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Abstract

Numerous problems in econometrics, insurance, reliability engineering, and statis-

tics rely on the assumption that certain functions are monotonic, which may or may

not be true in real life scenarios. To satisfy this requirement, from the theoretical

point of view, researchers frequently model the underlying phenomena using paramet-

ric and semi-parametric families of functions, thus effectively specifying the required

shapes of the functions. To tackle these problems in a non-parametric way, when the

shape cannot be specified explicitly but only estimated approximately, we suggest in-

dices for measuring the lack of monotonicity in functions. We investigate properties

of these indices and offer convenient computational techniques for practical use. To

illustrate the new technique, we analyze a data-set of student marks on mathematics,

reading and spelling. In particular, we apply our technique to determine if the marks

are co-monotonic, but if not, then how much they deviate from the co-monotonic pat-

tern. This illustrative example is for convenience only, as our technique is applicable

very widely. Indeed, measuring the lack of co-monotonicity between variables plays

an important role in a great variety of research areas, as noted at the beginning of

this abstract.

Keywords: co-monotonicity, monotone rearrangement, convex rearrangement, asso-

ciation, dependence measure, education, performance evaluation.
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Chapter 1

Introduction

Studies of dependence structures have grown significantly in recent years. They were

triggered by the fact that the assumption of independence between random variables

in many situations is not reasonable. Indeed, in practice we more often find random

variables that are dependent. The dependence between them may be generated by

some common external mechanisms. For example, yields of agriculture are subjected

to weather conditions during the growing season. Another example is life expectancy

of several individuals who are exposed to common risks. If one random variable takes

large values, then other random variables will tend to behave analogously. This is

what in the literature is termed co-monotonicity.

1.1 Co-monotonicity

The term of co-monotonicity comes from an abbreviation of “common monotonicity”,

which was introduced by Schmeidler (1986) to denote the agreement of monotonic

patterns in functions (see, e.g., Denneberg, 1994; Puccetti and Wang, 2015). Two

1



Chapter 1. Introduction 2

functions are said to be co-monotonic if and only if they are increasing or decreasing

simultaneously. Namely, functions f and g are co-monotonic if and only if (f(t1) −

f(t2))(g(t1)− g(t2)) ≥ 0 for every t1 and t2 in the common domain of f and g.

We can also find co-monotonicity in various other contexts such as vectors, sets,

random variables, and probability measures. Its definition in these contexts can be

adapted accordingly. For instance, two n-dimensional vectors x = {xi} and y =

{yi} are co-monotonic if and only if xi ≤ yi for all i = 1, . . . , n, or xi ≥ yi for all

i = 1, . . . , n. A set of vectors, therefore, is said to be co-monotonic if all pairs of its

members are co-monotonic. In probability theory, an n-dimensional random vector

X = {Xi}, i = 1, . . . n, with joint distribution function FX is co-monotonic if and only

if the support of FX is a co-monotonic set. The existence of co-monotonic support in

the actuarial literature is often interpreted as the existence of an external mechanism

that moves all random coordinates Xi of X in the same direction. Hence, we have

another interpretation of definition of co-monotonic random vectors (cf., e.g., Denuit

et al., 2005), as follows.

Definition 1.1.1 An n-dimensional random vector X is co-monotonic if and only if

there exist non-decreasing functions ti, i = 1, . . . , n, and a random variable Z such

that X = (t1(Z), t2(Z), . . . , tn(Z)).

One of the many interesting parts in the study of dependence structures is how

to form a random vector from univariate random variables. Given univariate random

variables X1, X2, . . . , Xn with distribution functions FX1 , FX2 , . . . , FXn , many joint

distribution functions can be constructed. In the case when random variables are

normally distributed, there is a correlation matrix that is used to form a multivariate

normal distribution.
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In general, dependence structures give insights on how to form a joint distribution

function from marginals FX1 , . . . , FXn . Namely, given distribution functions FXi of

Xi for i = 1, . . . , n, we set a collection of all random vectors Y whose marginals FYi

are equal to the respective marginals FXi . This set is called the Fréchet-Hoeffding

class and denoted by Rn(FX1 , FX2 , . . . , FXn). For every X ∈ Rn(FX1 , FX2 , . . . , FXn),

the notation FX refers to the joint distribution function of X. The following bounds

max

{∑
i

FXi(xi)− n+ 1, 0

}
≤ FX(x) ≤ min

i
{FXi(xi)} (1.1)

always hold. In inequality (1.1), the leftmost (rightmost) part is known as the Fréchet-

Hoeffding lower (upper) bound of FX and is denoted by FL (FU , respectively). It has

been shown that

FU(x) = min
i
{FXi(xi)} (1.2)

is a joint distribution function. This is the joint distribution function of a co-

monotonic random vector in Rn(FX1 , FX2 , . . . , FXn) (cf., e.g., Joe, 2001). Unfortu-

nately, this is not always the case with the lower bound (1.1). In general,

FL(x) = max

{∑
i

FXi(xi)− n+ 1, 0

}
(1.3)

is not always distribution function. The bivariate case, however, is an exception,

where in this case the lower bound FL is a joint distribution function of what is called

a counter-monotonic random vector. Analogous to the definition of bivariate co-

monotonic random vectors, two dimensional random vectors are counter-monotonic

if and only if their supports are counter-monotonic sets: a set of two dimensional

vectors are counter-monotonic if and only if (x1− y1)(x2− y2) ≤ 0 for all x = (x1, x2)
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and y = (y1, y2) in this set. Consequently, any pair of random variables (X, Y ) is

counter-monotonic if and only if the pair (X,−Y ) is co-monotonic. Similar to the

case of co-monotonic random vectors, counter-monotonic random vectors minimize

the expectation of supermodular functions over the class of all random vectors with

identical marginals (Puccetti and Wang, 2015).

Generalizations of counter-monotonicity to higher dimensional random vectors,

unfortunately, are not unique. This, by the way, is one of the reason for our concen-

tration on the bivariate case in this thesis. It is not like the co-monotonicity that

can be generalized simultaneously. Counter-monotonicity in a sense is like ordering

the components of vectors in opposite directions. If the vector has two components,

then we can easily do that, but by adding more components the order will be prob-

lematic. Furthermore, when some pairs have opposite directional orderings, other

pairs can ruin this ordering. Intuitively for n = 3, if two pairs of random variables

are counter-monotonic, then the remaining third may not be counter-monotonic; it

could even be co-monotonic. This is getting more complex, of course, when n is

higher than three. We therefore relax the notion of counter-monotonicity for higher

dimensional vectors by only considering all pairs of its components. We call this no-

tion pairwise counter-monotonocity: a random vector is pairwise counter-monotonic

if and only if every pair of its two components are counter-monotonic. This, however,

becomes a very special case due to the fact that the joint distribution of pairwise

counter-monotonic random vector is Fréchet-Hoeffding lower bound (1.1). General

discussions on counter-monotonicity can be found in Puccetti and Scarsini (2010).

In the sequel, we denote any co-monotonic random vector by Xc = (Xc
1, . . . , X

c
n).

The c-superscript is used to indicate co-monotonicity. If Xc is co-monotonic, then
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there is a uniform random variable U [0, 1] such that

Xc = (F−1X1
(U), . . . , F−1Xn

(U)), (1.4)

where F−1Xi
denotes the left-inverse of the distribution function FXi . The uniform

random variable U here is the external mechanism noted in Definition 1.1.1. Anal-

ogously, for n = 2, the counter-monotonic random vector can be expressed in a pair

(F−1X1
(U), F−1X2

(1− U)).

1.2 Convex bound of aggregate risks

In the area of insurance and risk management, researchers are often interested in

the distribution of sums of random variables. These sums may represent aggregate

claims of insurance policies, portfolios, total risks, present values of payments, and

so on. We refer to Dhaene et al. (2002a,b), and Deelstra et al. (2011) for examples

in insurance and finance. These variables are not necessarily independent, especially

in the insurance context where the dependence is observed. The research is then

directed to study dependence structures of random variables for aggregate claims.

Let Xi be the i-th individual insured risk where, together with other individual

risks, it builds a risk portfolio X = (X1, X2, . . . , Xn). Researchers want to know the

distribution of the sum S = X1 +X2 + · · ·+Xn.

Note 1.2.1 The case when the number “N” of risks is random is very important but

it can be reduced to the deterministic “n” using a well-known conditioning argument;

see, e.g., Klugman et al. (2012).

The distribution of S is not easy to investigate when the random variables are not
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independent. A good idea might be to replace the sum of dependent random variables

by other random variables with a simpler dependent structure, called co-monotonic

random vectors. Indeed, with the help of co-monotonicity we can always have the

bound

S ≤cx Xc
1 +Xc

2 + · · ·+Xc
n, (1.5)

where it is in the sense of convex order (cx):

A random variable X precedes a random variable Y in convex order,

denoted by X ≤cx Y , if and only if E[X] = E[Y ] and E[(X − d)+] ≤

E[(Y − d)+] for every d ∈ R.

The subscript ‘+’ in the second condition means (x)+ = x if x ≥ 0 and (x)+ = 0

otherwise.

In short, the sum of the components of random vector X ∈ Rn(FX1 , FX2 , . . . , FXn)

is maximal in the convex order if and only if X is co-monotonic. Bound (1.5) is very

attractive in the area of finance and actuarial science. It gives an insight about the

distribution of aggregate risks in general, especially when the marginal distributions

are known but the joint distribution is unknown or complicated.

The convex order used in bound (1.5) also suggests that co-monotonic random

vectors are less favorable than those that are not co-monotonic from the perspective of

risk-averse decision makers. Practical examples of this problem include life annuities,

insurance portfolios, present value functions, and so on (e.g., Deelstra et al., 2011;

Dhaene et al., 2002b; Kaas et al., 2000).

The convex bound for the sum of random variables is one of many examples of the

use of co-mononotonicity concept in actuarial science and finance. There are many

other applications such as risk sharing, risk measures, optimal allocation strategies,
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capital allocations, life insurance and pensions, and many others. Concise reviews of

applications of co-monotonicity in actuarial science and finance can be found, e.g., in

Dhaene et al. (2002a), and Deelstra et al. (2011).

1.3 Dependence structure via copula

The dependence structures in random vectors can be explored using copulas. In

general, copulas are n-dimensional continuous distribution functions on [0, 1]n with

uniform on [0, 1] marginals. By Sklar’s Theorem, copulas link univariate distribution

functions with multivariate distribution functions. Numerous application of copulas

have emerged in the literature and we refer to books by Nelsen (2006) and Joe (2001,

2014) for more details. Copulas have also been very successfully applied in engineering

(e.g., Reddy and Ganguli, 2012; Warsido and Bitsuamlak, 2015), finance (e.g., Li,

2000; Genest et al., 2009; Sun et al., 2008), and many others.

