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Abstract
The concepts of completely monotone and Bernstein functions have been introduced near

one hundred years ago. They find wide applications in areas ranging from stochastic Lévy pro-
cesses and complex analysis to monotone operator theory. They have well-known Bernstein
and Lévy-Khintchine integral representations through which there are one-to-one correspon-
dences between them and Radon measures on [0,∞) or (0,∞), respectively. In this thesis, we
investigate subclasses of completely monotone and Bernstein functions with various convex-
ity properties on their measures. These subclasses have intriguing applications in probability
theories and convex analysis.

The convexity properties we investigate include convexity, harmonic convexity and β-
convexity of the cumulative distribution functions. We characterize measures with various
convexity properties to obtain results analogous to the classical Pólya’s Theorem. Then we ap-
ply these characterizations of the measures to derive integral representations for these classes
of completely monotone and Bernstein functions that are variants of the classical Bernstein and
Lévy-Khintchine integral representations.

To explore the connections among completely monotone and Bernstein functions with var-
ious convexity properties on their measures, we investigate the characterizations and obtain
various necessary and sufficient conditions for a completely monotone or Bernstein function to
belong to one of the subclasses. We also identify maps that transform completely monotone and
Bernstein functions into one with certain convexity properties on their measures. Interesting
parallels between completely monotone and Bernstein functions are observed. For example,
the transformation that turn a Bernstein function into one having Lévy measure with harmoni-
cally concave tail is the same as the transformation that turns a completely monotone function
into one having harmonically convex measure. To help understand these analogies, a criteria
for completely monotone and Bernstein function to have measures with β-convexity property
is obtained. That generalizes the conditions for both convexity and harmonic convexity.

LetHCM be the set of all Bernstein functions h, such that f ◦ h is the Laplace transform of
a harmonically convex measure for any completely monotone function f . Similarly, let HBF

be the set of all Bernstein functions h, such that g ◦ h has Lévy measure with harmonically
concave tail for any Bernstein function g. Surprisingly, we show that HCM = HBF and are
non-empty. For example we prove that xα is in HBF for any α ∈ (0, 2/3]. In other words, the
Bernstein function x 7→ xα is a transformation that deforms the measure of any Bernstein (resp.
completely monotone) function into one that not only has a continuous distribution function
on (0,∞) but also a convenient concavity (reps. convexity) property. We give necessary and
sufficient condition for a Bernstein function to be inHBF in terms of its convolution semigroups
of sub-probability measures. However, it is not well-understood what are the functions that
“generate” this set. We hope to investigate such issues in the future.

Keywords: completely monotone function, Bernstein function, convexity, harmonic con-
vexity, Laplace transform, convolution semigroups of sub-probability measures, Lévy pro-
cesses, coupon collector’s problem
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4.1 Characterization for f (x) ∈ CM with convexity properties on its measure µ . . 54
4.2 Characterization for f (x) ∈ CM with β-convexity on its measure µ . . . . . . . 55

5.1 Characterization for g(x) ∈ BF with convexity properties on its Lévy measure ν 80
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sure ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



List of Figures

2.1 Examples of harmonically convex functions . . . . . . . . . . . . . . . . . . . 20
2.2 Plot of x1/2 f1(x) and x1/2 f2(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Function f (x) = (1 − e−λt)/(t + 1) for λ = 0.1, 1, 10. . . . . . . . . . . . . . . . 78

5.1 Function f (x) − x f ′(x), f (x) + x f ′(x) and x f (x) where f (x) = g(x + 1) − g(x)
and g(x) = 1 − (1 − e−x)/x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Function h(x) − xh′(x) and h(x) + xh′(x) where h(x) = g(x) + g(1) − g(x + 1)
and g(x) = 1 − (1 − e−x)/x . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Function f(x) = e−x0.9
(1 + 0.9x0.9) . . . . . . . . . . . . . . . . . . . . . . . . . 106

ix



Chapter 1

Introduction

For me everything started with the classical Coupon collector’s problem and a related, still
open, conjecture about its variance. Suppose there are n types of coupons, labeled 1, 2, . . . , n,
and someone wants to collect at least one of each type. On each trial, a coupon is collected
at random, and the probability that the i-th coupon is obtained is xi for all i = 1, . . . , n. The
probabilities satisfy xi > 0 and x1 + x2 + · · ·+ xn = 1. Define T to be the number of trials needed
to get at least one coupon from each type. It is well-known that

E[T ] =

n∑
i=1

1
xi
−

∑
1≤i< j≤n

1
xi + x j

+ · · · + (−1)n−1 1
x1 + · · · + xn

.

Baum and Billingsley discussed asymptotic distribution on the trials needed to have k dif-
ferent coupons collected for the first time in [5], 1 ≤ k ≤ n. If k = n, then it is equivalent to the
random variable T defined above. Moriarty and Neal in [57] considered the asymptotic distri-
bution of T (appropriately normalized) as the number of coupons n approaches infinity under
the assumptions that the probability for each coupon being draw is unequal. Holst obtained the
asymptotic distributions of T from classical extreme value theory by embedding the sampling
procedure in a Poisson point process and expressing its distribution using extremes of indepen-
dent identically distributed random variables in [42]. Jocković and Mladenović in [44] studied
the waiting time by certain stopping rules and investigated models for its asymptotic behavior.
Doumas and Papanicolaou in [30] developed techniques for computing the asymptotic value of
the first and second moments of the random variable T as n approaches infinity.

Some other aspects are investigated. Boneh and Hofri in [15] showed two computational
paradigms that are well-suited for this type of problem. Adler and Ross generalized the coupon
collector’s problem by selecting a random subset of coupons each time, rather than collecting
an individual coupon in [1]. They provided bounds for the number of trials needed to get at
least one coupon of each kind as well.

The convexity of the expectation of this random variable T in terms of (x1, x2, . . . , xn) is
another popular topic. Caron, Hlynka, and McDonald in [23] minimized the expected number
of trials in the coupon collector’s problem, and they constructed conjectures on its convexity.
Borwein, Affleck, and Girgensohn posed a problem in [17] regarding the shape of E[T ]. It
is shown in [18] that E[T ] is convex in (x1, . . . , xn) on (0,∞)n. Recently in [71], Sendov and

1



2 Chapter 1. Introduction

Zitikis considered a natural generalization

F[ f ](x1, . . . , xn) :=
n∑

i=1

f (xi) −
∑

1≤i< j≤n

f (xi + x j) + · · · + (−1)n−1 f (x1 + · · · + xn),

for a function f defined on a domain in R and investigated its convexity properties, when f
is completely monotone and Bernstein function. Using this notation, we have that E[T ] =

F[1/x]. As for the variance of T , it can be showed that

Var [T ] = 2F[1/x2] − F[1/x] − (F[1/x])2,

see [30]. There is a conjecture saying that Var [T ] is minimized when x1 = x2 = · · · = xn = 1/n.
The difficulty of the conjecture lies in the fact that the variance is not a convex function but
rather a difference of two convex functions. In fact, every C2 function has this property, see
[36]. In an attempt to attack the conjecture with tools from Convex Analysis, the following
results were obtained in [71].

(a) Let f (x) be a completely monotone function with measure µ. If µ is harmonically convex,
then F[ f ] is convex and non-negative on Rn

++.

(b) Let g(x) be a Bernstein function with measure ν. If ν has a harmonically concave tail,
then the function F[g] is concave and non-negative on Rn

++.

A non-negative function f (x) : (0,∞) → [0,∞) is called completely monotone, if it is
infinitely differentiable and

(−1)n f (n)(x) ≥ 0 for all x > 0 and n ≥ 1.

Closely related to completely monotone functions are the Bernstein functions. A non-negative
function g(x) : (0,∞)→ [0,∞) is a Bernstein function, if it is infinitely differentiable and

(−1)n−1g(n)(x) ≥ 0 for all x > 0 and n ≥ 1.

By definition, the first derivative of a Bernstein function is completely monotone.
A function h(x) : (0,∞)→ R is called harmonically convex if and only if

h
(

2
1/x + 1/y

)
≤

h(x) + h(y)
2

for every x, y ∈ (0,∞). This terminology, harmonic convexity, follows from the fact that
2/(1/x + 1/y) is the harmonic mean of x and y.

The main goal of this thesis is to provide a thorough investigation of the properties of com-
pletely monotone and Bernstein functions with various convexity properties on their measures.
Monograph [62] is a classic reference on convexity.

Completely monotone function is a classical object finding numerous applications in anal-
ysis and probability theories. These functions are very common. In fact, every completely
monotone function is the Laplace transform for a Radon measure. The monograph [80] is
an excellent introduction to the subject. Reference [3] is a more recent review on Laplace
transform.
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Completely monotone function is closely related with Stieltjes functions, see [58] and [79].
They are also connect to operator monotone functions in the scope of matrix analysis, see [13]
and [7]. Let f (x) be a real function defined on interval I. Define f (A) for a Hermitian matrix A
whose eigenvalues are λi ∈ I, i = 1, . . . , n as follows.

f (A) = U f (D)U∗,

where f (D) = Diag ( f (λ1), f (λ2), . . . , f (λn)), and A = UDU∗, D = Diag (λ1, λ2, . . . , λn). Note
that U is unitary, that is UU∗ = I for its conjugate transpose U∗. A function f (x) is called
matrix monotone of order n if it is monotone with respect to n × n Hermitian matrices, that is
f (B)− f (A) is positive definite if B−A is positive definite. If f (x) is matrix monotone of order n
for all n, then we call f (x) operator monotone. For example, f (x) = xr, r ∈ [0, 1] is proven to be
operator monotone on [0,∞) in [13]. Integral representation for operator monotone function is
covered in [25]. In fact, operator monotone functions form a sub-class of Bernstein functions,
which is called completely Bernstein functions.

Bernstein functions as well find numerous applications in different areas. The monograph
[68] is a contemporary introduction to the subject. It is known that Bernstein functions corre-
spond to the Laplace exponent of the subordinator Lévy processes, see [10]. Monographs [9],
[67] and [63] are excellent references on Lévy processes.

Recent interest has focused on sub-classes of Bernstein functions and their intriguing prop-
erties. Examples of such sub-classes are the completely Bernstein functions, the special Bern-
stein functions, the Torin Bernstein functions. In [35], Fourati and Jedidi provide a unified view
on Jurek Bernstein functions, self-decomposable Bernstein functions and completely Bernstein
functions. In [73], Song and Vondraček investigated a class of subordinators, which are called
special subordinators, and study their potential theory. Burridge, Kuznetsov, Kwaśnicki and
Kyprianou use Kendalls classic identity for spectrally negative Lévy processes to construct
new families of subordinators with explicit transition probability semigroups by considering
stopping times in [22].

In [69], we proposed a class of completely monotone functions with harmonically con-
vex measures and a related class of Bernstein functions with corresponding measures having
harmonically concave tail. We used them to construct novel families of multivariable convex
functions and to give an explicit representation of the higher-order moments of the Coupon
collector’s random variable T , as a difference of two convex functions.

Since composition with a Bernstein function preserves the completely monotone and the
Bernstein functions, we asked the question if there is a Bernstein function that transforms
every other completely monotoneor Bernstein function into one with corresponding convexity
property on their measures. Surprisingly the answer was ’yes’ and it turned out that one and
the same transformations work for both the completely monotone and the Bernstein functions.
We called this set of transformationsHBF .

Our next goal was to understand the structure of the set HBF . This led us to conduct a
systematic search for different ways to characterize the completely monotone functions with
harmonically convex measures and the related class of Bernstein functions with corresponding
measures having harmonically concave tail. A big part of the thesis is dedicated to this topic.
Another attempt to clarify the structure of the setHBF was done by generalizing the definition
of harmonic convexity and harmonic concavity and this led us to the definition of β-convexity.
Despite these attempts the structure of the setHBF remains very much an open problem.



4 Chapter 1. Introduction

The thesis is organized as following. In Chapter 2, we introduce completely monotone and
Bernstein functions in Definition 2.1.1 and Definition 2.2.1 with their classic characterization
in Theorem 2.1.2 and Theorem 2.2.2. Their basic properties are also studied, together with their
connections to convolution semigroups of sub-probability measures and Lévy processes. Some
useful results, such as Laplace Inversion Formula, see Theorem 2.1.4 and identities regarding
higher order derivatives (2.14), are introduced here.

Besides, we introduce harmonic convexity (concavity) in Definition 2.4.1 and define mea-
sures with various convexity properties in Definition 2.4.3. Examples are provided and some
known results are presented. In addition, we introduce β-convexity and β-concavity in Defini-
tion 2.5.1 and 2.5.3, which is proven to be a generalization of convexity and harmonic convexity
regarding completely monotone and Bernstein functions. The properties regarding their limits
are investigated in Lemma 2.5.5 and 2.5.6.

In Chapter 3, we extensively investigate various convexity properties for functions defined
on (0,∞). In the light of Pólya’s theorem, we characterize measure µ on [0,∞) with different
convexity properties, as well as measure ν on (0,∞) with convexity properties on its tail. The
summary is shown in Table 3.1 and 3.2.

Applying these characterizations onto Bernstein measures and Lévy measures, we could
represent completely monotone and Bernstein functions whose measure has certain convexity
properties, see summary in Table 3.3 and 3.4.

In Chapter 4, we study the characterizations of completely monotone functions with various
convexity properties on their measures. As summarized in Table 4.1 and 4.2, we present three
different characterizations for them, that is the one involving derivatives, the derivative free
one and the sequential one. Multiple proofs are provided in several scenarios, one of them
implementing to the representation in Chapter 3. We also present the characterizations for
completely monotone functions, whose measures are β-convex (β-concave). And different
cases, such as harmonic convexity and convexity, are shown as corollaries for specific choice
of β = 1 or β = 0.

What’s more, we show that completely monotone functions with harmonically convex or
convex measures are actually transformations of completely monotone functions with certain
integrability conditions, see Proposition 4.5.1 and 4.5.2. In the end, we investigate a few trans-
formations that could preserve certain convexity properties on the measures of completely
monotone functions.

