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Abstract

This thesis extends the theory underlying the Accumulating Priority Queue (APQ) in three di-

rections. In the first, we present a multi-class multi-server accumulating priority queue with

Poisson arrivals and heterogeneous services. The waiting time distributions for different class-

es have been derived. A conservation law for systems with heterogeneous servers has been

studied. We also investigate an optimization problem to find the optimal level of heterogene-

ity in the multi-server system. Numerical investigations through simulation are carried out to

validate the model.

We next focus on a queuing system with Poisson arrivals, generally distributed service

times and nonlinear priority accumulation functions. We start with an extension of the power-

law APQ in Kleinrock and Finkelstein (1967), and use a general argument to show that there

is a linear system of the form discussed in Stanford, Taylor and Ziedins (2014) which has the

same priority ordering of all customers present at any given instant in time, for any sample path.

Beyond the power-law case, we subsequently characterize the class of nonlinear accumulating

priority queues for which an equivalent linear APQ can be found, in the sense that the waiting

time distributions for each of the classes are identical in both the linear and nonlinear systems.

Many operational queuing systems must adhere to waiting time targets known as Key Per-

formance Indicators (KPIs), particularly in health care applications. In the last aspect, we

address an optimization problem to minimize the weighted average of the expected excess

waiting time (WAE), so as to achieve the optimal performance of a system operating under

KPIs. We then find that the Accumulating Priority queuing discipline is well suited to systems

with KPIs, in that each class of customers progresses fairly towards timely access by its own

waiting time limit. Due to the difficulties in minimizing the WAE, we introduce a surrogate

objective function, the integrated weighted average excess (IWAE), which provides a useful

proxy for WAE. Finally, we propose a rule of thumb in which patients in the various classes

accumulate priority credit at a rate that is inversely proportional to their time limits.

Keywords: Accumulating priority queue, Heterogeneous servers, Waiting time distribu-

tions, Nonlinear priority function, Optimization.
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the whole range of the class-1 delay limit.

πbusy The probability that all servers are simultaneously busy in a stationary M/Mi/c

queue.
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Chapter 1

Introduction

1.1 Background and motivation of this thesis

Long waiting time has been a serious problem for a very long time in many public systems,

especially in health care systems. The issues caused by long waiting time are getting more

and more attention from researchers. In most cases, a health care (or other) system inclines

to separate patients (customers) into different priority groups according to their urgencies for

commencement of service. In order to reduce waiting time, many different techniques have

been studied by researchers, where classical priority queuing models appear to be the most

popular approach in such a system. However, a classical priority queue, which only selects a

customer of a given class when no customers of higher priority classes are waiting, can cause

the customers from lower classes to experience extremely long waiting times which may result

in serious outcomes. For example, the classical priority queuing discipline is commonly used

by medical physicians and decision makers in the health care systems where the Canadian

Triage and Acuity Scale (CTAS) [1] is applied. The CTAS classifies patients into five distinct

priority classes according to the Key Performance Indicators (KPIs), which specify a time

limit and a corresponding compliance probability for each class of patients. An extended wait,

caused by the classical priority discipline, for the patients from lower priority classes may lead

to critical consequences, for instance, a deterioration of a patient’s condition or even death.

1
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In 1964, Kleinrock [4] proposed a time-dependent priority queuing model, which was mo-

tivated by a problem in the context of computer processor design. He recommended that cus-

tomers may accumulate priority as a linear function of their waiting time in the queue, at a rate

that reflects their urgency or classification. Consequently, in such a queue, the customers from

a lower-priority class will eventually earn enough priority to enter service, in all likelihood, at

an earlier point in time than in a classical priority queue when their waiting times were ignored.

He derived a set of expressions for the expected waiting times for different classes, under the

assumptions of Poisson arrivals and a single server working at an exponential service rate.

Motivated by the applications of KPIs, Stanford, Taylor and Ziedins [11] reconsidered

Kleinrock’s model, renamed as the “accumulating priority queue” (APQ). They derived the

waiting time distributions for different priority classes in a single server system with gener-

al service times. This discipline provides a more balanced approach to select customers for

service, and consequently better regulates wait times for various classes of customers, by al-

lowing customers to accumulate priority credit while they wait. As an extension of Stanford et

al. [11], Sharif et al. [10] considered a multi-class multi-server APQ with Poisson arrivals and

a common exponential service distribution, where waiting time distribution for each class was

derived. Both Stanford et al. [11] and its successor Sharif et al. [10] showed that by varying

the rates of priority accumulation for different classes, the time limits and corresponding com-

pliance probabilities stated in KPIs can be met in an accumulating priority queue, which might

not possibly to be achieved in a classical priority system.

This thesis extends the research on the accumulating priority queues to three directions:

APQs with heterogeneous servers, APQs with nonlinear accumulation functions, and opti-

mization problems for APQs. All three aspects are motivated by the issues appearing in the

real systems.

The first direction in which this thesis extends current theory pertains to the case where

heterogeneous servers are present. In many situations, most service sections have multiple

servers working simultaneously. A common assumption in such multi-server queuing models,

which is frequently violated in reality, is that all servers are working identically at the same
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speed. It is more reasonable to take the heterogeneity among different servers into account

when constructing a queuing model to describe real systems, e.g. a health care system.

By taking account of the heterogeneity among servers in the analysis of APQs, a multi-class

multi-server queue with Poisson arrivals and heterogeneous exponentially distributed service

times under the APQ and related queuing disciplines is investigated in the first part of this

thesis. Different service dispatch policies among the servers are considered in order to provide

the decision makers more flexibility to manage the system. The waiting time distributions for

different classes are derived in such a model. We also formulate an optimization problem to

find the optimal level of heterogeneity, and discuss how the APQ approach would affect the

optimal solution in terms of minimizing a well-defined cost function.

The second direction in which we build upon existing theory pertains to how priority is

accumulated over time. We extend the accumulating priority queues of Stanford et al. [11] to

allow a customer’s priority to accumulate as a nonlinear function of its waiting time, which is

motivated by Kleinrock and Finkelstein [5]. In 1967, Kleinrock and Finkelstein [5] proposed

a queuing model where customers accumulate priority as a power r of their waiting time.

We refer to such queues as the power-law APQs. They stated that an rth order system is

equivalent to a linearly-increasing priority system, in the sense that the expected waiting times

for customers of all classes are the same. Invoking the results of Kleinrock [4], they obtained

a set of expressions for the expected waiting times for different classes in a given rth order

system.

We then focus on the study of a multi-class APQ with Poisson arrivals, general service

times and a class of nonlinear priority accumulation functions. The work is initiated by the

analysis of the power-law APQ where the waiting time distributions of all classes of customers

are obtained in an APQ setting with the power-law priority accumulation functions in Kleinrock

and Finkelstein [5]. Subsequently, we show that when certain conditions are met, we can create

an equivalent linear APQ with the same set of waiting time distributions of different classes.

Such an extension provides the policy makers a much wider range of priority accumulation

functions, where the patients’ waiting times as well as their urgencies of treatments can be
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taken into consideration.

Table 1.1: CTAS Key Performance Indicators (KPIs)

Level Level of acuity Response time Sample diagnosis Targets

1 Resuscitation Immediate Cardiac arrest 98%

2 Emergent < 15 mins Chest pain 95%

3 Urgent < 30 mins Moderate asthma 90%

4 Less urgent < 60 mins Minor trauma 85%

5 Non urgent < 120 mins Common cold 80%

The last direction in which the thesis extends upon the existing work pertains to the matter

of optimality of APQ systems. Optimization problems are formulated for the queues under

waiting time limits, such as the KPIs in Table 1.1. As stated earlier, KPIs are widely used to

regulate the health care systems in Canada, not only for “visible” queues but also for wait lists.

The time limits and the corresponding compliance probabilities in KPIs were determined by

medical professionals according to the clinical need of different patient classes from the history,

prior to any consideration of the traffic characteristics of the patient classes (i.e., frequency of

demand, treatment time distributions). A simple patten can be observed from Table 1.1, such

that for the patients from Level 2 and onwards, the time limit for the next level doubles the

one above and the compliance probability is simply reduced by 5%. The systems which meet

the KPIs are considered to be in compliance. Even in such systems, the small percentage of

patients who miss their time limits tend to be ignored, with no consequence specified for them.

Certainly, it is irrational and unacceptable to neglect these patients; on the contrary, they should

become a greater concern to the system managers.

Thus, proper optimization functions to minimize the delays beyond the time limits for var-

ious classes of patients are established to achieve an optimal performance of a KPI system.

The optimization problems we define address this fundamental oversight with objective func-

tions that seek to quantify how much excess is occurring under a given queuing discipline.

We mainly consider three queuing disciplines: the first-come, first-served (FCFS) discipline,
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the classical priority discipline and the accumulating priority discipline. We do so initially

by seeking to minimize the total expected amount of waiting time excess; in the sequel, we

minimize a weighted sum of the expected amount of excess waiting for each class. We will

be particularly interested in the performance of a “Rule of Thumb” that we propose, which

ensures that all patients have the same total amount of accumulated priority credits when they

reach their respective time limits, and are thereby considered to be equally urgent, as desired

in the systems operating under KPIs.

1.2 Outline of this thesis

As discussed in the last section, this thesis consists of three major topics on the accumulating

priority queues. The reminder of this thesis is arranged as follows.

A detailed review of related literature is presented in Chapter 2, including the work on

accumulating priority queues, the researches on heterogeneous FCFS queues, the conservation

laws in the single-server systems and a discussion of the Gaver-Stehfest numerical inversion

algorithm.

In Chapter 3, the multi-class accumulating priority queuing model with heterogeneous

servers is specified. A conservation law for the multi-class heterogeneous-server systems is

presented, and following by a discussion of the calculations for the stationary probabilities in

such a system. An optimization problem for the optimal level of heterogeneity is established

for different service dispatch policies. The waiting time distribution for each priority class in

the multi-class heterogeneous system under APQ and related queuing disciplines is derived.

Finally, various numerical investigations are explored to address the impact of the level of

heterogeneity in multi-server systems, as well as the advantage of the APQ approach.

In Chapter 4, the accumulating priority queue with nonlinear accumulation functions is

described. With an initial discussion on the waiting times for the power-law APQ, the linkage

between the APQs with a more general class of nonlinear accumulation functions and the linear

APQ is discovered and proved. A set of recursive formulas for the waiting time distributions
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for the nonlinear APQ with a linear proxy are derived.

Chapter 5 focused on optimization problems of queues operating under waiting time lim-

its. An optimization problem to minimize the weighted average of total expected excess is

formulated, followed by a related optimization problem to resolve the difficulties of finding

the optimality of the original objective function. Extensive numerical calculations have been

conducted to investigate the behavior of the objective functions. Finally, a “rule of thumb” is

introduced, which can be easily applied to the real systems by medical professionals.

The main contributions are summarized in Chapter 6, as well as some future research di-

rections.
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Chapter 2

Preliminaries

In this chapter, we start with a brief introduction of the Laplace-Stieltjes transforms, then fol-

lowing with a thorough review of the literature on the accumulating priority queues, including

the time-dependent priority queue in Kleinrock [17], the rth order system in Kleinrock and

Finkelstein [19] which we refer to as the power-law APQ, the single-server APQ in Stanford et

al. [29], the homogeneous multi-server APQ in Sharif et al. [26] and the work on preemptive

APQs in Fajardo’s PhD thesis [7]. Previous researches on the FCFS queues with heterogeneous

servers are reviewed in this chapter, as well as the conservation laws in single-server systems.

Followed by a review of the Poisson mapping theorem in Kingman [15], the Gaver-Stehfest

numerical inversion algorithm (Gaver [9], Stehfest [30]) and a modified version proposed in

Abate and Whitt [1] are discussed in the last section.

The models we consider in this thesis operate under fairly standard assumptions in the

queuing literature, which we now enumerate. First and foremost of these is that all of our

models constitute non-preemptive and work-conserving queues. A work-conserving discipline

is one in which the work requirements of customers remain unchanged by the passage of time,

customers neither balk nor renege, and servers are never idle if there is anyone waiting. The

non-preemptive discipline is such that a customer entering service remains in service without

interruption until completion. The second most important is that all the models are operating

in a stable regime; that is, the long-run service capacity exceeds the long-run demand. Other

9
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standard assumptions include an infinite customer population, an unbounded waiting area, and

constant arrival and service rates over time. Moreover, we presume the queues have operated

sufficiently long to have reached stationarity.

These assumptions need to be kept in mind when the models are applied in the health

care setting. In particular, it is frequently the case that healthcare queues are operating close

to 100% utilization, and may not operating in a stable regime, and furthermore that balking,

reneging, and reordering of priorities frequently occur due to changes in patient health status.

The decision maker needs to take account of such realities when making inferences from the

numerical results these models provide.

2.1 Laplace-Stieltjes transforms

Laplace-Stieltjes transforms (LSTs) are widely used in probability, particularly the moment

generating function. The LST is well suited when dealing with the distribution function of a

nonnegative random variable (r.v.), which we will use extensively in the following chapters in

this thesis.

The Laplace-Stieltjes transform of a function F defined in Feller [8] is given by

f̃ (s) =

∫ ∞

0
e−sxdF(x) (2.1)

for all s for which this integral converges. It can be found immediately from the definition of

the LST that f̃ (0) = 1 for any distribution function F.

From equation (2.1), the LST of the distribution function F of a nonnegative r.v. X can

be written as f̃ (s) = E(e−sX). Moreover, if f̃ (s) is n times differentiable at the origin, then

E(Xn) = (−1)n f̃ (n)(s).

If F has a density function f , then equation (2.1) reduces to the Laplace transform

f̃ (s) =

∫ ∞

0
e−sx f (x)dx. (2.2)

LSTs are very useful in queuing theory (e.g., the analysis for M/G/1 queues in Conway

et al. [3]). One reason is that the waiting times in a queuing system generally have a point
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mass at zero, representing the probability of the system being idle, while the remaining mass

is distributed across (0,∞]. Furthermore, the original function F can be numerically computed

to arbitrary precision from a given LST f̃ (s) using numerical inversion algorithms, which we

would introduce in the last section of this chapter.

2.2 Accumulating priority queues

This queuing discipline was first proposed by Kleinrock [17] as “time-dependent priority

queue”, and recently developed by Stanford et al. [29] and Sharif et al. [26]. In all three

papers, they assume:

There are K ∈ N classes of customers. Customers of class k arrive independently to the

queue according to a Poisson process with rate λk, k = 1, 2, . . . ,K. From the moment of their

arrival, a customer of class k accumulates priority at rate bk where b1 ≥ b2 ≥ · · · ≥ bK ≥ 0.

Thus a customer of class k arriving to the queue at time t will have accumulated priority as a

linear function bk(t′ − t) by time t′. At a service completion instant, the next waiting customer

to be served will be selected according to the greatest accumulated priority in the queue at that

instant.

Different assumptions of the service durations are made among the three models above.

Kleinrock [17] studied a single-server queuing model with exponentially-distributed service

times. Stanford et al. [29] extended Kleinrock’s model to a single server working under

general service distributions, while Sharif et al. [26] considered a multi-server model with

homogeneous exponential service times.

On the other hand, Kleinrock and Finkelstein [19] extended the model in Kleinrock [17]

to another direction, in which a customer’s priority increases in proportion to some arbitrary

nonnegative power r of its waiting time, and named it an “rth order delay dependent priority

discipline”. They, too, studied the single-server case with exponential service times.

In this thesis, we apply Kendall’s notation, in the form of a/b/c, to classify the different

queuing models we consider. The letter a represents the inter-arrival time distribution, b does
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the same for the service duration distribution, and c denotes the number of servers. Further-

more, we use “linear APQ” to indicate the system with linear accumulation functions, whereas

“nonlinear APQ” for the system with general nonlinear accumulation functions. Thus, the

models in Kleinroch [17], Stanford et al. [29] and Sharif et al. [26] can be represented as the

M/M/1 linear APQ, M/G/1 linear APQ and M/M/c linear APQ respectively, whereas we re-

fer to the model in Kleinrock and Finkelstein [19] as the “M/M/1 power-law APQ of order r”.

The main results of these developments on accumulating priority queues are described below.

2.2.1 Average waiting times in APQs

The M/M/1 linear APQ

Kleinrock [17] derived a set of recursive formulas for the average waiting times of various

customer classes in an M/M/1 linear APQ, where the customers from class-k has a required

service time selected from an exponential distribution with mean 1/µk.

For k = 1, 2, . . . ,K, they obtained the average waiting time for class-k, denoted by mk,

recursively for k = K,K − 1, . . . , 1 as

mK =
W0/(1 − ρ)

1 −
∑K−1

j=1 ρ j(1 − bK/b j)
, and (2.3)

mk =
W0/(1 − ρ) −

∑K
j=k+1 ρ jm j(1 − b j/bk)

1 −
∑k−1

j=1 ρ j(1 − bk/b j)
, (2.4)

where W0 =
∑K

k=1 ρk/µk, ρk = λk/µk and ρ =
∑K

k=1 ρk < 1. Although Kleinrock [17] constructed

this analysis for the M/M/1 APQ, it is equally applicable to the M/G/1 case where the form

of W0 is given by equation (2.14). Lastly, he performed a set of numerical calculations for the

average waiting times in the accumulating priority and FSFC disciplines.

The M/M/1 power-law APQ of order r

Kleinrock and Finkelstein [19] studied the average waiting time for each class of customers

in a single-server APQ with Poisson arrivals, exponential service times, and a set of power-

law accumulation functions. The priority accumulation functions for the power-law APQ of
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order r is defined in terms of a sequence{b(r)
k }, k = 1, . . . ,K of positive constants such that

b(r)
1 ≥ b(r)

2 ≥ · · · ≥ b(r)
K ≥ 0, and with a function form of b(r)

k tr for all k.

They established in Kleinrock and Finkelstein [19, Theorem 1] that if one were to select

the constants so that

(
b(r)

k+1/b
(r)
k

)1/r
=

(
b(r′)

k+1/b
(r′)
k

)1/r′
for k = 1, 2, . . . ,K, (2.5)

then the expected waiting times of all customer classes in the corresponding power-law APQs

of orders r and r′ would be identical.

From this, using the results in Kleinrock [17] for the first order systems, they obtained the

expected waiting times for different classes of customers in the power-law APQ of order r.

2.2.2 Waiting time distributions in APQs

The M/G/1 linear APQ

Stanford et al. [29] determined the waiting time distributions for each class of customers in a

single-server linear APQ with Poisson-arrivals and general service distributions.

A key element in their derivation was the stochastic process named the maximum priority

process, M = {Mi(t); t ≥ 0, i = 1, . . . ,K}, which gave the least upper bound of the accumulated

priority Mi(t) for each priority class at given instant in time.

They began with the accumulating priority queue in the two-class case with M = {M1(t),

M2(t)), t ≥ 0}, where Mi(t); i = 1, 2 is an upper bound on the possible value of the maximal ac-

cumulated priority for a class-i customer by time t; moreover, M1(t) ≥ M2(t) for all t. A class-1

customer in the queue with accumulated priority at time t that lies in the interval (M2(t),M1(t)]

is referred to as “accredited relative to class-2”, or simply, “accredited”, since it is certain that

there are no class-2 customers in the system with as much priority. Those customers with pri-

ority in the interval [0,M2(t)) are referred to as “non-accredited”. An accreditation interval is

defined as consisting of the service time of a non-accredited customer followed by a sequence

of service times of class-1 customers who have become accredited during the interval, until
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there are no accredited customers left. During an accreditation interval, the instants that cus-

tomers become accredited constitute a Poisson process with rate λ1(1 − b2/b1). By analogy to

similar constructs in the classical M/G/1 queue, they obtained the expression of the Laplace-

Stieltjes transform (LST) of the duration of an accreditation interval and its mean duration.

Customers who are selected for service during an accreditation interval gain additional

credit, up to the point in time when they enter service. Consider a random variable V̂ to be the

accumulated priority of a customer at the point that it enters service during an accreditation

interval. Suppose the accreditation interval commences at time t0. The random variable V̂ can

be written as V̂ = Vinit + V where V is the additional priority that the customer accumulates

during the accreditation interval, after having accumulated priority Vinit. Let B(i) denote the

service time r.v. for the customers from class i, i = 1, 2. When the service times are the same

for the two classes, set B(1) = B(2) = B. By modifying the delay cycle approach of Conway et

al. [3, page 151], they obtained the LST of the distribution of V , given parameters b1, b2, λ1

and B,

Ṽ∗(s; b1, b2, λ1, B) =
(µ − λ1(1 − b2

b1
))(Γ̃(b2s) − B̃(b1s))

(1 − b2
b1

)(b1s − λ1(1 − B̃(b1s)))
,

where Γ̃(s) is the LST of the duration of an accreditation interval, which is the solution of

Γ̃(s) = Γ̃(s; b1, b2, λ1, B) = B̃(s + λ1(1 − b2/b1)(1 − Γ̃(s))). (They also discussed the case when

B(1) , B(2) which we choose not to review here.)

The non-accredited customers can be equivalently viewed as all arriving to the system in an

aggregate Poisson process with rate λ2 +λ1b2/b1 and all accumulating priority at rate b2. Then,

the LST of the stationary accumulated priority of the non-accredited customers at the time

that they enter service, conditional on it being positive, is given by the accumulated priority

distribution with parameters b2, 0, λ2 + λ1b2/b1, Γ as

Ṽ (2)(s) = Ṽ(s; b2, 0, λ2 + λ1b2/b1,Γ).

Thus the LST of the stationary waiting time for class-2 customers is given by,

W̃ (2)(s) = (1 − ρ) + ρṼ (2)(s/b2). (2.6)
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The probability that a class-1 customer, arriving during a busy period, becomes accredited

is (b1−b2)/b1, while the probability that it enters service while unaccredited is b2/b1. Thus, the

LST of the distribution of the priority of a class-1 customer when it enters service, conditional

on this being positive, is

Ṽ (1)(s) =
b2

b1
Ṽ (2)(s) +

(
(1 − ρ)(b1 − b2)

b1(1 − σ1)
+

(ρ − σ1)(b1 − b2)
b1(1 − σ1)

Ṽ (2)(s)
)

Ṽ (1,0)(s),

where Ṽ (1,0) is the LST of the stationary accumulated priority of a class-1 customer, and

Ṽ (1,0)(s) = Ṽ(s; b1, b2, λ1, B).

Finally, based upon the same logic as was used for class-2, the LST of the waiting time for

class-1 customers is

W̃ (1)(s) = (1 − ρ) + ρṼ (1)(s/b1). (2.7)

The authors also obtained a recursive equation to find the LST of the waiting time distribu-

tion for class-k, conditional upon it being positive, in a multi-class single server system,

W̃ (k)
+ (s) =

(
bk+1

bk

)
W̃ (k+1)

+

(
bk+1

bk
s
)

+

(
1 −

bk+1

bk

)
W̃ (k)

acc(s), (2.8)

to which we refer with greater detail later when we present our work to a multi-class APQ with

heterogeneous servers.

The M/M/c linear APQ

Sharif et al. [26] considered a multi-class multi-server linear APQ with Poisson arrivals and a

common exponential service distribution for all classes of customers with equal service rates,

i.e., µ1 = µ2 = · · · = µK = µ. They also commented on how to choose feasible accumulation

rates to satisfy KPI targets in CTAS [2].

They presented the LST of the waiting time distribution function, W̃ (k)(s), for customers of

class k; k = 1, . . . ,K,

W̃ (k)(s) = (1 −C(A, c)) + C(A, c)W̃ (k)
+ (s; µ, c), (2.9)
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where C(A, c) denotes the Erlang-C delay probability; that is, the probability that all servers are

simultaneously busy in a stationary M/M/c queue with A = λ/µ and λ =
∑K

k=1 λk, and where

W̃ (k)
+ (s) is the LST of the class-k waiting distribution, conditional on it being positive.

Sharif et al. [26] established that the LST of the waiting time distribution, conditional upon

it being positive, in a homogeneous multi-server queue with common mean 1/µ is the same as

that in a single server queue with a exponential service rate of cµ:

W̃ (k)
+ (s; µ, c) = W̃ (k)

+ (s; cµ, 1); k = 1, . . . ,K. (2.10)

The results were evaluated through several numerical investigations, and an algorithm was

presented for finding the maximum ρ and optimal b, which are the maximum amount of the

utilization level and the optimal value of the accumulation rate for which a given set of KPI

targets can be met.

2.2.3 Other work on APQs

In Fajardo’s PhD thesis [7], they investigated two types of preemptive linear APQs. The first

one they considered is the fully preemptive variant of the linear APQ in Stanford et al. [29],

where a recursive procedure for obtaining the waiting time distributions was developed. They

studied the waiting time distributions for this preemptive model under each of the three tradi-

tional preemption disciplines (i.e., resume, repeat-different and repeat-identical), as well as for

a new hybrid-based preemption discipline which they called the Bernoulli-based decision for

resumption of service discipline.

The second linear APQ they investigated is similar to the model in Stanford et al. [29],

but incorporates the notion of urgent-type customers whose arrivals may preempt lower pri-

ority customers and whose priority is assigned in the classical (or static) sense. Furthermore,

this model generalizes several previously-analyzed static priority models including the classi-

cal preemptive / non-preemptive models, the static priority model under a preemption distance

rule, and the priority model under threshold-based discretion rules considered by Drekic and

Stanford [5]. Finally, they established that the models can be treated as the M/G/1 model under
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a customer blocking policy, namely the q-policy. They found that the level-crossing methodol-

ogy may provide a nice interpretation for each components in the LST of the additional priority

accumulated by an accredited customer, by which they presented an alternate proof to the main

theorem in Stanford et al. [29].

Haviv and Ravner [13] studied the strategic purchasing of priorities in an M/G/1 linear

APQ. They formulated a non-cooperative game in which customers purchase priority coeffi-

cients (i.e., the slope of the linear accumulation function) with the goal of reducing waiting

costs in exchange, where the unique pure Nash equilibrium was obtained explicitly for the case

with homogeneous customers, and a general characterisation of the pure Nash equilibrium was

provided for the heterogeneous-customer case.

2.3 FCFS queues with heterogeneous servers

Many papers have studied the queuing systems with heterogeneous servers. The pioneering

work of Morse [23] in 1958 was the first to consider the analysis of multi-server systems

(although his main focus was on homogeneous case). Saaty [24] found the LST of the transient

probabilities of multi-server FCFS queues with Poisson arrivals and exponential service times

at a common rate, where the explicit expressions for the stationary probabilities were derived

for the two-server case. Subsequently, he discussed the LST of the transient probabilities in

the two-server system with two different exponential service distributions operating under a

specific service dispatch policy (i.e., when both servers are idle, the server is chosen by an

arriving customer according to the proportion of its service rate to the total service rate).

In 1960, Gumbel [12] discussed the multi-server heterogeneous FCFS queue under the ran-

domly chosen server (RCS) dispatch policy. He derived the expressions in closed form of the

steady state probabilities and the expected queue length assuming the steady-state condition.

He also pointed out there is no “equivalent” system with homogeneous servers present and

analyzed the error incurred from the assumption that each server is working at an equal rate

which is the average of all the service rates. If the heterogeneous exponential service rates for
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various servers are replaced by the average service rate, the probability of the system being

busy (or, delayed probability) is inconsistent with the one in the original heterogeneous sys-

tem; whereas if the delayed probabilities are the same in both systems, the common service

rate in the respective homogeneous queue is not equal to the mean of the service rates in the

heterogeneous system.

