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1.7 Objectives 

 

1- Aim 1: To design three variants according to sequence alignment of Cx40, 

Cx43 and Cx26: (D55N, P193Q and N195D) 

2- Aim 2: To examine the localization and the capability to form GJ plaque 

structures at the cell-cell interfaces of the newly designed Cx40 variants, D55N, 

P193Q, and N195D. The probability of forming homotypic and heterotypic 

(with wildtype Cx43 and Cx40) morphological GJ plaque structures will be 

quantified in HeLa and N2A cells.   

Methods: In order to visualize the localization of Cx40 and its variants, HeLa 

and N2A cells will be transiently transfected with Cx40-YFP, D55N-YFP, 

P193Q-YFP and N195D-YFP to study their ability to form homotypic GJ 

plaque-like structures. Their ability to form morphological heterotypic GJs will 

be studied using Cx43-mRFP.  

3- Aim 3: To measure the GJ coupling conductance (Gj) of these Cx40 variants 

expressed in N2A cell pairs forming homotypic GJ channels or heterotypic GJ 

with wildtype Cx43 or Cx40 using a dual whole patch clamp technique.  

Methods: Dual whole-cell patch clamping will be used to examine the gap 

junction function of homotypic channels formed of either Cx40, D55N, P193Q 

or N195D in N2A cells expressing these constructs. To examine the function of 

heterotypic channels with Cx43, N2A expressing these Cx40 mutants will be 

intermixed with Cx43-mRFP expressing cells. Both fusion fluorescent protein 
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tagged and untagged constructs (using mutant-IRES-GFP and Cx43-IRES-

DsRed) will be used to the functional outcome of the heterotypic GJ channels.  

4- Aim 4: To study transjunctional voltage-dependent gating (Vj-gating) 

properties of tagged and untagged Cx40 variants in homotypic GJ channels and 

heterotypic GJ channels with Cx43 in N2A cells.  

Method: The techniques of Aim 4 will be the same as those used in Aim 3. 
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2.1 Abstract 

Gap junction (GJ) channels provide low resistance passage for rapid action potential 

propagation in the heart. Both connexin40 (Cx40) and Cx43 are abundantly expressed 

in and frequently co-localized between atrial myocytes, possibly forming heterotypic 

GJ channels. However, conflicting results have been obtained on the functional status 

of heterotypic Cx40/Cx43 GJs. Here we provide experimental evidence that the 

docking and formation of heterotypic Cx40/Cx43 GJs can be substantially increased by 

properly designed Cx40 variants where the extracellular domains (E1 and E2) have 

been modified. Specifically, Cx40 D55N and P193Q; substantially increased the 

probability to form GJ plaque-like structures at the cell-cell interfaces with Cx43. More 

importantly the coupling conductance (Gj) of D55N/Cx43 and P193Q/Cx43 GJ 

channels are significantly increased from the Gj of Cx40/Cx43. Our homology models 

indicate the electrostatic interactions and surface structures at the docking interface are 

key factors preventing Cx40 from docking to Cx43. Improving heterotypic Gj of these 

atrial connexins may be potentially useful in improving the coupling and 

synchronization of atrial myocardium. 

 

Abbreviations Cx40, connexin40; Cx43, connexin43; E1, the first extracellular 

domain; E2, the second extracellular domain; GJ, gap junction;  Gj,ss, normalized 

steady-state junctional conductance; Ij, macroscopic junctional current; Vj, 

transjunctional voltage; 
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2.2 Introduction 

Gap junction (GJ) channels are intercellular channels that provide a direct 

electrical and metabolic passage between adjacent cells to synchronize many 

physiological activities. Each gap junction channel is formed by docking of two 

hemichannels at their extracellular domains. Hemichannels are homo- or hetero-

oligomeric proteins of 21 homologous connexins in human [1, 2]. All connexins are 

predicted to share similar structural topology with four transmembrane domains linked 

by the first and the second extracellular loop domains (E1 and E2, respectively) and 

one cytoplasmic loop with both amino-terminus and carboxyl-terminus residing in the 

cytosol [1, 3]. Both connexin40 (Cx40) and Cx43 are abundantly expressed in the 

human cardiovascular system, including the atria and the ventricular conduction 

system of the heart [4-7] as well as the endothelial/smooth muscle cells in the 

vasculature [8, 9]. In the atria of the heart, Cx40 and Cx43 are co-expressed and 

frequently co-localized, which give the possibility of forming heterotypic GJ channels 

[7, 10, 11]. However, conflicting results were obtained on whether Cx40 hemichannels 

are capable of docking with Cx43 hemichannels to form functional heterotypic 

Cx40/Cx43 GJ channels [9, 12-16]. Irrespective to the differences in the detailed 

experimental conditions and the expression model cells used, all of these studies are 

consistent on that the GJ coupling conductance (Gj) of the heterotypic Cx40/Cx43 GJs 

is much lower than that of the homotypic GJs containing Cx40 or Cx43. The 

probability of observing coupling at heterotypic Cx40/Cx43 GJs are from as high as 

their homotypic GJs [12, 13], less than half [17], or to a very low level 

indistinguishable to the background coupling of the expression system [9, 14]. The 
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mechanisms of low efficiency in forming functional heterotypic GJ channels are 

unknown, partially due to the lack of high resolution structural information for both 

Cx40 and Cx43 [18]. 

