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Appendix S5.3 Copy Number Calling Methods 

Copy number data were available as CEL files from Affymetrix Genome-Wide Human 

SNP Array 6.0. CNV calls were generated with the PennCNV software
1
 (2011 June 16 

version) using the software pipeline and commands found at 

http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affy_gw6.html. 

PennCNV output with copy number changes for all cell lines and genes can be found in 

Supplementary Table 5.1. 

Appendix S5.4 DNA Sequencing Analysis Pipeline– Variant Calling 
and Interpretation Methods 

Whole exome aligned sequencing data were available in the form of .bam files from 

Illumina Genome Analyzer IIx runs aligned to an hg19 genome build 

(“NCI60_WES_BAM_files:,” n.d.). Variants were detected using the software workflow 

below (A-D). The Genome Analysis Toolkit (GATK)
2
was used for variant calling and 

filtering with default parameters (exceptions): Realigner Target Creator, IndelRealigner, 

Haplotype Caller, Variant Recalibrator (for indels, --minNumBadVariants was set to 

5000 for LY2 and SUM159PT), and Apply Recalibration (ts_filter_level for indels was 

set at 99.0 and for SNPs at 99.9). VariantSelect was called to exclude non-variant loci 

and filtered loci with the default parameters for this purpose provided by GATK.  

Annovar
3
 was used to annotate the variants (both single nucleotide changes and 

insertions/deletions) and filter variants present in dbSNP 135. SIFT
4
 was used to predict 

which mutations (SNPs and indels) are likely damaging to the protein product, which 

were used in further analyses. Two software programs were used for splicing mutation 

analysis: Shannon Pipeline
5
 was used to predict splicing mutations, and Veridical

6
 was 

used to confirm aberrant splicing patterns in cell line-matched RNA-Seq data. In the 

Multiple Factor Analysis (MFA), mutation status was depicted with a binary variable in 

which the gene was assigned to be mutated or not. MFAs were also completed with total 

counts of likely deleterious mutation per cell line, which affected 10 genes, but did not 

alter the interpretation of the analysis. 
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Appendix S5.17.2 Year of tissue block compared to number of measurements per sample 
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Appendix S5.18 Patient Clustering Supplementary Results. 

Clustering was performed as in main Methods. Each cluster derived from the MD 

Anderson Patient Data was isolated and the tumours in each were summarized by 

subtype, number of distance recurrences ("events"), and mean time to distant recurrence 

(Tables S5.1-S5.3 – see below). 

The 'grey' clusters were isolated and further clustered with similar stratification by gene 

expression and outcome (Supplementary Figure VI. 1).  

Appendix S5.18.1 FFPE Patient Samples 

Figure VI.1 – Paclitaxel FFPE Clustering Results 
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Expression heatmap of the paclitaxel SVM derived genes for our set of 32 FFPE samples, 

as measured by qPCR. Each row represents a gene and each column a tumour. Red 

indicates higher expression and blue represents lower expression, as shown by the colour 

bar on the left. Clustering was done based on the similarity of each tumour's and gene's 

expression profile. The dendrograms on the top and left indicate the relatedness of each 

tumour and gene by the length and subdivision of the branches, with deeper branches 

indicating a stronger relationship and branches in the same 'tree' being more closely 

related to each other than data in other 'trees'. 

Figure VI.2 – Gemcitabine FFPE Clustering Results 

 

Figure legend as above (Figure VI. 3). 

Note: sample 3A had an extremely high expression value for DCTD and distorted the row 

view for that gene. It has been removed in this figure for ease of visualization. 
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Appendix S5.18.2 Hatzis et al. Patient Data 

Supplementary Figure VI.3 - Further Clustering of the 'Grey' Cluster 

  

The 'grey' cluster from the previous clustering analysis was isolated and clustered further. 

