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biggest disadvantage is the pressure source, which can be noisy and heavy. Another 

alternative is the use of dielectric polymers that do not require an intermediate transducer 

and operates silently. Nevertheless, this type of actuation is the most expensive and requires 

high voltages. Accordingly, a report that describes an actuation system that has high 

feasibility and efficacy was not found. Hence, the choice of the actuation technology mainly 

relies on the experience of the design engineer and the design constraints. 

2.3.3 Control Strategy of Actuation Systems in 

Motion Rehabilitation 

For a wearable mechatronic device to be controlled, human interaction can be detected and 

transferred to the actuation system of the device. Human intent can be measured by a 

number of sensors [71]: position and motion sensors, force and pressure sensors, muscle 

activity sensors or brain activation sensors. Moreover, muscle activity sensors that measure 

cognitive human-robot interaction include EMG (electromyography) sensors, muscle 

stiffness sensors, muscle tenseness sensor, ultrasonic muscle activity sensors and mechano-

myography sensors [71]. 

Surface EMG sensors (see Fig. 2.6) have been proposed as natural muscle interfaces for 

wearable mechatronic devices [72]. As EMG measurements have high sensitivity to muscle 

activity, they have been successfully used to measure fatigue [73] and to identify the 

operator’s intention [72], [74]. Surface EMG recordings provide a safe, easy and 

noninvasive method that allows objective quantification of muscle energy [75].  

A.  B.  

Fig. 2.6. EMG sensors and electrodes.  

A. Assembled and placed on a silicone skin.  

B. Sensors separated from the electrodes. 

 

The raw EMG signal can be analyzed in one of four different approaches: amplitude, 

frequency, EMG-force relationship and amplitude probability distributions [77]. The 
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average, root mean square (RMS) and mean spike amplitude of band-passed EMG activity 

have been used to quantify the magnitude of muscle activity [78].  

Over the past 5 years, several research groups have developed EMG-driven models that 

quantify upper arm muscle activity and provide elbow FE motion profiles [79]–[91] (see 

Table 2.5). The aim of the models is to describe limb motion as a function of its EMG 

signals. At first, Hill-based models used knowledge about the dynamics of individual 

sarcomeres within a fiber [93] to link extremity motion to muscle activity. Later, it was 

shown that a mapping technique (e.g. classification models, artificial neural networks or 

support vector machines) could achieve better accuracy (88.15–98.8%) than Hill-based 

models [81], [84], [87], [89], [90] that have 90.54–96.37% accuracy. On the other hand, 

mapping EMG signals directly to joint kinematics [79], [80], [83], [85], [86], [88], [91] 

requires a long individualized calibration process that must be updated as muscles 

strengthen. Thus, despite good accuracy, mapping models are complex and limited in their 

application. 

The error of converting motion intention from EMG signals to motion profiles for these 

models [79]–[91] was estimated to be in the range of 1.20–11.85%. However, it is hard to 

compare the dynamic models’ performance since a different number of EMG signals are 

used as input signals to the models. The most frequent and intuitive method of describing 

elbow motion is thought the EMG signals from the biggest flexor (BB) and biggest extensor 

(TB) [79], [83], [84], [87], [91]. The more advanced attempts involve adding the input 

signals from additional EMG sensors placed on the upper limb muscles: brachioradialis 

[85], [90] or forearm muscles [86]. Controversially, the simplified models were using only 

one input from BB [80], [81] or TB [88]. As a result, there is no standard rule for using 

EMG signals neither for describing dynamic elbow motion, nor for justifying why a certain 

group of muscles may result in better accuracy of prediction for EMG-driven models. 

As human limb positioning and movements are controlled by receptors with specific 

precision, we are interested in the ability to assist during the motion with sensitivity equal 

to that of human joint positioning. The error of joint position sensing for the elbow is 20 

[92]. An expert from St. Joseph's Health Care London, hand physiotherapist S. Chinchalkar, 

has confirmed that elbow FE position error can vary between 2° and 5°. As an average 

elbow ROM is 0–130°, the accuracy of limb positioning can be between 96% –98.5% (5° 

of error out of 130° is equivalent to 96% accuracy, and 2° of error out of 130° is equivalent 

to 98.5% accuracy). Therefore, an EMG-driven model will be considered effective and 
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In the decoupled mode (Position B, Fig. 3.20), the motors and their housing can be easily 

detached from the device (Fig. 3.21). Then, the user has the option to either to move the 

forearm within a specific ROM or to fix it in a certain position. 

  

Fig. 3.21. Detachable motor housing.  

