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ABSTRACT 

Remediation of sites contaminated with non-aqueous phase liquids (NAPLs) presents a 

significant challenge, particularly for complex and high molecular weight compounds 

such as coal tar and creosote.  Self-sustaining Treatment for Active Remediation (STAR) 

is an innovative remediation technology based on the principles of smouldering 

combustion, which has shown potential for rapid destruction of source zone 

contaminants.  The success of smouldering remediation has been previously 

demonstrated both at the laboratory and field scale, however, these studies have focused 

primarily on the overall degree of remediation.  Laboratory column experiments were 

employed to identify key transient processes that have the potential to influence 

smouldering metrics.  It was found that downward liquid fuel mobilization can occur in 

taller systems operated at low air flow rates, and may result in elevated peak temperatures 

and a slowing of the propagation velocity of the trailing edge of the smouldering front.  

Numerical simulations and an analytical model were used to further understand 

experimental observations and can be used as a simple tool to predict the potential for 

liquid fuel mobility under different experimental conditions.  It was also found that the 

distribution of heat within a smouldering system influences the transport of condensable 

products.  The processes of fuel volatilization, aerosolization, condensation and 

deposition are important for gaseous mass transport and impact the rate of mass loss over 

time.  The relative proportion of fuel combustion to gaseous mass transport is expected to 

be a function of fuel type, and may also be manipulated via operational parameters such 

as injection air flux.   

Keywords: remediation, smouldering, STAR, NAPL, migration, combustion products 
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1 INTRODUCTION 

1.1 Problem Overview 

Remediation of sites contaminated with non-aqueous phase liquids (NAPLs) remains a 

challenge despite advances in scientific understanding and technology development.    

There are an estimated 100,000 contaminated sites in the United States alone where 

complete remediation will not be possible within a reasonable time frame (NRC, 2013; 

Kueper et al., 2014).  Heavy hydrocarbon NAPLs, such as creosote and coal tar, present a 

particular challenge for traditional remediation strategies due to their characteristically 

low aqueous solubility, low volatility and resistance to biodegradation (Birak and Miller, 

2009).  The costs associated with contaminated sites to the environment, economy and 

human health are significant.  While it is difficult to quantify the costs of soil and 

groundwater contamination to human and ecosystem health, it is estimated that an excess 

of $209 billion dollars will be required to mitigate hazards at contaminated sites in the 

United States over the next 30 years (EPA, 2004; NRC, 2013).  Effective remediation of 

these sites to concentrations below unrestricted exposure levels for soil and groundwater 

would not only provide environmental and health benefits, but would also provide 

significant opportunities for redevelopment in areas that have been either restricted or 

unusable for decades.   

Self-sustaining Treatment for Active Remediation (STAR) is an innovative remediation 

technology based on the principles of smouldering combustion.  Smouldering is a 

flameless exothermic reaction occurring on the surface of a condensed phase fuel 

(Ohlemiller, 1985).  In smouldering remediation, the contaminant (or NAPL) provides 
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the fuel that supports its own destruction.  Following a short duration input of heat, a 

continuous air supply is used to ignite and propagate a smouldering reaction within the 

porous soil matrix.  This controlled, self-sustaining combustion reaction destroys the 

NAPL contaminant and thereby renders the soil clean.  

STAR has shown significant potential for the treatment of coal tar and petroleum 

hydrocarbons ex-situ at the laboratory scale (Switzer et al., 2009; Pironi et al., 2009, 

2011), intermediate and pilot scale (Switzer et al., 2014), as well as in-situ at a 

contaminated former industrial site (Scholes et al., 2015).  These studies have focused 

primarily on the degree of remediation via a comparison of the before and after soil 

conditions, in addition to overall averages of smouldering metrics.  There are, however, 

transient processes occurring during the propagation of a smouldering front that are not 

captured by considering average conditions.  These localized dynamic processes may 

affect such metrics as peak temperatures and mass loss rates over time, and as such may 

have important practical implications for the design and optimization of full-scale 

remediation systems, both in-situ and ex-situ.   

1.2 Research Objectives 

The objective of this work was to explore transient processes that occur during 

smouldering remediation of contaminated soils through a detailed assessment of 

smouldering data as a function of both time and space.  This work focuses on two key 

dynamic processes: liquid fuel (contaminant) mobility and the transport of condensable 

and non-condensable gaseous compounds formed during the propagation of a 

smouldering front.  To accomplish this objective a series of carefully controlled 
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laboratory column experiments were conducted.  The scale of the column experiments 

presented in this work was selected to provide a balance between being small enough to 

permit high controllability, yet large enough to allow the manifestation of transient 

processes.  A detailed investigation of fuel mobility and the transport of gaseous 

compounds is not only significant for understanding the STAR process but is also 

fundamental to the relatively unexplored field of liquid smouldering in general. 

1.3 Thesis Outline 

This thesis is written in an integrated article format in accordance with the guidelines and 

regulations stipulated by the Faculty of Graduate Studies at the University of Western 

Ontario.  Each chapter in the thesis is described below. 

Chapter 2 is a review of relevant literature and presents an overview of the application 

and limitations of existing remediation strategies at contaminated sites, with an emphasis 

on thermal remediation technologies.  An introduction to smouldering combustion, as 

well as the use of smouldering for the remediation of contaminated soils is also 

presented.  The influence of heat on the properties of liquid contaminants and resulting 

processes that may occur in the subsurface are also reviewed. 

Chapter 3 presents a lab scale experimental study, as well as an analytical and numerical 

investigation of liquid fuel mobility during smouldering in a porous matrix.  This chapter 

is written in a manuscript format for future submission to a peer reviewed journal. 

Chapter 4 presents a laboratory experimental investigation on the influence of heat on the 

transport of gaseous compounds within a smouldering column, and the consequent effects 
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on global mass loss behaviour and emissions in a batch system.  This chapter is also 

written in a manuscript format for future submission to a peer reviewed journal. 

Chapter 5 summarizes the research conducted in this work and presents conclusions in 

addition to recommendations for future work. 

Appendices provide supplemental information, referenced throughout the thesis. 

1.4 References 

Birak, P. S., & Miller, C. T. (2009). Dense non-aqueous phase liquids at former 
manufactured gas plants: Challenges to modeling and remediation. Journal of 
Contaminant Hydrology, 105(3–4), 81-98.  

EPA. (2004). Cleaning up the nation’s wast sites: Markets and technology trends. EPA 
542-R-04-015. U.S. Environmental Proctection Agency. 

Kueper, B. H., Stroo, H.F., Vogel, C. M., & Ward, C. H. (2014). Chlorinated Solvent 
Source Zone Remediation. New York: Springer. 713 p. 

National Research Council, NRC. (2013). Alternatives for managing the nation’s 
complex contaminated groundwater sites. Washington, DC: The National 
Academies Press. 

Ohlemiller, T. J. (1985). Modeling of smoldering combustion propagation. Progress in 
Energy and Combustion Science, 11(4), 277-310.  

Pironi, P., Switzer, C., Gerhard, J. I., Rein, G., & Torero, J. L. (2011). Self-sustaining 
smoldering combustion for NAPL remediation: Laboratory evaluation of process 
sensitivity to key parameters. Environmental Science & Technology, 45(7), 2980-
2986.  

Pironi, P., Switzer, C., Rein, G., Fuentes, A., Gerhard, J. I., & Torero, J. L. (2009). Small-
scale forward smouldering experiments for remediation of coal tar in inert media. 
Proceedings of the Combustion Institute, 32, 1957-1964.  

Scholes, G. C., Gerhard, J. I., Grant, G. P., Major, D. W., Vidumsky, J. E., Switzer, C., & 
Torero, J. L. (2015). Smoldering remediation of coal tar contaminated soil: Pilot 
field tests of STAR. Environmental Science & Technology, Article ASAP.  
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2 LITERATURE REVIEW 

2.1 Non-Aqueous Phase Liquid Contamination 

2.1.1 Introduction 

Subsurface contamination by non-aqueous phase liquids (NAPLs) presents significant 

challenges for the development of effective remediation strategies.  Due to both 

accidental spills and inappropriate disposal practices, sites contaminated with these 

water-immiscible organic compounds have become pervasive throughout the 

industrialized world.  Some common examples of NAPLs include: petroleum 

hydrocarbon fuels, coal tar formed as waste products from manufactured gas plants, 

polychlorinated biphenyls contained in transformer oils, chlorinated hydrocarbons used 

as solvents and degreasers, and creosote used in wood treatment processes (Mercer and 

Cohen, 1990).  As a result of the low threshold concentrations for environmental and 

drinking water standards, in addition to the low aqueous solubility of these compounds, 

NAPL contamination of soil and groundwater poses a persistent threat to both human and 

ecosystem health.   

Remediation strategies must overcome the potentially challenging combination of the 

diverse physicochemical properties of many NAPLs with complex site hydrogeology.  

Traditionally employed technologies, such as excavation and disposal, physical 

containment, and pump-and-treat systems, are often costly, energy intensive, or require 

many years of operation and monitoring.  As a result, complete remediation of 

groundwater to the level of drinking water standards is currently not possible in a timely 
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and cost-effective manner at many sites, particularly where large source zones are present 

(Kueper et al., 2014). 

2.1.2 Remediation Options   

Advancements in remediation science have allowed for a number of technologies to 

replace standard excavation or pump-and-treat systems.  Each technology, however, has 

its own limitations with respect to contaminant type, concentration and hydrogeological 

conditions.  For example, soil vapor extraction (SVE) is a widely used technology, but is 

most suitable for soil contaminated with volatile and semi-volatile organic compounds 

(VOC and SVOCs), and is only applicable for contamination in the unsaturated zone 

(Khan et al., 2004).  Technologies such as in-situ chemical oxidation or enhanced 

bioremediation have been shown to effectively break down contaminants into less 

hazardous by-products. These technologies may, however, become less favorable for site 

conditions such as: large volume and high NAPL saturation source zones, mature 

contaminants (>10 years) and mixtures that contain oil and grease (ITRC, 2008).  

Some oily contaminants, such as coal tar or creosote, resist many forms of remediation 

due to their complex chemical structure, practical insolubility in water, and low vapor 

pressure.  Furthermore, the mobilization of these contaminants to recovery wells is 

limited by its high viscosity and consequent low rates of migration.  Thermal-based in-

situ remediation techniques may, however, be employed to reduce the impacts of some of 

these properties and permit more effective remediation (Davis, 1997). 
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2.1.3 Thermal Remediation Options 

The delivery of heat to contaminated soil through thermal remediation technologies 

serves to permit enhanced free product recovery due to changes to the following 

properties: reduced contaminant density, increased vapor pressure, decreased adsorption 

to solid phases or absorption to organic matter, increased diffusion into aqueous and 

gaseous phases, and decreased contaminant viscosity (Davis, 1997).  The three most 

common technologies which employ source zone heating for remediation are: steam-

enhanced extraction, electrical resistance heating, and thermal conductive heating (or in-

situ thermal desorption) (Triplett Kingston et al., 2014).  These technologies operate 

under the same fundamental mechanisms of contaminant boiling, vaporization, 

volatilization and enhanced mobility, but differ in terms of the method of delivering heat 

to the subsurface to permit these processes to occur.   

 

Figure 2.1: Relationship between thermal remediation processes and subsurface 
temperatures (TASK Leipzig, 2013). 
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The effects of temperature on subsurface processes are shown in Figure 2.1.  As shown in 

this figure, in-situ thermal remediation strategies typically result in subsurface 

temperatures between 50 and 100°C. Chemical transformation of the contaminants is 

unlikely in most applications as these chemical processes typically occur at temperatures 

in excess of 150°C (TASK Leipzig, 2013). 

Steam-enhanced extraction (SEE) was initially developed as an enhanced oil recovery 

method in the petroleum industry (White and Moss, 1983), and has since been applied to 

the field of contaminated site remediation.  This process involves injecting steam, 

sometimes with the co-injection of air, under pressure into the subsurface and recovering 

liquids and vapors through a network of dual-phase extraction wells (Triplett Kingston et 

al., 2014).  The primary mechanisms of contaminant recovery depend largely on the 

properties of the contaminant.  For highly volatile compounds recovery is achieved 

mainly from vaporization and co-boiling, while for less volatile compounds liquid phase 

displacement due to reduced viscosity dominates (Heron et al., 2005).   

Electrical resistance heating (ERH), which has also been used by the oil industry for 

enhanced oil recovery, delivers heat to the subsurface through an array of electrodes.  The 

objective is to heat the subsurface to the boiling point of water to create a steam front to 

strip contaminants. A soil vapor extraction system is used to extract any volatilized 

contaminants (NRC, 2004).   

In-situ thermal desorption (ISTD), involves conductive heating of the subsurface from 

electrical heating elements in direct contact with the soil.  The heating elements used in 

this application may reach temperatures of approximately 500 to 800°C, which is 
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significantly higher than the temperatures observed during steam flushing or electrical 

resistance heating.  While high temperatures may be achieved adjacent to heaters, a 

significant temperature gradient exists between heaters (Triplett Kingston et al., 2014).    

Similar to ERH, a vacuum extraction system is then used to collect volatilized 

contaminants from the subsurface (Stegemeier and Vinegar, 2001). 

All three of these thermal remediation technologies have shown promise at a number of 

field sites.  There are, however, some limitations in that both steam injection and ERH 

require the contaminants to be relatively volatile due to the lower peak temperatures 

attained using these technologies.  For heavier contaminant fractions present in coal tar or 

creosote, for example, higher temperatures used in ISTD are possible and can result in 

volatilization and potential destruction of some fractions via chemical reactions 

(Stegemeier and Vinegar, 2001).  Due to the endothermic nature of these thermal 

remediation technologies, there may be significant energy demands depending on site 

conditions.  As the contaminant volatility decreases and heat requirements increase, 

operation of high temperature systems are required to heat large volumes of the 

subsurface for extended periods of time.  In applications below the water table, the 

groundwater provides an additional heat sink and greatly increases energy demands.  As a 

result, the energy requirements and economic and life cycle costs associated with 

operating such systems are substantial (Lemming et al., 2010).  
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2.2 Self-Sustaining Treatment for Active Remediation (STAR) 

2.2.1 Overview of STAR 

Self-sustaining Treatment for Active Remediation (STAR) is an innovative remediation 

technology which has shown potential for rapid and essentially complete destruction of 

source zone contaminants through the smouldering of NAPLs (Pironi et al., 2009, 2011; 

Switzer et al., 2009).  The viability of STAR can be attributed to the presence of NAPLs 

with characteristically high heats of combustion contained within a porous soil matrix.  

The permeable soil matrix contains pathways for oxygen transport to the reaction zone, 

provides a large surface area per unit volume for reactions to occur, and acts as a thermal 

insulator to maintain temperatures required for smouldering propagation (Pironi et al., 

2009).  STAR takes advantage of these properties to produce a self-sustaining controlled 

burning reaction, destroying the contaminants and thereby rendering soil clean.  Contrary 

to many other remediation technologies, STAR is well suited to sites with high 

saturations of heavy hydrocarbons or other contaminants of low volatility.  Due to the 

self-sustaining nature of the process, NAPL smouldering requires only a short one-time 

input of energy to initiate the reaction resulting in energy savings in comparison with 

other thermal technologies. 

2.2.2 Smouldering Combustion 

Smouldering is a slow, low temperature, flameless form of combustion sustained by the 

heat evolved when oxygen directly attacks the surface of a condensed-phase fuel 

(Ohlemiller, 1985).  A smouldering front may propagate through a porous material in 

either the same direction as the air flow (forward smoulder) or in the opposite direction to 
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air flow (reverse smoulder) (Ohlemiller and Lucca, 1983).  The smouldering front is 

composed of two different layers: the combustion reaction layer and the heat transfer 

layer, each theoretically propagating with a constant velocity which may or may not be 

equal (Schult et al., 1996; Aldushin et al., 1999).  The relative velocity of these two 

layers determines the structure of the smouldering front.  In a reaction leading structure 

(Figure 2.2a), associated with sufficiently high air flux, the combustion layer propagates 

at a faster velocity than the heat transfer layer.   

 

Figure 2.2: Structure of a smouldering front in forward configuration: (a) reaction 
leading structure, (b) reaction trailing structure, (c) wave with maximal energy 
accumulation (Aldushin et al., 1999).  
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The opposite is true for a reaction trailing structure (Figure 2.2b), associated with a 

sufficiently low air flux, where the velocity of the combustion layer is slower than the 

heat transfer layer.  If the velocity of the combustion and heat transfer layers are equal, a 

superadiabatic condition may occur (Figure 2.2c), where the combustion temperature, Tb, 

is highly elevated. 

2.2.3 Smouldering Literature and STAR 

Traditionally, smouldering has been studied primarily in relation to the development of 

fires.  As such, studies have been conducted on the smouldering of peat or coal which can 

lead to the development of coal seam and forest fires, as well as dust or polyurethane 

foam due to the potential hazards for both residential and in-flight aerospace fires.  While 

smouldering literature in itself is relatively limited in comparison to flaming combustion, 

two key differences exist between the majority of the published smouldering science and 

STAR experiments.   

First, the typical forced air flow velocities employed in STAR, 0.5 to 9.5 cm/s (Pironi et 

al., 2011), are considerably higher than those typically studied in other smouldering 

applications.  In studying smouldering in the context of the development of fires, the air 

flow is often either governed by natural convection (e.g., Torero and Fernandez-Pello, 

1995; Anderson et al., 2000) or at relatively low forced air velocities (e.g., 0 to 0.8 cm/s) 

(Ohlemiller and Lucca, 1983; Torero and Fernandez-Pello, 1996).  This increased air 

flow rate used in the application of STAR results in fundamental changes to convective 

heat transfer and provides significantly more oxygen to sustain the combustion reaction.   
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Second, in traditional smouldering literature, the fuel is most often a solid (e.g., peat, 

polyurethane foam, tires, wood fibres or dust) (Rein et al., 2009; Torero and Fernandez-

Pello, 1996; Vantelon et al., 2005; Ohlemiller and Lucca, 1983; Palmer, 1957).  In the 

case of STAR, however, the fuel is the NAPL contaminant which is embedded within a 

soil matrix.  While all forms of smouldering require the presence of a porous matrix, in 

traditional smouldering literature the fuel and the porous matrix are one and the same.  In 

STAR, these are two different materials.  Since the fuel is a liquid in the case of STAR, 

this introduces a new component to the process as the fuel is able to both migrate in its 

initial liquid state and volatilize into a gaseous phase as the smouldering reaction 

progresses.  Due to the lack of previous studies looking at smouldering in this context 

(i.e., a liquid fuel and relatively high forced air flow rates), a detailed assessment of the 

process at a scale large enough to demonstrate potential fuel mobilization phenomena is 

necessary.   

As shown in Figure 2.2, the relative velocity of the heat transfer and combustion layers in 

a smouldering system is important for determining peak combustion temperatures (Tb).  