Krishnamoorthi [21] studied a Poisson queue with two heterogeneous servers with mod-

ified allocation disciplines. Singh [28] analyzed a Poisson queue with three heterogeneous

servers, where an optimal combination of the service rates to minimize the performance mea-

sures of the system was presented. Sharma and Dass [27] considered the M/M/2/N queue with

heterogeneous servers to derive the probability density function of the busy period. Mokaddis

and Matta [22] studied a Poisson-arrival queue with three heterogeneous servers under various

allocation policies. Grassmann and Zhao [11] studied a queuing system with multiple hetero-

geneous servers and general inputs, where the steady state probabilities were calculated using

different rules to allocate the arriving jobs.

In a queuing system with heterogeneous servers, the service dispatch policy, also known

as the allocation policy, is defined as a method that determines which idle server is assigned

to the next arriving job. While we consider a fairly general rule in this regard, we are particu-

larly interested in four specific dispatch policies: 1) “randomly chosen server” (RCS), which

assigns the next job to any of the idle servers with equal likelihood; 2) “fastest server first”

(FSF); 3) “slowest server first” (SSF); and 4) “rate balancing selection” (RBS), where an idle

server will be chosen according to its proportion of the total service rate among all idle servers.

Steady state probabilities have been discussed in the past researches of the FCFS systems with

heterogeneous servers under different dispatch policies, which are presented in what follows.

2.3.1 The classical heterogeneous queue under RCS

Gumbel [12] derived the stationary state probabilities under the assumptions of Poisson arrivals

and exponentially distributed service times, with a different service rate for each server under

RCS.
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Let πn be the steady state probability of n customers (n ≥ 0) in the system. He derived that

πn =


(c − n)!Cc

c−nπc, (0 ≤ n < c)

πc/(Cc
1)n−c, (n ≥ c)

where

Cc
n =

c−n+1∑
a1=1

c−n+2∑
a2=a1+1

· · ·

c−n+n−1∑
an−1=an−2+1

c∑
an=an−1+1

µa1µa2 · · · µan

λn ;

where ai are members of sets of k indices out of c indices. Note that Cc
c = Πc

i=1
µi
λ

, Cc
1 =

∑c
i=1

µi
λ

=

1/ρ and Cc
0 = 1.

He also showed that an “equivalent” system with homogeneous servers, which has the same

steady state probabilities as the heterogeneous case, does not exist. Thus, the device of replac-

ing the unequal servers by an equal number whose mean service rate is the arithmetic mean

of the individual service rates leads to computational errors. The error incurred in assigning

each server the arithmetic mean of the service rates is analysed and illustrated using expected

number in the system as the criterion of comparison.

2.3.2 Heterogeneous queues under general dispatch polices

In 1963, Krishnamoorthi [21] studied the Poisson queue with two heterogeneous servers, where

the steady state probabilities were given. Subsequently, in 1998, Mokaddis and Matta [22] ob-

tained the steady state probabilities of a Poisson queue with three heterogeneous servers. They

both solved the probabilities via differential-difference equations in terms of state probabilities.

Here, we present the work using global balance equations.

Figure 2.1 illustrates the state transition diagram with two heterogeneous servers, where

customers arrive to servers according to Poisson distribution with rate λ and the two servers’

service times follow exponential distribution with rates µ1 and µ2 respectively where µ1 ≥ µ2.

The states (1, 0) and (0, 1) in the figure means that one server is busy in the system, with the

position of the 1 indicating which server is busy. When a customer arrives to an idle system,

it can be served by server 1 with probability p1 or by server 2 with probability p2. By the
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Figure 2.1: State-transition-rate diagram with two heterogeneous servers.

properties of Poisson distribution, the transition rate from state 0 to state (1, 0) is p1λ and the

transition rate from state 0 to state (1, 0) is p2λ. By global balance, we have the following

equations:

λπ0 = µ1π1,0 + µ2π0,1,

(λ + µ1)π1,0 = p1λπ0 + µ2π2,

(λ + µ2)π0,1 = p2λπ0 + µ1π2,

πn+1 = ρπn, n ≥ 2.

Then, the steady state probability πn can be solved,

π0 =
(2ρ + 1)(1 − ρ)

(µ1/µ2 + µ2/µ1)ρ2 + (2 + p1µ2/µ1 + p2µ1/µ2)ρ + 1
,

π1,0 =
ρ(1 + µ2/µ1)(ρ + p1)(1 − ρ)

(µ1/µ2 + µ2/µ1)ρ2 + (2 + p1µ2/µ1 + p2µ1/µ2)ρ + 1
,

π0,1 =
ρ(1 + µ1/µ2)(ρ + p2)(1 − ρ)

(µ1/µ2 + µ2/µ1)ρ2 + (2 + p1µ2/µ1 + p2µ1/µ2)ρ + 1
, (2.11)

π2 =
λ2(λ + µ1 p2 + µ2 p1)

µ1µ2(2λ + µa)
π0,

πn = ρn−2π2, n ≥ 2.

Let us consider the three heterogeneous servers case with Poisson arrivals and exponential

service times. When a customer arrives to a totally idle system which is state 0 in Figure 2.2,
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Figure 2.2: State-transition-rate diagram with three heterogeneous servers.

it can be assigned to server i with probability pi for i = 1, 2, 3. A partially idle system in this

case involves the six states from state (1, 0, 0) to state (0, 1, 1) in the figure. Assuming the busy

server as a customer arrives is server 1, then the system is currently in state (1, 0, 0). At the

instant of a customer arrives to state (1, 0, 0), it can be assigned to server 2 with probability

p2/ p̄1 and to server 3 with p2/ p̄1 where p̄1 = p2 + p3. All the state transition rates are shown

in Figure 2.2. Then, by global balance, we have,

λπ0 = µ1π1,0,0 + µ2π0,1,0 + µ3π0,0,1,

(λ + µ1)π1,0,0 = p1λπ0 + µ2π1,1,0 + µ3π1,0,1,

(λ + µ2)π0,1,0 = p2λπ0 + µ1π1,1,0 + µ3π0,1,1,

(λ + µ3)π0,0,1 = p3λπ0 + µ1π1,0,1 + µ2π0,1,1,

(λ + µ1 + µ2)π1,1,0 =
p2

p̄1
λπ1,0,0 +

p1

p̄2
λπ0,1,0 + µ3π3, (2.12)

(λ + µ1 + µ3)π1,0,1 =
p1

p̄3
λπ0,0,1 +

p3

p̄1
λπ1,0,0 + µ2π3,

(λ + µ2 + µ3)π0,1,1 =
p2

p̄3
λπ0,0,1 +

p3

p̄2
λπ0,1,0 + µ1π3,

πn+1 = ρπn, n ≥ 3.



22 Chapter 2. Preliminaries

Mokaddis and Matta used Gauss-Jordan elimination method with 52 defined variables to

solve the probabilities. The interested readers are directed to Mokaddis and Matta [22] for

details. (However, we notice some errors may exist in their derivation.) The explicit expression

for the stationary probability for each state has been solved with at most three heterogeneous

servers in the queues under different dispatch policies, except for the RCS case considered

above, in which an explicit solution is available for any number of servers.

In 2004, Grassmann and Zhao [11] studied a GI/Mi/c queue with heterogeneous servers

and general input, where equilibrium equations for the steady state probabilities were con-

structed, both at random-times and at the times preceding an arrival. They first determined the

probabilities for all states in which there is no queue, and then calculated the probabilities in

which customers are waiting. Three types of computational issues were addressed in their pa-

per, namely the algorithm used to implement their formulas, the performance of the algorithm,

and the accuracy of the results. Various algorithms were compared, however, they found that

the correspondence between the results calculated by different methods was surprisingly high,

normally, because of rounding errors. They stated that their algorithm run into performance

problems as the number of servers increases. More specifically, the computational effort would

increase by a factor of 8 if the number of servers increases by 1, which implies that even a

large increase in computer speed would have only a marginal impact on the maximum size of

the problem that can realistically be solved (e.g. less than 20 servers). In their paper, they

performed the calculations for the systems with less than 10 servers. Some further discussion

on the computational issues in Grassmann and Zhao [11] has been presented in Chapter 3.

2.4 Conservation laws

Conservation laws for the single-server queuing systems have been studied in the past litera-

tures. The M/G/1 conservation law was first stated and proved in Kleinrock [16, 18] in 1964.

Then in 1974, the conservation law was extended to the G/G/1 case in Schrage [25]. In 1980,

Gelenbe and Mitrani [10] collected the works on the conservations laws and made a further
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development by introducing the “virtual load” concept.

In summary, the conservation laws state that in single-server work-conserving queues, the

queuing discipline can only change the order of customers’s services, so that the total amount

of work in the system is unaffected. Thus, the sum of mean waiting times for different classes

of customers weighted by their respective occupancies is always a constant. Any attempt to

improve the service for some class must inevitably come at the expense of some other class. In

this section, we will review some important conservation laws.

2.4.1 The M/G/1 conservation law

Kleinrock [20, page 114] proved that for any M/G/1 system and any non-preemptive work-

conserving queuing discipline it must be that

K∑
k=1

ρkmk =


W0/(1 − ρ) −W0 = ρW0/(1 − ρ), ρ < 1;

∞, ρ ≥ 1;
(2.13)

where ρk = λk/µk and ρ =
∑K

k=1 ρk. W0, which represents the residual life of the customer found

in service upon an arrival’s entry, is given by

W0 =

K∑
k=1

λkx2
k

2
(2.14)

where x2
k is the second moment of service time for a customer from class k. In other words,

the conservation law states that the weighted sum of the average waiting times mk for k =

1, 2, . . . ,K can never change no matter how sophisticated or elaborate the queuing discipline

may be.

2.4.2 The G/G/1 conservation law

The conservation law was extended (Schrage [25]) to the G/G/1 queues, where both the Pois-

son arrival assumption and the independence assumption were dropped. Kleinrock [20, page

117] presented the generalized version of the conservation, namely the G/G/1 conservation
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law: Given a specific work-conserving G/G/1 queuing system with a non-preemptive priority

queuing discipline, then the linear equality constraint

K∑
k=1

ρkmk = Ū −W0 (2.15)

must be satisfied regardless of the queuing discipline, where Ū is the limiting average of the

unfinished work [20, page 114]. In the M/G/1 case, Ū equals W0/(1− ρ) as shown in equation

(2.13).

2.4.3 A general conservation law

Gelenbe and Mitrani [10, page 174] introduced a stochastic process, named “virtual load”.

For a particular queuing discipline S , the virtual load at time t, VS (t), was defined as the total

amount of work in the system at time t, i.e., the sum of the remaining required service times for

all jobs, including both the unfinished work and the residual service time, that are in the system

at time t. They assumed the existence of the equilibrium distribution for VS (t) and denoted its

steady-state average by VS :

VS = lim
t→∞

E[VS (t)]. (2.16)

They obtained the general conservation law in Theorem 6.1 [10, page 174]:

For any single-server queuing system in equilibrium there exists a constant V , determined

only by the parameters of the arrival and required service times processes, such that

VS = V (2.17)

for all work-conserving queuing disciplines S .

By Theorem 6.1, with the condition that “only information about the current state and the

past of the queuing process is used in making scheduling decisions”, they restated the M/G/1

conservation law in Kleinrock [20].

Theorem 6.2 [10, page 176] stated that when the required service times are distributed

exponentially, there exists a constant V determined only by the inter-arrival time distributions
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and by the parameters µ, such that

K∑
k=1

ρkmk = V, (2.18)

for all work-conserving queuing disciplines. Thus, by equation (2.13), the constant V =

ρW0/(1 − ρ) for ρ < 1.

2.4.4 Modified GI/G/1 conservation law

With the references of Kleinrock [20] and Schrage [25], Theorem 6.3 in Gelenbe and Mitrani

[10, page 177] presented the GI/G/1 conservation law:

For any multi-class GI/G/1 queuing system in the steady-state, there exists a constant V

determined only by the inter-arrival and service time distributions, such that

K∑
k=1

ρkmk = V +

K∑
k=1

ρk

( 1
µk
− γk

)
(2.19)

for all non-preemptive work-conserving queuing disciplines, where γk = µkx2
k/2, for k =

1, 2, . . . ,K, is the average residual life of the class-k service time.

2.5 The Poisson mapping theorem

Kingman [15, page 17] introduced a great property of Poisson processes: in summary, if the

state space is mapped into another space, the transformed random points again from a Poisson

process.

He defined Π to be a Poisson process on the state space S , having mean measure µ, and

f as a function from S into another (or the same) space T . They assumed that T , like S , is a

measure space satisfying three conditions: 1) the empty set is measurable, 2) the complement of

a measurable set is measurable, 3) the union of countably many measurable sets is measurable.

They also assumed that f is measurable in the sense that

f −1(B) = {x ∈ S ; f (x) ∈ B} (2.20)
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is a measurable subset of S for every measurable B ⊆ T .

The points f (x) for x ∈ Π form a random countable set f (Π) ⊆ T . The number

N∗(B) = #{ f (Π) ∩ B} (2.21)

of points of f (Π) in B, so long as the points f (x) (x ∈ Π) are distinct, and

N∗(B) = #{x ∈ Π; f (x) ∈ B} = N( f −1(B)) (2.22)

which has distribution P(µ∗), where

µ∗ = µ∗(B) = µ( f −1(B)). (2.23)

Moreover, if B1, B2, . . . , Bk are disjoint, so are their inverse images, so that the N∗(B j) are

independent.

Finally, he proved the Poisson mapping theorem in Kingman [15, Mapping Theorem],

which was stated as “Let Π be a Poisson process with σ-finite mean measure µ on the state

space S , and let f : S → T be a measurable function such that the induced measure has

no atoms. Then f (Π) is a Poisson process on T having the induced measure µ∗ as its mean

measure.” This property has profound implications, which has been applied in various journals

(e.g. del Barrio et al. [4], Eliazar et al. [6], Holroyd et al. [14]). We will refer to this theorem

in Chapter 4.

2.6 Gaver-Stehfest numerical inversion of LST

The Gaver-Stehfest (GS) technique for numerical inversion of LST was developed by Gaver [9]

in 1966 in the probabilistic context of order statistics, and modified by Stehfest [30] through

accelerating the convergence to obtain a better performance in 1970. It is becoming more

refined and increasingly more acceptable in different areas because of its simplicity and good

performance.
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Given a real-valued function f (t); t ≥ 0 whose LST is f̃ (s), then the GS method for numer-

ical Laplace transform inversion at the point t is given by the following:

fg(t) =
ln2
t

N∑
j=1

V j f̃
(
ln2
t
× j

)
(2.24)

where the values V j are the GS coefficients of order N (always even), half of which are positive

and half negative numbers. These coefficients, as derived by Gaver, are combinatorial terms

arising in order statistics, with the useful by-product that they always sum to 0. Typically N = 8

points provide two significant digits of accuracy, which is quite adequate for assessing waiting

times. The table that provides the coefficients for N = 2; 4; 6; 8 is provided in Table 2.1.

Table 2.1: Coefficients for the Gaver-Stehfest Algorithm

V2 V4 V6 V8

2 -2 1 -1/3

-2 26 -49 145/3

-48 366 -906

24 -858 16394/3

810 -43130/3

-270 18730

-35840/3

8960/3

In 2006, Abate and Whitt [1] improved the original GS algorithm in equation (2.24) through

introducing an inversion formula with 2M as the number of transform evaluations. For any

t > 0 and positive integer M, the GS algorithm by encompassing the linear Salzer acceleration

technique in Abate and Whitt [1] is given by

fg(t,M) =
ln(2)

t

2M∑
j=1

ζ j f̃
(
ln(2)

t
× j

)
, M ≥ 1, t > 0, (2.25)

where the coefficients ζi are

ζ j =
(−1)M+ j

M!

min( j,M)∑
i=b j+1

2 c

iM+1

 M

i


 2i

i


 i

j − i

 , 1 ≤ j ≤ 2M. (2.26)



28 Chapter 2. Preliminaries

Valko and Abate [31] concluded that the required system precision is about 2.2M when

the parameter is M. From extensive experimentation, Valko and Abate [31] stated that about

0.90M significant digits were produced for f (t) with good transforms. By 0.90M significant

digits, they meant that

relative error =

∣∣∣∣∣ f (t) − fg(t,M)
f (t)

∣∣∣∣∣ ≈ 10−0.90M. (2.27)

Moreover, transforms are said to be “good” if the transforms have all their singularities on

the negative real axis and the functions f are infinitely differentiable for all t > 0. If the

transforms are not good, then the number of significant digits may not be so great and may not

be proportional to M. Thus, the efficiency of the GS algorithm in equation (2.25), measured by

the ratio of the significant digits produced to the precision required, was given by 0.9M/2.2M =

0.4.

In summary, the significant digits produced by the formula of the parameter M is about

0.90M, and the required system precision is about 2.2M. For instance, if the system precision is

15 (8-byte floating point numbers), then the parameter M is 6 (= b15/2.2c), and the significant

digits is about 5 (= b0.90 × 6c).
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Chapter 3

Multi-server accumulating priority queues

with heterogeneous servers

3.1 Introduction

Multi-server, multi-class queues (or service systems) have been used to model waiting times

in areas as diverse as call centres, emergency departments, grocery stores, and other situations

arising in daily life where randomly-arriving customers compete for limited resources. In a

grocery store, a long waiting time is merely a matter of inconvenience, but in an emergency

department, it might precipitate a change in a patient’s acuity, or even be life-threatening.

For these reasons of continuing importance, such queues remain an area of ongoing research

interest and importance.

Most queuing models of multi-server systems make the assumption that all servers are e-

qually capable, so that it does not matter which server is selected when several of them are

idle. In reality, however, often it is not reasonable to assume every server can render service

at the same speed. This reality is equally prevalent in health care systems as it is elsewhere,

except the consequences can be more severe, in that an unanticipated long wait due to inac-

curate modelling might impact a patient’s health status markedly. One example would be that

different doctors may treat patients at different speeds in an endoscopy suite, as they are dis-

32
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tinct human servers. Another example would be two imaging machines in a hospital working

at significantly different speeds, simply because one is based upon older technology than the

other. Appropriate queuing models which explicitly model the heterogeneity among service

speeds are particularly called for in such multi-server settings, so as to better reflect the reality

of many health care (and other) systems.

Efforts to operate a heterogeneous multi-server system more efficiently fall into one of two

broad strategies. The first strategy deals with the choice of server whenever there are multiple

servers available to serve a newly-arriving customer. In these situations, various policies may

be enforced so as to dictate the choice of server, among all of the idle servers, in a fashion that

optimizes system performance. Such policies are known as “service dispatch” policies (e.g. the

Randomly Chosen Server service dispatch policy). The second strategy addresses the choice

of customer whenever there are multiple customers waiting to be served by the next available

server. Various queuing disciplines can be applied in these situations. In particular, for systems

where certain types of customers require faster access to the servers, priority queuing disci-

plines are appropriate. The goal of this paper is to make novel contributions in both types of

strategies. With respect to the former, we develop a conservation law for the average waiting

time, which depends upon the service dispatch policy. With respect to the latter, we determine

the waiting time distributions for each class of customers, under a unifying model called the

“accumulating priority queue” (APQ) which we define below. In particular, we can recover the

waiting time distributions both for the first-come first-served (FCFS) queue and for traditional

priority queues from this model.

There have been numerous advances in both areas in the literature. Efforts to determine who

is to be selected for service among distinct classes of waiting customers originally resorted to

what we call the “classical” priority queuing discipline (Kesten and Runnenberg [9]), in which

a customer belonging to a given priority class is selected for service only when there are no

waiting customers from higher priority classes. Customers from low priority classes in such a

situation can be repeatedly overtaken by customers from higher priority classes whenever any

are present in the queue. (By “overtaken”, we are referring to those customers from higher-
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priority classes who arrive later than, yet enter service prior to, the specified customer from the

low-priority class.) Thus, it can appear as if the customers from the lower-priority class are not

making any progress towards entering service.

A further development that addressed this phenomenon occurred in 1964, when Kleinrock

[10] first proposed a priority queuing discipline which he named the “time-dependent priority

queue”. In this discipline, waiting customers earn priority credits while they wait, at a rate that

depends upon their priority class. Whenever a server becomes available, it selects the waiting

customer with the greatest accumulated priority to that instant. In such a situation, a customer

from a low priority class progressively earns more and more priority credits, thereby making

it harder and harder to be overtaken as time progresses by customers from higher priority

classes. For such a model, Kleinrock [10] obtained a recursive set of formulas to obtain the

average waiting time for each class of customers, in the single-server case.

Recently, Stanford et al. [24] reconsidered the time-dependent priority queuing model,

which they renamed the “Accumulating Priority Queue” (APQ). They derived the waiting time

distributions for different priority classes in a single-server system. Stanford et al. [24] were

motivated by applications in health care systems. As a specific example, they considered the

Canadian Triage and Acuity Scale (CTAS) [3], which classifies patients according to the Key

Performance Indicators (KPIs) described in Table 3.1. Despite being a clinical standard, as the

acuity of the patient classes diminishes, so too does the clinical need.

It is clearly appropriate to assign absolute priority for severely ill patients (for example,

KPI-1 & KPI-2). However, for the other classes where the potential for severe health degrada-

tion is not evident, it is more appropriate to reflect the incurred waiting time of a patient when

assigning its current priority. (Furthermore, these respective groups of severely ill and less ur-

gent patients are often treated in different areas of a hospital, which justifies modelling each at

its own queue.) The APQ discipline provides a more balanced approach to select customers for

service, and consequently better regulates wait times for various classes of customers. Under

the APQ, a patient from a lower priority class who goes through an extraordinarily long wait-

ing time will eventually accumulate enough priority to enter service before recently-arriving
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patients from some higher priority class.

Table 3.1: CTAS Key Performance Indicators (KPIs)

Level Level of acuity Response time Sample diagnosis Targets

1 Resuscitation Immediate Cardiac arrest 98%

2 Emergent < 15 mins Chest pain 95%

3 Urgent < 30 mins Moderate asthma 90%

4 Less urgent < 60 mins Minor trauma 85%

5 Non urgent < 120 mins Common cold 80%

Sharif et al. [21] extended the work of Stanford et al. [24] to the multi-class multi-server

APQ with Poisson arrivals and a common exponential service time. They established the wait-

ing time distributions for various classes of customers in such a homogeneous multi-server

system. They also commented on how to select the accumulation rates to meet a specific goal

for each priority class.

Returning to the issue of service dispatch policies, work in this area was initiated by Morse

[18], who in 1958 was the first to consider the analysis of multi-server systems (although

his main focus was on homogeneous cases). Saaty [19] found the Laplace-Stieltjes transfor-

m (LST) of the transient probabilities of multi-server FCFS queues with Poisson arrivals and

exponential service times at a common rate, where the explicit expressions for the stationary

probabilities were derived for the two-server case. Subsequently, he discussed the LST of the

transient probabilities in the two-server system with two different exponential service distri-

butions operating under a specific service dispatch policy (i.e., when both servers are idle, the

server is chosen by an arriving customer according to the proportion of its service rate to the

total service rate).

Gumbel [8] discussed an M/Mi/c queue with c heterogeneous servers under the Randomly

Chosen Server (RCS) dispatch policy. He derived expressions in closed form for the stationary

probabilities and the expected queue length. He also pointed out that there is no equivalent

system with homogeneous servers present. (By “no equivalent system”, we mean there exists
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no homogeneous system which simultaneously has the same probability of all servers being

busy, and the same aggregate service rate.) He then analyzed the degree of error incurred from

the assumption that each server is working at an equal rate which is the average of all the

service rates. Krishnamoorthi [15] studied an M/Mi/2 queue with two heterogeneous servers

under a general service dispatch policy, where a newly-arriving customer chooses server 1 with

probability p1 and server 2 with probability 1 − p1 when both servers are idle. The LST of the

transient state probability distribution of the queue length was derived.

Singh [23] considered an M/Mi/2/N/(β) queue with two heterogeneous servers operating

under the following two rules: (i) when both servers are idle, customers always choose the

fast server and (ii) when both servers are busy, a customer joins the system with probability

β and starts to wait. A cost model was discussed in his paper, and various tables and graphs

representing the average characteristics of both the homogeneous and heterogeneous systems

were given. Sharma and Dass [22] considered an M/Mi/2/N queue with two heterogeneous

servers under the general service dispatch policy considered in Krishnamoorthi [15] to derive

the probability density function of the busy period. More recently, Mokaddis and Matta [17]

studied an M/Mi/3 queue with three heterogeneous servers under the general service dispatch

policy in Krishnamoorthi [15], where they used the Gauss-Jordan elimination method to solve

the stationary probabilities. Grassmann and Zhao [7] studied a queuing system with multiple

heterogeneous servers and general inputs, where the stationary probabilities were calculated

using different rules to allocate the arriving jobs and computation issues were discussed.

All of the cited papers focus on the queue length distributions. However, it is possible to

obtain the FCFS waiting time distribution from the queue length distribution. A newly-arriving

customer’s waiting time comprises one exponentially-distributed interval between successive

service completions for every waiting customer found upon arrival. By conditioning upon the

number of such waiting customers, and the fact that the queue length is geometric, it is possible

to show that the waiting time distribution has an exponential tail.

In the present work, we investigate a multi-class multi-server queue with Poisson arrivals

and heterogeneous exponentially-distributed service times under the APQ and related disci-
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plines, where different service dispatch policies are considered. We extend the APQ approach

to our heterogeneous multi-server, multi-class queue, obtaining the waiting time distribution

for each class of customers. By taking various limits of the ratios of the accumulation rates

involved, we are able to recover the waiting time distributions for each class under both the

FCFS and classical priority queuing disciplines as well.

The rest of this paper is organized as follows. The model is introduced in Section 3.2, a-

long with our notational conventions and relevant definitions. A conservation law for M/Mi/c

systems is presented in Section 3.3. The probability of all servers being busy under different

dispatch policies is discussed in Section 3.4. An optimization problem of finding the optimal

level of heterogeneity in an M/Mi/2 system to minimize a particular cost function is investi-

gated in Section 3.5. The waiting time distributions under the APQ and related disciplines are

derived in Section 3.6. Numerical investigations are carried out in Section 3.7.

3.2 Model description

We consider a multi-class multi-server queue with Poisson arrivals and heterogeneous servers,

each with its own exponentially distributed service times. There are K ∈ N classes of cus-

tomers. Customers of class k, k = 1, 2, . . . ,K arrive independently to the queue according to

a Poisson process with rate λk. A class-k customer accumulates priority while waiting at rate

bk, where b1 ≥ b2 ≥ · · · ≥ bK ≥ 0. A class-k arriving at time t will have accumulated priority

bk(t′ − t) by time t′. At a service completion instant, the next waiting customer to be served

is the one with the greatest accumulated priority at that instant. We observe that by setting

b1 = b2 = · · · = bK , the FCFS case is obtained. Similarly, by setting bK = 1 and bk = bk+1 ∗ M

for k = K−1,K−2, . . . , 1, the classical priority queue is obtained in the limit as M → ∞. Thus,

the APQ discipline itself provides a unifying framework for all three queuing disciplines.

Let A(k) denote the inter-arrival time random variable (r.v.) for class-k customers, k =

1, 2, . . . ,K. Hence, A(k) has an exponential distribution with rate λk, which we simply write as

A(k) ∼ Exp(λk). Furthermore, if we let A denote the aggregate inter-arrival time r.v., then by the
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aggregation property of Poisson processes (see, for instance, Conway et al. [4]), it follows that

A ∼ Exp(λ). Conversely, from another well-known property of independent Poisson processes,

we understand the probability that a randomly chosen customer belongs to class k to be λk/λ.

There are c ∈ N servers in the system, whose service times are independent and exponen-

tially distributed with heterogeneous service rates µi, i = 1, 2, . . . , c. We let µ denote the service

rate vector µ = {µ1, . . . , µc} and assume, without loss of generality, that µ1 ≥ µ2 ≥ · · · ≥ µc ≥ 0.

We define the cohort inter-completion time to be the time between service completions when

the full cohort of c servers is working in parallel. Whenever all servers are busy, the cohort

inter-completion times are exponentially distributed at the sum of the rates µa =
∑c

i=1 µi.