Throughout this section we limit our attention only to two-dimensional copu-

las. This is in accordance with our chosen direction in this thesis to concentrate on

pairwise dependencies. The definition of two-dimensional copulas can be expressed

axiomatically as follows.

Definition 1.3.1 A bivariate copula C is a non-decreasing and right-continuous

function that maps the unit square [0, 1]2 to the unit interval [0, 1] and satisfies the

following conditions:

(i) limui↓0C(u1, u2) = 0 for i = 1, 2;

(ii) limu1↑1C(u1, u2) = u2 and limu2↑1C(u1, u2) = u1;
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(iii) C is supermodular, that is, the inequality

C(v1, v2)− C(u1, v2)− C(v1, u2) + C(u1, u2) ≥ 0

holds for all u1 ≤ v1, u2 ≤ v2.

The connection between copulas and bivariate distributions is given by the fol-

lowing theorem, which is due to Sklar (1959).

Theorem 1.3.1 Let FX ∈ R2(FX1 , FX2) have continuous marginals FX1 and FX2.

Then there exists a unique copula C such that, for all x = (x1, x2) ∈ R2,

FX(x) = C(FX1(x1), FX2(x2)). (1.6)

Conversely, if C is a copula and FX1 and FX2 are distribution functions, then the

function FX defined by the above equation is a bivariate distribution function with

margins FX1 and FX2.

Theorem 1.3.1 asserts that copulas bridge marginal distribution functions with

joint distribution functions. Hence, given marginals and copulas, we obtain joint dis-

tribution functions. Conversely, given joint distribution functions we derive copulas.

This relation simplifies the investigation of dependence structures of bivariate random

variables. For example, in Section 1.1 we have Fréchet-Hoeffding upper bound with

the joint distribution function given by FX(x1, x2) = min{FX1(x1), FX2(x2)}. Thus,

a copula for this set of bivariate random variables is

CU(u, v) = min{u, v}.
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Analogously, the copula for the Fréchet-Hoeffding lower bound and independent bi-

variate random vectors are

CL(u, v) = max{u+ v − 1, 0}

and

CI(u, v) = uv,

respectively. Adapted from the Fréchet-Hoeffding bound, we have the lower and

upper bounds for copulas C as follows

max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v}. (1.7)

We conclude this section by giving formulas of classical dependence measures in

the form of copulas. As we know, for every bivariate random vector we have Pearson’s,

Spearman’s, Kendall’s correlation coefficients as its dependence measures. Theorem

1.3.1 leads us to the fact that given a joint distribution function FX with marginals

FX1 and FX2 , we always have the bivariate copula

C(u, v) = FX(F−1X1
(u), F−1X2

(v)), (1.8)

where F−1X1
and F−1X2

are the quantile functions of X1 and X2 respectively. Conse-

quently, for example, the Kendall’s correlation coefficient rK can be expressed as

rK(X) = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1. (1.9)
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Analogously, the Spearman’s rS and Pearson’s rP can be derived from the copula C:

rS(X) = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3 (1.10)

and

rP (X) =
1√

V ar[X1]V ar[X2]

∫ 1

0

∫ 1

0

(C(u, v)− uv)dF−1X1
(u)dF−1X2

(v). (1.11)

1.4 Problem statement

In general, dependence analysis progresses in at least two directions. One group

of researchers work on quantifying dependencies, developing dependence measures,

and analysing measurements. Examples of such research include classical dependence

measures such as Pearson’s, Spearman’s, and Kendall’s correlation coefficients, mul-

tivariate dependence measures, and so on (e.g., Diers et al., 2012; Scarsini, 1984;

Schweizer and Wolff, 1981).

Another group of researchers work on implications of dependence structures on

complex systems. The aforementioned convex order of the sum of random variables

is an example of research in this category (e.g., Dhaene et al., 2002a; Lehmann, 1966;

Schweizer and Wolff, 1981). Other examples include civil engineering (e.g., Warsido

and Bitsuamlak, 2015), finance (e.g., Genest et al., 2009; Li, 2000; Sun et al., 2008),

and many others.

It has been shown that the concept of co-monotonicity plays significant roles in

the areas of statistics, finance, and actuarial science. The co-monotonic form can be

used as a substitute of unknown, or at least hard to derive, dependence structures

(see the convex order problem in Section 1.1). If for every random vector X in
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Rn(FX1 , FX2 , . . . , FXn) the sum of its components can be replaced by the sum of

components of co-monotonic random vector, then is there any restriction such that

this replacement ruins the accuracy? There are some cases, of course, when random

vectors depart significantly from their co-monotonic forms. In such cases replacing

random vectors with their co-monotonic forms can be problematic. However, there

are practical applications such as annuities considered by Kaas et al. (2000) and

Dhaene et al. (2002a,b) that do not have the aforementioned issue because, naturally,

the series of present values are co-monotonic, or close to co-monotonic. Motivated by

such problems, it is now natural to raise the topic of quantification of the distance of

random vectors from their co-monotonic forms, which brings us to the main topic of

this thesis.

1.5 Scope and summary of the thesis

As we have already noted earlier, we deliberately limit our research only to the analysis

of bivariate random variables. In this case, relations between random variables can be

explained by curves. We elucidate dependence structures using monotonicity (or lack

of it) of such curves, which we investigate with the help of monotone rearrangements.

The three and higher dimensional cases can, with much more complex mathematics,

be investigated as well, which is our future work. Next, a summary of the remaining

chapters follows.

In Chapter 2, we discuss indices for measuring the lack of monotonicity in func-

tions. These indices are built on the fact that non-monotonic patterns manifest

themselves when there are discrepancies of the functions from their monotone rear-

rangements. These discrepancies are utilized to measure distances of functions from
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their monotonic patterns. Properties of such measures are discussed in this chapter.

In Chapter 3, computational algorithms, examples, and illustrations are provided.

In Chapter 4, we use the monotonicity indices introduced in Chapter 2 to compare

associations between study subjects in education. Perfect associations can be repre-

sented by co-monotonic random vectors while the monotonicity indices can be used

to quantify discrepancies between random vectors and their co-monotonic forms. In

this case, the indices are used to measure the lack of co-monotonicity. For example,

given our illustrative example of student marks on various subjects, we succeed in ex-

tracting information on how the subjects are related. Among the necessary technical

details, we discuss and utilize curve fitting as well as convenient ways for calculating

the indices.

Chapter 5 provides concluding remarks and a number of ideas for future research.



Chapter 2

Measuring the lack of monotonicity

in functions

2.1 Introduction

In a number of problems such as assessing co-monotonicity, developing statistical

tests, dealing with demand and production functions in economics, modeling mor-

tality and longevity of populations, researchers often face the need to know whether

certain functions are monotonic (e.g., non-decreasing) or not, and if not, then they

wish to assess their degree of non-monotonicity. Due to this reason, in this chapter

we suggest and explore several indices for measuring the lack of non-decreasingness

in functions.

While determining monotonicity can be a standard, though perhaps quite difficult,

exercise of checking the sign of the first derivative over the region of interest, assessing

1This chapter in a condensed form has been published in Qoyyimi, D. T. and Zitikis, R. (2014).

Measuring the lack of monotonicity in functions, Mathematical Scientist 39(2): 107–117.

13
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the lack of monotonicity in non-monotonic functions has gotten much less attention

in the literature (e.g., Davydov and Zitikis, 2005; Yitzhaki and Schechtman, 2012).

To illustrate problems where monotonicity, or lack of it, matters, we next present four

specific illustrative applications.

Application 2.1.1 Monotone likelihood ratio (MLR) families play important roles

in areas of statistics such as constructing uniformly powerful hypothesis tests, con-

fidence bounds and regions. In short, a family of absolutely continuous cumulative

distribution functions (cdf’s) {Fθ : θ ∈ Θ ⊆ R} is MLR if for every θ1 < θ2, the

two cdf’s Fθ1 and Fθ2 are distinct and the ratio fθ1(x)/fθ2(x) of the corresponding

densities is an increasing function of a statistic T (x) ∈ R, where x = (x1, . . . , xn) is

a generic n-dimensional observation. For more details on the MLR families and their

uses in statistics, we refer to, e.g., Chapter 4 of Bickel and Doksum (2001).

Application 2.1.2 The presence of a deductible d ≥ 0 often changes the profile of

insurance losses (e.g. Brazauskas et al., 2009, 2015). Because of this and other reasons,

given two losses X and Y , which may not be observable, decision makers wish to

determine whether the observable losses Xd = [X | X > d] and Yd = [Y | Y > d]

are stochastically (ST) ordered, say Xd ≤ST Yd for every d ≥ 0. Denuit et al. (2005)

show on p. 124 that this ordering is equivalent to determining whether the ratio

SY (x)/SX(x) is a non-decreasing function in x, where SX and SY are the survival

functions of X and Y , respectively. We conclude this example by noting that this

ordering is known in the literature (e.g., Denuit et al., 2005; Marshall et al., 2011) as

the hazard rate (HR) ordering, and is succinctly denoted by X ≤HR Y .

Application 2.1.3 More generally than in the previous example, one may wish to

determine whether for every deductible d ≥ 0 and every policy limit L > d, the
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observable insurance losses Xd,L = [X | d ≤ X ≤ L] and Yd,L = [Y | d ≤ Y ≤ L] are

stochastically ordered, say, Xd,L ≤ST Yd,L. We find on pp. 127–128 in Denuit et al.

(2005) that this problem is equivalent to determining whether the ratio fY (x)/fX(x)

is a non-decreasing function in x over the union of the supports of X and Y , where

fX and fY are the density functions of X and Y , respectively. This ordering is known

in the literature (e.g., Denuit et al., 2005; Marshall et al., 2011) as the likelihood ratio

(LR) ordering and is succinctly denoted by X ≤LR Y . For further details on various

stochastic orderings and their manifold applications, we refer to Levy (2006), Li and

Li (2013), and Shaked and Shantikumar (2007).

Application 2.1.4 Let X+ denote the set of all non-negative random variables X

representing insurance losses. The premium calculation principle (pcp) is a functional

π : X+ → [0,∞]. Furman and Zitikis (2008a, 2009) have specialized this general

premium to the weighted pcp πw defined by the equation

πw[X] =
E[Xw(X)]

E[w(X)]
, (2.1)

where w : [0,∞) → [0,∞) is a weight function specified by the decision maker, or

implied by certain axioms. The functional

πw : X+ → [0,∞]

satisfies the non-negative loading property whenever the weight function w is non-

decreasing (cf. Lehmann, 1966). This is one of the very basic properties that insurance

premiums need to satisfy. For further information on this topic, we refer to Sendov

et al. (2011). For a concise overview of pcp’s, we refer to, e.g., Young (2004). For
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detailed results and their proofs, we refer to, e.g., Denuit et al. (2005).