In rare circumstances for immobile fuels, the velocity of the heat transfer and combustion 

layers become equal and result in increased reaction rates and highly elevated peak 

temperatures, or superadiabatic combustion (Aldushin et al., 1999).  To the author’s 

knowledge, superadiabatic combustion has not been observed experimentally for the 

smouldering of liquid fuels.  An investigation into the potential of superadiabatic 

combustion and fuel mobilization processes is not only important for understanding 

STAR, but is significant for the development of a fundamental understanding of 

smouldering of liquids in general. 
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2.2.4 Laboratory Scale Experiments 

The majority of experiments on NAPL smouldering to date have been conducted in a 

small laboratory column with dimensions of the contaminated zone ranging from 100 mm 

in diameter and 50 mm in height to 138 mm in diameter and 150 mm in height.  A series 

of proof-of-concept experiments were conducted at the column scale to demonstrate the 

remediation of contaminated soils via forward smouldering combustion across a range of 

contaminant types, contaminant concentrations and soil types, including field-

contaminated samples (Switzer et al., 2009).  Through these proof-of-concept 

experiments, it was also demonstrated that STAR is both self-sustaining after an initial 

energy input and self-terminating when the fuel is completely destroyed or the oxygen 

supply is eliminated.  Additional experiments conducted by Pironi et al. (2009) 

investigated the effect of air flow rate and contaminant concentrations on average 

velocities of the smouldering front and peak temperatures.  A detailed sensitivity analysis 

of key parameters, such as contaminant concentration, water saturation, soil type, and air 

flow rates, on the ability to achieve a self-sustaining reaction was further assessed by 

Pironi et al. (2011).  The lower limits of contaminant concentration and air flow rate, and 

upper limit of soil grain size, which were defined as the limits where self-sustaining 

smouldering was still achieved, appeared to be significantly affected by heat losses to the 

external environment at the small column scale.  It was predicted that the effects of heat 

losses would be reduced with increasing experimental scale. 

2.2.5 Larger Scale Demonstrations 

While STAR has been proven to be effective through a wide range of conditions at the 

bench scale, success at industrial scales requires the process to be scaled up significantly.  
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Investigations into the viability of STAR at larger scales were assessed in intermediate 

scale (0.3 m3) and pilot field-scale (3 m3) vessels for coal tar and petrochemical NAPL 

contaminants (Switzer et al., 2014).  These experiments demonstrated consistent 

remediation efficiency (97-99.5%) and smouldering propagation velocities with previous 

bench scale studies.  These larger scale experiments conducted by Switzer et al. (2014) 

also revealed the robust nature of smouldering combustion as both operational challenges 

and material heterogeneities were able to be overcome to achieve successful remediation.  

Additionally, as predicted, due to the decrease in surface area of the exterior surfaces of 

the reaction vessel proportional to the total contaminated material volume at larger scales, 

lower contaminant concentrations were able to smoulder in a self-sustaining manner than 

was possible for bench scale experiments (Switzer et al., 2014).   

The STAR technology has also been successfully demonstrated in-situ at a former 

industrial facility (Scholes et al., 2015).  Results of in-situ pilot testing demonstrated that 

field results were consistent with laboratory bench scale testing of site soils.  Self-

sustaining smouldering remediation of coal tar below the water table was successfully 

conducted in two different lithological units.  Full-scale implementation of STAR is now 

being applied at this site. 

While successful upscaling of the STAR technology has been demonstrated both ex-situ 

and in-situ, there are numerous questions that remain about the fundamental processes 

occurring during the smouldering of liquid fuels.  Due to the limited size of the previous 

bench scale experiments, some of these fundamental processes cannot be observed or 

studied at this small scale.  Similarly, the quantity, detail, and systematic analysis of key 

process parameters conducted at the bench scale may not be practical to replicate at larger 



17 
 

 
 

scales where these complex processes are evident.    As a result, there is a need for a suite 

of intermediate scale column experiments large enough to exhibit key heat and mass 

transfer processes governing at larger scales yet small enough to permit systematic and 

controlled assessment of such processes.    

2.3 Influence of Heat on NAPL Mobility 

2.3.1 Overview  

As mentioned previously, since the fuel in STAR applications is in a liquid state, it has 

the potential to mobilize during smouldering.  Numerous studies have investigated the 

migration of NAPLs in the subsurface following a contaminant release, which are critical 

for contaminated site characterization.  Under ambient subsurface conditions, however, 

NAPL migration may occur over a period of months to years before reaching a stable 

distribution in the subsurface depending on fluid and aquifer properties (Gerhard et al., 

2007).  As a result, these rates of migration are relatively inconsequential over the time 

scales relevant to smouldering remediation.  With the influence of heat, however, the 

fluid properties and the dynamics of NAPL migration change significantly. 

The influence of heat on NAPL mobilization has been studied in two key applications in 

literature which are relevant to STAR: enhanced oil recovery and in-situ thermal 

remediation.   

2.3.2 Enhanced Oil Recovery  

A number of different technologies have been proposed and studied to enhance oil 

recovery below residual saturations from reservoirs.  One such technology is in-situ 

combustion (ISC).  In the ISC process, a portion of the oil is ignited and the burn is 
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sustained through the continuous addition of air (and in some cases a combination of air 

and water).  The heat generated from the combustion reaction along with the force of the 

injected air and water is used to displace the reduced viscosity oil toward a recovery well 

(Sarathi, 1999).  While ISC differs from STAR in that the objective of ISC is to minimize 

oil destruction and maximize oil recovery, some of the fundamental processes involved 

with fuel mobilization in the presence of a combustion front are relevant.  As such, it is 

expected that some mobilization and volatilization of the NAPL contaminant may occur 

during smouldering remediation, less significant than ISC but at much higher rates than 

ambient migration processes permit.   

2.3.3 NAPL Mobility and Thermal Remediation 

As discussed in Section 2.1.3, heat is used in a number of remediation technologies to 

affect change on fluid properties and permit recovery of NAPL through both 

volatilization and enhanced hydraulic displacement.  These same property changes that 

permit enhanced NAPL recovery may also lead to undesirable mobilization.  Contrary to 

enhanced oil recovery where residual or remobilized oil that cannot be recovered is 

merely an economic loss, uncontrolled remobilization of NAPL in the context of 

contaminated site remediation may be a significant concern.   

This type of heat induced mobilization has been observed, for example, during 

implementation of steam injection for remediation.  As steam is injected, the NAPL is 

volatilized within the high temperature region of the soil, but condenses and accumulates 

ahead of the steam condensation front.  Given sufficient NAPL accumulation in this 

condensation region, it may form a continuous phase in which gravitational forces will 

overcome the trapping forces and permit the downward mobilization of NAPL outside of 
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the target treatment area (Kaslusky and Udell, 2005).  While certain techniques are being 

investigated to minimize the potential for mobilization, such as injecting air with the 

steam as described by Kaslusky and Udell, the risk is still present.  

A detailed investigation on the effect of temperature on the properties of organic fluids 

was conducted to evaluate the feasibility of thermal remediation techniques (Sleep and 

Ma, 1997).  The correlations between temperature and fluid properties developed were 

used to assess the potential for negative mobilization consequences with respect to hot 

water flooding (O’Carroll and Sleep, 2009).  Based on numerical simulations conducted 

on two NAPLs with different densities, it was found that increasing the temperature of 

the hot water flooding not only enhanced NAPL recovery, but also accelerated downward 

mobilization for the dense NAPL due to reduced viscosity.   

While processes of NAPL volatilization, condensation and mobilization resulting from 

the presence of heat have been recognized for other thermal remediation technologies, 

fuel volatilization and mobility in the context of smouldering remediation have not been 

previously investigated.  The extent and effects of volatilization and mobilization both on 

remediation effectiveness and smouldering metrics are relatively unknown. 

2.4 Conclusions 

Complete remediation of NAPL contaminated sites continues to be a challenge, 

particularly for large source zones containing complex contaminants of low volatility, 

such as coal tar or creosote.  STAR presents itself as a promising remediation technology 

which uses the NAPL contaminant as the fuel to permit its own destruction.  This 

technology has benefits over other thermal remediation technologies in that it is a self-
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sustaining process and therefore has significantly reduced energy requirements.  The 

success of this technology has been demonstrated both at the bench and field scales, 

however these studies have focused primarily on the influence of engineering parameters 

(e.g., air flux) or site parameters (e.g., permeability) on the overall degree of remediation 

of the soil.   

While there are a number of studies on the smouldering of solids, relatively little is 

known about the smouldering of liquid fuels.  There is currently a knowledge gap on the 

transient processes that occur ahead of, within and behind the smouldering front as it 

propagates during contaminant remediation.  Two dynamic processes that have not been 

explored in the context of STAR are NAPL mobility and emission composition.  Previous 

work on in-situ combustion and thermal remediation technologies indicate that NAPL 

volatilization and mobility may be important to investigate to develop a complete 

understanding of the STAR process.  In order to investigate these processes, it is 

necessary to not only consider before and after soil conditions, but to analyse 

smouldering data as a function of both time and space.  This is best accomplished through 

highly controlled laboratory experiments; however, these systems must be of a sufficient 

length scale to permit the collection of transient data.    

This work presents a series of medium and tall column experiments exploring liquid fuel 

mobility in the context of smouldering remediation and the consequent potential to 

exhibit superadiabatic conditions (Chapter 3) and presents an assessment of the potential 

for the volatilization and condensation of combustion products (Chapter 4).  While these 

investigations are fundamental studies of the process, the results may also have 

significant practical implications on the design of full scale systems. 
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3 SMOULDERING COMBUSTION AND NON-AQUEOUS PHASE 
LIQUID MOBILITY  

3.1 Introduction 

Successful remediation of non-aqueous phase liquid (NAPL) contamination in the 

subsurface presents a significant challenge.  These water-immiscible organic compounds 

may enter the subsurface as a result of accidental spills or inadequate disposal practices 

and have the potential to persist and provide a continued source of contamination.  Some 

common sources of NAPL contamination include: petroleum hydrocarbon fuels, coal tar 

formed as waste products from manufactured gas plants, chlorinated hydrocarbons used 

as solvents and degreasers, and creosote used in wood treatment processes (Mercer and 

Cohen, 1990).  The complex and high molecular weight structure of some of these 

compounds, such as coal tar, presents challenges for many existing remediation 

technologies due to its low aqueous solubility, low volatility and the propensity to resist 

rapid biodegradation (Birak and Miller, 2009).  These same properties, however, also 

permit coal tar to be a viable fuel for combustion.   

The smouldering of NAPL contaminated soil has promise as an effective and energy 

efficient remediation approach (Switzer et al., 2009).  Smouldering combustion is a 

flameless exothermic reaction occurring on the surface of a condensed phase fuel 

(Ohlemiller, 1985).  As with any combustion reaction, successful combustion requires the 

presence of fuel, heat, and air.  In this case, the fuel is the NAPL contaminant.  To initiate 

controlled combustion of the NAPL, a short duration input of heat is required to preheat 

the contaminant in the immediate vicinity of the ignition point to required temperatures.  

Once ignition is achieved the heat source may be removed as the combustion of the 
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NAPL generates enough heat to sustain the reaction.  Continued addition of forced air 

allows the reaction front to propagate forward, destroying the contaminant in its path and 

leaving a remediated soil matrix behind.  The inorganic porous matrix provided by 

contaminated soil permits the smouldering reaction to propagate as the soil provides both 

thermal insulation to minimize heat losses and allows the delivery of oxygen to the fuel 

via convection and diffusion (Pironi et al., 2009).   

Extensive laboratory column studies with an approximate contaminated soil volume of 

0.002 m3 have been conducted to demonstrate the proof-of-concept as well as to define a 

range of contaminants, soil types and airflow rates amenable to successful remediation 

(Pironi et al., 2011).  Smouldering remediation has also been demonstrated at larger 

scales, through experiments in both an oil drum (0.3 m3) and a bin (3 m3) (Switzer et al., 

2014).  Additionally, this technology has recently been applied at the pilot scale in an ex-

situ prototype reactor (1 m3) and in-situ at a contaminated former industrial site (Scholes, 

2013).   

While it is evident from these studies that the overall degree of remediation is consistent 

across scales, there is a missing link between the small laboratory columns and the larger 

scale studies which would be useful for understanding differences in smouldering front 

propagation behaviour.  For example, Figure 3.1 shows a comparison of the evolution of 

temperatures over time within a laboratory column and the ex-situ prototype reactor 

under the same experimental conditions.  For the laboratory experiment in Figure 3.1(a), 

a 78 minute preheating period permitted the NAPL immediately above the ignition coil in 

the base of the column to reach ignition temperatures at which point the forced air supply 

was turned on.  The distinct inflection of temperatures indicates the presence of 
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exothermic reactions and the start of smouldering combustion.  Once the smouldering 

reaction has been initiated, the ignition coil can be turned off as the energy from the 

combustion reaction is sufficient to sustain the process.  Typical of small-scale laboratory 

column experiments, the temperature history displays regularly spaced and overlapping 

temperature curves with relatively constant peak temperatures and is representative of a 

self-sustaining smouldering reaction (Walther et al., 2000).     

For the larger scale conditions in Figure 3.1(b), similar rapid increases in temperature are 

observed when smouldering commences in the vicinity of each thermocouple location 

and similar peak temperatures are reached.  The temperature history, however, also 

displays some distinct differences to the column despite the identical experimental 

conditions.  Some of these differences include: (1) a low temperature plateau below 

100°C before ignition is observed at each thermocouple location (shown in TC5 to 

TC17), (2) brief periods of decreasing temperatures within ignition curves (e.g. TC5), and 

(3) elevated peak temperatures at select thermocouples (e.g. TC 11).  While the 

significance of the differences in these temperature plots will be explained in more detail 

for the experiments in this study, it is evident from looking at these figures that more 

complex behaviour occurs at larger scales.  It is important to study the cause of these 

behaviours as conditions such as highly elevated peak temperatures can result in 

operational issues and the potential to transition to flaming in large scale ex-situ systems. 
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(a)  

(b)  

Figure 3.1: Evolution of temperature versus time for (a) a small laboratory column 
(0.002 m3) in comparison to (b) the ex-situ prototype reactor (1 m3) under the exact 
same experimental conditions, including: contaminant type and concentration, sand 
type and air flux.  Thermocouples (TCs) are located at equal distances along the 
apparatus centreline, and are numbered sequentially from the heater at the base. 
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3.1.1 Conceptual Model of Smouldering Front 

Figure 3.2 represents a conceptual model of the vertical spatial distribution of 

temperature and oxygen concentrations for an upward forward smouldering combustion 

reaction, depicted at a particular moment in time.  In the uppermost region, sand and 

NAPL are unaffected by the smouldering reaction.  The NAPL is present in the porous 

matrix at ambient temperatures (T∞) and is therefore unchanged physically or chemically.   

In the preheating zone, due to closer proximity to the exothermic oxidation zone, the 

NAPL is exposed to elevated temperatures.  These elevated temperatures are a result of 

heat transfer from the pyrolysis and oxidation zones below via conduction, convection 

and radiation to the unreacted sand and fuel.  A significant portion of the NAPL in this 

preheating zone remains as a liquid at elevated temperatures.  Therefore, there is the 

potential for the NAPL embedded within the porous matrix in the preheating zone to 

move at a certain velocity (VNAPL) due to the relative influence of the forces of air and 

gravity. 

The air flowing through the both the preheating and pyrolysis zones is oxygen deficient 

due to consumption in the oxidation zone.  In the presence of highly elevated 

temperatures closest to the oxidation zone, some of the NAPL may begin to undergo 

endothermic pyrolysis reactions, which involves nonoxidative decomposition of the fuel 

(Torero and Fernandez-Pello, 1996).  These pyrolysis reactions may result in the 

formation of a solid char.  
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Figure 3.2: Conceptual model of the distribution of temperature and oxygen 
concentrations in a column experiencing upward, forward propagation of a 
smouldering reaction (Torero, personal communication, March 2013).  The key 
force vectors (red arrows) are labelled.  The key regions in the system are named 
and the associated form of the NAPL (fuel) is identified on the right hand side. 

As the temperatures in the pyrolysis zone approach the smouldering ignition temperature 

for the given contaminant (Ts) and oxygen concentrations are sufficient to sustain 

smouldering, exothermic oxidations reactions will occur.  These conditions mark the 

leading edge of the smouldering front.  The zone between the boundaries of the leading 

and trailing edge of the smouldering front defines the oxidation zone and the smouldering 

front thickness.  In this oxidation zone, as oxygen diffuses to the surface of the NAPL, 

exothermic reactions occur between the NAPL and oxygen, resulting in a decrease in 

oxygen concentrations and an increase in temperature to the characteristic peak 
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temperature for the given contaminant (Tmax).  The NAPL in this reaction region has 

previously been converted through pyrolysis reactions to a char and is therefore 

considered to be immobile.   

The trailing edge of the smouldering front is most often synonymous with total fuel 

consumption.  Below this point, no NAPL remains and therefore this marks the end of the 

oxidation zone.  Since the trailing edge of the smouldering front is defined by the 

completion of smouldering whereas the leading edge of the smouldering front is defined 

by the onset of smouldering, the velocity of these two fronts (Vleading and Vtrailing) are 

often not equal.  The leading edge will generally be controlled by heat transfer from the 

front towards the hot zone, while the trailing edge is determined purely by the rate of 

destruction, more often controlled by combustion chemistry.  Typically, the time required 

to destroy all fuel at the trailing edge results in Vtrailing < Vleading, and consequently an 

expansion in the smouldering front thickness over time. 

Above the trailing edge temperatures are originally low, so chemistry is slow and oxygen 

is only partially consumed.  Oxygen consumption will result from a complex function of 

the relative speed of the chemistry with respect to residence times, i.e. Damköhler 

number.  Closer to the leading edge the temperatures will be higher, the chemistry faster 

and therefore oxygen consumption will be more significant. Complete depletion of 

oxygen is expected at the leading edge. 

Below the trailing edge of the smouldering front, all NAPL has been consumed by the 

passing smouldering front and the remaining porous matrix undergoes cooling.  As air 

enters from the bottom of the column (x = 0), the oxygen concentration is initially at 
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ambient air conditions (YO2,∞).  In this cooling zone, no reactions are occurring and 

therefore the oxygen remains constant at ambient concentrations.  The temperatures in 

the cooling region are decreasing mainly due to convection from the forced air flow 

below and since there is no fuel source in this region, no additional heat is being 

produced.   

3.1.2 Potential for NAPL Mobility 

Contrary to traditional smouldering literature where the fuel is often a solid, such as dust 

or polyurethane foam, the fuel in the context of soil remediation is a liquid.  The fuel 

(NAPL) therefore has the ability to move as the smouldering reaction progresses.  The 

potential for fuel mobilization is utilized during in situ combustion through the generation 

of a combustion front to reduce oil viscosity ahead of the front (Thomas, 2008).  This 

allows the previously trapped residual oil to become mobile and permits oil recovery 

from a subsequent well.  Similar to in situ combustion, in the preheating zone located 

ahead of the leading edge of the smouldering front, the liquid contaminant is exposed to 

highly elevated temperatures prior to pyrolysis and oxidation reactions occurring.  While 

the oil mobilization and recovery during in situ combustion often occurs in a horizontal 

configuration in the subsurface, NAPL mobilization has the potential to occur vertically 

within a smouldering column.  The main difference between these two applications is that 

in situ combustion is designed to minimize oil destruction and enhance oil recovery, 

whereas smouldering combustion for remediation is designed to destroy the contaminant.     