The utilization levels, overall and by class, are defined by ρ = λ/µa and ρk = λk/µa, so that

ρ =
∑K

k=1 ρk. To ensure the system is stable we assume that ρ < 1, thereby ensuring that the

system becomes idle occasionally, with probability one.

When a customer arrives during an idle period, it commences service with one of the idle

servers based on the employed service dispatch policy. The family of service dispatch poli-

cies which we consider in this paper are those covered by the so-called “r-dispatch policy”,

introduced by Doroudi et al. [5]. Specifically, if we let C denote the set of idle servers for the

current state, then, under the r-dispatch policy, the probability that server i ∈ C is chosen to

serve the newly-arriving customer is given by

pi(C; r) =
(µi)r∑
j∈C(µ j)r , r ∈ R. (3.1)

The principle advantage of this approach is that it enables us to recover four popular server

selection strategies by an appropriate choice of r. Setting r = 0 leads to the Randomly Chosen

Server (RCS) policy; as r → ∞, it approaches the Fastest Server First (FSF) policy; as r → −∞,

it approaches the Slowest Server First (SSF) policy; and setting r = 1 results in the Rate

Balancing Selection (RBS) policy.

Consider the case when all servers are idle. For simplicity, we write for i = 1, 2, . . . , c,

pi = pi({1, 2, . . . , c}; r). The RCS implies that p1 = p2 = · · · = pc = 1/c, whereas the FSF

implies that p1 = 1, and pi = 0 for i = 2, 3, . . . , c, the SSF implies that pc = 1, and pi = 0 for

i = 1, 2, . . . , c − 1, and RBS implies that pi = µi/µa, for i = 1, 2, . . . , c.
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With multiple heterogeneous servers, we require a measure of the level of heterogeneity

when comparing otherwise similar systems. The Gini index arose in the field of econometrics,

as a measure of disparity in income distributions. Alves et al. [2] suggested the application of

the Gini index in the multi-server queuing system to measure the degree of disparity (i.e., level

of heterogeneity) in server speeds. We define a vector of Gini-like coefficients denoted by G to

evaluate the level of heterogeneity in the multi-server system, so that, G = {Gi, i = 1, . . . , c.}.

The ith such index Gi is defined by

Gi =
µ1 − µi

µ1 + µi
i = 1, . . . , c. (3.2)

As the level of heterogeneity increases, it is reflected in an increased Gi: with µ1 ≥ µ2 ≥ · · · ≥

µc, it is readily seen that 0 = G1 ≤ G2 ≤ · · · ≤ Gc ≤ 1. (When no subscript appears for G, it is

to be assumed that G = Gc, the largest level of heterogeneity in the system.)

Whenever all the values in G are zero, we are dealing with a homogeneous system of

identical server speeds. If any value G j ∈ G; j = 2, . . . , c approaches one, it means that the

fastest server is orders of magnitude faster than the jth server, which implies that for the slower

servers l > j, Gl also approaches one.

3.3 A conservation law for M/Mi/c systems

In this section, we derive a conservation law for the mean waiting times associated with any

non-preemptive and work-conserving M/Mi/c system such as the one considered in this paper.

Note that our conservation law builds upon the well-known conservation law pertaining to the

M/G/1 case which was first established by Kleinrock [11, 14]. To obtain this conservation

law, one deals with the unfinished workload process U(t), defined to be the total amount of

work present in the system at time t still to be completed by the server. Specifically, if we let

Ū = limt→∞ E{U(t)}, then Kleinrock’s conservation law can be expressed as

K∑
k=1

ρkmk = Ū −W0 (3.3)
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where W0 denotes the average residual service time, ρk represents the long-run fraction of time

that the server is occupied with work from class k, and mk denotes the class-k mean waiting

time, for k = 1, 2, . . . ,K. In the M/G/1 case, Kleinrock [11, 14] is able to establish that

Ū = W0/(1 − ρ) and W0 = (
∑K

k=1 λkE{S 2
k})/2 where E{S 2

k} denotes the second moment of

the service time distribution for class-k customers. All work-conserving queuing disciplines

satisfy these results.

Turning to the multi-server heterogeneous case, our extension of the unfinished workload

is the release time at time t, denoted by V(t), which we define as the amount of time until a

server can become idle, given the work present at time t. It is readily seen that in a single-server

system, the release time and the unfinished workload are the same. A typical sample path of

the release time is shown in Figure 3.1.

t

V (t)

Arrival seizing the
last idle server

First server to complete
when no one is waiting

Figure 3.1: A sample path of the release time.

The proof which follows requires the system to be work-conserving, so that Figure 3.1

applies. This means that servers never become idle when there is work to be done, customers

do not renege, and the release time process only increases at arrival instants by the amount of

work the arriving customer brings into the system. For clarity of exposition, we assume that

the system is non-preemptive, but this can in fact be relaxed to allow for preemptive resume

systems. The resulting theorem can be stated as follows:
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Theorem 3.3.1. For any stable M/Mi/c system operating under any non-preemptive work-

conserving queuing discipline, we have

K∑
k=1

ρkmk = V̄ − V0 (3.4)

where V̄ = limt→∞ E{V(t)} represents the limiting expected value of V(t) over time, and V0

denotes the expected residual cohort inter-completion time.

Proof. Paralleling Kleinrock’s derivation in Kleinrock [11, 14], we can express V(t) as

V(t) = x0 +

K∑
k=1

Nqk (t)∑
i=1

xik (3.5)

where x0 denotes the residual cohort inter-completion time if all servers are busy at time t,

Nqk(t) represents the number of waiting customers present from class k at time t, and xik repre-

sents the cohort inter-completion time from when the ith waiting customer from class k com-

mences service until the subsequent service completion instant by any server. The xik’s are

non-overlapping and independent of each other, with each being exponentially distributed at

rate µa =
∑c

l=1 µl. Therefore, letting Nqk = limt→∞ Nqk(t) denote the limiting number of class-k

customers in the queue, by taking expectations on both sides of equation (3.5) we obtain

lim
t→∞

E{V(t)} = V0 + lim
t→∞

K∑
k=1

E{Nqk(t)}/µa

= V0 +

K∑
k=1

E(Nqk)/µa

= V0 +

K∑
k=1

λkmk/µa, (3.6)

where the latter equation arises as a result of Little’s Law [16]. Therefore

V̄ = V0 +

K∑
k=1

ρkmk (3.7)

and by rearrangement, equation (3.4) is obtained. �

In order to proceed further, we need to determine the probability that all servers are busy,

which in turn depends upon the service dispatch policy. We therefore define π(µ, c; r) as the
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probability that all c heterogeneous servers are busy under the particular r-dispatch policy in

effect. Two facts facilitate the following analysis. In a multi-server work-conserving system,

1) The dispatch policy only affects the state transitions when at least two servers are idle,

which in turn affects the global probability that all servers are busy. It has no effect once

all servers are busy.

2) The APQ mechanism affects who is selected for service when a choice needs to be made.

However, it does not affect the total number of customers present, as the service distri-

butions depend upon the specific servers, but not upon any customer characteristic.

Once all servers are busy, aggregate customer arrivals to the system occur according to a

Poisson process at rate λ, while the cohort inter-selection times are exponentially distributed

at rate µa. Thus, when the system is busy, transitions between adjacent such states follow the

classical birth-and-death behaviour (as seen from the rightmost part of Figure 3.2) in Section

3.4. For n = 0, 1, 2 . . ., let πn be the stationary probability of n customers in the system. The

portion of the state transition diagram pertaining to busy states, when solved according to the

birth-and-death equations, gives rise to a geometric tail relative to the state πc when all servers

are busy but no one is waiting, yielding πn = πcρ
n−c; n ≥ c, so that

π(µ, c; r) =

∞∑
n=c

πn =
πc

1 − ρ
. (3.8)

The probability of c customers present in the system, πc, depends on the dispatch policy in

the system. Thus, the probability of all servers being busy is affected by the dispatch policy,

but not by the APQ discipline.

Corollary 3.3.2. In any M/Mi/c system and any non-preemptive work-conserving queuing

discipline, for a given r-dispatch policy, we have
K∑

k=1

ρkmk =
π(µ, c; r)

µa
·

ρ

1 − ρ
, ρ < 1. (3.9)

Proof. Since the cohort inter-selection time is only positive once all servers are busy, it follows

that

V0 = π(µ, c; r)
( 1
µa

)
. (3.10)
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As Poisson arrivals see time averages (see Wolff [25]), the average release time will be

the same as the mean waiting time for the aggregated class of all customers, which can be

computed using Little’s Law in Little [16] as

V̄ =
1
λ

∞∑
i=1

iπc+i =
1
λ

∞∑
i=1

iρiπc =
πc

µa(1 − ρ)2 =
π(µ, c; r)
µa(1 − ρ)

=
V0

1 − ρ
. (3.11)

Substitution for V̄ and V0 in equation (3.4) using equations (3.11) and (3.10) leads to equation

(3.9). �

Remark In an M/Mi/c queue, as Gi → 1, µ1 → µa and µi → 0 for i = 2, 3, . . . , c, then

π(µ, c; r)→ ρ, ⇒
π(µ, c; r)

µa
·

ρ

1 − ρ
→

ρ2

µa(1 − ρ)
,

which means that the conservation law for M/Mi/c queues approaches the conservation law

for M/M/1 queues as the level of heterogeneity increases to one in the heterogeneous system.

Remark Kleinrock [12] derived the expressions for the average waiting times for different

classes in a single-server APQ. By direct parallel in the multi-server case, the average waiting

time for class-k in a multi-class APQ with heterogeneous servers, for k = 1, 2, . . . ,K, is readily

found to be given by

mk =
π(µ, c; r)/(µa − λ) −

∑K
j=k+1 ρ j(1 − b j/bk)m j

1 −
∑k−1

j=1 ρ j(1 − bk/b j)
. (3.12)

Having determined the conservation law in terms of π(µ, c; r), we turn in the next section

to how to determine this probability in terms of the specified dispatch policy.

3.4 The stationary probability of the system being busy for

M/Mi/c queues

An arriving customer in our model may find that:

• At least one server is idle, in which case it will be assigned to a server according to the

r-dispatch policy in effect (whenever two or more servers are idle).
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• All servers are engaged, in which case it starts to wait and accumulate priority.

In what follows, we focus on the calculations of the stationary probabilities, πn; n = 0, 1, . . . , c,

when no one is waiting, where the dispatch policy can matter. The remaining state probabilities

πn; n = c+1, c+2, . . . are related to πc via πn = πcρ
n−c, regardless of the service dispatch policy.

In 1960, Gumbel [8] derived the stationary probabilities under the assumptions of Poisson

arrivals and exponentially distributed service times, with a different service rate for each server

under RCS. The RCS policy satisfies the local-balance equations, and as such, it was possible

for Gumbel to come up with an explicit product form solution for the stationary distribution,

for all c. The stationary probability π(µ, c; 0) can be directly calculated from his work (Gumbel

[8]):

π(µ, c; 0) =
πc

1 − ρ
=

(
1

1−ρ +
∑c

j=1 j!Cc
j

)−1

1 − ρ

=
1

1 + (1 − ρ)
∑c

j=1 j!Cc
j
, (3.13)

where

Cc
j =

1
λ j

c− j+1∑
a1=1

c− j+2∑
a2=a1+1

· · ·

c− j+ j−1∑
a j−1=a j−2+1

c∑
a j=a j−1+1

µa1µa2 · · · µa j .

For example, C3
2 = 1

λ2

2∑
a1=1

3∑
a2=a1+1

µa1µa2 =
(
µ1(µ2 + µ3) + µ2µ3

)
/λ2. Note that Cc

c = Πc
i=1

µi
λ

,

Cc
1 =

∑c
i=1

µi
λ

= 1/ρ and Cc
0 = 1.

As for non-RCS dispatch policies, in 1963, Krishnamoorthi [15] studied the Poisson queue

with two heterogeneous servers, where the stationary probabilities were solved via differential-

difference equations. The stationary probabilities can also be obtained from the global balance

equations. Let states (1, 0) and (0, 1) denote the states where one server is busy in the system,

with the position of the 1 indicating which server is busy, as well as π1,0 and π0,1 be their

stationary probabilities respectively, where π1,0 + π0,1 = π1. When a customer arrives to an idle

system, it can be served by server 1 with probability p1 or by server 2 with probability p2. By

the properties of the Poisson distribution, the transition rate from state 0 to state (1, 0) is p1λ

and the transition rate from state 0 to state (1, 0) is p2λ. Then, the stationary probability πn
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can be solved from the following global balance equations (i.e., probability flow into the state

equals the flow out of the state):

λπ0 = µ1π1,0 + µ2π0,1,

(λ + µ1)π1,0 = p1λπ0 + µ2π2, (3.14)

(λ + µ2)π0,1 = p2λπ0 + µ1π2,

πn+1 = ρπn, n ≥ 2.

The results of πn; n ≥ 0 are consistent with the ones in Krishnamoorthi [15]. By equation (3.2),

G = (µ1−µ2)/µa in the two-server case, which implies µ1 = µa(1 + G)/2 and µ2 = µa(1−G)/2.

Thus, from equation (3.8), we are able to express the stationary probability π(µ, 2; r) in terms

of the particular r-dispatch policy as

π(µ, 2; r) =
2λ2

(
1 + 2ρ − G(p1 − p2)

)
µ2

a(1 − G2) − λµa

(
G2 + 2G(p1 − p2) − 3

)
+ 2λ2(1 + G2)

. (3.15)

Subsequently, Mokaddis and Matta [17] derived the stationary probabilities of a Poisson

queue with three heterogeneous servers. They used the Gauss-Jordan elimination method to

solve for the probabilities. As the results involved 52 variables, the expressions are already

marginally tractable in terms of being able to interpret the impact of various parameters on the

performance measures of interest, so we do not replicate their results here. Interested readers

are directed to Mokaddis and Matta [17] for the details.

While it would be of interest to extend this to a system with an arbitrary number c > 3 of

heterogeneous servers, one can anticipate that the expression for π(µ, c; r) would be even more

complicated than the three server case. Thus, we need to find a suitable numerical method

to compute the probability π(µ, c; r) for an arbitrary number of servers under non-RCS poli-

cies. In Grassmann [6], several numerical methods are introduced, such as the state reduction

method and other block-elimination methods. Grassmann and Zhao [7] also discussed sev-

eral numerical methods for the solution of the heterogeneous systems and concluded that the

state probabilities can be computed efficiently for up to 10 servers; however, all methods be-

come problematic for a system with more than 20 servers. Interested readers are directed to
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Grassmann and Zhao [7] for the details.

When extended to a Poisson queue with c heterogeneous servers assuming exponential

service rates µ1 ≥ µ2 ≥ · · · ≥ µc, there are 2c boundary states of interest. The structure of the

state transition diagram is shown in Figure 3.2. In order to understand the relationships among

the 2c states, we chose three neighboring states (denoted by the three rectangular-shaped states

in Figure 3.2) to describe the transition process between adjacent levels.
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Figure 3.2: State-transition-rate diagram with arbitrary number of servers.
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We define i j to be an indicator function, such that

i j =


1 : server j is busy.

0 : server j is idle.

Furthermore, let~im represent the collection of state vectors (i1, . . . , ic) such that
∑c

j=1 i j = m.

An arrival finding m−1 busy servers where m < c, causes the system to transit to a new system

state, in which m servers are busy. In other words, the system changes from being in state

i ∈~im−1 to a state j ∈~im such that j − i is a vector whose entries are all zero except for the one

corresponding to the server that attends to the newly-arriving customer. Similarly, if there is a

service completion in a state with (m + 1) busy servers, then the system changes from a state

i ∈ ~im+1 to a state j ∈ ~im, such that j − i is a vector of zeros except for the entry corresponding

to the server that had just become idle. Moreover, the state vector j ∈ ~im indicates the set of

idle servers at the current state, i.e., C j = {s : is = 0, is ∈ j}. We choose to write the probability

that idle server s ∈ C j is chosen under the r-dispatch policy as ps(C j; r).

To illustrate, in Figure 3.2, we consider the cases for which the fastest servers are the ones

that are busy during the states ~im−1, ~im and ~im+1. In particular, if we let i∗n, n < c, denote the

vector i ∈~in whose first n entries are all equal to one, then the transition rate from state i∗m−1 to

state i∗m is λpm(Ci∗m−1
; r). Similarly, the transition rate from state i∗m to state i∗m+1 is λpm+1(Ci∗m; r).

The transition rates from state i∗m+1 to state i∗m and from state i∗m to state i∗m−1 are µm+1 and µm

respectively.

Then, we can write the global balance equation of state i∗m as follows: for is ∈ i∗m,λ +
∑
s:is=1

µs

 πi∗m =
∑
s:is=1

λps(Ci∗m−1
; r)πi∗m−1

+
∑
s:is=0

µsπi∗m+1
. (3.16)

The left hand side of the equation represents the rate of flow from state i∗m, where λπi∗m is the

rate of transition to state i∗m+1 due to an arrival, and
∑

s:is=1 µsπi∗m is the rate of transition to state

i∗m−1 due to a service completion. The right hand side of this equation presents the rate of flow

into state i∗m, where
∑

s:is=1 λps(Ci∗m−1
; r)πi∗m−1

is the sum of arrival rates causing a transition to

state i∗m, and
∑

s:is=0 µsπi∗m+1
is the rate of transition to state i∗m due to a service completion.
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The global balance equations for all the 2c boundary states can be written out in the form

of equation (3.16). To solve for π(µ, c; r) requires one to solve 2c such equations in as many

variables. Thus, an increase of one server doubles the number of boundary states to be solved.

Since solving n equations in n variables requires O(n3) operations, this implies that the com-

putational effort increases by a factor of 8 as a result of increasing c by 1 (see Grassmann and

Zhao [7]). This underscores even further our intent to resort to a numerical method when deal-

ing with cases of c > 3. However, this is not the focus of this paper, so that in what follows,

we consider only cases where c ≤ 3.

3.5 Optimizing the level of heterogeneity in M/Mi/2 systems

In this section, we focus on finding the optimal level of heterogeneity G to minimize an appro-

priately defined cost, and the optimal range of G in which the r-dispatch policies have lower

cost than the homogeneous system. We consider the following cost function:

F(c, r,G) = π(µ, c; r) ·
ρ

1 − ρ
, (3.17)

where G is the decision variable. In light of equation (3.9), we can interpret F(c, r,G) as

the conservation law’s right-hand side constant (scaled in units of 1/µa), which is the average

number of waiting customers. Since µa is fixed, as a result of the specified service rates, any

overall system improvement gained in terms of a lower F(c, r,G) will be as a result of its

particular r-dispatch policy.

We have previously observed when discussing Mokaddis and Matta [17] that the analytic

expressions for the case of three or more servers are too complicated to ascertain the influ-

ence of specific parameters. However, in the two-server case, we are able to establish some

analytical results about optimal levels of heterogeneity under a given r-dispatch policy.

Intuitively, one might anticipate that greater heterogeneity leads to greater congestion. This

is certainly true under the SSF and RCS dispatch policies, but we shall see that, in fact, there

exists a range of G values in the two-server case for which our cost function in fact decreases
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under the FSF dispatch policy. We will postpone discussion of the RBS case to the end of the

section.

Lemma 3.5.1. In a two-server queue under any work-conserving queuing discipline, for r ≤ 0

(i.e., p1 ≤ p2), the minimum value of function F(2, r,G) occurs in the homogeneous case. For

r > 0 (i.e., p1 > p2), the optimal value of G that minimizes the function F(2, r,G), denoted by

G∗, is given by

G∗ =
2ρ + 1 −

√
(2ρ + 1)2 − (p1 − p2)2

p1 − p2
. (3.18)

When r is sufficiently large, an optimal range of G can be found for which the function F(2, r,G)

is an improvement upon the homogeneous case, and the optimal range is given by

G ∈
(
0,

p1 − p2

1 + 2ρ

)
. (3.19)

Proof. Consider the probability π(µ, 2; r) as given by equation (3.15), where we have arbitrarily

set µa = 2. We choose to make explicit the dependence of the cost function upon G; this yields

F(2, r,G) =
2ρ3 (2ρ + 1 − G (p1 − p2))

(1 − ρ)
(
2
(
G2 + 1

)
ρ2 +

(
3 − G2 + 2G (p2 − p1)

)
ρ + 1 − G2

) . (3.20)

Taking the first partial derivative of F(2, r,G) with respect to G, we get

∂

∂G
F(2, r,G) =

2(2ρ + 1)ρ3
(
4ρG + (G2 + 1) (p2 − p1) + 2G

)
( (

2
(
G2 + 1

)
ρ2 +

(
3 − G2 + 2G (p2 − p1)

)
ρ + 1 − G2) )2 . (3.21)

It is readily seen that when r ≤ 0, equation (3.21) is nonnegative for all ρ ∈ (0, 1) and

G ∈ [0, 1]. Thus, no improvement can be gained over a homogeneous system when r ≤ 0.

Turing to the case where r > 0, we compute the second partial derivative

∂2

∂G2 F(2, r,G) =
8ρ3(2ρ + 1)(

2
(
G2 + 1

)
ρ2 +

(
3 − G2 + 2G (p2 − p1)

)
ρ + 1 − G2

)3 ·(
2
(
1 − 3G2

)
ρ3 +

(
4 + (p1 − p2) G(G2 + 3)

)
ρ2 −

1
2

(
(p1 − p2) G(G2 + 3)

−9G2 + 2(p1 − p2)2 − 5
)
ρ −

1
2

(p1 − p2) G(G2 + 3) +
1
2

(1 + 3G2)
)
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≥
4ρ3

(
4ρ2(ρ + 2) − ρ(2(p1 − p2)2 − 5) + 1

)
(2ρ + 1)2(ρ + 1)3

> 0. (3.22)

Thus, the second partial derivative of F(2, r,G) is positive for all ρ ∈ (0, 1) and G ∈ [0, 1].

(We note that the second last line above corresponds to the curvature in the homogeneous case.)

To find the optimal value of G in this case, we set equation (3.21) equal to zero, and solve for

G∗, obtaining equation (3.18). For example, the optimal level of heterogeneity that minimizes

the function F(2,∞,G), the FSF policy, occurs at G∗ = 1 + 2ρ − 2
√
ρ(1 + ρ).

When r is sufficiently large (discussed in Corollary 3.5.2), it is possible to find a lower cost

function F(2, r,G) than the one in the homogeneous case which is 2ρ3/(1 − ρ2). An optimal

range of G obtained for which the function F(2, r,G) is an improvement upon the homogeneous

case is given by

F(2, r,G) <
2ρ3

1 − ρ2 , ⇒ 0 < G <
p1 − p2

1 + 2ρ
. (3.23)

�

Remark Equation (3.19) shows that the optimal range of the level of heterogeneity decreases

as ρ increases.

Remark Lemma 3.5.1 shows that under the RCS and SSF cases where p1 ≤ p2, the SSF

and RCS dispatch rules have higher cost than the homogeneous case. The second half of the

lemma establishes FSF has a range of values of the level of heterogeneity in the system which

can result in a lower cost then the homogeneous case. While this would seem at first glance to

be true as well for RBS since p1 > p2, in fact under RBS, it is seen that G = p1 − p2 which

exceeds the upper limit. A modification to RBS which attenuates sufficiently the probability of

selecting the faster server could lead to improvement over the homogeneous case.

Corollary 3.5.2. Consider a two-server queue operating under a work-conserving queuing

discipline, and define

r∗ =
ln (µ1 + ρ(µ1 − µ2)) − ln (µ2 − ρ(µ1 − µ2))

ln (µ1) − ln (µ2)
. (3.24)
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Then an improvement can be gained over the homogeneous system with the same aggregate

rate if and only if r > r∗.

Proof. In order to find the range of r which can lead to a lower cost than the homogeneous

case, we take the difference, for simplicity denoted as DG, between the Gini-like coefficient G

from the definition in equation (3.2) and the upper bound of G in equation (3.19).

DG = G −
p1 − p2

1 + 2ρ
=
µ1 − µ2

µa
−

µr
1 − µ

r
2

(µr
1 + µr

2)(1 + 2ρ)
. (3.25)

When DG ≥ 0, the corresponding r-dispatch policy may have a higher cost than the homoge-

neous case; while, when DG < 0, a lower cost can be found. As G ∈ [0, 1] and p1−p2 ∈ [−1, 1],

−1/(1 + 2ρ) ≤ DG ≤ 2(1 + ρ)/(1 + 2ρ). Moreover, DG is decreasing with r. Thus, there is a

single point of r to separate the case of DG ≥ 0 and DG < 0, and we denote this point by r∗.

Clearly, r∗ is the solution when DG = 0, as shown in equation (3.24). So, when r > r∗, DG < 0,

which means that an improvement can be gained over the homogeneous case. �

Having obtained π(µ, c; r) and the mean waiting times in terms of the dispatch policy, in the

next section we turn to the determination of waiting time distributions for the APQ discipline

in the multi-server heterogenous setting.

3.6 Waiting time distributions for M/Mi/c queues under APQ

and related disciplines

We seek the waiting time distribution before service commences under the APQ discipline in

terms of its LST for each customer class. From these results, we will obtain the corresponding

distributions under the FCFS and classical priority disciplines by appropriate choices of the

accumulation rates. The numerical examples to follow in the next section will be obtained via

numerical inversion of the corresponding LSTs.

For k = 1, 2, . . . ,K, let W̃ (k)(s;µ, c, r) denote the LST of the stationary class-k waiting time

distribution in an M/Mi/c APQ under the r-dispatch policy and with service rate vector µ. Let
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W̃ (k)
+ (s;µ, c) be the LST of the corresponding conditional waiting time distribution of a delayed

class-k customer. Then for k = 1, 2, . . . ,K,

W̃ (k)(s;µ, c, r) = (1 − π(µ, c; r)) + π(µ, c; r)W̃ (k)
+ (s;µ, c). (3.26)

Lemma 3.6.1. The LST of the conditional waiting time distribution for class-k operating under

the APQ discipline in the M/Mi/c queue can be related to the comparable measure in an

M/M/1 APQ as follows:

W̃ (k)
+ (s;µ, c) = W̃ (k)

+ (s; µa, 1); k = 1, 2, . . . ,K. (3.27)

Proof. When the cohort is fully busy, the cohort inter-completion times are exponentially dis-

tributed with parameter µa =
∑c

j=1 µ j. The same is true of a busy single exponential server

working at rate µa. Thus, given the same arrival classes and distributions operating under the

APQ discipline, the conditional waiting time distributions must be the same. �

Remark The same idea applied here was also used for the multi-server APQ with a common

service rate in Sharif et al. [21].

The foregoing lemma enables us to invoke the conditional waiting time results of Stanford

et al. [24] for the single server case with service rate µa, which allows for class-dependent

service time distributions. The various conditional waiting time distributions therein were

obtained in a recursive fashion, starting with the lowest priority class. Likewise, we start from

that perspective in the heterogeneous c-server case.

One further concept is needed in order to state the relevant result. It is possible for cus-

tomers of a given class (say, class k), or higher, to eventually accumulate enough priority to

exceed the maximum possible credit of a class-(k + 1) customer by that given point in time.

Such customers are said to have gained “accreditation relative to class (k + 1)” (see Stanford et

al. [24]). Let Γ̃k(s), k = 1, 2, . . . ,K be the LST of the duration of a busy period during which

customers gain accreditation relative to class (k + 1). In other words, it represents the LST of

the time interval required to clear the system of those customers who have gained accreditation
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relative to class (k + 1). Its duration is the same as the duration of the busy period of an M/M/1

queue with arrivals rates Λk =
∑k

i=1 λi(1 − bk+1/bi) and service rate µa. It is well-known (Con-

way et al. [4]) that the solution to the implicit equation for the busy period LST in this case is

given by

Γ̃k(s) =
(µa + Λk + s) −

√
(µa + Λk + s)2 − 4Λkµa

2Λk
. (3.28)

Theorem 3.6.2. The waiting time distribution for the lowest priority class, conditional on it

being positive, has LST

W̃ (K)
+ (s;µ, c) =

µa(1 − ρ)
µa(1 − ρ) + g(s)

(3.29)

where g(s) = s + ΛK−1(1 − Γ̃K−1(s)).