The leftmost cluster (shaded a lighter grey) is composed of 70% luminal tumours with a 

mean survival time of 3.14 years. The rightmost cluster is composed of 43% basal 

tumours with a mean survival time of 2.45 years. The leftmost cluster also contains only 

3 distant recurrences, with two of those being classified by the MD Anderson signature as 

"Sensitive". The 'light grey' cluster, meanwhile, is stratified very well on the basis of the 

MD Anderson signature (results not shown). This mirrors the results of the clustering 

analysis on the 'green' and 'purple' tumour clusters. 
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Supplementary Figure VI.4 - Zoom on the 'purple' and 'green' clusters. 

 

The clusters from Figure 11 in the main paper were isolated from the main heatmap for 

easier visualization of the differential gene expression that distinguishes each cluster. 

Figure legend as in the main paper. 
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Table S5.1: Summary of tumours contained in each cluster. 

 

Table S5.2: Summary of tumours contained in each cluster. 
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Table S5.3: Summary of tumours contained in each cluster. 

 

RD: recurrent disease pCR: pathological complete response 

Insensitive/Sensitive as predicted by Hatzis et. al. (2011) 

Events: distant relapse Time: time to distant relapse 

Appendix S5.19 MAPT Expression Affects Prognosis in Luminal 
Tumours. 

 MAPT is part of the PAM50 and clearly segregates the data into luminal and basal 

subtype to a large extent. However, some luminal tumours express MAPT at a lower level 

than the majority. Low MAPT expressing luminal subtypes fall into the low MAPT 

expressing 'purple' cluster (Supplementary Figure VI. 4) and have a significantly worse 

prognosis than higher MAPT expressing luminal tumours in the patient dataset 

(Supplementary Figure VII. 1). 
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Supplementary Figure VII. 1 - Kaplan-Meier curves for low MAPT expressing luminal 

tumours vs. higher MAPT expressing luminal tumours. 

 

'Low' vs. 'high' expression was stratified by median MAPT expression across all tumours, 

regardless of subtype. Luminal tumours with expression values below the overall median 

were classified as 'low MAPT' and those with values above were classified as 'high 

MAPT'. There were 32 low MAPT expressing' luminal tumours in the low MAPT set and 

123 high MAPT expressing luminal tumours.  In the log-rank test, the Kaplan-Meier 

results are significant (p = 0.037). The log-rank hazard ratio is 2.503 (95% CI of ratio: 

1.071 to 9.203). 
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Appendix S5.20 Creating SVM models using lung and hematopoietic 
cell lines. 

We initially investigated the possibility that the paclitaxel breast cancer SVM model 

could predict cell line sensitivity to this drug in 22 other cancer cell line types. The 

respective misclassification rates were higher than with the breast cancer cell lines. We 

attempted to classify resistance with the SVM model in other neoplastic tissues, including 

from autonomic ganglia (10 cell lines), biliary tract (1), bone (10), central nervous system 

(27), endometrium (17), hematopoietic and lymphoid tissue (55), kidney (8), large 

intestine (18), liver (15), lung (76), oesophagus (15), ovary (24), pancreas (25), pleura 

(7), prostate (3), salivary gland (1), skin (35), soft tissue (11), stomach (14), thyroid (3), 

upper aerodigestive tract (6), and urinary tract (12). As Daemon et al., 2013 reported, 

clustering of individual tissue types dominates the analysis of chemosensitivity. The 

tissue-specific gene expression program of the cell lines could explain why the breast 

cancer signature was not transferable.  

Appendix S5.20.1 Feature Selection Process – Lung Cancer Cell 
Lines 
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Appendix S5.20.2 Feature Selection Process – Hematopoietic 
and Lymphoid Tissue Cancer Cell Lines 

 

Appendix S5.20.3 Final SMV Gene Sets for Paclitaxel 
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Appendix S5.20.4 MFA Using Genes in SVM – Lung 
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Appendix S5.20.5 MFA Using Genes in SVM – Hematopoietic 
and Lymphoid Tissue 
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