In Chapter 5, we study the characterizations of Bernstein functions with different convexity
properties on the tail of their measures. The structure of this Chapter is surprisingly analogous
to Chapter 4 as summarized in Table 5.1 and 5.2. One can sense some hints from Table 3.1
and 3.2. We present three characterizations for Bernstein functions with different convexity
properties on the tail of their Lévy measures, which are the ones involving derivatives, deriva-
tive free ones, and sequential ones. Multiple proofs are also provided, one which connects to
the representations in Chapter 3. We also characterize Bernstein functions with β-concavity
(convexity) properties on the tail of their measures. Special cases for β = 1 and β = 0 are
highlighted as well.

Additionally, it is shown that Bernstein functions whose Lévy measures have harmonically
concave tail or convex tail are indeed transformations of certain Bernstein functions, see Propo-
sition 5.5.1 and 5.5.2. At the end, we also investigate a few transformations that could preserve
certain convexity on the tails of Lévy measures.
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In Chapter 6, we start by introducing a family of completely monotone functions. Then we
introduce sub-classes of Bernstein function, such that if composed with arbitrary completely
monotone or Bernstein function, the composition is endowed with certain convexity properties
on measures, see Definition 6.2.1. By the family covered in the first section, we are able to
show that the sub-classes of Bernstein functions HCM and HBF are not trivial. In particular,
if α ∈ [0, 2/3], then for any completely monotone function f (x), the composition f (xα) is
completely monotone with harmonically convex measure, and for any Bernstein function g(x),
the composition g(xα) is Bernstein whose Lévy measure has harmonically concave tail. As
corollaries, we obtain representations of completely monotone and Bernstein functions with
convexity on measures in Corollary 6.2.1 and 6.2.2.

Furthermore, we show sub-classes HCM and HBF are actually identical in Corollary 6.3.1,
by connecting to convolution semigroups associated with Bernstein functions. Some basic
properties forHBF are discussed and examples are provided.

In Chapter 7, our work is applied to the coupon collector’s problem and to spectral func-
tions. Some straightforward results are obtained. In Chapter 8, remaining open questions are
listed and future works are proposed.



Chapter 2

Preliminaries

In this Chapter, we introduce completely monotone and Bernstein functions with their classic
characterizations. Their basic properties will also be studied, as well as the connections to
Lévy processes. In addition, some useful results, such as Laplace Inversion Formula and higher
order derivative identities, are introduced here. They will play an important role in the further
developments.

2.1 Completely monotone functions

2.1.1 Definitions and basic properties
Definition 2.1.1 A non-negative function f (x) : (0,∞) → [0,∞) is called completely mono-
tone, if it is infinitely differentiable and

(−1)n f (n)(x) ≥ 0 for all x > 0 and n ≥ 1.

The family of all completely monotone functions will be denoted by CM. Completely
monotone functions are classical objects finding numerous applications in analysis and proba-
bility. The monographs [80] and [68] are excellent introductions to the subject. Classic char-
acterization exists for completely monotone functions, also known as Bernstein representation.

Theorem 2.1.2 (Bernstein) If f (x) is a completely monotone function on (0,∞), then it is the
Laplace transform of a unique Radon measure µ on [0,∞), that is,

f (x) =

∫
[0,∞)

e−xt µ(dt) (2.1)

for all x > 0. Conversely, if µ is a Radon measure on [0,∞) such that the above integral is
convergent for x > 0, then it defines a completely monotone function.

The cumulative distribution function for measure µ on [0,∞) is denoted by

Fµ(x) = µ[0, x].

6
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It is often written as F(x) for simplicity. To facilitate the development in the following sections,
it is worthwhile to mention that,

f (n)(x) = (−1)n
∫

(0,∞)
e−xttn µ(dt) = (−1)n

∫
(0,∞)

e−xttn dF(t). (2.2)

for all n ≥ 1. And therefore

(−1)n f (n)(x) =

∫
(0,∞)

e−xttn µ(dt).

Now we investigate some limit properties for completely monotone functions. For any
M > 0, integrating by parts, we have

f (x) ≥ F(0) +

∫
(0,M)

e−xt dF(t) = e−xMF(M) + x
∫

(0,M)
e−xtF(t) dt. (2.3)

And therefore, ∫
(0,M)

e−xtF(t) dt ≤
f (x)

x
. (2.4)

Letting M approach infinity in (2.4), using the monotone convergence theorem, we know∫
(0,∞)

e−xtF(t) dt

is convergent for any x > 0, which implies

lim
t→∞

e−xtF(t) = 0. (2.5)

In addition, letting M approach infinity in (2.3) and using (2.5), we obtain

f (x) = x
∫

(0,∞)
e−xtF(t) dt. (2.6)

This variant of the Bernstein representation will be very helpful in our development, as well as
the limit property (2.5). We can also represent f (x) as following.

f (x) = F(0) +

∫
(x,∞)

(− f ′(t)) dt,

where − f ′(t) is completely monotone as well. As a non-increasing function that is integrable
at infinity is o(1/t) as t approaches infinity (see Lemma A.2.2), we obtain

lim
x→∞

x f ′(x) = 0. (2.7)

This limiting property can be generalized in the next lemma.

Lemma 2.1.3 Suppose f (x) is completely monotone with measure µ. Then

lim
x→∞

xn f (n)(x) = 0, (2.8)

for any n ≥ 1.
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Proof By Lemma A.1.8, we know une−u ≤ (n + 1)ne−ne−u/(n+1) for all n ≥ 1 and u > 0. And by
(2.1), we obtain∣∣∣xn f (n)(x)

∣∣∣ = xn
∫

[0,∞)
e−xttn µ(dt) =

∫
(0,∞)

e−xt(xt)n µ(dt)

≤

∫
(0,∞)

(n + 1)ne−ne−xt/(n+1) µ(dt) = (n + 1)ne−n
(

f
( x
n + 1

)
− µ({0})

)
.

As limx→∞ f (x) = µ({0}), letting x approaches infinity, we get (2.8) for all n ≥ 1. �

Analogously, we could have

lim
x→∞

xn+1
( f (x) − F(0)

x

)(n)
= 0, (2.9)

for completely monotone function f (x) with measure µ, whose cumulative distribution function
is denoted as F(t). To show this, noticing (2.6) and following a similar argument, we could get∣∣∣∣∣∣xn+1

( f (x) − F(0)
x

)(n)
∣∣∣∣∣∣ ≤ (n + 1)n+1e−n

(
f
( x
n + 1

)
− F(0)

)
.

And (2.9) follows from limx→∞ f (x) = F(0).
It is known that the set of completely monotone functions is a convex cone. In fact, a linear

combination of completely monotone functions is still such. In other words,

t f1(x) + s f2(x) ∈ CM,

for any s, t ≥ 0 and any f1(x), f2(x) ∈ CM. Moreover, this set is also closed under multiplica-
tion and point-wise convergence. That is

f1(x) f2(x) ∈ CM, and lim
n→∞

fn(x) ∈ CM,

where fn(x) ∈ CM for all n ≥ 1 and their point-wise limit exists for any x > 0. See [68,
Corollary 1.6] for details.

In particular, if f1(x) and f2(x) are completely monotone functions, with corresponding
measures µ1 and µ2, then their product has corresponding measure being the convolution of µ1

and µ2. That is f1(x) f2(x) ∈ CM is associated with measure µ1 ∗ µ2 given by

(µ1 ∗ µ2)[0, x] :=
∫

R2
+

1[0,x](s + t) µ1(ds) µ2(dt). (2.10)

Here R2
+ stands for the non-negative orthant in R2 and 1[0,x] is the indicator function of the

interval [0, x].
We list some other facts on completely monotone functions that are used without further

reference. They are trivially true or one can find proofs in [68].

1. If f (x) is completely monotone, then a f (bx + c) +λ is also completely monotone for any
a, b > 0 and c, λ ≥ 0.
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2. If f (x) is completely monotone, then f (x) − f (x + λ) is also completely monotone for
any λ ≥ 0.

3. If f (x) is infinitely differentiable such that f (x) ≥ 0, f ′(x) ≤ 0 and (−1)n f (n)(x) ≥ 0 for
infinitely many n ∈ N, then f (x) is completely monotone.

In addition, their higher order derivatives have the following convergence.

Proposition 2.1.1 (Corollary 1.7 in [68]) Let { fn(x)}n∈N be a sequence of completely mono-
tone functions such that their point-wise limit f (x) = limn→∞ fn(x) exists for x on (0,∞). Then
f (x) is completely monotone and

f (k)(x) = lim
n→∞

f (k)
n (x)

locally uniformly on (0,∞) for all k ∈ N.

2.1.2 Inverse Laplace transform
A completely monotone function f (x) is the Laplace transform of certain σ-finite measure, and
vice versa. As a result, measure µ is to a large extent determined by f (x) . Define the operator

Ln( f (x); t) :=
(−1)n

n!

(n
t

)n+1
f (n)

(n
t

)
=

(−1)n

n!
xn+1 f (n)(x)

∣∣∣∣
x=n/t

(2.11)

for any n ∈ N and t > 0. The following theory is the well-known real inversion formula for
the Laplace-Lebesgue and the Laplace-Stieltjes integrals, see [80, Chapter VII, Theorems 6a
& 7a].

Theorem 2.1.4 (Inversion formula) Let f (x) be completely monotone with measure µ. Then,

lim
n→∞

∫
(0,t]

Ln( f (x); u) du =
µ[0, t] + µ[0, t)

2
− µ({0}) (2.12)

for every t > 0. Operator Ln is defined in (2.11). In particular, if µ has density h(t), then

lim
n→∞

Ln( f (x); t) = h(t) (2.13)

for every t > 0 in the Lebesgue set of h(t).

We say that the set of values t, for which∫
(0,λ)

∣∣∣h(t + s) − h(t)
∣∣∣ ds = o(λ)

as λ approaches 0, is the Lebesgue set for the function h(x). Note that points of continuity
of a function are in its Lebesgue set. Also note that, if the cumulative distribution function
F(x) = µ[0, x] is continuous at x = t > 0, then the right-hand side of equation (2.12) becomes
F(t) − F(0).

When applying the inversion formula, we need the next identity (see [3, Lemma 2.7.12] for
a more general identity).
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Lemma 2.1.5 For any sufficiently differentiable function r(x) and any integer n ≥ 0, the fol-
lowing identity holds (

xn+1
(r(x)

x

)(n))′
= xnr(n+1)(x). (2.14)

Proof Identity (2.14) holds for n = 0 trivially. For all n ≥ 1,(
xn+1

(r(x)
x

)(n))′
= (n + 1)xn

(r(x)
x

)(n)
+ xn+1

(r(x)
x

)(n+1)
.

On the other hand, noticing (x f (x))(n) = x f (n)(x) + n f (n−1)(x) by Lemma A.1.1, we obtain

r(n+1)(x) =

(
x

r(x)
x

)(n+1)
=

(
x
(r(x)

x

)′
+

r(x)
x

)(n)
=

(
x
(r(x)

x

)(n+1)
+ n

(r(x)
x

)(n))
+

(r(x)
x

)(n)

= x
(r(x)

x

)(n+1)
+ (n + 1)

(r(x)
x

)(n)
.

Therefore, (2.14) also holds for all n ≥ 1. This completes the verification. �

A straightforward outcome from this Lemma is the following identity for Ln( f (x); t) which
is defined in (2.11). It will facilitate the development in our next result:

L′n( f (x); t) =
n + 1

n
Ln+1

(
x f (x);

(n + 1)t
n

)
, (2.15)

for all n ≥ 1 and t > 0.

2.2 Bernstein functions

2.2.1 Definition and basic properties
Definition 2.2.1 A non-negative function g(x) : (0,∞)→ [0,∞) is a Bernstein function, if it is
infinitely differentiable and

(−1)n−1g(n)(x) ≥ 0 for all x > 0 and n ≥ 1.

The family of all Bernstein function will be denoted as BF . The Lévy-Khintchine repre-
sentation theorem characterizes Bernstein functions.

Theorem 2.2.2 (Lévy-Khintchine) A function g(x) is Bernstein if and only if it admits the
representation

g(x) = a + bx +

∫
(0,∞)

(1 − e−tx) ν(dt) (2.16)

for some constants a, b ≥ 0 and a Radon measure ν on (0,∞) which satisfies∫
(0,∞)

(1 ∧ t) ν(dt) < ∞. (2.17)

The triplet (a, b, ν) uniquely determines the Bernstein function g(x), and vice versa.
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Here 1 ∧ t = min(1, t). The measure ν in the Lévy-Khintchine representation theorem is
usually called the Lévy measure of the Bernstein function g(x) and the triplet (a, b, ν) is called
Lévy triplet. The tail of the Lévy measure ν on (0,∞) is denoted by

ν̄(x) = ν(x,∞).

Condition (2.17) is equivalent to the convergence of the integral in (2.16). The coefficients a
and b in formula (2.16) can be recognized in the following way.

a = lim
x→0+

g(x) and b = lim
x→∞

g(x)/x = lim
x→∞

g′(x). (2.18)

To facilitate the development in the following sections, it is worthwhile to mention that

g′(x) = b +

∫
(0,∞)

e−xtt ν(dt) and g(n)(x) = (−1)n−1
∫

(0,∞)
e−xttn ν(dt) for all n > 1. (2.19)

Clearly, the first derivative of a Bernstein function is completely monotone. Indeed, if g(x) is a
Bernstein function with Lévy triplet (a, b, ν), then the completely monotone function g′(x) has
measure

µ(dt) = bδ0(dt) + tν(dt), (2.20)

where δ0 is the Dirac delta function. However, it is not true, in general, that every completely
monotone function has a primitive that is Bernstein.