Proof. The waiting time for a delayed class-K customer can be viewed as consisting of two

components. The first component is the virtual workload present upon their arrival, whose

distribution is the same as the stationary waiting time of delayed customers in the equivalent

M/M/1 queue with service rate µa. The second is the additional delay introduced by the cus-

tomers of higher classes who overtake the marked class-K customer. This portion of the delay

represents a “delay busy period” in the sense of Conway et al. ([4], page 151). When appro-

priate substitutions are made, equation (3.29) is obtained. The interested reader is directed to

Stanford et al. [24] for further details on this approach. �

Corollary 3.6.3. Under the FCFS discipline, the waiting time distribution for all classes, con-

ditional on it being positive, is exponentially distributed with parameter µa(1 − ρ).

Proof. The result follows directly from Theorem 3.6.2. First of all, note that by setting b1 =

b2 = · · · = bK , the APQ discipline becomes exactly the FCFS discipline. Furthermore, under

this setting, it is readily observed that ΛK−1 = 0. Therefore, it follows from equation (3.29) that

W̃ (K)
+ (s;µ, c) =

µa(1 − ρ)
µa(1 − ρ) + s

, (3.30)

which is the LST of an exponential distribution with parameter µa(1 − ρ). The extension of the

above result to the remaining classes is due to the fact that W̃ (1)
+ (s;µ, c) = W̃ (2)

+ (s;µ, c) = · · · =

W̃ (K)
+ (s;µ, c) under the FCFS discipline. �
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Returning to the general case, the recursion we employ to obtain the waiting time distribu-

tions for the higher priority classes proceeds in sequence for k = K −1,K −2, . . . , 1 on account

of equation (3.27) and the corresponding result in Stanford et al. [24] as follows:

W̃ (k)
+ (s;µ, c) =

(
bk+1

bk

)
W̃ (k+1)

+

(
bk+1

bk
s;µ, c

)
+

(
1 −

bk+1

bk

)
W̃ (k)

acc(s) (3.31)

where W̃ (k)
acc(s) is defined as the LST of the waiting time of a class-k customer who is served

“at accreditation level k”. A discussion of accreditation and the related formulas needed to

determine the waiting time distributions can be found in Appendix A.1, as well as the waiting

time expressions for the classical priority queue.

3.7 Numerical investigations

Our first numerical example is loosely drawn from the CTAS model, assuming servers working

at heterogeneous rates. We mainly focus on CTAS-3 (urgent) and CTAS-4 (less urgent) patients

with the APQ model. From Table 3.1, the KPI-3 suggests that CTAS-3 patients should be seen

within 30 minutes at least 90% of the time; and the KPI-4 suggests that CTAS-4 patients be

seen within 60 minutes at least 85% of the time.

We use the Gaver-Stehfest (GS) algorithm (Abate and Whitt [1]) with M = 5 to invert the

LSTs of the waiting time distributions, which can provide four significant digits of accuracy.

Simulation experiments were carried out to verify the results from GS. Each simulation run

consisted of one million customers.

3.7.1 Gaver-Stehfest evaluation and simulation

We start with the results for a two-class, two-heterogeneous-server APQ model with 4 types

of dispatch policies (RCS, FSF, SSF and RBS) comparing the class-1 (CTAS-3) with class-

2 (CTAS-4) patients, based on the following parameters: the arrival rates are λ1 = 0.9 and

λ2 = 0.8 for class-1 and class-2 patients, respectively, while the service times are exponentially

distributed with µ1 = 1.9 and µ2 = 0.1 (resulting in G = 0.9) for server-1 and server-2 respec-
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Figure 3.3: The GS evaluation of the waiting time distribution function for class-1 and class-2

customers under RCS (G = 0.9).
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tively. Thus, the resulting occupancy level ρ is 85% with the assumed parameters. In all of our

examples, we set b1 = 1 and let b2 ≡ b which assumes one of the three values in {0, 0.5, 1}.

Figure 3.3 shows the waiting time distributions of class-1 and class-2 under RCS. We note

that the GS evaluation and the simulation result for b = 0.5, which was run as a check, overlap

each other, thereby confirming the accuracy of the results. In Figure 3.3 (a), we notice the

cumulative distribution function (c.d.f.) of the waiting time for class-1 is stochastically smallest

when b = 0 (i.e., classical priority) and stochastically largest when b = 1 (i.e., FCFS), as

expected. To ensure class-1 patients meet their CTAS requirement, the maximum value of b is

0.1531. Similarly, in Figure 3.3 (b), the c.d.f. of the waiting time for class-2 is stochastically

smallest when b = 1 and stochastically largest when b = 0. A minimum value of b ≥ 0.9069 is

required in order for class-2 patients to meet their target. Thus, there is no common value of b

so that both classes can simultaneously meet their KPIs for the given arrival and service rates.

We also have tested our model in the homogeneous case with a common service rate µ1 =

µ2 = 1 (G = 0), where the parameters used are the same as Sharif et al. [21]. We remark that

our results are in agreement with theirs. In the homogeneous case, the maximum value of b

to allow class-1 patients to meet their requirement is 0.1647, and the minimum value of b for

class-2 to meet their target is 0.825, so we can see that heterogeneity makes it harder to comply

with the KPIs.

3.7.2 The impact of the level of heterogeneity

Next we address the impact of the level of heterogeneity on the chosen cost function F(2, r,G)

for the two-server case, as a measure to compare the system under different dispatch policies.

We present a series of graphs with G to represent different levels of heterogeneity among the

servers on the x-axis and the values of the cost function on the y-axis, under the assumption

of λ1 = λ2 and µa = 2. For the first scenario, we set ρ = 81%, which is the maximum ρ to

comply with the KPIs in the two-server case as shown in Table 3.2. The second scenario is for

ρ = 90%, which can be considered as an example of the heavily loaded case. In Figure 3.4, the

dark grey horizontal line indicates the cost function of the homogeneous system. Several facts
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can be observed based on Figure 3.4:
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Figure 3.4: Range of the level of heterogeneity that minimizes the cost function.
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• As the level of heterogeneity increases, the value of the cost function increases and the

system performance decreases.

• The performance of the heterogeneous system can be better than the homogeneous sys-

tem at some levels of heterogeneity, under FSF. The optimal areas are bounded by the

dark grey horizontal line and the red curve on Figure 3.4.

• The system performance can be ranked, with FSF being best, followed by RBS, and then

RCS, and lastly SSF, as anticipated. RBS is more likely to select a faster server than

RCS.

• When the utilization level increases, the optimal area for which FSF outperforms the

homogeneous system is diminished in size.

We next explore the effect of the level of heterogeneity on the value of b for which both KPI

targets can be met. To answer this question, we have plotted the extremal values of b against G

for each class in the two-server case with λ1 = λ2, µa = 2 and ρ = ρmax = 81%. In the case of

Figure 3.5 (a) and (b), these correspond to the maximal values of b for which the class-1 and

class-2 KPI targets are met, respectively. From Figure 3.5 we observe that

• The maximal values of b for the class-1 KPI target is decreasing as the level of hetero-

geneity increases, and the range of maximal values is bounded by FSF and SSF, while

the minimal values of b for the class-2 KPI target is increasing with the level of hetero-

geneity.

• The FSF dispatch policy gives the greatest range of b values for which both classes meet

their targets. In Figure 3.5, b needs to be less than 0.298 for class-1 patients, while b

needs to be greater than 0.256 for class-2 patients. For both classes to meet their KPI

targets when G = 0.19, b must satisfy 0.256 ≤ b ≤ 0.298, which is the greatest range

of b under the utilization level ρ = 81%. When G approaches one, the values of b for

class-1 KPI is less than 0.264, and for class-2 KPI is greater than 0.387, which means
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Figure 3.5: Relationship between the value of b2 = b for which KPI targets can be met and

level of heterogeneity (G) with equal arrival rates and two servers (ρ = 81%).
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that there is no region of b for which both classes meet their targets. This is consistent

with the results from Table 3.2.

• The optimal range of the level of heterogeneity that promises the maximum range of b

for the KPI targets is the same for both classes of patients, and the same as the one for

the cost function in Figure 3.4 (a).

3.7.3 What are the optimal b and maximum ρ?

As we noted above with ρ = 85%, we cannot find a common b so that both classes of customers

can meet their KPI targets. It is therefore a matter of interest to wonder what values of b

and utilizations ρ enable both classes to meet their KPIs. In order to answer this question,

we illustrate a “feasible region” for such a goal by plotting the total utilization ρ on the x-

axis and the values of b along the y-axis. The feasible region which contains the permissible

combinations of b and ρ is the doubly-shaded area bounded by the maximal rate b for which

the class-1 KPI can be met (black curve) and the minimum rate of b for which the class-2 KPI

can still be met (red curve).

We compare the two-class two-server case and three-server case with equal arrival rates

λ1 = λ2 and a fixed sum of service rates µa = 2 with G = 0.9 under FSF, that is, µ1 = 1.9 and

µ2 = 0.1. Since ρ = λ/µa where µa = 2 and λ1 = λ2 = λ/2, then λ1 = λ2 = ρ. To be noted,

the stationary probability π(µ, 3; r), for r = {−∞, 0, 1, ∞}, are calculated by solving the global

balance equations. The expressions are listed in Appendix A.3.

Figure 3.6 (a) presents the two-server case. We found that when ρ > 80.4%, no value of b

can allow both classes of customers to meet their KPI targets simultaneously; when ρ ≤ 80.4%,

there is at least one b value for which both classes simultaneously meet their KPIs. Thus, we

call the specific utilization level that distinguishes the single permissable value of b for which

both classes meet their KPI targets as the maximum ρ, and the corresponding b as the optimal

b. In this case, the optimal b is 0.288. Figure 3.6 (b) presents the three-server case with equal

arrival rates, µa = 3 and G = {0, 0.31, 0.9}, that is, µ1 = 1.9, µ2 = 1 and µ3 = 0.1. The two
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Figure 3.6: Permissible range of values of 0 < b2 = b < 1 to meet the class-1 and class-2 KPIs

in the two-server and three-server case under FSF (G = 0.9).
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Table 3.2: Maximum ρ and optimal b with different levels of heterogeneity

c = 2 c = 3

Heterogeneity Policies ρmax (%) Optimal b Policies ρmax (%) Optimal b

G = 0 All 81.19 0.2860 All 87.16 0.3370

G = 0.4

SSF 80.93 0.2862 SSF 87.09 0.3390

RCS 81.05 0.2859 RCS 87.10 0.3387

RBS 81.10 0.2860 RBS 87.12 0.3387

FSF 81.20 0.2858 FSF 87.15 0.3389

G = 0.9

SSF 80.25 0.2858 SSF 86.86 0.3400

RCS 80.31 0.2876 RCS 86.89 0.3410

RBS 80.41 0.2876 RBS 86.91 0.3408

FSF 80.42 0.2881 FSF 86.94 0.3413

G = 1 All 80.08 0.2868 All 80.08 0.2868

graphs appear similar; however, the values of the maximum ρ increased to 86.9% and optimal

b increased to 0.34 as the number of servers increased.

Table 3.2 presents the maximum ρ and optimal b for the two-class two-server case and

three-server case with equal arrival rates and a fixed sum of service rates at different levels of

heterogeneity under four dispatch policies: SSF, RCS, RBS, FSF. We observe that the value

of ρmax decreases as the level of heterogeneity increases. Furthermore, the differences in the

optimal b values for the various dispatch rules under a given level of heterogeneity occur at the

third decimal place.
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Chapter 4

On waiting times for nonlinear

accumulating priority queues

4.1 Introduction

Long waiting times for various groups of customers have been a recurring problem in many

public systems, particularly in healthcare systems. Among the different techniques used to

manage such queues are various sorts of priority queuing discipline, which are appropriate

when diverse requirements of different classes of customer need to be met. However, in a

classical priority queue in which customers of a given priority are selected for service only

when there are no waiting higher priority customers, it is possible that customers from lower

priority classes may be overtaken repeatedly, and have to wait for an extremely long time.

Especially in a healthcare setting, where an extended wait might result in deterioration of a

patient’s condition, this is undesirable, and may well be unsustainable.

In order to deal with a similar problem in the context of computer processor design, a

modification to the classical priority discipline was proposed in 1964 by Kleinrock [4]. He

suggested that customers be allowed to accumulate priority as a linear function of their time

in the queue, at a rate that depends upon their urgency or classification. Thus, a low-priority

customer in a stable queue will eventually accrue enough priority to enter service no later,
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and typically at an earlier point in time, than if their waiting time were ignored. Kleinrock

[4] termed such a system a time dependent priority queue, and he derived a set of recursive

formulas for the expected waiting times for the different classes when arrivals are assumed to

be Poisson.

Recently, Stanford et al. [7] reconsidered Kleinrock’s model, renamed as the “accumulat-

ing priority queue” (APQ), obtaining the waiting time distribution for each class of customers

in terms of its Laplace-Stieltjes transform (LST). Their work was motivated by many health-

care applications whose performance is governed by Key Performance Indicators (KPIs), see

for instance CTAS [2], where the performance is measured in terms of the proportion of pa-

tients in a given acuity class who commence treatment before a specified time threshold. By

manipulating the rates of priority accumulation in the various classes, Stanford et al. [7] and

its successor Sharif et al. [6] showed that one can fine-tune an accumulating priority system to

meet stated KPIs that might not be met by a classical priority system.

A natural extension to the models of Kleinrock [4] and Stanford et al. [7], is to allow a

customer’s priority to accumulate as a nonlinear function of its waiting time. Such an extension

might seem to give decision makers more flexibility. For example, in a healthcare setting, it

might be a good idea to allow priority to increase at an increasing rate as a patient waits, to

reflect the fact that treatment could become even more urgent as the waiting time increases.

Figure 4.1 illustrates a set of priority accumulation functions that medical professionals

might possibly consider. In the figure, the accumulated priority of the kth class of patients is in

the form of fk(t) = 1/
(
1 + e−(ckt−10)

)
− 1/(1 + e10), k = 1, 2, 3. Class-1 patients become much

more urgent around time t = 10, whereas class-2 patients do so around time t = 20. Class-3

patients become urgent more slowly over the time interval 20 – 50 mins.

Kleinrock and Finkelstein [5] proposed a class of APQs, which we shall call power-law

APQs, in which priority accrues as a power r of the incurred waiting time, and called these rth

order systems. Theorem 1 of Kleinrock and Finkelstein [5] stated that, for two systems of or-

ders r1 and r2 respectively, parameters can be found that yield the same expected waiting times

for customers from different classes, whichever system is used. The proof of their theorem
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Figure 4.1: An example of priority accumulation function.

used sample path arguments for the three-customer case, and an extension of the reasoning to

any number of customers. Taking r1 = 1, their theorem established that an rth order system is

equivalent to a linearly-increasing priority system in the sense that the expected waiting times

for customers of each class in both systems are the same. Invoking the results of Kleinrock [4],

Kleinrock and Finkelstein [5] used this observation to obtain a set of equations for the expected

waiting times for all classes of customers in a given rth order system.

In this paper, we study a queuing system with Poisson arrivals, generally distributed service

times and nonlinear priority accumulation functions. We start with the power-law APQ of

Kleinrock and Finkelstein [5], and use a general argument to show that there is a linear system

of the form discussed in Stanford et al. [7] which has the same priority ordering of all customers

present at any given instant in time, for any sample path. (We shall refer to the linear system

as the linear proxy of the nonlinear one.) Beyond the power-law case, we subsequently show

that, if appropriate conditions are met for more general nonlinear APQs, we can construct an

equivalent linear APQ in the sense that the waiting time distributions of all classes are the same

in both systems. It will turn out that the priority functions illustrated in Figure 4.1 satisfy these
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conditions. Our method of proof employs only the priority accumulation functions, and as such

it is equally applicable to multi-server queues such as those studied by Sharif et al. [6].

The remainder of this paper proceeds as follows. A description of our model and some

preliminary definitions are given in Section 4.2. A discussion of the waiting time distributions

for the power-law APQ appears in Section 4.3. The main theorems for nonlinear APQs and

their proofs appear in Section 4.4, and a set of recursive expressions for the LST of the waiting

time distributions for the nonlinear APQ with a linear proxy are shown in Section 4.5. Some

examples of the nonlinear priority accumulation functions with linear proxies are illustrated in

Section 4.7. The results of some numerical experiments are presented in Section 4.8.

4.2 Model description

We consider a multi-class single-server APQ with Poisson arrivals and general service time

distributions and a nonlinear priority accumulation discipline. There are K ∈ N classes of

customers, with lower-indexed classes requiring more favourable treatment in terms of waiting

times than higher-indexed classes. (In a health care setting, this means that a lower index re-

flects a patient class of higher acuity.) For k = 1, 2, . . . ,K, customers of class k arrive according

to a Poisson process with rate λk, independently of the arrival processes of all the other classes,

and request a service time with distribution Gk and mean 1/µk.

Define

λ =

K∑
k=1

λk, (4.1)

1/µ =

K∑
k=1

λk/(λµk), (4.2)

ρk = λk/µk, (4.3)

ρ = λ/µ =

K∑
k=1

ρk. (4.4)

The accumulating priority queuing discipline is defined in terms of a set F of priority

accumulation functions { fk(.), k = 1, . . . ,K} that govern how waiting customers are selected
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when a service is completed. Specifically, a customer from class k who arrived at time t0 has

priority

qk(t) = fk(t − t0) (4.5)

at time t > t0. At a service completion instant, the server chooses to serve that customer among

those still present in the queue that has the greatest accumulated priority, provided that the

queue is non-empty. A customer who arrives to an empty queue moves straight into service.

The functions in F have the following properties:

1. for k = 1, . . . ,K, fk is a strictly increasing, differentiable function that maps R+ to Ξ ⊆

R+,

2. for k = 1, . . . ,K − 1, fk(0) = fk+1(0),

3. for j = 2, . . . ,K and k < j, fk(t) > f j(t) for all t > 0.

4. for k = 2, . . . ,K, j < k and δ > 0, if there is a time t∗ > δ such that f j(t∗ − δ) = fk(t∗),

then f ′j (t
∗ − δ) > f ′k (t∗).

Intuitively, we think of the priority of a customer from a lower-indexed class as increasing

‘faster’ than a customer from a higher-indexed class. This results in preferential treatment

for the customer in the lower-indexed class. From a technical point of view, this concept is

captured in Conditions 3 and 4.

A consequence of Condition 1 is that, for all k, the inverse function f −1
k that maps Ξ to

R+ exists. For some priority value v ∈ Ξ, f −1
k (v) is the time in the queue at which a class-k

customer attains a priority v.

Condition 2 ensures that customers from all classes start with the same priority. Without

loss of generality, we can take fk(0) = 0 for k = 1, . . . ,K. This condition can be relaxed if we

wish to model the affine case where customers in different classes start with different amounts

of initial priority when they arrive. However, we choose not to do so in this work.

Condition 3 ensures that a customer with a lower priority index can never be caught up

by a customer with a higher priority index that arrived later, while Condition 4 requires that
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the priority of the lower-indexed customer is increasing at a faster rate than that of the higher-

indexed customer at any point where their priority curves meet. A consequence is that, if the

priority of a class-k customer is caught up by that of a class j < k customer who arrived later,

then the class- j customer can never be re-overtaken by the class-k customer. We call the time

t∗ in 4 the overtake time of a class-k customer by a class j < k customer that arrived δ time

units later.

t

qk(t)

0.5 1.2 t∗

q1(t) = f1(t− 1.2)

q2(t) = f2(t− 0.5)

Figure 4.2: Accumulating priority functions for different priority classes.

First, we consider the case of Figure 4.2, which illustrates nonlinear accumulation functions

for two customers from different priority classes. Here

f1(t) = t2,

f2(t) = 0.3t2. (4.6)

A customer from class 1 arrives at time point 1.2 and a customer from class 2 arrives at

time point 0.5. Both customers accumulate priority according to equation (4.5) based on their

waiting time in the system. However, the customer from class 1 accumulates priority more

quickly. If the server becomes free before t∗ = 2.05, the customer from class 2 will be selected
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into service before the class 1 customer, whereas if the server becomes free after t∗ = 2.05, the

reverse is true.

Note that it does not follow from Conditions 1 to 3 that there is always an overtake time for

a lower-indexed customer that arrives after a higher-indexed customer. Consider, for example,

the case where there are two classes of customers with respective priority functions

f1(t) = t + 1 − e−t,

f2(t) = t. (4.7)

We have

f ′1(t) = 1 + e−t,

f ′2(t) = 1 < f ′1(t). (4.8)

A waiting class-1 customer would eventually overtake a waiting class-2 customer if the former

arrives within one unit of time of the arrival time of the latter, but not otherwise. See Figure

4.3.

t

qk(t)

0.5 1.2 3.5 5t∗

q1(t) = f1(t− 1.2)

q2(t) = f2(t− 0.5)

q1(t) = f1(t− 5)

q2(t) = f2(t− 3.5)

Figure 4.3: An example of two accumulating priority functions.

Of course, each customer that arrives initiates its own qk(t). Figure 4.4 illustrates the ac-

cumulated priorities of customers against time for a sample path of a process with two classes
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and the accumulation functions from equation (4.6). Customers of class 1 arrive at time points

1, 4 and 6.4, while customers of class 2 arrive at time points 2 and 5.2. The departure instants

(4.4, 7, 8, 9.4, 11.6) are marked by vertical lines. At the first departure instant 4.4, the class-2

customer who arrived at time point 2 moves into service, since the class-1 customer who ar-

rived at time point 4 has not accumulated enough priority to overtake it. The opposite case

occurs when the third customer departs at time point 8. Here, the class-1 customer who arrived

at time point 6.4 has overtaken the class-2 customer who arrived at time point 5.2. The overall

sequence of services is: class-1, class-2, class-1, class-1, and class-2.
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Figure 4.4: A sample path of an APQ with a number of different customers.

With these definitions, we are ready to consider the power-law APQ first considered by

Kleinrock and Finkelstein [5].

4.3 Waiting times for power-law APQs

Kleinrock and Finkelstein [5] studied the expected waiting times in a multi-class single-server

queue with exponential service times for different classes of customers, where priority accu-
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mulates as a power function of the incurred waiting time. They named it an “r-th order delay

dependent priority discipline”. We shall refer to a queue that employs this discipline as a

power-law accumulating priority queue (APQ) of order r. In our model, customers from the

different priority classes can have different generally-distributed service times.

The set F of priority accumulation functions for the power-law APQ of order r is defined in

terms of a sequence{b(r)
k }, k = 1, . . . ,K of positive constants such that b(r)

1 ≥ b(r)
2 ≥ · · · ≥ b(r)

K ≥ 0.

For k = 1, 2, . . . ,K, we take fk(t) = b(r)
k tr. When r = 1, this reduces to the linear APQ,

originally defined by Kleinrock [4] and discussed in Stanford et al. [7].

Kleinrock and Finkelstein [5, Theorem 1] established that if one were to select the constants

so that (
b(r)

k+1/b
(r)
k

)1/r
=

(
b(r′)

k+1/b
(r′)
k

)1/r′
for k = 1, 2, . . . ,K, (4.9)

then the expected waiting times of all customer classes in the corresponding power-law APQs

of orders r and r′ would be identical.

We can invoke the results of Stanford et al. [7] by taking r′ = 1 and writing bL
k = b(1)

k for

k = 1, 2, . . . ,K. Kleinrock and Finkelstein’s equation (4.9) then states that if we put

bL
k = (b(r)

k )1/r, (4.10)

the expected waiting times of all classes of customers in the rth order APQ are the same as

those in the linear APQ.

At an arbitrary time instant t ≥ tk in the power-law APQ with the b(r)
k given by equation

(4.10), the priority of a customer from class k arriving at time tk is q(r)
k =

(
bL

k (t − tk)
)r

for

k = 1, 2, . . . ,K, whereas in the corresponding linear APQ, the priority of the class-k customer

is qk = bL
k (t − tk). We see that the priority accumulated under the linear APQ is at all times the

rth root of the original power-law priority accumulation function.

We refer to this linear APQ as the linear “proxy” for the original power-law APQ and we

show below that, at any instant in time, the accumulated priority ordering of all customers in

the system will be the same under both disciplines.

For a given realisation of the arrival and service time process, let Γ(r)(t) and Γ(t) denote the
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sets of customers in the various classes present in a power-law APQ of order r and its linear

proxy at time t.

Lemma 4.3.1. Consider a power-law APQ of order r and its linear proxy, both starting empty

and driven by the same realisations of the arrival and service time processes. Then for any

time t ∈ R,

Γ(r)(t) = Γ(t), (4.11)

and the ordering of the priorities of all customers is the same in both systems.

Proof. Since both queues are driven by the same realisation of the arrival process, the arrival

times τn and the class χ(n) of the nth arriving customer are the same in both queues. Whether

it is still in the queue or not at time t, the priority of the nth customer, with arrival time τn < t,

is b(r)
χ(n)(t − τn)r in the power-law APQ and bL

χ(n)(t − τn) in its linear proxy. We observe that

• The ordering of these functions at time t is the same in both systems amongst all cus-

tomers that have arrived by time t.

To complete the proof, we need to show that the same customers are selected for service in

both systems. The service time of the customer initiating the first busy period will be the same

in both systems and, when this customer completes service, the customer selected for the next

service will be the same in both systems, by the above observation. The same set of customers

is therefore present when this customer completes service, and so on. The conclusions of the

lemma follow. �

The waiting time distributions for the linear APQ have been derived by Stanford et al. [7].

By applying their results via the linear proxy, we obtain the LST of the waiting time distribution

for each class in the power-law APQ. The results are stated below.

Theorem 4.3.2. Consider a single-server APQ which has a set F of priority accumulation

functions given by fk(t) = b(r)
k tr for k = 1, 2, . . . ,K and some positive parameter r. Conditional

on class-k customer arriving to a non-empty queue, the LST W̃ (k)
+ (s; r) of its waiting time is
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given by

W̃ (k)
+ (s; r) =

(
1 −

( b(r)
k+1

b(r)
k

) 1
r

)
W̃ (k)

acc(s; r) +
( b(r)

k+1

b(r)
k

) 1
r W̃ (k+1)

+ ((b(r)
k+1/b

(r)
k )

1
r s; r) (4.12)

where

W̃ (k)
acc(s; r) = W̃ (k+1)

+ ((b(r)
k+1/b

(r)
k )

1
r s; r)

k∑
j=1

ρ j(b
(r)
k+1/b

(r)
j )

1
r

1 − δk
W̃ (k, j)

acc (s; r)

+

K∑
j=k+1

ρ j

1 − δk
W̃ ( j)

+ ((b(r)
j /b

(r)
k )

1
r s; r)W̃ (k, j)

acc (s; r) +
1 − ρ
1 − δk

W̃ (k,0)
acc (s; r). (4.13)

and δk =
∑k

j=1 ρ j

(
1 − (b(r)

k+1/b
(r)
j )

1
r

)
.

Proof. For a given parameter r, the W̃ (k,0)
acc (s; r) in equation (4.13) denotes the LST of the distri-

bution of the waiting time incurred by a class-k customer who becomes accredited during the

initial accreditation interval in a busy period; while the W̃ (k, j)
acc (s; r) for j > 0 represents the LST

of the distribution of the waiting time incurred by a class-k customer who becomes accredited

during a later accreditation interval initiated by a class- j service time in a busy period.