Fluid viscosity has a dominant effect on the rate of NAPL migration (Gerhard et al., 

2007).  At ambient temperatures, the viscosity of long chain hydrocarbons and coal tars 

are relatively high, meaning migration is very slow even in the presence of significant 
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hydraulic gradients.  However, liquid viscosity decreases exponentially with increasing 

temperatures (Potter and Wiggert, 2002) and therefore the migration process may be 

accelerated in the presence of the elevated temperatures observed in exothermic 

smouldering reactions.  Figure 3.3 shows the decrease in viscosity that occurs with 

increasing temperatures (from 20 to 140°C) for a range of NAPLs used in smouldering 

remediation columns.  Even over this limited range of temperatures, viscosity may 

decrease by a factor of 10 to up to 1,000,000.  Within the preheating zone, NAPLs may 

be exposed to elevated temperatures up to 300 to 400°C above ambient and therefore the 

potential for decreased viscosity and subsequent NAPL migration is significant.   

 

Figure 3.3: Relationship between viscosity and temperature for a range of NAPLs 
(adapted from Rashwan, 2013). 
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This migration is dependent on a combination of both reduced viscosity in the preheating 

zone (Figure 3.3) and the force balance between gravity and forced air in the preheating 

region (Figure 3.2).  The resultant force will determine the direction of migration, while 

the influence of temperature on viscosity will affect the rate of NAPL migration.  

While temperature also results in small changes in NAPL density, these small density 

changes have insignificant effects on the relative density between the NAPL and air and 

therefore the influence of gravity is similar in all cases.  Therefore, the force balance and 

potential for migration is primarily affected by forced air flux and NAPL viscosity.  This 

migration process may affect the spatial distribution of NAPL and therefore can influence 

smouldering metrics.   

The objective of this work was to explore, for the first time, whether NAPL mobility is an 

important issue in smouldering remediation; in other words, whether it occurs and, if it 

does, whether it influences smouldering behaviour.  If NAPL mobility was observed, it 

was necessary to determine under what conditions mobility is expected, as well as the 

influence on smouldering metrics. Additionally, a further objective was to develop 

predictive tools to help analyze and understand the conditions under which NAPL 

mobility is expected to be important.  These objectives were investigated through 

carefully controlled laboratory column experiments of contaminant smouldering using 

varying contaminated zone heights.  Experimental results were combined with analytical 

and numerical modelling to explore the interplay of forces and timescales acting on the 

NAPL within a smouldering column.   The improved understanding of NAPL mobility in 

the context of smouldering remediation will aid in the design and implementation of 

commercial applications of this technology. 
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3.2 Materials and Methodology 

The investigation of NAPL mobility was divided into three parts.  The first was a 

laboratory investigation of smouldering metrics under a range of experimental conditions 

where mobility varied in significance.  The second part involved the development of an 

analytical model that accounts for a simple vertical force balance between the air and 

NAPL to determine the potential for NAPL mobility.  In the third part, the experimental 

and analytical model results were compared to a numerical model to better understand the 

factors promoting or inhibiting NAPL mobility in a smouldering column.   

3.2.1 Experimental Setup 

A series of forward smouldering column experiments were conducted in two reaction 

vessels with different heights to explore the relationship between NAPL mobility and 

injection airflow rate and the resulting effect on smouldering metrics at increasing length 

scales.  The two stainless steel columns were 16 cm in diameter, with the shorter column 

measuring 63 cm in height and containing a 30 cm contaminated zone, and the taller 

column measuring 127 cm in height and containing a 90 cm contaminated zone.  These 

two columns will herein be termed “30 cm” and “90 cm” columns, respectively, due to 

the importance of the total contaminated zone height.   

The experimental setup was based upon the standard configuration developed by Switzer 

et al. (2009).  A schematic diagram of the 30 cm column experimental apparatus in an 

upward smoulder configuration is shown in Figure 3.4.  The 90 cm column was identical 

except for the height of the contaminated zone and the presence of 26 thermocouples 
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instead of 9.  The removable base connection allowed for columns of various heights to 

be accommodated using the same equipment.   

 

Figure 3.4: Schematic diagram of 30 cm column experimental apparatus.  The 90 
cm column setup consists of the same configuration, with the respective column 
height connected to the removable base. 

An air diffuser, consisting of eight perforated radial extensions from a centralized 

support, was placed in the bottom of the column and connected to the compressed house 

air supply.  A 762 mm long Inconel-sheathed electrical cable heater with a 3.25 mm 

square cross section (Watlow, USA, 450 W) was coiled into a flat spiral and placed 

above the air diffuser.  Clean sand filled the bottom of the column until a height that 

covered the heater by a few millimetres.  Quartz sand (#12ST, Bell and Mackenzie Co. 

Ltd., Canada) with a bulk density of 1600 kg/m3, mean grain size of 0.88 mm, and an 
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average porosity of 0.38 was used in all experiments.  The contaminated material was 

prepared by mechanically mixing (KitchenAid, Pro Line) the desired mass ratio of sand 

to NAPL until visually homogeneous.  A 30 cm (or 90 cm) layer of the contaminated 

material was packed in 10 cm lifts above the diffuser and heater.  Care was taken in 

packing to prevent a preferential air flow path between the contaminated material and the 

wall.  Inconel-sheathed type K thermocouples spaced at 3.5 cm intervals were placed 

along the centreline of the contaminated zone, with the first thermocouple located 1.0 cm 

above the heater.  The thermocouples were connected to a data acquisition system 

(Multifunction Switch/Measure Unit 34980A, Agilent Technologies) and a personal 

computer to record data at two second intervals.  Insulation (McMaster-Carr, 2” rigid 

very-high-temperature mineral wool) also encircled the columns to minimize heat losses. 

A standardized preheating procedure was developed for the NAPLs investigated based on 

the ignition protocol described by Switzer et al. (2009), where the conductive heating coil 

was used to preheat the base of the contaminated zone until the adjacent thermocouple 

(TC1) reached 360˚C, typically requiring approximately 90 minutes.  The air supply was 

then initiated and maintained until completion of the experiment.  For all column tests, 

the heater was turned off after TC1 reached its peak temperature, approximately five 

minutes after the start of air flow; thus, from this time onwards, the reaction propagated 

in a self-sustaining manner.  The air flow through the column was regulated using a mass 

flow controller (FMA5544, Omega Engineering Inc.) to ensure that the oxidizer flow 

remained constant throughout the duration of the experiment, despite decreases in 

pressure drop through the porous material as the smouldering front progressed (Torero 

and Fernandez-Pello, 1996).  The inlet (Darcy) air flux reported for all experiments was 
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calculated by dividing the volumetric flow at standard temperature and pressure by the 

horizontal cross-sectional area of the reaction vessel.   

Table 3.1 outlines the set of experiments conducted.  In order to better understand NAPL 

migration, six column experiments were performed at three different forced air flow rates 

(1.25, 2.50 and 6.25 cm/s) and two different contaminated zone heights (30 and 90 cm).  

Sand type, contaminant type, contaminant concentration and air mass flux were kept 

constant between the two column scales.  By varying air flow rate and contaminated zone 

height, the relative significance of forces acting on the NAPL within the column also 

varied. The increase in injected air flow increased the upward force of air acting on the 

NAPL, and the increase in contaminated zone height increased the total NAPL head over 

which gravity could act upon.  Evidence of NAPL migration can be assessed through 

temperature data with more significant migration changing both the typical temperature 

distribution and peak temperatures observed within a smouldering column.  In order to 

assess the smouldering temperature behaviour over time and space in the column, 

temperature histories (temperature vs. time) and temperature profiles (temperature vs. 

distance) can be utilized. 

Table 3.1 Summary of Smouldering Column Experiments 

 

Test 
Number 

Canola Oil:VI 
Improver 

(% by mass) 

NAPL 
Concentration 

(g/kg) 

Air Flux 
(cm/s) 

Height of 
Contaminated 

Zone (cm) 
1   1.25  
2 50:50 60 2.50 30 
3   6.25  
4   1.25  
5 50:50 60 2.50 90 
6   6.25  
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The NAPL used was an equal part mixture of canola oil and viscosity index improver (V-

158, Tempo Canada ULC).  This fuel was developed as a non-toxic, chemically 

homogeneous surrogate for hazardous liquid contaminants.  These properties permit 

easier laboratory handling and provide more predictable behaviour to better understand 

trends in data analysis.  Viscosity index improver was added to the canola oil in an 

attempt to minimize mobilization within the column during initial preheating and isolate 

migration occurring during the combustion process.  As shown in Figure 3.3, the 

viscosity of pure canola oil is very low and decreases further with the presence of 

elevated temperatures.  With the addition of viscosity index improver, both the initial 

viscosity of canola oil and the viscosity at elevated temperatures are increased to the 

same order of magnitude as more viscous NAPLs, such as coal tar. 

3.2.2 Nondimensionalization 

In order to compare smouldering behaviour in different sized columns, time was 

nondimensionalized according to: 

݁݉݅ܶ	݀݁ݖ݈݅ܽ݊݋݅ݏ݊݁݉݅݀݊݋ܰ = ܶ݅݉݁	(݉݅݊) ∗ 	ݕݐ݅ܿ݋݈ܸ݁	݃݊݅ݎ݈݁݀ݑ݋݉ܵ	݁݃ܽݎ݁ݒܣ ቀ ܿ݉݅݊݉ ቁݐ݃݊݁ܮℎ	݂݋	݀݁ݐܽ݊݅݉ܽݐ݊݋ܥ	݁݊݋ܼ	(ܿ݉) 							(૚) 
Temperature histories were used to calculate the local propagation velocity of the 

smoulder front based on the time lapse of the front arrival at two consecutive 

thermocouples and the known distance between them (Torero and Fernandez-Pello, 

1996).  The front arrival time at a particular thermocouple was defined as the average of 

the times at which three predetermined temperatures were reached, which varied 

depending on the characteristic peak temperatures of the fuel (Pironi et al., 2009).  The 
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average smouldering velocity is defined as the average of all the local smouldering 

propagation velocities calculated between consecutive thermocouples.  Using Equation 

(1), a nondimensionalized time of one is the time at which the leading edge of the 

smouldering front reaches the end of the contaminated zone, regardless of the height of 

the column.  As a result of incorporating both the smouldering front velocity and 

contaminated zone length, this nondimensionalized time can also be used to compare 

experiments at different airflow rates across various length scales.  To maintain 

consistency and comparability between experiments with different contaminated zone 

heights, this nondimensionalized time approach will be used for all graphs to follow.   

3.2.3 Analytical Model 

The objective of the analytical model was to develop a simple method for predicting 

whether a given scenario exhibited the potential for NAPL mobilization.  Towards this 

end, a simple equation would be useful that could approximate the magnitude and 

direction of the NAPL hydraulic gradient across the contaminated zone.  The total NAPL 

head at the top and bottom of a vertical column is: 

 ∆ℎ∆ܮ = ℎே஺௉௅௧௢௣ − ℎே஺௉௅௕௔௦௘ܮ  (2)

where h is the total hydraulic head of the NAPL at the top and bottom of the NAPL 

saturated zone, respectively, and ∆L = L is the length of the contaminated zone given that 

the datum is considered to be the base of the column.  Since liquids will flow from a 

region of high hydraulic head to low hydraulic head, if ℎே஺௉௅௧௢௣ > ℎே஺௉௅௕௔௦௘  there is the 

potential for downward migration of NAPL.  This corresponds with a positive hydraulic 
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gradient.  Similarly, if ∆ℎ ൗܮ∆  is negative (ℎே஺௉௅௧௢௣ < ℎே஺௉௅௕௔௦௘ ) then there is the potential for 

upward mobilization of NAPL.   

The hydraulic head consists of the sum of the pressure and elevation head, such that: 

 ℎே஺௉௅௧௢௣ = ேܲ஺௉௅௧௢௣ߩே஺௉௅ ∙ ݃ + ଵݖ and ℎே஺௉௅௕௔௦௘ = ேܲ஺௉௅௕௔௦௘ߩே஺௉௅ ∙ ݃ + ଶ (3)ݖ

where P is the pressure, ρ is density, g is gravitational acceleration and z is the elevation 

above the datum (in this case the base of the column). 

Therefore, substituting (3) into (2), where z1 = L and z2 = 0: 

 ∆ℎ∆ܮ = ேܲ஺௉௅௧௢௣ߩே஺௉௅ ∙ ݃ + ܮ − ேܲ஺௉௅௕௔௦௘ߩே஺௉௅ ∙ ܮ݃  
(4)

For two-phase flow in porous media, the wetting phase pressure (PNAPL) is equal to the 

non-wetting phase pressure (Pair) minus the capillary pressure (Pc):   

 ேܲ஺௉௅ = ௔ܲ௜௥ − ௖ܲ (5)

For the relatively high forced air flow conditions typically employed in liquid 

smouldering, it can be assumed that Pc is negligible and therefore: 

 ேܲ஺௉௅ ≅ ௔ܲ௜௥ (6)

Note that this is an assumption that will be tested in the Results.  For an open column, the 

air pressure at the top of the column is equal to atmospheric and therefore, based on (6), it 

can be assumed that the NAPL pressure at the top of the column is approximately equal 
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to zero.   Substituting this assumption for NAPL pressure at the top and bottom of the 

column into (4): 

 ∆ℎ∆ܮ = ܮ − ௔ܲ௜௥௕௔௦௘ߩே஺௉௅ ∙ ܮ݃  

(7)

or 
∆ℎ∆ܮ = 1 − ௔ܲ௜௥௕௔௦௘ߩே஺௉௅ ∙ ݃ ∙  ܮ

(8)

The air pressure at the base of the column can be approximated using the Kozeny-

Carman equation (McCabe et al., 1993): 

ܮܲ∆  = ቈ180ܸߤ௔௜௥߮௦ଶܦ௣ଶ ቉ ቈ(1 − ଷߝଶ(ߝ ቉ (9)

where, ΔP is the pressure drop across the length of the packed column, L is the length of 

the column, V is the forced air flux (volumetric flow rate divided by cross-sectional area 

of the column), μair is the dynamic viscosity of air, φs is the sphericity of the particles in 

the column, Dp is the mean diameter of the particles, and ε is the effective air porosity 

(total porosity minus the percent volume occupied by NAPL). 

Since for an open column ௔ܲ௜௥௧௢௣ = 0, ௔ܲ௜௥௕௔௦௘can be approximated as: 

 ௔ܲ௜௥௕௔௦௘ = ܮ ቈ180ܸߤ௔௜௥߮௦ଶܦ௣ଶ ቉ ቈ(1 − ଷߝଶ(ߝ ቉ (10)
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Substituting (10) into (8) and simplifying: 

 ∆ℎ∆ܮ = 1 − ൤180ܸߤ௔௜௥߮௦ଶܦ௣ଶ ൨ ൤(1 − ଷߝଶ(ߝ ൨ߩே஺௉௅ ∙ ݃  
(11)

Therefore, if the hydraulic gradient calculated using (11) is positive then there will be a 

downward NAPL hydraulic gradient in the column and the potential for downward 

NAPL mobilization will exist.  Equation (11) indicates that the contaminant hydraulic 

gradient depends primarily on the forced air flux and is independent of the height of the 

column.   

For the NAPL and soil type investigated in this study, the applicable analytical model 

parameters for (11) are provided in Table 3.2.   

 

Table 3.2 Fluid and Porous Medium Analytical Model Parameters 

 
Fluid and soil properties Value 
NAPL density (ρNAPL) 920 (kg/m3)a 

Air viscosity (μair) 
Sphericity (φs) 
Mean particle diameter (Dp) 
Porosity (ε) 

0.000025 (Pa·s)b 

0.8c 
0.88 (mm)d 
0.27e 

 a For canola oil at temperature of 20°C (Przybylski and Mag, 2002) 
 b At temperature of 200°C 

c Approximate sphericity for silica sand (Solimene et al., 2003; Grewal, 1980) 
d Technical data sheet (Bell&Mackenzie Co. Ltd) 
e Laboratory measured total porosity of 0.38 with a NAPL saturation of 30% 
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3.2.4 Numerical Model 

The purpose of numerical modeling in this work was two-fold.  First, the numerical 

model was used to confirm assumptions built into the analytical model (e.g., capillary 

pressure can be considered negligible).  This allowed for increased confidence in the 

utility of the analytical model as a simple predictive tool for the potential for NAPL 

mobilization.  Second, the numerical model was used to assess the time-dependent flow 

of air and NAPL for key scenarios within a smouldering experiment.  This time-

dependent behaviour cannot be studied using the analytical model, and therefore the 

numerical model is critical for understanding the rates and cumulative volumes of NAPL 

migration under varying experimental conditions.  For this purpose, this work employed a 

one-dimensional version of the three-dimensional, finite difference, two phase flow 

numerical model DNAPL3D (Gerhard and Kueper, 2003a, 2003b, 2003c; Gerhard et al., 

1998; Grant et al., 2007).  The model solves the wetting and non-wetting phase mass 

conservation equations, which include Darcy’s Law, fluid incompressibility assumptions, 

the capillary pressure definition PC = PN – PW, and the fluid saturation relationship SW + 

SN = 1.0: 

ݖ߲߲  ൤݇௜݇௥,ௐߤௐ ൬߲ ௐ߲ܲݖ + ௐ݃൰൨ߩ − ∅߲ܵௐ߲ݐ = 0 (12)

ݖ߲߲  ൤݇௜݇௥,ேߤே ൬߲( ஼ܲ + ௐܲ)߲ݖ + ே݃൰൨ߩ − ∅߲(1 − ܵௐ)߲ݐ = 0 (13)

where z is the vertical coordinate, ki is the intrinsic permeability, kr,W and kr,N represent 

the relative permeability of the wetting and nonwetting phase, respectively, μW and μN 

represent the viscosity of the wetting and nonwetting phase, respectively, PW is the 
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wetting phase pressure, PC is the capillary pressure, ρW and ρN represent the wetting and 

nonwetting phase densities, respectively, g is gravitational acceleration, ∅	is the porosity, 

SW is the wetting phase saturation, and t is time.   

Constitutive relationships to close these equations, capillary pressure-saturation-relative 

permeability relations, were developed and validated for the flow of two immiscible 

fluids in heterogeneous porous media (Gerhard and Kueper, 2003a, 2003b, 2003c; Grant 

et al., 2007).  The equations are solved using a fully implicit finite difference scheme 

with second-order accurate spatial operators and a first-order accurate temporal derivative 

(Rosenburg, 1969) to determine phase pressures and saturations.  The internode absolute 

permeabilities are calculated using harmonic means and the internode relative 

permeabilities are calculated based on fluid saturations of the upstream nodes (Aziz and 

Settari, 1979).  Full Newton-Raphson iteration accounts for the nonlinearities of the 

governing equation and the preconditioned system is solved with a modified Orthomin 

routine (Behie and Forsyth, 1984).  The model has been successfully applied to a wide 

range of problems in which two immiscible fluids are flowing through a porous medium 

(Gerhard and Kueper, 2003a, 2003b, 2003c; Grant et al., 2007; West et al., 2008; Pang, 

2010; MacPhee et al., 2012; Power et al., 2014). 