We next briefly present a few more topics and related references where monotonic-

ity, or lack of it, of certain functions plays an important role:

• Growth curves (e.g., Bebbington et al., 2009; Chernozhukov et al., 2009; Panik,

2014).

• Mortality curves (e.g., Bebbington et al., 2011; Gavrilov and Gavrilova, 1991).

• Positive regression dependence and risk sharing (e.g., Barlow and Proschan,

1974; Bebbington et al., 2007; Dana and Scarsini, 2007; Lehmann, 1966).

• Portfolio construction, capital allocations, and co-monotonicity (e.g., Dhaene

et al., 2002a,b, 2006; Furman and Zitikis, 2008b).

• Decision theory and stochastic ordering (e.g., Denuit et al., 2005; Egozcue et al.,

2013; Levy, 2006; Shaked and Shantikumar, 2007).

• Engineering reliability and risks (e.g., Barlow and Proschan, 1974; Bebbington

et al., 2008; Lai and Xie, 2006; Li and Li, 2013; Singpurwalla, 2006).

One unifying feature of these diverse works is that they impose monotonicity

requirements on certain functions, which are generally unknown, and thus researchers

seek for statistical models and data for determining their shapes. To illustrate the

point, we recall, for example, the work of Bebbington et al. (2011) who specifically set

out to determine whether mortality continues to increase or starts to decelerate after

a certain species related late-life age. This is known in the literature as the late-life

mortality deceleration phenomenon. Hence, we can rephrase the phenomenon as a

question: is the mortality function always increasing? Naturally, we do not elaborate
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on this topic any further in this chapter, referring the interested reader to Bebbington

et al. (2011, 2014), and references therein.

To verify the monotonicity of functions such as those noted in the above exam-

ples, researchers quite often assume that the functions belong to some parametric or

semiparametric families. One may not, however, be comfortable with this element

of subjectivity and thus prefers to rely solely on data to make a judgement. Un-

der these circumstances, verifying monotonicity becomes a non-parametric problem,

whose solution asks for an index that, for example, takes on the value 0 when the

function under consideration is non-decreasing and on positive values otherwise. In

the following sections we shall introduce and discuss two such indices; both of them

are useful, but due to different reasons.

2.2 An index of non-decreasingness

Perhaps the most obvious definition of an index of non-decreasingness is based on the

notion of non-decreasing rearrangement that was introduced by Hardy et al. (1934).

For instance, non-decreasing rearrangement of function h : [0, 1]→ R, is defined by

Ih(t) = inf{x ∈ R : Gh(x) ≥ t} for all t ∈ [0, 1],

where

Gh(x) = λ{s ∈ [0, 1] : h(s) ≤ x} for all x ∈ R,

with λ denoting the Lebesque measure. Hence, any distance between the origi-

nal function h and its non-decreasing rearrangement Ih can serve an index of non-

decreasingness. Of course, there are many distances in function spaces, and thus
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many indices, but we shall concentrate here on the L1-distance due to its attractive

geometric interpretation and other properties.

Note 2.2.1 In dependence studies, the non-decreasing rearrangement of a function h

can be interpreted as a co-monotonic form of h viewed as a relationship between two

random variables. In this case, any distance of the function h from its non-decreasing

rearrangement can be interpreted as the distance of a two-dimensional random vec-

tor from its co-monotonic form. Studies of dependence structures in the forms of

rearrangements can be found, e.g., in Puccetti and Wang (2015) and Rüschendorf

(1983).

Throughout this chapter, we assume that h is integrable on its domain of defini-

tion. The following proposition will be useful for next discussion.

Proposition 2.2.1 Function h : [0, 1] → R is non-decreasing if and only if the

equation Ih(t) = h(t) holds for λ-almost all t ∈ [0, 1]. If h is left-continuous, then it

is non-decreasing if and only if Ih(t) = h(t) for all t ∈ [0, 1].

Proof Assume first that Ih(t) = h(t) for λ-almost all t ∈ [0, 1]. Since the function Ih

is non-decreasing, then the function h must be non-decreasing as well.

Conversely, suppose that the function h is non-decreasing. Then from the defini-

tion of Gh(x), we have the equation

Gh(x) = sup{t ∈ [0, 1] : h(t) ≤ x} (2.2)

and thus, in turn, from the definition of Ih(t), we have the equation Ih(t) = lims↑t h(s).

Consequently, Ih is left-continuous and the equation Ih(t) = h(t) holds at every

continuity point t ∈ [0, 1] of the function h. Since the set of all discontinuity points
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of every non-decreasing function can only be at most of λ-measure zero, the converse

of Proposition 2.2.1 follows. This finishes the entire proof of Proposition 2.2.1.

The function Ih is known in the literature as the generalized inverse of the function

Gh, and is thus frequently denoted by G−1h . Throughout this discussion, however, we

prefer using the notation Ih to emphasize the fact that this is a weakly increasing,

that is, non-decreasing function. In probability and statistics, researchers would call

Ih the quantile function of the ‘random variable’ h. In the literature on function

theory and functional analysis (e.g., Chong and Rice, 1971; Day, 1970; Ghossoub,

2015; Korenovskii, 2007, and references therein) the function Ih is usually called the

non-decreasing equimeasurable rearrangement of h.

We are now in the position to give a rigorous definition of the earlier noted L1-

based index of non-decreasingness, which is

Ih =

∫ 1

0

∣∣Ih(t)− h(t)
∣∣dt.

The index Ih takes on the value 0 if and only if the function h is non-decreasing. The

proof of this fact is based on the well-known property (cf., e.g., Proposition 2.2.1)

that h is non-decreasing if and only if the equation Ih(t) = h(t) holds for λ-almost

all t ∈ [0, 1].

It is instructive to mention here that the notion of monotone rearrangement has

been very successfully used in a number of areas:

• Efficient insurance contracts (e.g., Carlier and Dana, 2005; Dana and Scarsini,

2007).

• Rank-dependent utility theory (e.g. Carlier and Dana, 2003, 2008, 2011; Quig-

gin, 1982, 1993).
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• Continuous-time portfolio selection (e.g., He and Zhou, 2011; Jin and Zhou,

2008).

• Statistical applications such as performance improvement of estimators (e.g.,

Chernozhukov et al., 2009, 2010) and optimization problems (e.g., Rüschendorf,

1983).

• Stochastic processes and probability theory (e.g., Egorov, 1990; Thilly, 1999;

Zhukova, 1994, 1998).

These are just a few illustrative topics and references, but they lead us into the vast

literature on monotone rearrangements and their manifold uses.

We conclude this section with a few additional properties of the index Ih which

will lead us naturally to the next section. First, as one would intuitively expect, any

index of non-decreasingness should not change if the function h : [0, 1] → R is lifted

up or down by any constant d ∈ R. This is indeed the case, as the equation

Ih+d = Ih (2.3)

follows easily upon checking that, for every constant d ∈ R, the equation

Ih+d(t) = Ih(t) + d

holds for every t ∈ [0, 1]. Finally, the multiplication of the function h by any non-

negative constant c ≥ 0 (so as not to change the direction of monotonicity) should

only change the index by as much as it changes the slope of the function. Indeed, we

have the equation

Ich = cIh (2.4)
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that follows easily upon checking that, for every constant c ≥ 0, the equation

Ich(t) = cIh(t)

holds for every t ∈ [0, 1].

2.3 Probabilistic interpretation

The following probabilistic interpretation of the basic quantities involved in our re-

search will play a pivotal role, especially when devising simple proofs of a number

of results. We note at the outset that the interpretation is well known and appears

frequently in the literature (e.g., Carlier and Dana, 2005; Denneberg, 1994).

The interval [0, 1] can be viewed as a sample space, usually denoted by Ω in

probability and statistics. Furthermore, the Lebesgue measure λ can be viewed as a

probability measure, usually denoted by P, which is defined on the σ-algebra of all

Borel subsets of Ω = [0, 1]. Hence, the function h : [0, 1] → R can be viewed as a

random variable, usually denoted by X : Ω→ R in probability and statistics. Under

these notational agreements, the function Gh can be viewed as the cdf FX of X, and,

in turn, the function Ih can be viewed as the quantile function F−1X of X.

To illustrate how this probabilistic point of view works, we recall the well-known

equation ∫ 1

0

Ih(t)dt =

∫ 1

0

h(t)dt, (2.5)

which we shall later use in proofs. The validity of equation (2.5) can easily be estab-
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lished as follows. We start with the equation

∫ 1

0

Ih(t)dt =

∫ 1

0

F−1X (t)dt. (2.6)

Then we recall that the mean E[X] of X can be written as
∫ 1

0
F−1X (t)dt. Hence,

∫ 1

0

Ih(t)dt = E[X].

Furthermore, appealing to the probabilistic interpretation one more time, we have

E[X] =

∫ 1

0

h(t)dt,

which establishes equation (2.5). Of course, from the purely mathematical point of

view, equation (2.5) follows from the fact that h and Ih are equimeasurable functions

and thus their integrals coincide. In summary, we have demonstrated that equation

(2.5) holds.

2.4 Co-monotonically additive index

It is instructive to view equation (2.3) as the additivity property

Ih+g0 = Ih + Ig0 , (2.7)

where g0 is the constant function defined by g0(t) = d for all t ∈ [0, 1], with d ∈ R

being a constant. Indeed, Ig0 = 0, and thus we conclude that equations (2.3) and

(2.7) are equivalent.

Note that the functions h and g0 are co-monotonic irrespective of the value of d.
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This fact follows immediately from the definition of co-monotonicity as discussed in

Section 1.1. This is a well-known notion, extensively utilized in many areas, perhaps

most notably in economics and insurance. For further details and references on the

topic, we refer to Denneberg (1994), Dhaene et al. (2002a,b, 2006), and references

therein.

Coming now back to equation (2.7), a natural question is whether the equation

still holds if the constant function g0 is replaced by any other function g that is co-

monotonic with h. For this, we first recall the fact (cf. Corollary 4.6 in Denneberg,

1994) that, for every pair of co-monotonic functions h and g,

Ih+g(t) = Ih(t) + Ig(t) for every t ∈ [0, 1]. (2.8)

Unfortunately, the index Ih is based on the non-linear functional

∆ 7→
∫ 1

0

|∆(t)|dt, (2.9)

and we can thus at most have the subaddivity property:

Ih+g ≤ Ih + Ig. (2.10)

The lack of additivity would, of course, still be the case even if we replaced the L1-type

functional by any other Lp-type functional. Hence, we need a linear functional.

