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Figure 5.1: Boxplots of length of stay, waiting time and service time, respectively, from left to
right, with high and low acuity patients merged into a single class.

Figure 5.2: Boxplot of high and low acuity patients separately for length of stay, waiting time
and service time, respectively, from left to right.
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5.5.2 Statistical Assessment of the Hypotheses

5.5.2.1 Hypotheses 1 and 2: Number Discharged and Census

The number of discharged patients per block is a count random variable which is skewed to

the right. We ran a goodness-of-fit test to see which of the theoretical distributions is best fit

for our data. We used generalized additive models for location, scale, and shape (GAMLSS) to

fit different candidate distributions to the number discharged per block. GAMLSS is a broader

regression type model framework that can handle highly skewed and kurtotic discrete and con-

tinuous distributions, as well as the exponential family of distributions to describe the response

variable. A detailed description of the GEMLSS models can be obtained in Stasinopoulos &

Rigby (2007). We made use of the goodness-of-fit capability of the ‘gamlss’ package in R to

obtain the best fitted theoretical distribution to our data.

Among all the candidate models, we tabulated and plotted the four best models that fit our

block number of discharge data for high and low acuity patients, as assessed by the Akaike

Information criterion (AIC). Table 5.6 presents the AIC values for the possible models that

performed best. Graphical representation of the empirical and theoretical probability distribu-

tions for the high and low acuity patients are displayed in Figures 5.3 and 5.4, respectively.

The smallest AIC value in Table 5.6 corresponds to the negative binomial distribution for both

the high (51147.59) and low (78060.44) acuity patients. Additionally, the Figures 5.3 and 5.4

indicate that negative binomial is the best fitted distribution for both of our high and low acuity

discharge data. Therefore, we fit the GLM where the response variable (number discharged)

is distributed as a negative binomial distribution with the link function being the log. The

degrees of freedom in Table 5.6 equals the number of parameters estimated for each of these

distributions.

The effect of high and low acuity census on the high and low acuity discharges (hypotheses

1 and 2) is presented in Table 5.7. It is to be noted that the current block’s census has not been

considered as a predictor for the current block’s discharge. This is due to the fact that the surge
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Figure 5.3: Fitted distributions for high acuity patient discharge where solid bars represents
empirical distribution and the line bars with dot represents theoretical distribution.
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Figure 5.4: Fitted distributions for low acuity patient discharge where solid bars represents
empirical distribution and the line bars with dot represents theoretical distribution.
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Table 5.6: Model selection using Akaike Information Criterion for the high and low acuity
patients, respectively.

Distributions High Acuity Discharge Low Acuity Discharge
degrees of freedom AIC degrees of freedom AIC

Poisson 1 51359.45 1 79579.50
Negative Binomial 2 51147.59 2 78060.44
Poisson Inverse Gaussian 2 51149.35 2 78103.69
Sichel 3 51149.59 3 78062.44

in current block census is not manifested until the service process proceeds to the next time

block.

We find support for hypothesis 1 (Table 5.7). An increase in the high (low) acuity census in

earlier blocks does increase the expected number of high (low) discharges at the current block

(p-value < 0.001). Holding everything else constant, an increase of one patient in the high

acuity census during the previous block is associated with an 5.6% increase in the expected

number of high acuity discharge (e0.055 = 1.056).

Table 5.7: Negative binomial regression output for high and low acuity patient discharges based
on high and low acuity censuses, after controlling for calendar variables.

Predictors High Acuity Low Acuity
Coef St. Err p-value Coef St. Err p-value

Intercept -0.973 0.061 < .001 0.796 0.034 < .001
High Census (lag1) 0.055 0.004 < .001 -0.013 0.002 < .001
Low Census (lag1) 0.003 0.002 0.168 0.022 0.001 < .001
High Census (lag2) 0.024 0.004 < .001 0.003 0.002 0.165
Low Census (lag2) -0.002 0.002 0.356 0.008 0.001 < .001
High Census (lag1)2 -0.003 0.000 < 001 0.001 0.000 0.991
Low Census (lag1)2 0.002 0.000 0.630 -0.003 0.000 < 001
BoD(Dummy) Control Control Control Control Control Control
DoW(Dummy) Control Control Control Control Control Control
MoY(Dummy) Control Control Control Control Control Control

The support for hypothesis 2 is mixed. Although the high acuity census significantly de-

creases the expected number of low acuity discharges (-0.013, p-value < 0.001), the low acuity
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census does not significantly decrease the high acuity expected number of discharge (0.003,

p-value = 0.168). Holding everything else constant, a unit increase in high census at previ-

ous block is associated with a 1.3% decrease in the expected number of low acuity discharge

(e−0.013 = 0.987).

5.5.2.2 Hypotheses 3 and 4: Length of Stay and Workload

We used the Cox-Proportional Hazard (CoxPH) model to investigate the effect of census and

admission status indicator on the patients LOS (hypotheses 3, and 4). A positive coefficient

indicates that the hazard rate is increasing, and consequently the survival time is shortening.

An opposite interpretation for the hazard and survival functions hold for a negative coefficient

value. Although the sign of the coefficients are easily interpretable, the same is not true for the

magnitudes. Rather, we interpret exponentiated coefficients (hazard ratios) which represent a

multiplicative effect in the model.

Based on Table 5.8, we do not find support for hypothesis 3. An increase in same type of

patient census does not significantly increase same type of patient LOS. For instance, holding

everything else constant, a unit increase in high acuity census at departure increases the hazard

of high acuity LOS by 1.7%
(
1 − e0.017

)
, i.e., LOS decreases. A possible explanation for such

a phenomenon may be the following: as the congestion at departure increases more patients

are discharged from the ED to accommodate incoming patients which reduces the overall LOS

(or, servers are working at a greater speed to compensate for the factors that push the LOS

upward). While looking at the effect of other type of census on other type of patient LOS, only

high acuity census increases the low acuity LOS, but not vice versa. We observed that a unit

increase in high acuity census is associated with a 1.5% increase in the low acuity LOS. We

also noticed that the square terms are either not significant or produced very small coefficient

values, which refutes the possibility of the increase (or decrease) of LOS followed by a decrease

(or increase).

Finally, We do find support for hypothesis 4 (Table 5.8). Patients admitted to hospital beds
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have higher LOS than those who are discharged to home. This is true for both the high and

low acuity patients (negative coefficients -0.992 and -1.701 for high and low acuity patients,

respectively). Compared to discharged patients, there is a 60.3% reduction in hazard of LOS

for admitted patients, holding everything else constant.

5.5.2.3 Hypotheses 5 and 6: Waiting Time and Workload

We tested here the effect of high and low acuity patient workload on the high and low acuity

patient waiting times. We find support for hypothesis 5 (5.9). An increase in the same type of

patient workload is associated with an increase in the waiting time. We observed from Table

5.9 that the current and lag workload values for high acuity patients are significantly affecting

the high acuity patient waiting times (p-value < 0.01). Similarly, the current and lag low

acuity patient workload are significantly affecting the low acuity patient waiting times (p-value

< 0.01). The magnitude of the effect is comparatively high, i.e., a unit increase in workload

values for high and low acuity patients is likely to increase high and low acuity patient waiting

times by approximately 60 and 20 percent, respectively.

However, we do not find complete support for hypothesis 6. High acuity workload sig-

nificantly affects low acuity waiting time, but the opposite is not true. This is the reverse of

what we found for the service time. Quadratic workload terms are found to be not significantly

affecting the waiting times, and the magnitude of effect is minimal. Therefore, according to the

data, the patient waiting times continues to increase with an increase in census .
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5.5.2.4 Hypotheses 7 and 8: Service Time and Workload

In order to model the service times (time it takes to treat a patient), we used the Cox-PH model.

We wish to reiterate that positive coefficients are indicative of increasing hazard and shortening

survival times, whereas negative coefficients are suggestive of decreasing hazard and expanding

survival times. We do find support for hypothesis 7. For the same type of patient, service times

initially decrease as a function of patient workload, followed by an increase (p-value < 0.01).

For example, one unit increase is high workload is associated with a 82.7% increase in hazard

of service time, holding everything else constant. Consequently, a unit increase in the square

of the high acuity census is associated with a 60.6% reduction in hazard of service time.

We do not find complete support for hypothesis 8. The low acuity workload significantly

affect the high acuity service time (p-value < 0.01), but the opposite is not true (p-value=

0.138). A possible explanation is that when low acuity workload is low, low acuity resources

may be used in the high acuity area which is less likely to happen when the low acuity workload

is high.

Turning our attention to low acuity patient service times, we noticed that only the low

acuity census (linear and quadratic) terms are found to be significant. An additional increase in

low acuity workload is associated with a 26.7 percent decrease in the low acuity patient service

times, keeping all other factors constant. Conversely, after controlling other factors, low acuity

service times are decreased by 5.3 percent with an additional increase in the square of the low

acuity patient workload.
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5.6 Discussion

In this chapter, we empirically investigated the effect of workload on server productivity based

on 2 years of hospital ED data. Four performance measures(the number of patients discharged

per hour, as well as the patient LOS, service times, and waiting times) are used to test the

hypotheses regarding the effect of workload, patient census, system congestion, and patients

who require admission. In addition, we divided our patient population between a high and a

low acuity category, and looked at the effect of the same and opposite type of patient workload

on patient service performance for both classes.

Our analyses revealed that server productivity increased with an increase in the system

workload. We observed that an increase in the same type of patient census is associated with an

increase in the average number discharged for both the high and low acuity patients. However,

such an increase in the average discharge was not observed for an increase in the opposite type

of patient census. Furthermore, an increase in the high acuity census was associated with a

decrease in the average low acuity number discharged. This may well be due to the fact that

resources may sometimes be pulled out from the low acuity area in order to relieve high acuity

patient demand. We also observed that an increase in workload of the same or opposite type of

patient is associated with an initial decrease in the LOS and service time; however, in the case

of a sustained increase in workload, there is a subsequent decrease in these measures. Patients

who required admission were found to have longer LOS than those who were discharged home.

We observed that patient treatment times were affected by the census level in our ED.

Since an increase in the same type of patient census increases the average number of patient

discharged, a decision regarding the addition of resources should not only depend upon the

number of patient waiting for service, but also upon how fast the servers are serving them.

At the same time, ED managers also need to ensure that speedy service does not compromise

the quality of care. Therefore, our study suggests that ED resource allocation should take into

account the workload dependent service processes we have observed.
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Our analyses suggest that increased workload is associated with an increased productivity

(reduction in patient LOS and service time). However, the increased productivity is shown

to be constrained by a threshold point after which the productivity diminishes. Server fatigue

due to overwork was considered as a potential factor responsible for decreasing productivity

in previous literature. We contrasted the number of patients discharged at the end of the shift

with the same quantity at the beginning of the shift, and observe a significantly lower number

of patients discharged at the end of the shift. Therefore, if an increase in demand for services

is persistent, ED management should call for additional resources during a physician’s work

shift rather than at the end of his/her shift so long as this is an actionable decision.