Proposition 2.2.1 (Proposition 3.4 in [68]) Suppose f (x) is completely monotone with mea-
sure µ. It has a primitive g(x) which is Bernstein, if and only if the measure µ satisfies∫

(0,∞)

1
1 + t

µ(dt) < ∞. (2.21)

There are useful variants of the Lévy-Khintchine representation (2.16). Note that ν̄(t) is
non-increasing, right-continuous and the integrability condition (2.17) implies that ν̄(t) < ∞
for t > 0 and consequently

lim
t→∞

ν̄(t) = 0. (2.22)

See Lemma A.1.10. An application of Fubini’s theorem to (2.16) leads to

g(x) = a + bx + x
∫

(0,∞)
e−xtν̄(t) dt. (2.23)

Therefore for all k ≥ 1, we have(g(x) − a
x

)(k)
= (−1)k

∫
(0,∞)

e−xtν̄(t)tk dt.

Note e−xtν̄(t) is non-negative and non-increasing for any x > 0. By Lemma A.2.1,

lim
t→0

tν̄(t) = 0 for any x > 0. (2.24)
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Utilizing formula (2.23) one obtains

g(x) − xg′(x) = a + x2
∫

(0,∞)
e−txtν̄(t) dt. (2.25)

This shows that for any x > 0, we have 0 ≤ xg′(x) ≤ g(x) − a, and letting x approach 0, we
obtain that for any Bernstein function g(x)

lim
x→0+

xg′(x) = 0. (2.26)

It follows from here that if g(x) is Bernstein, xg′(x) can not be completely monotone unless
g(x) is constant. This limiting property can be used to show the next lemma.

Lemma 2.2.3 Suppose g(x) is Bernstein with Lévy measure ν. Then

lim
x→0

xng(n)(x) = 0, (2.27)

for any n ≥ 1.

Proof The case for n = 1 is shown in (2.26). Consider n ≥ 2. By Lemma A.1.8, we know
une−u ≤ (n + 1)ne−ne−u/(n+1) for all n ≥ 2 and u > 0. And by (2.19), we obtain∣∣∣xng(n)(x)

∣∣∣ = x
∫

(0,∞)
e−xt(xt)n−1t ν(dt) ≤ x

∫
(0,∞)

nn−1e1−ne−xt/nt ν(dt) = nn−1e1−nxg′(x/n).

Noticing (2.26), letting x approach zero, we get (2.27) for all n ≥ 2. �

The following structural characterization is given by Bochner in [14], and was investigated
in [68, Theorem 3.7].

Theorem 2.2.4 Let g(x) : (0,∞)→ (0,∞). The following statements are equivalent.

(a) g(x) ∈ BF ;

(b) f (g(x)) ∈ CM for all f (x) ∈ CM;

(c) e−sg(x) ∈ CM for all s > 0.

It is known that the set of Bernstein functions is a convex cone. In fact, a linear combination
of Bernstein functions with non-negative coefficients is still Bernstein, that is

tg1(x) + sg2(x) ∈ BF ,

for all s, t ≥ 0 and any g1(s), g2(s) ∈ BF . This set is also closed under composition and
point-wise convergence, that is

g1(g2(x)) ∈ BF and lim
n→∞

gn(x) ∈ BF ,

where gn(x) ∈ BF for all n ≥ 1 and their point-wise limit exists for x > 0. See [68, Corollary
3.8] for details.

We list some facts on completely monotone and Bernstein functions here that are used
without further reference. Refer to [68] for proofs.
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1. If g(x) is Bernstein then ag(bx + c) + λ is Bernstein for any a, b > 0 and c, λ ≥ 0.

2. If g(x) is Bernstein, then g(x + λ) − g(x) is completely monotone for all λ > 0.

3. If g(x) is Bernstein, then g(x) + g(λ) − g(x + λ) is also Bernstein for all λ > 0.

4. If g(x) is Bernstein then g(x)/x is completely monotone.

5. If f (x) ≤ c is completely monotone, then c − f (x) is Bernstein.

6. If c − f (x) is Bernstein for some c > 0 and f (x) > 0, then f (x) is completely monotone,
bounded from above by c.

7. If g(x) is Bernstein, then there exists some c > 0 such that g(x) ≤ cx for all x > 1.

In addition, if a sequence of Bernstein functions converges, their higher order derivatives
also converge.

Proposition 2.2.2 (Corollary 3.9 in [68]) Let {gn(x)}n∈N be a sequence of Bernstein functions
such that their point-wise limit g(x) = limn→∞ gn(x) exists for x on (0,∞). Then g(x) is Bern-
stein and

g(n)(x) = lim
n→∞

g(n)
n (x)

locally uniformly in x ∈ (0,∞) for all n ∈ N.

2.2.2 Convolution semigroups of sub-probability measures
Definition 2.2.5 (Definition 5.1 in [68]) A vaguely continuous convolution semigroup of sub-
probability measures on [0,∞) is a family of measure {νt}t≥0 satisfying the following properties:

(a) νt[0,∞) ≤ 1 for all t ≥ 0;

(b) νt+s = νt ∗ νs for all t, s ≥ 0;

(c) vague- limt→0 νt = δ0.

Convolution semigroups are closed connected with Bernstein functions, as shown in the
next theorem.

Theorem 2.2.6 Suppose {νt}t≥0 is a convolution semigroup of sub-probability measures on
[0,∞). It is uniquely determined by a Bernstein function g(x) in the following identity.∫

[0,∞)
e−xs νt(ds) = e−tg(x), (2.28)

for all t ≥ 0. Conversely, given Bernstein function g(x), there is a unique convolution semi-
group of sub-probability measures {νt}t≥0 on [0,∞) such that (2.28) holds.

This is the reason why probabilists often use the name Laplace exponent instead of Bern-
stein function. The following theorem describes the Lévy measure of the composition f (g(x))
of two Bernstein functions f (x) and g(x) in terms of their convolution semigroups, see [68,
Theorem 5.27].
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Theorem 2.2.7 If f (x) and g(x) are Bernstein functions with Lévy triplets (a, b, µ) and (α, β, ν)
respectively. Then

f (g(x)) = f (α) + βbx +

∫
(0,∞)

(1 − e−xt) η(dt), (2.29)

where the Lévy measure η is given by the vague integral

η(dt) = bν(dt) +

∫
(0,∞)

νs(dt) µ(ds) (2.30)

where {νt}t≥0 is the convolution semigroup corresponding to g(x).

Trivial modifications lead to the representation of the composition of completely monotone
and Bernstein functions. We include the short proof for completeness.

Theorem 2.2.8 Suppose f (x) is completely monotone and g(x) is Bernstein. Then

f (g(x)) =

∫
[0,∞)

e−xt ξ(dt), (2.31)

where the measure ξ is given by the vague integral

ξ(dt) =

∫
[0,∞)

νs(dt) µ(ds) (2.32)

where µ is the measure of f (x) and {νt}t≥0 is the convolution semigroup of g(x).

Proof Using (2.28), we have

f (g(x)) =

∫
[0,∞)

e−sg(x) µ(ds) =

∫
[0,∞)

∫
[0,∞)

e−xt νs(dt) µ(ds) =

∫
[0,∞)

e−xt ξ(dt).

The result follows from the uniqueness of the Bernstein representation theorem for completely
monotone function f (g(x)). �

For any g(x) ∈ BF , the completely monotone function f (x) = e−tg(x) satisfies

0 ≤ f (x) − x f ′(x) = e−tg(x)(1 + txg′(x)) ≤ 1, (2.33)

for all x, t ≥ 0. Non-negativity is trivial as f (x) ∈ CM. We only need to verify the upper
bound. Fix x > 0, consider the function

p(t) := etg(x) − 1 − txg′(x).

Note that p(0) = 0 and p′(t) = g(x)etg(x) − xg′(x) ≥ g(x) − xg′(x) ≥ 0 by identity (2.25).
We conclude that p′(t) ≥ 0 and p(t) is non-decreasing on (0,∞). Thus p(t) ≥ 0, implying
e−tg(x)(1 + txg′(x)) ≤ 1.

2.3 Lévy Processes
In this section, we introduce the basics for Lévy processes, especially some sub-classes.
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2.3.1 Definition and its characterization exponent
Definition 2.3.1 A stochastic process {Xt : t ≥ 0} on R is a Lévy process if the following
conditions are satisfied.

(a) X0 = 0 almost surely.

(b) Independent increment: For any choice of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, random
variables Xt0 , Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent.

(c) Stationary increments: The distribution of Xt+s − Xs does not depend on s.

(d) Continuity in probability: For any ε > 0 and t ≥ 0, it holds that

lim
h→0

P(|Xt+h − Xt| > ε) = 0.

(e) Function t → Xt is almost surely right continuous with left limits.

Lévy processes can be recognized as generalization of random walks in continuous time,
and the distribution µt of Xt is infinitely divisible for any t > 0, with characteristic function

exp{−sΨ(λ)} =

∫
Rd

eiλt µs(dt) = E(eiλXs).

Here Ψ(λ) is also called characteristic exponent of the Lévy process Xt. Any infinitely divisible
probability measure µ on R can be viewed as the distribution of a Lévy process evaluated at
t = 1, and the converse is true as well. The well-known Lévy-Khintchine representation tells
us that Ψ(λ) can be expressed as

Ψ(λ) = iaλ +
1
2
σ2λ2 +

∫
R

(1 − eiλt + iλt1|t|<1) Π(dt), (2.34)

where a ∈ R, σ ≥ 0, 1|t|<1 is the indicator function and Π is a sigma-finite measure concentrated
on R \ {0}, satisfying ∫

R
(1 ∧ t2) Π(dt) < ∞.

By Lévy-Ito decomposition, the next proposition is shown as [47, Lemma 2.12].

Proposition 2.3.1 A real valued Lévy process Xt with triplet (a, σ,Π) has path of bounded
variation if and only if

σ = 0 and
∫
R

(1 ∧ |t|) Π(dt) < ∞.

The finiteness of the integral
∫
R(1 ∧ |t|) Π(dt) allows the Lévy exponent of any real-valued

Lévy process of bounded variation to be rewritten as follows:

Ψ(λ) = −ibλ +

∫
R

(1 − eiλt) Π(dt) (2.35)

where

b = −a −
∫

(−1,1)
t Π(dt). (2.36)

The constant b is often referred to as drift. Particularly, a Lévy measure is a compound Poisson
process with drift, if and only if its characteristic exponent Ψ(λ) in (2.34) has σ = 0 and
Π(R) < ∞.
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2.3.2 Sub-classes of Lévy processes
In this section, we introduce some popular sub-classes of Lévy processes. Within them, sub-
ordinators are closed related with Bernstein functions. Spectrally negative Lévy processes is
connected to Wiener-Hopf satisfaction of Lévy processes. And stable process is linked to a
special kind of Bernstein function xα where α ∈ (0, 1).

Subordinators

A subordinator is a real-valued Lévy process which only takes nonnegative values. One can
easily see the subordinator must have non-decreasing path almost surely. In fact, a Lévy pro-
cess is a subordinator if and only if its characteristic exponent in (2.35) can be written as

Ψ(λ) = −ibλ +

∫
(0,∞)

(1 − eiλt) Π(dt).

where b ≥ 0 and ∫
(0,∞)

(1 ∧ t) Π(dt) < ∞.

As Ψ(λ) can be extended analytically on the complex upper half-plane. This yields its Laplace
exponent

φ(λ) = −
1
t

logE(e−λXt) = Ψ(iλ) = bλ +

∫
(0,∞)

(1 − e−λt) Π(dt).

For every Bernstein function g(x) it can be represented as

g(x) = a + bx +

∫
(0,∞)

(1 − e−xt) ν(dt).

It has been shown that Bernstein function is associated with convolution semigroups of sub
probability measures {νt}t≥0. In particular, if νt is probability measure for all t > 0, then the
constant a = 0. Its representation coincide with the Laplace exponent of subordinator. In other
words, subordinator is associated with convolution semigroups of probability measures, and
vice versa.

Spectrally negative Lévy processes

A real-valued Lévy process with no positive jumps is called spectrally negative. In other words,
a Lévy process Xt is spectrally negative if Π(0,∞) = 0 in (2.34). The degenerated cases include
the negative of a subordinator and deterministic drift.

Although spectrally negative Lévy processes Xt may take values of both signs, its exponen-
tial moments are finite. That is

E(eλXt) < ∞, for all λ > 0.

See [9, Chapter VII] for detail. The characteristic function Ψ(λ) = E(eiλX1) can be extended
analytically on the complex lower half-plane. This yield (2.34) to

ψ(λ) := −Ψ(−iλ) = −aλ +
1
2
σ2λ2 +

∫
(−∞,0)

(eλt − 1 − λt1{t>−1}) Π(dt).
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This ψ(λ) is also called Laplace exponent of Xt as E(eλXt) = etψ(λ) holds for all λ whose real
part is non-negative and t > 0.

If Xt has bounded variation, we may write

ψ(λ) = bλ −
∫

(−∞,0)
(1 − eλt) Π(dt),

where b is the given in (2.36). In other words, a spectrally negative Lévy process of bounded
variation is a drift minus a pure jump subordinator.

Stable processes

Stable processes are Lévy processes whose characteristic exponent correspond to stable distri-
butions. We introduce the short-hand notation

X d
= Y

to indicates that the random variable X,Y have the same distribution. Let X, X1, X2, . . . be
independent random variables with same distribution F.

Definition 2.3.2 (Definition 2.1 in [33]) The distribution F is stable if for each n there exists
constants cn > 0, γn such that

X1 + X2 + · · · + Xn
d
= cnX + γn

and F is not concentrated at one point. F is stable in the strict sense if the above equation
holds with γn = 0.

It is clear that stable distributions are infinitely divisible. And it is shown in [33] that cn = n1/α

for α ∈ (0, 2]. This constant α is called the characteristic exponent of F.
For example, Normal distribution is stable with α = 2, and Cauchy distribution is stable

with α = 1. However, Poisson distribution is not stable. This can be shown by failing to match
all the moments of X1 + X2 + · · · + Xn and cnX + γn for fixed n.