Note that by simply dropping the absolute values from functional (2.9) would not

lead us to the desired outcome because the new ‘index’ would be identically equal to

0 as seen from equation (2.5). Remarkably, there is an easy way to linearize func-

tional (2.9). This is achieved by dropping the absolute values and, very importantly,
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weighting dt with the function t. These two steps lead us to the functional

∆ 7→
∫ 1

0

∆(t)tdt

and thus, in turn, to the quantity

Lh =

∫ 1

0

(Ih(t)− h(t)) tdt, (2.11)

but before declaring it an index of non-decreasingness, we need to verify that Lh is

always non-negative and takes on the value 0 if and only if the function h is non-

decreasing. These are non-trivial tasks, whose solutions make up our next Theorem

2.5.1. Before formulating the theorem, we next present two illustrative examples

where Ih and Lh are calculated and compared.

Example 2.4.1 For a fixed parameter α ∈ [0, 1], let hα be the function on [0, 1]

defined by

hα(t) =

 t for t ∈ [0, 0.5] ,

αt+ (1− α)(1− t) for t ∈ (0.5, 1] .

Note that hα is non-decreasing when α ∈ [0.5, 1], and thus Ihα = 0 and Lhα = 0. In

this case, we are left to work only with α ∈ [0, 0.5). Figure 2.1 illustrates the function

hα when α = 0, 0.25, 0.5, 0.75, and α = 1.

For every α, we derive the function Ghα as follows:

Ghα(x) =


x when x ∈ [0, α],

2− 2α

1− 2α
x+

α

2α− 1
when x ∈ (α, 0.5],

1 when x > 0.5.
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α = 0

α = 0.25

α = 0.50

α = 0.75

α = 1

Figure 2.1: Function hα(t) for various α

The non-decreasing rearrangement of hα can then be expressed as

Ihα(t) =


t when t ∈ [0, α),

(1− 2α)t+ α

2− 2α
when t ∈ [α, 1].

Utilizing the easily checked fact that the functions hα and Ihα cross at the only point

tc = (α− 2)/(2α− 3), we calculate the index Ihα as follows:

Ihα =

∫ 1/2

α

|Ihα(t)− hα(t)|dt+

∫ tc

1/2

|Ihα(t)− hα(t|dt+

∫ 1

tc

|Ihα(t)− hα(t|dt

=

∫ 1/2

α

(
t− (1− 2α)t+ α

2− 2α

)
dt+

∫ tc

1/2

(
αt+ (1− α)(1− t)− (1− 2α)t+ α

2− 2α

)
dt

+

∫ 1

tc

(
(1− 2α)t+ α

2− 2α
− (αt+ (1− α)(1− t))

)
dt

=
(1− 2α)(1− α)

2(3− 2α)
.
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Similar arguments produce a formula for the index Lhα :

Lhα =

∫ 1

0

(Ihα(t)− hα(t))tdt

=

∫ 1/2

α

((1− 2α)t+ α

2− 2α
− t
)
tdt+

∫ 1

1/2

((1− 2α)t+ α

2− 2α
− (αt+ (1− α)(1− t))

)
tdt

=
(1− 2α)(1− α)

24
.

These indices as functions of α are depicted in Figure 2.2.

Figure 2.2: The indices Ih (solid-red) and Lh (dashed-blue) as functions of α.

Example 2.4.2 For a fixed parameter α ∈ [0, 1], let gα be the function on [0, 1]

defined by

gα(t) =


t
α

for t ∈ [0, α] ,

t−1
α−1 for t ∈ (α, 1]

when α ∈ (0, 1),

gα(t) = 1− t when α = 0,
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and

gα(t) = t when α = 1.

Figure 2.3 illustrates the function gα when α = 0.25. For every α, the non-decreasing

Figure 2.3: Function g0.25(t).

rearrangement of gα is the identity function on [0, 1], that is, Igα(t) = t for t ∈ [0, 1].

The non-decreasing indices can then be calculated as follows:

Igα =

∫ α

0

( t
α
− t
)

dt+

∫ 1/(2−α)

α

( t− 1

α− 1
− t
)

dt+

∫ 1

1/(2−α)

(
t− t− 1

α− 1

)
dt

=
1− α
2− α

and

Lgα =

∫ α

0

t
(
t− t

α

)
dt+

∫ 1

α

t
(
t− t− 1

α− 1

)
dt

=
1

6
(1− α).
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These indices as functions of α are depicted in Figure 2.4.

Figure 2.4: The indices Igα (solid-red) and Lgα (dashed-blue) as functions of α.

2.5 Main theorem

We start this section with a few properties of Lh that will be seen from the proof of

the main theorem below. First, when h and g are co-monotonic, then

Lh+g = Lh + Lg, (2.12)

which follows from equation (2.8) and the linearity of the functional

∆ 7→
∫ 1

0

∆(t)tdt.

In particular, we have Lh+d = Lh for every function h and every constant d ∈ R,

because Ld = 0. Next, for every non-negative constant c ≥ 0, we have the equation

Lch = cLh, (2.13)
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which follows immediately from Ich(t) = cIh(t) and the definition of Lh. Furthermore,

from the definitions of Ih and Lh we immediately obtain the bound

Lh ≤ Ih, (2.14)

which, incidentally, explains the ordering of the two curves in Figure 2.2.

Theorem 2.5.1 For every function h : [0, 1]→ R, the index Lh is non-negative and

takes on the value 0 if and only if the function h is non-decreasing.

Proof The proof is somewhat complex, and we have thus subdivided it into three

parts: First, we establish an alternative representation (equation (2.15) below) for Lh

on which the rest of the proof relies, and which, incidentally, clarifies how we came up

with the weight t in definition (2.11). Then, in the second part, which is the longest

and most complex part of the proof, we establish a certain ordering result (bound

(2.16) below) that implies the non-negativity of Lh. Finally, in the third part we

prove that Lh = 0 if and only if the function h is non-decreasing.

Part 1: Here we express Lh by an alternative formula that plays a pivotal role in our

subsequent considerations. For this, we first recall that, by definition, the indicator

1{S} of statement S takes on the value 1 if the statement S is true and on the

value 0 otherwise. With this notation, and also using Fubini’s theorem, we have the

equations:

Lh =

∫ 1

0

(Ih(t)− h(t))

∫ t

0

dsdt

=

∫ 1

0

∫ 1

0

(Ih(t)− h(t))1{s ≤ t}dsdt
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Lh =

∫ 1

0

(∫ 1

s

Ih(t)dt−
∫ 1

s

h(t)dt

)
ds

=

∫ 1

0

(∫ s

0

h(t)dt−
∫ s

0

Ih(t)dt

)
ds

=

∫ 1

0

(Hh(s)− CH(s)) ds, (2.15)

where Hh : [0, 1]→ R is defined by

Hh(s) =

∫ s

0

h(t)dt,

and CHh : [0, 1]→ R is the convex rearrangement of Hh defined by

CH(s) =

∫ s

0

Ih(t)dt.

The penultimate equation of (2.15) is derived from the fact that

∫ 1

s

h(t)dt =

∫ 1

0

h(t)dt−
∫ s

0

h(t)dt

and ∫ 1

s

Ih(t)dt =

∫ 1

0

Ih(t)dt−
∫ s

0

Ih(t)dt.

Moreover, along with equality (2.5), we have

∫ 1

s

(Ih(t)− h(t))dt =

∫ s

0

(h(t)− Ih(t))dt.

The right-hand side of equation (2.15) is the desired alternative expression of Lh.
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Part 2: In view of expression (2.15), the non-negativity of Lh follows from the bound

Hh(t) ≥ CHh(t) for all t ∈ [0, 1]. (2.16)

To prove bound (2.16), we first note that every real number y ∈ R can be decomposed

as the sum w1(y) + w2(y), where w1(y) = min{y, 0} and w2(y) = max{y, 0}. Hence,

Ih(s) = F−1X (s)

= w1

(
F−1X (s)

)
+ w2

(
F−1X (s)

)
. (2.17)

Now we recall (e.g., Denuit et al., 2005, Property 1.5.16(i), p. 19) that for every non-

decreasing and continuous function w, we have the equation w(F−1X (s)) = F−1w(X)(s).

Since w1 and w2 are non-decreasing and continuous, equation (2.17) implies

Ih(s) = F−1w1(X)(s) + F−1w2(X)(s)

= Ih−(s) + Ih+(s),

where h−(s) = w1(h(s)) and h+(s) = w2(h(s)). Hence,

∫ t

0

Ih(s)ds =

∫ t

0

Ih−(s)ds+

∫ t

0

Ih+(s)ds

≤
∫ t

0

h−(s)ds+

∫ t

0

h+(s)ds

=

∫ t

0

h(s)ds,

provided that ∫ t

0

Ih−(s)ds ≤
∫ t

0

h−(s)ds (2.18)
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and ∫ t

0

Ih+(s)ds ≤
∫ t

0

h+(s)ds. (2.19)

We shall prove bounds (2.18) and (2.19) next.

Proof of bound (2.18). Let X− = min{X, 0}. We have the equation

∫ t

0

Ih−(s)ds =

∫ t

0

F−1X−
(s)ds

and thus the bound ∫ t

0

Ih−(s)ds ≤
∫ t

0

F−1Y X−
(s)ds, (2.20)

where Y is the random variable defined by Y (ω) = 1{ω ≤ t}. To establish bound

(2.20), we have used the inequality X− ≤ Y X−, which holds because X− is non-

positive.

Next we observe that the cdf FY X−(x) takes on the value 1 at the point x = 0 and

has a jump of a size at least as high as 1− t at the point x = 0. Hence, the quantile

function F−1Y X−
(s) is equal to 0 for at least all s ∈ (t, 1), and so we have the equations:

∫ t

0

F−1Y X−
(s)ds =

∫ 1

0

F−1Y X−
(s)ds

= E[Y X−]

=

∫ t

0

h−(s)ds. (2.21)

Bound (2.20) and equations (2.21) complete the proof of bound (2.18).

Proof of bound (2.19). Let X+ = max{X, 0}. In our following considerations we

shall need to estimate X+ from below by ZX+, where Z is the random variable
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defined by Z(ω) = 1{ω > t}. For this reason, we now observe that bound (2.19) is

equivalent to the following one:

∫ 1

t

Ih+(s)ds ≥
∫ 1

t

h+(s)ds. (2.22)

The equivalence of the two bounds follows from the equation

∫ 1

0

Ih+(s)ds =

∫ 1

0

h+(s)ds,

which is a consequence of equation (2.5). To establish bound (2.22), we start with

the equation ∫ 1

t

Ih+(s)ds =

∫ 1

t

F−1X+
(s)ds

and arrive at the bound

∫ 1

t

Ih+(s)ds ≥
∫ 1

t

F−1ZX+
(s)ds. (2.23)

The cdf FZX+(x) is equal to 0 for all x < 0 and has a jump of a size at least as high

as t at the point x = 0. Hence, the quantile function F−1ZX+
(s) is equal to 0 for at

least all s ∈ (0, t), and so we have the equations:

∫ 1

t

F−1ZX+
(s)ds =

∫ 1

0

F−1ZX+
(s)ds

= E[ZX+]

=

∫ 1

t

h+(s)ds. (2.24)
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Bound (2.23) and equations (2.24) complete the proof of bound (2.22) and thus, in

turn, establish bound (2.19) as well.