Our work contributed to the emergency medicine and operations management literature

in several ways. Firstly, we showed that, when workload increases, in addition to the speed-

up and slow-down of the ED services, there exists cross-over effects from the high and low

acuity patient workload on the low and high patient queue performance measures. Secondly,

we demonstrated that under persistent high workload, server performance at the beginning of

the shift is significantly higher than that at the end of the shift. In order to maintain the service

level, additional resources should be called upon to supplement the current server. Finally, we

revealed that ED patients who require admission spend more time in the ED as compare to

those who are discharged.

Speed-up and slow-down mechanisms are manifested in all our data analyses, which is

consistent with the previous research (Batt & Terwiesch (2012)). We used system load and

census variables to predict four different ED queue measures, whereas Batt & Terwiesch (2012)

used system load and number of diagnostic tests ordered as covariates to predict task time and

service time. The ”quicker at first, slower later” service phenomenon was also observed by KC

(2013) while analyzing the effect of physician multitasking on ED performance improvement.

Similar to Berry Jaeker & Tucker (2013), but in a different context, we observed the ex-

istence of spillover effect of high and low workload and census on ED queue performance

measures for the opposite class of patients. However, the effect was sometimes observed in
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one direction only. For example, both the high and low acuity census significantly affects the

high acuity service times, but only low acuity patient census affect low acuity patient service

times. Our observation of longer LOS for admitted patients than for those discharged in con-

sistent with the previous work of Armony et al. (2011).

5.7 Limitations and Future Work

Our dataset is comprised primarily of time stamps during the ED service process; it is lacking

patient demographic information. More precise results could have been obtained if patient de-

mographics were controlled for in our statistical analyses. Furthermore, our results are based

on a single hospital ED. Studies based on multiple EDs would have provided a more general-

izable result. Finally, one could contemplate a more extensive statistical model which includes

the impact of interaction between covariates on the service quality measures.

Data from other hospitals might suggest that the number discharged follows a different

distribution than either the Poisson or Negative Binomial, and hence a different GLM model

might need to be fitted under such circumstances. Parametric survival models, such as, accel-

erated failure time (AFT) models are natural alternatives to the Cox-PH models (Kalbfleisch &

Prentice (2011)). AFT models can be used to model time to event data, such as, patient LOS,

service time, and waiting time.



Chapter 6

A multi-class multi-server

accumulating priority queue with

application to health care

6.1 Introduction

One way of dealing with waiting line problems in the presence of diverse client needs is a

priority queueing mechanism. A practical example from the field of health care would be

the acuity rating systems which have been employed in many countries to classify emergency

patients according to their level of severity. In the context of emergency medicine, the Canadian

Triage and Acuity Scale [CTAS (2005)] and the Australian Triage Scale [ATS (2000)] (on

which CTAS is based) are two examples, where patients are classified into five priority classes

(see Table 6.1, below). Each class is associated with a specified performance target assessed

in terms of a set of Key Performance Indicators (KPIs). Each KPI comprises a threshold time

standard, along with the proportion of patients who should not exceed that time standard. These

standards are ostensibly based upon clinical need, although the case can be made that for the

123
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lower acuity classes, the KPIs reflect performance benchmarks more than clinical need.

Table 6.1: CTAS Key Performance Indicators

Category Classification Access Performance Level

1 Resuscitation Immediate 98%
2 Emergency 15 minute 95%
3 Urgent 30 minute 90%
4 Less urgent 60 minute 85%
5 Not urgent 120 minute 80%

A different situation where a prioritized system arises in health care is in hip and knee

replacement surgery (Arnett et al. (2003)), where distinctions are made among various elective

classes (see Table 6.2 below).

Table 6.2: Key Performance Indicators for Hip and Knee Replacement Surgery, Canada

Category Wait Time Target

Emergency Immediate to 24 hours
Urgent, priority 1 Within 30 days
Urgent, priority 2 Within 90 days
Scheduled Consultation within 3 mos,

Treatment in next 6 mos

There is no reason to presume, a priori, that the stipulated KPIs for each customer class

will be met under a classical priority service discipline, for any given set of patient presentation

rates. It might well be the case in a two-class system, for instance, that high-priority patients

may receive better service than their specified target, while the service level of the low priority

patients misses its target. This indicates the need for a priority mechanism that can provide the

extra degree of flexibility required to align the observed performance levels with the specified

KPIs. The first model to do this was due to Kleinrock (1964), who let customers from a given

class (say, k; k ∈ {1, 2, . . . ,K} where K denotes the number of classes) accumulate ‘priority’ at

a rate bk > 0, where bk > b j for k < j. In this way, a customer from a non-urgent class who

experiences a very long wait will eventually accumulate sufficient priority to access the server

even when some customers from a more urgent class may be present, and at an earlier time
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point than if a static priority mechanism were in place.

Kleinrock (1964)’s analysis gave a set of recursive formulae for the mean waiting time

before service for each class. However, as illustrated in the two previous examples, the per-

formance of a queueing system in a health care setting is usually specified by the tail of the

waiting time distribution for each class, and not by the average waiting times. With this in

mind, Stanford et al. (2013) recently reconsidered Kleinrock’s model, which they renamed

the “accumulating priority queue” (APQ), and obtained the waiting time distribution for each

priority class in the single server setting.

It can be argued that a variant of the accumulated priority approach is being used already in

certain priority health care settings, on an implicit level at least, whenever the deciding health

care professional factors the time spent waiting as well as the patient’s acuity level in the

decision to select the next patient for treatment. In fact, Hay et al. (2006) in their simulation

model present an approach employing what they call “operational priority”, in which each

patient is assessed, and assigned an initial priority score which then increases over time.

This note is the first to present distributional results of a queueing-theoretic form for an

APQ in a multi-server setting. The results that we present have restricted applicability, in

that they require us to assume that all treatment times are exponentially distributed with the

same mean. As such, they could be applied in settings such as hip and knee surgery, where

treatment durations are comparable for all patient groups (except for Emergency cases such

as hip fractures, which are handled separately). The present model cannot be applied in an

Emergency Department setting, where treatment times are clearly different for patients of the

various acuity levels. (This case is the subject of ongoing work, for which substantial further

analytical effort is required.)

The purposes of this note are two-fold. In the first instance, we wish to present the exact

transform of the waiting time distribution for each class in the case where treatment times are

identical. The second purpose is to carry out numerical investigations to assess the performance

of the multi-server APQ model. Typically, for a multi-server system with two or three classes
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and KPIs with a doubling time benchmark (such as was seen for the lower classes under CTAS

and ATS), we are interested in addressing questions such as which are the limiting KPIs, what

are the optimal accumulation rates to assign, and what is the maximal traffic load that can be

accommodated by a given number of servers.

The remainder of the paper is arranged as follows. In the next section we describe the

model. Section 3 contains our derivation of the waiting time distribution for each class. A

series of numerical investigations are reported in section 4, where we also present a method for

choosing the optimal value of the accumulation rates to satisfy given performance objectives

in the two-class case. The final section of the paper gives conclusions and future research

directions.

6.2 Description of the Model

The model considered in this note is essentially that in Kleinrock (1964) and Stanford et al.

(2014), but with c > 1 servers, and it is restricted to the case of a common exponential service

time distribution for all classes. Customers of class-k, k = 1, 2, . . . ,K arrive to the queue

according to a Poisson process with rate λk. If a server is free when the customer of class-k

arrives, then that customer enters service immediately. Otherwise, they wait in the queue for

service, accumulating priority at rate bk where b1 > b2 > . . . > bK , so class-1 here is the

highest priority class, and class-K the lowest. Thus a customer of type k arriving at time t

will have accumulated priority bk(t′ − t) by time t′. If all servers are busy, then at the time of

the next service completion, the customer that enters service will be the one with the highest

accumulated priority at that instant. The common exponential service time distribution has

mean 1/µ and Laplace Stieltjes Transform (LST) B̃(s) = µ/(µ + s). All inter-arrival times and

service times are independent of one another. As in Stanford et al. (2014), throughout this note,

the LST of a random variable with distribution function F will be denoted by F̃.

In the interests of tractability, we restrict ourselves to the case where the service times
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are exponentially-distributed with a common mean. Whereas, in a single server queue, the

commencement of service for a waiting customer occurs when the service of the preceding

customer is completed, in multi-server queue, it occurs when one of the servers becomes free.

In the single-server case there are no ongoing services to worry about but, in the multi-server

case, the future evolution of the queue will depend on the stage of service of those customers

whose service is continuing.

Specifically we need to know the minimal residual service time among the continuing cus-

tomers, in order to specify when the next customer can move into service. For non-exponential

distributions, this task is tractable only when the number of servers is small, and the service

time distributions are simple extensions of the exponential, such as Erlang distributions of low

order, or mixtures of two exponentials. Even in the case where the other service times are ex-

ponential, but with class-dependent means, to characterize the minimum residual time we need

to know the mix of continuing customers, and the different possibilities for such a mix make

the analysis, at least, very complicated. Furthermore, it is at present unclear how the reordering

of service times in an APQ setting affects the duration of the busy periods.

For these reasons, we have opted to solve the common exponential case first and, as we

have already noted, it can be a good model for situations such as hip and knee surgery. We

are pursuing the non-identical service time case in ongoing work, both analytically and, as

in Xiong et al. (2013) via a near-perfect simulation approach which can be applied to this

situation.

6.3 Waiting Time Distributions

We turn now to finding the distribution of the waiting time before service commences for the

various classes. Let W̃ (k)(s) denote the Laplace transform of the stationary waiting time distri-

bution for customers of class-k; k = 1, 2, . . . ,K. We begin by observing that the waiting time

prior to service is strictly positive only if an arrival finds all c servers busy, and otherwise it is 0.
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Any priority mechanism that selects among waiting customers with service time requirements

drawn from the same distribution will have no impact upon the chance that an arrival finds all

of the servers busy, which can be identified from the corresponding M/M/c queue.

With C(A, c) being the probability that all servers are simultaneously busy in a stationary

M/M/c queue with A = λ/µ and λ =
∑K

i=1 λi, it immediately follows that

W̃ (k)(s) = (1 −C(A, c)) + C(A, c)W̃ (k)
+ (s); k = 1, 2, . . . ,K. (6.1)

where W̃ (k)
+ (s) is the LST of the class-k waiting time distribution, conditional on it being posi-

tive, that is, conditional on a class-k customer arriving to find all servers busy.

Thus we need to find W̃ (k)
+ (s), the LST of the class-k waiting time distribution, conditional

on an arrival of class-k finding all servers busy. In the following lemma we will denote this by

W̃ (k)
+ (s; µ, c), to explicitly state the dependence of the results on the number of servers c and the

common service rate µ for all classes.

Lemma 6.3.1 Consider the accumulating priority queue where all classes have exponentially

distributed service times, with common mean 1/µ. Then

W̃ (k)
+ (s; µ, c) = W̃ (k)

+ (s; cµ, 1); k = 1, 2, . . . ,K. (6.2)

Proof: When all servers are busy, the times between service completions are exponentially

distributed with parameter cµ since there are c exponential servers, each serving at rate µ.