3.3.7 Torque Amplifier 

As part of the transmission system, a torque amplifier is required to achieve 10 Nm in total 

from both sides of the device. During the design stage, the ratio of the amplifier was 

selected as  𝑅a = 3. Thus, the diameter/teeth/grooves ratio between the driver 

pulley/sprocket and the driven one should be at least 3. The amplifier has to include a belt, 

chain or a cable that actually conveys the power from the driver to the driven shaft. In order 

to select the best option, three types of torque amplifiers were analyzed and designed for 

further testing.  

The initial input values for torque amplifier selection are: the torque 𝑇 = 1.75 Nm, the 

driving speed 𝑛1 = 10 rpm, the ratio of the torque amplifier 𝑅𝑎 = 3, the center distance 

between the sprockets/pulleys 𝑎 = 83 mm, maximal permissible external diameter of the 

larger pulley/sprocket 𝑑2 = 80 mm, and the maximal permissible external diameter of the 

smaller pulley/sprocket 𝑑1 = 20 mm. 
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The variability of EMG signals caused by a vast amount of conditions and non-voluntary 

shoulder motions created a different error distribution for all subjects. Although no control 

was implemented for some subject-related parameters (posture, mental state and 

temperature), the model was able to make predictions with the desired accuracy. 

6.5. Sources of Error and Limitations 

The principal frequency of the EMG signal is concentrated in the 30–500 Hz range [134]. 

On the other hand, the main energy of the EMG signal is concentrated in the range of 0–

500 Hz [171]. Thus, filtering of the EMG signal may cut down useful information that 

corresponds to the smallest force produced by the muscle and, therefore, decrease the 

accuracy of motion trajectory/speed estimation for small joint angles. 

Using optimization techniques, a smaller accuracy error may have been attained when 

compared to using a manual model parameter calibration. However, optimization 

techniques are computationally expensive. In addition, optimized parameters can take 

longer to compute than the entire time devoted to the trials of one subject depending on 

which optimization technique is used. Lastly, EMG signals fluctuate naturally due to 

fatigue, temperature, environment and other factors. Therefore, the optimization would 

need to occur for every usage of the device that incorporates the proposed modes. The time 

constraints these factors place on parameter optimization are the reasons why manual 

calibration was chosen for the experiments. 

6.6. Conclusions 

A control system for the wearable mechatronic elbow brace was designed and tested. The 

control strategy consists of (1) the educational mode that moves the brace at a pre-set speed 

in the desired direction and (2) the assistive mode that estimates the desired speed of the 

forearm and moves the brace with respect to the desired position. Both modes were tested 

on the data collected from 35 healthy participants.  The results of the brace movements 

were compared with the actual movements recorded from the participants. 

The experiments have shown that the educational mode can achieve 86% of accuracy in 

trajectory estimation, while the brace control with a constant visual feedback may result in 

95% accuracy (by considering the fact that the visual feedback increases limb positioning 
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accuracy by 10%). The assistive mode was tested with a PID controller and later with a 

cascade controller. The combined speed-position (cascade) control reduces the error 

between the desired motion and the brace movement by 3–4%. Therefore, the assistive 

mode with cascade control can achieve 2.04–4.32% error, which is within the required error 

tolerance (0–4%). The results of the tests demonstrate the potential to achieve robust device 

operation under different rehabilitation scenarios. Due to the limitations of the data, further 

assessment of the device with the help of data from the BPI patients is required to improve 

the control strategy.  
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CHAPTER 7 

7   CONCLUSIONS AND FUTURE WORK 
 

The work presented in this thesis was aimed at adapting robotic technology for home-based 

muscle training as part of the BPI postoperative rehabilitation process. A literature review 

was performed to identify whether the prior art in portable rehabilitation robotics for the 

upper limb could be applicable for maintaining muscle tropism after the nerves of the 

affected muscle are surgically repaired. It was found that there are currently no robotic 

prototypes or commercially available devices designed specifically for BPI patients that 

undergo a long-term postoperative process. 

The wearable mechatronic elbow brace presented herein is an example of a device that can 

provide an automated 24/7 method of controlling muscle training outside of the clinical 

environment. A complex design of the device included the mechanical structure that 

maintains natural motions of an elbow and the control system that converts sensed EMG 

data to a profile of a desired movement. Based on the defined specifications, the prototype 

was built and tested in two modes, educational and assistive. Each mode was specifically 

designed to mimic the two types of training sessions with the therapist.  

The experiments performed with the elbow brace have shown that EMG data can be 

successfully used for estimating the direction of the desired motion and moreover for 

estimating the speed profile of the intended movement. Although the assessment of the 

device was performed for the pre-recorded data from healthy participants, the device met 

the goals of the project. 
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7.1. Contributions 

This work describes the design and control of a wearable elbow brace for BPI patients and 

outlines the application in which the device can be used during home-based muscle 

training. The specific contributions of this work are as follows: 

1. A customized actuation system that can be adapted to each stage of the BPI 

rehabilitation process was developed. The drivers can be easily removed from the 

elbow brace by pulling a spring-loaded handle that decouples the transmission system 

from the output shafts of the gearheads, achieving the following goals:  

(a) To remove the transmission and actuation systems and use the device as a 

mechanical brace at the immobilization phase,  

(b) To use the decoupling handle as an emergency stopper,  

(c) To decrease the weight of the device in cases when the rehabilitation process 

requires active exercises only few times a day,  

(d) To replace/test the actuation system without reassembling the construction.  