The result follows directly after substituting for the linear accumulation rates bL
k = (b(r)

k )1/r

in the expression of Corollary 8.4 of Stanford et al. [7]. �

Combining this result with the fact that the probability that a customer arrives to find an

empty queue with probability 1 − ρ, we see that the LST of the waiting time for class-k cus-

tomers in the power-law APQ has LST given by

W̃ (k)(s; r) = (1 − ρ) + ρW̃ (k)
+ (s; r). (4.14)

Remark Note that there is a typographical error in the expression given in Stanford et al.

[7]: in the part of that expression corresponding to the first sum on the right hand side of

equation (4.13), the expression should have bk+1/b j, not bk+1/bk, as appears there. This has

been corrected in equation (4.13).
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4.4 Linear proxies for general nonlinear APQs

Having established that there is a linear proxy for the power-law APQ, it is natural to ask

whether linear proxies can be found for other nonlinear APQs. Furthermore, it is of interest

to determine what requirements these particular nonlinear APQs would need to satisfy. In this

section, we consider a general set F of nonlinear priority accumulation functions satisfying

Conditions 1 to 4.

Theorem 4.4.1. Consider a nonlinear APQ with accumulation functions { fk}. Assume that

there exists a linear APQ with associated rates c jk such that, for all possible values of the input

arrival times τ = {τn; n = 1, 2, . . . } and customer types χ = {χ(n); n = 1, 2, . . . }, the overtake

times of the nonlinear APQ and the linear APQ are identical. Then, for k ∈ {2, . . . ,K} and

j < k,
f ′k (t)

f ′j ( f −1
j ( fk(t)))

= c jk. (4.15)

In particular it is constant for all time t ∈ R+.

Proof. Let k ∈ {2, . . . ,K} and j < k and consider the set of sample paths in which a class-k

customer arrives at time 0 and a class- j customer arrives at some time τ2 later, which we will

regard as variable. Then the time in the linear APQ at which the type j customer overtakes the

type k customer is u = τ2/(1 − c jk). This time must satisfy the overtake time equation

τ2 + f −1
j ( fk(u)) = u (4.16)

for the nonlinear APQ. So we know that, for all τ2 ∈ R+,

τ2 + f −1
j

(
fk

(
τ2

1 − c jk

))
=

τ2

1 − c jk
. (4.17)

Equation (4.17) is equivalent to

f −1
j

(
fk

(
τ2

1 − c jk

))
=

c jkτ2

1 − c jk
(4.18)

which is, in turn, equivalent to

fk

(
τ2

1 − c jk

)
= f j

(
c jkτ2

1 − c jk

)
. (4.19)
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Differentiating equation (4.19) with respect to τ2, we derive

f ′k
(

τ2
1−c jk

)
1 − c jk

=
c jk f ′j

( c jkτ2

1−c jk

)
1 − c jk

, (4.20)

which implies that
f ′k

(
τ2

1−c jk

)
f ′j

( c jkτ2

1−c jk

) = c jk (4.21)

and, by equation (4.18),
f ′k

(
τ2

1−c jk

)
f ′j

(
f −1

j

(
fk

(
τ2

1−c jk

))) = c jk. (4.22)

This is true for all τ2 ∈ R+, which establishes that equation (4.18) holds for all t ∈ R+. �

Corollary 4.4.2. A nonlinear APQ has an equivalent linear APQ in the sense explained in

Theorem 4.4.1, if and only if, for all k = 2, . . . ,K and j < k, there exist numbers c jk ∈ (0, 1)

such that

fk(t) = f j(c jkt), t > 0. (4.23)

Remark Any set of numbers c jk satisfying equation (4.15) must be such that, for j < k < `,

c j` = c jkck`. (4.24)

To see this, from equation (4.23), we have f`(t) = f j(c j`t) and f`(t) = fk(ck`t) = f j(c jkck`t),

⇒ c j` = c jkck`.

If we take {c1k, k = 1, 2, . . . ,K} to be any set of numbers that are strictly decreasing in k,

then by writing c1k = Πk−1
i=1 ci,i+1 = c1 jc jk for 1 < j < k, we can ensure that equation (4.24) is

satisfied. Furthermore, we can take c11 = 1 without loss of generality. Now putting ck = c1k,

Corollary 4.4.2 leads immediately to the following corollary.

Corollary 4.4.3. A nonlinear APQ has an equivalent linear APQ in the sense explained in

Theorem 4.4.1 if and only if there is a decreasing sequence of numbers where c1 = 1, ck ∈

(0, 1); k = 2, . . . ,K, and a function g such that

fk(t) = g(ckt). (4.25)

A suitable linear proxy for such an APQ is obtained by setting bL
k = ck.
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We have used the insight gained from the accreditation processes to arrive at Corollary

4.4.3. Now that we see the result, we can go further, in the spirit of Lemma 4.3.1, and show

that, if the priority accumulation functions are of the form as equation (4.25), then the orderings

of all customers in the general APQ and it linear proxy are identical when driven by the same

realisations of the arrival and service time processes. We state this result formally below.

Theorem 4.4.4. Let ΓN(t) and Γ(t) denote the sets of customers in the various classes present at

time t in a general nonlinear APQ with priority accumulation functions of the form as equation

(4.25) and its linear proxy, both starting empty and driven by the same realisations of the

arrival and service time processes. Then for any time t ∈ R,

ΓN(t) = Γ(t), (4.26)

and the ordering of the priorities of all customers is the same in both systems.

Proof. Since both queues are driven by the same realisation of the arrival process, the arrival

times τn and the class χ(n) of the nth arriving customer are the same in both queues. Whether it

is still in the queue or not at time t, the priority of the nth customer, with arrival time τn < t, is

g(ck(t − τn)) in the nonlinear APQ and ck(t − τn) in its linear proxy. By Condition 1, of Section

4.2, g must be monotone increasing, and so

• The ordering of these functions at time t is the same in both systems amongst all cus-

tomers that have arrived by time t.

As with Lemma 4.3.1, to complete the proof we just need to show that the same customers

are selected for service in both systems. The argument for this is identical to the one we used

there. The service time of the customer initiating the first busy period will be the same in both

systems and, when this customer completes service, the customer selected for the next service

will be the same in both systems, and so on. �



80 Chapter 4. On waiting times for nonlinear accumulating priority queues

4.5 Waiting time distributions for the nonlinear APQ with a

linear proxy

In Section 4.4, we established conditions under which a nonlinear APQ has a linear proxy. In

this formulation, the constant c jk in equation (4.15) plays the role of the ratio bL
k /b

L
j of slopes of

the accumulation functions in the linear proxy. This observation enables us to derive the LST

of the waiting time distributions in the nonlinear queue by applying the results of Stanford et

al. [7] with bk/b j replaced by c jk. This leads us to the following result.

Theorem 4.5.1. For a single-server nonlinear APQ which has a linear proxy, then the LST of

the delayed waiting time distribution for a class-k customer, W̃ (k)
+ (s), is given by

W̃ (k)
+ (s) = (1 − ck,k+1)W̃ (k)

acc(s) + ck,k+1W̃ (k+1)
+ (ck,k+1s), (4.27)

where

W̃ (k)
acc(s) =

1 − ρ
1 − δk

W̃ (k,0)
acc (s) + W̃ (k+1)

+ (ck,k+1s)
k∑

j=1

ρ jc j,k+1

1 − δk
W̃ (k, j)

acc (s) (4.28)

+

K∑
j=k+1

ρ j

1 − δk
W̃ ( j)

+ (ck js)W̃ (k, j)
acc (s),

and δk =
∑k

j=1 ρ j(1 − c j,k+1).

The LST of the waiting time for class-k in the nonlinear APQ is

W̃ (k)(s) = (1 − ρ) + ρW̃ (k)
+ (s). (4.29)

4.6 Discussion on the maximum priority process for a non-

linear APQ

We start our discussion by defining the maximum priority process for such queues. At each

instant in time, this process provides an upper bound on the accumulated priority of customers

from each class present in the system. Using the maximum priority process, we are able to
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study the evolution of the APQ on a “need to know” basis, not tracking the identities of all

customers present in the queue and all of their accumulated priorities, but instead taking ad-

vantage of the fact that, conditional on the maximum priorities, the customers’ actual priorities

are distributed as a Poisson process.

First, let us review some notation and definitions from Stanford et al. [7]. The sequence

of intervals T = {Tn; n = 1, 2, . . . } is the process of inter-arrival times, with T1 being the

time of the first arrival and τn =
∑n

k=1 Tk being the time of the nth arrival. For each n, χ(n)

is the class and Xn is the service time of the nth customer, with χ = {χ(n); n = 1, 2, . . . } and

X = {Xn; n = 1, 2, . . . }. For a positive integer m, n(m) is defined as the position in the arrival

sequence of the mth customer to be served. Cn is the time at which service commences for

the nth arrival, and Dn = Cn + Xn is the departure time of the nth customer to arrive, with

C = {Cn; n = 1, 2, . . . } and D = {Dn, n = 1, 2, . . . }. Thus, the departure of the mth customer to

be served occurs at time Dn(m) = Cn(m) + Xn(m).

The maximum priority process for a multi-class nonlinear APQ is defined as follows.

1. For all times t when the queue is empty, Mk(t) = 0 for all k = 1, 2, . . . ,K.

2. At the sequence of successive departure times Dn(m),

M1(Dn(m)) = max
n<{n(i):1≤i≤m}

qχ(n)(Dn(m)), (4.30)

and, for 1 < k ≤ K,

Mk(Dn(m)) = min{M1(Dn(m)), fk(Xn(m) + f −1
k (Mk(Cn(m))))}. (4.31)

3. For t ∈ [Cn(m),Dn(m)) with max
m:Dn(m)>t

qχ(m)(t) > 0,

Mk(t) = fk(t −Cn(m) + f −1
k (Mi(Cn(m)))), 1 ≤ k ≤ K. (4.32)

To illustrate the concept of the maximum priority process, let us consider a two-class non-

linear APQ. Figure 4.5 plots M1(t) and M2(t) against time t for an example sample path. M1(t)

bounds the accumulated priorities at time t of all customers present in the queue. M2(t) bounds
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Figure 4.5: Maximum priorities.

the accumulated priorities of class-2 customers. Suppose that the queue starts empty and the

first busy period begins at time τ1 = Cn(1) with M1(τ1) = M2(τ1) = 0. At any time t during the

first service time, any waiting class-2 customer (which must necessarily have arrived after τ1)

must have priority less than f2(t − τ1).

At the first departure instant, Dn(1) = D1 = τ1 + X1. Denoting the maximum priority of all

the customers in the queue by V , one of the following three conditions must hold:

1. The queue is empty, and we set M1(Dn(1)) = M2(Dn(1)) = 0.

2. If V ≥ M2(Dn(1)−), as in Figure 4.6, since M2(Dn(1)−) is an upper bound of the class-2

customers, the customer with priority V must be a class-1 customer. At any time t during

the next service, the least upper bound for the class-1 customers is f1(t −Dn(1) + f −1
1 (V)),

reflecting the fact that the class-1 customer arrived at time Dn(1) − f −1
1 (V), while the

priority of the class-2 customers is still bounded by f2(t − τ1).

3. If V < M2(Dn(1)−), as in Figure 4.7, the customer with priority V can be of either class.

At any time t during the next service, the least upper bound for class-1 customers is f1(t−

Dn(1) + f −1
1 (V)), and the priority of class-2 customers is bounded by f2(t−Dn(1) + f −1

2 (V)).
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If the customer is of class 1, it arrived at time Dn(1) − f −1
1 (V), whereas if the customer is

of class 2, it arrived at time Dn(1) − f −1
2 (V).
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Figure 4.6: The priority process at a departure time: case 2.

0 2 4 6
0

2

4
M1(t)

M2(t)

V

time

A
cc
u
m
u
la
te
d
p
ri
or
it
y

Figure 4.7: The priority process at a departure time: case 3.
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Suppose a nonlinear APQ has a set F of priority accumulation functions fk(t) for k =

1, 2, . . . ,K. We say that a class j < k customer becomes accredited with respect to class k

when its priority q j(t) intersects the maximum priority function Mk(t). So, customers from

lower-indexed classes become accredited with respect to a higher-indexed class when their

priority overtakes the maximum possible priority that a customer from the higher-indexed class

can have. The following lemma describes the process via which customers become accredited.

Lemma 4.6.1. For k = 2, . . . ,K, j < k, and t ∈ [Cn,Dn), the process Ψ jk of points at which

customers of class j become accredited with respect to class k is a non-homogeneous Poisson

process with intensity

λ jk(t) = λ j(1 − c jk(t)) (4.33)

where

c jk(t) =
M′

k(t)

f ′j ( f −1
j (Mk(t)))

. (4.34)

Proof. By its definition in equation (4.32), the component Mk(t) of the maximum priority pro-

cess is given by

Mk(t) = fk(t −Cn + f −1
k (Mk(Cn))) (4.35)

during the interval [Cn,Dn). Observe that, conditional on Mk(Cn), this process evolves deter-

ministically.

It takes time f −1
j (v) for a customer of class j to attain a priority v. So customers of class j

who become accredited with respect to class k during the interval [Cn, t] ⊆ [Cn,Dn) must have

arrived during the interval [Cn − f −1
j (Mk(Cn)), t − f −1

j (Mk(t))). The arrival process of class- j

customers on this latter interval is a homogeneous Poisson process with parameter λ j and the

process Ψ jk is a transformation of this Poisson process that has no atoms. By the Poisson

Mapping Theorem, see, for example, [3, page 17], Ψ jk must also be a Poisson process, with

mean measure

λ j

(
t − f −1

j (Mk(t)) −Cn − f −1
j (Mk(Cn))

)
(4.36)

on sets of the form [Cn, t]. Taking the derivative with respect to t, we see that Ψ jk has intensity

λ j

1 − d( f −1
j (Mk(t)))

dt

 = λ j

1 − M′
k(t)

f ′j ( f −1
j (Mk(t)))

 (4.37)
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at the point t. �

Note that equation 4.35 ensures that M′
k(t) is the same as f ′k (t−Cn+ f −1

k (Mk(Cn))). Condition

4 of our definition of the set F ensures that the ratio c jk(t) is less than one.

t

q(t)

Cnt1 t2

Mj(t)

Mk(t)
qj(t)

Mk(Cn)

Figure 4.8: A customer of class j becoming accredited with respect to class k.

The process of a class- j customer becoming accredited with respect to class k is illustrated

in Figure 4.8. The service of the current customer starts at the point Cn with (in this example)

both M j(Cn) and Mk(Cn) equal. The maximum priority functions M j(t) and Mk(t) are shown

in blue and red respectively. A class- j customer arrived at time t1 becomes accredited with

respect to class k at time t2 when its priority function crosses the function Mk(t). The tangents

of the two functions are shown in black and green respectively.

Since any busy period can be decomposed into its constituent service times, Lemma 4.6.1

establishes that, during a busy period, the process of class- j customers becoming accredited

with respect to class-k; k > j is a non-homogeneous Poisson process. However, the intensity

function (4.37) is randomly-varying because it depends on the random quantity Mk(Cn) during

each interval [Cn,Dn). The key to our study of linear proxies for general nonlinear accumulat-
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ing priority systems is to recognise that a linear proxy exists when the intensity function (4.37)

is constant, independent of the realisation of the maximum priority process, which refers to

Theorem 4.4.1.

4.7 Examples of nonlinear APQs

In this section, we list some examples of nonlinear APQs with linear proxies.

4.7.1 Power functions

In the framework of Section 4.4, the power-law APQ discussed in Section 4.3 can be modelled

by taking g(t) = tr.

By Corollary 4.4.3, for any decreasing sequence ck, k = 1, . . . ,K, the set F of functions

fk(t) = g(ckt) = (ckt)r = cr
kt

r defines a nonlinear APQ with a linear proxy. The sequence of

constants {bk, k = 1, 2, . . . ,K} of Kleinrock and Finkelstein [5] is related to the sequence {ck}

via the relation bk = cr
k.

4.7.2 Exponential functions

If we take g(t) = exp(t), then we see that, for any decreasing sequence ck, k = 1, . . . ,K, a

nonlinear APQ with fk(t) = exp(ckt) for k = 1, 2, . . . ,K has a linear proxy. The waiting time

distributions for this nonlinear APQ can be found using Theorem 4.5.1.

4.7.3 Logarithmic functions

A similar analysis can be performed by taking g to be a logarithmic function g(t) = log(t) and

defining fk(t) via any decreasing sequence of numbers {ck} in (0, 1) for k = 1, . . . ,K.
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4.8 Numerical examples

To verify the results of the LSTs of the waiting time distributions for a nonlinear APQ, we

performed some numerical experiments for an APQ with the priority accumulation functions

presented in the introduction and the power-law APQ. Our numerical examples are loosely

drawn from the CTAS model [2], assuming that service times are exponential. We mainly focus

on the urgent (CTAS-3) and less urgent (CTAS-4) patients. The key performance indicator

(KPI) [2] suggests that CTAS-3 (urgent) patients should be seen within 30 mins at least 90%

of the time; CTAS-4 (less urgent) patients should be seen within 60 mins at least 85% of the

time.

The waiting time distributions were recovered from the LST expressions presented in Sec-

tion 4.3 via numerical inversion using the Gaver-Stehfest (GS) algorithm in Abate and Whitt

[1] with the parameter M = 5. Simulation experiments were carried out to verify the results

from GS evaluation. Each simulation run consisted of two million customers.

Our first two numerical examples are for a two-class single-server APQ with arrival rates

λ1 = 1 and λ2 = 0.75 for class-1 (CTAS-3) and class-2 (CTAS-4) respectively, while service

times for both classes are exponentially distributed at a common rate µ1 = µ2 = 2.

In our first example of the nonlinear APQ, we take g(t) = 1/
(
1 + e−(t−10)

)
− 1/(1 + e10), and

the accumulation functions fk(t) = g(ckt) for k = 1, 2. The accumulation rate c2 is evaluated

at 0.2, 0.5 and 0.8, while c1 is set to be one. The results of the waiting time distributions are

shown in Figure 4.9. We note that the same curves would be obtained if we had used the linear

functions fk(t) = ckt for k = 1, 2 with ck chosen as above, or for that matter, had we used any

fk(t) = g(ckt) for k = 1, 2 where g(t) satisfies Corollary 4.4.3.

Figure 4.10 illustrates the waiting time distributions for class-1 and class-2 in the power-law

APQ, where the proportionality constant b1 for class-1 is set to unity, while b2 = 0.5, and the

power of the priority accumulation function, r, assumes one of three values: r = 1/3, 1 and 3.

By comparing these two figures, we note that when r is smaller than one, the system favours

class-1, whereas when r is greater than one, the reverse is true. If r > 1, then time is valued
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Figure 4.9: Waiting time distributions for a two-class APQ with the accumulation functions

proposed in Section 4.1.
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Figure 4.10: Waiting time distributions for the power-law APQ.



90 Chapter 4. On waiting times for nonlinear accumulating priority queues

supra-linearly, and one might anticipate this would lead to a disproportionate favouring of high

acuity cases, where time is really critical. Instead, the opposite occurs: since bL
k = (b(r)

k )1/r, it

favours the lower acuity classes. (This favouring is readily seen when b(r)
1 = 1 and the other

b(r)
k ’s are all less than 1, but is equally true when this is not the case). As the value of r increases,

the system favours class-2 more relative to a linear system with the same rate. The greater the

value of r, the greater the value of the linear proxy’s accumulation rate, which means the class-2

patients accumulate priority at a faster rate.

Observe that in both examples, we first note that the GS evaluation and simulation for

class-1 with c2 = 0.8 (Figure 4.9 (a) in red and gray respectively) and r = 3 (Figure 4.10

(a) in red and gray respectively) are virtually indistinguishable from the numerically-produced

distributional curves. Second, at this utilization level of ρ = 87.5%, it is not possible for both

KPI targets to be met simultaneously.
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Figure 4.11: Waiting time distributions for a three-class APQ with the accumulation functions

proposed in Section 4.1.

The last example we present is a three-class single-server APQ with arrival rates λ1 = 1,

λ2 = 0.7 and λ3 = 0.4 for class-1 (CTAS-3), class-2 (CTAS-4) and class-3 (CTAS-5) re-
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spectively, while service times for all classes are exponentially distributed at a common rate

µ1 = µ2 = µ3 = 2.4. The set of accumulation functions are the one proposed in the introduc-

tion, and the accumulation rate are c1 = 1, c2 = 0.5 and c3 = 0.3 as in Figure 4.1. It shows that

under ρ = 87.5% only the patients from class-3 can meet their KPI target.
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Chapter 5

Optimization of queues operating under

waiting time limits

5.1 Introduction

In many situations, a service system attends to a number of distinct customer classes with

differing urgencies for commencement of service. One ready example arises in the field of

emergency medicine, where the customer priority classification is determined by the urgency

for treatment; in medical literature, the term “patient acuity” is often used to describe such

distinctions. The Canadian Triage and Acuity Scale (CTAS) [7] (see Table 5.1), as well as

the Australasian Triage Scale (ATS) [3], identifies five distinct patient classes for patients in

Emergency Departments, and sets a standard for commencement of treatment for each group.

These standards specify a time limit and a corresponding compliance probability p for each

class, such that the chance is at least p that a patient from the given class will have commenced

service by the time limit (i.e., commence treatment).

CTAS is an example of a set of Key Performance Indicators (KPIs) comprising time limits

lk and corresponding compliance probabilities pk; k = 1, 2, . . . , 5. KPIs are widely used in

health care, both for “visible” queues such as those in Emergency departments, as well as

“invisible” queues or waiting lists, such as in Arnett et al. [2], which pertains to hip and knee

93
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Table 5.1: CTAS Key Performance Indicators (KPI)

Category Classification Time Limit Compliance Level

1 Resuscitation Immediate 98%

2 Emergency 15 minute 95%

3 Urgent 30 minute 90%

4 Less urgent 60 minute 85%

5 Not urgent 120 minute 80%

replacement surgery. Britain’s National Health Service (NHS) uses KPIs for a diverse range

of health services, including, for example, mental health (Dodd [9]), Accident & Emergency

department (NHS-Stockport [16]), Cancer time to treatment (NHS-Leeds [15]), and Diagnostic

tests (NHS-Stockport [16]), to name a few. Similar trends can be found in most Organization

for Economic Cooperation and Development countries.

At face value, there may appear to be a close link between systems operating to KPI time

limits and service systems offering specified lead times for the delivery of a particular service

(see, for instance, Keskinocak et al. [11], Çelik and Maglaras [5], Akan et al. [1]). How-

ever, lead time problems are typically characterized by a revenue stream, and are typically

concerned with the “right” lead time to offer for a specified request as a function of the orders

presently in the service system, in order to maximize profit or minimize a penalty function. In

contrast to this, the time limits in KPI problems are fixed, and in the health care field where

they predominate, they have usually been set by medical professionals in response to the per-

ceived clinical need of the various patient classes. Furthermore, they are typically set prior

to any consideration of the traffic characteristics of the patient classes (frequency of demand,

treatment time distributions, etc.). It then falls to the health care professionals responsible for

the operation of a particular facility to determine a patient selection rule (in queuing terms, a

queuing discipline) so that the KPIs are met.

What KPI systems typically lack is an objective to be optimized. At face value, they com-

prise a set of delay constraints by which the particular queue or wait list needs to operate by.
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Any system complying with them is considered equally good, and no consequence is given to

the small fraction of patients who fail to gain access in time. This inability of KPIs to reflect the

increased (rather than diminished) urgency of patients whose wait exceeds the specified limit

was one of the points commented upon by Dr. Chris Baggoley of Australia’s Expert Panel

Review of Elective Surgery and Emergency Access Targets in a 2012 keynote address (Davies

and Little [8]). As we shall establish, the minimization of the extent to which patients’ wait

times exceed their time limit is an appropriate goal to help ensure KPI compliance.

When waits beyond the time limits are considered to be equally bad for all patient classes,

what is needed is a queuing discipline that considers patients from the various classes to be

equally urgent as they approach their respective time limits. However, the best known queuing

disciplines fail to do this: both the first-come, first-served (FCFS) discipline and what we refer

to as “classical” priority disciplines operate irrespective of how long customers have waited. A

queuing discipline that tracks patient waiting times is called for, which assigns priority credit as

a function of how long patients have waited. Such “accumulating priority” systems, originally

proposed by Kleinrock [12] in 1964, and recently extended in Stanford et al. [18] and Sharif

et al. [17], are ideally suited to the task. We will be particularly interested in the performance

of a “Rule of Thumb” that we propose, in which patients in the various classes accumulate

priority credit at a rate that is inversely proportional to their time limits. In so doing, the Rule

of Thumb ensures that all patients have the same total amount of accumulated priority credits

when they reach their respective time limits, and are thereby considered to be equally urgent,

as desired. In systems in which a weighted average of the expected excesses in each class is

the appropriate criterion, an extension to our Rule of Thumb will be proposed.

In a nutshell, a queue operating under the APQ discipline treats customers whose various

service requirements need to be delivered on different time scales. The advantage of an APQ

approach for systems operating under KPIs is that it enables each class of patients (customers)

to progress fairly towards timely access to a server by its own waiting time limit. Customers

can still be overtaken by others of greater urgency or acuity, but they will not be overtaken

indefinitely, due to the growing priority accumulated as each customer waits.
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This paper presents an optimization model whose objective is to minimize the weighted

average of total expected excess delay beyond the various limits for health systems operating

under KPIs; we call this the “weighted average of the total expected excess” (WAE). When the

weights are equal, the goal reduces to the minimization of the total expected excess waiting

time (TEE) over all classes of customers. We seek solutions to the model using the Accumulat-

ing Priority Queue (APQ) discipline which specify the optimal priority accumulation rates. We

note that the ability to specify these rates for each class provides an extra margin of flexibility

over static queuing disciplines, so as to identify the best accumulation rates for the observed

traffic patterns for the greatest chance that all classes of customers adhere simultaneously to

the respective KPIs.

After some preliminary work which reveals the difficulty in minimizing the WAE, we

present a related objective function which we define as the “integrated weighted expected ex-

cess” (IWAE). Focussing on the two-class case, we then establish that one can readily opti-

mize the IWAE objective in terms of the optimal ratio of the two priority accumulation rates.

Through further analysis and several numerical examples, we show that the optimal IWAE

ratio of accumulation rates is near-optimal for many instances of the WAE problem, and that

when desired, the optimal ratio can be used as a starting point in an iterative scheme for a WAE

problem with particular time limits.

Of course, there is no obligation upon a health facility governed by a set of KPIs to imple-

ment the same strategy for all its patient classes. In Emergency departments, one would never

make a Resuscitation or Emergency patient wait for someone of lower acuity. Nonetheless, this

can still be achieved in an APQ setting merely by allowing for relatively huge accumulation

rates for the truly urgent patient classes.

The rest of the paper is organized as follows. In section 5.2, we present the optimization

problems for both the general case, and its restriction to the Accumulating Priority queuing

discipline. We address the matter of convexity of the corresponding two-class APQ optimiza-

tion problem in section 5.3. Section 5.4 introduces the IWAE objective function for which the

convexity and the optimal solution can be established.
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Section 5.5 relates the Laplace-Stieltjes transforms of the waiting time distributions and

expected excesses. We show that when one resorts to a numerical inversion of the pertinent

waiting time transform to compute the probabilities, the corresponding numerical inversion of

the weighted expected excess waiting time is obtained with minimal additional effort, where the

Gaver-Stehfest algorithm (Gaver [10], Stehfest [19]) is chosen to obtain the numerical results.

In section 5.6, we present a series of numerical examples which explore the optimal be-

haviour of these optimization problems. The nature and impact of our various results and

insights are summarized in the Conclusions section.

