process (Wolff (1982)). However, the stationary unfinished workload is invariant

for all work-conserving service disciplines. As shown in Stanford et al. (2014) Theorem 9.1,

its distribution is the same as the stationary waiting time distribution forW in the M/G/1 FCFS

comparator queue.

During this initial periodW, the process of later arrivals that will gain accreditation (and

therefore be served ahead of the tagged class-2 customer) constitutes a Poisson process at rate

λ1(1−b), as established in Stanford et al. (2014) Lemma 4.2. While some of these later class-1

arrivals may enter service according to the APQ service discipline ahead of some of the class-

2 customers already present at the arrival instant of the tagged customer, the actual order of

service does not matter, so long as all such work is completed prior to the tagged customer’s

entry into service.

Thus we can writeW2 = W + Y , where Y represents the total of all of the service times

for class-1 customers that gain accreditation relative to the tagged customer prior to its entry

into service. We are able to characterize Y in terms ofW as follows. We do so by resorting to

the following discipline, which parallels the rearrangement of service times in the derivation

by Conway et al. (1967) of the implicit transform equation for the duration of a busy period in

an M/G/1 queue.

Our rearrangement places all of the N class-1 customers who gain accreditation duringW

in a special queue. Upon completion ofW, the first (if any) of these N customers is selected

for service. The server then selects newly-accredited class-1 customers in the main queue until
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none remain, at which point the next (if any) of the class-1 customers in the special queue is

selected, and so on. We observe that, by construction, each such “sub-busy period” comprising

the service of one customer from the special queue and the subsequent accredited arrivals to

the main queue is identically distributed to the busy period η in an M/G/1 queue with arrivals

at rate λ1(1 − b) and whose service times are drawn from the class-1 service time distribution.

In this way, Y can be expressed according to (7.3), with N representing the number of

Poisson events at rate λ1(1 − b) to occur during W, and the ith such accrediting customer,

i = 1, 2, . . . ,N, adding an i.i.d. busy period duration ηi from such an M/G/1 queue. �



Chapter 8

Conclusions

In this thesis, I worked with both theoretical and practical problems related to a heath care ser-

vice system (emergency department) where patients are served based on their acuity (urgency

of need). Among four chapters of novel material, two chapters (4 and 5) present empirical work

involving ED arrival and service processes based upon two years of data from a particular hos-

pital in Ontario. The remaining two chapters (6 and 7) dealt with theoretical work related to a

priority queueing system, where the former determined the waiting time distribution for high

and low acuity patients, while the latter pertained to minimizing the expected excess waiting

time for high and low acuity patients beyond their stipulated waiting time limits.

In chapter 4, we investigated both regression and time-series based forecasting methods

to identify an appropriate forecasting model to accurately predict ED arrivals in short term.

Based on the type of data, we fitted and compared seasonal ARIMA, GLM, harmonic regres-

sion, and GLARMA models. Comparing performance based on different accuracy measures,

we observed that the GLARMA model produced better forecast accuracy than others. Addi-

tionally, we employed the rolling horizon approach, frequently used in operations management

literature, to validate our proposed (GLARMA) forecasting model.

In chapter 5, we used statistical models to investigate the effect of workload on ED produc-

tivity. GLM and Cox-PH models were used to model the effect of covariates on the count and

176
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time-to-event type responses, respectively. An increase in workload is found to be associated

with an increase in the number of patients discharged and the waiting time, and a decrease in

the patient LOS and service times. However, there is a fatigue effect associated with how long

a server is continuously working at a faster rate. A continuous increase in workload for several

hours is associated with a decrease in productivity.

In chapter 6, we presented a multi-server APQ model for an arbitrary number of customer

classes, where the service time distributions for each classes of customer follows an exponential

distribution with common mean. Numerical investigations showed how to ascertain whether a

given set of priority accumulation rates will enable compliance with a given set of KPIs for a

given traffic pattern of patient arrival and service rates. An optimization problem related to the

model under study was also developed to select the best priority accumulation rate for which

we can get the maximum possible utilization that complies with the KPIs.

In chapter 7, we developed an optimization model to minimize the expected excess waiting

time for the high and low acuity patients. Numerous numerical investigations lead us to dis-

cover a “Rule of Thumb” which can be easily implemented by practitioners without knowing

the details about the mathematical model behind the mechanism. In order to minimize expected

excess waiting time, patients should accumulate credit in inverse proportion to the ratio of the

time limits for their respective classes. Based upon the Rule of Thumb, the patient who has

already waited the largest proportion of their permissible waiting time limit should be selected

for service. The Rule of Thumb will approximately minimize the expected excess waiting time

for high and low acuity patients, respectively.

8.1 Future Research Directions

Several extensions to our work are possible. We highlighted below some of the obvious exten-

sions that can be considered as future research.

In chapter 4, we proposed GLARMA model to accurately forecast future ED arrivals based

on data from an Ontario hospital. Since ED varies based on the patient population, severity
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of illness, and so on, an obvious extension would be to study multiple EDs to obtain more

generalizable result. From a modeling perspective, one may use more complicated models such

as fractionally integrated auto-regressive moving average (ARFIMA) model or generalized

estimating equations (GEE) to see whether such models produce better forecast.

In chapter 5, we studied the effect of workload on the ED service process. For count

responses, one may use distributions other than Poisson or Negative Binomial model if the

number discharged follows a different distribution. For time-to-event responses, one may use

a parametric survival models (AFT) as an alternative to Cox-proportional hazard model. Both

the AFT and Cox-PH model produce similar results for few parametric survival distributions

(e.g., exponential, Weibull). However, they may produce completely different results for other

survival distributions. Finally, one could contemplate a more extensive statistical model which

includes the impact of interaction between covariates on the service quality measures.

In chapter 6, we derived the waiting time distributions for a multi-class multi-server APQ

model where service times are selected from a common exponential distribution. An obvious

extension of our current model is to the situation where the rate of service differs for different

classes of patients. Another possible extension would be to consider non-exponential service

time distributions. Although some results might be possible in the case of a small number

of servers for small-order Erlang distributions, it effectively leads to intractable results in the

general multi-server context.

In chapter 7, we studied an optimization model that minimized total expected excess wait-

ing time for a queueing system that operates under APQ. There may well be appropriate set-

tings for this model involving certain non-work-conserving queues, such as call centres with

fully and partially trained agents. Customers with standard requirements could be seen by any

agent, while customers with specialized needs (typically, these customers would be of higher

priority) could only be served by a subset of the agents. The optimization problem in such a

setting would rely upon the availability of the waiting time LSTs for the different classes of

customer.
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