Other devices found in the literature practice stationary coupling of the actuation 

system to the device with limited or missing emergency decoupling. 

2. A 2-DOF elbow motion model with active flexion–extension and passive carrying 

angle was used for the elbow brace design. In contrast to existing prototypes, the 

proposed device provides natural elbow motion and decreases alterations in joint 

anatomy and limitations of elbow motions.  

3. The reliability of the device was increased by integrating mechanical stoppers into the 

system for limiting the ROM and by selecting critical components with rated life equal 

to the time of a full recovery. The results of the prototype assessment showed that the 

ability of this device to fix the forearm in a certain position is greater than that of 

commercially available static elbow braces. 

4. Although, three types of torque transmission (chains, belts and cables) are commonly 

used in rehabilitation robotics, experiments have presented evidence towards the 

effectiveness of using cable driven transmissions for precise positioning of a forearm 

over other types.  

5. Finally, a customized control system that consists of two modes was designed: 

(1) The educational mode that moves the brace at a pre-set speed in the desired 

direction, and  
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(2) The assistive mode that estimates the desired speed of the forearm and moves 

the brace with respect to the desired position.  

The experiments have shown that the educational mode can achieve 86% of accuracy in 

trajectory estimation, while the brace control with a constant visual feedback may have up 

to 95% accuracy. The assistive mode was tested with PID control and later with cascade 

control. The combined speed–position (cascade) control allows an error reduction between 

the desired motion and the brace movement by 3–4%. Therefore, the assistive mode with 

cascade control achieved 2.04–4.32% error that is within the required error tolerance (0–

4%). The results of the tests demonstrate the potential to achieve robust device operation 

under different rehabilitation scenarios. 

7.2. Future Work 

While the results of the work presented herein proved that the developed prototype of the 

wearable elbow brace can be used in a BPI rehabilitation program, further work is needed 

to improve the device appearance and functionality as presented below: 

1. Weight of the device. Although the overweight of the prototype was compensated by 

the shoulder strap and detachable actuation system, further weight optimization of heavy 

components should be done. For example, the preferred mechanical design can be refined 

if use one motor with a spur gear splitter and one emergency decoupling button. 

2. Calibration process. The current calibration process for the control modes was done 

manually, and, thus, requires further improvement. As the muscles become stronger, the 

system should be recalibrated properly daily or weekly. A possible improvement can result 

from the development of an automated method of control that determined whether the 

recalibration should take place. Additionally, the control system should be updated with a 

new automated method of calibration based on the calibration process that was performed 

manually. 

3. EMG data from BPI patients. An in-depth study that analyzes how EMG signals from 

affected muscles in BPI patients differ from the EMG signal of healthy individuals, as well 

as how to quantify the progress of BPI rehabilitation should be done. Moreover, such 

research will increase the knowledge of EMG signals and how they can be used for 

rehabilitation goals. 
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4. Clinician interface with the device. A system that stores all movements through the 

entire day (24/7) and automatically uploads collected data to a database can become a 

powerful tool for clinicians, as a comprehensive analysis of progress may be done. For 

instance, an alert for the LNU phenomenon can be implemented in the analysis software. 

Moreover, by knowing exactly what training exercises were done and how the patient uses 

the affected arm during the day, the therapist can conclude what rehabilitation strategies 

work or which ones are more effective.  

5. User interface with the device. A system that provides continuous visual/audio 

feedback and guidance to patients to improve quality of motion performance and adherence 

to instructions can increase the patient’s motivation to perform all of the prescribed training 

exercises, as the healing process will be accelerated. Moreover, 24/7 access to a database 

that stores progress and therapist’s comments is necessary to involve patients in the 

rehabilitation process. By having all of the changes tracked and summarized by a clinician, 

a patient can set personal goals for training exercises and constantly check whether he or 

she achieved the goal. 

6. Appearance. Appropriate cover for the elbow brace has to be designed in order to meet 

aesthetical and cosmetic user requirements, e.g., Fig. 7.1. Moreover, the cover will isolate 

moving components and increase the user’s safety by limiting access to the mechanical 

structure and the electrical components of the device. 

 

 
Fig. 7.1. Elbow brace housing. 

A significant amount of work is still required in order to improve BPI robotic rehabilitation 

for home training, as discussed above. Future research will include how to create a self-

tuning wearable elbow brace that a clinician can remotely adjust. 
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