Having thus proved bounds (2.18) and (2.19), we have established bound (2.16).

As we have noted earlier, this implies that Lh is non-negative.

Part 3: In this final part of the proof of Theorem 2.5.1, we establish the fact that

Lh takes on the value 0 if and only if the function h is non-decreasing. This we do in

two parts.

First, we assume that h is non-decreasing. Then the function Hh is convex. Fur-

thermore, the convex rearrangement CHh of the function Hh leaves the function Hh

unchanged because Hh is convex. In summary, when h is non-decreasing, then the

integral
∫ 1

0
(Hh(t)− CHh(t)) dt and thus the index Lh are equal to 0.

Moving now in the opposite direction, if the integral
∫ 1

0
(Hh(t)− CHh(t)) dt is

equal to 0, then due to the already proved bound Hh ≥ CHh , we have Hh(t) = CHh(t)

for λ-almost all t ∈ [0, 1]. Consequently, the function Hh must be convex, and thus

the function h must be non-decreasing. This concludes the proof of Step 3, and thus

of the entire Theorem 2.5.1.

As we have seen in the above proof, the definition of the index Lh fundamentally

relies on the notion of convex rearrangement, which also prominently features in

several other research areas, such as:

• Stochastic processes (e.g., Davydov, 1998; Davydov and Zitikis, 2003, 2005;

Davydov and Thilly, 2007; Thilly, 1999; Zhukova, 1994).

• Convex analysis (e.g., Davydov and Vershik, 1998) with applications in areas

such as the optimal transport problem (e.g., Lachièze-Rey and Davydov, 2011).
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• Econometrics (e.g., Gastwirth, 1971; Giorgi, 2005; Lorenz, 1905).

• Insurance (e.g., Brazauskas et al., 2008; Greselin et al., 2009; Necir et al., 2010).

2.6 Concluding notes

Inspired by applications in a number of research areas, we have explored two indices,

I and L, designed for measuring the lack of monotonicity in functions. The indices

take on the value 0 for every non-decreasing function, and on positive values for other

functions: the larger the values, the less non-decreasing the function is deemed to

be. The index I is simpler, but it is only subadditive for co-monotonic functions,

whereas the index L is more complex, but it is additive for co-monotonic functions.

In bivariate case, these indices can be interpreted as the distances of random variables

and their co-monotonic forms that motivate us to use it as the lack of co-monotonicity

indices. We discuss this notion in more details along with its illustrative example in

Chapter 4.



Chapter 3

Computing the indices

Except for very simple functions such as hα and gα of Examples 2.4.1 and 2.4.2,

calculating the indices I and L is usually a tedious and time consuming task. To

facilitate a practical implementation irrespective of the function h, we next develop

a technique that gives numerical values of the two indices at any prescribed precision

and in virtually no time.

3.1 General considerations

We start with a general observation: given two integrable functions h, g : [0, 1]→ R,

we have the bound

∫ 1

0

|Ih(t)− Ig(t)| dt ≤
∫ 1

0

|h(t)− g(t)| dt, (3.1)

1This chapter in a condensed form has been published in Qoyyimi, D. T. and Zitikis, R. (2014).

Measuring the lack of monotonicity in functions, Mathematical Scientist 39(2): 107–117.

36
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which is well known (e.g., Lorentz, 1953) and has been utilized by many researchers

(e.g., Chernozhukov et al., 2009; Egorov, 1990; Thilly, 1999; Zhukova, 1994).

Proof of bound (3.1) Using the probabilistic interpretation, we write the equation

∫ 1

0

|Ih(t)− Ig(t)| dt =

∫ 1

0

∣∣F−1X (t)− F−1Y (t)
∣∣ dt. (3.2)

The integral on the right-hand side of equation (3.2) is known as the Dobrushin

distance between the two cdf’s FX and FY . The integral is equal (Dobrushin, 1970)

to inf E[|ξ − η| ], where the infinum is taken over all random variables ξ and η that

have finite first moments and whose cdf’s are equal to FX and FY , respectively. The

infinum is not larger than E[|h(U)−g(U)| ], where U is a uniform random variable on

Ω = [0, 1], because the cdf’s of the random variables h(U) and g(U) are equal to FX

and FY , respectively. Indeed, in the case of h(U) for example, the cdf Fh(U) of h(U)

is equal to P{ω ∈ Ω : h(U(ω)) ≤ x}, which is equal to λ{t ∈ [0, 1] : h(t) ≤ x} because

U(ω) = ω by the definition of the uniform random variable on Ω = [0, 1]. Note that

λ{t ∈ [0, 1] : h(t) ≤ x} is equal to Gh(x), which is in turn equal to FX(x) according

to our probabilistic interpretation. Hence, Fh(U) = FX and, likewise, Fg(U) = FY .

Due to bound (3.1), we obviously have

|Ih − Ig| ≤ 2

∫ 1

0

|h(t)− g(t)|dt. (3.3)

Likewise, we obtain the bound

|Lh − Lg| ≤ 2

∫ 1

0

|h(t)− g(t)| dt, (3.4)
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which holds for every pair of integrable functions g, h : [0, 1] → R. Just like bound

(3.3), bound (3.4) helps us to develope a discretization technique for calculating the

index Lh numerically. More details on the technique follow next.

Namely, we shall replace g by a specially constructed estimator ĥ of h such that

the L1-distance
∫ 1

0
|h(t) − ĥ(t)|dt can be made as small as desired by choosing a

sufficiently small ‘tuning’ parameter n. To this end, we proceed as follows. First, we

partition the interval [0, 1) into n subintervals [(i − 1)/n, i/n) and then choose any

point ti in each subinterval. Denote τi = h(ti) and let

ĥ(t) =


τi when t ∈ [(i− 1)/n, i/n) ,

τn when t = 1.

(3.5)

With τ1:n ≤ · · · ≤ τn:n denoting the ordered values τ1, . . . , τn, the function

Gĥ(x) = λ{t ∈ [0, 1] : ĥ(t) ≤ x}

can be written as

Gĥ(x) =


0 for x < τ1:n,

i/n for x ∈ [τi:n, τi+1:n) , 1 ≤ i ≤ n− 1,

1 for x ≥ τn:n.

Hence, the non-decreasing rearrangement

Iĥ(t) = inf{x ∈ R : Gĥ(x) ≥ t}
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can be expressed in a computationally convenient way as

Iĥ(t) = τi:n for every t ∈ ((i− 1)/n, i/n],

which holds for every i = 1, . . . , n. This implies

Iĥ =

∫ 1

0

|Iĥ(t)− ĥ(t)|dt

=
1

n

n∑
i=1

|τi:n − τi| . (3.6)

Likewise, to calculate Lĥ, we use formula (2.11) with ĥ instead of h, and then employ

the above expressions for ĥ and Iĥ. We obtain

Lĥ =

∫ 1

0

(
Iĥ(t)− ĥ(t)

)
tdt

=
1

n2

n∑
i=1

i (τi:n − τi) . (3.7)

From bounds (3.3) and (3.4), we conclude that |Iĥ−Ih| and |Lĥ−Lh| do not exceed

2
∫ 1

0
|ĥ(t)−h(t)|dt, which converges to 0 when n→∞ irrespectively of the chosen ti’s

because the function h is integrable on [0, 1]. Hence, instead of calculating the usually

unwieldy Ih and Lh, we can employ formulas (3.6) and (3.7) and easily calculate Iĥ
and Lĥ instead. Choosing a sufficiently large n, we can reach any desired level of

accuracy. An illustration of this procedure follows next.
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3.2 Illustrations with insights into the indices

Here we calculate and interpret the indices in the case of the functions

h1(t) = sin(tM)

and

h2(t) = cos(tM)

defined on the interval [0, 1], for several values of M . The functions are of course

simple, but we have nevertheless visualized them in Figure 3.1 in order to facilitate

our following discussion. We have used estimators (3.6) and (3.7) to calculate the

indices, with the obtained values reported in Table 3.1. We see from the table that

when M = π/2 and π, then irrespectively of which of the two indices we use, the

function h1 is more non-decreasing (i.e., the index value is smaller) than h2. The

two functions are equally non-decreasing when M = 3π/2. When M = 2π, then the

function h1 is less non-decreasing (i.e., the index value is larger) than h2, and this is

so for both indices. We shall now make sense of the numerical values by analyzing

the four panels of Figure 3.1.

M Ih1 Ih2
π/2 0.0000 0.5274
π 0.3183 1.2732

3π/2 1.1027 1.1027
2π 1.2732 0.8270

M Lh1 Lh2
π/2 0.0000 0.1739
π 0.0870 0.4053

3π/2 0.3409 0.3409
2π 0.3618 0.2026

Table 3.1: Indices of non-decreasingness of h1(t) = sin(tM) and h2(t) = cos(tM).

Panel (a) is clear: the increasing function h1 has its index zero, and the decreasing

function h2 has a positive index.
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(a) M = π/2 (b) M = π

(c) M = 3π/2 (d) M = 2π

Figure 3.1: Functions h1(t) = sin(tM) (solid) and h2(t) = cos(tM) (dotted).

In panel (b), the function h1 is increasing in the first half of the interval [0, 1]

and the function h2 is always decreasing. Not surprisingly, therefore, any of the two

indices of the function h1 is smaller than the corresponding index of h2.

In panel (c), the two functions have the same I-indices, as well as the same L-

indices, and the reason for this is based on the general property that if g(t) = −h(1−t)

for all t ∈ [0, 1], then Ig(t) = −Ih(1− t) for all t ∈ [0, 1]. Hence, the equations Ig = Ih

and Lg = Lh hold. In words, if we flip h upside-down and also from left to right, then

the value of any of the two indices will not change. This is why the two functions in

panel (c) have the same I-indices as well as the same L-indices.
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The results corresponding to panel (d) are more challenging to explain. To pro-

ceed, we adopt the following route: We subdivide the interval (0, 1] into four equal

subintervals as follows:

[0, 1) =

2M/π⋃
k=1

[
k − 1

2M/π
,

k

2M/π

)
; (3.8)

recall that M = 2π in this case. By reshuffling these four subintervals, we can

reconstruct the function h2 out of the corresponding pieces of the function h1, and we

can of course do so the other way around. This one-to-one mapping between the two

functions may wrongly suggest that the indices of the two functions should be the

same, but they are obviously not, as we see from Table 3.1. With some tinkering we

realize, however, that this is so because the original order of the aforementioned pieces

of the function h1 is such that this function is more ‘wiggly’ (i.e., follows the pattern

‘increase-decrease-increase’) than the function h2 (i.e., follows the pattern ‘decrease-

increase’). Naturally now, since more wiggly functions tend to be less monotonic, the

function h1 has a larger index than the function h2. Table 3.2 summarizes this point

of view for all of the four panels of Figure 3.1.