Thus, the times between service completions have the same distribution as if there were a

single exponential server working at rate cµ. Service completion times correspond to times at

which the next customer is selected for service, which we can think of as the service selection

process. Since the service selection processes have the same distribution in both cases, the

distributions of the waiting times until service commences for all classes will also be identical

in both cases. �

It follows directly from Lemma 6.3.1 that the waiting time LST for delayed customers in the



6.3. Waiting Time Distributions 129

multi-server case can be obtained directly from the single-server results with service rate cµ.

We give below the critical formulas from Stanford et al. (2014) for the single-server model,

to provide an intuitive appreciation for the nature of the algorithm. The interested reader is

directed to Stanford et al. (2014) for the detailed analysis.

The results in Stanford et al. (2014) rely on the concept of a customer ‘becoming accred-

ited at level k’, and this, in turn, is expressed in terms of ‘the maximum priority process’

(M1(t), . . . ,MK(t)) which is defined precisely there. Intuitively speaking, Mk(t) is the maxi-

mum possible priority that a customer of class k can have at time t, given the history of the

process up to the time that the current customer entered service. If there is no customer in

service at time t, then Mk(t) = 0 for all k = 1, . . . ,K. We say that a customer of class i ≤ k

becomes ‘accredited at level k’ when its priority exceeds Mk+1(t). Once this happens, it is

not possible for any customer of class j > k to enter service before the customer that has be-

come accredited at level k. In Corollary 7.3 of Stanford et al. (2014), the authors establish that

customers of class i ≤ k become accredited at level k according to a Poisson process at rate

λi(bi − bk+1)/bi.

Thus in particular, class-k become accredited at level k according to a Poisson process at

rate λk(1 − bk+1/bk). Since any such customer cannot become accredited at a higher level,

this fraction (1 − bk+1/bk) of class-k customers are served during a cycle related to customers

who have managed to gain accreditation at level k. The remaining fraction (bk+1/bk) of class-k

customers enter service at one of accreditation levels k+1 through n, all of which are achievable

by class-(k + 1) customers. It is established in Stanford et al. (2014) that the class-k customers

who fail to become accredited at level k perceive a scaled version of the class-(k + 1) waiting

time distribution.

We can now summarize the results for the waiting time distributions. Let ρi = λi/cµ for

1 ≤ i ≤ K, and ρ =
∑K

i=1 ρi = λ/cµ, and σk =
∑k

j=1 ρ j(b j − bk+1)/b j. Finally, we define W̃ (k)
acc(s)

to be the LST of the waiting time of a class-k customer who is served at accreditation level k.

The LSTs W̃ (k)
+ (s) are calculated for k = K − 1,K − 2, ..., 1 starting from W̃ (K)

+ (s) = W̃ (K)
acc (s)
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using the recursion

W̃ (k)
+ (s) =

(
bk+1

bk

)
W̃ (k+1)

+

(
bk+1

bk
s
)

+

(
1 −

bk+1

bk

)
W̃ (k)

acc(s) (6.3)

where W̃ (k)
acc(s) is given by

W̃ (k)
acc(s) =

 (1 − ρ)
(1 − σk)

+ W̃ (k+1)
+

(
bk+1

bk
s
) k∑

j=1

ρ j(bk+1/b j)
(1 − σk)

+

K∑
j=k+1

ρ j

(1 − σk)
W̃ ( j)

+

(
b j

bk
s
) W̃ (k,0)

acc (s). (6.4)

The term W̃ (k,0)
acc (s) above is defined in Stanford et al. (2014), and requires further substitutions

in terms of other random variables which the interested reader will find defined there. We list

the necessary formulas for the determination of W̃ (k,0)
acc (s) in the Appendix.

6.4 Numerical Investigations

Our purpose in working with the Accumulating Priority Queue (APQ) is to identify a selection

scheme that can be applied to different acuity-based triage categories, which factors patients’

waiting times into the decision of who to treat next, and which is flexible enough to enable a

collection of Key Performance Indicators (KPIs) written in terms of distributional tails to be

met. A classical priority mechanism does not achieve this: either the collection of KPIs is met

for a given set of patient presentation rates, or it is not. What makes the APQ more flexible in

this regard is that we are free to select the accumulation rates bk; k = 1, 2, . . . ,K. That is, we

see the priority accumulation rates in a performance setting, as values to be determined that

could be adjusted in the event of non-compliance, precisely so as to achieve compliance of all

KPIs at a given staffing level, if it is at all possible to achieve compliance. Such a view will

be medically appropriate as long as the triage categories and the KPIs themselves have been
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chosen well to ensure proper care for all patient acuity levels.

We caution that the mechanism is not intended to be used in a situation where the bk’s

are selected for individual patients by medical professionals in an attempt to reflect clinical

perceptions of the severity of that patient’s condition. It is the role of the allocation to triage

categories to ensure that patients receive appropriate treatment.

Our first numerical example is loosely drawn from the CTAS model, except for the fact that

we assume that all patient classes have the same treatment time distribution, which is unlikely

to occur in reality in an Emergency department. We focus on three priority classes based on the

KPIs for the urgent (CTAS-3), less urgent (CTAS-4) and non-urgent (CTAS-5) patients with

the APQ mechanism. The key performance indicator (KPI) for CTAS-3 (urgent) patients is that

they will have to be seen within 30 minutes at least 90% of the time. The KPI requirements

for CTAS-4 (less urgent) and CTAS-5 (non urgent) patients require the commencement of

treatment within one hour at least 85% of the time and within two hours for at least 80% of the

time, respectively.

The Gaver-Stehfest (GS) algorithm (Gaver (1966) and Stehfest (1970)) with 8 points has

been used to invert the LSTs of the waiting time distributions. As a check, since the Gaver-

Stehfest numerical inversion is in fact an approximation, the results were verified with lengthy

simulation experiments, with each simulation run being carried out for one million customers.

Our initial results are for a two-class, two-server APQ model comparing CTAS-3 KPI for

class-1 with the CTAS-4 KPI for class-2, based on the following parameters: the arrival rates

are λ1 = 0.9 and λ2 = 0.8 for class-1 and class-2 patients, respectively, while service times for

both classes are exponentially distributed with mean 1/µ = 1. The accumulation rate, b1, for

class-1 (CTAS-3) is set to one, whereas the accumulation rate for class-2 (CTAS-4) assumes

one of three values: b2 = 0, 0.5 and 1.

Figures 6.1 and 6.2 present the resulting class-1 and class-2 waiting time distributions re-

spectively, where Gaver-Stehfest evaluations overlay the simulation results. The fact that no

discrepancy can be discerned between the graphs underscores the accuracy of the GS inversion
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with only 8 points. We see from Figure 6.1 that the class-1 requirements were met for values

of b2 ≤ 0.17. If class-2 patients were to accumulate priority at a higher rate, the class-1 KPI

would fail to be met. Similarly, from Figure 6.2, we see that as long as class-2 patients are

accumulating priority at rates b2 sufficiently close to 1, they are complying with the class-2

KPI. The combination of these statements means that for the given scenario, there is no class-2

accumulation rate b2 that simultaneously satisfies both KPIs. In order to do so, an additional

server would be required.
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Figure 6.1: The waiting time distribution function for class-1, with arrival rates λ1 = 0.9 and
λ2 = 0.8 and accumulation rates b1 = 1 and b2 = 0, 0.5, 1; simulation (solid line) and Gaver-
Stehfest 8 point evaluation (dashed line).
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Figure 6.2: The waiting time distribution function for class-2, with arrival rates λ1 = 0.9 and
λ2 = 0.8 and accumulation rates b1 = 1 and b2 = 0, 0.5, 1; simulation (solid line) and Gaver-
Stehfest 8 point evaluation (dashed line).
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Determining the Limiting Key Performance Indicator

For any given set of arrival rates λi; i = 1, 2, service rate µ, accumulation rates b2 (with

b1 arbitrarily set to 1) and number of servers c that correspond to a stable (ρ < 1) queueing

system, one can determine the waiting time distribution functions for the various classes as in

the two foregoing Figures (6.1, 6.2). We seek now to address a more comprehensive question:

at what utilisation levels (ρ), and for what values of b2 = b, do the different classes of customers

meet their KPI targets? We have prepared a set of figures to respond to this question, with the

total utilisation level on the x-axis and permissible b2 = b values for a specified class along

the y-axis. The goal is to determine a “feasible region” comprising a combination of overall

utilisation and specified accumulation rate, for which all classes of customer meet their KPI

targets. Initially considering the two-class case where both the class-1 and class-2 customers

meet their targets, we varied our utilisation rates to see for what values of b2 both the classes

meet their targets, with b1 fixed at unity, for differing numbers of servers. The feasible region

comprises those points below the red curve (indicating the maximal rate b2 for which the class-

1 KPI is still met), and above the blue curve (indicating the minimal rate b2 for which the

class-2 KPI is still met). On the basis of the traffic patterns, one may use these or similar

graphs to identify an appropriate b2 and/or the number of servers to ensure compliance with

both targets.

In Figure 6.3, we have plotted four graphs for the single server, two server, three server

and five server cases, respectively. The utilisation levels vary along the horizontal axis while

the b2 values vary along the vertical axis. If we look at each graph closely, it is evident that

above a certain utilisation level, there is no value of b2 such that both classes simultaneously

meet their KPI targets. For example, in the single server case, any utilisation level above 82%

is such that either class-1 or class-2 patients will fail to meet their targets for any value of b2

, and there are values of b2 for which both classes fail to meet their targets. One observation

we have from the sequence of graphs is that as the number of servers increases, the highest

utilisation level for which both classes meet their targets for some value of b2 also increases.
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This result is anticipated, as it reflects a well-known property of multi-server queues: as the

number of servers increases, the utilisation level required to produce the same level of delay

also increases.

Figure 6.3: Permissible range of values of 0 < b2 = b < 1 to meet the class-1 and class-2 KPI
where b1 is set to 1 and arrival rates for both classes are considered equal, for one, two, three
and five server cases, respectively (left to right, top to bottom).

Algorithm for finding maximum ρ and optimum b

We observe that in the foregoing examples, depending upon our choice of b2, the range of

utilizations satisfying both KPIs changed. We consider the optimal value of b2 to be the one for
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which both KPIs are satisfied for the largest range of the utilization ρ, with the ratio between

the arrival rates held constant. The shape of the graphs in Figure 6.3 suggests a procedure for

finding the optimal value of b2 for a given pair of class-1 and class-2 KPIs and a given number

of servers. For example, if we choose b2 equal to about 0.26 in the single-server case, both

KPIs will be satisfied for ρ ≤ 82% roughly, while in the five server case, we should choose

b2 to be about 0.39. A modified bisection algorithm that can be used to find the optimal value

of b2 for any two-class system is provided in the appendix. The algorithm, when run for the

same parameters as were used in Figure 6.3, leads to the pairs of maximum utilisation ρmax and

optimal accumulation rate b∗2 given in Table 6.3.

Table 6.3: Maximum ρ and optimal b2

Number of Servers ρmax b∗2
1 81.7% 0.257
2 90.5% 0.335
3 93.5% 0.361
5 96.0% 0.380

For a given number c of servers, and specified KPIs, the value of b∗2 that is reported by

the above algorithm will ensure that both KPIs are met for the widest range of traffic load

possible. In a situation where, at any time, we won’t know the traffic parameters precisely,

we would argue that this is the best choice of b2. Furthermore, although it is highly unlikely

that the arrival and service rates and number of servers would all conspire to yield a precise

utilisation of ρmax in any given application, a choice of b2 = b∗2 will allow for the maximal

possible increase in future demand before another server would be required.