5.2 Formulation of the optimization problem

Consider a queue featuring either a single server or many servers, which attend(s) to K in-

dependent classes of customers with distinct KPIs of the form discussed in the introduction.

Arrivals for the kth class of customers are from a Poisson process at rate λk; k = 1, 2, . . . ,K.

All service time distributions are known, and they may differ from class to class.

We presume that the queue is operating under a particular queuing discipline a ∈ A (that is,

a rule for selecting the next customer to enter service), whereA denotes the set of permissible

work-conserving disciplines. The setA includes among others first-come, first-served (FCFS),

last-come, first-served (LCFS), Random Order of Service (ROS) and both Non-preemptive (N-

P) and Preemptive Resume (PR) disciplines, as well as the Accumulating Priority Queue (APQ)

which we will specify shortly. We presume that the queue has been operating sufficiently long

to have reached stationarity.

LettingWk denote the stationary class-k waiting time random variable, define the following

for k = 1, 2, . . . ,K:

• Wk(x) = P(Wk ≤ x) is the cumulative waiting time distribution function,

• S k(x) = P(Wk > x) = 1 −Wk(x) is the survival function of the waiting time, and

• wk(x) = dWk(x)/dx is the probability density function of the stationary class-k waiting
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time distribution.

We will denote the respective Laplace-Stieltjes transforms (LSTs) of these quantities, and

all others to be defined below, by a ˜ throughout the paper.

The expected amount of excess waiting time Hk(lk) for a typical class-k customer beyond a

specified delay lk under an employed queuing discipline in the set A, henceforth abbreviated

the “expected excess”, can be determined from

Hk(lk) =

∫ ∞

lk
(x − lk)wk(x)dx =

∫ ∞

lk
S k(x)dx. (5.1)

The quantity λkHk(lk) can be interpreted as the expected amount of excess waiting for class-k

customers per unit of time.

For such a queue as described above, the general form of the optimization problem can be

stated as follows. We seek to minimize a weighted average of the total expected excess waiting

per unit time (henceforth denoted WAE) over all permissible customer selection strategies,

min
a∈A

Z =

K∑
k=1

αkλkHk(lk) (5.2)

subject to Wk(lk) ≥ pk; k = 1, 2, . . . ,K,

where αk, k = 1, 2, . . . ,K denote the given respective weights for the expected excess waiting

for class-k customers. A priori, we observe that the stated problem might be infeasible. If

feasible, we observe that the optimal solution may not be unique.

5.2.1 Formulating the WAE optimization problem for APQ systems

In the introduction, we observed that the APQ discipline is better suited than other well-known

disciplines such as FCFS and Classical Priority since customer selection depends upon priority

credits earned while waiting. Stanford et al. [18] has determined the stationary waiting time

distributions for each class of customer under the APQ discipline, so that one can determine

the quantiles needed to assess compliance in a KPI system.

Waiting customers of the kth priority class accrue priority credit at a linear accumulation

rate bk ≥ 0, where bk ≥ b j if class k < j, such that, the customers from a higher priority
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class earn priority faster than ones from a lower class. Setting bk = B ≥ 0 ∀k, a FCFS queue

that aggregates all customer classes is obtained. Setting bK = 1 while bk = bk+1 ∗ M; k =

1, 2, . . . ,K − 1, a classical non-preemptive priority model is obtained in the limit as M → ∞.

Thus, not only is the APQ better suited than FCFS and Classical Priority to the task at hand,

but these disciplines can each be recovered from the APQ discipline, so that it can be viewed

as a unifying queuing discipline for all three.

LetAAPQ denote the set of APQ disciplines that satisfy the restrictions above. The resulting

WAE optimization problem then reduces to the selection of the best accumulation rates bk; k =

1, 2, . . . ,K in order to minimize the weighted average excess:

min
a∈AAPQ: {b1,b2,...,bK }

Z =

K∑
k=1

αkλkHk(lk) (5.3)

subject to Wk(lk) ≥ pk; k = 1, 2, . . . ,K,

bk ≥ bk+1 ; k = 1, 2, . . . ,K − 1,

bK ≥ 0,

where αk, k = 1, 2, . . . ,K again denote the respective weights for the expected excess waiting

for customers from the various classes.

5.3 Convexity in the two-class APQ optimization problem

Clearly, the waiting time distributions in an APQ system depend upon the ratios of the accu-

mulation rates; a system with K classes would have K −1 such ratios which can act as decision

variables in order to craft waiting time distributions that meet specified waiting time goals. In

particular, a two-class problem has a single decision variable, which we denote by b = b2/b1,

and we shall henceforth make the dependence of all waiting-time-related quantities upon b

explicit.

It is immediately a matter of interest as to whether the WAE objective function Z is convex

in b in a two-class APQ system. If it could be established that each of the expected excess
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functions H1(b, l1) and H2(b, l2) is convex in b, it would follow that Z in equation (5.3) would

be as well, since it is a linear combination of the two, with positive coefficients.

It is possible to establish that H2(b, l2) is convex in b. This is done by first establishing that

the integrand on the right-hand-side of

H2(b, l2) =

∫ ∞

x=l2
S 2(b, x)dx (5.4)

is convex:

Theorem 5.3.1. Given the foregoing definitions, the function S 2(b, x) is a monotonically de-

creasing convex function in b for 0 ≤ b ≤ 1,∀x ≥ 0.

Proof: See Appendix B.1.

Corollary 5.3.2. The excess function H2(b, l2) above is monotonically decreasing and strictly

convex in b for 0 ≤ b ≤ 1 for every fixed l2 ≥ 0.

Proof. This follows immediately from Theorem 5.3.1 and equation (5.4). �

In fact, the foregoing corollary is equally true for the lowest-priority class in an K-class

APQ system:

Corollary 5.3.3. The excess function HK(b, lK), where b = bK/bK−1, for the lowest priority

class in a stable K-class APQ is strictly convex in b for 0 ≤ b ≤ 1, for every fixed lK ≥ 0.

Proof: See Appendix B.1.

However, as some of the numerical examples will reveal in the two-class case which we

present later, the expected class-1 excess H1(b, l1) can have a negative curvature over some or

all of its range as a function of b. As a consequence we cannot infer convexity of the resulting

weighted average even in this simplest two-class case, based upon properties of mixtures of

convex functions.

In contrast to the difficulties we have encountered by dealing directly with the weighted

expected excess objective WAE, there is a related objective function we can work with, for

which both its convexity, and its optimal solution as a function of b can be readily established.

This is explored in the next section.
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5.4 Optimizing IWAE

In Section 5.3, we discussed the difficulties relating to the optimization problem of minimizing

the WAE. In order to gain further insight into the expected excess wait and the heaviness of

the tail of the waiting time distribution, we introduce the integrated weighted average excess

waiting (IWAE), defined as

Z∗ =

∫ ∞

0
Zdl1 =

K∑
k=1

αkλkGk (5.5)

where Gk is the expected excess waiting for class-k integrated over the range of the class-1’s

delay limit, such that Gk =
∫ ∞

0
Hk(lk)dl1.

Define f1,k = l1/lk for k = 1, 2, . . . ,K as the ratio of the delay limits between class-1 and

class-k. Note that f1,1 = 1 and 0 < f1,k+1 ≤ f1,k ≤ 1 for k = 1, 2, . . . ,K−1. Let m(2)
k be the second

moment of the waiting time distribution for class-k customers. Since Hk(t) =
∫ ∞

t
S k(x)dx (see

Klugman, Panjer and Willmot [13, page 40]), it follows that∫ ∞

0
Hk(t)dt =

∫ ∞

0
xS k(x)dx =

m(2)
k

2
. (5.6)

Then, Gk can be written as

Gk =

∫ ∞

0
Hk(lk)dl1 = f1,k

∫ ∞

0
Hk(l1)dl1 =

f1,km
(2)
k

2
. (5.7)

The resulting IWAE optimization problem can be stated as

min
a∈AAPQ: {b1,b2,...,bK }

Z∗ =

K∑
k=1

αkλkGk =
1
2

K∑
k=1

αkλk f1,km
(2)
k (5.8)

subject to Wk(lk) ≥ pk; k = 1, 2, . . . ,K,

bk ≥ bk+1 ; k = 1, 2, . . . ,K − 1,

bK ≥ 0.

At this point, we will focus on the properties and optimal solution of the unconstrained

objective function, i.e., without reference to the constraints, both for the IWAE and the WAE.

With respect to the constrained versions of the problems, we can observe in general that at
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sufficiently light load, none of the constraints will be binding, and at sufficiently high load,

all of the constraints will be violated. In between, as the load increases, progressively more

and more constraints will be violated. In terms of KPI systems, usually the tightest probability

constraints are associated with the highest acuity patients, so one might anticipate it will often

be the first constraint to become binding. We will comment later upon how one can proceed

from the optimal unconstrained solution to identifying optimal solutions in the two-class case.

By considering the unconstrained IWAE objective function, we find that the difficulties

encountered when optimizing the WAE can be resolved. Moreover, we obtain an explicit

equation for the optimal accumulation rate that minimizes IWAE, which we propose as a proxy

for the optimality of minimizing WAE. This is because the IWAE represents an aggregation of

all the specific cases we can expect to encounter with the WAE.

For the remainder of this section, we restrict our attention to the optimization problem for

the two-class M/Mi/c APQ. Define πbusy to be the probability of the system being busy in an

M/Mi/c queue (Li and Stanford [14]), and ρ = λ/µ as the occupancy level, where λ = λ1 + λ2

and µ is the total service rate of c servers. For simplicity, we set b1 = 1, b2 = b, f1,2 = f < 1,

λ̂ = λ1(1 − b) and θ = λ2/λ1. Furthermore, the second moment of the waiting time distribution

for class-k; k = 1, 2 is a function of b in the two-class case, thus, here we denote it as m(2)
k (b).

We present the LST, w̃k(s), of the waiting time distribution for class-k; k = 1, 2 customer-

s under the accumulating priority discipline, in Appendix B.2 equations (B.4)–(B.8). After

calculating m(2)
k (b) = d2w̃k(s)/ds2|s=0; k = 1, 2, we obtain the following:

Define c0 = πbusy/(1 − ρ)2 > 0, which does not depend on b. The second moment of the

waiting time for class-1 customers is given by

m(2)
1 (b) = 2c0 × m(2)∗

1 (b) (5.9)

where

m(2)∗
1 (b) =

ρ2(1 − b)
(
µ − λ1(1 − b)2) − ρ(1 − b)

(
(3b − 2)λ1 + (b + 2)µ

)
− λ1(1 − b)2 + µ

(µ − λ̂)3
,

(5.10)
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while the corresponding expression for class-2 is

m(2)
2 (b) = 2c0 × m(2)∗

2 (b) (5.11)

where

m(2)∗
2 (b) =

µ − ρλ̂

(µ − λ̂)3
. (5.12)

Lemma 5.4.1. In the two-class M/Mi/c APQ, the IWAE is

Z∗(b) = c0 ·
[
α1λ1m(2)∗

1 (b) + fα2λ2m(2)∗
2 (b)

]
. (5.13)

Proof. In the two-class M/Mi/c APQ, by equation (5.8), the IWAE can be written as a function

of b,

Z∗(b) = α1λ1G1 + α2λ2G2

=
1
2

[
α1λ1m(2)

1 (b) + fα2λ2m(2)
2 (b)

]
= c0 ·

[
α1λ1m(2)∗

1 (b) + fα2λ2m(2)∗
2 (b)

]
.

�

Theorem 5.4.2. Denote b∗ as the optimal b value that minimizes IWAE in equation (5.13), and

let r1 be one of roots of a quadratic equation arising from dZ∗(b)/db = 0, specified in equation

(5.18) below. For α1 ≥ α2, then r1 ≤ f , and

b∗ =


0, r1 ≤ 0;

r1, r1 > 0.
(5.14)

Proof. To minimize IWAE in equation (5.13), we first take the first derivative of Z∗(b) respect

to b.

d
db

Z∗(b) =
c0λ1λ2

µ(µ − λ1(1 − b))4

[
c1b2 + c2b + c3

]
, (5.15)

where

c1 = α1λ1(3λ − µ),
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c2 = 2
(
α1µ(µ + λ1) − λ1λ(2α1 + α2 f )

)
, and (5.16)

c3 = µ
(
(µ − λ)(α1 − α2 f ) − (λ1α1 + 2µα2 f )

)
+ λ1λ(α1 + 2α2 f ).

Since dZ∗(b)/db is a quadratic function of b, for 0 < ρ < 1, 0 < f < 1, θ > 0, and α1 ≥ α2 >

α2 f , it follows that

4 ≡ c2
2 − 4c1c3

=
4µ4

(1 + θ)4

{
(α1 − α2 f )2ρ4 + α2

1(θ + 1)2 + 3ρ(θ + 1)α1(α1 − α2 f )
[
(ρ −

4
3

)2 −
7
9

]}
≥

4µ4

(1 + θ)4 (α1θ + α2 f )2

> 0. (5.17)

The roots of the quadratic equation dZ∗(b)/db = 0 are

r1 =
−c2 +

√
4

2c1
and r2 =

−c2 −
√
4

2c1
,

where r2 < [0, 1] (i.e., it is out of the suitable range at all times) is not the optimal solution for

IWAE. After some rearrangement, r1 can be expressed as

r1 =
2µ2

[
(2α1 + α2 f )ρ2 − α1ρ − (θ + 1)α1

]
+ (θ + 1)

√
4

2α1ρµ2(3ρ − 1)
. (5.18)

We find that r1 increases with ρ; ρ ∈ (0, 1), so that

r1 ≤ lim
ρ→1

r1 =
fα2

α1
≤ f , for α2 ≤ α1. (5.19)

Thus, b∗ = r1 when r1 ∈ [0, f ] and b∗ = 0 when r1 < 0. �

When b∗ > 0, the system under the accumulating priority discipline outperforms that under

the classical priority queuing discipline. We are interested in determining the specific occupan-

cy where the classical priority gives away to the APQ as the optimal queuing discipline. We

denote this occupancy by ρsp (i.e., sp for “switching point”).

Corollary 5.4.3. The switching point ρsp where the accumulating priority discipline starts to

outperform the classical priority discipline is given by

ρsp =
α1(θ + 2) − α2 f (θ + 1) −

√
(θ + 25)(θ + 1)α2

2 f 2 − 2θ(θ + 1)α1α2 f + α2
1θ

2

2α1 + 4α2 f
. (5.20)
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Proof. The solution is by setting r1 = 0 in equation (5.18) and solving for the corresponding

value of ρ. �

5.5 Optimizing WAE

Having addressed the IWAE optimization problem, we return to the original WAE optimization

problem which involves specific values of lk; k = 1, 2, . . . ,K, since KPI systems have stipulated

delay limits, ostensibly for clinical reasons. By optimizing the WAE, we are able to identify the

optimal accumulation rate for each class, which minimizes the consequence of the customers

missing their specific delay limit.

The expected excess wait function for each class, under a fixed delay limit, is unavailable

in a tractable closed form. Similarly, even the waiting time distributions are only known in

terms of their LSTs. Since a closed-form analytical expression for the waiting time distribution

is unavailable, the compliance probabilities will have to be recovered from the LSTs via a

numerical inversion technique.

In contrast to this, we are able to establish a useful relationship between the transform of

the expected excess waiting time in terms of the waiting time LST, which is readily available.

Furthermore, this transform relationship will be used to show that when we use our preferred

numerical inversion method (Gaver-Stefest inversion) to obtain the compliance probabilities,

the numerically inverted expected excesses are found via a trivial extension of that calculation.

By definition, the LSTs of wk(t), Wk(t), S k(t), and Hk(t) are given by

w̃k(s) =

∫ ∞

t=0
e−stwk(t)dt =

∫ ∞

t=0
e−stdWk(t),

W̃k(s) =

∫ ∞

t=0
e−stWk(t)dt,

S̃ k(s) =

∫ ∞

t=0
e−stS k(t)dt,

H̃k(s) =

∫ ∞

t=0
e−stHk(t)dt.
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Lemma 5.5.1. The transforms defined above for the waiting time distribution and the expected

excess per customer are related by

H̃k(s) =
mk

s
−

1
s2 +

w̃k(s)
s2 . (5.21)

Proof: Standard properties of LST imply that

W̃k(s) =
w̃k(s)

s
, (5.22)

and

S̃ k(s) =
1
s
− W̃k(s). (5.23)

From equation (5.1), it follows that H′k(t) = −S k(t), so that when integrating by parts,

H̃k(s) =

∫ ∞

t=0
Hk(t)e−stdt

=

[
Hk(t)e−st

−s

]∞
0

+

∫ ∞

t=0

e−st

s
H′k(t)dt

=
Hk(0)

s
−

1
s

S̃ k(s).

Letting mk be the mean class-k waiting time, (5.21) is obtained, as Hk(0) =
∫ ∞

x=0
S k(x)dx = mk.

�

Equation (5.21) immediately implies that H̃k(s) is readily obtained for any value of s, once

the corresponding evaluation has been carried out for the w̃k(s).

We are now ready to apply numerical inversion to evaluate the LST of the compliance

probabilities and the expected excess functions. The numerical inversion of LSTs has been

an alternative to analytical inversion since the Fast Fourier Transform (FFT) technique gained

popularity (Brigham and Morrow [4]). Whereas the FFT can require hundreds of evaluations

for a single time point of interest, there are alternatives that require only a handful of evalua-

tions. The one we choose to employ is Gaver-Stehfest (GS) numerical inversion; it is so named

because the pioneering probabilistic work of Gaver [10] was later refined algorithmically by

Stehfest [19].
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Lemma 5.5.2. The GS numerical evaluation of the class-k expected excess waiting time per

customer for k = 1, 2, . . . ,K is given by

Hg,k(t) =

N∑
j=1

V j

j

w̃k( ln2
t × j)

( ln2
t × j)

−
1

( ln2
t × j)

+ mk

 , (5.24)

where the V j, j = 1, 2, . . . ,N are combinatorial terms related to order statistics as derived by

Gaver [10].

The proof of Lemma 5.5.2 is give in Appendix B.3.

Remark: The GS coefficients V j have the useful properties that
∑N

j=1 V j = 0 and
∑N

j=1 V j/ j = 1.

Theorem 5.5.3. The WAE in a multi-class M/Mi/c APQ as evaluated by GS approximation is

given by

Zg =

K∑
k=1

N∑
j=1

αkπbusyλklkV j

j2ln2

(
w̃+

k (
ln2
lk
× j) − 1

)
+

K∑
k=1

αkλkmk. (5.25)

When αk = 1, k = 1, 2, . . . ,K, the corresponding total expected excess (TEE) is

Zg =

K∑
k=1

N∑
j=1

πbusyλklkV j

j2ln2

(
w̃+

k (
ln2
lk
× j) − 1

)
+ M, (5.26)

where M is the constant in the conservation law for an M/Mi/c APQ (Li and Stanford [14]),

such that M =
∑K

k=1 λkmk. Moreover, M does not depend on the accumulation rates bk; k =

1, 2, . . . ,K.

The proof of Theorem 5.5.3 is derived in Appendix B.3.

Corollary 5.5.4. In any multi-class APQ with c heterogeneous servers, each working at an

exponential service rate µi for i = 1, 2, . . . , c, the optimality of the TEE in equation (5.26) is

the same as the one in a single-server APQ with an exponentially-distributed service time at

rate µ =
∑c

i=1 µi.

The equivalence claimed by Corollary 5.5.4 is established in Appendix B.3.

According to Theorem 5.5.3, the (equal) weighted average of the total expected excess in

the two-class multi-server APQ can be written out by equations (B.4) – (B.9) in Appendix B.2.

In the next section, we turn to the numerical investigation of various quantities arising from the

minimizing of the TEE, WAE, and IWAE in the two-class multi-server APQ.
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5.6 Numerical investigations

A series of calculations were performed for the two-class single-server APQ with a total service

rate µ = 12/hr = 0.2/min, to determine the WAE and IWAE for various configurations of the

parameters b, ρ, f , θ, and lk; k = 1, 2. While we present results for a wide range of parameter

values, we will be primarily interested in realistic parameter values, e.g., 1/6 < f < 1 and

ρ > 60% in KPI systems which we might encounter in reality. In all cases, the GS numerical

inversion algorithm with 8 points is used, which provides two significant digits of accuracy.

Our focus is initially on the optimal solutions to the unconstrained problems; at the end we

will comment on the corresponding constrained problems.
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Figure 5.1: WAE (ρ = 90%) with the parameters µ = 2, λ1 = λ2, l1 = 15 mins and f = 1/4.

In Figure 5.1 we present the total expected excess (TEE), the weighted average of the

expected excess (WAE), and the expected excess waiting time per customer (EE) for class 1

and class 2, which were calculated as a function of the priority accumulation rate for class-2
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Figure 5.2: IWAE (ρ = 90%) with the parameters µ = 2, λ1 = λ2, and f = 1/4.

customers, b2 = b with fixed b1 = 1. In Figure 5.2, we present the corresponding cases of the

IWAE as Figure 5.1 images (a) and (b), to provide a contrast to the TEE and WAE. In both

cases, f = l1/l2 = 1/4. These figures assume equal arrival rates and a 90% occupancy level.

The specific delay limits for class-1 and class-2 are 15 mins and 60 mins respectively in Figure

5.1.

Figure 5.1 (a) and Figure 5.2 (a) compare the TEE and the IWAE when α1 = α2. We

observe that both curves appear to be convex, and that the optimal b values for both curves are

very close to 0.2 < 1/4. The optimal b that minimizes TEE is slightly less than 0.2, whereas the

optimal b that minimizes IWAE (1:1) is slightly greater than it. In the remainder of this section,

we will use (α1 : α2) to denote the proportion of the weights between class-1 and class-2, so

that for instance, IWAE (1:1) means that the IWAE was computed with α1 = α2 = 1.

Figure 5.1 (b) and Figure 5.2 (b) compare the WAE (3:1) and the IWAE (3:1). Once again,

only a tiny difference between the optimal b values can be observed. Moreover, both optimal

b values are less than fα2/α1 = 1/12. The WAE curve in this unequal weights case is clearly

not convex over the range b ∈ [0, 1], whereas the IWAE is convex. To further investigate the

non-convexity of WAE, we plot the expected excess waiting time per customer for each class,

the results of which are presented in Figure 5.1 (c) and (d). We see that the expected excess

curve for class-2 is convex, as we proved earlier, whereas the curve for class-1 is not convex

for all b, which results in the non-convex behaviour of WAE (3:1) in Figure 5.1 (b).
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Figure 5.3: TEE and WAE (ρ = 90%) with parameters: l1 = 20 mins, f = 1/2.

Figure 5.3 presents the values of TEE and WAE (3:1) respectively when the ratio of class-2

to class-1 arrivals θ = λ2/λ1 assumes one of three values θ = 0.5, 1 & 2. The occupancy is

fixed at 90%, while l1 = 20 mins and l2 = 40 mins. For both the TEE and WAE in Figure 5.3,

we notice that the curves for different values of θ display similar curvatures, with the optimal
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b values for all three curves close for the WAE, and very close for the TEE. Furthermore,

we find that the amounts of TEE and WAE are always greater for small θ than they are for

large. This is because a small value of θ for a fixed ρ means there are more class-1 and fewer

class-2 customers in the system, meaning that more patients are subject to the tighter time limit

l1. In addition, the APQ priority structure in such a scenario leads to longer delays for the

lower-indexed class. The converse argument explains why the reverse is true for θ = 2.

Figure 5.4 shows the optimal b values that minimize TEE against different occupancy levels

with l1 = 20 mins, f = 1/2 and θ = 0.1, 0.5, 1, 2, 10. We observe that when ρ > 60%, the

differences among the optimal b values are small for all the ratios considered. Consequently,

in a KPI system we can realistically expect to arise, the mix of traffic from the various classes

has little impact upon the optimal value of b.
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Figure 5.4: The optimal b to minimize TEE with parameters: l1 = 20 mins and f = 1/2.

We performed a set of calculations to find the optimal b value to minimize TEE, denoted

by b†, as a function of ρ. The results are presented in Figures 5.5, where we have considered
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Figure 5.5: The optimal b to minimize TEE with parameters: λ1 = λ2 and l1 = 20 mins.

equal customer arrival rates for both classes, the delay limit for class-1 l1 = 20 mins, the values

of f = 1/2, 1/3, 1/4 and 1/6. We observe the following, based on Figure 5.5:

• At sufficiently light load ρ, b† = 0; that is, in light traffic, a classical priority queue is the

optimal policy for minimizing total expected excess. This is because at light load, the

chance (small though it is) of a high priority patient exceeding l1 and incurring excess

waiting time is much greater, relatively speaking, than the chance of a lower priority cus-

tomer exceeding l2. As f decreases, l2 = l1/ f increases, so that we observe a larger range

of occupancies for which a classical priority situation is optimal. For any fixed f value,

however, there is eventually a large enough ρsp where the optimal queuing discipline

switches from classical priority to an APQ discipline with positive b†.

• For a fixed f value, as ρ > ρsp increases, the rate of increase in b† decreases, and the

greatest optimal b value occurs when the the occupancy level approaches one; this value

is always smaller than f . We denote the greatest optimal b value by b†max.
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Table 5.2: The values of ρsp and b†max for different values of f

l1 = 20 mins l1 = 30 mins

f ρsp b†max ρsp b†max

1/2 0.010 0.437 0.099 0.452

1/3 0.249 0.273 0.317 0.287

1/4 0.416 0.197 0.472 0.209

1/6 0.615 0.125 0.656 0.135

1/12 0.824 0.059 0.843 0.065

1/100 0.983 0.007 0.984 0.007

1/600 0.998 0.001 0.998 0.001

Table 5.2 presents the numerical values of ρsp and b†max for different values of f . The results

in the table are consistent with the observations stated above. In addition to this, we observe

that a relaxation in the value of l1 leads to an increase in both ρsp and b†max. For instance, when

f = 1/3, ρsp = 0.249 when l1 = 20 mins, which is smaller than 0.317 when l1 = 30 mins.

Likewise, b†max = 0.273 in the former case is smaller than 0.287 in the latter; we note that both

of them are smaller than 1/3. We also note that as f approaches zero, ρsp goes to one while

b†max goes to zero, since there is no excess class-2 waiting in the limit. The table indicates that

in realistic situations where f is in the range 1/6 < f < 1 and for occupancies ρ > 60% in a

two-class system, an APQ with positive 0 < b < f will be preferable to both classical priority

and FCFS queuing disciplines.

Similar results as what we have discussed above were observed in Figure 5.6 which consid-

ers the optimal b to minimize WAE (3:1) with the same set of parameters. The main difference

is that for a fixed f value, as ρ > ρsp increases, the optimal b increases from zero and reaches

its maximum at a particular level of occupancy, then starts to decrease until it returns to zero

when the occupancy level approaches one. The occupancy level corresponding to the greatest

optimal b increases as f decreases. When ρ increases, there are more arrivals from both classes
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in the system. As we increase b, we incur greater delays for class-1, which may result in a big

impact on WAE at high occupancy levels, especially since we have assigned more weight to

class-1 whose delay limit is much tighter. Thus, the optimal b to minimize WAE decreases at

high occupancy.
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Figure 5.6: The optimal b to minimize WAE (3:1) with λ1 = λ2 and l1 = 20 mins.

Figure 5.7 presents the optimal b values to minimize IWAE (1:1) against different levels

of occupancy with equal arrivals from both classes. Compared to Figure 5.5, the optimal b

for IWAE (1:1) also increases with ρ and reaches its maximum at f when ρ approaches one,

whereas the optimal b for TEE is always smaller than f in Figure 5.5. For a fixed f , the ρsp

for IWAE (1:1) is smaller than that for TEE, which again implies that the APQ structure is

preferable to both the classical priority and FCFS disciplines.