Panel (a) Panel (b) Panel (c) Panel (d)

h1(t) + +− +−− [= +−] +−−+ [= +−+]
Ih1 0 0.3183 1.1027 1.2732
h2(t) − −+ −−+ [= −+] −−+ + [= −+]
Ih2 0.5274 1.2732 1.1027 0.8270

Table 3.2: Increasing (+) and decreasing (−) regions of h1 and h2.

Another illustration relates to Example 2.4.2. Let X and Y be two random vari-

ables that are uniformly distributed on the unit interval [0, 1]. We pair X and Y

through the equation Y = gα(X), where gα is the function defined in Example 2.4.2,
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and whose definition for the reader’s convenience is reminded next:

gα(t) =


t
α

for t ∈ [0, α] ,

t−1
α−1 for t ∈ (α, 1]

when α ∈ (0, 1),

gα(t) = 1− t when α = 0,

and

gα(t) = t when α = 1.

We have already calculated the indices Igα and Lgα for all α ∈ [0, 1], and now

want to see how the indices are related to dependence measures. To facilitate the

discussion, we recall the formulas

Igα =
1− α
2− α

(3.9)

and

Lgα =
1

6
(1− α). (3.10)

These indices as functions of α are depicted in Figure 2.4. When α = 0, we have the

pair (X, 1−X), which is counter-monotonic as discussed in Section 1.1. When α = 1,

we have the pair (X,X) which is co-monotonic. As α grows from 0 to 1, the ran-

dom vector (X, Y ) moves from being counter-monotonic (X, 1−X) to co-monotonic

(X,X). Since in the bivariate case the joint distribution of any counter-monotonic

random vector is the Fréchet-Hoeffding lower bound, then this is the farthest form

from being co-monotonic. In this case, the index should be maximal among all

α ∈ [0, 1]. Indices (3.9) and (3.10), as well as illustrations in Figure 2.4, support this



Chapter 3. Computing the indices 44

argument. Also, as α grows, the random vector (X, Y ) approaches the co-monotonic

form, and so the distance from co-monotonicity gradually diminishes.

3.3 Indices of functions on finite intervals

Suppose now that we want to measure the lack of non-decreasingness of a function

defined on [a,A] ⊂ R. Since shifting to the left or to the right does not change the

shape of the function, and thus its degree of non-decreasingness, we thus redefine the

function onto the interval [0,M ] by simply replacing its argument t by t − a, where

M = A − a. Therefore, without loss of generality, from now on we work with any

integrable function f defined on the interval [0,M ], for some M > 0. We note at the

outset that we cannot reduce our task to the interval [0, 1] by simply replacing its

argument t by tM because such an operation would inevitably distort the degree of

non-decreasingness.

Hence, given a function f : [0,M ] → R, we proceed by first defining its non-

decreasing rearrangement by the formula

If,M(t) = inf{x ∈ R : Gf,M(x) ≥ t} for all t ∈ [0,M ],

where

Gf,M(x) = λ{t ∈ [0,M ] : f(t) ≤ x} for all x ∈ R.

Our first index of non-decreasingness of the function f : [0,M ] → R is then defined

by

If,M =

∫ M

0

|If,M(t)− f(t)| dt. (3.11)
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Furthermore, with

Hf,M(t) =

∫ t

0

f(s)ds

and

CHf,M (t) =

∫ t

0

If,M(s)ds

for all t ∈ [0,M ], we define the second index of non-decreasingness of f by the formula

Lf,M =

∫ M

0

(
Hf,M(t)− CHf,M (t)

)
dt. (3.12)

We shall next illustrate the two indices using the functions sin(t) and cos(t) de-

fined on the four domains [0, π/2], [0, π], [0, 3π/2], and [0, 2π]. The values of the

two indices are given in Table 3.3. Since this example mimics that of Section 3.2,

M Isin,M Icos,M
π/2 0.0000 0.8284
π 1.0000 4.0000

3π/2 5.1962 5.1962
2π 8.0000 5.1962

M Lsin,M Lcos,M

π/2 0.0000 0.4292
π 0.8584 4.0000

3π/2 7.5708 7.5708
2π 14.2832 8.0000

Table 3.3: Indices of non-decreasingness of sin(t) and cos(t) on [0,M ].

various interpretations there apply here as well. In short, we see from the table that

irrespectively of which of the two non-decreasing indices we use, the index of non-

decreasingness of sin(t) is smaller than that of cos(t) on the domains [0, π/2] and

[0, π]. The two functions have the same non-decreasingness indices on [0, 3π/2]. Fi-

nally, on the domain [0, 2π], the index of non-decreasingness of the function sin(t) is

greater than that of cos(t), irrespectively of which of the two indices we use, which

implies that sin(t) is less non-decreasing than cos(t) on [0, 2π].

We have used a discretization technique to calculate the values reported in Ta-
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ble 3.3. The technique is a modification of that of Section 3.1. To explain the

modification, in Theorem 3.3.1 below we establish a connection between the pair of

the earlier introduced indices on the interval [0, 1] and the pair of the current ones on

the interval [0,M ].

Theorem 3.3.1 Let f : [0,M ] → R for some M > 0, and let h : [0, 1] → R be the

function defined by h(t) = f(tM) for all t ∈ [0, 1]. Then

If,M = MIh and Lf,M = M2Lh. (3.13)

Proof Since

Gh(x) =
1

M
Gf,M(x),

we have Ih(t) = If,M(tM) for all t ∈ [0, 1]. Hence,

Ih =

∫ 1

0

|If,M(tM)− f(tM)| dt

=
1

M
If,M ,

which establishes the first equation of (3.13). To prove the second equation, we first

check that

Hh(t) =
1

M
Hf,M(tM)

and CHh(t) = CHf,M (tM)/M . Consequently,

Lh =
1

M

∫ 1

0

(
Hf,M(tM)− CHf,M (tM)

)
dt

=
1

M2
Lf,M .
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This establishes the second equation of (3.13), and concludes the proof.

We are now in the position to introduce estimators Îf,M and L̂f,M of the indices

If,M and Lf,M , respectively. Namely, with h(t) = f(tM) and using formulas (3.6)

and (3.7), we have

Îf,M =
M

n

n∑
i=1

|τi:n − τi| (3.14)

and

L̂f,M =

(
M

n

)2 n∑
i=1

i (τi:n − τi) , (3.15)

where τ1:n ≤ · · · ≤ τn:n denote the ordered values

τi = f(tiM), i = 1, . . . , n.

We used formulas (3.14) and (3.15) to obtain the numerical values of the two indices

reported in Table 3.3, where we set n = 100, 000 in order to have a mesh sufficiently

fine to achieve the desired accuracy level of four decimal digits.



Chapter 4

Measuring association via lack of

co-monotonicity

4.1 Introduction

Measuring association, or lack of it, between variables has fascinated researchers for

centuries. A considerable impetus to this research was given by Sir Francis Galton

who in 1885 published his empirical and theoretical developments on regression and

correlation. Inspired by that work, a decade later Karl Pearson proposed a coefficient

to measure correlation between variables, which is nowadays known as the Pearson

correlation coefficient. For detailed historical notes on this coefficient and many of

its interpretations, we refer to Rodger and Nicewander (1988), and Stanton (2001).

The mathematical simplicity and thus interpretability of the Pearson correlation

coefficient have encouraged researchers to use it in a variety of areas where measuring

1A small portion of this chapter in a condensed form has been published in Qoyyimi, D. T. and

Zitikis, R. (2015). Measuring association via lack of co-monotonicity: the LOC index and a problem

of educational assessment, Dependence Modeling 3(1): 83–97.

48
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association between variables is of interest. But just like any other synthetic measure,

the Pearson correlation coefficient also has a number of limitations, such as high sen-

sitivity to outliers (e.g., Abdullah, 1990; Shevlyakov and Smirnov, 2011), its reliance

on linearity (e.g., Rodger and Nicewander, 1988), and so on.

In many practical situations, however, we encounter problems that are poorly

described by linear relationships, and thus measuring association (or lack of it) using

the Pearson correlation coefficient may not be prudent. Hence, a number of alternative

ways have emerged in the literature, including the rank correlation coefficients of

Kendall and Spearman (e.g., Kendall and Stuart, 1961; Nelsen, 2006), the correlation

coefficients of Gini (e.g., Gupta, 1999; Nelsen, 2006) and Blomqvist (1950). Concisely,

these coefficients provide different counting and aggregation rules of concordant and

discordant pairs of bivariate data:

Two pairs (xi, yi) and (xj, yj) are concordant if either xi < xj and yi < yj,

or xi > xj and yi > yj.

For detailed and illuminating discussions of these coefficients, we refer to Section 5.1

of Nelsen (2006). For recent discussions, methodological and applied developments

on copulas, we refer to Embrechts (2009), Jaworski et al. (2010, 2013), and references

therein.

The concordance notion leads immediately to the notion of co-monotonicity that

has deep roots in mathematics (cf., e.g., Denneberg, 1994; Schmeidler, 1986, and

reference therein). This notion has turned out to be particularly useful in economics,

finance, and insurance. For details and references on the topic, we refer to, e.g.,

Dhaene et al. (2002b,a, 2006), Vyncke (2004), and references therein.

A number of indices for measuring dependence, concordance, and co-monotonicity

have been proposed in the literature (e.g., Dhaene et al., 2012, 2014; Koch and
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de Schepper, 2011; Liebscher, 2014, and references therein). All of them are con-

cerned with different aspects of dependence but nevertheless – as intended by the

authors – fall into a large class of concordance coefficients that possess certain ‘desir-

able’ characteristics or properties (e.g., Mari and Kotz, 2001; Nelsen, 2006; Schweizer

and Wolff, 1981; Scarsini, 1984, and references therein). In particular, among those

characteristics is a symmetry (or interchangeability, permutation, etc.) condition,

which in the context of this thesis is not desirable and would even be misleading, due

to the very reason that explanatory and response variables are not symmetric (inter-

changeable). Hence, for measuring the lack of, or departure from, co-monotonicity

between pairs of variables, none of the aforementioned coefficients can truly serve our

purpose.