It is shown that the characteristic exponent Ψ(λ) for stable processes with α ∈ (0, 1) or
α ∈ (1, 2) is

Ψ(λ) = c|λ|α (1 − iβ sign(λ) tan(πα/2)), λ ∈ R,

where c > 0 and β ∈ [−1, 1]. One can refer to [83], [9] or [47] for more details. In partic-
ular, Bernstein function g(x) = xα for α ∈ (0, 1) is characteristic exponent for certain stable
distributions.

2.4 Harmonic convexity and measures
In this section, we introduce harmonic convexity (concavity) and then apply these convexities
on to measures. We also explore the basic properties of completely monotone and Bernstein
functions with these convexities on their measures.



18 Chapter 2. Preliminaries

2.4.1 Definitions
Let I be a convex interval (open, closed, or half-close) of R. A function h(x) : I → R is convex
on I if

h(αx + (1 − α)y) ≤ αh(x) + (1 − α)h(y)

for any x, y ∈ I and α ∈ [0, 1]. In particular, if h(x) is convex, then

h
( x + y

2

)
≤

h(x) + h(y)
2

for any x, y ∈ I. The function h(x) is concave if −h(x) is convex. It is well-known that every
convex function is locally Lipschitz continuous on the interior of its domain. The left and the
right directional derivatives

h′+(x) := lim
t→0+

h(x + t) − h(x)
t

and h′−(x) = lim
t→0+

h(x) − h(x − t)
t

exist (in the extended sense) for every x ∈ I. (If x is a boundary point, chose the directional
derivative that makes sense.) Both h′+(x) and h′−(x) are non-decreasing, finite on the interior of
I and satisfy

h′+(x) ≤ h′−(y) ≤ h′+(y) ≤ h′−(z) (2.37)

for all x < y < z in I, see [62, Theorem 24.1]. The function h′+(x) is right-continuous while
h′−(x) is left continuous. Moreover, for any x, y in the interior of I we have

h(y) − h(x) =

∫
(x,y)

h′+(t) dt =

∫
(x,y)

h′−(t) dt, (2.38)

see [62, Corollary 24.2.1]. Finally, if h(x) ∈ C2, then h is convex on an open interval I if and
only if h′′(x) ≥ 0 for all x in I.

Definition 2.4.1 A function h : (0,∞) → R is called harmonically convex (concave) if the
function h(1/x) is convex (concave) on (0,∞).

Alternatively, we call h(x) : (0,∞)→ R harmonically convex if and only if

h
(

2
1/x + 1/y

)
≤

h(x) + h(y)
2

for every x, y ∈ (0,∞). This terminology comes from the fact that 2/(1/x+1/y) is the harmonic
mean of x and y. And h(x) is harmonically concave if −h(x) is harmonically convex.

If a function h(x) is harmonically convex, then its left and right directional derivatives also
exit. Suppose the left (reps. right) directional derivative of ϕ : (0,∞) → R exists at x. Then,
the right (reps. left) directional derivative of h(x) := ϕ(1/x) exists at 1/x and

h′+(x) = −ϕ′−

(1
x

) 1
x2 , resp. h′−(x) = −ϕ′+

(1
x

) 1
x2 . (2.39)

Refer to A.1.2 for details of verifications.
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Proposition 2.4.1 Formula (2.38) is valid if the function h is harmonically convex on (0,∞).

Proof For any 0 < x < y, since the function h has bounded variation (on intervals away from
0), by Lemma 2.4.1, and Lemma A.2.5 we have

h(y) − h(x) =

∫
(x,y)

dh(t) =

∫
(−1/x,−1/y)

dh(−1/s) =

∫
(−1/x,−1/y)

(
h(−1/s)

)′
−

ds

=

∫
(−1/x,−1/y)

h′+(−1/s)
1
s2 ds =

∫
(x,y)

h′+(t) dt.

Similarly, the equation holds for left derivative h′−(t). �

Harmonically convex (and harmonically concave) functions are not uncommon. Examples
of these functions can be found in [55]. In fact, using the inequality 2/(1/x + 1/y) ≤ (x + y)/2
which is valid for x, y > 0, it is easy to see that

(a) a non-decreasing convex function on (0,∞) is harmonically convex;

(b) a non-increasing concave function on (0,∞) is harmonically concave.

The first item is because

h
(

2
1/x + 1/y

)
≤ h

(
x + y

2

)
≤

h(x) + h(y)
2

.

And the second item follows analogously. However, the converses are not true. Not every
harmonically convex function is convex and increasing, while not every harmonically concave
function is concave and decreasing.

In fact, by looking at (the graph of) a function, it is difficult to tell if it is harmonically
convex (or harmonically concave). For example, log(x) is harmonically convex but not convex.
More examples are listed below and depicted in Figure 2.1.

(a) h(x) =
1
x2 .

(b) h(x) =
(x − 1)2 + 1

x
.

(c) h(x) =


1 − x

x
, 0 < x ≤ 1,

0, 1 < x ≤ 2,
x − 2

x
, x > 2.

(d) h(x) = x1/2.

Each of the four functions listed above is harmonically convex. However, the first two
functions are not increasing, while the last two functions are not convex.

The following simple result (also see [55, Lemma 2.2]), helps to further clarify the relation-
ship between convexity and harmonic convexity, as well as concavity and harmonic concavity.
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Figure 2.1: Examples of harmonically convex functions
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Lemma 2.4.2 A function h : (0,∞) → R is convex (concave), if and only if xh(1/x) is convex
(concave).

For function h : (0,∞) → R, this lemma implies it is harmonically convex if and only if xh(x)
is convex. This equivalence will be very useful in our further development. If h(x) ∈ C2, then
it is harmonically convex if and only if 2h′(x) + xh′′(x) ≥ 0 for all x > 0.

2.4.2 Measures with harmonic convexity properties
Definition 2.4.3 We call

(a) a measure µ convex (concave, or harmonically convex), if the cumulative distribution
function F(x) is convex (concave, or harmonically convex);

(b) a measure ν having convex tail (harmonically convex tail, or harmonically concave tail),
if the tail ν̄(x) = ν(x,∞) is convex (harmonically convex, or harmonically concave).

In our thesis, we apply convexities properties on Bernstein measures and define completely
monotone functions with convex (concave, or harmonically convex) measures. Besides, we
apply convexity of tails on Lévy measures and define Bernstein functions whose Lévy measures
have convex tail (harmonically convex tail, or harmonically concave tail). The reasoning is
straightforward. Bernstein measures have well-defined cumulative distribution functions, while
their tails may not be finite; and Lévy measures have well-defined tails, but they may not have
finite cumulative distribution functions.

It is worth pointing out that a Bernstein measure µ on [0,∞) can not be harmonically
concave unless µ is a point mass measure at zero, that is µ[0,∞) = µ({0}). Besides, a Lévy
measure ν on (0,∞) can not have concave tail unless ν(0,∞) = 0.

Since the function F(x) = µ[0, x] is non-decreasing, if µ is a convex measure, then it is
harmonically convex. By Lemma 2.4.2, a measure µ is harmonically convex if and only if the
function xF(x) is convex.

The following are standard example that we use on multiple occasions. See Lemma 3.2.3,
Lemma 3.3.3 and Lemma 3.4.2, for more examples.

Example 2.4.4 (a) Consider the completely monotone function f (x) = x−α for α > 0.

1. It has harmonically convex measure.

2. If α ≥ 1, then f (x) has convex measure.

3. If α ≤ 1, then f (x) has concave measure.

(b) Consider the Bernstein function g(x) = xα for α ∈ (0, 1). It has Lévy measure with
harmonically concave tail, as well as convex tail.

Proof (a) For f (x) = x−α where α > 0, its integral representation is

x−α =
1

Γ(α)

∫
[0,∞)

e−xttα−1 dt =

∫
[0,∞)

e−xt µ(dt).
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This shows that its Bernstein measure µ is given by µ(dt) = (tα−1/Γ(α)) dt. In particular, it has
with no mass at {0}, and has cumulative distribution function

F(x) = µ[0, x] =
1

Γ(α)

∫
[0,x]

tα−1 dt =
xα

αΓ(α)
.

Since µ[0, 1/x] is in proportion to x−α, which is convex, f (x) has harmonically convex
measure for all α > 0. And it is trivial that if α ≥ 1, then f (x) has convex measure, and if
0 < α ≤ 1, f (x) has concave measure.

(b) For g(x) = xα where 0 < α < 1, its integral representation is

xα =
α

Γ(1 − α)

∫
(0,∞)

(1 − e−xt)t−α−1 dt =

∫
(0,∞)

(1 − e−xt) ν(dt).

This shows that the Lévy measure of g(x) is ν(dt) = (α/Γ(1 − α))t−α−1 dt where the tail of the
measure ν is given by

ν(x,∞) =
α

Γ(1 − α)

∫
(x,∞)

t−α−1 dt =
x−α

Γ(1 − α)
.

It is easy to see that g(x) has convex tail measure for all α ∈ (0, 1). Note that ν̄(x) = ν(1/x,∞)
is in proportion to xα, which is concave, hence g(x) has harmonically concave tail measure as
well for α ∈ (0, 1). �

Example 2.4.5 Function ln(x) − ψ(x) is completely monotone with convex measure having no
mass at zero, where ψ(x) is the digamma function, which is defined as the logarithmic derivative
of the gamma function, that is

ψ(x) =
d
dx

ln Γ(x) =
Γ′(x)
Γ(x)

.

Particularly, we have the following representation.

ln(x) − ψ(x) =

∫
(0,∞)

e−xt
( 1
1 − e−t −

1
t

)
dt.

Proof By the relationship between digamma function ψ(x) and polygamma function ψ′(x),

(ln(x) − ψ(x))′ =
1
x
− ψ′(x) =

∫
(0,∞)

e−xt dt −
∫

(0,∞)
e−xt t

1 − e−t dt =

∫
(0,∞)

e−xt
(
1 −

t
1 − e−t

)
dt.

Notice t ≥ 1 − e−t for all t > 0 by Lemma A.1.4 (a), function −(ln(x) − ψ(x))′ is com-
pletely monotone and ln(x) − ψ(x) is non-increasing. Using harmonic number Hn and Euler-
Mascheroni constant γ, we obtain

lim
x→∞

ln(x) − ψ(x) = lim
n→∞

ln(n) − ψ(n) = lim
n→∞

ln(n) − Hn−1 + γ

= lim
n→∞

ln(n) −
n∑

k=1

1
k

+
1
n

+ γ = lim
n→∞

ln(n) −
n∑

k=1

1
k

+ γ = −γ + γ = 0.
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Therefore, by Fubini’s theorem,

ln(x) − ψ(x) =

∫
(x,∞)
−(ln(s) − ψ(s))′ ds =

∫
(x,∞)

∫
(0,∞)

e−st
( t
1 − e−t − 1

)
dt ds

=

∫
(0,∞)

( t
1 − e−t − 1

) ∫
(x,∞)

e−st ds dt =

∫
(0,∞)

e−xt
( 1
1 − e−t −

1
t

)
dt.

It is trivial that this completely monotone function has measure with no mass at zero. To
show the measure is convex, it suffices to show its density is non-decreasing. Notice the deriva-
tive for its density is ( 1

1 − e−t −
1
t

)′
=
−e−tt2 + e−2t − 2e−t + 1

t2(1 − e−t)2 .

By lemma A.1.4 (c), this function is non-negative for all t > 0, which implies the density is
non-decreasing. We conclude that ln(x) − ψ(x) has convex measure. �

Example 2.4.6 Function fλ(x) := ln(x) − ψ(x + λ + 1) + (λ + 1)/x is completely monotone
function with convex measure having no mass at zero for all λ > 0. Here ψ(x) is the digamma
function. Particularly, it has the following representation.

fλ(x) =

∫
(0,∞)

e−xt
( e−λt

1 − e−t −
1
t

+ 1 + λ − e−λt
)

dt. (2.40)

Proof Using the property of digamma function that ψ(x + 1) = ψ(x) + 1/x, we rewrite

fλ(x) = ln(x) − ψ(x + λ) +
λ + 1

x
−

1
x + λ

.

It is easy to see

λ + 1
x
−

1
x + λ

=

∫
(0,∞)

e−xt(1 + λ − e−λt) dt. (2.41)

On the other hand, notice that

lim
x→∞

ln(x) − ψ(x + λ) = lim
x→∞

ln
( x

x + λ

)
+ ln(x + λ) − ψ(x + λ) = lim

x→∞
ln(x + λ) − ψ(x + λ).

And we know from Example (2.4.5) that limx→∞ ln(x) − ψ(x) = 0. This imply

lim
x→∞

ln(x) − ψ(x + λ) = 0

for any λ > 0. Also notice

(ln(x) − ψ(x + λ))′ =
1
x
− ψ′(x + λ) =

1
x
−

∫
(0,∞)

e−(x+λ)t t
1 − e−t dt =

∫
(0,∞)

e−xt
(
1 −

te−λt

1 − e−t

)
dt.

Therefore, we obtain

ln(x) − ψ(x + λ) = −

∫
(x,∞)

(ln(s) − ψ(s + λ))′ ds =

∫
(x,∞)

∫
(0,∞)

e−st
( te−λt

1 − e−t − 1
)

dt ds.
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The last double integral can interchange by lemma A.2.4. Therefore,

ln(x) − ψ(x + λ) =

∫
(0,∞)

e−xt
( e−λt

1 − e−t −
1
t

)
dt. (2.42)

Equation (2.40) follows from (2.41) and (2.42). To show fλ(x) is completely monotone with
convex measure having no mass at zero, denote

Dλ(t) :=
e−λt

1 − e−t −
1
t

+ 1 + λ − e−λt.