Figure 5.8 is plotted to minimize IWAE (3:1) as a comparison both with Figures 5.6 (which

has the same weights, but considers WAE) and 5.7 (which considers IWAE with equal weights).

A similar trend as in Figure 5.7 is observed from Figure 5.8. Unlike Figure 5.6, the optimal b
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Figure 5.7: The optimal b to minimize IWAE (1:1) with equal arrivals.

for IWAE (3:1) keeps increasing with ρ, and the greatest value is fα2/α1 when ρ approaches

one. Compared to Figure 5.6, for a fixed f , the ρsp for IWAE (3:1) is greater than that for WAE

(3:1).

A comparison of Figures 5.5 and 5.7 reveals that the difference between the optimal b for

TEE and that for IWAE (1:1) appears small for occupancy levels one is likely to encounter in

practice. In order to investigate this more closely, we plot the difference between the optimal

b for IWAE (1:1) and for TEE against different occupancy levels in Figure 5.9. Firstly, the

maximum difference occurs at ρsp since the optimal b for TEE is zero when ρ < ρsp, whereas

that for IWAE (1:1) is positive. Secondly, at high occupancy (i.e., ρ > 80%), the absolute

difference is less than 0.065 for all f considered in the figure. Therefore, it seems reasonable

to use the optimal b for IWAE with equal weights to approximate the one for TEE where a

specific delay limit is imposed on each class. In specific cases where a user is seeking greater

precision in the optimal ratio, an iterative numerical method, such as Newton’s method, with
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Figure 5.8: The optimal b to minimize IWAE (3:1) with equal arrivals.

the optimal IWAE value of b∗ as a starting point can be employed.

The difference between the optimal b for IWAE (3:1) and for WAE (3:1; l1 = 20 mins)

against different occupancy levels is plotted in Figure 5.10. When unequal weights are con-

sidered, the difference between the optimal b values is relatively large. Since the difference

increases with ρ, at high occupancy the optimal b for IWAE is not likely to be a good proxy of

that for WAE when unequal weights are considered.

We conclude this section with some comments about the optimal solutions of the corre-

sponding constrained two-class problems. We can readily dismiss the case where both KPIs

are satisfied and the case where both are violated: in the former, we know the optimal solution,

and in the latter, no adjustment to the accumulation rates will lead to compliance of both KPIs.

Either the volume of traffic would have to be reduced, or service capacity increased, in order

for compliance to occur.

This leaves the situation where one constraint is satisfied and one is violated. In such a
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Figure 5.9: The difference between the optimal b to minimize IWAE (1:1) and the optimal b to

minimize TEE (l1 = 20 mins) with equal arrivals.

situation, an adjustment to the optimal class-2 priority accumulation rate b with b1 fixed will

improve the degree of compliance for one class, while degrading it for the other. In terms of

the numerical examples we carried out, it was generally the case that the constraint for class-1

waiting times was the first to become binding as traffic increased. In such a situation, if the

lower priority constraint is still satisfied, one can progressively reduce the level of b, which

will lead to greater class-1 compliance and less class-2 compliance. If the class-1 constraint

becomes satisfied before the class-2 constraint becomes violated, then the largest value of b

for which this is achieved would be the optimal solution. Conversely, if it were to occur that

the class-2 constraint was the first to become binding, the reverse procedure would be applied

(increasing b in the hope that the class-2 constraints would become satisfied).
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Figure 5.10: The difference between the optimal b to minimize IWAE (3:1) and the optimal b

to minimize WAE (3:1; l1 = 20 mins) with equal arrivals.

5.7 Discussion

In this paper, we have presented a general optimization problem for queuing systems operating

under waiting time limits. Our optimization problem reflects the fact that customers who miss

their waiting time limits are in fact of greater concern than those who satisfy them, whereas

Key Performance Indicators (KPIs) on their own do not address this fact. Formally, our goal

was to minimize a weighted average of the total expected excess waiting per unit time over all

permissible customer selection strategies, subject to the constraints that the waiting time limits

are met for each customer class.

We have also established that the individual terms in our objective function, which represent

the expected excess waiting time per customer for each class, are readily obtained as a by-

product of the computation of the probabilities of KPI compliance whenever the latter are

being evaluated via numerical inversion of their LSTs.
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While the aforementioned optimization problem can be applied to any work conserving

queuing discipline, we have established that the Accumulating Priority Queue is well-suited to

the goal of minimizing the excess waiting beyond the delay limits, since customers are selected

for service based both on their priority class and the amount of time they have spent waiting

for service. By providing the decision maker with the added flexibility of determining the best

priority accumulation rates for each class, one can better achieve the desired balance between

the amount of excess waiting that occurs in each class.

We have studied the convexity of the expected excess waiting time for each class in the

two-class APQ optimization problem. We established that the expected excess waiting time for

class-2 is convex in the accumulation rate of class-2, b; as an extension, we have proved that it

is equally true for the lowest-priority class in the multi-class APQ. However, we have seen that

the weighted expected excess objective WAE is not always convex in b, since a considerable

number of numerical examples suggest that the expected excess waiting time for class-1 has a

negative curvature over some range of b. Nonetheless, a related objective function is available,

the integrated weight average of the total expected excess (IWAE), which we can work with

easily. The convexity of the IWAE has been established, and the optimal solution for IWAE in

terms of the optimal ratio of accumulation rates has been presented in this paper.

Extensive numerical experiments have been conducted to study the optimality behaviour of

WAE in the two-class APQ based on the GS numerical inversion method. We first conclude that

in high occupancy systems, the optimality behavior for TEE can be approximated by that for

the integrated objective function IWAE with equal weights. The numerical examples for two

classes seem to suggest a “rule of thumb” in which near-optimal performance was achieved

by accumulation rates in inverse proportion to the delay limits, especially in heavy-loaded

systems (as the occupancy level approaches one). In fact, all our examples (both those shown,

and those not) are such that the “rule of thumb” provided an upper bound for the optimal ratio

of the accumulation rates for TEE, and it is the exact limit as the occupancy approaches one

for the optimal ratio for IWAE with equal weights in the two-class case.

We also find that in low-occupancy systems, the classical priority queuing discipline mini-
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mizes expected excess waiting time, whereas in more heavily-loaded systems, the accumulat-

ing priority queuing discipline is optimal. The numerical examples suggest that the cross-over

occupancy point between these two regimes increases with the inverse ratio of the delay limits.

An explicit solution for the switching point of the occupancy level, ρsp, has been found when

considering the integrated objective IWAE. Finally, in the case where the APQ discipline is

optimal, the optimal ratio b∗ for IWAE (1:1) seems to provide a good approximation for the

optimal ratio to minimize TEE, and the inverse ratio of the delay limits is typically a tight upper

bound.

The “rule of thumb” ensures that all customers approaching their waiting time limits will

have accumulated comparable amounts of priority, so that each customer class has roughly

the same probability of exceeding their respective limits. Consequently, all acuity classes will

observe comparable levels of compliance, suggesting that different compliance standards are

are at best unnecessary and at worst inconsistent with a TEE goal. Based on our numerical

investigations, we conjecture that the “rule of thumb” is also nearly optimal in the multi-class

APQ system, however the complexity of the mathematical analysis in the multi-class case

prevented us from obtaining similar optimality results. In the more general case where the

weights placed on the excess waiting times are different, no rule of thumb has been found for

WAE; however, the optimal solution has been derived for IWAE with unequal weights, which

could be used as a rough starting point for WAE. To find successively better approximations

for WAE, some numerical algorithms need to be considered, such as Newton’s method.

We conclude this paper with some observations on the use of differing compliance probabil-

ities for the various KPIs. In situations where the Rule of Thumb performs well, we have noted

that the consequence would be that the various classes of customers would attain comparable

amounts of credit as they approach their respective time limits, and thus we can anticipate simi-

lar waiting time compliance. As it is typically the case that the KPI for the top priority class has

the most stringent compliance standards, any KPI with a lower standard becomes unnecessary.

In other cases where the optimal accumulation rates for the various classes are notably lower

than the Rule of Thumb would suggest, it may be the case that the KPI for a lower class would
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be the first to become binding. However, this rarely occurred in the examples we ran. In any

case, it is important to remember that the level of compliance is clearly a secondary measure to

be considered, relative to the desirable goal that all patients access treatment by their specified

time limit.
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Chapter 6

Conclusions and future work

6.1 Main contributions

1. The main contributions of the first paper “Multi-server Accumulating Priority Queues

with Heterogeneous Servers” as follows:

We have addressed two distinct aspects when studying a heterogeneous multi-server

queue. In the first instance, we considered the queuing systems operating under the

so-called “r-dispatch policy” to determine which of the available servers is to be used

to server a newly arriving customer. This policy is quite flexible and is able to capture

several traditional service dispatch policies including RCS, FSF, SSF and RBS. We then

ponder the question of how to determine the optimal service dispatch policy, among

the four popular service dispatch policies above, in order to improve the system per-

formance relative to the corresponding homogeneous system. To answer this question,

we first presented a conservation law for a heterogeneous multi-server system, under

any non-preemptive work-conserving queuing discipline, with a given service dispatch

policy. Then, we were able to find an optimal level of heterogeneity to minimize an

appropriate cost which arises as a result of this conservation law.

In the second instance, we addressed the question of who to select next for service when

there are different classes of customers present. The accumulating priority queue is the
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modern name for the “delay dependent queue discipline” introduced by Kleinrock in

1964. This model allows customers to accumulate priority while they wait, at a rate

that reflects their class’s relative importance. The customer with the greatest accumulat-

ed priority at service completion epochs is the one selected for service. The principle

advantage of the accumulating priority queuing discipline is that it balances the advan-

tages of the FCFS and the classical priority queuing disciplines — priority matters, but

long waiting times do as well. Further, we can regain each of these limiting cases by

appropriate choices of the accumulation rate parameters. We then derived the waiting

time distributions for all customer classes under the accumulating priority queue, and

obtained the waiting times for the two other cases as a by-product. We concluded by

carrying out several numerical experiments for validating our model and investigating

the impact of the level of heterogeneity under different service dispatch policies.

2. The main contributions of the second paper “On Waiting Times for Nonlinear Accumu-

lating Priority Queues” as follows:

In the first instance, motivated by the Kleinrock and Finkelstein approach, we managed

to link any power-law APQ with an equivalent linear APQ such that the order of all

customers present in both systems is the same at all points in time. This enables us to

invoke the results of Stanford et al. to determine the waiting time distributions in all

power-law APQs.

In the second instance, we ponder the question as to how general a nonlinear priority ac-

cumulation system can be, yet still give rise to an equivalent linear system. We answered

that question, and determined the necessary and sufficient condition which says, essen-

tially, that so long as the priority accumulation functions are based upon scaled versions

of a common, differentiable, monotonically increasing function, we can find a linear e-

quivalent, and come up with the corresponding waiting time distributions. Beyond these

requirements, any such function will do the job.

From a practical viewpoint, this provides great breadth, in that a decision maker can
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select any priority accumulation shape they like, so long as it monotonically increasing

and differentiable. From a theoretical viewpoint, it means that no further generality is

thus obtained, and so the waiting time results in Stanford et al. can still be invoked. We

illustrated the results through three numerical examples.

3. The main contributions of the third paper “Optimization of Queues Operating Under

Waiting Time Limits” as follows:

This paper pertains to the trend for health care systems to respond to so-called “Key

Performance Indicators (KPIs)”. The KPI approach specifies for each class of customers

both a time target for customers to commence service, and a compliance probability

indicating the proportion of customers that meet the target. The main problem with

working solely on the basis KPIs is that no consequence is specified for customers who

miss their target, when in fact a customer who misses their KPI target is of greater, not

lesser importance.

We addressed this fundamental oversight with an objective function that seeks to quantify

how much excess is occurring under a given queuing discipline. We have done so initially

by seeking to minimize the weighted average of the total expected excess waiting time

(WAE) in KPI-based systems, which is an ideal setting for the Accumulating Priority

queuing discipline, where each class of customers progresses fairly towards timely access

by its own delay limit. By selecting the right priority accumulation rate for each class,

one can arrange the system so that customers from different classes may accumulate

the same amount of priority credits when they reach their respective time limits. Issues

relating to convexity for WAE have been presented and discussed.

Due to the difficulties of the WAE optimization problem, we introduced a surrogate ob-

jective function, the integrated weighted average excess (IWAE), which provides a useful

proxy for WAE. We also proposed a rule of thumb in which near-optimal performance

can be achieved by accumulation rates in the inverse proportion to the delay limits, es-

pecially in heavy loaded systems. Extensive numerical investigations were carried out
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for validating the rule of thumb under various conditions; we also compared numerical-

ly the differences in optimal performance under the WAE and IWAE, both in equally

and unequally weighted environments. Furthermore, a comprehensive numerical study,

combined with theoretical derivations, on the convexity of the WAE objective function

was presented in Appendix B.4, which provides us a better understanding of its optimal

behaviour.

6.2 Future work

1. Extension of the multi-class APQ with heterogeneous servers:

We have presented the expressions in closed form of the waiting time distributions and

the conservation law in a multi-class heterogeneous multi-server APQ. We anticipate two

major directions for future developments:

• Heterogeneous multi-server APQ optimization problems, such as, how to select the

parameter set {bk; k = 1, . . . ,K} to minimize an appropriately defined cost or meet

certain waiting time targets, as well as optimal control of heterogeneous APQs

using different service dispatch policies.

• Extension to the situation where the service time distributions are non-exponential.

Such a problem is non-trivial, although some results might be possible in the case

of the service time distributions built upon the exponential. Other types of service

dispatch policies can be considered in such systems, for instance, the idle-time-

based dispatch policies including Longest Idle Server First (LISF), and Shortest

Idle Server First (SISF).

2. Accumulating priority queues with other types of priority accumulation functions:

We have presented conditions for a general nonlinear APQ to have a linear proxy, in

which customers of all classes have the same waiting time distribution as in the nonlinear

APQ. There are two major sets of priority accumulation functions left to be explored:
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• An APQ with affine priority accumulation functions, in which customers of differ-

ent classes start with different amounts of initial priority.

• An APQ with more general nonlinear priority accumulation functions, for which a

linear proxy does not exist.

3. Multi-class M/Mi/c APQs with class-dependent service rates:

We are currently studying a multi-class M/Mi/c APQ where the service rate depends on

the customer’s class type, rather than the server. However, this problem is complicat-

ed by the possible combinations of customers’ types in service at the beginning of an

accreditation interval. Hopefully, we may solve the problem in the near future.

4. Extension of the optimization problems of queues operating under waiting time limits:

We have formulated and studied the WAE and IWAE optimization problems for the sys-

tems operating under waiting time limits, where the investigations and derivations are

primarily considered for the two-class multi-server APQs in this thesis. We have made

a further exploration of the case with multiple classes of customers. Based on some

fundamental derivations we have carried out, we foresee that explicit solutions would be

obtained for the IWAE in the multi-class queues.



Appendix A

Additional materials in Chapter 3

A.1 Waiting times of accredited customers in an M/Mi/c APQ

Stanford et al. [24] introduces the concept of the “the maximum priority process” {Mk(t); k =

1, 2, . . . ,K}. For k = 1, 2, . . . ,K, Mk(t) provides an upper bound on the possible accumulated

priority of class-k customers at time t. Within a single busy period, class-k (and higher) cus-

tomers can eventually exceed the maximum priority of customers from classes with priorities

lower than k. Such customers are said to be “served at accreditation level k” if their priority up-

on entry to service at time t lies in the interval (Mk+1(t),Mk(t)]. Moreover, the authors defined

the accreditation interval at level k, which is a period of time that starts either at the beginning

of a busy period or when a customer is served at some accreditation level l1 for l1 > k, and

finishes either at the end of a busy period or when another customer is served at some accredi-

tation level l2 for l2 > k. Whenever a customer is served at accreditation level k, accreditation

intervals at all level l < k commence.

Stanford et al. [24] showed that an accreditation interval at level k can be thought of as a

delay cycle in the sense of Conway et al. [4] that starts with the service time of the initiating

customer and continues as long as there are customers at accreditation level l ≤ k. In our case,

within the delay cycle, the service times are exponentially distributed with rate µa, and the

instants at which customers of all classes i; i ≤ k become accredited at level k are distributed as
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a Poisson process with rate Λk =
∑k

i=1 λi(bi − bk+1)/bi. Therefore, the LST Γ̃k(s) of the duration

of the accreditation interval at level k is obtained by solving the functional equation

Γ̃k(s) = B̃(s + Λk(1 − Γ̃k(s))) (A.1)

(see Conway et al. [4, page 150, equation (7)]), where B̃(s) = µa/(µa + s), which results in

equation (3.28).

Let σk denote the stationary proportion of time that the server spends on customers served

at all accreditation levels l = 1, 2, . . . , k, so that σk =
∑k

j=1 ρ j(b j − bk+1)/b j (see Stanford et al.

[24]). Then the LST of the waiting time of a class-k customer who is served at accreditation

level k; W̃ (k)
acc(s), is shown in Stanford et al. [24] to be given by

W̃ (k)
acc(s) =

 1 − ρ
1 − σk

+ W̃ (k+1)
+

(
bk+1

bk
s;µ, c

) k∑
j=1

ρ j(bk+1/b j)
1 − σk

+

K∑
j=k+1

ρ j

(1 − σk)
W̃ ( j)

+

(
b j

bk
s;µ, c

) W̃ (k,0)
acc (s). (A.2)

The term W̃ (k,0)
acc (s) in equation (A.2) is given by

W̃ (k,0)
acc (s) =

[µΓk−1 −
∑k

i=1 λi(bk − bk+1)/bi][φ̃k(sbk+1/bk) − Γ̃k−1(s)]

(1 − bk+1/bk)[s − (
∑k

i=1 λibk/bi)(1 − Γ̃k−1(s))]
, (A.3)

where 1/µΓk is the mean of a random variable with LST Γ̃k(s); that is, 1/µΓk = −
dΓ̃k(s)

ds |s=0. The

LST, φ̃k(s), is the solution to the functional equation φ̃k(s) = Γ̃k−1[s + (
∑k

i=1 λi(bk −bk+1)/bi)(1−

φ̃k(s))]. The derivation of these expressions can be found in Stanford et al. [24].

Remark Assuming bk+1/bk = 1/M; k = 1, 2, . . . ,K − 1. Under the classical priority queu-

ing discipline, lim
M→∞

bk+1/bk = 0, then we have lim
M→∞

Λk =
∑k

i=1 λi, lim
M→∞

σk =
∑k

j=1 ρ j, and

lim
M→∞

µΓk−1 = µa − Λk−1. By equations (3.31), (A.2) & (A.3), the LST of the delayed waiting

time distribution for each class under the classical priority queue is

lim
M→∞

W̃ (k)
+ (s;µ, c) = lim

M→∞
W̃ (k)

acc(s) = lim
M→∞

W̃ (k,0)
acc (s)

=
(µΓk−1 − λk)

(
1 − Γ̃k−1(s)

)
s − λk(1 − Γ̃k−1(s))

=
(µa − Λk)

(
1 − Γ̃k−1(s)

)
s − λk(1 − Γ̃k−1(s))

. (A.4)
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We observe that it can be shown readily that(A.4), after accounting for customers who do not

wait, is consistent in the single server case with the unconditional waiting time LST found in

Conway et al. [4] page 164, equation (29).

A.2 Additional materials for the average waiting times in a

linear APQ

Kleinrock [12] derived the expressions for the average waiting times for different classes in a

single-server APQ:

mk =
M0 −

∑K
j=k+1 ρ j(1 − b j/bk)m j

1 −
∑k−1

j=1 ρ j(1 − bk/b j)
. (A.5)

In the M/G/1 case, M0 = W0/(1−ρ). However, it can be extended to the M/Mi/c case in which

M0 = π(µ, c; r)/(µa − λ), as shown in equation (3.12). Furthermore, the following equations

can be derived. For k = 1, 2, . . . ,K,

Ak =
mk

M0
=

1 −
∑K

j=k+1 ρ j(1 − b j/bk)A j

1 −
∑k−1

j=1 ρ j(1 − bk/b j)
, (A.6)

where AK = [1 −
∑K−1

j=1 ρ j(1 − bk/b j)]−1 and A1 = 1 −
∑K

j=2 ρ j(1 − b j/b1)A j. Immediately, we

may have, for k, j ∈ [1, 2, . . . ,K],
mk

m j
=

Ak

A j
. (A.7)

A.3 The stationary probability π(µ, 3; r) for RCS, FSF, SSF

and RBS

For RCS, π(µ, 3; 0) calculated from Gumbel [8] is given by

π(µ, 3; 0) =
λ3µa

(µ12+µ22+µ32)λ2+((2 µ3+2 µ2)µ12+(2 µ22+2 µ32)µ1+2 µ2µ3(µ3+µ2))λ+6 µ1µ2µ3µa
.

(A.8)

For FSF, π(µ, 3;∞) calculated by the global balance equations using Maple is given by

π(µ, 3;∞) = (λ + µ2) µaλ
3
(
µ3

2 + (µ1 + 2 λ) µ3 + λ2
)

(µ2 + µ3 + λ)
[

(λ + µ1)
(
µ2

2 + (µ1 + 2 λ) µ2 + λ2
)
µ3

5
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+ 3 (λ + µ1)
(
µ2

2 + (µ1 + 2 λ) µ2 + λ2
)

(µ1 + µ2 + λ) µ3
4 +

(
(3 µ1 + 3 λ) µ2

4 +
(
13 λ2 + 23 λ µ1

+ 10 µ1
2
)
µ2

3 +
(
19 λ3 + 46 λ2µ1 + 37 λ µ1

2 + 10 µ1
3
)
µ2

2 +
(
12 λ4 + 32 λ3µ1 + 33 λ2µ1

2

+ 15 λ µ1
3 + 3 µ1

4
)
µ2 + 3 µ1

3λ2 + 9 µ1
2λ3 + 8 λ4µ1 + 3 λ5

)
µ3

3 +

(
(λ + µ1) µ2

5 + (6µ1 + 7 λ) (λ + µ1) µ2
4

+
(
16 λ3 + 41 λ2µ1 + 35 λ µ1

2 + 10 µ1
3
)
µ2

3 +
(
14 λ4 + 47 λ3µ1 + 57 λ2µ1

2 + 29 λ µ1
3 + 6 µ1

4
)
µ2

2

+
(
5λ5 + 18λ4µ1 + 31µ1

2λ3 + 20µ1
3λ2 + 6λµ1

4 + µ1
5
)
µ2 + λ2

(
λ4 + 3λ3µ1 + 7λ2µ1

2 + 4λµ1
3 + µ1

4
))
µ3

2

+
(
(λ + µ1) µ2

3 +
(
λ2 + 3 λ µ1 + 2 µ1

2
)
µ2

2 + µ1
2 (µ1 + 2 λ) µ2 + λ2µ1

2
) (

(λ + µ1) µ2
2 + (µ1 + 2 λ)2 µ2

+ 2 λ2 (µ1 + 2 λ)
)
µ3 + λ3

(
(λ + µ1) µ2

3 +
(
λ2 + 3 λ µ1 + 2 µ1

2
)
µ2

2 + µ1
2 (µ1 + 2 λ) µ2 + λ2µ1

2
)

(λ + µ2)
]−1
.

(A.9)

For SSF, π(µ, 3;−∞) calculated by the global balance equations using Maple is given by

π(µ, 3;−∞) = µa (λ + µ1 + µ2) (µ2 + λ) λ3
(
µ1

2 + (µ3 + 2 λ) µ1 + λ2
)[(
µ2

2 + (µ3 + 2 λ) µ2 + λ2
)

(µ3 + λ) µ1
5

+ 3 (µ2 + µ3 + λ)
(
µ2

2 + (µ3 + 2 λ) µ2 + λ2
)

(µ3 + λ) µ1
4 +

(
(3 µ3 + 3 λ) µ2

4 +
(
13 λ2 + 23 λ µ3

+ 10 µ3
2
)
µ2

3 +
(
19 λ3 + 46 λ2µ3 + 37 λ µ3

2 + 10 µ3
3
)
µ2

2 +
(
12 λ4 + 32 λ3µ3 + 33 λ2µ3

2 + 15 λ µ3
3

+ 3 µ3
4
)
µ2 + 3 λ2µ3

3 + 9 λ3µ3
2 + 8 λ4µ3 + 3 λ5

)
µ1

3 +

(
(µ3 + λ) µ2

5 + (6µ3 + 7λ) (µ3 + λ) µ2
4

+
(
16 λ3 + 41 λ2µ3 + 35 λ µ3

2 + 10 µ3
3
)
µ2

3 +
(
14 λ4 + 47 λ3µ3 + 57 λ2µ3

2 + 29 λ µ3
3 + 6 µ3

4
)
µ2

2

+
(
5 λ5 + 18 λ4µ3 + 31 λ3µ3

2 + 20 λ2µ3
3 + 6 λ µ3

4 + µ3
5
)
µ2 + λ2

(
λ4 + 3 λ3µ3 + 7 λ2µ3

2 + 4 λ µ3
3

+ µ3
4
))
µ1

2 +
(
(µ3 + λ) µ2

3 +
(
λ2 + 3 λ µ3 + 2 µ3

2
)
µ2

2 + µ3
2 (µ3 + 2 λ) µ2 + λ2µ3

2
) (

(µ3 + λ) µ2
2

+ (µ3 + 2 λ)2 µ2 + 2 λ2 (µ3 + 2 λ)
)
µ1 + λ3

(
(µ3 + λ) µ2

3 +
(
λ2 + 3 λ µ3 + 2 µ3

2
)
µ2

2

+ µ3
2 (µ3 + 2 λ) µ2 + λ2µ3

2
)

(µ2 + λ)
]−1
. (A.10)

For RBS, π(µ, 3; 1) calculated by the global balance equations using Maple is given by

π(µ, 3; 1) = µaλ
3
[
2 µ2µ3 (µ3 + λ + µ2) (2 µ2 + 2 µ3 + λ) µ1

4 +

(
4 µ2

4µ3 +
(
4 λ2 + 22 µ3λ + 16 µ3

2
)
µ2

3

+
(
4 λ3 + 27 µ3λ

2 + 46 µ3
2λ + 16 µ3

3
)
µ2

2 + (µ3 + λ)
(
λ3 + 9 µ3λ

2 + 18 µ3
2λ + 4 µ3

3
)
µ2

+ µ3λ
2 (2 µ3 + λ)2

)
µ1

3 +

( (
6 µ3λ + 8 µ3

2
)
µ2

4 +
(
4 λ3 + 27 µ3λ

2 + 46 µ3
2λ + 16 µ3

3
)
µ2

3

+
(
2 λ4 + 22 λ3µ3 + 66 λ2µ3

2 + 46 λ µ3
3 + 8 µ3

4
)
µ2

2 +
(
4 µ3λ

4 + 22 µ3
2λ3 + 27 µ3

3λ2 + 6 µ3
4λ

)
µ2

+ 2 λ3µ3
2 (2 µ3 + λ)

)
µ1

2 + ((2 µ3 + λ) µ2 + µ3λ)
(
2 µ3 (µ3 + λ) µ2

3 + (µ3 + λ)
(
λ2 + 7 µ3λ + 2 µ3

2
)
µ2

2

+
(
3 λ3µ3 + 8 λ2µ3

2 + 2 λ µ3
3
)
µ2 + µ3

2λ3
)
µ1 + ((2 µ3 + λ) µ2 + µ3λ)2 µ2λ

2µ3

]
×

[
µ2µ3 (µ2 + µ3)2 µ1

8

+ (5 µ2 + 5 µ3 + 4λ) µ2 (µ2 + µ3) (µ3 + λ + µ2) µ3µ1
7 +

(
10 µ2

5µ3 +
(
36 µ3λ + 42 µ3

2
)
µ2

4



134 Appendix A: Additional materials in Chapter 3
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Table A.1: The stationary probability π(µ, 3; r) when ρ = 40%

{µ1, µ2, µ3} RCS FSF SSF RBS

{1, 1, 1} 0.14118 0.14118 0.14118 0.14118

{1.2, 1, 0.8} 0.14354 0.13266 0.15333 0.14201

{1.5, 1, 0.5} 0.15738 0.12758 0.17943 0.14723

{1.8, 1, 0.2} 0.19169 0.14215 0.21865 0.16497

Table A.2: The stationary probability π(µ, 3; r) when ρ = 75%

{µ1, µ2, µ3} RCS FSF SSF RBS

{1, 1, 1} 0.56776 0.56776 0.56776 0.56776

{1.2, 1, 0.8} 0.57074 0.56093 0.57930 0.56938

{1.5, 1, 0.5} 0.58696 0.56274 0.60404 0.57897

{1.8, 1, 0.2} 0.61965 0.59001 0.63692 0.60449

Table A.3: The stationary probability π(µ, 3; r) when ρ = 90%

{µ1, µ2, µ3} RCS FSF SSF RBS

{1, 1, 1} 0.81706 0.81706 0.81706 0.81706

{1.2, 1, 0.8} 0.81861 0.81412 0.82253 0.81798

{1.5, 1, 0.5} 0.82684 0.81617 0.83446 0.82332

{1.8, 1, 0.2} 0.84258 0.83048 0.84996 0.83646

Table A.4: The stationary probability π(µ, 3; r) when ρ = 98%

{µ1, µ2, µ3} RCS FSF SSF RBS

{1, 1, 1} 0.96245 0.96245 0.96245 0.96245

{1.2, 1, 0.8} 0.96280 0.96185 0.96362 0.96267

{1.5, 1, 0.5} 0.96462 0.96242 0.96621 0.96389

{1.8, 1, 0.2} 0.96803 0.96561 0.96954 0.96681



Appendix B

The proofs and additional materials in

Chapter 5

B.1 The proofs in Section 5.3

Theorem 5.3.1. Given the foregoing definitions, the function S 2(b, x) is a monotonically de-

creasing convex function in b for 0 ≤ b ≤ 1,∀x ≥ 0.