We have organized the rest of the chapter as follows. In Section 4.2 we describe a

classical data-set of Thorndike and Thorndike-Christ (2010), which is of our primary

interest, and then visualize the data using scatterplots with superimposed classical

least-squares regression lines. In Section 4.3 we fit curves to bivariate data using

several powerful methods available in the literature, which is a precursor to our use

of an index for measuring lack of co-monotonicity (LOC). The definition of the LOC

index is provided in Section 4.4. In Section 4.5 we utilize the LOC index to analyze

the data-set of Thorndike and Thorndike-Christ (2010). In Section 4.6 we discuss the

difference between the LOC index and that of Liebscher (2014), and the conclusion

is given in Section 4.7.
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4.2 Data

To facilitate full transparency of our reasoning and adopted methodology, we use

a publicly available data-set of Thorndike and Thorndike-Christ (2010). The set

consists of marks of 52 sixth grade students on three study subjects: Mathematics,

Reading, and Spelling. The students belonged to two classes, taught by two teachers,

who administered tests on the three subjects. For each student and for each study

subject, the teachers reported the number of correct answers and used them to assess

each student’s achievement on each of the three subjects.

For our analysis, we first normalize the marks to the unit interval [0, 1] by dividing

the number of correct answers by the total number of items (i.e., questions or prob-

lems) on the tests: 65 items for Mathematics, 45 for Reading, and 80 for Spelling.

Hence, throughout the chapter we deal with functions

h : [0, 1]→ [0, 1]

that model association between pairs of study subjects, which we denote by X and

Y , connected via the hypothetical equation y = h(x) with h estimated from data

(topic of Section 4.3). Summary statistics and histograms of the normalized marks are

reported in Table 4.1 and Figure 4.1. In Figure 4.2 we have depicted the corresponding

six scatterplots, which provide valuable insights into relationships between paired

variables (e.g., Best et al., 2006; Cleveland et al., 1982; Meyer and Shinar, 1992, and

references therein). Even though we argue that the relationships between student

marks on all pairs of study subjects are non-linear, it is nevertheless instructive to

start considerations with the classical least-squares regression lines, which we have

depicted in Figure 4.2, and to also report values of the Pearson correlation coefficient
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Summary statistics Mathematics Reading Spelling
Minimum 0.2923 0.4667 0.4750
1st quartile 0.5077 0.6833 0.6375
2nd quartile (median) 0.5846 0.7778 0.7188
3rd quartile 0.6769 0.8667 0.8000
Mean 0.5873 0.7654 0.7192
Maximum 0.9231 0.9778 0.9500
Standard deviation 0.1373 0.1233 0.1129

Table 4.1: Summary statistics.
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Figure 4.1: Frequency histograms.

values, which we have done in Table 4.2.

Mathematics Reading Spelling
Mathematics 1.000000 0.622224 0.146615
Reading 0.622224 1.000000 0.642215
Spelling 0.146615 0.642215 1.000000

Table 4.2: Pearson correlation coefficients.

4.3 Curve fitting

Here we discuss curve fitting to scatterplots – and we have six of them (see Figure 4.2)

– which is a precursor to calculating the LOC index, which is a topic of Section 4.4
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(f) Spelling–Reading

Figure 4.2: Scatterplots and least-squares regression lines.
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below.

A number of approaches have been developed for fitting curves to bivariate data.

The parametric approach is one of them, which includes popular models such as

linear, generalized linear, nonlinear, parametric growth curve, and many other ones

(see, e.g., Pan and Fang, 2002; Seber and Wild, 1989). The disadvantage of this

approach, especially in the context of the present problem, is that the shape and

form of the functions to be fitted are difficult to guess, and thus involves an element

of subjectivity that we want to avoid. Hence, we opt for the non-parametric approach,

which is sometimes referred to as scatterplot smoothing (Ruppert et al., 1995).

In general, there are two broad non-parametric approaches for fitting curves to

bivariate data: one is based on the conditional mean and another on a conditional

quantile, such as the conditional median. Both methods have their own advantages

and disadvantages, and we shall illustrate both of them. We note at the outset that in

the case of the conditional quantile, we shall restrict our attention to the conditional

median that serves a natural alternative to the mean when data are skewed. Some

further details and references on the two methods will be provided in Section 4.3.1

below, with their actual use for analyzing the data of Thorndike and Thorndike-Christ

(2010) exhibited in Section 4.5.

4.3.1 Constructing ĥ

The conditional-mean approach is based on the assumption that a good model for h

is given by the conditional mean, and thus

h(x) = E [Y |X = x] . (4.1)



Chapter 4. Measuring association via lack of co-monotonicity 55

Given a scatterplot consisting of n pairs (xi, yi), the local linear estimate – which is

our choice among many other ones available in the literature – for estimating h(x) is

given by

ĥ(x) = β̂0,

where β̂0 is a solution to the minimization problem

min
β0,β1

n∑
i=1

L(yi − (β0 + β1(xi − x))K

(
xi − x
b

)
; (4.2)

throughout this chapter we work with the standard normal kernel K. Details and

references on the bandwidth b selection will be provided in Section 4.3.2 below. As to

the loss function L, in the conditional-mean case we use the quadratic loss function

L(x) = x2, which is a natural choice because the expected quadratic loss is minimized

at the mean. In the case of the conditional-median approach, an analogous argument

leads us toward the absolute loss function L(x) = |x|.

We note in passing that this estimate naturally arises from the fact (recall here

the local constant regression method of Nadaraya-Watson model) that h(x) defined

by equation (4.1) solves the minimization problem E [(Y − β0)2|X = x] with respect

to β0. The additional quantity β1(xi − x) in objective function (4.2) is included to

diminish the asymptotic bias of the estimate, if compared to the bias arising from

the Nadaraya-Watson method (Fan, 1992). For further properties of the local linear

estimate, we refer to Simonoff (1996), Wand and Jones (1995), and references therein.

It is also natural to use the conditional-quantile approach (Koenker, 2005), which

is based on the assumption that a good model for h(x) is given by the conditional

quantile, and thus

h(x) = QY |X=x(τ)
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for some τ ∈ (0, 1). An estimate ĥ(x) of h(x) stems from the minimization problem of

(4.2) using the loss function L(x) that is equal to τx for all x ≥ 0 and (1−τ)(−x) for all

x < 0. Upon recalling that throughout this problem we set τ = 0.5, in the conditional-

median case we therefore work with the absolute loss function L(x) = 0.5|x|. The

factor 0.5 is of course irrelevant in our considerations as it does not influence the

result of minimization problem (4.2).

4.3.2 Bandwidth selection

The construction of bandwidth b is based on how good the resulting estimator ĥ(x)

of h(x) is, and for this task it is customary to use the mean integrated squared error

(MISE)

MISE
(
ĥ
)

=

∫
E
[
(ĥ(x)− h(x))2 | x1, x2, . . . , xn

]
w(x)dx (4.3)

with some weight function w that ensures convergence of the integral (Ruppert and

Wand, 1994). Specifically, the bandwidth is chosen so that it asymptotically mini-

mizes the MISE. There are of course other good ways to choose the bandwidth but

we shall not delve deeply into this subject here and just note some of the facts that

we shall utilize in our data-driven computations.

Namely, we follow Fan and Gijbels (2000), Ruppert and Wand (1994), and Rup-

pert et al. (1995) when using the conditional-mean approach. We start out with the

asymptotic optimal bandwidth given by formula (3.21) in Fan and Gijbels (1996,

p. 68). To facilitate its practical implementation, we use the direct plug-in method

proposed by Ruppert et al. (1995, pp. 1262–1263). In the latter reference, the result-

ing bandwidth is denoted by ĥDPI , which in this chapter is denoted by b̂ to avoid a

possible notational confusion with the estimate ĥ of h.



Chapter 4. Measuring association via lack of co-monotonicity 57

When using the conditional-median approach, we follow Yu and Jones (1997),

who show that the optimal bandwidth in this case is equal to the estimate b̂ from the

conditional-mean approach multiplied by

{
τ(1− τ)

φ(Φ−1(τ))2

}1/5

,

where τ = 1/2 due to our median based approach. The φ in the above quantity is the

standard normal density, and Φ−1 is the standard normal quantile function. Hence,

in summary, the optimal bandwidth under the conditional-median approach is

b̂(π/2)1/5. (4.4)

4.4 Measuring the lack of co-monotonicity

In view of the above discussion, we can now assume that for any given scatterplot we

have constructed a well-fitting function

ĥ : [0, 1]→ [0, 1].

If the function happens to be increasing, then we say that the random variables X

and Y have co-monotonic movements, but if not, then we want to assess how much

the function deviates from the increasing pattern. This we accomplish using an index

that takes value 0 when ĥ is increasing and some positive value otherwise: the more

the function deviates from the increasing pattern, the larger the value. The index is

the one we introduced and discussed in Chapter 2. The second index (L) is used in

this application.
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4.5 Data analysis and findings

We work with six scatterplots, and to each of them we fit two curves: one using

the conditional-mean approach and the other one using the conditional-median ap-

proach. In both cases, we use the same mathematical notation ĥ but when plotting

in Figure 4.3, we use different colors to distinguish the two cases. The technicalities

of curve fitting follow next, for which we use the R software (R Core Team, 2013).

In the case of the conditional-mean approach, we use the local linear kernel regres-

sion method as discussed in Section 4.3.1. To aid us with computations, we use the

R package Kernsmooth (Wand and Ripley, 2014) with the function dpill assigned

for selecting the optimal bandwidth and the function locpoly (with degree=1) for

curve fitting. We set the grid size to 1,000.

In the case of the conditional-median approach, we use the R package quantreg

(Koenker, 2015) with the function lpqr used to obtain ĥ with τ = 1/2 and m = 1, 000.

We see from the six panels of Figure 4.3 that all the estimates ĥ are more jiggly than

those arising from the conditional-mean approach. Definitely, we can improve them

with more work and a more sophisticated tuning of the parameters, but this would

beat our purpose of showing that we can easily calculate the LOC index irrespective

of how much irregular the function is.

Based on our visual assessment, no function in Figure 4.3 appears to be increasing

over its entire domain of definition. Nevertheless, we may argue that some of them

are more increasing than others. To substantiate this claim, we employ the LOC

index discussed in Section 4.4. The following terminology is useful.

Definition 4.5.1 Given two functions ĝ, ĥ : [0, 1]→ [0, 1], we say that

(1) ĝ deviates from increasing pattern by the amount L(ĝ);
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(f) Spelling–Reading

Figure 4.3: Conditional-mean (blue) and conditional-median (red) based curves.
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(2) ĝ deviates less from increasing pattern than ĥ when L(ĝ) < L(ĥ); and

(3) pairs (vi, wi), i = 1, . . . , n, exhibit less LOC than pairs (xi, yi), i = 1, . . . ,m,

when L(ĝ) < L(ĥ), where ĝ arises from the pairs (vi, wi) and ĥ from (xi, yi).