It suffices to show Dλ(t) is non-negative, and non-decreasing on (0,∞). By L’Hopital rule,

lim
t→0

Dλ(t) = lim
t→0

te−λt − 1 + e−t

t(1 − e−t)
+ λ = lim

t→0

e−λt − tλe−λt − e−t

1 − e−t + te−t + λ

= lim
t→0

−2λe−λt + tλ2e−λt + e−t

2e−t − te−t + λ =
−2λ + 1

2
+ λ =

1
2
> 0,

for all λ > 0. Thus it suffices to show Dλ(t) is non-decreasing. Consider

D′λ(t) =
e−λt−2tt2λ − λe−λt−tt2 − e−λt−tt2 + e−2t − 2e−t + 1

t2(1 − e−t)2 .

To show D′λ(t) ≥ 0, we need to show its numerator

Nλ(t) := e−λt−2tt2λ − λe−λt−tt2 − e−λt−tt2 + e−2t − 2e−t + 1

= −t2e−te−λt(λ(1 − e−t) + 1) + (1 − e−t)2 ≥ 0 (2.43)

on (0,∞) for λ > 0. By Lemma A.1.5, we know e−λt(λ(1 − e−t) + 1) is decreasing in terms of λ
for all t > 0. So Nλ(t) is increasing with respect to λ for all t > 0. Its limit is

lim
λ→0

Nλ(t) = −t2e−t + (1 − e−t)2 = −t2e−t + 1 − 2e−t + e−2t > 0.

By Lemma A.1.4 (c). So we can conclude (2.43) holds and close the proof. �

The next lemma from [71, Corollary 4.2 (b)], plays important role in our development. We
include the proof not only for completeness, but also for our different context.

Lemma 2.4.7 Let f1(x) and f2(x) be completely monotone functions. If one of them has a
convex measure with no mass at {0}, then their completely monotone product f1(x) f2(x) has
convex measure.

Proof Let µ1 and µ2 be the measures corresponding to f1(x) and f2(x) respectively. Without
loss of generality, suppose µ1 is convex with no mass at {0}. Using equation (2.10), in order to
show that the function x 7→ (µ1 ∗ µ2)[0, x] is convex, we calculate

(µ1 ∗ µ2)[0, x] =

∫
R2

+

1[0,x](s + t) µ1(ds) µ2(dt) =

∫
R2

+

1[0,x−t](s)1[0,x](t) µ1(ds) µ2(dt)
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=

∫
[0,∞)

µ1[0, x − t]1[0,x](t) µ2(dt) =

∫
[0,∞)

µ1[0, φt(x)] µ2(dt), (2.44)

where φt(x) = max{x − t, 0}. The fact that µ1 has no mass at {0} is used to produce equality
(2.44). The functions φt and x 7→ µ1[0, x] are convex and non-decreasing, and so is their
composition x 7→ µ1[0, φt(x)] for every fixed t ≥ 0. Hence, the integral in (2.44) is a convex
function of x. �

Since every convex measure on [0,∞) is harmonically convex, under the conditions of
Lemma 2.4.7, the product f1(x) f2(x) has harmonically convex measure. Lemma 2.4.7 fails if
the convex measure has mass at {0}, as the following example shows.

Example 2.4.8 Let f1(x) = e−x and f2(x) = 1. It can be shown that f1 and f2 are completely
monotone functions with Bernstein representations:

f1(x) =

∫
[0,∞)

e−tx δ1(dt), and f2(x) =

∫
[0,∞)

e−tx δ0(dt),

where δ0 and δ1 are the Dirac delta function. Note that measure δ0 is convex on [0,∞) and has
mass at {0}. Their product is f1(x) and it has measure δ1, which is not convex on [0,∞).

Next two propositions are some known connections between completely monotone (Bern-
stein) function and its derivatives, regarding the convexity properties on their measures. One
can find their proofs in [71].

Proposition 2.4.2 (Theorem 3.1 in [71]) Let f (x) be a completely monotone function with
measure µ. If µ is (harmonically) convex, then for all integers n ≥ 1, the measure corre-
sponding to the function (−1)n f (n)(x) is also (harmonically) convex.

Proposition 2.4.3 (Lemma 4.1 in [71]) If the measure ν on (0,∞) has a harmonically con-
cave tail, then the measure µ defined by the equation µ(dt) = tν(dt) is harmonically convex on
(0,∞).

2.5 β-convexity and β-concavity
In this section, we introduce β-convexity. This convexity is a generalization for convexity and
harmonic convexity. We also include some basic discussions on measures with β-convexities,
as well as related completely monotone and Bernstein functions. We consider β ∈ [0, 1] in the
following content without further notice.

2.5.1 Definitions and basic properties

Definition 2.5.1 Let β ∈ [0, 1]. A function h : (0,∞) → R is called β-convex (β-concave) if
xβh(x) is convex (concave) on (0,∞).
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It is clear that function h(x) on (0,∞) is 0-convex if it is convex; and h(x) is 1-convex if it is
harmonically convex by Lemma 2.4.2. The following equivalence is also an immediate result
from Lemma 2.4.2.

Corollary 2.5.1 A function h(x) is β-convex (β-concave), if and only if h(1/x) is (1−β)-convex
((1 − β)-concave, respectively).

If h : (0,∞) → R is convex (concave), then the directional derivatives of xph(x) exist for
all p ∈ R. More precisely, it can be shown that

(xph(x))′+ = pxp−1h(x) + xph′+(x) and (xph(x))′− = pxp−1h(x) + xph′−(x). (2.45)

See A.1.3 for verifications. Next lemma helps to understand β-convexity when β changes.

Lemma 2.5.2 Suppose f : (0,∞) → (0,∞) is non-decreasing and f (0+) = 0. If f (x) is
convex, then it is β-convex for any β ∈ [0, 1].

Proof To show xβ f (x) is convex, it suffices to show its right derivative is non-decreasing. By
(2.45), we have

(xβ f (x))′+ = βxβ−1 f (x) + xβ f ′+(x) = βxβ
f (x)

x
+ xβ f ′+(x).

The second term xβ f ′(x) is non-decreasing because both f ′+(x) and xβ are non-negative
and non-decreasing for β > 0. It suffices to show f (x)/x is non-decreasing. Indeed, for any
x1 > x2 > 0, as f (x) is convex, increasing and f (0+) = 0, so

f (x1) − f (x2)
x1 − x2

≥
f (x2) − 0

x2 − 0
.

It implies f (x1)/x1 ≥ f (x2)/x2. So f (x)/x is non-decreasing and proof is complete. �

This lemma fails if we remove the condition non-decreasing or f (0+) = 0. Consider

f1(x) = (x − 1)2 − 1,

which is convex on (0,∞) and f1(0+) = 0. However, it is not 1/2-convex. See Figure 2.2 for
the plot of x1/2 f1(x). On the other hand, consider

f2(x) = 1{x<1} + ((x − 1)2 + 1)1{x≥1},

which is non-decreasing and convex on (0,∞). However, it is not 1/2-convex. also see Fig-
ure 2.2 for the plot of x1/2 f2(x).

Analogous to Definition 2.4.3, we could introduce β-convexity onto measures.

Definition 2.5.3 We call

(a) a measure µ to be β-convex (β-concave), if its cumulative distribution function F(x) is
β-convex (β-concave);

(b) a measure ν to have β-convex (β-concave) tail, if its tail ν̄(x) is β-convex (β-concave).
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Figure 2.2: Plot of x1/2 f1(x) and x1/2 f2(x)

Similarly, we mainly consider completely monotone functions with β-convex (β-concave)
measures, and Bernstein functions whose Lévy measures have β-convex tail (β-concave tail)
because they are well-defined.

The following are some standard examples of completely monotone and Bernstein func-
tions with β-convexity properties on their measures.

Example 2.5.4 (a) Consider completely monotone function f (x) = x−α for α > 0.

1. If α ≥ 1, then f (x) has β-convex measure for any 0 ≤ β ≤ 1.

2. If α ≤ 1, then f (x) has β-convex measure for β ≥ 1 − α, and it has β-concave measure
for β ≤ 1 − α.

(b) Consider the Bernstein function g(x) = xα for 0 < α < 1.

1. It has Lévy measure with β-convex tail if β ≤ α.

2. It has Lévy measure with β-concave tail if α ≤ β.

By the proof of Example 2.4.4, we can see that the cumulative distribution function of the
measure for f (x) = x−α is F(x) = xα/(αΓ(α)), and the tail of the Lévy measure ν for g(x) = xα

is given by ν̄(x) = x−α/Γ(1 − α). Their β-convexity properties follow immediately.
From Lemma 2.5.2, if completely monotone function f (x) has β1-convex measure for some

β1 > 0, then it is β2-convex for any 1 ≥ β2 > β1. In addition, suppose f (x) has measure with
no mass at {0}, if f (x) has convex measure, then it has β-convex measure for all 1 ≥ β ≥ 0.
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2.5.2 Limiting properties for measures with β-convexity or β-concavity
In this section, we study some limiting properties of measures associated with completely
monotone and Bernstein functions. These measures are assumed to have β-convexity type
properties.

Lemma 2.5.5 Suppose f (x) is completely monotone with measure µ. If measure µ is β-convex
(or β-concave), then the cumulative distribution function F(t) of µ satisfies

lim
t→0

e−xtt2−βr(t) = 0 and lim
t→∞

e−xtt2−βr(t) = 0, (2.46)

for any x > 0, where r(t) = (tβF(t))′ is the right derivative.

Proof Since µ is β-convex (or β-concave), tβF(t) is convex (or concave). Also note it is non-
negative and non-decreasing. Thus r(x) is non-negative and non-decreasing (or non-increasing,
respectively). By Lemma A.2.9 and Remark A.2.8,∫

(0,∞)
e−xtt1−βr(t) dt =

∫
(0,∞)

e−xtt1−β d(tβF(t)) =

∫
(0,∞)

e−xtt dF(t) + β

∫
(0,∞)

e−xtF(t) dt.

Observing (2.6) and (2.2), we obtain∫
(0,∞)

e−xtt1−βr(t) dt = β
f (x)

x
− f ′(x) < ∞. (2.47)

This verifies the integrability of the integral above, which implies limt→∞ e−xtt1−βr(t) = 0 for
all x > 0. It further implies the second limit in (2.46) as following,

lim
t→∞

e−xtt2−βr(t) = lim
t→∞

(e−xt/2t)(e−xt/2t1−βr(t)) = 0.

The first limit requires more insights. Note that (2.47) also indicates

1
2 − β

∫
(0,1)

r(t) d(t2−β) =

∫
(0,1)

t1−βr(t) dt < ∞. (2.48)

If µ is β-convex, then tβF(t) is convex and non-decreasing. Thus, r(t) is non-negative and
non-decreasing, so is t2−βr(t). The limit exists as t approaches 0. Suppose

lim
t→0

t2−βr(t) = c ≥ 0.

We have ∫
(0,1)

t1−βr(t) dt =

∫
(0,1)

t2−βr(t)
t

dt ≥
∫

(0,1)

c
t

dt.

Integrability (2.48) indicates c = 0 and the first limit in (2.46) follows.
If µ is β-concave, then tβFµ(t) is concave and non-decreasing. Thus, r(t) non-negative and

non-increasing. Applying Lemma A.2.1 on the first integral in (2.48), we conclude r(t) is
o(1/t2−β) as t approaches 0. In other words,

lim
t→0

t2−βr(t) = 0.

Here follows the first limit in (2.46). This closes the proof. �
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Lemma 2.5.6 Suppose g(x) is Bernstein with Lévy triplet (a, b, ν). If measure ν has β-convex
(or β-concave) tail, then the tail of the measure ν satisfies

lim
t→0

e−x/ttβ−1h(t) = 0 and lim
t→∞

e−x/ttβ−1h(t) = 0, (2.49)

for any x > 0, where h(t) = (t1−βν̄(1/t))′ is the right derivative.

Proof Without loss of generality, we can assume a = b = 0. Since ν has β-convex tail (or
β-concave tail), we also know t1−βν̄(1/t) is convex (or concave) by Corollary 2.5.1, which
implies the existence of h(t). Because ν̄(t) is non-increasing, t1−βν̄(1/t) is non-decreasing and
thus h(t) ≥ 0. To show (2.49), it is equivalent to show

lim
t→∞

e−xtt1−βh(1/t) = 0 and lim
t→0

e−xtt1−βh(1/t) = 0. (2.50)

By Lemma A.2.9 and Remark A.2.8,∫
(0,∞)

e−x/ttβ−2h(t) dt =

∫
(0,∞)

e−x/ttβ−2(t1−βν̄(1/t))′ dt =

∫
(0,∞)

e−x/ttβ−2 d(t1−βν̄(1/t))

=

∫
(0,∞)

e−x/tt−1 dν̄(1/t) + (1 − β)
∫

(0,∞)
e−x/tt−2ν̄(1/t) dt

= −

∫
(0,∞)

e−xss dν̄(s) + (1 − β)
∫

(0,∞)
e−xsν̄(s) ds.

Variable is changed by letting s = 1/t in the last equation by Lemma A.2.5. Observing (2.23)
and (2.19), we obtain ∫

(0,∞)
e−x/ttβ−2h(t) dt = g′(x) + (1 − β)

g(x)
x
.

This verifies the integrability of the integral above. Change variable again, we have∫
(0,∞)

e−xtt−βh(1/t) dt < ∞, (2.51)

for all x > 0. From the integrability follows that limt→∞ e−xtt−βh(1/t) = 0, which implies

lim
t→∞

e−xtt1−βh(1/t) = lim
t→∞

(e−xt/2t)(e−xt/2t−βh(1/t)) = 0.