The proof of Theorem 5.3.1 requires the following lemma:

Lemma B.1.1. The stationary waiting time random variable W2 for class-2 customers in a

stable two-class APQ can be expressed as the sum of two dependent random variables

W2 =W + Y (B.1)

whereW denotes the stationary waiting time random variable in the M/G/1 FCFS compara-

tor queue, and Y refers to a compound Poisson random variable

Y = η1 + η2 + . . . + ηN (B.2)

where the random variable N denotes the number of class-1 customers to accredit duringW,

and ηi; i = 1, 2, . . . denote a sequence of i.i.d. busy period random variables for an M/G/1

136
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queue with arrivals at rate λ1(1−b) and whose service times are drawn from the class-1 service

time distribution. (In (B.2), it is to be understood that if N = 0, then Y = 0.)

Proof. We employ the same viewpoint to express the class-2 stationary waiting time W2 as

was employed in Theorem 9.1 of Stanford et al. [18]. This is done by rearranging the service

discipline in such a way that preserves the total waiting time experienced by a tagged arrival

from that class.

Consider such a tagged class-2 customer. It will wait for all of the work present in the

system upon its arrival, plus that which arrives later but will be served ahead of it. Since the

tagged customer is from the lowest priority class, and is an arrival from a Poisson process,

the distribution of the work it finds in system at such instants equals the distribution of the

stationary unfinished workload, by the “Poisson-arrivals-see-time averages” (PASTA) property

of the Poisson process (Wolff [20]). However, the stationary unfinished workload is invariant

for all work-conserving service disciplines. As shown in Stanford et al. [18] Theorem 9.1, its

distribution is the same as the stationary waiting time distribution forW in the M/G/1 FCFS

comparator queue.

During this initial periodW, the process of later arrivals that will gain accreditation (and

therefore be served ahead of the tagged class-2 customer) constitutes a Poisson process at rate

λ1(1 − b), as established in Stanford et al. [18] Lemma 4.2. While some of these later class-1

arrivals may enter service according to the APQ service discipline ahead of some of the class-

2 customers already present at the arrival instant of the tagged customer, the actual order of

service does not matter, so long as all such work is completed prior to the tagged customer’s

entry into service.

Thus we can writeW2 = W + Y , where Y represents the total of all of the service times

for class-1 customers that gain accreditation relative to the tagged customer prior to its entry

into service. We are able to characterize Y in terms ofW as follows. We do so by resorting to

the following discipline, which parallels the rearrangement of service times in the derivation

by Conway et al. [6] of the implicit transform equation for the duration of a busy period in an

M/G/1 queue.
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Our rearrangement places all of the N class-1 customers who gain accreditation duringW

in a special queue. Upon completion ofW, the first (if any) of these N customers is selected

for service. The server then selects newly-accredited class-1 customers in the main queue until

none remain, at which point the next (if any) of the class-1 customers in the special queue is

selected, and so on. We observe that, by construction, each such “sub-busy period” comprising

the service of one customer from the special queue and the subsequent accredited arrivals to

the main queue is identically distributed to the busy period η in an M/G/1 queue with arrivals

at rate λ1(1 − b) and whose service times are drawn from the class-1 service time distribution.

In this way, Y can be expressed according to equation (B.2), with N representing the number

of Poisson events at rate λ1(1 − b) to occur duringW, and the ith such accrediting customer,

i = 1, 2, . . . ,N, adding an i.i.d. busy period duration ηi from such an M/G/1 queue. �

Proof of Theorem 5.3.1:

Proof. We proceed by calculating (∂/∂b)S 2(b, x) from first principles:

(∂/∂b)[S q2(b, x)] = lim
4b→0

{
S 2(b + 4b, x) − S 2(b, x)

4b

}
Reconsider the revised service discipline used in Lemma B.1.1. From Figure B.1, which

presumes that we have conditioned uponW = t, closer inspection of the accreditation process

reveals that the N Poisson events underpinning Y are those that occur at rate λ1 during the first

(1−b) portion ofW. If the class-2 accreditation rate were to change to b +4b, then only those

events occurring during the first (1 − b − 4b) portion ofW would contribute to the compound

Poisson process delaying our tagged customer.

Due to the independence of compound Poisson processes arising from Poisson events in

non-overlapping intervals, we can write Y = Y1 +Y2 where Y1 is the compound Poisson process

corresponding to the N1 accreditation events that occurred during the first (1 − b − 4b) portion

of W, and Y2 is the compound Poisson process corresponding to the N2 accreditation events

occurring during the subsequent (4b) portion ofW. Thus we obtain immediately

S 2(b, x) = P(W + Y1 + Y2 > x); S 2(b + 4b, x) = P(W + Y1 > x).
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Figure B.1: Impact of change in accumulation rate.

Therefore

S 2(b + 4b, x) − S 2(b, x) = −[P(W + Y1 + Y2 > x) − P(W + Y1 > x)]

= −[P(W + Y1 ≤ x; W + Y1 + Y2 > x)] < 0.

Now for sufficiently small 4b, the probability of two or more events in a small period of

duration 4bW is o(4bW). Similarly, the probability of one such event is λ14bW + o(4bW).

Substituting the terms as appropriate and removing the conditioning upon W, one readily

obtains

(∂/∂b)[S 2(b, x)] = −λ1E({W × I(W + Y + η > x)} < 0. (B.3)

In equation (B.3), I(A) denotes the indicator function for the event A, equal to 1 if the event

occurs, and 0 otherwise.
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Since the partial derivative is negative for all x, this establishes that S 2(b, x) is a mono-

tonically decreasing function of b. Furthermore, as b increases, Y decreases in distribution,

since the rate λ1(1 − b) of the corresponding underlying Poisson decreases. Consequently, the

probability associated with the indicator function decreases, so that the derivative is a strictly

increasing function of b, and the convexity immediately follows. �

Corollary 5.3.3. The excess function HK(b, lK), where b = bK/bK−1, for the lowest priority

class in a stable K-class APQ is strictly convex in b for 0 ≤ b ≤ 1, for every fixed lK ≥ 0.

Proof. The lowest priority class (class-K) observes the unfinished workload in the correspond-

ing M/G/1 FCFS queue at its arrival instants. By Corollary 7.3 in Stanford et al. [18], the

higher classes 1, 2, . . . ,K − 1 gain accreditation over class-K customers according to a Pois-

son process at rate
∑K−1

i=1 λi(1 − bK/bi). The rest follows by direct analogy to the proof of the

two-class case. �

B.2 Waiting times in the two-class multi-server APQ

The LST w̃2(s) of the class-2 waiting time distribution can be written as

w̃2(s) = [1 − πbusy] + πbusyw̃+
2 (s), (B.4)

where w̃+
2 (s) is the LST of the class-2 waiting time distribution, conditional upon an arrival

finding all servers busy, which is given by

w̃+
2 (s) =

2µ(1 − ρ)

µ + λ̂ + s − 2λ +

√
(µ + λ̂ + s)2 − 4µλ̂

. (B.5)

The mean waiting time of the class-2 customers can be derived from equations (B.4) & (B.5),

which is

m2(b) =
πbusy

(1 − ρ)(µ − λ̂)
. (B.6)

The LST w̃1(s; b) of the class-1 waiting time distribution can be written as

w̃1(s) = (1 − πbusy) + πbusyw̃+
1 (s), (B.7)
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and the LST of the waiting time distribution for the class-1 customers conditional on it being

positive, w̃+
1 (s), is

w̃+
1 (s; b) =

(µ + s)Γ̃1(bs; b) − µ
s(µ + s − λ1)

[
(µ − λ) + (λ − λ̂)w̃+

2 (bs; b)
]

+ bw̃+
2 (bs; b), (B.8)

where Γ̃1(s; b) = (µ + λ̂ + s −
√

(µ + λ̂ + s)2 − 4µλ̂)/2λ̂.

The mean waiting time of the class-1 customers can be derived from equations (B.7) &

(B.8), which is

m1(b) =
πbusy

[
1 − (1 − b)ρ

]
(1 − ρ)(µ − λ̂)

. (B.9)

B.3 The proofs in Section 5.5

Lemma 5.5.2. The GS numerical evaluation of the class-k expected excess waiting time per

customer for k = 1, 2, . . . ,K is given by

Hg,k(t) =

N∑
j=1

V j

j

w̃k( ln2
t × j)

( ln2
t × j)

−
1

( ln2
t × j)

+ mk

 . (5.24)

where the V j, j = 1, . . . ,N are combinatorial terms related to order statistics as derived by

Gaver [10].

Proof. Given a real-valued function f (t); t ≥ 0 whose LST is f̃ (s), then the GS method for

numerical Laplace transform inversion at the point t is given by the following:

fg(t) =
ln2
t

N∑
j=1

V j f̃
(
ln2
t
× j

)
, (B.10)

where the values V j are the GS coefficients of order N (always even), half of which are positive

and half negative numbers. These coefficients, as derived by Gaver, are combinatorial terms

arising in order statistics, with the useful by-product that they always sum to zero. Typically

N = 8 points provides two significant digits of accuracy, which is quite adequate for assessing

waiting times. The table that provides the coefficients for N = 2; 4; 6; 8 is provided in Table

2.1.
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In light of equations (5.22) and (B.10), the GS evaluation of the class-k waiting time distri-

bution, k = 1, 2, . . . ,K is achieved via

Wg,k(t) =
ln2
t

N∑
j=1

V j

w̃k

(
ln2
t × j

)(
ln2
t × j

) =

N∑
j=1

V j

j
w̃k

(
ln2
t
× j

)
. (B.11)

Meanwhile, the GS numerical evaluation of the class-k expected excess per customer function,

k = 1, 2, . . . ,K is given by

Hg,k(t) =
ln2
t

N∑
j=1

V j H̃k

(
ln2
t
× j

)

=
ln2
t

N∑
j=1

V j

 mk

( ln2
t × j)

−
1

( ln2
t × j)2

+
w̃k( ln2

t × j)

( ln2
t × j)2


=

N∑
j=1

V j

j

mk −
1

( ln2
t × j)

+
w̃k( ln2

t × j)

( ln2
t × j)

 ,
which is equation (5.24).

It is readily apparent from a comparison of (5.24) and (B.11) that minimal extra effort

is involved in determining the expected excess per customer beyond the specified threshold-

s Hk(lk); k = 1, 2, . . . ,K once the evaluations of the corresponding compliance probabilities

Wk(lk) have been performed. �

Theorem 5.5.3. The WAE in a multi-class M/Mi/c APQ as evaluated by GS approximation is

given by

Zg =

K∑
k=1

N∑
j=1

αkπbusyλklkV j

j2ln2

(
w̃+

k (
ln2
lk
× j) − 1

)
+

K∑
k=1

αkλkmk. (5.25)

When αk = 1, k = 1, 2, . . . ,K, the corresponding total expected excess (TEE) is

Zg =

K∑
k=1

N∑
j=1

πbusyλklkV j

j2ln2

(
w̃+

k (
ln2
lk
× j) − 1

)
+ M, (5.26)

where M is the constant in the conservation law for an M/Mi/c APQ (Li and Stanford [14]),

such that M =
∑K

k=1 λkmk. Moreover, M does not depend on the accumulation rates bk; k =

1, 2, . . . ,K.

Proof. As the LST of the waiting time for class-k in the multi-class M/Mi/c APQ is given by

w̃k(s) = (1 − πbusy) + πbusyw̃+
k (s). (B.12)
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From equations (5.3), (5.24) & (B.12), we have

Zg =

K∑
k=1

αkλkHg,k(lk)

=

K∑
k=1

αkλk

N∑
j=1

V j

j

mk −
1

( ln2
lk
× j)

+
w̃k( ln2

lk
× j)

( ln2
lk
× j)


=

K∑
k=1

αkλk

N∑
j=1

[
lkV j

j2ln2

(
w̃k(

ln2
lk
× j) − 1

)
+

V j

j
mk

]

=

K∑
k=1

αkλk

N∑
j=1

[
lkV j

j2ln2

(
1 − πbusy + πbusyw̃+

k (
ln2
lk
× j) − 1

)
+

V j

j
mk

]

=

K∑
k=1

αkλk

N∑
j=1

[πbusylkV j

j2ln2

(
w̃+

k (
ln2
lk
× j) − 1

)
+

V j

j
mk

]
=

K∑
k=1

N∑
j=1

αkπbusyλklkV j

j2ln2

(
w̃+

k (
ln2
lk
× j) − 1

)
+

K∑
k=1

αkλkmk,

which is equation (5.25). By setting αk = 1 ∀ k in equation (5.25), equation (5.26) follows

immediately.

The constant M in equation (5.26) refers to the constant in the conservation law in Li

and Stanford [14], where M = λπbusy/(µ − λ) does not depend on the accumulation rates

bk; k = 1, 2, . . . ,K. �

Corollary 5.5.4. In any multi-class APQ with c heterogeneous servers, each working at an

exponential service rate µi for i = 1, 2, . . . , c, the optimality of the TEE in equation (5.26) is

the same as the one in a single-server APQ with an exponentially-distributed service time at

rate µ =
∑c

i=1 µi.

Proof. It is apparent that the optimality of the TEE in equation (5.26) is eventually driven

by the function w̃+
k , which is the only part that depends on the accumulation rates. However,

Lemma 6.1 in Li and Stanford [14] have proved that the LST, w̃+
k (s), of the conditional waiting

time distribution for class-k in the M/Mi/c APQ can be related to that in an M/M/1, by setting

the single service rate as the sum of the individual service rates in the M/Mi/c system (this also

follows from Sharif et al. [17]). Thus, it immediately follows that the optimal solution for the

TEE in M/Mi/c APQ is the same as the one in the M/M/1 APQ with µ =
∑c

i=1 µi. �
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B.4 Further investigations on the TEE for a two-class APQ

Theorem B.4.1. The TEE in a two-class M/Mi/c APQ as evaluated by GS approximation is

given by

Zg(b) = λ1Hg,1(l1) + λ2Hg,2(l2)

= d1

N∑
j=1

V j

j2 J(d0 j; b, f ) + d2 + M, (B.13)

where d0 = ln2/l1, d1 = (µ−λ)πbusyλ1l1/ln2 > 0 and d2 = −(λ1l1+λ2l2)
∑N

j=1 V j/ j2 are constants

that do not depend on the parameter b. The function J(d0 j; b, f ) is defined in equation (B.14).

Proof. From equations (5.26), (B.4)–(B.8), we have

Zg(b) =
πbusy

ln2

N∑
j=1

V j

j2

[
λ1l1

(
w̃+

1 (d0 j) − 1
)

+ λ2l2

(
w̃+

2 ( f d0 j) − 1
)]

+ M

=
(µ − λ)πbusyλ1l1

ln2

N∑
j=1

V j

j2(µ − λ)

(
w̃+

1 (d0 j) +
θ

f
w̃+

2 ( f d0 j)
)

+ d2 + M

= d1

N∑
j=1

V j

j2 J(d0 j; b, f ) + d2 + M,

where

J(d0 j; b, f ) =
1

µ − λ

(
w̃+

1 (d0 j; b) +
θ

f
w̃+

2 ( f d0 j; b)
)

=

λ̂(µ+d0 j)(Γ̃1(bd0 j;b))2−

(
(µ+d0 j)(µ+bd0 j)+µλ̂

)
Γ̃1(bd0 j;b)+bd0 j(λ1−d0 j)+µ2

d0 j(µ−λ1+d0 j)(λ̂Γ̃1(bd0 j;b)+(θ+b)λ1−(µ+bd0 j))

+
θ/ f

µ−λ+d0 j f +λ̂(1−Γ̃1(d0 j f ;b))
. (B.14)

To minimize TEE, we may set the first derivative of the function Zg(b) with respect to b to

be zero. From equation (B.13), we have

∂

∂b
Zg(b) = d1

N∑
j=1

V j

j2

∂

∂b
J(d0 j; b, f ). (B.15)

As the constant d1 is positive, in order to find the optimal solution b† for TEE, we can study

the optimal behaviour of the function J(d0 j; b, f ) for each j under the GS numerical inversion

method. �
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Lemma B.4.2. For j > 0, the first derivative of the function J(d0 j; b, f ) evaluated at b = f is

always greater than zero.

Proof. With Theorem B.4.1, under the framework of the GS numerical inversion algorithm, b†

is determined by the function J(d0 j; b, f ).

Let J(d0 j; b, f ) = J1(d0 j; b) + J2(d0 j; b, f ), where

J1(d0 j; b) =
X(d0 j; b) + d0 jb + µ − λ1(1 + b)

(µ − λ1 + d0 j)
(
d0 jb − (1 + 2θ + b)λ1 + X(d0 j; b) + µ

) , (B.16)

J2(d0 j; b, f ) =
θ/ f

µ − λ + d0 j f + λ̂(1 − Γ̃1(d0 j f ; b))
, (B.17)

where X(d0 j; b) =

√
(µ + λ̂ + bd0 j)2 − 4µλ̂. Take the first derivative of J1(d0 j; b) with respect

to b,

∂

∂b
J1(d0 j; b) =

2λ1θ

(
(λ1−d0 j)X(d0 j;b)+(1−b)λ1

2−

(
(1−2b)d0 j+µ

)
λ1+d0 j(bd0 j+µ)

)
X(d0 j;b)

(
X(d0 j;b)−(b+2θ+1)λ1+bd0 j+µ

)2

(µ−λ1+d0 j)
. (B.18)

Take the first derivative of J2(d0 j; b, f ) with respect to b,

∂

∂b
J2(d0 j; b, f ) =

2θλ1

(
Y(d0 j; b, f ) + λ̂ − µ + f d0 j

)
f Y(d0 j; b, f )

(
Y(d0 j; b, f ) + µ − (1 + b + 2θ)λ1 + f d0 j

)2 , (B.19)

where Y(d0 j; b, f ) =

√
(µ + λ̂ + f d0 j)2 − 4µλ̂. We then evaluate

∂

∂b
J(d0 j; b, f )|b= f =

∂

∂b
J1(d0 j; b)|b= f +

∂

∂b
J2(d0 j; b, f )|b= f

=
2θλ1

f X(d0 j; f )(µ − λ1 + d0 j)
(
X(d0 j; f ) + µ − (1 + f + 2θ)λ1 + f d0 j

)2×[
(µ − λ1 + d0 j)(X(d0 j; f ) + λ1 − µ) − f 2(d0 j − λ1)2

+ f
(
2λ2

1 + (X(d0 j; f ) − 3d0 j − 2µ)λ1 + d0 j(d0 j − X(d0 j; f ))
)]

= A × B, (B.20)

where

A =
2θλ1

f X(d0 j; f )(µ − λ1 + d0 j)
(
X(d0 j; f ) + µ − (1 + f + 2θ)λ1 + f d0 j

)2 > 0, (B.21)
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and

B = − f 2(d0 j − λ1)2 + f
(
2λ2

1 + (X(d0 j; f ) − 3d0 j − 2µ)λ1 + d0 j(d0 j − X(d0 j; f ))
)

+ (µ − λ1 + d0 j)(X(d0 j; f ) + λ1 − µ)

> (µ − (1 − f )λ1)((1 − f )λ1 − µ + (µ − (1 − f )λ1))

= 0. (B.22)

Thus, ∂J(d0 j; b, f )/∂b|b= f = A × B > 0 for all j > 0 in the GS numerical inversion algorithm.

�

Figure B.2: Numerical values of ∂Zg(b)/∂b|b= f under the GS algorithm with 8 points.

Figure B.2 shows the numerical values of ∂Zg(b)/∂b|b= f using the GS algorithm with 8

points (see Table 2.1) when θ = 1, µ = 2 and l1 = 30 mins. We observe that the values are all

positive for 0 < ρ < 1 and 0 < f < 1.

To study the convexity of the function J(d0 j; b, f ), our next step is to investigate the second
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derivative of the function J(d0 j; b, f ) respective to b, which is given by

∂2

∂b2 J(d0 j; b, f ) =

2θλ1

(
(X(d0 j; b) + µ + bd0 j)d0 j +

(
µ − X(d0 j; b) + (1 − 2b)d0 j

)
λ1 − λ1λ̂

)
X(d0 j; b)3(µ + d0 j − λ1)

(
X(d0 j; b) − (1 + b + 2θ)λ1 + bd0 j + µ

)3 ×

{[
µ2 + 4µX(d0 j; b) − X(d0 j; b)2 + 2d0 j

(
(θ + 2 − 2b)X(d0 j; b) − µ(θ + b)

)
− bd2

0 j2(3b + 2θ)
]
λ1 +

[
2(b − θ − 2)X(d0 j; b) − 2µ(1 + θ) + bd0 j(3b + 4θ)

− d0 j(2θ − 1) − λ̂(1 + b + 2θ)
]
λ2

1 + d0 j
(
bd0 j + X(d0 j; b) + µ

)2
}

+
2θλ2

1(Y(d0 j; b, f ) + d0 j f − µ + λ̂)

f Y(d0 j; b, f )3
(
Y(d0 j; b, f ) + µ + d0 j f − (1 + b + 2θ)λ1

)3×{
(Y(d0 j; b, f ) + d0 j f )2 − 4µY(d0 j; b, f ) − µ2 + 2

(
(1 + θ)µ

− d0 j f (θ + b) + Y(d0 j; b, f )(2 + θ − b)
)
λ1 − (1 + b + 2θ)λ̂λ1

}
. (B.23)

Figure B.3: Numerical values of ∂2Zg(b)/∂b2 under the GS algorithm with 8 points.

Figure B.3 presents the numerical values of the function ∂2Zg(b)/∂b2 with θ = 1, µ = 2,

l1 = 30 mins and l2 = 60 mins. When b ∈ [0, 1/2] and ρ ∈ (0, 1), the values of the function
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is greater than zero. Moreover, we notice that when ρ approaches one and b goes to zero, the

value approaches infinity. Similarly, we have examined the second derivative at various points

of f ∈ (0, 1). Based on extensive numerical investigations under the GS algorithm, we find

that ∂2Zg(b)/∂b2 is always positive for b ∈ [0, f ]. Numerically speaking, the b† that minimizes

TEE is bounded by the ratio of the delay limits, f . Clearly, b† should not be negative.

However, we have concluded from Figure 5.5 that for a fixed f , b† is zero which means that

the optimal strategy for TEE is the classical priority discipline when 0 < ρ < ρsp, whereas, b†

is positive when ρsp < ρ < 1. Moreover, ρsp increases as f decreases. To study the behaviour

of the point ρsp that distinguishes the optimal disciplines, let us take the first derivative of

J(d0 j; b, f ) with respect to b, then evaluate b at zero.

∂

∂b
J1(d0 j; b)|b=0 =

−µλ1d0 jθ
(µ − λ1)(µ + d0 j − λ1)(µ − (θ + 1)λ1)2 < 0, (B.24)

∂

∂b
J2(d0 j; b, f )|b=0 =

2θλ1

(
Y(d0 j; 0, f ) + λ1 + f d0 j − µ

)
f Y(d0 j; 0, f )

(
Y(d0 j; 0, f ) + µ − (2θ + 1)λ1 + f d0 j

)2 > 0. (B.25)

As ∂J(d0 j; b, f )/∂b|b=0 = ∂J1(d0 j; b)/∂b|b=0+∂J2(d0 j; b, f )/∂b|b=0, the value of ∂J(d0 j; b, f )/∂b|b=0

increases as f decreases (see equation (B.25)). When f is small enough, ∂J(d0 j; b, f )/∂b|b=0 is

possibly greater than zero. ρsp is the solution of ∂Zg(b)/∂b|b=0 = 0 when other parameters are

fixed.

Thus, based on a thorough investigation, we are confident that the b† for TEE in equation

(B.13) is in the range of [0, f ). We have mentioned that in reality we mostly consider the

systems with f ∈ (1/6, 1) and ρ ∈ (0.6, 1), and we have found in these situations the APQ

discipline outperforms the classical priority discipline, which implies that b† is greater than

zero. What would be the lower bound of b† > 0 when we consider the situation that f ∈ (1/6, 1)

and ρ ∈ (0.6, 1) ? To answer this question, we take the first derivative of J(d0 j; b, f ) with respect

to b, then evaluate b at f /2.

∂

∂b
J(d0 j; b, f )|b= f /2 =

−4θλ1

X(d0 j; f /2)(µ−λ1+d0 j)
(

2X(d0 j; f /2)+2µ+ f (d0 j−λ1)−2(2θ+1)λ1

)2 ×

[
( f − 2)λ2

1 + 2
(
µ − X(d0 j; f /2) + (1 − f )d0 j

)
λ1 + d0 j(2µ + 2X(d0 j; f /2) + d0 j f )

]
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Figure B.4: Numerical values of ∂Zg(b)/∂b|b= f /2 under the GS algorithm with 8 points.

+

2θλ1

(
Y(d0 j; f /2, f )+d0 j f−µ+(1− f /2)λ1

)
f Y(d0 j; f /2, f )

(
Y(d0 j; f /2, f )+µ+ f (d0 j−λ1/2)−(2θ+1)λ1

) . (B.26)

Figure B.4 illustrates the numerical values of the function ∂Zg(b)/∂b|b= f /2 using the GS

algorithm with 8 points when θ = 1, µ = 2, and l1 = 30 mins. When ρ ∈ (0.6, 1) and

f ∈ (1/6, 1), the values of the function is always smaller than zero. Based on the numerical

investigation under the GS algorithm, ∂Zg(b)/∂b|b= f /2 is smaller than zero. Overall, for a two-

class M/Mi/c APQ with ρ ∈ (0.6, 1) and f ∈ (1/6, 1), b† is bounded within the range of

( f /2, f ).
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