Table 6.3 reveals that as the number of servers increases, both the maximum utilization rate

ρmax and the optimal accumulation rate b∗2 increase as well. From Figure 6.3 it appears to be

the case that as the number of servers increases, the accumulation rate of the bounding curve

for KPI 2 becomes steeper, leading to the higher point of intersection.

We now turn our attention to the development of similar graphs in some three class, two

server scenarios. We have considered equal arrival rates (33% for each) for Figures 6.4 and 6.5
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and unequal arrival rates (37.5%, 50%, and 12.5%, for class-1, class-2, and class-3 patients,

respectively) for Figures 6.6 and 6.7. The service rate was set to unity as before. Utilisation

levels were varied on the horizontal axis while b3 was varied over the vertical axis, subject

to 0 < b3 < b2. For Figures 6.4 and 6.6, we have fixed b1 = 1, b2 = 0.9 and let b3 vary

accordingly. However, for Figures 6.5 and 6.7, we have fixed b1 = 1, b2 = 0.4 so that b3 can

only vary between 0 and 0.4. In graphs 6.4 and 6.6, a utilisation is reached such that no value

of b3 can lead to compliance with the class-1 KPI, prior to any limitation being observed for

the class-3 KPI. Even in a queue with absolute priority for class-3 (i.e. b3 = 0), its KPI would

be met, while having a positive value of b3 adversely affects the quality of service seen by the

higher priority customers.

In Figures 6.5 and 6.7, we observe that the situation is less severe overall, since b2 = 0.4.

It is still the case, however, that an impact is seen first for the class-1 KPI as ρ increases.
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Figure 6.4: Permissible range of values of 0 < b3 < 0.9 to meet the class-1, class-2 and class-3
KPI where b1 = 1 and b2 = 0.9 and arrival rates for all classes are considered equal.

Figure 6.5: Permissible range of values of 0 < b3 < 0.4 to meet the class-1, class-2 and class-3
KPI where b1 = 1 and b2 = 0.4 and arrival rates for all classes are considered equal.
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Figure 6.6: Permissible range of values of 0 < b3 < 0.9 to meet the class-1, class-2 and class-3
KPI where b1 = 1 and b2 = 0.9 and arrival rates are considered unequal (37.5%,50%,12.5%,
respectively).

Figure 6.7: Permissible range of values of 0 < b3 < 0.4 to meet the class-1, class-2 and class-3
KPI where b1 = 1 and b2 = 0.4 and arrival rates are considered unequal (37.5%,50%,12.5%,
respectively).
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Applying the bisection algorithm to the 3-class, two server cases considered here, with

b2 = 0.4 and b3 allowed to vary, one obtains the results listed in Table 6.4.

The use of these and similar graphs provides insight into the behavior of the multi-server,

multi-class APQ. Depending on the service requirements of different classes of customers, one

may fine-tune their respective accumulation rates to try to achieve their performance standard.

Table 6.4: Maximum ρ and optimal b3

Three Classes (Two Servers) ρmax b∗3
Equal arrival rate 87.1% 0.071

Unequal arrival rate 83.5% 0.064

6.5 Conclusion and Future Research

We have presented a multi-server APQ model for an arbitrary number of customer classes,

for which all service times are selected from a common exponential distribution. An obvious

extension of our current model is to the situation where the rate of service differs for different

classes of patients. However, such a problem is far from trivial analytically, since the duration

of a queueing period in a multi-server context will depend on the mix of customers that is in

service when the queueing period starts, via the fact that this mix affects the distribution of the

time the initial service completions occur.

The extension to non-exponential service time distributions can be considered as effectively

intractable in the multi-server context, although some results might be possible in the case

of a small number of servers for small-order Erlang distributions, which are built upon the

exponential.

The present APQ models, both single-server and multi-server, enable one to ascertain

whether a given set of accumulation rates will enable compliance with a given set of KPIs

for a given traffic pattern of patient arrival and service rates. This may not be an absolute cri-
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teria in a clinical settings (e.g. ED) where either the KPI’s are not scientifically defined or the

waiting time credits are not allowed to the lower acuity patients (CTAS 4 and 5) as compared

to higher acuity patients (CTAS 4). However, the APQ models can help identify other, better

time limits for the KPI based performance systems.

We have also considered a particular optimization problem related to the model, namely, the

selection of the “best” accumulation rate which allows for the maximum possible utilisation

that complies with the KPIs. Another pertinent optimization problem relates to an inherent

flaw in KPIs based solely on a target time and compliance probability: patients who exceed the

standard are of no consequence, so long as they are few enough in number that the relevant KPI

is met. In fact, when such rare events do occur, one would wish to minimize any additional

amount of time such patients wait. One such criterion would be the minimization of the total

or average amount of excess waiting beyond the specified targets. This topic is among those

we hope to address in future work.

Implementation of our model in an emergency department suffers from two clinical diffi-

culties. First, patients in each CTAS category may take variable amounts of time to be assessed

and treated. Second, different physicians (servers) may take different amounts of time to assess

and treat the same individual. In order to overcome those difficulties one should employ a sim-

ulation model where different service time distributions for each CTAS class patients can be

assigned and an estimate (along with variability) of the time a server takes to treat a particular

CTAS class patient may be obtained from the POWER study (Dreyer et al. (2009)). This is

another avenue of future reasearch that we hope to pursue.
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6.7 Appendices

Appendix A: Relevant waiting time formulas

We present below the remaining formulas needed for the determination of W̃ (k,0)
acc (s) which

appears in (6.4), for reasons of completeness. The derivation of these expressions can be found

in Stanford et al. (2013).

The terms W̃ (k,0)
acc (s) are given by

W̃ (k,0)
acc (s) =

{µθk−1 −
∑k

i=1 λi(bk − bk+1)/bi}{̃γk(sbk+1/bk) − θ̃k−1(s)}

{1 − bk+1/bk}{s − (
∑k

i=1 λibk/bi)(1 − θ̃k−1(s))}
. (6.5)

where θ̃k(s), k = 1, 2, . . . ,K is the LST of the duration of a busy period during which

customers “gain accreditation relative to class-k + 1” (see Stanford et al. (2013)) and

1
µθk

=
dθ̃k(s)

ds

∣∣∣∣∣∣
s=0

(6.6)

is the mean of a random variable with LST θ̃k(s).

Due to the assumption that customers have a common exponential service time distribution,

θ̃k(s) =
(cµ + s + Λk) −

√
(cµ + s + Λk)2 − 4Λkcµ
2Λk

(6.7)

where

Λk =

k∑
i=1

λi(1 − bk+1/bi). (6.8)

Finally, γ̃k(s) is the solution to the functional equation γ̃k(s) = θ̃k−1(s + (
∑k

i=1 λi(bk −

bk+1)/bi)(1 − γ̃k(s)).
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Appendix B: Algorithm for finding maximum ρ and optimum b

1. Set (ρL, bL) = (0, 0.5) and (ρU , bU) = (1, 0.5). It is necessarily the case that both the class-

1 and class-2 KPIs must be satisfied when the load is given by ρL and the accumulation

rate of class-2 traffic is given by bL, so we know that ρL < ρmax. It is possible that the

class-1 KPI is satisfied when the load is given by ρU for some low values of bU . However

the class-2 KPI will certainly not be satisfied for any value of bU when ρU = 1, because

a non-priority queue with this load is unstable. So we know that ρU > ρmax.

2. Set ρM = (ρL + ρU)/2 and bM = (bL + bU)/2.

3. Evaluate whether one, both, or neither of the KPIs is met with utilisation level ρM and

accumulation rate bM. If neither is satisfied, then we know that ρM > ρmax and so we set

(ρU , bU) = (ρM, bM); if both are satisfied, then we know that ρM < ρmax and so we set

(ρL, bL) = (ρM, bM). In both cases, return to Step 2.

4. In the case where one KPI is satisfied at the point (ρM, bM), while the other is not, we

need to search for an appropriate new value of bM. This is done as follows:

(a) If KPI 1, but not KPI 2, is met, then set bL
M = bM and bU

M = 1. If KPI 2, but not KPI

1, is met, then set bL
M = 0 and bU

M = bM.

(b) Set bM
M = (bL

M + bU
M)/2. If neither KPI is satisfied at the point (ρM, bM

M), then we

know that ρM > ρmax and so we set (ρU , bU) = (ρM, bM
M); if both KPIs are met at the

point (ρM, bM
M), then we know that ρM < ρmax and so we set (ρL, bL) = (ρM, bM

M). In

both cases, return to Step 2.

If KPI 1, but not KPI 2, is met at the point (ρM, bM
M), then set bL

M = bM
M. Return to

Step 4(b).

If KPI 2, but not KPI 1, is met at the point (ρM, bM
M), then set bU

M = bM
M. Return to

step 4(b).

5. Once ρU −ρL < ε, for some precision level ε, the algorithm reports (ρmax, b∗2) = (ρM, bM).



Chapter 7

An Optimization Problem for

Queues Operating under Waiting

Time Targets

7.1 Introduction

In many situations, a health care or other service system attends to a number of distinct cus-

tomer populations with differing urgencies for commencement of service. One ready example

arises in the field of emergency medicine, which serves the needs of patients whose lives are

in imminent danger, those of moderate urgency, and others with comparatively minor com-

plaints. The Canadian Triage and Acuity Scale CTAS (2005), (see Table 7.1, below) as well

as the Australasian Triage Scale ATS (2000) on which it was based, identify five distinct pa-

tient populations, and sets a service standard for commencement of service for each group.

These standards specify a delay target and a corresponding compliance probability p for each

class, such that the chance a patient from the given class will be seen by the delay target (i.e.,

commence treatment) is at least p.

145
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Table 7.1: CTAS Key Performance Indicators

Category Classification Access Performance Level

1 Resuscitation Immediate 98%
2 Emergency 15 minute 95%
3 Urgent 30 minute 90%
4 Less urgent 60 minute 85%
5 Not urgent 120 minute 80%

CTAS is an example of a set of Key Performance Indicators (KPIs) comprising delay tar-

gets di and corresponding compliance probabilities pi; i = 1, 2, . . . , 5. KPIs are widely used in

health care, both for “visible” queues such as those in Emergency departments, as well as “in-

visible” queues or waiting lists, such as in (Arnett et al. (2003)), which pertains to hip and knee

replacement surgery. Britain’s National Health Service (NHS) uses KPIs for a diverse range of

health services, including, for example, mental health (Dodd (2011)), Accident & Emergency

department (NHS-Stockport (2014)), Cancer time to treatment (NHS-Leeds (2013)), and Diag-

nostic tests (TheGuardian (2011)), to name a few. Similar trends can be found in many Western

countries.

At face value, there appears to be a close link between systems operating to KPI delay

targets and service systems offering specified lead times for the delivery of a particular service

(see, for instance, Keskinocak et al. (2001), Çelik & Maglaras (2008), Akan et al. (2012)).