Thus the first limit in (2.50) holds . The second limit needs more detailed discussion. Note that
integrability (2.51) also indicates ∫

(0,1)
t−βh(1/t) dt < ∞. (2.52)

If ν has β-convex tail, it is shown that t1−βν̄(1/t) is also convex and non-decreasing. So h(t)
is non-negative and non-decreasing. And h(1/t) is non-increasing, so is t−βh(1/t). Observing its
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integrability at zero, we conclude that t−βh(1/t) is o(1/t) as t approaches zero by Lemma A.2.1.
Therefore,

lim
t→0

t1−βh(1/t) = 0,

and the second limit holds in (2.50).
If ν has β-concave tail, t1−βν̄(1/t) is concave and non-decreasing. Thus h(t) is non-negative

and non-increasing, implying h(1/t) is non-decreasing and so is t1−βh(1/t). The limit exists
when t approaches 0. Suppose

lim
t→0

t1−βh(1/t) = c ≥ 0.

We have ∫
(0,1)

t−βh(1/t) dt =

∫
(0,1)

t1−βh(1/t)
t

dt ≥
∫

(0,1)

c
t

dt.

Integrability (2.52) indicates c = 0. Here follows the second limit in (2.50). �



Chapter 3

Measures and Convexity

In this Chapter, we characterize measure with various convexity properties introduced in Sec-
tion 2.4. We also apply these characterizations on completely monotone and Bernstein func-
tions whose measures have related convexity properties. The measures are all Radon measures
if without further specification. In particular, they are σ-finite, and finite on compact sets, see
[82, Definition 19.15]

3.1 Pólya’s criterion
Theorem 3.1.1 (Polya’s criterion) Suppose a function ϕ : [0,∞) 7→ [0,∞) is non-increasing,
ϕ(0) = 1, convex on (0,∞), with

lim
x→0+

ϕ(x) = 1, and lim
x→∞

ϕ(x) = 0.

Then, it admits the representation

ϕ(x) =

∫
(0,∞)

(
1 −

x
s

)+

τ(ds), (3.1)

for some probability measure τ on (0,∞). Here x+ := max{x, 0}. Furthermore, ϕ(|x|) is the
characteristic function of a symmetric distribution.

In fact, this criterion can be extended on f : R → [0,∞) if it is even, continuous, convex
on (0,∞), with f (0) = 1 and limx→∞ f (x) = 0. See [52, Theorem 4.3.1] for details.

The theorem fails without the assumption limx→0+ ϕ(x) = 1. For example, the indicator
function x 7→ 1{0}(x) satisfies all other conditions in the theorem, but does not admit such
integral representation.

Notice that the cumulative distribution function of a probability measure is non-decreasing
and bounded from above. It can not be convex unless µ({0}) = 1 and µ(0,∞) = 0. Pólya’s
criterion is not applicable in this scenario. However, it can be used to characterize harmonically
convex measures. Applying Theorem 3.1.1, we could have

31
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Corollary 3.1.1 A probability measure µ on (0,∞) is harmonically convex, if and only if there
is a probability measure τ on (0,∞) such that

µ(0, x] =

∫
(0,∞)

(
1 −

1
xs

)+

τ(ds).

Proof Define function ϕ(x) on [0,∞) by

ϕ(x) :=
{
µ(0, 1/x], if x > 0,
1, if x = 0.

Apply Theorem 3.1.1 and the proof is completed after replacing x by 1/x in (3.1). �

More generally, not only probability measures, but general Radon measures with various
convexity properties could be characterized by the same techniques as well. We will elaborate
the identifications in detail in the following sections, and will apply the characterizations to
completely monotone and Bernstein functions with convexity properties on their measures to
construct representations. Our main results are summarized in Table 3.1, 3.2, 3.3, and 3.4.

Table 3.1: Characterization of measure µ on [0,∞) with convexity properties

Property on µ Characterization Reference

harmonically convex µ[0, x] = a +

∫
(0,∞)

(
1 −

1
xs

)+

τ(ds) Thm 3.2.1

concave µ[0, x] = a + bx +

∫
(0,∞)

(
1 ∧

x
s

)
τ(ds) Thm 3.3.1

convex µ[0, x] = a + bx +

∫
(0,∞)

( x
s
− 1

)+

τ(ds) Thm 3.4.1

harmonically concave µ[0, x] = a N/A

3.2 Harmonically convex measures and harmonically con-
cave tail measures

Following the techniques used in the proof of Polya’s criterion, we characterize harmoni-
cally convex measures and harmonically concave tail measures in Theorem 3.2.1 and Theorem
3.2.2.
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Table 3.2: Characterization of measure ν on (0,∞) with convexity properties on its tail

Property on ν Characterization Reference

harmonically concave tail ν(x,∞) =
b
x

+

∫
(0,∞)

(
1 ∧

1
xs

)
τ(ds) Thm 3.2.2

convex tail ν(x,∞) =

∫
(0,∞)

(
1 −

x
s

)+

τ(ds) Thm 3.3.2

concave tail ν(x,∞) = 0 N/A

harmonically convex tail ν(x,∞) =
b
x

+

∫
(0,∞)

( 1
xs
− 1

)+

τ(ds) Thm 3.5.1

Table 3.3: Representation for f (x) ∈ CM with convexity properties on its measure µ

Property on µ Representation Reference

harmonically convex f (x) = a +

∫
(0,∞)

x
s

k
( x

s

)
τ(ds) Prop 3.2.1

concave f (x) = a +
b
x

+

∫
(0,∞)

r(xs) τ(ds) Prop 3.3.1

convex f (x) = a +
b
x

+

∫
(0,∞)

l(xs) τ(ds) Prop 3.4.1

harmonically concave f (x) = a N/A

3.2.1 Characterizations
Theorem 3.2.1 A measure µ on [0,∞) is harmonically convex, if and only if there is a measure
τ on (0,∞) such that

µ[0, x] = a +

∫
(0,∞)

(
1 −

1
xs

)+

τ(ds), (3.2)

where a ≥ 0 and τ satisfies τ(1,∞) < ∞.

Proof First, we show the sufficiency. If (3.2) holds for any x > 0, then

µ[0, 1/x] = a +

∫
(0,∞)

(
1 −

x
s

)+

τ(ds).

The integral is well-defined because µ[0, 1/x] ≤ a+τ(x,∞) < ∞, for any x > 0. As the function
x 7→ (1 − x/s)+ is convex for any s > 0, the integral is also convex. Hence, µ is harmonically
convex.
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Table 3.4: Representation for g(x) ∈ BF with convexity properties on its Lévy measure ν

Property on ν Representation Reference

harmonically concave tail g(x) = a + bx +

∫
(0,∞)

(
1 −

x
s

k
( x

s

))
τ(ds) Prop 3.2.2

convex tail g(x) = a + bx +

∫
(0,∞)

(1 − r(xs)) τ(ds) Prop 3.3.2

concave tail g(x) = a + bx N/A

harmonically convex tail g(x) = a + bx Cor 3.5.1 b)

Now, we show the necessity. If µ is harmonically convex, then ϕ(x) := µ[0, 1/x] is convex,
non-increasing and non-negative on (0,∞). The following limits exist

a := lim
x→∞

ϕ(x) = µ({0}) ≥ 0, lim
x→∞

ϕ′+(x) = 0, lim
x→0+

ϕ′+(x) ≥ −∞.

Define a Radon measure on (0,∞) by

µ∗(p, q] =

 ϕ′+(q) − ϕ′+(p), if 0 < p < q < ∞,

ϕ′+(q) − lim
x→0+

ϕ′+(x), if 0 = p < q < ∞.

For all t > 0, we have
µ∗(t,∞) = 0 − ϕ′+(t) = −ϕ′+(t).

Consider the measure τ defined on (0,∞) by τ(dt) = tµ∗(dt). By (2.38), for M > 0,

ϕ(x) = ϕ(x) − ϕ(M) + ϕ(M) = −

∫
(x,M)

ϕ′+(t) dt + ϕ(M).

Letting M approach infinity, and using Fubini’s theorem, we obtain

ϕ(x) = a −
∫

(x,∞)
ϕ′+(t) dt = a +

∫
(x,∞)

∫
(t,∞)

µ∗(ds) dt = a +

∫
(x,∞)

∫
(t,∞)

1
s
τ(ds) dt

= a +

∫
(x,∞)

1
s

∫
(x,s)

dt τ(ds) = a +

∫
(0,∞)

(
1 −

x
s

)+

τ(ds).

A change of variable leads to (3.2). The integrability condition on τ follows from

τ(1,∞) =

∫
(1,∞)

τ(ds) ≤
∫

(1,∞)

(
2 −

1
s

)
τ(ds) ≤ 2ϕ(1/2) < ∞.

The proof is complete. �
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Theorem 3.2.2 A measure ν on (0,∞) has harmonically concave tail, if and only if there is a
measure τ on (0,∞) such that

ν(x,∞) =
b
x

+

∫
(0,∞)

(
1 ∧

1
xs

)
τ(ds), (3.3)

where b ≥ 0 and τ satisfies ∫
(0,∞)

(
1 ∧

1
s

)
τ(ds) < ∞. (3.4)

Proof First, we show the sufficiency. If (3.3) holds for any x > 0, then

ν(1/x,∞) = bx +

∫
(0,∞)

(
1 ∧

x
s

)
τ(ds).

The integral is well-defined for any x > 0, since τ satisfies condition (3.4). As the function
x 7→ min(1, x/s) is concave, the integral is concave, which implies measure ν has harmonically
concave tail.

Now, we show the necessity. If measure ν has harmonically concave tail, then function
ϕ(x) := ν(1/x,∞) is non-negative, non-decreasing and concave on (0,∞). The following limits
exist.

lim
x→0+

ϕ(x) = 0, lim
x→0+

ϕ′+(x) ≤ ∞, b := lim
x→∞

ϕ′+(x) < ∞.

The first limit follows from Lemma A.1.10. Define a Radon measure µ∗ on (0,∞) by

µ∗(p, q] =

 ϕ′+(p) − ϕ′+(q), if 0 < p < q < ∞,

lim
x→0+

ϕ′+(x) − ϕ′+(q), if 0 = p < q < ∞.

For all t > 0, we have
µ∗(t,∞) = ϕ′+(t) − b.

Consider the measure τ on (0,∞) defined by τ(dt) = tµ∗(dt). By (2.38), for ε > 0,

ϕ(x) = ϕ(x) − ϕ(ε) + ϕ(ε) =

∫
(ε,x)

ϕ′+(t) dt + ϕ(ε).

Letting ε approach 0, and using Fubini’s Theorem, we obtain

ϕ(x) =

∫
(0,x)

ϕ′+(t) dt = bx +

∫
(0,x)

(ϕ′+(t) − b) dt

= bx +

∫
(0,x)

∫
(t,∞)

µ∗(ds) dt = bx +

∫
(0,x)

∫
(t,∞)

1
s
τ(ds) dt

= bx +

∫
(0,x]

∫
(0,s)

1
s

dt τ(ds) +

∫
(x,∞)

∫
(0,x)

1
s

dt τ(ds) = bx +

∫
(0,∞)

(
1 ∧

x
s

)
τ(ds).

Representation (3.3) follows, while the integrability condition (3.4) follows the fact that ϕ(1) =

ν(1,∞) < ∞. This concludes the proof. �



36 Chapter 3. Measures and Convexity

Denote Dirac delta measure on [0,∞) by δ0(dx), which has mass 1 at {0} and mass 0 ev-
erywhere else. Next lemma extends to completely monotone and Bernstein functions. Recall
that the completely monotone functions are associated with Bernstein measures, and Bernstein
functions are associated with Lévy measures.

Corollary 3.2.1 (a) A measure µ is harmonically convex on [0,∞), if and only if

µ(dx) = aδ0(dx) +
1
x2

( ∫
(1/x,∞)

1
s
τ(ds)

)
dx, (3.5)

for some constant a ≥ 0 and measure τ on (0,∞) satisfying τ(1,∞) < ∞.

(b) A Bernstein measure µ is harmonically convex, if and only if (3.5) holds and the measure
τ on (0,∞) satisfies

τ(1,∞) < ∞, and
∫

(0,1]

∫
(0,1)

e−x/ts dt τ(ds) < ∞ for all x > 0. (3.6)

(c) A measure ν has harmonically concave tail on (0,∞), if and only if

ν(dx) =
1
x2

(
b +

∫
(1/x,∞)

1
s
τ(ds)

)
dx, (3.7)

for some constant b ≥ 0 and measure τ on (0,∞) satisfying (3.4).

(d) A Lévy measure ν has harmonically concave tail, if and only if (3.7) holds with b = 0
and the measure τ on (0,∞) satisfies

τ(0, 1] < ∞ and
∫

(1,∞)

ln(s)
s

τ(ds) < ∞. (3.8)

Proof (a) Formula (3.5) follows from the representation

µ[0, x] = a +

∫
(1/x,∞)

∫
(t,∞)

1
s
τ(ds) dt,

which is inferred from the proof of Theorem 3.2.1. Here, measure τ satisfies the integrability
condition τ(1,∞) < ∞.

(b) Suppose now µ is a Bernstein measure and it is harmonically convex. By part (a), it
suffices to verify the second integrability conditions in (3.6). By (3.5) and Fubini’s theorem,
we have∫

[0,∞)
e−xu µ(du) = a +

∫
(0,∞)

e−xu µ(du) = a +

∫
(0,∞)

e−xu 1
u2

∫
(1/u,∞)

1
s
τ(ds) du

= a +

∫
(0,∞)

1
s

∫
(1/s,∞)

e−xu 1
u2 du τ(ds) = a +

∫
(0,∞)

∫
(0,1)

e−x/ts dt τ(ds),

where in the last equality, we changed the variable u = 1/ts. Since this Laplace transform is
well-defined for all x > 0, the second integrability condition in (3.6) follows.
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Conversely, suppose a measure µ on [0,∞) have the representation (3.5) with condition
(3.6). By part a), measure µ is harmonically convex. Reversing the steps above and noticing∫

(1,∞)

∫
(0,1)

e−x/ts dt τ(ds) ≤ τ(1,∞) < ∞,

we can see that the Laplace transform is well-defined for all x > 0. Therefore, µ is a Bernstein
measure.