The objective in this work was to use modelling to evaluate the time-dependent migration 

of NAPL under different conditions resulting from smouldering.  In this work, the NAPL 

is the wetting phase and air is the non-wetting phase in the soil matrix.  These equations 

simulate the evolving NAPL and air saturations over time within the porous media 

subject to pressure, gravity, and capillary forces and subject to the influences of soil 

permeability, multi-phase relative permeability, and fluid viscosities.  It is noted that 
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Equations (12) and (13) do not incorporate temperature, energy or smouldering reactions.  

Thus, the purpose of each simulation was neither to simulate smouldering nor to simulate 

the movement of the front in time.  Rather, the purpose was to model the fluid forces and 

movement  for a single ‘scenario’; scenario in this context means the location of the front, 

the length of the preheated zone ahead of the front, the length of clean sand behind the 

front, and the total contaminated height for a short period of time in a single experiment.  

The model provides a prediction of whether downward NAPL migration is expected for a 

single scenario, like the analytical model, and – in addition – the relative amount of 

NAPL migration expected in a timeframe relevant to smouldering.  For the purpose of 

this modelling, the distinction between the pyrolysis and oxidation zones discussed above 

are ignored and the smouldering front is considered a thin line.  In this work, the pressure 

and saturation distributions are solved only in the vertical direction, representing the 

distribution as a function of height within the column.  By exploring a range of scenarios 

(e.g., preheating zone lengths, front heights, air flow rates) it is possible to examine the 

conditions under which NAPL migration is possible and, when possible, the extent to 

which it is expected to be significant (here ‘significant’ is taken to mean ‘to the extent 

that it is expected to impact smouldering behaviour’).   

A key modification was made to the model for this work.  All published simulations with 

DNAPL3D assumed a single fluid viscosity for the wetting phase.  In this work, in order 

to simulate temperature effects on the NAPL, the viscosity of the wetting phase was 

assigned one of two values depending on location: one for the Ambient region and a 

lower value for the Preheated region (see Figure 3.2).  While the extent of viscosity 

reduction at column temperatures above 100ºC cannot easily be measured, it can be 
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estimated from literature (Figure 3.3) and also can be considered a parameter to be 

explored in sensitivity simulations. 

 

Figure 3.5: Sample model domain, boundary conditions and initial conditions for a 
30 cm column with an initial contaminant saturation of 0.3 and a forced air flux of 
1.25 cm/s.  The scenario modelled is defined by: the distance C that the smouldering 
front has propagated from the base of the column, the height B of the elevated 
temperature preheating zone with reduced NAPL viscosity, and the height A of the 
remaining ambient temperature (ambient viscosity) NAPL zone.   

The one-dimensional model domain height was varied to match the height of the 

experiments’ contaminated zone.  The domain height was then discretized into 2 cm 

nodes.  The top boundary condition was set to a fixed NAPL saturation (Sw = 0.3), which 

corresponds with the experimental initial saturation.  It was also assigned a fixed air 
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pressure of zero, corresponding to an open-top column.  The bottom boundary condition 

consisted of a NAPL flux of zero, so that any NAPL entering the clean sand below the 

front would accumulate, and a specified air flux, chosen to match the forced air flow rate 

for each simulated experimental condition.  The model domain and boundary conditions, 

shown for one example scenario, are summarized in Figure 3.5.   

The model input parameters with the expected highest sensitivity were measured in the 

laboratory including: NAPL viscosity and saturation, and soil porosity and permeability.  

The remainder of the parameters for porous media and fluid properties were selected 

based on literature values.  While air properties as a function of temperature are not 

accounted for in this model, the zone of primary interest for all model simulations is the 

Preheating region located immediately above the smouldering front.  Based on 

experimental measurement of air temperatures at the top of the column as the 

smouldering front approached the end of the contaminated zone, an air temperature of 

200°C was considered to be a reasonable assumption.  A summary of these properties is 

listed in Table 3.3. 

Each scenario (i.e., each simulation) was run for 1200 seconds, or 20 minutes.  This 

simulation time was considered long enough to evaluate whether a significant amount of 

NAPL migration was expected to occur, but short relative to the speed of the smouldering 

front.  The typical velocity of the trailing edge of the front, which defines when 

smouldering is complete at a given location, is 0.2-0.3 cm/min.  This means that a 

maximum of 4 to 6 cm movement of the front is expected in 20 minutes.  Thus, over this 

period, applying the model to simulate forces and fluid migration assuming a single 
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location of the front and single thickness of the Preheating region is considered 

reasonable.   

Table 3.3 Fluid and Porous Medium Numerical Simulation Parameters 

 
Fluid and soil properties Value 
Wetting phase (NAPL) density (ρw) 920 (kg/m3)a 

Wetting phase viscosity – high temperature (μw) 
Wetting phase viscosity – ambient temperature (μw) 
Air density (ρair) 
Air viscosity (μair) 
Interfacial tension (σ) 
Porosity (φ) 
Residual wetting phase saturation (Srw) 
Emergence wetting phase saturation (Sw_emerg) 
Pore size distribution index (λ) 
Mean grain size (d) 
Uniformity index (Cu) 
Mean permeability (k) 

0.01 (Pa·s)b 

0.5 (Pa·s)b 

0.75 (kg/m3)c 

0.000025 (Pa·s)c 

0.04 (N/m) 
0.38b 

0.10 
0.90 
2.50 
0.88 (mm)d 
1.6d 

5.0 x10-10 (m2)b 

 a For canola oil at temperature of 20°C (Przybylski and Mag, 2002) 
 b Laboratory measured parameters 
 c At temperature of 200°C 
 d Technical data sheet (Bell&Mackenzie Co. Ltd) 

Using this model, the influence of varying four parameters were investigated: forced air 

flux (0.1 to 8.3 cm/s), height of the contaminated zone (16 to 120 cm), height of the 

preheating zone (0 and 10 cm), and the viscosity of the NAPL within the preheating zone 

(0.001 to 0.1 Pa·s).  The base case simulation consisted of a 90 cm contaminated zone 

with a forced air flux of 1.25 cm/s, and a 10 cm preheating zone.  Where normalized 

values of the volume of NAPL migration are presented, other simulation results are 

normalized by the results of this base case condition.   
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3.3 Results and Discussion 

3.3.1 Experimental Observations of NAPL Mobility as a Function of Length Scale 
and Airflow Rate 

Based on the configuration of the STAR laboratory column experiments, the liquid fuel 

(or NAPL contaminant) is subjected to two main forces: the downward force of gravity 

and the upward force of the injected air; capillary forces are expected to be relatively 

minor in the presence of forced air gradients.  The net balance of these two forces will 

therefore determine whether the net gradient on the NAPL is significantly upwards, 

downwards, or negligible.  However, regardless of the liquid hydraulic gradient, a highly 

viscous liquid will migrate at such a slow rate that its mobility is effectively negligible.  

Indeed, numerous liquid contaminants/fuels exhibit high viscosities (i.e., greater than 0.1 

Pa·s) at ambient conditions, including the fuel used here (see Figure 3.3).    

A background experiment was conducted in which a column was packed to a height of 50 

cm with the same NAPL and sand mixture as used for the combustion tests and left at 

ambient conditions for 20 hours, after which it was incrementally excavated and analyzed 

for NAPL concentration.  A comparison of before and after concentrations showed that 

there was no significant migration occurring at ambient conditions (details in Appendix 

A).   

A temperature history as a function of nondimensionalized time (NDT) for Test 2 is 

shown in Figure 3.6, exemplifying typical smouldering behaviour in the absence of 

significant NAPL mobility.  A nondimensionalized time of “zero” is assigned to the time 

at which the air supply, and therefore smouldering, was initiated.  Conductive preheating 
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caused TC1, located 1 cm above the heater, to reach approximately 360°C when the 

initiated air flux of 2.5 cm/s caused a distinct slope change at NDT 0 representing the 

onset of combustion.  Once TC1 reached its peak temperature and began to decline, the 

ignition coil was turned off and only the air remained on.  These declining temperatures 

are indicative of convective cooling following the completion of smouldering at this 

location.  The consistent temperature-time slopes, crossing curves, and consistent peak 

temperatures, are indicative of a self-sustaining smouldering process (Walther et al., 

2000).  Typical of a case with no NAPL migration, the velocity of the leading edge of the 

smouldering front is steady in time (here equal to 0.41 ± 0.04 cm/min). 

 

Figure 3.6: Temperature history for 30 cm contaminated zone with forced air flux of 
2.5 cm/s, displaying typical self-sustaining smouldering behaviour in the absence of 
significant NAPL migration. 
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The evolving temperature profiles for the same experiment are shown in Figure 3.7.  

Each curve represents the distribution of temperatures as measured by all thermocouples 

in the smouldering column at a single nondimensionalized time.  The nondimensionalized 

time of “0.8” is represented in red to show the typical shape of the temperature profile at 

a single moment in time.  This can be compared to the theoretical temperature profile of 

the front in Figure 3.2.  The regions of the front articulated in Figure 3.2 are identified 

with labels relating to the measured data in Figure 3.7 at NDT 0.8.  For the purpose of 

analyzing experimental data, the pyrolysis and preheating regions in Figure 3.2 are 

collapsed into a single ‘preheating’ zone which is considered to be the region ahead of 

the leading edge of the smouldering front where T>100°C.   This definition of the 

preheating zone was made consistently throughout analysis of the experimental results 

due to the inability to precisely define the boundary between the pyrolysis and preheating 

zones solely based on experimental temperature data.  The proportion of the NAPL in the 

preheating zone that has been converted through pyrolysis to a char is considered to be 

small relative to the total height of the preheating zone and therefore this is considered to 

be a reasonable assumption.  As indicated previously, in the case of negligible NAPL 

mobilization, the peak temperatures remain relatively constant (564 ± 12 °C). 

An estimation of the instantaneous smouldering front thickness, as indicated in Figure 

3.7, can be determined based on slope changes of the temperature profile.  The leading 

and trailing edge of the smouldering front define the front and back of the reaction 

(oxidation) zone, respectively.  The temperature increase at the leading edge of the 

smouldering front occurs over a very short distance and is therefore a sharp front.  The 

slope change at the trailing edge of the front, indicating NAPL consumption versus 
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convective cooling of clean sand, (Figure 3.2) was selected consistently in this work at 

the inflection point as is indicated in Figure 3.7.  The velocity of the leading (0.41 ± 0.04 

cm/min) and trailing edge (0.30 ± 0.06 cm/min) of the smouldering front were not equal 

in the base case experiment, resulting in an increase in the thickness of the smouldering 

front over time (from 1 to 10.5 cm over the course of approximately 80 minutes of 

smouldering).  No evidence of NAPL migration was observed in the base case. 

 

Figure 3.7: Temperature profile for 30 cm contaminated zone with forced air flux of 
2.5 cm/s, displaying typical self-sustaining smouldering behaviour in the absence of 
significant NAPL migration.  The legend provides the non-dimensionalized time for 
each profile.  The labels refer to the smouldering regions in relation to the profile at 
NDT = 0.8 (red plot). 

Self-sustained smouldering with no evidence of NAPL migration was similarly observed 

in the 30 cm columns at the other two air fluxes (1.25 and 6.25 cm/s).  The temperature 

profiles for these two cases are shown in Figure 3.8(a) and (b).  The same typical features 
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front (0.34 ± 0.06 cm/min and 0.50 ± 0.03 cm/min, respectively), slightly reduced 

velocities of the trailing edge of the front (0.24 ± 0.06 cm/min and 0.35 ± 0.05 cm/min, 

respectively) and consistent peak temperatures (560 ± 15 °C and 573 ± 14°C, 

respectively).  A linear dependence of smouldering front velocity on injected air flux is 

expected (Pironi et al., 2011) since smouldering is an oxygen limited reaction. 

(a)  (b)  

Figure 3.8: Temperature profiles for 30 cm columns showing evolution of the 
smouldering front structure for forced air fluxes of (a) 1.25 cm/s and (b) 6.25 cm/s.  
Each curve displays a snapshot in time and the legend provides the 
nondimensionalized time for each curve.  

It was not until the height of the contaminated zone was increased that migration effects 
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the 90 cm column with a forced air flux of 2.5 cm/s, which is the same experimental 

conditions as the temperature history in Figure 3.6 except with an increased contaminated 

zone height.  This temperature history displays typical smouldering behaviour from 

approximately TC1 to TC12, including relatively constant propagation of the leading 

edge of the smouldering front (0.41 ± 0.07 cm/min), trailing edge of the front (0.32 ± 
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 (a)  

(b)  

Figure 3.9: (a) Temperature history for 90 cm column with forced air flux of 2.5 
cm/s, and (b) isolated temperature history for TC4 and TC14 located 12 cm and 46.5 
cm above the heater, respectively.   
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For this intermediate air flux (2.5 cm/s) migration effects are only observed beginning at 

a nondimensionalized time of 0.6 when the leading edge of the smouldering front is 

approximately 50 cm above the heater (shown in the temperature profile in Figure 3.10).  

Between a nondimensionalized time of 0.6 and 0.7 the trailing edge of the smouldering 

front stalls (i.e., velocity of 0 cm/min) while the leading edge of the front continues to 

advance.  This corresponds to a regime change in smouldering behaviour characterized 

by an accelerated growth of smouldering front thickness and elevated peak temperatures.  

In order to confirm that this regime change was not an isolated incident, a repeat column 

test was conducted (Appendix B), yielding similar results.   

 

Figure 3.10: Temperature profile for 90 cm column with forced air flux of 2.5 cm/s, 
showing evolution of the smouldering front structure.  Each curve displays a 
snapshot in time with the legend providing the associated nondimensionalized time.   
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In all cases, with or without migration, all NAPL was consumed and the entire column 

was remediated.  While the end outcome was the same in all cases, there are key 

differences in the thermocouple data when migration is present, including: higher than 

normal peak temperatures and stalling of the trailing edge of the smouldering front.  

These characteristic differences are likely to be caused by NAPL mobility and can be 

explained by looking in more detail at individual thermocouples within the temperature 

history (Figure 3.9(b)).  Figure 3.9(b) highlights TC4 and TC14, located 12 and 46.5 cm 

above the ignition coil, respectively.  As described previously, TC4 displays typical 

ignition behaviour with a distinct temperature increase to a given characteristic peak 

temperature followed by completion of smouldering at that location and a continuous 

cooling curve.  At TC14, there is the same characteristic sharp increase in temperature 

indicating ignition, however it reaches a peak at a lower temperature.  As cooler (relative 

to combustion temperatures) low viscosity NAPL from above migrates downward to this 

location, some of the heat released from smouldering is consumed in preheating and 

pyrolysis of this new fuel.  This previously mobilized NAPL then causes clear reignition 

behaviour at a much later time than the initial ignition.   While TC14 is one of the first 

thermocouples to show signs of migration, latter thermocouples peak at much higher 

temperatures as migration becomes more dominant.  The average peak temperature in the 

upper half of the column from TC13 to TC26 is 572 ± 60 °C.  The average peak 

temperature is both higher and shows significantly more variability than the lower half of 

the column (564 ± 17 °C).   

Higher than average peak temperatures due to downward NAPL migration can result 

from the concentration of NAPL and energy at a particular location within the column.  
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In other words, the smouldering reaction may approach quasi-superadiabatic conditions.  

Superadiabatic conditions have been documented in smouldering of solid porous fuels 

(e.g., coal, foam)  when the rate of heat transfer away from the oxidation region is less 

than the rate of heat generation in the oxidation region; this imbalance results in the 

concentration of energy at the smouldering front (Aldushin et al., 1999).  Since 

temperature and oxidation rate are coupled, this leads to a strong feedback effect between 

the two that can result in overheating such that the peak temperatures exceed typical 

thermodynamic smouldering temperatures (Aldushin et al., 1999).  Here it is 

hypothesized that NAPL migration within the smouldering column is also leading to 

overheating via continued addition of fuel to the reaction zone.  A smouldering reaction 

remains self-sustaining because heat is recovered from the oxidation region via 

preheating and pyrolysis of the virgin fuel ahead of the front.  However, when the fuel is 

migrating downwards, similar to the superadiabatic conditions described by Aldushin et 

al. (1999), this recovered heat is concentrated at the front.  This results in lower heat 

losses and consequently elevated peak temperatures at the front. 

The fuel mobilization can similarly explain the stalling of the trailing edge of the 

smouldering front evident in Figure 3.10 as the mobilized NAPL continues to provide a 

fuel source to sustain combustion at these lower regions of the column not allowing the 

trailing edge of the smouldering front (which is associated with the contaminated/clean 

sand divide, Figure 3.2) to move upwards in the column. 

The presence or absence of these NAPL mobility effects is dependent on the forced air 

flux, which is the only variable between the three 90 cm columns.  At the lowest air flux 

in Figure 3.11(a), evidence of migration is observed through the presence of elevated 
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peak temperatures from the onset of combustion.  In the bottom third of the column, 

average peak temperatures were 630 ± 22 °C, which was noticeably higher than the 

comparable 30 cm column experiment.  These elevated peak temperatures are expected to 

be a result of higher fuel concentrations caused by downward NAPL mobilization.  

Similarly, in the top third of the column, average peak temperatures are reduced (538 ± 

38 °C) since NAPL has mobilized from this upper region to lower regions within the 

column.   At this low air flux (1.25 cm/s), the trailing edge of the smouldering front 

remains within the first 15 cm of the column.  Since the upward force of air on the NAPL 

is reduced in this low flow case, downward NAPL migration is able to occur causing 

sustained combustion throughout the lower regions of the column as the leading edge of 

the smouldering front continues to move upwards at a velocity of 0.38 ± 0.07 cm/min.   

(a) (b)  

Figure 3.11: Temperature profiles for 90 cm columns showing evolution of the 
smouldering front structure, with each curve displaying a snapshot in time 
represented as nondimensionalized time for forced air fluxes of (a) 1.25 cm/s, and 
(b) 6.25 cm/s. 
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At the highest airflow rate tested in the 90 cm column, 6.25 cm/s (Figure 3.11b), there is 

no evidence of downward NAPL migration at any time during the experiment.  Similar to 

the 30 cm column experiments, there was steady upward progression of both the leading 

(0.53 ± 0.04 cm/min) and trailing edge (0.45 ± 0.08 cm/min) of the smouldering front and 

peak temperatures remained constant (563 ± 5 °C).   