However, lead time problems are typically characterized by a revenue stream, and are typically

concerned with the “right” lead time to offer for a specified request as a function of the orders

presently in the service system in order to maximize profit or minimize a penalty function. In

contrast to this, the delay targets in KPI problems are fixed, and in the health care field where

they predominate, they usually having been set by medical professionals in response to the

perceived clinical need of the various patient classes. Furthermore, they are typically set prior

to any consideration of the traffic characteristics of the patient classes (frequency of demand,

treatment time distributions, etc.). It then falls to the health care professionals responsible for

the operation of the particular facility to determine a patient selection rule (in queueing terms,
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a service discipline) so that the KPIs are all met.

In essence, the selection of a suitable service discipline to accommodate the differing delay

target needs of the various patient classes in a KPI-driven system is inherently challenging. Not

only is a first-come, first served (FCFS) discipline ill-suited to the task, but in all likelihood a

standard priority mechanism will fail as well: patients of lower priority are subject to repeated

overtaking by recent higher priority arrivals, with no consequence being given for the time

such lower priority patients have already spent in the system. What is needed is a system

which factors both the time that customers have spent in the system as well as their acuity

level so as to better adhere to the stated delay targets. In other words, patients from the various

classes should be allowed to accrue priority credit while they wait, at a rate that reflects their

relative urgency for treatment. The determination of the average waiting times for a queue

operating under such a policy was first considered by Kleinrock (1964). Recently, Stanford

et al. (2014) determined the waiting time distributions for the various patient classes in what

they have called the Accumulating Priority Queue (APQ).

In a nutshell, the advantage of an APQ approach for systems operating under KPIs is that it

enables each class of customers to progress fairly towards eventual access to a server by its own

waiting time target. Customers can still be overtaken by others of greater urgency or acuity,

but they will not be overtaken indefinitely, due to the growing accumulated priority the longer

a customer waits.

At the same time, when seen from another perspective, systems designed to respond solely

to stated KPIs suffer a fundamental flaw: no consideration is given for the consequences of

those patients whose waiting time exceeds the standards. This inability of KPIs to reflect the

increased (rather than diminished) urgency of patients whose wait exceeds the specified target

was one of the points commented upon by Dr. Chris Baggoley of Australia’s Expert Panel

Review of Elective Surgery and Emergency Access Targets in a 2012 keynote address (Davies

& Little (2012)).

This paper responds to this oversight by presenting an optimization model to minimize the
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total expected excess delay beyond the target delays for health systems operating under KPIs.

We then generalize the model by seeking to minimize a weighted average of the total expected

excess over all classes of customers. We seek solutions to the model using the Accumulating

Priority Queue (APQ) service discipline. Loosely speaking, the ability to choose the priority

accumulation rates for the various classes provide an extra margin of flexibility over the stan-

dard non-preemptive priority discipline to ensure that the traffic patterns observed in the system

for the classes of customers adhere to the stated KPIs.

When minimizing the total expected excess waiting time, it will be seen that our numerical

examples reveal that this leads to an easily implemented rule of thumb for the optimal priority

accumulation rates which can have an immediate impact on health care delivery. The rule of

thumb says that the patients from each class should accumulate priority at a rate in inverse

proportion to their delay targets. When this is done, patients from any class whose waiting

time is approaching their delay target will tend to have similar accumulated priorities to that

point in time, thereby ensuring comparable likelihoods of waiting time excess.

It should be stressed that there is no obligation upon a health facility governed by a set of

KPIs to implement the same strategy for all its patient classes. In Emergency departments,

one would never make a Resuscitation or Emergency patient wait for someone of lower acu-

ity. However, one could still envisage this as part of an APQ setting merely by allowing for

infinitely-large accumulation rates for these patient classes.

The rest of the paper is organized as follows. In section 2, we present the optimization

problems for both the general case, and its restriction to Accumulating Priority service disci-

pline. We end the section by addressing the matter of convexity of the corresponding APQ

optimization problem.

Section 3 relates the Laplace transforms of the waiting time distributions and expected

excesses. We show that when one resorts to a numerical inversion of the pertinent waiting time

transform to compute the probabilities, the corresponding numerical inversion of the expected

excess waiting time is obtained with minimal additional effort. Due to its simplicity and ease of
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implementation, Section 4 presents our preferred numerical inversion method, Gaver-Stehfest

algorithm (Gaver (1966), Stehfest (1970)), and present the functional relationships needed to

obtain the numerical results that follow.

In section 5, we present a series of numerical examples which explore the optimal behaviour

of the APQ. The nature and impact of our various results and insights are summarized in the

Conclusions section.

7.2 Formulation of the Optimization Problem

Consider a queue featuring either a single server or many servers, which attend(s) to L indepen-

dent classes of customers with distinct KPIs of the form discussed in the introduction. Arrivals

for the nth class of customers are from a Poisson process at rate λn; n = 1, 2, . . . , L. All service

time distributions are known, and they may differ from class to class.

We presume that the queue is operating under a particular service discipline a ∈ A (that

is, a rule for selecting the next customer to enter service), where A denotes the set of per-

missible work-conserving (server is not idle unless queue is empty) disciplines. The set A

includes FCFS, last-come, first served (LCFS), Random Order of Service (ROS) and both

Non-preemptive (NP) and Preemptive Resume (PR) disciplines, among others. We presume

that the queue has been operating sufficiently long to have reached stationarity.

LettingWn denote the stationary class-n waiting time random variable, define the following

for n = 1, 2, . . . , L:

• Wn(x) = P(Wn ≤ x) is the cumulative distribution function,

• S n(x) = P(Wn > x) = 1 −Wn(x) is the survival function, and

• wn(x) = dWn(x)/dx is the probability density function of the stationary class-n waiting

time distribution.

We will denote the respective Laplace transforms of these quantities, and all others to be
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defined below, by a ˜ throughout the paper.

The expected amount of excess waiting time Hn(dn) for a typical class-n customer beyond

a specified delay dn, henceforth abbreviated the “expected excess”, can be determined from

Hn(dn) =

∫ ∞

dn

(x − dn)wn(x)dx =

∫ ∞

dn

S n(x)dx. (7.1)

The latter integral above is obtained by integrating the former one by parts. The quantity

λnHn(dn) can be interpreted as the expected amount of excess waiting for class-n customers per

unit of time.

For such a queue as described above, the general form of the optimization problem can be

stated as follows. We seek to minimize a weighted average of the total expected excess waiting

per unit time over all permissible customer selection strategies,

mina∈A Z =
∑L

n=1 αnλnHn(dn)

subject to Wn(dn) ≥ pn ; n = 1, 2, . . . , L;

where, αn, n = 1, 2, . . . , L denote the respective weights for the excess waiting for class-n

customers. A priori, we observe that the stated problem might be infeasible. If feasible, we

observe that there might conceivably be more than one optimal solution.

7.2.1 Formulating the APQ Optimization Problem

In Stanford et al. (2014), the APQ model first introduced by Kleinrock (1964), was reconsid-

ered, and the stationary waiting time distributions for each class of customer were determined.

Kleinrock (1964)’s model presumed that waiting customers of the ith priority class accrue pri-

ority “credit” at a rate bi ≥ 0, where bi ≥ b j if class i is considered to be of higher priority to

class j. In what follows, we presume that a lower class index means a higher priority, so that

class 1 has top priority and class L has the lowest priority. We note that the APQ discipline is

work-conserving.
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The APQ is a simple yet flexible scheduling model which allows both the priority of the

customer (or acuity of the patient in health care applications ) as well as its time spent waiting

to be factored into the decision as to which customer next enters service. Setting bi = B > 0 ∀i,

a first-come first-served queue that aggregates all customer classes is obtained. Setting bL = 1

while bi = bi+1 ∗ M; i = 1, 2, . . . , L − 1, a classical non-preemptive priority model is obtained

in the limit as M → ∞.

To date, analytical solutions for the waiting time distributions exist for two cases: Stanford

et al. (2014) presents the solution for the single-server case where each class may have its own

specified service time distribution, while Sharif et al. (2014) addresses the multi-server case

when all service times are drawn from the same exponential service time distribution, with

service rate µ.

LetAAPQ denote the set of APQ service disciplines. The resulting APQ optimization prob-

lem then reduces to the selection of the best accumulation rates bi; i = 1, 2, . . . , L in order to

minimize the weighted average excess:

mina∈AAPQ Z =
∑L

n=1 αnλnHn(dn)

subject to Wn(dn) ≥ pn ; n = 1, 2, . . . , L;

bn ≥ bn+1 ; n = 1, 2, . . . , L − 1;

bL ≥ 0;

where, αn, n = 1, 2, . . . , L again denotes the respective weight for the excess waiting for class-n

customers. It is to be noted that the role of αn’s is not to make higher priority customers gain

priority faster (that’s the role of bn’s), rather αn’s provide greater weight to waiting times of

the given class of customers, and as such, assess a greater penalty for incurred waits by those

customers.
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7.3 Convexity in the Two-class APQ Optimization Problem

It is immediately a matter of interest as to whether the APQ optimization problem is convex in

the decision variables bi. Unfortunately, as even the simplest numerical examples in the 2-class

case show later, the expected class-1 excess H1(d1) can have a negative curvature over some

or all of its range as a function of its parameters, so we have been unable to infer convexity

of the resulting weighted average even in the simplest case based upon mixtures of convex

functions. We can establish, however, that the expected class-2 excess H2(d2) is convex in b2

in a two-class problem, and we can infer that the same will hold true for the lowest class L as

a function of its accumulation rate bL in a multi-class APQ problem.

Since it is the ratio b2/b1 of the priority accumulation rates rather than their individual

values that determine which customer will be selected in the two-class case, we can arbitrarily

set b1 = 1 and investigate the behaviour as a function of one variable b2 = b where 0 ≤ b ≤ 1.

Henceforth, we state explicitly the dependence upon b of our preceding probability func-

tions Wn(b, x), S n(b, x), wn(b, x) and Hn(b, dn); n = 1, 2, . . . , L, as our goal is to establish that

H2(b, d2) is a convex function of b. To do so, we first need to establish an important lemma,

whose proof has been relegated to the appendix.

Lemma 1. The stationary waiting time random variableW2 for class-2 customers in a stable

two-class APQ can be expressed as the sum of two dependent random variables

W2 =W + Y (7.2)

whereW denotes the stationary waiting time random variable in the M/G/1 FCFS comparator

queue, and Y refers to a compound Poisson random variable

Y = η1 + η2 + . . . + ηN (7.3)
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where the random variable N denotes the number of class-1 customers to accredit duringW,

and ηi; i = 1, 2, . . . denote a sequence of i.i.d. busy period random variables for an M/G/1

queue with arrivals at rate λ1(1−b) and whose service times are drawn from the class-1 service

time distribution. (In (7.3), it is to be understood that if N = 0, then Y = 0.)



154 Chapter 7. An Optimization Problem for Queues Operating underWaiting Targets

(1-b-Δb)t (Δb)t 

 
bt 

(b+Δb)t 

bt 

W=t 

Accumulation 

Rate b=1 

Accumulation 

Rate 0<b<1 

Accumulation 

Rate b+Δb 

N1 
N2 

Accumulated 

Priority 

Figure 7.1: Impact of change in Accumulation Rate

Theorem 1. Given all the foregoing definitions, the function S2(b, x) is a monotonically de-

creasing convex function in b for 0 ≤ b ≤ 1,∀x ≥ 0.