(c) Formula (3.7) follows immediately from the following representation

ν(x,∞) =
b
x

+

∫
(0,1/x)

∫
(t,∞)

1
s
τ(ds) dt,

inferred from the proof of Theorem 3.2.2. Here, measure τ satisfies the integrability condition
(3.4).

(d) Suppose now ν is a Lévy measure with harmonically concave tail. Then, from (3.7) and
Fubini’s Theorem, we obtain∫

(0,1]
t ν(dt) =

∫
(0,1]

b
t

dt +

∫
(0,1]

∫
(1/t,∞)

1
ts
τ(ds) dt =

∫
(0,1]

b
t

dt +

∫
(1,∞)

∫
(1/s,1]

1
ts

dt τ(ds)

=

∫
(0,1]

b
t

dt +

∫
(1,∞)

ln(s)
s

τ(ds).

By (2.17), we can see b = 0 and ∫
(1,∞)

ln(s)
s

τ(ds) < ∞.

On the other hand,∫
(1,∞)

ν(dt) =

∫
(1,∞)

∫
(1/t,∞)

1
t2s

τ(ds) dt =

∫
(0,1)

∫
(1/s,∞)

1
t2s

dt τ(ds) +

∫
[1,∞)

∫
(1,∞)

1
t2s

dt τ(ds)

=

∫
(0,∞)

(
1 ∧

1
s

)
τ(ds) ≥ τ(0, 1].

By (2.17) again, we conclude τ(0, 1] < ∞.
Conversely, suppose a measure ν on (0,∞) have the representation (3.7) with b = 0 and

condition (3.8). By part c), measure ν has harmonically concave tail. We also have∫
(0,1]

t ν(dt) =

∫
(1,∞)

ln(s)
s

τ(ds) and
∫

(1,∞)
ν(dt) =

∫
(0,∞)

(
1 ∧

1
s

)
τ(ds).

They are integrable by (3.8). Hence ν is a Lévy measure and the proof is complete. �

As an application of the above representations, we characterize completely monotone func-
tions with harmonically convex measure and Bernstein functions having Lévy measure with
harmonically concave tail. We need the well-known exponential integral function on (0,∞),
given by

E1(x) :=
∫

(x,∞)

e−t

t
dt,
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and use it to define the kernel

k(x) := −E′1(x) − E1(x) =
e−x

x
−

∫
(x,∞)

e−t

t
dt. (3.9)

Function k(x) plays a role in the next developments, hence we briefly summarize its properties.

Lemma 3.2.3 Function k(x) defined by (3.9) has the following properties.

(a) It satisfies the inequality 0 ≤ k(x) ≤ e−x/x.

(b) It is completely monotone with convex measure. More precisely,

k(x) =

∫
(0,∞)

e−xt (t − 1)+

t
dt. (3.10)

(c) The product xk(x) is completely monotone with harmonically convex measure. Moreover,
xk(x) is the derivative of a Bernstein function. Explicitly,

xk(x) =

∫
(1,∞)

e−xt 1
t2 dt =

( ∫
(1,∞)

(1 − e−xt)
1
t3 dt

)′
. (3.11)

(d) The function 1 − xk(x) is Bernstein, whose Lévy measure has harmonically concave tail.
More precisely

1 − xk(x) =

∫
(1,∞)

(1 − e−xt)
1
t2 dt. (3.12)

Proof (a) The first inequality follows from

E1(x) =

∫
(x,∞)

e−t

t
dt ≤

1
x

∫
(x,∞)

e−t dt =
e−x

x
= −E′1(x),

while the second inequality is straightforward.
(b) Representation (3.10) is readily verified. The Bernstein measure for k(x) is convex, as

its cumulative distribution function is (x − ln(x) − 1) · 1(x>1) for x ∈ [0,∞), which is convex , as
its derivative is non-decreasing.

(c) The Bernstein measure µ of xk(x) is harmonically convex, since xµ[0, x] = (x−1)·1(x>1).
It is convex on (0,∞). One can readily verify (3.11) and see that xk(x) is the derivative of a
Bernstein function.

(d) The Lévy measure ν of 1 − xk(x) has harmonically concave tail, since xν(x,∞) =

x · 1(x≤1) + 1(x>1), and it is concave. �

Note that, in general, part c) of Lemma 3.2.3 implies part b). Since k(x) ∈ CM with
limx→∞ k(x) = 0 and xk(x) ∈ CM, we conclude k(x) has convex measure by Theorem 4.1.5.
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3.2.2 Applications on completely monotone and Bernstein functions
Proposition 3.2.1 Suppose f (x) is completely monotone with measure µ. Then, measure µ is
harmonically convex, if and only if there exists a unique measure τ on (0,∞) such that

f (x) = a +

∫
(0,∞)

x
s

k
( x

s

)
τ(ds), (3.13)

where k(x) is defined in (3.9), a = µ({0}) ≥ 0 is constant, and τ satisfies (3.6).

Proof For the necessity, let a := µ({0}) ≥ 0. By Corollary 3.2.1 part b), for all x > 0, we have

f (x) =

∫
[0,∞)

e−xu µ(du) = a +

∫
(0,∞)

e−xu µ(du)

= a +

∫
(0,∞)

e−xu 1
u2

∫
(1/u,∞)

1
s
τ(ds) du = a +

∫
(0,∞)

1
s

∫
(1/s,∞)

e−xu 1
u2 du τ(ds),

where τ satisfies conditions (3.6). The change of variable u = t/s gives

f (x) = a +

∫
(0,∞)

∫
(1,∞)

e−xt/s 1
t2 dt τ(ds).

Finally, by (3.11), we obtain representation (3.13). The uniqueness of measure τ follows from
the uniquness of µ.

For the sufficiency, suppose (3.13) holds. By Lemma 3.2.3 part c), we know xk(x) is com-
pletely monotone with harmonically convex measure. So is (x/s)k(x/s) for all s > 0. Indeed, if
f (x) is completely monotone function with harmonically convex measure µ, then so is the mea-
sure of the completely monotone f (xs) for any s > 0, as its cumulative distribution function is
Fµ(x/s). The proof is complete. �

We point out that the measures µ and τ in Proposition 3.2.1 are related through Equa-
tion (3.5).

Combining Corollary 3.2.1 part b), Proposition 3.2.1, and Proposition 2.2.1, we arrive at
the following corollary.

Corollary 3.2.2 Suppose f (x) is completely monotone with harmonically convex measure µ.
It has a Bernstein primitive, if and only if the measure τ in (3.13) satisfies∫

(0,∞)

(
1 −

ln(s + 1)
s

)
τ(ds) < ∞. (3.14)

Proof We only have to verify the integrability condition (3.14) on τ is equivalent to (2.21) on
µ. Using (3.5), we can observe∫

(0,∞)

1
1 + t

µ(dt) =

∫
(0,∞)

1
(1 + t)t2

( ∫
(1/t,∞)

1
s
τ(ds)

)
dt

=

∫
(0,∞)

( ∫
(1/s,∞)

1
t2(1 + t)

dt
)1

s
τ(ds) =

∫
(0,∞)

(
1 −

ln(s + 1)
s

)
τ(ds),

where in the second equality, we changed the order of integration using Fubini’s theorem. The
equivalence follows. �
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The next proposition characterizes Bernstein functions, whose Lévy measure has harmon-
ically concave tail.

Proposition 3.2.2 Suppose g(x) is Bernstein with Lévy measure ν. Then, measure ν has har-
monically concave tail, if and only if there exists a unique triplet (a, b, τ) such that

g(x) = a + bx +

∫
(0,∞)

(
1 −

x
s

k
( x

s

))
τ(ds), (3.15)

where k(x) is defined in (3.9), a, b ≥ 0 are constants, and τ is a measure on (0,∞), satisfying
(3.8).

Proof We show necessity first. If ν has harmonically concave tail, by Corollary 3.2.1 part d),
for all x > 0, we have

g(x) = a + bx +

∫
(0,∞)

(1 − e−xu) ν(du) = a + bx +

∫
(0,∞)

(1 − e−xu)
1
u2

∫
(1/u,∞)

1
s
τ(ds) du

= a + bx +

∫
(0,∞)

1
s

∫
(1/s,∞)

(1 − e−xu)
1
u2 du τ(ds),

where τ satisfies (3.8). The change of variable u = t/s gives

g(x) = a + bx +

∫
(0,∞)

∫
(1,∞)

(1 − e−xt/s)
1
t2 dt τ(ds).

Apply now (3.12) to get representation (3.15). The uniqueness of the triplet (a, b, τ) follows
from the uniqueness of the Lévy triplet (a, b, ν).

For the sufficiency, suppose (3.15) holds. By part d) of Lemma 3.2.3 we know 1− xk(x) is a
Bernstein function with Lévy measure having harmonically concave tail. So is 1 − (x/s)k(x/s)
for all s > 0. The proof follows from here. �

3.3 Concave measures and convex tail measures
In this section we characterize concave measures and measures with convex tail. They are
accomplished in Theorems 3.3.1 and 3.3.2. The development parallels that of Section 3.2.

3.3.1 Characterizations
Theorem 3.3.1 A measure µ on [0,∞) is concave, if and only if there is a measure τ on (0,∞)
such that

µ[0, x] = a + bx +

∫
(0,∞)

(
1 ∧

x
s

)
τ(ds), (3.16)

where a, b ≥ 0 and τ satisfies ∫
(0,∞)

(
1 ∧

1
s

)
τ(ds) < ∞. (3.17)



3.3. Concave measures and convex tail measures 41

Proof First, we show the sufficiency. If (3.16) and (3.17) hold, then the integral in (3.16) is
convergent for all x > 0. Since the function x 7→ min(1, x/s) is concave for all s > 0, the
integral is concave, which implies that µ is concave measure.

Now, we show necessity. Since F(x) := µ[0, x] is non-decreasing and concave, the follow-
ing limits of right derivatives exist:

b := lim
x→∞

F′+(x) < ∞, lim
x→0+

F′+(x) ≤ ∞.

Denote a := F(0) = µ({0}) ≥ 0 and define the Radon measure µ∗ on (0,∞) by

µ∗(p, q] =

 F′+(p) − F′+(q), if 0 < p < q < ∞,

lim
x→0+

F′+(x) − F′+(q), if 0 = p < q < ∞.

Note that for all t > 0, we have

µ∗(t,∞) = F′+(t) − lim
x→∞

F′+(x) = F′+(t) − b.

Consider the measure τ defined by τ(dt) = tµ∗(dt) on (0,∞). By (2.38), for ε > 0,

F(x) = F(x) − F(ε) + F(ε) =

∫
(ε,x)

F′+(t) dt + F(ε).

Letting ε approaching 0, and using Fubini’s theorem, we obtain

F(x) =

∫
(0,x)

F′+(t) dt + F(0) = a + bx +

∫
(0,x)

(F′+(t) − b) dt

= a + bx +

∫
(0,x)

∫
(t,∞)

µ∗(ds) dt = a + bx +

∫
(0,x]

∫
(0,s)

1
s

dt τ(ds) +

∫
(x,∞)

∫
(0,x)

1
s

dt τ(ds)

= a + bx +

∫
(0,∞)

(
1 ∧

x
s

)
τ(ds).

Representation (3.16) follows, while F(1) < ∞ implies the integrability condition (3.17). This
completes the proof. �

Theorem 3.3.2 A measure ν on (0,∞) has convex tail, if and only if there is a measure τ on
(0,∞) such that

ν(x,∞) =

∫
(0,∞)

(
1 −

x
s

)+

τ(ds), (3.18)

where τ satisfies τ(1,∞) < ∞.

Proof We show sufficiency first. If (3.18) holds for measure ν with τ(1,∞) < ∞, then ν(x,∞)
is well-defined and since the function x 7→ (1 − x/s)+ is convex for all s > 0, the integral is
convex, implying that ν has convex tail.
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Now, we show the necessity. If measure ν has convex tail, then ν̄(x) = ν(x,∞) is non-
increasing, convex, and non-negative. The following limits exist:

lim
x→∞

ν̄(x) = 0, lim
x→∞

ν̄′+(x) = 0, lim
x→0+

ν̄′+(x) ≥ −∞.

The first limit follows from Lemma A.1.10. Define the Radon measure µ∗ on (0,∞)

µ∗(p, q] =

 ν̄′+(q) − ν̄′+(p), if 0 < p < q < ∞,

ν̄′+(q) − lim
x→0+

ν̄′+(x), if 0 = p < q < ∞.

Note that for all t > 0, we have

µ∗(t,∞) = lim
x→∞

ν̄′+(x) − ν̄′+(t) = −ν̄′+(t).

Consider the measure τ defined by τ(dt) = tµ∗(dt) on (0,∞). By (2.38), for M > 0,

ν(x,∞) = ν̄(x) − ν̄(M) + ν̄(M) = −

∫
(x,M)

ν̄′+(t) dt + ν̄(M).

Letting M approaching infinity, and using Fubini’s theorem, we obtain

ν(x,∞) = −

∫
(x,∞)

ν̄′+(t) dt =

∫
(x,∞)

∫
(t,∞)

µ∗(ds) dt =

∫
(x,∞)

∫
(x,s)

dt µ∗(ds)

=

∫
(x,∞)

s − x
s

τ(ds) =

∫
(0,∞)

(
1 −

x
s

)+

τ(ds).

The condition τ(1,∞) < ∞ follows from the existence of ν̄(x). Indeed,

τ(1,∞) =

∫
(1,∞)

τ(ds) ≤
∫

(1,∞)

(
2 −

1
s

)
τ(ds) ≤ 2ν̄(1/2) < ∞.

The proof is completed. �

Corollary 3.3.1 (a) A measure µ is concave on [0,∞), if and only if

µ(dx) = aδ0(dx) +

(
b +

∫
(x,∞)

1
s
τ(ds)

)
dx, (3.19)

for some constant a ≥ 0 and measure τ on (0,∞) satisfying (3.17). In particular, every
concave measure on [0,∞) is a Bernstein measure.