It was evident from these temperature results that the upward force of injected air was not 

the only factor controlling NAPL mobilization behaviour as no NAPL mobilization was 

observed in the 30 cm columns at any of the three tested air flow rates, while 

mobilization was present in the 90 cm columns at two of the three air flow rates.  As 

mentioned previously, NAPL mobilization is greatly enhanced at lower viscosities.  

Therefore, it is important to consider the height of the elevated temperature preheating 

zone which represents the amount of NAPL available to migrate at time scales relevant to 

the experiment and impact smouldering metrics.  As mentioned previously, the height of 

the preheating zone is defined as the distance between the leading edge of the 

smouldering front and the location ahead of the smouldering front that is at a temperature 

of 100°C.  100°C was selected as the threshold at which the viscosity of the NAPL is 

significantly reduced from ambient conditions (Figure 3.3) to provide a zone of NAPL 

with high mobility potential.   

Figure 3.12 shows the position and height of the various fuel states within the 

smouldering column as a function of nondimensionalized time, including: the clean sand 

where all NAPL has previously been consumed (no mobility potential), the combustion 

zone where NAPL has been converted to a char (low mobility potential), the elevated 
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temperature preheating zone where low viscosity NAPL is present (high mobility 

potential), and the contaminated sand where ambient temperature high viscosity NAPL is 

present (low mobility potential).  These four regions in relation to the conceptual model 

of the smouldering front were previously introduced in Figure 3.2.  Similar to Figure 3.7, 

the pyrolysis and preheating zone have been combined into a single ‘preheating’ zone. 

In all 30 cm columns, no downward migration effects were observed even at low airflow 

rates.  As shown in Figure 3.12, in the 30 cm experiments the position and thickness of 

the combustion zone over nondimensionalized time is relatively consistent across all 

airflow rates.  The thickness of the smouldering front expands from approximately 1 cm 

to 10.5 cm, shrinking again at late time when the leading edge of the front reaches the 

end of the contaminated zone.  Both the leading and trailing edges of the front propagate 

in a steady manner upwards.  In no case and at no time does the thickness of the 

preheating zone exceed 10.5 cm.  These all point to the absence of NAPL mobilization in 

the 30 cm cases. 

For the 90 cm columns, mobility effects are observed when two conditions are met.  First 

the forced air flux must be low (i.e. no mobility effects are observed for the 6.25 cm/s 

case).  Second, clear evidence of NAPL mobilization are observed only when the 

preheating zone height reaches a critical thickness greater than or equal to 10.5 cm.  As 

shown in Figure 3.12, for the lowest linear air flux, 1.25 cm/s, the height of the 

preheating zone reaches 10.5 cm from the onset of combustion (NDT = 0.1).  The height 

of this preheating zone continues to expand as the reaction progresses.  At a NDT of 0.4, 

the trailing edge of the smouldering front stalls, indicating that a significant quantity of 

NAPL is continuing to be added to that zone to sustain combustion.  These observations 
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match the temperature data presented in Figure 3.11(a), where it was similarly 

determined that NAPL mobility effects were present from the beginning of smouldering.   

 

Figure 3.12: Height and position of the combustion and preheating (defined as the 
region ahead of the combustion zone where T>100°C) zones for 30 and 90 cm 
columns at forced air fluxes of 1.25, 2.5 and 6.25 cm/s.  The red outline identifies 
preheating zone heights of 10.5 cm or greater. 

For the intermediate air flux, 2.5 cm/s, the increase in preheating zone height and stall of 

the trailing edge of the smouldering front occurs slightly later at a NDT of 0.6 to 0.7.  

This time corresponds directly with the time that elevated temperatures are observed in 

the temperature profile (Figure 3.10), confirming that an increase in preheating zone 

height and a stall in the progression of the trailing edge of the smouldering front is 
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indicative of downward NAPL migration consequently resulting in elevated smouldering 

temperatures.   

What is special about a critical preheating zone height greater than or equal to 10.5 cm?  

It is hypothesized that this height of low viscosity NAPL represents a critical volume of 

NAPL that can migrate towards the front and that can therefore manifest quasi-

superadiabatic effects in the temperature data.  While the value of 10.5 cm is specific to 

the fuel and soil type (i.e., canola oil/VI improver and coarse sand) used here, it is 

expected that analogous critical heights will exist and can be determined for other 

experimental systems.   

For the highest airflow rate, 6.25 cm/s, while the height of the preheating zone does reach 

a maximum of 21 cm at a NDT of 0.6 (Figure 3.12), there is no corresponding stall in the 

smouldering front or presence of elevated temperatures in the temperature profile (Figure 

3.11b).  Therefore, for this high airflow rate, the upward force of the injected air appears 

to be sufficient to prevent the downward mobilization of NAPL into the smouldering 

front even with a significant low viscosity zone.  Indeed, experimental observations of 

NAPL droplets being ejected from the smouldering column at this highest forced air flux 

indicate that the upward force of air is sufficient to cause upwards NAPL migration in 

this case. 

Therefore, exceeding a critical preheating zone height appears to be a necessary, but not 

sufficient, condition of downward NAPL migration.  Downward migration also requires a 

downward NAPL gradient across the low viscosity preheating zone, which appears to be 

dependent on the relative upward force applied by the injected air.   



63 
 

 
 

In summary, based on the experimental results, it is hypothesized that for smouldering to 

be influenced by downward NAPL migration, the simultaneous presence of three 

conditions is required: 

1. A downward NAPL hydraulic gradient,  

2. A height of preheating region large enough to provide a sufficient volume of 

NAPL to the front, 

3. The viscosity of the NAPL in the preheating zone must be sufficiently low such 

that the rate of NAPL migration is significant relative to the time scale of 

smouldering. 

 The goal of the analytical and numerical modelling is to further investigate this 

hypothesis by examining these three conditions. 

3.3.2 Analytical Modelling of NAPL Gradient 

Using the parameter values identified in Table 3.2, Equation (11) can estimate the 

magnitude and direction of the NAPL gradient, as a function of injected air flux.  These 

calculations are summarized and compared to the experimental results in Table 3.4 

below.  The numerical modeling results shown in the table will be discussed in Section 

3.3.3.   

Table 3.4 Comparison of Analytical Model to Experimental and Numerical Model 
Results for 90 cm Columns 

 
V 

(cm/s) 
Δh/ΔL  

Analytical Model 
(m/m) 

Δh/ΔL  
Numerical Model 

(m/m) 

Experimental Evidence 
of Downward NAPL 

Migration? 
1.25 0.66 0.59 Yes 
2.50 0.32 0.17 Yes 
6.25 -0.70 -1.09 No 
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Table 3.4 reveals that for the conditions where evidence of downward NAPL migration 

was experimentally observed (forced air flux of 1.25 and 2.50 cm/s in the 90 cm 

columns), the analytical model predicted a positive (i.e., downwards) NAPL hydraulic 

gradient.  It also reveals that, as expected, as the injected (upwards) air flux is increased, 

the downward NAPL gradient decreases; eventually it is reversed and becomes a negative 

(i.e., upwards) NAPL gradient as in the 6.25 cm/s air flux case.  This helps confirm the 

hypothesis as to why no NAPL migration was experimentally observed in this case. 

It is anticipated that this analytical model can be used as a simple predictive tool to 

determine whether downward NAPL mobilization is possible for any combination of soil 

and contaminant types and forced air flow rates.  Using this model, a larger magnitude of 

the hydraulic gradient (either positive or negative) corresponds with a greater potential 

for NAPL mobilization (either downward or upward, respectively).  Moreover, if it was 

desired to ensure that NAPL mobilization effects on smouldering were prevented, then it 

would provide the minimum air flux required for the operator.  As indicated in the 

derivation of Equation (11), the NAPL gradient is independent from the height of the 

column.   

In order to examine dynamic (i.e., time-dependent) aspects of the problem, including the 

migration of a sufficient NAPL volume in the preheating zone and the influence of NAPL 

viscosity in the preheating zone on migration rates, a numerical model is required. 
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3.3.3 Numerical Modelling of NAPL Migration in Comparison with Experimental 
Results 

The numerical modelling described in Section 3.2.4 was employed to better understand 

the time-dependent relationship between the upward flowing air and downward migrating 

NAPL for selected scenarios in the conducted experiments.  Several sensitivity studies 

were also conducted (e.g., to NAPL viscosity in the preheating zone).  It is expected that 

this model can further be used as a predictive tool to investigate the extent to which 

NAPL mobility is likely to be present in other scenarios (e.g., other contaminant types, 

saturations, soil types, airflow rates). 

First the numerical model was employed to examine the NAPL gradient condition 

considered in the analytical modelling.  Figure 3.13 presents the simulated pressure 

distributions for the NAPL and air phases and NAPL hydraulic head for the largest and 

smallest experimental injected air fluxes in the 90 cm columns.  In these simulations, the 

height of the three zones defined in Figure 3.5 were set to A = 70 cm, B = 10 cm and C = 

10 cm (i.e., the smouldering front has advanced 10 cm from the base of the column).  The 

results are presented for time = 20 min into the 20 min simulation period; it is noted that 

pressures and heads change very little during the simulations.  The pressure plots  

illustrate that at all heights the NAPL (wetting phase) pressure is, as expected, equal to 

the air (non-wetting phase) pressure minus the capillary pressure.  They further reveal 

that the capillary pressures are small (i.e., < 1000 Pa) relative to the total fluid pressures, 

providing support for the assumption of negligible capillary pressure in the analytical 

modelling.  The figure further reveals that for the 1.25 cm/s air flux the NAPL head is 

higher at the top of the NAPL contaminated zone than at the bottom, while the opposite is 
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true for the 6.25 cm/s case.  This matches expectations from the experiments and 

analytical modelling. 

(a)   

(b)   

Figure 3.13: (a) Air and NAPL pressure distributions and total NAPL head for a 
column with a forced air flux of 1.25 cm/s.  Total NAPL head is greater at the top of 
the column and therefore NAPL has the potential to migrate downwards, and (b) 
Air and NAPL pressure distributions and total NAPL head for a column with a 
forced air flux of 6.25 cm/s.  For both cases, A=70, B=10 and C=10. 

Figure 3.14 plots the NAPL hydraulic gradient (
∆௛∆௅)	calculated from the numerically 

simulated heads over the 80 cm length of the NAPL-contaminated zone; it does so for 

both the simulations shown above as well as for a range of air fluxes (0.1 to 8.3 cm/s) 

greater than and less than that used in the smouldering experiments.  As with the 
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analytical model, a positive hydraulic gradient represents potential downward NAPL 

migration.  As expected, larger positive gradients were found for lower air flow rates, due 

to the dependence of NAPL head on air pressure.  An air flux of approximately 3.0 cm/s 

is predicted to result in zero NAPL gradient, and as air flux is further increased, the 

simulated NAPL gradient becomes more negative (i.e., potential for upwards NAPL 

migration). 

 

Figure 3.14: NAPL hydraulic gradient as a function of forced air flux represented as black 
circles for the numerical simulations of a 90 cm contaminated zone with a 10 cm preheating 
zone immediately above the front (A = 80, B = 10, C = 0).  NAPL hydraulic gradients 
calculated using the analytical model are shown in red.   

Figure 3.14 compares the NAPL gradients predicted from the numerical model and 

analytical model, illustrating they are of similar sign and magnitude in all cases.  The 

figure underscores that the cases for which NAPL migration was observed to impact 

smouldering were indeed those cases with a downward NAPL gradient.  Table 3.4 
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provides a comparison of the analytically and numerically predicted NAPL gradient 

values for the three 90 cm experiments with varying air fluxes.  In all three cases, the 

values match well and correspond to the experimental results.  In the lowest (1.25 cm/s) 

air flux experiment, there was clear evidence of downward NAPL migration from early 

time (Figure 3.11a), which is supported by the high downward gradient of ~ 0.6.  For the 

highest (6.25 cm/s) air flux experiment, no evidence of any downward NAPL migration 

occurred (Figure 3.11b) in agreement with the large negative hydraulic gradient of  

~ -1.0.  In the case of the intermediate (2.5 cm/s) air flux, experimental evidence of 

downward NAPL migration occurred only later as the leading edge of the smouldering 

front approached the midpoint of the contaminated zone (Figure 3.10).  This also agrees 

with the analytical and numerical simulations which predict a small positive NAPL 

hydraulic gradient of ~0.2.  It is possible that at low, positive NAPL gradients it takes 

more time to deliver sufficient NAPL to the front to produce an effect on smouldering 

metrics.  Also, complex experimental conditions not accounted for in the model, such as 

the changing length of the contaminated and preheating zones, may contribute to the 

regime transition – from no migration to downward migration – observed in the 

experimental data at intermediate time.  

The similar magnitude and sign of the hydraulic gradient between those calculated using 

the numerical and analytical models suggests that the assumptions made in forming the 

analytical model are reasonable.  The analytical model tends to predict a slightly larger 

(or less negative) NAPL gradient than the numerical model predicts, with the difference 

between them increasing with increasing air flux (Figure 3.14).  The discrepancies 

between the two may be the result of including several additional physical forces in the 
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numerical model that were not incorporated into the analytical model, including gravity, 

capillary pressure, and relative permeability.  While the constitutive relationships are 

valuable for simulating flowing phases with the numerical model, they do not play an 

important role in predicting the (relatively static over 20 min) hydraulic gradient.  This 

supports the conclusion that the analytical model is sufficient for its purpose as an initial 

predictive tool with respect to the NAPL gradient precondition for downward migration. 

Recall that, in addition to the NAPL gradient, experimental evidence indicated that 

column height also influenced whether downward NAPL migration was significant.  To 

test the hypothesis that it is the height of the preheating zone that controls migration as 

opposed to the overall contaminated zone height, numerical simulations were first 

conducted with varying column heights but with no preheating zone (B=0).  These results 

indicate that while the air pressure at the base of the column increases with a larger 

contaminated zone height (Figure 3.15), the change in air pressure is proportional to the 

change in contaminated zone height and therefore there is no effect on NAPL hydraulic 

gradient (Figure 3.16).  Since downward NAPL mobilization effects were observed 

experimentally in 90 cm columns but not in 30 cm columns, this confirms that total initial 

NAPL height is not in itself the key factor in determining when NAPL migration will be 

significant.  
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Figure 3.15: Air pressure at the base of the column as a function of NAPL height for 
a forced air flux of 1.25 cm/s (A=16 to A=120, B=0, C=0).   

 

 

Figure 3.16: NAPL hydraulic gradient as a function of contaminated zone height for 
a forced air flux of 1.25 cm/s (A=16 to A=120, B=0, C=0).   
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Rather, the experimental results show that the preheating zone height increases with time 

and has the potential to increase to substantially larger values in taller columns.  

Furthermore, as the height of the preheating zone increases, the volume of potentially 

mobile low viscosity NAPL increases proportionally.  As such, when the preheating zone 

height increases from 10 cm to 20 cm – as it does at later times in the tall column 

experiments - the volume of NAPL that has the potential to migrate downwards at a rate 

that is significant for smouldering also increases by a factor of two.   

This hypothesis about the rate and total amount of NAPL migrating to the smouldering 

front depends on the reduced NAPL viscosity in the preheating region.  Note that when 

considering smouldering remediation, we are considering almost exclusively NAPLs 

(heavy hydrocarbons, coal tar) that are very viscous at ambient temperatures (i.e., > 1 

Pa·s) and whose viscosity is likely to reduce by a factor of at least 50 at 100ºC (Figure 

3.3).  This is important because the rate of downward NAPL migration is expected to be 

governed not only by the gradient but also, via relative NAPL permeability in the 

presence of air, by the NAPL viscosity immediately above the smouldering front.  This 

was explored with a series of numerical simulations using the base case configuration of 

90 cm column, 1.25 cm/s air flux, 0 cm advance of the smouldering front, and 10 cm high 

preheating zone (A=80, B=10, C=0).  The key metric was the NAPL volume that 

migrated in 20 minutes downwards into (+) or upwards out of (-) the preheating zone.  

Migrated NAPL volumes were determined by integrating the difference in NAPL 

saturation distributed over the 10 cm height between time = 0 and 20 min.  In all cases 

the NAPL viscosity in the ambient zone was 0.5 Pa·s (matching that of the NAPL used in 

the experiments) while the NAPL viscosity in the preheating zone was varied between 
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0.1, 0.01, and 0.001 Pa·s.  All three NAPL viscosities were evaluated for air flux values 

from 0.1 to 8.3 cm/s. 

As shown in Figure 3.17, high NAPL viscosities (0.1 Pa·s) in the preheating zone results 

in relatively minimal NAPL migration over a time scale relevant to combustion.  This 

corresponds with the experimental result of the 20 hour ambient temperature mobility test 

(Appendix A).  Even at low air flow rates (<3.0 cm/s), minimal downward NAPL 

migration into the smouldering front is predicted despite there being a substantial 

downward NAPL gradient (Figure 3.14).  As shown by viscosity measurements as a 

function of temperature (Figure 3.3), this may be expected for NAPLs such as coal tar; 

however, the oil/VI improver NAPL used in this study is expected to exhibit a viscosity 

in the preheating zone at least an order of magnitude less than this.  Based on model 

simulations, Figure 3.17 reveals that as NAPL viscosity decreases by a factor of 10 the 

predicted volume of NAPL migrating into the front increases by a factor of 1.7, and as 

viscosity decreases by a factor of 100 the relative NAPL volume increases by a factor of 

13.7.  These simulations lend support to the hypothesis that the presence of low viscosity 

NAPL in the preheating zone is essential for significant migration effects in smouldering.  

Further investigation is required to determine the variables controlling the height of the 

preheating zone and is outside of the scope of this study; however it appears that larger 

preheating zone heights are formed at later times in taller columns and this is expected to 

contribute to more substantial NAPL migration effects on smouldering.   

It is noted that Figure 3.17 also reveals that substantial upwards migration of NAPL may 

be expected ahead of the front when using very large air fluxes.  This could cause NAPL 
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saturation decreases ahead of the front, which might inhibit self-sustained smouldering.  

It could also cause NAPL to be ejected from the column as the front approaches the top 

of the contaminated zone.  Since the goal of smouldering is in situ NAPL destruction, this 

may be undesirable.  Clearly the ability to control the air flux is an important tool for 

smouldering remediation operators. 

 

Figure 3.17: Volume of NAPL entering (+) or leaving (-) the bottom 10 cm of a 90 cm 
column over 20 minutes as a function of (i) forced air flux and (ii) viscosity of the NAPL in 
the preheating zone.  Simulation results are for a 10 cm high preheating zone located at the 
base of an 80 cm ambient, NAPL-contaminated zone (μ = 0.5 Pa·s), where A = 80, B = 10 
and C = 0.    Volumes are normalized relative to the base case (1.25 cm/s flux, μ = 0.01 Pa·s). 
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3.4 Summary 

A new conceptual model of the key regions that comprise a NAPL smouldering treatment 

system was presented, providing a basis for understanding important processes that occur 

both ahead and behind the propagating smouldering front.  A detailed investigation of 

laboratory smouldering columns with two different contaminated zone heights and three 

different injected forced air flow rates indicated – for the first time – that NAPL mobility 

can influence NAPL smouldering behaviour.  Experimental evidence of downward 

NAPL migration occurred in the 90 cm columns at low air flow rates.  Downward NAPL 

migration caused three key effects on smouldering metrics: a stall in the trailing edge of 

the smouldering front, quasi-superadiabatic conditions leading to elevated peak 

temperatures, and a rapid increase in thickness of the smouldering front.  While in all 

cases, the NAPL was still all eliminated and the excavated sand afterwards was 

completely clean, it is important to understand the conditions under which these 

phenomena are expected to occur. 