Following the guidelines of Section 3.1, we produce the step-wise approximation

Dm of the function ĥ. Then we calculate the index L̂(D̂m) according to formula

(3.7). Findings in the form of ’LOC matrices’ are presented in Tables 4.3 and 4.4,

whose entries are the values of the LOC index: the larger the value, the more the

Y
X Mathematics Reading Spelling

Mathematics 0.000000 0.231814 1.759735
Reading 0.007202 0.000000 0.097565
Spelling 0.855971 0.145532 0.000000

Table 4.3: Conditional-mean based LOC matrix (entries multiplied by 1, 000, see
Note 4.5.1).

Y
X Mathematics Reading Spelling

Mathematics 0.000000 0.286703 0.923108
Reading 0.007911 0.000000 0.163541
Spelling 2.197968 0.175055 0.000000

Table 4.4: Conditional-median based LOC matrix (entries multiplied by 1, 000, see
Note 4.5.1).

corresponding pairs deviate from the co-monotonic pattern.

The LOC matrix is, naturally, asymmetric, and it should be such in order to

match the asymmetry that we see in the respective paired panels of Figure 4.2. For

example, the entry 0.231814 in Table 4.3 is the value (multiplied by 1, 000) of the

LOC index for Mathematics-Reading, whereas 0.007202 is the value (multiplied by

1, 000) of the LOC index for Reading-Mathematics.
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Note 4.5.1 We have multiplied all the original LOC-index values by 1, 000 to avoid

recording too many decimal zeros in the tables; this does not matter when interpreting

our results because the LOC-index is relative as we see from parts (2) and (3) of

Definition 4.5.1.

Naturally, one may also wish to know how much a given study subject influences

the other ones, which leads us in the direction of causality (e.g., Cheng, 1997; Pearl,

2009, and references therein), which at this stage of our research we want to avoid

discussing. Nevertheless, the reader may wish to draw some conclusions from Tables

4.3 and 4.4, as well as from the scatterplots of Figure 4.3. Note that even though the

corresponding entries of Tables 4.3 and 4.4 are different, the causality-type conclusions

that we may infer from both of them would not contradict each other. This may not

always be the case, especially if data are considerably skewed. In the case of the data

that we are exploring, however, the descriptive statistics and histograms in Section

4.2 suggest fairly symmetric distributions of all the three study subjects.

4.6 Comparing the LOC index with Liebscher’s ζ

Liebscher’s (2014) suggestion for determining whether co-movements of random vari-

ables follow an increasing pattern is philosophically closest to our current research.

Specifically, given a pair of random variables, say X and Y , whose cdf’s we denote

by F and G, respectively, Liebscher’s (2014) coefficient of monotonically increasing

dependence is

ζX,Y = 1− 1

cψ
E
[
ψ
(
F (X)−G(Y )

)]
, (4.5)
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where

cψ = 2

∫ 1

0

(1− u)ψ(u)du

is the normalizing constant, and ψ can be any non-negative and symmetric around 0

function on the interval [−1, 1] such that ψ(0) = 0. For example, ψ(x) = x2/2, which

we shall use in a moment.

Various properties and extensions of this index have been discussed by Liebscher

(2014), from which we see that, to a certain degree, the index can be used for tackling

our problem. Yet, due to a different goal set out by Liebscher (2014), his index

does not truly serve our needs because it is 1) symmetric with respect to X and Y

as we have noted earlier, and 2) based on rank scatterplots, whereas our problem

relies on raw-data scatterplots, which can be considerably different from rank-based

scatterplots as we shall see from graphs in later in this section.

Naturally, to understand ζX,Y we only need to understand its expectation-based

part, which under the quadratic function

ψ(x) =
x2

2

is equal to

IX,Y =
1

2
E
[(
F (X)−G(Y )

)2]
.

Note 4.6.1 The quantity IX,Y is closely related to the Spearman rank correlation

coefficient, denoted here by SX,Y , which is, by definition, equal to the Pearson cor-

relation coefficient between F (X) and G(Y ). Hence, we easily check the equation

SX,Y = 1− 12 IX,Y .

Next we work with a scatterplot (xi, yi), i = 1, . . . , n, which we view as our ‘pop-
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ulation’. To avoid computational complications that inevitably arise when dealing

with ranks when some of the xi’s or yi’s are equal, throughout the rest of this section

we work under the assumption

xi 6= xj and yi 6= yj whenever i 6= j. (4.6)

Note 4.6.2 Assumption (4.6) is violated by the data-set of Thorndike and Thorndike-

Christ (2010). However, this is not an issue because we can always add negligible

noise – e.g., independent and identically distributed normal random variables with

means 0 and very small standard deviations, say 10−5 – and make all the marks

unequal without practically changing their numerical values.

Let Fn and Gn be the marginal cdf’s defined by

Fn(x) =
1

n

n∑
i=1

1{xi ≤ x}

and

Gn(x) =
1

n

n∑
i=1

1{yi ≤ x}.

Under this ‘finite population’ scenario, the quantity IX,Y becomes

In,x,y =
1

2n

n∑
i=1

(Fn(xi)−Gn(yi))
2.

Let x1:n < · · · < xn:n be the ordered values of x1, . . . , xn, and let y(1), . . . , y(n) be

the corresponding induced ordered values. In other words, the original pairs (xi, yi)

have been ordered according to their first coordinates and the resulting pairs are now
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(xi:n, y(i)). With the notation

ri = nGn(y(i)) (4.7)

we have

In,x,y =
1

2n

n∑
i=1

(Fn(xi:n)−Gn(y(i)))
2

=
1

2n

n∑
i=1

(
i

n
− ri
n

)2

=
1

2n3

n∑
i=1

(i− ri)2 , (4.8)

where we used the equation Fn(xi:n) = i/n.

Next we construct a function h0n : [0, 1] → [0, 1] such that L(h0n) is equal to the

right-hand side of equation (4.8) or, in other words, such that

L(h0n) = In,x,y. (4.9)

Namely, for every i = 1, . . . , n, let

h0n(t) =
ri
n

for all t ∈
(
i− 1

n
,
i

n

]
. (4.10)

The LOC index of the function h0n is

L(h0n) =
n∑
i=1

(
i

n
− ri
n

)∫ i/n

(i−1)/n
tdt

=
1

2n3

n∑
i=1

(i− ri)(2i− 1)

=
1

2n3

n∑
i=1

(i− ri)2, (4.11)
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where we used the equations
∑n

i=1 i =
∑n

i=1 ri and
∑n

i=1 i
2 =

∑n
i=1 r

2
i . This estab-

lishes equation (4.9) and helps us to connect the index L with Liebscher’s ζ.

For this, we first observe that the set of equations

h0n

( i
n

)
=
ri
n
, i = 1, . . . , n, (4.12)

is equivalent to the set

h0n(Fn(xi:n)) = Gn(y(i)), i = 1, . . . , n,

which is in turn equivalent to the set of equations

h0n(Fn(xi)) = Gn(yi)), i = 1, . . . , n.

This implies that Liebscher’s ζ is the LOC index L of the step-wise function h0n,

which originates from the rank-based scatterplot (Fn(xi), Gn(yi)) and not from the

original scatterplot (xi:n, y(i)). This also explains a considerable difference between

the meanings of the two indices. To support our conclusions, we have depicted the

two scenarios in Figure 4.4, where we have used Mathematics (with added noise) as

the ‘explanatory’ variable and Reading (with added noise) as the ‘response.’

Consequently, in order to decide whether the problem at hand would be better

served by the index L or Liebscher’s ζ, we first need to decide whether the solution

of the problem should rely on the original scatterplot (xi:n, y(i)), i = 1, . . . , n, or on

the rank-based scatterplot (Fn(xi:n), Gn(y(i))); the latter is of course equivalent to the

scatterplot ( i
n
,
ri
n

)
, i = 1, . . . , n.
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(c) hn (blue) and Ihn (red)
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Figure 4.4: Scatterplots and fitted functions.

If the association between student rankings according to their marks is of primary

interest, with no consideration to causality, then Liebscher’s ζ is an appropriate in-

dex. If, however, the marks themselves are of primary interest, as is the case in the

current problem, and keeping in mind that the marks are not interchangeable random

variables with respect to causality, then we should rely on the original scatterplot

(xi:n, y(i)), i = 1, . . . , n
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and use the LOC index L.

4.7 Concluding notes

The herein proposed index for measuring the lack of co-monotonicity between pairs

of variables is capable of measuring the extent to which the variables deviate from

co-monotonic patterns. The LOC index is designed to work with all relationships,

including non-linear and non-monotonic. The performance of the index has been

illustrated using the Thorndike and Thorndike-Christ (2010) data-set consisting of

student marks on three study subjects.



Chapter 5

Concluding remarks and future

work

5.1 Concluding remarks

This thesis has focused on measuring the departure from co-monotonicity patterns

produced by bivariate random elements. While studies of co-monotonicity and its

consequences for complex systems have been extensively analyzed in recent years,

measuring the lack of it, to the best of our knowledge, has been missing in these

discussions. Co-monotonic forms, in bivariate case, can be explained by the existence

of non-decreasing functions that satisfactorily fit the patterns. Measuring the lack of

co-monotonity, therefore, can be interpreted as measuring the distance of the func-

tions from their monotone rearrangements. The lack of co-monotonicity can then be

measured by the distance of functions from their non-decreasing rearrangements. We

have proposed two indices for measuring the lack of monotonicity in functions: one

index is based on the L1-norm and another one is a Gini-type index. Their properties
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and computational algorithms have also been provided.

To illustrate the herein developed technique, we have used the lack of monotonicity

index to study associations between study subjects in education. Specifically, given

student marks in various subjects, we have explored the problem of comparing various

study subjects with other subjects. We have calculated the lack of co-monotonicity

index that measures the distance of bivariate random vectors from their co-monotonic

forms and made appropriate conclusions.

5.2 Future work

Our technique allows us to explore the dependence structures of bivariate random

vectors in terms of appropriately constructed functions. This facilitates a very broad

applicability to a great variety of problems, which include:

• testing hazard rate dominance,

• testing pairwise counter-monotonicity and generalized counter-monotonicity,

• investigating pairwise co-monotonicity in financial data,

• investigating co-monotonicity of high dimensional vectors, and many others.

Some of these problems, such as testing hazard rate dominance, have already been

explored by me but not included in this thesis due to the required additional work

and time constraints. They will become a part of my future research and graduate

student supervision programs at Universitas Gadjah Mada, where I already have a

permanent position.
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