Proof. We proceed by calculating (∂/∂b)S2(b, x) from first principles:

(∂/∂b)[S2(b, x)] = lim
4b→0

{
S2(b + 4b, x) − S2(b, x)

4b

}

Reconsider the revised service discipline used in Lemma 1. From Figure 1, which presumes

that we have conditioned upon W = t, closer inspection of the accreditation process reveals

that the N Poisson events underpinning Y are those that occur at rate λ1 during the first (1 − b)

portion ofW. If the class-2 accreditation rate were to change to b +4b, then only those events
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occurring during the first (1−b−4b) portion ofW would contribute to the compound Poisson

process delaying our tagged customer.

Due to the independence of compound Poisson processes arising from Poisson events in

non-overlapping intervals, we can write Y = Y1 +Y2 where Y1 is the compound Poisson process

corresponding to the N1 accreditation events that occurred during the first (1 − b − 4b) portion

of W, and Y2 is the compound Poisson process corresponding to the N2 accreditation events

occurring during the subsequent (4b) portion ofW. Thus we obtain immediately

S2(b, x) = P(W + Y1 + Y2 > x); S2(b + 4b, x) = P(W + Y1 > x).

Therefore

S2(b + 4b, x) − S2(b, x) = −[P(W + Y1 + Y2 > x) − P(W + Y1 > x)]

= −[P(W + Y1 ≤ x; W + Y1 + Y2 > x)] < 0.

Now for sufficiently small 4b, the probability of two or more events in a small period of

duration 4bW is o(4bW). Similarly, the probability of one such event is λ14bW + o(4bW).

Substituting the terms as appropriate and removing the conditioning upon W, one readily

obtains

(∂/∂b)[S2(b, x)] = −λ1E({W × I(W + Y + η > x)} < 0. (7.4)

[In (7.4), I(A) denotes the indicator function for the event A, equal to 1 if the event occurs, and

0 otherwise.]

Since the partial derivative is negative ∀x, this establishes that S2(b, x) is a monotonically

decreasing function of b. Furthermore, as b increases, Y decreases in distribution, since the rate

of the corresponding underlying Poisson process at rate λ1(1− b) decreases. Consequently, the

probability associated with the indicator function decreases, so that the derivative is a strictly

increasing function of b, and the convexity immediately follows. �
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Corollary 1. The excess function H2(b, d2) above is monotonically decreasing and strictly

convex in b for 0 ≤ b ≤ 1 for every fixed d2 ≥ 0.

Proof. This follows immediately from Theorem 1 and H2(b, d2) =
∫ ∞

u=d2
S2(b, u)du. �

Corollary 2. The excess function HL(bL, dL) for the lowest priority class in a stable L-class

APQ is strictly convex in bL for 0 ≤ bL ≤ bL−1, for every fixed dL ≥ 0.

Proof. The lowest priority class (class N) observes the unfinished workload in the correspond-

ing M/G/1 FCFS queue at its arrival instants. By Corollary 7.3 in Stanford et al. (2014), the

higher classes 1, 2, . . . , L − 1 gain accreditation over class-L customers according to a Poisson

process at rate
∑L−1

i=1 λi(1 − bL/bi). The rest follows by direct analogy to the proof of the two-

class case. �

While the class-1 expected excess function is not always convex, we can establish in the

single-server case that it is monotonically non-decreasing in b for all values of d1.

Theorem 2. For single-server systems, the function S1(b, x) is a monotonically non-decreasing

function in b for 0 ≤ b ≤ 1,∀x ≥ 0.

Proof. We compare sample paths in two stable APQ systems with fixed arrival rates, common

service rate, and with the class-1 accumulation rate set to b1 = 1. The sequences of arrival

instants and service requirements for all customers in the two systems are the same. The only

difference is that in the former case, the class-2 arrival rate is b2 = b where 0 ≤ b ≤ 1 − ∆b,

whereas in the latter it is b2 = b + ∆b ≤ 1, for small ∆b ≥ 0.

The busy periods of the queues in the two systems are the same, since the unfinished work-

load functions for both systems would be the same. The APQ service discipline merely re-
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arranges the order in which some customers are served, relative to any other work-conserving

discipline.

Consider a delayed class-1 customer in the former APQ system; we will refer to it as the

“tagged” customer. In the latter system, all of the class-2 customers formerly served ahead

of the tagged customer will still be served ahead of them. It may be the case that due to the

increased rate of priority accumulation, some class-2 customer formerly present upon the ar-

rival of the tagged class-1 customer might have completed service. However, all of the service

times completed by the server in the former system prior to the tagged customer’s entry would

still be completed under the latter. The only difference is that there may be some more class-2

customer(s) who formerly were selected for service after the tagged customer, who now under

the higher priority accumulation rate b2 = b + ∆b might enter service ahead of it, leading to a

longer waiting time. As the probability of such an event is positive, it follows that S1(b, x) is a

monotonically non-decreasing function in b for 0 ≤ b ≤ 1,∀x ≥ 0.�

Corollary 3. For single-server systems, the excess function H1(b, d1) above is monotonically

non-decreasing in b for 0 ≤ b ≤ 1 for every fixed d2 ≥ 0.

Proof. This follows immediately from Theorem 2 and H1(b, d1) =
∫ ∞

u=d1
S1(b, u)du. �

Remark. The same line of proof cannot be used in the multi-server case, since the re-arranging

of service times can lead to customers being served by different servers, and even to separate

periods of time when all servers are busy. Nonetheless, we conjecture that the claim is still true

in the multi-server case.
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7.4 Relationship between the Transforms of the Waiting Time

CDF and the Excess Wait

In this section, we once again consider an arbitrary service discipline for which the stationary

waiting time distribution can be specified in terms of its Laplace-Stieltjes transform for each

class of customers. While many such queueing systems have been analyzed successfully in

this way, it is frequently the case that one cannot invert the LST analytically. In such cases,

one commonly resorts to one of many effective procedures available (for example, Brigham &

Morrow (1967), Gaver (1966), Stehfest (1970)) which numerically invert the LST to recover

the desired probabilities. We establish in this section that the numerical evaluation of the ex-

pected excess per customer is a straightforward matter via numerical inversion for any service

discipline for which the waiting time LSTs are readily available. We do so by establishing that

the transform of the amount of excess waiting time can be expressed in terms of the waiting

time LST which we use to evaluate KPI compliance. The implication is that the objective func-

tion which seeks to minimize the amount of excess can be evaluated with minimal extra effort

beyond assessing whether KPI compliance has been achieved.

The Laplace transforms of wn(t), Wn(t), S n(t), and Hn(t) are given by

w̃n(s) =

∫ ∞

t=0
e−stwn(t)dt =

∫ ∞

t=0
e−stdWn(t)

W̃n(s) =

∫ ∞

t=0
e−stWn(t)dt

S̃ n(s) =

∫ ∞

t=0
e−stS n(t)dt

H̃n(s) =

∫ ∞

t=0
e−stHn(t)dt

Standard properties of Laplace transforms imply that

W̃n(s) =
w̃n(s)

s
(7.5)
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and

S̃ n(s) =
1
s
− W̃n(s). (7.6)

From (7.1), it follows that H′n(t) = −S n(t), so that when integrating by parts,

H̃n(s) =

∫ ∞

t=0
Hn(t)e−stdt

=

[
Hn(t)e−st

−s

]∞
0

+

∫ ∞

t=0

e−st

s
H′n(t)dt

=
Hn(0)

s
−

1
s

S̃ n(s).

Let mn = mean class-n waiting time. Since Hn(0) =
∫ ∞

x=0
S n(x)dx = mn,

H̃n(s) =
mn

s
−

1
s2 +

w̃n(s)
s2 . (7.7)

It is immediately apparent from (7.7) that the evaluation transform of the expected excess per

customer H̃n(s) is readily obtained for any value of s once the corresponding evaluation has

been carried out for the transform of the waiting time distribution w̃n(s). In the next section,

we present the specific numerical inversion approach we use to achieve both tasks.

7.5 The Utility of Gaver-Stehfest Numerical Inversion for

Evaluating Expected Excess

The numerical inversion of Laplace transforms has been an alternative to analytical inver-

sion since the Fast Fourier Transform (FFT) technique gained popularity Brigham & Morrow

(1967). Whereas the FFT can require hundreds of evaluations for a single time point of inter-

est, there are alternatives that require only a handful of evaluations. The one we use has come

to be known as Gaver-Stehfest numerical inversion; it is so named because the pioneering

probabilistic work of Gaver (1966) was later refined algorithmically by Stehfest (1970).

Given a real-valued function f (t); t ≥ 0 whose Laplace transform is f̃ (s), then the Gaver-
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Stehfest method for numerical Laplace transform inversion at the point t is given by the fol-

lowing (Gaver (1966), Stehfest (1970)):

f (t) =
ln2
t

K∑
k=1

Vk f̃
(
ln2
t
× k

)
(7.8)

where the values Vk are the Gaver-Stehfest coefficients of order K (always even), half of which

are positive and half negative numbers. These coefficients, as derived by Gaver, are combina-

torial terms arising in order statistics, with the useful by-product that they always sum to 0.

Typically K = 8 points provides two significant digits of accuracy, which is quite adequate for

assessing waiting times. The table that provides the coefficients for K = 2; 4; 6; 8 is provided

in the appendix.

In light of (7.5) and (7.8), the Gaver-Stehfest evaluation of the class-n waiting time distri-

bution, n = 1, 2, . . . ,N is achieved via

Wn(t) =
ln2
t

K∑
k=1

Vk

w̃n

(
ln2
t × k

)(
ln2
t × k

) =

K∑
k=1

Vk

k
w̃n

(
ln2
t
× k

)
. (7.9)

Meanwhile, the Gaver-Stehfest numerical evaluation of the class-n expected excess per cus-

tomer function, n = 1, 2, . . . ,N is given by

Hn(t) =
ln2
t

K∑
k=1

Vk H̃n

(
ln2
t
× k

)

=
ln2
t

K∑
k=1

Vk

 mn

( ln2
t × k)

−
1

( ln2
t × k)2

+
w̃( ln2

t × k)

( ln2
t × k)2


=

K∑
k=1

Vk

k

mn −
1

( ln2
t × k)

+
w̃( ln2

t × k)

( ln2
t × k)

 . (7.10)

It is readily apparent from a comparison of (7.9) and (7.10) that minimal extra effort is

involved in determining the expected excess per customer beyond the specified thresholds

Hn(dn); n = 1, 2, . . . ,N once the evaluations of the corresponding compliance probabilities

Wn(dn) have been performed.
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7.5.1 Necessary Formulae from the APQ Multi-server Model

To complete the optimization approach, we specify below the waiting time LSTs for each class

of customers. We do this for the case of a multi-server APQ with c servers and N = 2 priority

classes, where the service times for all classes are exponentially distributed at rate µ. We start

with the specification of w̃2(s).