Experimental results suggested the hypothesis that it is necessary for three conditions to 

exist simultaneously for significant downward NAPL migration in smouldering to occur.  

First, the forced air flux must be sufficiently low to permit a downward NAPL hydraulic 

gradient within the column.  Second, the viscosity of the NAPL in the preheating zone 

must be sufficiently low to enable migration to occur at a rate relevant to smouldering.  

And third, the preheating zone height must be large enough to provide a sufficient 

volume of low viscosity liquid NAPL such that the migration will influence smouldering 

metrics.  The length of the preheating zone generally grows in time for forward 
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smouldering, therefore, as larger columns or reactors are used, the likelihood of achieving 

the third condition is increased.  The critical preheating zone height of approximately 

10.5 cm observed in these experiments is likely system dependent and probably varies 

with NAPL type, sand type, and other factors that affect the heat transfer and NAPL 

characteristics ahead of the smouldering front. 

An analytical model was developed that provides an easy method for approximating the 

first condition: the magnitude and direction of the NAPL gradient for a chosen injected 

air flux value.  The predicted values were confirmed with one-dimensional numerical 

modelling.  Moreover, the numerical model was able to provide evidence supporting the 

second and third conditions by predicting the volume of NAPL mobilized given a 

specified air flux, viscosity contrast between the preheated and ambient temperature 

NAPL, as well as contaminant and soil properties.  Both models agreed well with the 

experimental results, predicting significant NAPL migration into the smouldering front in 

only those cases where it was observed.  Modelling results suggest that NAPL mobility is 

expected to be minor, regardless of NAPL gradient, for NAPLs whose viscosity in the 

preheating zone is above 0.1 Pa·s (e.g., high viscosity coal tars).  However, for other 

NAPLs, NAPL mobilization can be prevented by judiciously adjusting the air flux rate to 

minimize the NAPL gradient.  This model will be used in the future to further explore the 

potential for NAPL mobility for other scenarios including NAPL types, initial 

saturations, and soil types.      

While more significant NAPL migration effects were observed at lower airflow rates and 

at later times in larger columns, it is noted that this does not impact the overall degree of 

remediation of NAPL-contaminated soils due to the robust nature of the smouldering 
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process.  Indeed, it was demonstrated that the length of the smouldering front adjusts to 

accommodate the influx of NAPL and the trailing edge does not advance until all the 

NAPL is oxidized, leaving clean sand throughout every time.  However, the processes 

discussed here are still important.  Due to the potential for NAPL migration to lead to 

elevated temperatures (super-adiabatic conditions), this phenomenon needs to be 

considered in the design of large, ex situ smouldering remediation treatment systems, 

including consideration of both construction materials and operating conditions.  
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4 TRANSPORT OF HEAT AND CONDENSABLE PRODUCTS IN 
SMOULDERING COLUMN EXPERIMENTS 

4.1 Introduction 

Smouldering is a flameless, oxygen-limited combustion reaction that has the ability to 

propagate through a porous organic fuel bed (e.g., coal, peat, polyurethane foam) or an 

inert matrix embedded with fuel (e.g., oil-soaked insulation) (Drysdale, 2011).  The 

smouldering combustion front is quite complex, involving a travelling heat wave, 

endothermic pyrolysis reactions, and heterogeneous (i.e., gas phase oxygen and solid 

phase fuel) exothermic oxidation reactions (Torero and Fernandez-Pello, 1995).  The heat 

wave preheats the fuel, the pyrolysis reactions convert the fuel to char, and the oxidation 

reactions convert the char to (primarily) heat, carbon dioxide, and water.  In each of these 

steps, both condensable and non-condensable gaseous compounds can be formed.  The 

heat wave can volatilize lighter compounds, pyrolysis can generate thermal degradation 

products with the potential for more volatilization, and oxidation – in addition to 

producing water vapour – typically generates carbon monoxide and other byproducts of 

incomplete combustion (Ohlemiller and Shaub, 1988).  As a result, the emissions 

associated with smouldering is a complex problem.   

The smouldering of non-aqueous phase liquid (NAPL) contaminated soil is one of the 

first engineering applications of smouldering (i.e., intentional smouldering under 

controlled conditions).  Considerable work has started to illuminate the similarities and 

differences between smouldering of solid fuels and liquid fuels (Switzer et al., 2009; 

Pironi et al., 2009, 2011).  Initial work with column experiments identified that 

smouldering coal tar produces an emissions stream dominated by non-condensable 
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combustion gases (e.g., CO2 and CO) but also containing lower concentrations of other 

organic compounds (e.g., naphthalene) (Switzer et al., 2009).  Column experiments 

smouldering vegetable oil and the chlorinated solvent trichloroethylene (TCE) identified 

that approximately 75% of the TCE was routinely volatilized ahead of the front (Salman 

et al., 2015).  Recent work on in situ smouldering of coal tar at the pilot field scale has 

identified that approximately 98% of the coal tar is converted to CO and CO2 while only 

about 2% is emitted as a variety of volatile organic compounds (Scholes et al., 2015).  

This field system utilizes a vapour extraction system connected to (i) a large knock-out 

tank for the water vapour (both due to steam production below the water table and 

combustion), and (ii) a thermal oxidizer for treatment of VOCs.   

Ongoing work on applying smouldering as an ex situ treatment process for sludges and 

contaminated soils is looking at smouldering large batches in above ground piles and 

reactors (not yet published).  For these in situ and ex situ engineering applications of 

smouldering, the rate and total amount of water vapour, volatiles and other condensable 

gaseous products as well as non-condensable gases generated is important to understand.  

These rates and amounts are essential to designing appropriate gas management and 

treatment systems.  Moreover, optimizing the process – i.e., maximizing the mass 

destroyed by combustion and minimizing the mass emitted and requiring treatment – 

depends on understanding these two distinct types of emissions and the factors that affect 

the ratio between them. 
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While significant emphasis has been placed on investigating the smouldering reaction 

and degree of soil remediation from the application of STAR (Switzer et al., 2009, 2014; 

Pironi et al., 2009, 2011), there has yet to be a detailed investigation into the quantities, 

rates, and the dynamic nature of the gaseous combustion products.  In this study, the use 

of medium and tall columns, as well as a surrogate contaminant and real contaminants, in 

a controlled laboratory environment allows for the study of the transport of heat and 

condensable and non-condensable gaseous compounds ahead of the smouldering front.  

The paper does not investigate the detailed chemistry of the emissions.  Rather, it takes a 

practical, engineering perspective to consider the factors that affect the mass loss 

behaviour and the ratio between mass destroyed via combustion and the mass transported 

as gaseous compounds through the column and emitted and thereby requiring external 

treatment.   

4.1.1 Contaminant Volatilization, Aerosol Formation and Condensation 

Enhanced volatilization of contaminants through the addition of heat to a system is a key 

component of other remediation technologies, such as steam or hot air injection.  When 

an organic chemical is heated, the vapor pressure will increase with temperature.  For 

common organic contaminants, the vapor pressure may increase by a factor of 5 to 50 by 

increasing the temperature from 10°C to 100°C.  This increase in vapor pressure also 

results in an increase of Henry’s constant (Hc), which governs the relative proportions 

between the aqueous and gaseous states at equilibrium.  As Hc increases with exposure to 

elevated temperatures, the extent to which a contaminant will partition to the air phase 

similarly increases (Davis, 1997).   
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In addition to increased potential for volatilization in the presence of elevated 

temperatures, there is also increased potential for the formation of aerosols.  Aerosol 

formation as a function of temperature has been studied for cooking oils due to possible 

health effects of exposure to polycyclic aromatic hydrocarbons (PAHs) by inhalation of 

oil aerosols.  It was found that both the number and size of oil droplets increase with 

increasing temperatures up to 260°C (Siegmann and Sattler, 1996).  

While the contaminant may both volatilize and form aerosols through exposure to 

elevated temperatures, subsequent exposure to lower temperatures will result in 

condensation or deposition.  This phenomena is observed in remediation via steam 

enhanced extraction where the NAPL that is evaporated in the heating phase condenses 

and accumulates in the cooler soils at the edge of the heated zone, leading to increased 

NAPL phase saturations ahead of the temperature front (Kaslusky and Udell, 2005).  It is 

also observed in in situ thermal desorption (ISTD) systems where the entire source zone 

must be heated above the boiling temperature of the target chlorinated solvent in order to 

ensure the volatilized compound does not condense before being extracted at the surface 

for treatment (Triplett Kingston et al., 2014). 

4.1.2 Conceptual Model of Temperature Distribution in One-Dimensional 
Smouldering 

While contaminant volatilization is not the primary aim of smouldering remediation, the 

same mechanisms of contaminant volatilization and subsequent condensation may occur 

due to the presence of elevated temperatures and injection of air.  Figure 4.1 presents a 

conceptual model of the vertical spatial distribution of temperatures for an upward 

forward smouldering combustion reaction, depicted at a single time.   It also presents a 
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hypothesis, to be tested in this paper, of how the various temperature regions correspond 

to key processes that generate gaseous emissions. 

In the cooling region behind the travelling front, all of the fuel (i.e., contaminant) has 

been consumed by the smouldering reaction and therefore is losing heat steadily due 

mainly to convection from the injected air below.  In the oxidation zone, exothermic 

reactions are resulting in the transformation of the fuel into a range of complete and 

incomplete combustion products.  These reactions yield primarily carbon dioxide, carbon 

monoxide, water vapor and heat (Switzer et al., 2009).  Also a range of organic 

compounds could result, either directly from incomplete combustion or indirectly via 

secondary reactions between gaseous compounds.  The fuel in this region, prior to 

ignition, was altered from its initial composition due to exposure to a progression of 

temperatures from ambient to the ignition temperature of the fuel.  The altered fuel is 

devoid of any fractions lost to processes in the preheating zone, and has been transformed 

via pyrolysis to a char, the primary material that is oxidized (described below).   

Ahead of the reaction zone is the endothermic pyrolysis zone.  It is in this zone that the 

high temperatures transform the fuel via pyrolysis into char.  Pyrolysis can also produce 

gaseous products both directly and indirectly (Demirbas, 2010).  Ahead of the pyrolysis 

zone is the preheating zone, where heat is transferred from the oxidation and pyrolysis 

zones below via conduction, convection and radiation to the unreacted sand and fuel.  In 

this region, there is the potential for low and intermediate molecular weight hydrocarbons 

and other compounds to volatilize and also for a fraction of the liquid fuel to become 

suspended in the gas stream as an aerosol.  Both of these processes occur to a greater 

extent at higher temperatures, but still require the presence of a liquid fuel.  Also 
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occurring in this zone is the boiling of any water present in the fuel or adjacent to the fuel 

in the pore space.  The exact temperatures at which these volatilization, aerosolization, 

pyrolysis, and oxidation processes occur, and thus the boundaries between these regions, 

are fuel dependent (Guillen et al., 1996).   

 

Figure 4.1:  Conceptual model of temperature distributions within a vertical 
smouldering column for the upward propagation of a smouldering reaction in 
forward configuration (Torero, personal communication, March 2013).  The 
relevant form of the fuel for each temperature region, as well as the expected 
emissions, are indicated on the right hand side of the plot. 

Due to the relatively high heat capacity of sand, temperatures decline fairly rapidly 

through the preheating zone.  As a result, for the majority of an experiment, there is a 

cool upper region in the column.  In Figure 4.1 this is labeled the ‘Condensation’ zone 

since this is where any condensable compounds - water vapor, volatilized compounds, 

aerosols, pyrolysis products and condensable incomplete combustion products - may be 

deposited.  The amount of deposition is expected to depend on the chemical properties of 
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the compounds, the sorptive and intercepting properties of the contaminated or clean 

material above (e.g., organic fraction, surface area), the rate of temperature drop, and the 

residence time of the gas, which in turn depends primarily on the air injection rate and the 

length of the condensation zone, that latter which is changing with time.  For any given 

location, it is expected that these condensed and deposited products remain in this region 

until the heat front progresses upwards causing temperatures to increase.  Due to the 

dynamic, propagating nature of the smouldering front, certain fractions of the 

contaminant may undergo a continuous cycle of volatilization/aerosol formation followed 

by condensation/deposition until reaching the top of the column.   

While the influence of heat on the processes of volatilization, aerosolization and 

condensation have been investigated independently in various applications, including for 

example, steam enhanced remediation of NAPLs (Kaslusky and Udell, 2005) or health 

impacts of cooking oils (Siegmann and Sattler, 1996), these processes have not been 

studied in the context of smouldering of liquid fuels.  It is hypothesized that these 

processes may be important for understanding emissions relationships and mass loss 

behaviour for remediating NAPL contaminated soils via smouldering combustion. 

The objective of this work was to assess the relative significance of liquid fuel 

volatilization, aerosolization and subsequent condensation during smouldering.   This was 

investigated through a series of controlled laboratory column experiments with varying 

contaminated zone heights, forced air flow rates and contaminant types.  A more detailed 

understanding of the dynamic nature and global effect of these processes on a batch 

smouldering column is relevant for the design of large scale remediation applications and 

emissions treatment systems. 
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4.2 Materials and Methodology 

4.2.1 Experimental Setup 

A series of medium and tall forward, upwards smouldering column experiments with 

contaminated zone heights of 30 cm and 90 cm, respectively, were conducted to assess 

the transport of heat and condensable products.  The experimental setup was identical to 

that reported in Chapter 3, with three key differences: combustion gas (CO and CO2) and 

oxygen (O2) concentrations in the gaseous emissions stream at the top of the column were 

measured continuously using a non-dispersive infrared absorption method (MGA3000 

Multi-gas Analyser, ADC Gas Analytics Ltd), the column was placed on a mass balance 

(KCC150, Metler Toledo) and continuous mass loss data was collected throughout the 

duration of the experiment, and the contaminated zone was covered with a clean sand cap 

of variable height for a select few experiments. 

The complete experimental setup, including additional data streams not reported in 

Chapter 3, is shown in Figure 4.2.  The same ignition procedure was used as reported in 

Chapter 3, with the ignition temperature varying slightly depending on the properties of 

the fuels investigated.   



87 
 

 
 

 

Figure 4.2: Schematic diagram of 30 cm column apparatus (modified from Figure 
3.4).  The 90 cm column setup consists of the same configuration, with the respective 
column height connected to the removable base.   

A series of key experimental parameters were investigated to understand the transport of 

condensable combustion products.  First was the contaminated zone height.  An increase 

in contaminated zone height provides a larger condensation zone ahead of the combustion 

front.  The second was air flux, represented as the air flow rate divided by the cross-

sectional area of the column.  The air flux can influence the propagation rate of the 

reaction, the peak temperature of the reaction, and numerous features related to heat 

transfer such as the thickness of the various regions shown in Figure 4.1.  The third was 

the presence of a clean sand cap above the contaminated layer.  While the clean sand cap 

serves a similar purpose to contaminated zone height in that it provides additional height 
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for condensable combustion products to condense, with the absence of fuel in this region, 

condensation behaviour can be studied independently from combustion.  The fourth 

variable investigated was fuel type.  While the majority of experiments were conducted 

with canola oil and viscosity index improver surrogate fuel, additional experiments with 

common NAPL contaminants under a select limited range of air flow rates was 

conducted to verify that the phenomenon investigated was not observed exclusively for 

the surrogate fuel.  The final variable studied was moisture content, which has the 

potential to affect the distribution of heat within the column.   

Three key metrics were used to investigate the transport of condensable combustion 

products: mass loss rate which combines mass destroyed via combustion reactions and 

mass emitted from the top of the column in the form of aerosols or other combustion 

products.  It is, however, not possible to separate the different forms of mass loss, and 

therefore other key metrics must also be used to understand this behaviour.  Temperature 

histories show the evolution of temperatures at a given location within the column over 

time and indicate the location of the smouldering front.  The measurement of carbon 

monoxide and carbon dioxide concentrations in the gaseous emissions stream also 

provides an indication of the extent of combustion reactions occurring at a given time.  

The detection and relative magnitude of these combustion products provide a clear 

distinction between times when exothermic smouldering reactions are occurring and 

solely heat transfer scenarios after combustion is complete.  

Table 4.1 outlines the experiments used to assess the transport of condensable 

combustion products through a smouldering column.   
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Table 4.1 Summary of Smouldering Column Experiments 

Test 
Number1 Fuel Type 

[Fuel] 
(g/kg)

[Water] 
(g/kg) 

Air 
Flux 

(cm/s) 

Height of 
Contaminated 

Zone (cm) 

Height of 
Clean 

Sand Cap 
(cm) 

1 
50:50 

Canola:VI 

  1.25   
2 60 0 2.50 30 0 
3   6.25   
4 

50:50 
Canola:VI 

  1.25   
5 60 0 2.50 90 0 
6   6.25   

7 
50:50 

Canola:VI 
60 0 2.50 30 30 

82 50:50 
Canola:VI 

60 0 2.50 20 0 

9 
Crude Oil 

Sludge 

 0 3.65  20 
10 60 453 3.65 30 20 
11  0 6.25  0 
12 Coal Tar 60 0 6.25 30 0 

1 Experimental data from Tests 1 to 6 were also used in Chapter 3 
2 Column test was conducted in a closed system 
3 Equivalent to 18% saturation of pore volume 
 

Tests 1 to 6 were conducted using a fuel composed of canola oil and viscosity index (VI) 

improver and consisted of a systematic change of contaminated zone height and air flow 

rate.  Note that Tests 1-6 were also described in Chapter 3, however, there is no overlap 

in data or analyses between the two chapters.  For these tests, the canola oil and VI 

improver mixture was selected as a non-toxic surrogate fuel for viscous NAPL 

contaminants.  Test 7 was conducted using the same fuel, but was designed to further 

assess the transport of condensable combustion products through having an additional 30 

cm clean sand cap above the contaminated zone.   

Test 8 was conducted in a closed system, where all emissions were passed through a 

water bubbler to attempt to collect condensable compounds present in the emissions.  The 

collected condensable compounds were then separated using a separatory funnel into 
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water and oil fractions.  The relative mass of water and oil provided an indication of the 

origin of the condensable products; note that since the original fuel contained no 

moisture, all water collected would have been a combustion product.  The oil fraction 

was further analyzed using elemental analysis to compare the elemental composition 

(carbon, hydrogen, nitrogen, oxygen and sulfur) of the condensate in comparison with the 

original fuel.   

Four additional experiments (Tests 9 to 12) were conducted with a field mixture of crude 

oil sludge (Sarnia, Canada) and a commercial coal tar (Alpha Aesar, USA) to compare 

the behaviour of the surrogate fuel with real contaminants, with and without a clean sand 

cap.  Test 10 also assessed the impact of the addition of initial water saturation on the 

transport of condensable combustion products.   