The first high resolution (at 3.5 Å) crystal structure of human Cx26 GJ channel 

was resolved in 2009 revealing a total of 60 hydrogen bonds (HBs) at the docking 

interface between two hemichannels [19, 20]. Twenty-four of them are found between 

docked E1-E1 and 36 HBs are located at the E2-E2 docking interface [19, 20]. 

Mutations on the E2 docking HB-forming residues in Cx26 and Cx32 (a docking-

compatible connexin to Cx26) are predicted to reduce the number of inter E2-E2 HBs, 

and often lead to impairment in forming functional homotypic and heterotypic GJ 

channels [21, 22]. Restoration of the lost HBs at the E2 docking interface in the Cx26 

and Cx32 mutants resulted in rescuing the docking and formation of functional GJ 

channels [21]. These results indicate that the HBs at the docking interface of E2 play 

an important role in docking and formation of functional homotypic/heterotypic GJ 

channels in these connexins.  

It is well documented that both Cx40 and Cx43 are docking incompatible to 

Cx26 [23], but it is not clear if Cx40, Cx43 and other docking incompatible connexins 

also use HBs at the docking interface of their homotypic and heterotypic GJs. 

Sequence alignment of Cx40 and Cx43 with Cx26 at the E1 and E2 domains showed 

many conserved amino acid residues, including triple cysteines in both E1 and E2 

forming intra-subunit disulphide bonds [20, 24]. The docking HB-forming residues in 

E1 and their equivalent residues are well conserved, but the HB-forming residues in E2 

and their equivalents are not conserved which could alter their ability to form HBs at 
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the docking interface (Fig. 2.1). We hypothesize that Cx40 and Cx43 have a similar 

structure at the docking interface comparing to that of Cx26 and they use similar 

residues (equivalent to those HB-forming residues in Cx26) for their docking. Key 

differences in these putative docking residues between Cx40 and Cx43 prevent 

efficient docking and formation of functional heterotypic GJ channels. Our homology 

structure models predict that electrostatic repulsion and docking surface structural 

differences between Cx40 and Cx43 are important factors preventing the docking and 

formation of functional heterotypic Cx40/Cx43 GJ channels. Accordingly, we 

predicted that single missense variants in Cx40 E1 and E2 domains (Fig. 2.1) are able 

to significantly increase the formation of GJ plaque-like structures and the coupling 

conductance (Gj) with Cx43. Increasing heterotypic coupling between Cx40 and Cx43 

might improve atrial myocytes coupling and synchronization, which could be useful in 

controlling atrial arrhythmias. Part of this study was published as an abstract [25].  
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2.3 Results 

2.3.1 Sequence alignment of Cx40, Cx43 and Cx26 at E1 and E2 

Cx40 and Cx43 are homologous to Cx26 with an overall protein sequence 

identity at 44.6% and 44.7%, respectively. We aligned part of the E1 and E2 domains 

of Cx40 and Cx43 with those of Cx26 (Fig. 2.1). The alignment showed high sequence 

identity, suggesting that Cx40 and Cx43 may share similar structures in these domains 

as those of Cx26. Looking further into the sequence logo for these domains from all the 

human connexins capable of making functional GJ channels revealed many well-

conserved residues (large letters in the logos, Fig. 2.1), indicating they might be 

important for GJ structure and function. The hydrogen bond (HB)-forming residues at 

the docking interface of Cx26 GJ channel are indicated (arrows in Fig. 2.1 A and B) 

and those on the E2 have been shown to play an important role in docking and 

formation of functional GJ channels [21, 22]. We hypothesize that the HB-forming 

residues in Cx26 and their equivalents are important for homotypic and heterotypic 

docking in Cx40 and Cx43. The differences in one or more of these residues between 

Cx40 and Cx43 influence their heterotypic docking efficiency. Based on the sequence 

alignment and the logo, we designed three point mutations in Cx40, D55N, P193Q and 

N195D (circles in Fig. 2.1A and B). D55N was selected since the equivalent residues 

among all the connexins are a well-conserved non-charged Asn (N), but in Cx40 a 

negatively charged Asp (D) is found. For the same reason, we generated the mutant 

N195D. The position P193 is not well-conserved among connexins. In Cx40 proline 

(P193) has a non-polarized circle side chain restricting its main chain peptide bond 

angle, but at the corresponding position in Cx43 is a Gln (Q), which has a long 