Theorem 3. The Laplace-Stieltjes transform w̃2(s) of the class-2 waiting time distribution can

be written as

w̃2(s) = w̃(s + λ1(1 − b)(1 − η̃1(s))) (7.11)

where η̃1(s) is the Laplace-Stieltjes transform of the duration of a busy period of accrediting

customers, and is obtained as the solution to the functional equation

η̃1(s) = cµ/(cµ + [s + λ1(1 − b)(1 − η̃1(s))]). (7.12)

Furthermore, the LST w̃(s) represents the LST of the waiting time in an M/M/c queue, and is

given by

w̃(s) = [1 −C(A, c)] + C(A, c)
[
(cµ − λ)/(cµ − λ + s)

]
. (7.13)

where C(A, c) = Ac

c!(1−ρ)/(
∑c−1

i=0
Ai

i! + Ac

c!(1−ρ) ) is the probability an arrival finds all c servers busy in

an M/M/c queue with A = λ/µ.

Proof. As a result of (7.2), the Laplace-Stieltjes transform of the class-2 waiting time distri-

bution can be decomposed into the initial workloadW followed by a delay represented by the

compound Poisson process Y , where the number of terms N in the compound Poisson process

represents the accrediting customers that arrive duringW. Now, the distribution of the initial

workload W found by an arrival from a Poisson process is identical to that of the stationary

waiting time in an M/M/c queue, whose LST is given by (7.13).
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During periods when all c servers are busy, the duration of times between customers enter-

ing service are exponentially distributed at rate cµ. As such, periods during which all servers

are busy in an M/M/c queue with service at rate µ are indistinguishable, probabilistically, from

busy periods in an M/M/1 queue with service at rate cµ (see, for instance, Sharif et al. (2014)).

Thus, according to the revised service discipline introduced in the proof of Lemma 1, each

of the accrediting customers to arrive duringW adds an amount to the waiting time equal to

a busy period of accrediting customers, and is thus equivalent to a busy period in an M/M/1

queue with service at rate cµ and arrivals at rate λ1(1 − b). The functional equation for the

LST η̃1(s) of such a busy period is seen to be given by (7.12). Remembering that N is Poisson

distributed duringW at rate λ1(1 − b), one readily obtains (7.11). �

The class-2 waiting time distribution will play a role in the determination of the class-1

waiting time distribution, so we choose to combine (7.11) and (7.13) to obtain the following

expression for w̃2(s):

w̃2(s) = [1 −C(A, c)] + C(A, c)w̃2(s|busy) (7.14)

where w̃2(s|busy) denotes the LST of the class-2 waiting time distribution, conditional upon an

arrival finding all servers busy, which is given by

w̃2(s|busy) =

[
cµ − λ

cµ − λ + [s + λ1(1 − b)(1 − η̃1(s))]

]
. (7.15)

The functional equation (7.12) gives rise to a quadratic equation in η̃1(s) which can be factored

to yield

η̃1(s) =
(1 + s

cµ + ρH) − [(1 + s
cµ + ρH)2 − 4ρH]1/2

2ρH
(7.16)

where ρH ≡ λ1(1−b)/(cµ). The equations (7.14) through (7.16) are the functional forms needed

for the implementation of Gaver-Stehfest numerical evaluation for class-2 customers.

We conclude with the specification of w̃1(s).
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Theorem 4. The Laplace-Stieltjes transform w̃1(s) of the class-1 waiting time distribution can

be written as

w̃1(s) = [1 −C(A, c)] + C(A, c)w̃1(s|busy) (7.17)

where w̃1(s|busy) denotes the LST of the class-1 waiting time distribution, conditional upon an

arrival finding all servers busy. In turn, w̃1(s|busy) is given by

w̃1(s|busy) =
[
(1 − b)w̃(acc)

1 (s) + bw̃2(bs|busy)
]

(7.18)

where w̃(acc)
1 (s) denotes the LST of the waiting time of those class-1 customers who gain ac-

creditation, and is given by

w̃(acc)
1 (s) = w̃(0)

1 (s)
[(

1 − ρ
1 − ρH

)
+

(
ρ − ρH

1 − ρH

)
w̃2(bs|busy)

]
(7.19)

where

w̃(0)
1 (s) =

µ(1 − ρH)[̃η1(bs) − B(s)]
(1 − b) × (s − λ1 + λ1B(s))

(7.20)

for B(s) = cµ/(cµ + s).

Proof. Since service times for all customer classes follow the same exponential distribution,

the re-ordering of customers does not change the long-run fraction of time that all c servers are

busy, given by C(A, c). Since class-1 arrivals constitute a Poisson process, C(A, c) is also the

chance such an arrival will find all servers busy (and hence be delayed). This justifies (7.17).

Turning to w̃1(s|busy), we employ the equivalent formulation during waiting times used in

Theorem 3 above: namely, that of a single server with exponentially distributed service times at

rate cµ. We are then free to invoke Corollary 8.4 in Stanford et al. (2014), which leads directly

to (7.18).

Equation (7.19) similarly comes from the last equation in Stanford et al. (2014) Corollary

8.4, and w̃(0)
1 (s) from earlier definitions therein. �
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7.6 Numerical Experiments

A series of experiments were run for the APQ discipline, to determine the numerical behavior

of the expected excess per customer functions for each class, as well as various weighted

averages of the individual excess functions.

In the first set of experiments, the results of which are presented in Figures 2 and 3, we

have considered a 2-class, 2-server APQ in which the customer arrival rates for both classes

are kept the same, while the server occupancy changes from 80% in Figure 2 to 95% in Figure

3.
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Figure 7.2: Two-class two-server APQ with equal arrival rates (80% occupancy)
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Figure 7.3: Two-class two-server APQ with equal arrival rates (95% occupancy)

Figures 2(a) and 3(a) present the expected excess waiting time per customer for a class-2

customer as a function of the priority accumulation rate for class-2 customers, b. The corre-

sponding results for class-1 customers are presented in Figures 2(b) and 3(b). The expected

excess increases with b for class-1 customers, as anticipated. The expected excess decreases

for class-2 customers, and the class-2 figures are seen to be convex, both as established in

Corollary 1.
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Figures 2(c) and 3(c) display the total expected amount of excess waiting time (i.e. when

the two classes are assigned equal weights α1 = α2 = 1). A comparison of the figures reveals

that the optimal accumulation rate b is quite insensitive to the occupancy level, with the optimal

value of b being very close to one half in all cases. Furthermore, generally speaking, the total

expected excess function is reasonably flat in the vicinity of the optimal b value. The actual to-

tal expected excess wait itself varies considerably with a change in occupancy, from a minimum

of the order of 0.1 at 80% occupancy, to a minimum on the order of 7 at 95% occupancy. The

fact that the optimal b is slightly less than 1/2 in all cases is not surprising, when one considers

the fact that the class-2 target delay is twice as long for class-2 customers as it is for class-1

customers. What is perhaps not anticipated is just how insensitive the optimal b value is to a

change in occupancy, and the flatness of the objective function (total expected excess) in the

vicinity of the optimal value. Thus, when an equal weight is placed on excess waiting for both

classes and the arrival rates are the same, a rule of thumb that works well is to set the priority

accumulation rates in inverse proportion to the target delays. In this way, customers from the

different classes approaching their respective delay targets will have accumulated comparable

amounts of credit, as one would expect.

Figures 2(d)and 3(d) display the weighted total expected waiting time excess with α1 =

2α2 = 2. One observes that the occupancy definitely influences the optimal value of b. The

optimal value of b is about b = 0.34 at 80% occupancy, and about b = 0.16 at 95% occupancy.

Thus, no simple rule of thumb can be employed when differing weights are applied; a more

detailed analysis using the methodology presented herein is needed to determine the optimal

accumulation rates for a given configuration.

Figure 4 presents the comparable results when 80% of the arrivals belong to class 1, at an

occupancy level of 95%. One notable change is that the average excess per customer for class-

2 customers is typically an order of magnitude larger than that for class-1 customers. When

the occupancy is large enough, as in Figure 4(d), then the weighted total expected amount of

excess is minimized when b2 is practically zero. In other words, in this case it is nearly optimal
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to resort to a standard non-preemptive priority queue.

Figures 5 presents the comparable results when 80% of the arrivals belong to class 2, at

an occupancy level of 95%. Qualitatively, the results are consistent with those of Figures

2 through 4. The biggest difference seems to be the individual expected loss per customer

curves for class-1 and class-2 customers. As the occupancy increases, these curves seem to be

approaching a linear form in b.

At this point, we sought to verify that the rule of thumb did indeed manifest itself in other

settings when the ratio of the delay targets was not a factor of 2. In Figure 6, we present the

results for an equal mixture of class-1 and class-2 customers, at an occupancy level of 95%,

when the class-2 delay target was three times as long as the class-1 delay target. As anticipated,

we see that the minimum of the total expected excess waiting time occurred when b2 is close

to 1/3, which is consistent with the rule of thumb. Furthermore, the optimal value of b2 in the

weighted total expected excess is smaller than in the pure expected excess scenario, just as had

been the case with all the foregoing examples.

For a final set of examples, we present in Figures 7 and 8 the results we obtained for a

three-class, two-server APQ with equal arrival rates at a 90% occupancy. The three delay

targets satisfy d3 = 2d2 = 4d1. We again have arbitrarily set b1 = 1. We present the expected

excess per customer for each of the three classes, as well as the total expected excess waiting

time. In Figure 11, we have fixed b2 = 1/2 to be consistent with the rule of thumb from the

two-class case, and allowed b3 to range over the interval 0 ≤ b3 ≤ b2 = 1/2. We observed

that the minimum total expected excess occurs when b3 is close to 1/4, as one would expect

from the rule of thumb. In Figure 12, we reversed the situation, fixing b3 = 1/4 and we

allowed b2 to vary over the interval 1/4 = b3 ≤ b2 ≤ 1. Once again, as anticipated, the

optimal accumulation rate for b2 occurs close to b2 = 1/2. We note in particular that the

expected excess wait time per class-3 customer is not a convex function of b2, which makes

sense: as the priority accumulation rate for class-2 customers increases, it does so at the relative

disadvantage to class-1 and class-3 customers, who in the former case are losing priority over
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Figure 7.4: Two-class two-server APQ with 80% class-1 arrivals (95% occupancy)
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Figure 7.5: Two-class two-server APQ with 80% class-2 arrivals (95% occupancy)

class-2 customers, and in the latter case, are losing priority to class-2 customers.

We conclude this section by commenting on the utility of different KPI compliance stan-
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Figure 7.6: Two-class two-server APQ with equal arrivals (80% occupancy) where delay target
for class-2 is 3 times that of class-1.
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Figure 7.7: Two-class two-server APQ with equal arrivals (95% occupancy) where delay target
for class-2 is 3 times that of class-1.
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Figure 7.8: Three-class two-server APQ with equal arrivals (90% occupancy) where b1 and b2

are fixed at 1 and 1/2, respectively, while b3 varies between 0 and 1/2, and the delay target for
class-3 is 2 times that of class-2 and 4 times that of class-1.
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Figure 7.9: Three-class two-server APQ with equal arrivals (90% occupancy) where b1 and b3

are fixed at 1 and 1/4, respectively, while b2 varies between 1/4 and 1, and the delay target for
class-3 is 2 times that of class-2 and 4 times that of class-1.
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dards in the total expected excess and the weighted total expected excess cases. As for the

former, we have observed throughout our examples that the rule of thumb works to ensure that

each class of customers has virtually the same chance of exceeding its delay target. In order

for all of the KPIs to be satisfied, this means that the APQ must adhere to the most stringent

compliance standard. In such a context, the other KPI compliance standards will be exceeded,

and are in effect irrelevant, so that there is no need for lesser compliance standards than the

most stringent one.