As described in Chapter 3, all experimental data will be expressed as a function of non-

dimensionalized time, unless otherwise noted.  This permits a direct comparison between 

column experiments with different contaminated zone heights and forced air flow rates.  

Using this metric, a nondimensionalized time equal to one represents the time at which 

the leading edge of the smouldering front reaches the end of the contaminated zone.  
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4.3 Results and Discussion 

4.3.1 Experimental Mass Loss Behaviour  

In order to understand the experimental mass loss behaviour, it is necessary to consider 

the structure of a smouldering front and the different temperature regions present within a 

column over time.  For the majority of a smouldering column experiment, there are four 

temperature zones in the column that are important for emissions and mass loss 

behaviour.  These are described conceptually in Figure 4.1, and corresponding 

experimental data is provided in Figure 4.3.  Figure 4.3 shows the distribution of 

temperatures within the column as a function of height for Experiment No. 6, which 

employed a 90 cm column and 6.25 cm/s air flux.  Each curve represents a snapshot of 

the temperature profile at a particular moment in time, presented as nondimensionalized 

time (NDT).  This case is used as an example to demonstrate the processes governing 

mass loss behaviour; the same temperature regions and their evolution is observed for all 

other experiments.     

In Figure 4.3(a), the temperature profile at a NDT of 0.2 is shown as a red line.  At this 

time, the reaction zone where exothermic oxidation reactions are converting the fuel into 

primarily carbon dioxide, carbon monoxide, water vapor and heat is located between 8 

and 15 cm above the base of the contaminated soil pack (green shading).  The preheating 

zone, which is defined as between the leading edge of the smouldering front and a 

temperature of 50°C (the pyrolysis zone defined in Figure 4.1 is considered to be thin and 

therefore the pyrolysis and preheating zones are collapsed into a single ‘preheating zone’ 

in Figure 4.3), is located from 15 to 32 cm above the base of the column (red shading).   
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 (a) 

 

(b) 

 

Figure 4.3: Temperature profile for 90 cm contaminated zone with a forced air flux 
of 6.25 cm/s.  The legend provides the non-dimensionalized time associated with 
each profile.  The labels on the right refer to the temperature zones present in a 
smouldering column that are relevant to the processes of volatilization, 
aerosolization and condensation for (a) NDT 0.2 and (b) NDT 0.7 (red curves). 
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In this preheating region, due to the exposure of the liquid fuel to elevated temperatures, 

there is the potential for volatilization of light fractions and aerosolization processes to 

occur.  The condensation zone, located from 32 to 90 cm is at ambient temperatures (blue 

shading).  The substantial thickness of this cool zone means that there is ample 

opportunity (i.e., residence time) for volatile compounds and aerosols in the gas stream to 

condense ahead of the front.   

Figure 4.3(b) is identical to 4.3(a) except that the temperature profile at a NDT of 0.7 is 

now shown as the red line.  All of the aforementioned processes are still occurring, with 

the exception that there is no longer a condensation zone present; this is because the top 

of the column has exceeded 50°C.  Therefore, compounds with the potential to condense 

are expected to be released from the column system. 

This expectation is confirmed by examining the rate of mass loss of contaminant as a 

function of nondimensionalized time (NDT).  The rate mass loss plots are shown in 

Figure 4.4 for 30 cm and 90 cm contaminated zone heights (Tests 1 to 6) with an air flux 

ranging from 1.25 to 6.25 cm/s; these are typical of all the experiments conducted in 

which there was no clean sand cap overlying the contaminated zone.  In these 

experiments, the leading edge of the smouldering front travelled at a velocity of 0.34 to 

0.53 cm/min, depending on air flux.  Not shown, because of the non-dimensionalized 

axis, is that the front reached the top of the contaminated zone in times ranging from 60 

to 250 minutes from ignition, depending on column length and air flux.   

Figure 4.4 reveals that there is a consistent, baseline average rate of mass loss of 2.3 to 

3.9 g/min that occurs until a NDT of approximately 0.7.  After this time, there is a 
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significant increase in the rate of mass loss to a maximum of between 17.5 g/min (30 cm 

column, 1.25 cm/s air flux) and 47.5 g/min (90 cm column, 2.50 cm/s) as the leading 

edge of the smouldering front approaches the end of the contaminated zone.  While the 

peak mass loss rate was similar for a forced air flux of 2.50 and 6.25 cm/s (>30 g/min), 

there was a lower peak mass loss rate (17.5 g/min) for the 1.25 cm/min (lowest) forced 

air flux case.  This suggests that manipulating air flow rates may minimize the mass loss 

peak associated with end effects.  Note that any data missing between a NDT of 0.8 and 1 

in Figure 4.4 is a result of stopping the experiment slightly before the smouldering front 

reached the free surface at the top of the contaminated zone as a safety precaution.   

 

Figure 4.4: Mass loss rate behaviour for 30 cm and 90 cm contaminated zone 
heights (no clean sand cap) with a forced air flux ranging from 1.25 to 6.25 cm/s. 

It was hypothesized that this mass loss rate behaviour – i.e., a baseline, pseudo-steady 

mass loss rate followed by a sharp acceleration and peak in mass loss as the smouldering 

front approached the end of the contaminated zone – was due to the recondensation of 

gaseous compounds (e.g., moisture, volatiles, aerosols and combustion products).  While 
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there was still a region at the top of the column at ambient temperatures – a condensation 

region of appreciable thickness – these products are able to condense and are retained 

within the column system.  This corresponds with a NDT from 0 to 0.7 in Figure 4.3.  

During this period the baseline rate of mass loss is observed.  As the temperature at the 

top of the column increases, however, it is hypothesized that these products are released 

as emissions and represent an additional source of mass loss.  An NDT of 0.7 

corresponds with the time at which the condensation zone is eliminated (Figure 4.3b). 

This hypothesis was further evaluated by plotting the rate of mass loss against the 

temperature at the top of the contaminated zone in Figure 4.5.  This temperature was 

measured by the last thermocouple located in the contaminated zone, which was 

approximately 1 to 2 cm below the free surface (depending on precise packing 

configuration).  The critical temperature associated with the start of the condensation 

zone, 50°C, is denoted as well as the average pseudo-steady mass loss rate of 3.0 g/min.  

Note that approximately 65% of the data shown in the figure is in the bottom left corner 

of the plot as temperatures do not rise above 50°C at the top of the column until the front 

is, on average, within 12 cm and 27 cm from the top of the column for the 30 cm and 90 

cm columns, respectively.  The figure reveals that, indeed, the rate of mass loss is 

approximately linearly dependent on the temperature at the top of the column.  This is 

strong evidence that the rate of mass destruction by combustion is relatively steady while 

the rate of mass loss due to condensable compounds being emitted is a linear function of 

temperature at the top of the column.  The slope of the average plot in Figure 4.5 may 

represent the increasing fraction of compounds that cannot be condensed below a certain 

temperature or, in other words, the distribution of boiling points of the large number of 
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compounds in the emissions.  The exact temperature at the top of the column that 

corresponds with an increase in mass loss rate is dependent on the properties of the fuel 

and may vary from the 50°C threshold identified in Figure 4.5.  This critical temperature 

will occur at the top of the column as the smouldering front approaches the end of the 

contaminated zone.   

 

Figure 4.5: Mass loss rate as a function of the temperature just below the interface 
between the contaminated sand pack and the air within the column.  The black 
dotted line represents the mean mass loss rate prior to any significant increases 
associated with end effects, and the red dotted line represents the critical 
temperature where the mean mass loss rate begins to increase approximately 
linearly with temperature at the top of the sand pack.   

A similar change in the rate of mass loss was described, although not shown, in a recent 

publication by Baud et al. (2015).  That work conducted smouldering of aluminum 

particles coated with solid carbon and reported a steady rate of mass loss until the last 

thermocouple reached 58°C, followed by a sharp rise in the mass loss rate over time.  
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Their explanation was that water vapour – generated from combustion – and volatiles 

were released only after the top of the column reached 58°C.  This study demonstrated 

corroborating evidence for the presence of a condensation front inside the column in the 

thermocouple histories.  They argue that the presence of temperature plateaus at 58°C 

ahead of the smouldering front are the result of heat released from condensation (i.e., the 

latent heat of condensation) (Baud et al., 2015).  Indeed, such plateaus are observed in the 

condensation zone in these experiments.  For example, Figure 4.6 illustrates the 

temperatures histories for all thermocouples in Test 5.   

 

Figure 4.6: Temperature history for 90 cm column with air flux of 2.50 cm/s as a 
function of nondimensionalized time (time zero represents the start of forced air 
injection).  The thermocouples are located at 3.5 cm intervals, with TC1 located 1 
cm above the base of the contaminated zone.  The red circle highlights the effects of 
the latent heat of condensation for this column test. 
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The temperature rise to 40°C occurs approximately 75 min (or 30 cm) ahead of the arrival 

of the smouldering front.  It is expected that the temperature of the plateaus would be 

different between tests in this study and Baud et al. (2015) since the effective latent heats 

of condensation are likely dependent on fuel type, condensable compounds, and 

experimental conditions.  Nevertheless, this provides additional evidence of the 

propagation of a condensation front ahead of the smouldering front until the condensation 

zone disappears. 

Further evidence of this recondensation behaviour can be observed in Test 7, which   

consists of a 30 cm contaminated zone with an overlying 30 cm clean sand cap.  The 

forced air flux in this case is 2.50 cm/s.  As shown in Figure 4.7, there are two distinct 

peaks in contaminant mass loss rate.  

During the first peak in mass loss rate, occurring between a NDT of 0 and 1.7, there is a 

simultaneous peak in CO and CO2 indicating that combustion is occurring.  Therefore 

this first peak in mass loss rate is due to smouldering destruction of the contaminant.  

Note that, in this case, when the smouldering front reached the end of the contaminated 

zone (black dashed line), no sharp rise in emissions occurred unlike for all experiments 

with no clean sand cap (see Figure 4.4).  This is because the clean sand cap provided the 

condensation zone. 
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Figure 4.7: Graph showing CO and CO2 emissions in comparison with rate of mass 
loss of contaminant as a function of nondimensionalized time.  The experimental 
setup consists of a 30 cm contaminated zone (canola oil and VI improver) and an 
overlying 30 cm clean sand pack with a forced air flux of 2.50 cm/s.  The dashed 
black line represents the time at which the leading edge of the smouldering front 
reaches the end of the contaminated zone while the dashed red line represents the 
time at which the top of the clean sand reaches 50°C.  

Figure 4.7 reveals that, in contrast, a second peak in mass loss rate occurs during a time 

when minimal combustion gases are being produced and only after the clean sand pack 

begins to increase in temperature (red dashed line).  The clean sand pack heats up, despite 

the lack of combustion, due to conduction and convection of energy accumulated in the 

column.  This experiment demonstrates that the time associated with the emission of 

condensable compounds depends upon the thickness and temperature of a clean sand 

pack above the smouldering region.  The magnitude of the mass loss rate of this second 

peak, approximately one-fifth of that observed in the cases with no clean sand cap at the 

same forced air flux (Figure 4.4), suggests further that the magnitude of the emissions 

rate will depend on the size of the clean sand cap, probably in combination with other 

factors that affects its temperature (e.g., amount of energy accumulated, air flux, etc).   

0

1

2

3

4

5

6

7

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4

M
as

s l
os

s r
at

e 
(g

/m
in

)

CO
 a

nd
 C

O
2 

co
nc

en
tr

at
io

ns
 (%

)

Nondimensionalized Time [-]

CO CO2 Mass loss rate



100 
 

 
 

4.3.2 Categorization of Emissions 

A closed system test (Test 8) was conducted to collect and identify condensable 

compounds in the emissions stream.  This test was similar to Test 2 except a shorter 

contaminant pack height (20 cm) was employed.  A schematic of the system is shown in 

Appendix C.  A total of 253 g of condensable products was captured in the water bubbler.  

A separatory funnel was used to determine that, of the condensed mass, 19% was water 

and 81% was an oil.  It is therefore likely that the majority of the mass released during 

the final mass loss peak is a result of recondensation of volatile compounds and aerosols, 

as opposed to water vapour formed as a combustion product.  Due to challenges in 

sealing all leaks within the closed system, it is possible that some condensable products 

escaped.  Therefore, this test cannot be used for mass balance purposes, but is indicative 

of the relative fraction between water vapour and organic-phase condensable products.   

In order to better understand the composition of the oil fraction collected in Test 8, 

elemental analysis was conducted on both the initial fuel and the oil condensate (Table 

4.2).  It is expected that the elemental (C:H:O:N:S) ratios between the initial fuel and the 

condensate would be similar if the condensate was formed primarily due to volatilization 

and aerosolization processes.  On the contrary, if the condensate was composed primarily 

from incomplete combustion products, it is expected that this elemental ratio would be 

altered due to preferential transformation of some elements to incondensable products 

(e.g., CO and CO2) during combustion which would not be collected in the condensate.  

As shown in Table 4.2, while the carbon content of the condensate was slightly lower, the 

elemental composition is largely unchanged from the initial fuel.  This suggests that the 
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origin of the oil fraction of the condensate is primarily due to volatilization and aerosol 

formation of the virgin fuel, as opposed to products formed during pyrolysis or oxidation.  

Table 4.2 Elemental Analysis of Initial Fuel versus Condensate 
 Initial Fuel (% mass) Condensate (% mass) 

Carbon (C) 80.6 77.4 
Hydrogen (H) 11.5 12.3 
Oxygen (O) 8.2 10.4 
Nitrogen (N) 0 0 

Sulfur (S) 0 0 

 

4.3.3 Comparison with Other Contaminants 

In order to ensure that the detailed investigation conducted with the surrogate fuel was 

applicable to real contaminant systems, column tests were conducted with crude oil 

sludge (Test 11) and coal tar (Test 12).   

 

Figure 4.8: Rate of mass loss of crude oil sludge and coal tar as a function of 
nondimensionalized time in comparison with canola oil and VI surrogate fuel. 

As shown in Figure 4.8, the same characteristic mass loss rate behaviour is observed for 

real contaminants, where there is a lower baseline mass loss rate followed by a distinct 

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

Ra
te

 o
f m

as
s l

os
s (

g/
m

in
)

Nondimensionalized Time [-]

Crude Oil Sludge, 30 cm (6.25 cm/s)

Coal Tar, 30 cm (6.25 cm/s)

Canola/VI, 30 cm (6.25 cm/s)



102 
 

 
 

increase as the reaction approaches the end of the column.  This baseline mass loss rate 

may vary depending on the contaminant, with coal tar displaying a higher rate.  Coal tar 

had a pseudo-steady mass loss rate of 7 g/min, which is 1.4 to 2.0 times the mass loss rate 

of crude oil sludge and canola oil/VI improver, respectively.  Moreover, its mass loss rate 

did not begin to peak until a nondimensionalized time of approximately 0.9 (as compared 

to 0.6 to 0.7 for the other two fuels).   

 

Figure 4.9: Mass loss rate as a function of the temperature just below the interface 
between the contaminated sand pack and the air within the column for Tests 3, 11 
and 12 (30 cm columns, canola oil/VI, crude oil sludge and coal tar, 6.25 cm/s forced 
air flux).  Approximate critical temperatures for the respective fuels are represented 
by the vertical dashed lines. 

As shown in Figure 4.9, the mass loss rate of coal tar does not begin to increase 

appreciably above baseline rates until the temperature at the top of the column reaches 

approximately 150°C.  This critical temperature is significantly higher than the 50°C 

critical temperature defined for canola oil/VI improver in Figure 4.5 (the mass loss rate of 
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canola oil/VI from Figure 4.5 for comparable experimental conditions – same column 

height and forced air flux – is also shown on Figure 4.9).  The mass loss behaviour of 

crude oil sludge differs further, with a slightly higher initial mass loss rate than the canola 

oil/VI surrogate fuel, but with a lower critical temperature than the other two fuels 

(approximately 40°C on Figure 4.9). This difference in critical temperature and resulting 

effects on mass loss behaviour between coal tar and the other two fuels (canola oil/VI and 

crude oil sludge) is attributed to the presence of less volatile fractions in coal tar, 

therefore favouring a higher fraction destroyed by smouldering in situ. 

4.3.4 Effect of Moisture Content 

Tests 9-11 were conducted using crude oil sludge to explore the effect of moisture 

content on the emissions.  Moisture content, by adding a heat sink to the system, is 

known to reduce the peak temperature and rate of smouldering (Pironi et al., 2011; 

Yerman et al., 2015).  Since, as shown, the amount and distribution of heat in the system 

affects condensable emissions, plus the peak temperature affects the pyrolysis and 

oxidation combustion reactions (Schult et al., 1996), moisture content is hypothesized to 

have an influence on emissions.   

A comparison of the rate of mass loss as a function of nondimensionalized time for 

experimental conditions with/without added moisture content is shown in Figure 4.10.  In 

the case where there is no moisture content and no clean sand cap is present, the same 

characteristic mass loss behaviour that was described previously for the canola oil/VI 

surrogate fuel was observed: mass loss rate accelerates when the condensation zone 

disappears.  In the case where there is a clean sand cap but no moisture content, there is a 

much smaller increase in mass loss rate as the reaction progresses through the 
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contaminated zone.  As the top of the clean sand cap increases in temperature, there is a 

second, smaller peak in mass loss rate.  The results of this test display the same 

qualitative behaviour as Test 7 for surrogate fuel smouldering with a clean sand cap.  The 

quantitative differences in mass loss rate and relative proportion of the peaks can be 

attributed to different fuel composition and air flux.   

 

Figure 4.10: Comparison of rate of mass loss as a function of nondimensionalized 
time for crude oil sludge with/without a clean sand cap and with/without added 
water content (expressed as % saturation of pore space).  The black dotted line 
represents the time at which the leading edge of the smouldering front reaches the 
end of the contaminated zone in all experiments.  The coloured dotted lines 
represent the time at which the top of the column (either clean or contaminated 
sand) reaches 50°C for the respective experiments (i.e., condensation zone 
disappears); note that the blue dashed line is coincident with the vertical axis. 

In the case where water is added to the sand and crude oil sludge mixture, the mass loss 

behaviour changes further.  First, there is a strong initial peak in mass loss rate when the 

air is turned on. This likely represents the release of steam generated during the 
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preheating period.  This is unique in these experiments as this is the only test where water 

was mixed with the fuel.  However, a similar initial spike in mass loss has been observed 

with wet fuels such as biosolids (Rashwan, 2015).  After this, a somewhat steady mass 

loss rate is approached as the reaction propagates up the column, but it is approximately 

1.5 to 2 times larger than observed in the other two experiments.  There is again a slight 

increase in mass loss rate as the reaction approaches the end of the contaminated zone, 

but when water is present there is no second peak in mass loss rate as the top of the clean 

sand increases in temperature.  As indicated in the figure, due to transport of the steam 

from the onset of air flow, the top of the column in this case reaches 50°C from the 

beginning of the experiment.  The propagation of a boiling front ahead of the 

smouldering front ensures that this threshold temperature is exceeded at the top of the 

column throughout the entire test, essentially eliminating any condensation zone from 

this test with water in the pore space.   

The differing behaviour with the presence of water may be due to several reasons.  First, 

water could change the dynamics of the reaction and preheating zones such that it 

shortens the heating front, enhancing combustion and reducing the formation of aerosols 

and volatile fractions.  Second, steam may simply help to carry condensable products 

through the clean sand since elevated temperatures (approximately 50°C) are observed 

throughout the column from the time air is initiated.  This would minimize the amount of 

condensation throughout the experiment and eliminate the distinct peak mass loss rate 

near the end of the experiment.  Based on the mass loss data in Figure 4.10, there is no 

clear distinction between regions representing mass destroyed via combustion versus 

mass released as condensable emissions.  Therefore, further investigation of operational 
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parameters is required to understand the conditions under which combustion is enhanced 

and the volatilization of condensable products is minimized. 

4.3.5 Fraction of Mass Destroyed 

The mass loss rate plots, shown in Figures 4.4 (canola oil and VI improver, no clean cap), 

4.7 (canola oil and VI improver, clean cap), 4.8 (crude oil sludge and coal tar, no clean 

cap) and 4.10 (crude oil sludge, with and without clean cap) provide the ability to (i)  

calculate the total mass balance on the system by taking the integral over time, and (ii) 

estimate the fraction of mass removed via destruction versus removed as condensable 

emissions.  For the 30 cm and 90 cm experiments, the total mass of fuel was 

approximately 545 g and 1640 g, respectively.  Comparing these values to the total mass 

accounted for by the integration of the curves in Figures 4.4, 4.7, 4.8 and 4.10 finds an 

excellent mass balance within ± 4%.  The exception is mass balance errors up to 25% in 

the column tests (No. 5, 6 and 11) that were stopped early for safety precautions and thus 

data is missing at late time.   

For all column tests with no clean cap present, the fraction of mass destroyed via 

combustion is calculated as the integral of the mass loss rate while the condensation zone 

was present plus an estimate of the mass lost to combustion occurring after the 

condensation zone was eliminated; the latter was estimated by assuming that the average 

mass loss rate from combustion observed at the time the condensation zone disappeared 

continued until the end of the test (e.g., the data shown in Figure 4.4 from NDT 0.6 to 0.7 

continued until NDT 1.0).  The fraction removed via condensable emissions is calculated 

as the integral of the mass loss rate after the condensation zone was eliminated minus the 

amount estimated to have been combusted during this period.  For Experiments 5, 6 and 
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11, the mass not accounted for due to stopping the experiment early was added to the 

fraction removed via condensable emissions.  Due to the excellent mass balance in all 

other column experiments, this extrapolation of mass loss behaviour is a reasonable 

assumption.  These calculations for Experiments 1 to 6 (conducted using the canola oil 

and VI improver surrogate fuel) reveal that on average 40% of the mass was destroyed 

via combustion and 60% was emitted as condensable products. 

For Tests 7 and 9, where there was a clean sand cap, the fraction of mass destroyed is 

calculated as the integral of the first peak in mass loss rate where there is evidence of 

combustion and the clean sand cap serves as the condensation zone.  The fraction 

removed via condensable emissions is calculated as the integral of the second peak in 

mass loss rate where combustion gases are no longer detected and the clean sand cap is at 

elevated temperatures.  For the canola oil and VI improver surrogate fuel (Test 7), the 

integral of the mass loss rate curve provided a 95% mass balance, of which an estimated 

41% of the mass was destroyed via combustion. 

A comparison of the relative proportion of the total fuel that is estimated to be destroyed 

during quasi-steady combustion (i.e., baseline mass loss for experiments with no clean 

cap, or mass lost during the first peak in mass loss rate for experiments with a clean cap) 

as a function of forced air flux for all experiments is shown in Figure 4.11.  Test 10 

(crude oil sludge with 18% water saturation) is not included in this plot because it is not 

possible to separate mass lost due to combustion from volatilization without further 

investigation of the effect of water content.  Test 8 is also omitted as mass data could not 

be collected using the closed system experimental apparatus. 
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Figure 4.11: Comparison of estimated mass destroyed expressed as a percentage of 
total mass lost as a function of injection air flux for Tests 1-7, 9, 11 and 12. 

Figure 4.11 suggests that there is a qualitative and quantitative difference between the 

emissions of real contaminants considered for smouldering destruction, coal tar and crude 

oil sludge, and the surrogate fuel used in this work, canola oil/VI improver.  It is possible 

that the nature of the emissions between these fuels is considerably different.  It is 

hypothesized that the bulk of the non-combustion (i.e., condensable) emissions from the 

surrogate fuel are aerosols while a larger fraction of those emissions from the real 

contaminants are volatile organic compounds.  There are numerous lines of evidence for 

this hypothesis.  First, the thermogravimetric (TGA) and differential thermogravimetric 

(DTG) data for the different fuel types, shown in Figure 4.12, suggests that the VI 
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improver and canola oil contain virtually no volatile compounds; this is shown by the fact 

that their initial mass loss occurs at well over 200ºC and 300ºC, respectively, and this 

mass loss coincides with pyrolysis and oxidation reactions.  However, the figure shows 

that both coal tar and crude oil sludge exhibit significant mass loss, up to 50%, below 

300ºC where pyrolysis reactions begin.  This mass loss at relatively low (relative to 

smouldering) temperatures is attributed to volatilization of low molecular weight 

compounds, which is expected in sludge and coal tar which are complex mixtures of 

hundreds of hydrocarbons of varying carbon chain length (Haeseler et al., 1999; Hughey 

et al., 2002).   

The second line of evidence is the fact that aerosol droplet formation is well known to be 

highly dependent on air velocity and properties of the fuel including viscosity, density, 

and interfacial tension (Esteban et al., 2012).  Vegetable oils are known to be aerosolized 

and their propensity for this decreases (due to larger drop formation, and reduced number 

of drops formed) as viscosity is increased (Smolinski et al, 1996).  Viscosity is a function 

of molecular weight and molecular composition and the complex and heavy 

hydrocarbons crude oil and coal tar typically have viscosities that are orders of magnitude 

larger than that of vegetable oils (see Figure 3.3). Therefore, it is expected that they are 

much less susceptible to the formation of aerosols than vegetable oils.  It is noted that 

viscosity decreases dramatically with increasing temperature (Figure 3.3, Esteban et al., 

2012) up to 120ºC; nevertheless, while the heavy hydrocarbons may experience some 

aerosolization at elevated temperature, it is still expected to be much less prevalent than 

for vegetable oil due to their liquid properties (larger molecular weight and therefore 

higher viscosity, higher density, and higher surface tension). 
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     (a)  

     (b)  

Figure 4.12: (a) Thermogravimetric analysis (TGA) data showing normalized mass 
loss as a function of temperature for canola oil, VI improver, crude oil sludge and 
coal tar, and (b) differential thermogravimetric (DTG) data showing heat flow as a 
function of temperature for the fuels investigated. 

It can be seen that all factors explored, including: contaminant type, forced air flux, 

contaminated zone height, presence or absence of a clean sand cap, and water saturation 

(not included in plot), may affect the relative proportion of mass lost during quasi-steady 
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combustion (i.e., in presence of condensation zone) in comparison to end effects (i.e., 

loss of condensation zone).  Based on Figure 4.11, it is hypothesized that the percentage 

of mass lost during quasi-steady combustion may increase with lower injection air flow 

rates, heavier and higher viscosity fuels (e.g., coal tar), lower proportions of volatile 

compounds in complex mixtures, and potentially the presence of a clean sand cap and 

moisture content.  Conclusive evidence of these predictions and full optimization of 

smouldering systems would, however, require a detailed investigation into emissions 

composition for these scenarios. 

4.4 Summary 

In summary, a detailed investigation of laboratory column experiments with varying 

contaminant types and moisture content, air flow rate, and presence or absence of a clean 

sand cap provided insight into the transport and fate of aerosols and condensable 

compounds in emissions.  It was found that there is typically a lower baseline mass loss 

rate which occurs while these condensable compounds (moisture, aerosols, volatile 

compounds, some pyrolysis and incomplete combustion products) are retained within the 

column system through a continuous cycle of generation and recondensation.  In this 

sense, a batch smouldering reactor is behaving much like a chemical distillation column.  

This recondensation cycle will continue until there is no longer a cool upper region (i.e., 

condensation zone) in the column to temporarily collect and retain these compounds.   

The condensation zone becomes progressively smaller as the smouldering reaction moves 

upwards in the column.  At a critical point, the position of the leading edge of the 

smouldering front is close enough to the top of the column that all sand above is affected 
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by the transfer of heat from the reaction zone and rises to a critical temperature.  At this 

time, these compounds may be released from the column and the rate of release is 

approximately linearly related to the temperature at the top of the column.  The critical 

temperature at which this increase in the rate of release of condensable products occurs is 

fuel dependent, with heavier fuels such as coal tar exhibiting a higher critical temperature 

(e.g., critical temperature for coal tar is approximately 150°C as compared to 50°C for the 

canola oil/VI surrogate fuel).   The mass emitted is composed partly of water vapour 

formed during combustion processes, or from steam generated ahead of the smouldering 

front if a wet fuel or wet porous medium is used, and includes lighter hydrocarbons and 

aerosols. 

It is thought that the relative proportion of combustion to volatilization may be partly a 

function of fuel type.  Lighter compounds in complex hydrocarbons are clearly 

susceptible to volatilization in the heated zone ahead of the front.  Low viscosity oils, like 

vegetable oil, are more susceptible to forming aerosols at elevated temperatures.  Heavy 

hydrocarbons like coal tar, appear to be least susceptible to either of these processes and 

therefore favour destruction over gaseous mass transport.   

It is also expected that the relative proportion of mass combusted to emitted as gaseous 

compounds may be affected through manipulation of operational parameters such as 

moisture content and forced air flux.  Further investigation into this optimization should 

permit enhanced contaminant destruction and reduce the strain on emissions treatment 

systems during larger scale operations. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This thesis focused on the investigation of dynamic processes that occur during the 

propagation of a smouldering front through a porous matrix partially saturated with liquid 

fuel (contaminant).  A suite of laboratory scale column experiments with a range of 

contaminated and clean sand zone heights, contaminant types, air flux and moisture 

content were conducted to understand the influence of the processes of fuel mobility and 

the transport of condensable products on smouldering metrics.  These experiments were 

quantified in terms of temperature distributions in both time and space, mass loss rate, 

propagation velocities of both the leading and trailing edge of the smouldering front, and 

combustion gas (CO and CO2) emissions.  Numerical modelling and a simple analytical 

model were also developed to better understand liquid fuel mobility and provide a tool to 

be able to predict the potential for downward fuel mobilization given fuel and soil 

properties, fuel saturation and air flux. 

Results of the laboratory and numerical investigation on fuel mobility suggest that: 

• Under the correct conditions, fuel mobilization can occur and has the potential to 

influence smouldering behaviour. 

• Three conditions must exist simultaneously for downward fuel migration to occur: 

o The forced air flux must be sufficiently low to induce a downward fuel 

hydraulic gradient within the column.  
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o The viscosity of the liquid fuel within the preheating zone must be 

sufficiently low to permit the rate of mobilization to be relevant to the 

time scales of smouldering.  

o The height of the preheating zone ahead of the smouldering front must be 

large enough to provide a volume of low viscosity fuel that will noticeably 

influence smouldering metrics.  

• These three conditions are more likely to exist in taller systems operated at low air 

flow rates.   

• Given these conditions, downward fuel mobilization can result in three key 

impacts on smouldering metrics: 

o A slowing in the advance of the trailing edge of the smouldering front as 

downward mobilization provides additional fuel to sustain combustion.  

o An increase in the thickness of the smouldering front due to the constant 

rate of propagation of the leading edge of the smouldering front while the 

trailing edge is stalled. 

o Quasi-superadiabatic conditions leading to elevated peak temperatures as 

there is an accumulation of fuel and energy at a given location due to 

migration. 

Results of the laboratory testing program on the transport of heat and condensable 

combustion products suggest that: 

• The processes of volatilization, aerosolization, condensation and deposition 

occurring due to the distribution of heat within a smouldering system can 

influence emissions and mass loss rate over time. 
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• A lower baseline mass loss rate occurs while there is a cool upper region in the 

column to retain condensable products (moisture, aerosols, volatile compounds, 

and pyrolysis or incomplete combustion products).  This baseline mass loss rate 

represents the mass estimated to be destroyed during quasi-steady combustion.  

• A continuous cycle of generation and recondensation will occur until the top of 

the column reaches a critical elevated temperature such that these compounds can 

no longer recondense.  

• At this critical point, the rate of release of condensable compounds is 

approximately linearly related to the temperature at the top of the column.  As the 

leading edge of the smouldering front approaches the top of the column, the 

release of these compounds therefore results in a peak in mass loss rate. 

• The composition of the mass emitted is partly water vapour either formed as a by-

product of combustion or generated as steam if the fuel or porous medium has 

initial water content, and also includes volatilized lighter hydrocarbon fractions 

and aerosols. 

• It is expected that the relative proportion of combustion to volatilization is partly 

a function of the fuel type, with heavier hydrocarbons being less susceptible to 

volatilization and aerosol formation and therefore favouring mass destruction over 

gaseous mass transport. 

• It is anticipated that the relative proportion of combustion to volatilization may 

also be affected by the manipulation of operational parameters such as injection 

air flux and moisture content. 
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In summary, transient processes such as liquid fuel mobility and the transport of 

condensable products within a smouldering column may have considerable effects on 

smouldering metrics, most notably peak temperatures, emissions and mass loss rates.  In 

order to observe and understand these processes, it is necessary to analyze smouldering 

data in both space and time.  The scale of the experiment is also critical as the column 

must have a sufficient height for these dynamic processes to become apparent.   

While liquid fuel mobilization and the transport of condensable products do not impact 

the overall degree of remediation due to the robust nature of the smouldering reaction, the 

effects of these processes on smouldering metrics are important for the design of full 

scale remediation systems, both in-situ and ex-situ.  The potential for quasi-

superadiabatic conditions, or elevated peak temperatures, due to fuel mobilization is 

significant for the selection of construction materials in ex-situ treatment systems.  The 

transport of condensable products and the rate and total amount of gaseous emissions is 

essential for the design of emissions treatment systems in in-situ and ex-situ applications.  

Furthermore, the potential to manipulate operational parameters, such as air flux and 

moisture content, to control the relative significance of these processes may be used to 

optimize the efficiency of large scale systems. 

5.2 Recommendations 

Through this work it was demonstrated that complex transient processes may occur 

during smouldering remediation, which are relevant to the design of full-scale 

remediation systems.  In the context of this work, these processes were studied in 

controlled laboratory columns with a forward propagating smouldering front in an 
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upward configuration.  While select experiments were also conducted with field 

contaminants, including coal tar and crude oil sludge, the majority of the experiments 

were conducted with a surrogate fuel which behaved similarly to hazardous 

contaminants.   

Recommendations for further research and development are provided below: 

• A study of liquid fuel mobility and the transport of condensable products in a 

horizontal configuration would be beneficial for developing a better 

understanding of these processes for in-situ applications.   

• Other fuels should be tested to develop a correlation between fuel properties (e.g., 

molecular weight) and the relative proportion of mass destruction versus 

volatilization and subsequent gaseous mass transport. 

• Optimization of operational parameters (e.g., air flux) should be developed for a 

range of fuel types and grain size distributions to develop a guideline for 

conditions that will enhance the relative proportion of contaminant destruction.     

• The effect of moisture content on the smouldering front and relative fraction of 

condensable products should be further investigated to assess if this parameter 

may be beneficial for large scale operations. 
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APPENDIX A –NAPL MIGRATION AT AMBIENT 
TEMPERATURES  

The average time for the remediation of a laboratory column via smouldering 

combustion, including preheating and completion of combustion, is approximately 3 

hours for a 30 cm contaminated zone and 7 hours for a 90 cm contaminated zone, with 

some variation depending on contaminant type, concentration and airflow rate.  To assess 

the potential for NAPL mobilization at room temperature conditions, a column was 

packed to a height of 50 cm with the same NAPL and sand mixture as used for the 

combustion tests and was left at ambient conditions for 20 hours.  During packing of the 

column, subsamples were taken 12.5 cm intervals, weighed and placed in a muffle 

furnace at 550°C for 8 hours and then re-weighed to determine the NAPL concentration.  

After 20 hours, the column was then incrementally excavated, with samples taken at 5 cm 

intervals for the determination of final NAPL concentration.   

 

Figure A-1: Migration of canola oil and viscosity index improver after 20 hours at 
ambient conditions. 
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A comparison of before and after concentrations (Figure A-1) showed that there was not 

significant migration occurring at ambient conditions within the column over a timescale 

relevant to smouldering for the contaminant type and concentration used in the 

combustion experiments.  Minor migration effects were seen in the bottom and top 5 cm 

of the column, but the remainder of the contaminant pack concentration profile remained 

unchanged.  The elevated temperature regions in the preheating zone above the 

smouldering front is therefore particularly important for investigating fuel migration. 
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APPENDIX B – REPEAT 90 CM COLUMN, 2.5 CM/S 

A repeat column experiment was conducted for the 90 cm contaminated zone height with 

an injected forced air flux of 2.5 cm/s.  This test was conducted to ensure that the NAPL 

mobilization and subsequent increase in smouldering peak temperatures occurring when 

the smouldering front was approximately half way up the column was not an isolated 

incident. 

 

Figure B-1: Temperature profile for repeat 90 cm column with forced air flux of 2.5 
cm/s, showing similar effects of a regime change beginning at a nondimensionalized 
time of 0.5. 

As shown in Figure B-1, while the exact location of the regime change varies slightly due 

to experimental variability, the effect of migration and subsequent regime change is an 

event linked to the experimental conditions and not solely an outlying result. 
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APPENDIX C – SCHEMATIC OF CLOSED SYSTEM 

A schematic diagram of the closed system apparatus used in Chapter 4, Test No. 8 is 

shown below in Figure C-1.  The configuration was identical to all other column 

experiments, with the exception that a sealed conical top was placed on top of the 

column.  This forced all emissions to be directed through a water bubbler with the intent 

of capturing condensable products.  Any non-condensable products were released into the 

fume hood after passing through the water bubbler similar to open column tests. 

 

Figure C-1: Schematic diagram of closed system test (Chapter 4, Test No. 8). 
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APPENDIX D – SUPPLEMENTARY GRAPHS 

 

Figure D-1: Temperature history for 30 cm column with forced air flux of 1.25 cm/s 

 

Figure D-2: Temperature history for 30 cm column with forced air flux of 6.25 cm/s 
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Figure D-3: Temperature history for 90 cm column with forced air flux of 1.25 cm/s 

 

Figure D-4: Temperature history for 90 cm column with forced air flux of 6.25 cm/s 
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