In the weighted total excess case, however, the optimal accumulation rates tend to be

smaller than their counterparts in the total expected excess case. This means that the chance

of non-compliance increases as the acuity decreases (i.e. the priority class index increases).

In such a setting, more generous compliance standards for customers of lower acuity makes

sense.

7.7 Conclusions and Future Research

In this paper, we have presented a general optimization problem for queueing systems operating

under waiting time targets. Our optimization problem reflects the fact that customers who miss

their waiting time targets are in fact of greater concern than those who meet them, and Key

Performance Indicators (KPIs) on their own do not address this fact. Formally, our goal was

to minimize a weighted average of the total expected excess waiting per unit time over all

permissible customer selection strategies.

We have also established that the individual terms in our objective function, which represent

the expected excess waiting time per customer for each class, are readily obtained as a by-

product of the computation of the probabilities of KPI compliance whenever the latter are

being evaluated via numerical inversion of their Laplace-Stieltjes transform.

While the aforementioned optimization problem can be applied to any work conserving

queueing discipline, we have established that the Accumulating Priority Queue, where cus-
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tomers are selected for service based both on their priority class and the amount of time they

have spent waiting for service, is well-suited to the goal of minimizing the excess waiting be-

yond the delay targets. In order to provide an intuition as to how the priority accumulation

rates (bn’s) works under APQ, let us consider a two class case. In particular one should first

establish that one can fix one rate and vary the other to explore all cases. Having fixed b1 = 1,

then 0 < b2 < 1 tells us where we are between the classical priority situation where waiting

time has no impact (b2 = 0) and the FCFS case where there are no distinction in the classes

(b2 = 1). In other words, it tells us where we are in the mix between classical priority and the

FCFS, in the intermediate zone where class matters but waiting time, too.

By providing the decision maker with the added flexibility of determining the best priority

accumulation rates for each class, one can achieve the desired balance between the amount of

excess waiting that occurs in each class. When equal weight are used, the system seeks to mini-

mize the total expected waiting time. Our numerical examples have established that the optimal

APQ strategy in this case is well-approximated by a “rule of thumb” which accumulates prior-

ity for customers of a given class in inverse proportion to their delay target. This ensures that all

customers approaching their waiting time targets will have accumulated comparable amounts

of priority, so that each customer sees nearly the same probability of exceeding their respective

targets. Consequently, all acuity classes will observe comparable levels of compliance. In the

more general case where the weights placed on the excess waiting times are different, no rule

of thumb exists; however, the optimal arrangement can nonetheless be determined according

to the procedures herein.

One underlying constant in our studies has been the assumption of a common service time

distribution for all customer classes. An obvious extension of our model would be to the situ-

ation where different classes have differing service time requirements. Until now, no suitable

APQ model for the multi-class, multi-server APQ model with differing service time distribu-

tions has been been developed, but such work is under way at present.

There may well be appropriate settings for this model involving certain non-work-conserving
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queues, such as call centres with fully and partially trained agents. Customers with standard

requirements could be seen by any agent, while customers with specialized needs (typically,

these customers would be of higher priority) could only be served by a subset of the agents.

The optimization problem in such a setting would rely upon the availability of the waiting time

LSTs for the different classes of customer.
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7.9 Appendices

Appendix A: Gaver-Stehfest Coefficients

Table 7.2: Coefficients for the Gaver-Stehfest Algorithm

V2 V4 V6 V8

2 -2 1 -1/3
-2 26 -49 145/3

-48 366 -906
24 -858 16394/3

810 -43130/3
-270 18730

-35840/3
8960/3

Appendix B: Proof of Lemma 1

We employ the same viewpoint to express the class-2 stationary waiting timeW2 as was

employed in Theorem 9.1 of Stanford et al. (2014). This is done by rearranging the service
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discipline in such a way that preserves the total waiting time experienced by a tagged arrival

from that class.

Consider such a tagged class-2 customer. It will wait for all of the work present in the

system upon its arrival, plus that which arrives later but will be served ahead of it. Since the

tagged customer is from the lowest priority class, and is an arrival from a Poisson process,

the distribution of the work it finds in system at such instants equals the distribution of the

stationary unfinished workload, by the “Poisson-arrivals-see-time averages” (PASTA) property

of the Poisson process (Wolff (1982)). However, the stationary unfinished workload is invariant

for all work-conserving service disciplines. As shown in Stanford et al. (2014) Theorem 9.1,

its distribution is the same as the stationary waiting time distribution forW in the M/G/1 FCFS

comparator queue.

During this initial periodW, the process of later arrivals that will gain accreditation (and

therefore be served ahead of the tagged class-2 customer) constitutes a Poisson process at rate

λ1(1−b), as established in Stanford et al. (2014) Lemma 4.2. While some of these later class-1

arrivals may enter service according to the APQ service discipline ahead of some of the class-

2 customers already present at the arrival instant of the tagged customer, the actual order of

service does not matter, so long as all such work is completed prior to the tagged customer’s

entry into service.

Thus we can writeW2 = W + Y , where Y represents the total of all of the service times

for class-1 customers that gain accreditation relative to the tagged customer prior to its entry

into service. We are able to characterize Y in terms ofW as follows. We do so by resorting to

the following discipline, which parallels the rearrangement of service times in the derivation

by Conway et al. (1967) of the implicit transform equation for the duration of a busy period in

an M/G/1 queue.

Our rearrangement places all of the N class-1 customers who gain accreditation duringW

in a special queue. Upon completion ofW, the first (if any) of these N customers is selected

for service. The server then selects newly-accredited class-1 customers in the main queue until
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none remain, at which point the next (if any) of the class-1 customers in the special queue is

selected, and so on. We observe that, by construction, each such “sub-busy period” comprising

the service of one customer from the special queue and the subsequent accredited arrivals to

the main queue is identically distributed to the busy period η in an M/G/1 queue with arrivals

at rate λ1(1 − b) and whose service times are drawn from the class-1 service time distribution.

In this way, Y can be expressed according to (7.3), with N representing the number of

Poisson events at rate λ1(1 − b) to occur during W, and the ith such accrediting customer,

i = 1, 2, . . . ,N, adding an i.i.d. busy period duration ηi from such an M/G/1 queue. �



Chapter 8

Conclusions

In this thesis, I worked with both theoretical and practical problems related to a heath care ser-

vice system (emergency department) where patients are served based on their acuity (urgency

of need). Among four chapters of novel material, two chapters (4 and 5) present empirical work

involving ED arrival and service processes based upon two years of data from a particular hos-

pital in Ontario. The remaining two chapters (6 and 7) dealt with theoretical work related to a

priority queueing system, where the former determined the waiting time distribution for high

and low acuity patients, while the latter pertained to minimizing the expected excess waiting

time for high and low acuity patients beyond their stipulated waiting time limits.

In chapter 4, we investigated both regression and time-series based forecasting methods

to identify an appropriate forecasting model to accurately predict ED arrivals in short term.

Based on the type of data, we fitted and compared seasonal ARIMA, GLM, harmonic regres-

sion, and GLARMA models. Comparing performance based on different accuracy measures,

we observed that the GLARMA model produced better forecast accuracy than others. Addi-

tionally, we employed the rolling horizon approach, frequently used in operations management

literature, to validate our proposed (GLARMA) forecasting model.

In chapter 5, we used statistical models to investigate the effect of workload on ED produc-

tivity. GLM and Cox-PH models were used to model the effect of covariates on the count and

176
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time-to-event type responses, respectively. An increase in workload is found to be associated

with an increase in the number of patients discharged and the waiting time, and a decrease in

the patient LOS and service times. However, there is a fatigue effect associated with how long

a server is continuously working at a faster rate. A continuous increase in workload for several

hours is associated with a decrease in productivity.

In chapter 6, we presented a multi-server APQ model for an arbitrary number of customer

classes, where the service time distributions for each classes of customer follows an exponential

distribution with common mean. Numerical investigations showed how to ascertain whether a

given set of priority accumulation rates will enable compliance with a given set of KPIs for a

given traffic pattern of patient arrival and service rates. An optimization problem related to the

model under study was also developed to select the best priority accumulation rate for which

we can get the maximum possible utilization that complies with the KPIs.

In chapter 7, we developed an optimization model to minimize the expected excess waiting

time for the high and low acuity patients. Numerous numerical investigations lead us to dis-

cover a “Rule of Thumb” which can be easily implemented by practitioners without knowing

the details about the mathematical model behind the mechanism. In order to minimize expected

excess waiting time, patients should accumulate credit in inverse proportion to the ratio of the

time limits for their respective classes. Based upon the Rule of Thumb, the patient who has

already waited the largest proportion of their permissible waiting time limit should be selected

for service. The Rule of Thumb will approximately minimize the expected excess waiting time

for high and low acuity patients, respectively.

8.1 Future Research Directions

Several extensions to our work are possible. We highlighted below some of the obvious exten-

sions that can be considered as future research.

In chapter 4, we proposed GLARMA model to accurately forecast future ED arrivals based

on data from an Ontario hospital. Since ED varies based on the patient population, severity
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of illness, and so on, an obvious extension would be to study multiple EDs to obtain more

generalizable result. From a modeling perspective, one may use more complicated models such

as fractionally integrated auto-regressive moving average (ARFIMA) model or generalized

estimating equations (GEE) to see whether such models produce better forecast.

In chapter 5, we studied the effect of workload on the ED service process. For count

responses, one may use distributions other than Poisson or Negative Binomial model if the

number discharged follows a different distribution. For time-to-event responses, one may use

a parametric survival models (AFT) as an alternative to Cox-proportional hazard model. Both

the AFT and Cox-PH model produce similar results for few parametric survival distributions

(e.g., exponential, Weibull). However, they may produce completely different results for other

survival distributions. Finally, one could contemplate a more extensive statistical model which

includes the impact of interaction between covariates on the service quality measures.

In chapter 6, we derived the waiting time distributions for a multi-class multi-server APQ

model where service times are selected from a common exponential distribution. An obvious

extension of our current model is to the situation where the rate of service differs for different

classes of patients. Another possible extension would be to consider non-exponential service

time distributions. Although some results might be possible in the case of a small number

of servers for small-order Erlang distributions, it effectively leads to intractable results in the

general multi-server context.

In chapter 7, we studied an optimization model that minimized total expected excess wait-

ing time for a queueing system that operates under APQ. There may well be appropriate set-

tings for this model involving certain non-work-conserving queues, such as call centres with

fully and partially trained agents. Customers with standard requirements could be seen by any

agent, while customers with specialized needs (typically, these customers would be of higher

priority) could only be served by a subset of the agents. The optimization problem in such a

setting would rely upon the availability of the waiting time LSTs for the different classes of

customer.
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