(b) A measure ν has convex tail on (0,∞), if and only if

ν(dx) =

( ∫
(x,∞)

1
s
τ(ds)

)
dx, (3.20)

for some measure τ on (0,∞) satisfying τ(1,∞) < ∞.

(c) A Lévy measure ν has convex tail, if and only if (3.20) holds and the measure τ on (0,∞)
is another Lévy measure, satisfying (2.17).
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Proof (a) Formula (3.19) follows immediately from the following representation

µ[0, x] = a + bx +

∫
(0,x)

∫
(t,∞)

1
s
τ(ds) dt,

which is inferred from the proof of Theorem 3.3.1. Here, measure τ satisfies (3.17).
Consider the Laplace transform of such measure µ. Using Fubini’s theorem,∫
[0,∞)

e−tx µ(dt) = a +

∫
(0,∞)

e−xt
(
b +

∫
(t,∞)

1
s
τ(ds)

)
dt = a +

b
x

+

∫
(0,∞)

∫
(t,∞)

e−xt 1
s
τ(ds) dt

= a +
b
x

+

∫
(0,∞)

∫
(0,s)

e−xt 1
s

dt τ(ds) = a +
b
x

+
1
x

∫
(0,∞)

1 − e−xs

s
τ(ds).

If (3.17) holds, the last integral is convergent, because (1 − e−xs)/s ≤ 1/s on [1,∞), and
(1 − e−xs)/s ≤ x on (0, 1) for any x > 0. Thus, a Bernstein measure is concave, if and only if it
admits representation (3.19) with condition (3.17).

(b) Formula (3.20) follows immediately from the following representation

ν(x,∞) =

∫
(x,∞)

∫
(t,∞)

1
s
τ(ds) dt,

inferred from the proof of Theorem 3.3.2. Here, measure τ satisfies τ(1,∞) < ∞.
(c) Suppose now ν is Lévy measure with convex tail. By part b) we know that ν admits

representation (3.20) with τ(1,∞) < ∞. On the other hand, using Fubini’s theorem, we obtain∫
(0,1]

t ν(dt) =

∫
(0,1]

t
( ∫

(t,∞)

1
s
τ(ds)

)
dt =

∫
(0,1]

∫
(0,s)

t
s

dt τ(ds) +

∫
(1,∞)

∫
(0,1)

t
s

dt τ(ds)

=
1
2

∫
(0,1]

s τ(ds) +
1
2

∫
(1,∞)

1
s
τ(ds).

The integrability (2.17) for ν implies that∫
(0,1]

s τ(ds) < ∞.

Therefore, measure τ is a Lévy measure as well.
Conversely, suppose ν has representation (3.20) while τ is a Lévy measure. By part b), ν

has convex tail. Reversing the steps above shows that∫
(0,1]

t ν(dt) =
1
2

∫
(0,∞)

(
s ∧

1
s

)
τ(ds) ≤

1
2

∫
(0,∞)

(s ∧ 1) τ(ds) < ∞.

Also note that∫
(1,∞)

ν(dt) =

∫
(1,∞)

∫
(t,∞)

1
s
τ(ds) dt =

∫
(1,∞)

1
s

∫
(1,s)

dt τ(ds) ≤
∫

(1,∞)
τ(ds) < ∞.

Therefore, measure ν is a Lévy measure by (2.17). �
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As an application of the above representations, we characterize completely monotone func-
tions with concave measures and Bernstein functions whose Lévy measures have convex tail.
We first define the following kernel on (0,∞).

r(x) :=
1 − e−x

x
. (3.21)

Below we list several properties of r(x) that will be needed.

Lemma 3.3.3 Function r(x) defined by (3.21) has the following properties.

(a) It satisfies the inequalities 0 ≤ r(x) ≤ min(1, 1/x).

(b) It is completely monotone with concave measure. More precisely,

r(x) =

∫
(0,1)

e−xt dt. (3.22)

(c) The function 1 − r(x) is Bernstein, whose Lévy measure has convex tail. More precisely,

1 − r(x) =

∫
(0,1)

(1 − e−xt) dt. (3.23)

Proof (a) We only need to show that r(x) ≤ 1/x and r(x) ≤ 1. The first inequality is trivial.
The second inequality is equivalent to 1 − e−x ≤ x for x > 0.

(b) The Bernstein measure µ for r(x) is concave as µ[0, x] = min(x, 1).
(c) The Lévy measure ν for 1 − r(x) is convex, as ν̄(x) = (1 − x)+. �

3.3.2 Applications on completely monotone and Bernstein functions
Proposition 3.3.1 Suppose f (x) is completely monotone with measure µ. Then, measure µ is
concave, if and only if there exists a unique measure τ on (0,∞) such that

f (x) = a +
b
x

+

∫
(0,∞)

r(xs) τ(ds), (3.24)

where r(x) is defined in (3.21), a, b ≥ 0 are constants and measure τ satisfies (3.17).

Proof For the necessity, let a := µ({0}) ≥ 0. By Corollary 3.3.1 part a), for all x > 0, we have∫
[0,∞)

e−xt µ(dt) = a +

∫
(0,∞)

e−xt
(
b +

∫
(t,∞)

1
s
τ(ds)

)
dt = a +

b
x

+

∫
(0,∞)

∫
(0,s)

e−xt 1
s

dt τ(ds)

= a +
b
x

+

∫
(0,∞)

1 − e−xs

xs
τ(ds) = a +

b
x

+

∫
(0,∞)

r(xs) τ(ds),

where τ satisfies conditions (3.17). The uniqueness of measure τ follows the uniqueness of
measure µ.

For the sufficiency, suppose (3.24) holds. By Lemma 3.3.3 part b), completely monotone
function r(x) has concave measure. So is the completely monotone function r(xs) for all s > 0.
Since 1/x is also completely monotone with concave measure, the proof follows. �
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Combining Corollary 3.3.1 part a), Proposition 3.3.1 and Proposition 2.2.1, we have the
following corollary.

Corollary 3.3.2 Suppose f (x) is completely monotone with concave measure. It has a Bern-
stein primitive, if and only if (3.24) holds with b = 0 and τ satisfies∫

(0,∞)

ln(s + 1)
s

τ(ds) < ∞. (3.25)

Proof Observe that condition (3.25) implies condition (3.17), since

1
2

(
1 ∧

1
s

)
≤

log(s + 1)
s

for s > 0.

Let µ be the Bernstein measure of f (x). Using Fubini’s theorem, we have∫
(0,∞)

1
1 + t

µ(dt) =

∫
(0,∞)

1
1 + t

(
b +

∫
(t,∞)

1
s
τ(ds)

)
dt

=

∫
(0,∞)

b
1 + t

dt +

∫
(0,∞)

∫
(0,s)

1
(1 + t)s

dt τ(ds)

=

∫
(0,∞)

b
1 + t

dt +

∫
(0,∞)

ln(s + 1)
s

τ(ds).

This shows that, condition (2.21) is equivalent to (3.25) with b = 0 in (3.24) �

Next proposition characterizes Bernstein functions whose Lévy measures have convex tails.

Proposition 3.3.2 Suppose g(x) is Bernstein with Lévy measure ν. Then, measure ν has convex
tail, if and only if there exists a unique triplet (a, b, τ) such that

g(x) = a + bx +

∫
(0,∞)

(1 − r(xs)) τ(ds), (3.26)

where r(x) is defined in (3.21), a, b ≥ 0 are constants, and τ is also a Lévy measure.

Proof We show necessity first. If ν has convex tail, by Corollary 3.3.1 part c), for all x > 0,
we have

g(x) = a + bx +

∫
(0,∞)

(1 − e−xt) ν(dt) = a + bx +

∫
(0,∞)

(1 − e−xt)
∫

(t,∞)

1
s
τ(ds) dt

= a + bx +

∫
(0,∞)

∫
(0,s)

1 − e−xt

s
dt τ(ds) = a + bx +

∫
(0,∞)

(
1 −

1 − e−xs

xs

)
τ(ds)

= a + bx +

∫
(0,∞)

(1 − r(xs)) τ(ds),

where τ is a Lévy measure. The uniqueness of the triplet (a, b, τ) follows from the uniqueness
of the triplet (a, b, ν).

For the sufficiency, suppose (3.26) holds. By Lemma 3.3.3 part c) we have that 1 − r(x) is
a Bernstein function having Lévy measure with convex tail. So is Bernstein function 1 − r(xs)
for all s > 0. The proof follows. �
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3.4 Convex measures
In this section we characterize convex measure on [0,∞) in Theorem 3.4.1 and investigate the
properties of the related completely monotone functions.

We do not consider measures with concave tail as a counterpart, because Radon measures
on (0,∞) can not have concave tail unless ν(0,∞) = 0. This is because the tail function
ν̄(x) = ν(x,∞) is non-negative and non-increasing. It is concave if and only if ν̄(x) is constant.
This trivial case is not of interest.

3.4.1 Characterizations
Theorem 3.4.1 A measure µ on [0,∞) is convex, if and only if there is a measure τ on (0,∞)
such that

µ[0, x] = a + bx +

∫
(0,∞)

( x
s
− 1

)+

τ(ds), (3.27)

where a, b ≥ 0 and τ satisfies ∫
(0,1]

1
s
τ(ds) < ∞. (3.28)

Proof First we show the sufficiency. Condition (3.28) implies the convergence of the integral
in (3.27), for any x > 0. Since function x 7→ (x/s − 1)+ is convex for all s > 0, the integral is
convex, which implies that µ is a convex measure.

Now, we show necessity. If µ is a convex measure, it cumulative distribution function
F(x) := µ[0, x] is non-decreasing and convex, hence the following limit exists:

b := lim
x→0+

F′+(x) < ∞.

Denote a := limx→0+ F(x) = µ({0}) and define the Radon measure µ∗ on (0,∞) by

µ∗(p, q] =

 F′+(q) − F′+(p), if 0 < p < q < ∞,

F′+(q) − lim
x→0+

F′+(x), if 0 = p < q < ∞.

Note that for any t > 0, we have

µ∗(0, t] = F′+(t) − lim
x→0+

F′+(x) = F′+(t) − b.

Consider the measure τ defined by τ(dt) = tµ∗(dt) on (0,∞). By (2.38) for ε > 0,

F(x) = F(x) − F(ε) + F(ε) =

∫
(ε,x)

F′+(t) dt + F(ε).

Letting ε approaching zero, and using Fubini’s theorem, we obtain

F(x) = a +

∫
(0,x)

F′+(t) dt = a + bx +

∫
(0,x)

(F′+(t) − b) dt = a + bx +

∫
(0,x)

∫
(0,t]

µ∗(ds) dt
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= a + bx +

∫
(0,x)

∫
[s,x)

1
s

dt τ(ds) = a + bx +

∫
(0,∞)

( x
s
− 1

)+

τ(ds).

The integrability condition (3.28) follows from∫
(0,1]

1
s
τ(ds) ≤

∫
(0,1]

(2
s
− 1

)
τ(ds) ≤

∫
(0,∞)

(2
s
− 1

)+

τ(ds) ≤ F(2) < ∞.

This closes the proof. �

Corollary 3.4.1 (a) A measure µ is convex on [0,∞), if and only if

µ(dx) = aδ0(dx) +

(
b +

∫
(0,x]

1
s
τ(ds)

)
dx, (3.29)

for some constant a, b ≥ 0 and measure τ on (0,∞) satisfying (3.28).

(b) A Bernstein measure µ on [0,∞) is convex, if and only if (3.29) holds and the measure τ
on (0,∞) satisfies ∫

(0,∞)

e−xs

s
τ(ds) < ∞, for all x > 0. (3.30)

Proof (a) Formula (3.29) follows immediately from the following representation

µ[0, x] = a + bx +

∫
(0,x)

∫
(0,t]

1
s
τ(ds) dt,

inferred from the proof of Theorem 3.4.1. Here, measure τ satisfies condition (3.28).
(b) Suppose now Bernstein measure µ is convex. It admits representation (3.29). On the

other hand,∫
[0,∞)

e−xt µ(dt) = a +

∫
(0,∞)

e−xt
(
b +

∫
(0,t]

1
s
τ(ds)

)
dt

= a +
b
x

+

∫
(0,∞)

1
s

∫
[s,∞)

e−xt dt τ(ds) = a +
b
x

+
1
x

∫
(0,∞)

e−xs

s
τ(ds).

The convergence of the Laplace transform of µ indicates τ satisfies (3.30).
Conversely, if a measure µ on [0,∞) has representation (3.29) with condition (3.30), then

it is convex by part a), because (3.30) implies (3.28). Its Laplace transform is well-defined for
all x > 0, by reversing the steps above. Thus µ is a Bernstein measure. �

As an application of the above representation, we characterize completely monotone func-
tions with convex measures. Define the kernel

l(x) :=
e−x

x
, x > 0. (3.31)

The necessary properties of function l(x) are listed below.

Lemma 3.4.2 Function l(x) defined in (3.31) has the following properties.
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(a) It satisfies the inequalities 0 ≤ l(x) ≤ 1/x.

(b) It is completely monotone with convex measure. More precisely,

l(x) =

∫
(1,∞)

e−xt dt. (3.32)

Proof (a) The inequalities are trivial.
(b) Note that the cumulative distribution function of the measure of l(x) is x 7→ (x − 1)+,

which is convex. �

3.4.2 Applications on completely monotone and Bernstein functions
Proposition 3.4.1 Suppose f (x) is completely monotone with measure µ. Then, measure µ is
convex, if and only if there exists a unique measure τ on (0,∞) such that

f (x) = a +
b
x

+

∫
(0,∞)

l(xs) τ(ds), (3.33)

where l(x) is defined in (3.31), a, b ≥ 0 are constants, and τ satisfies (3.30).

Proof For the necessity, let a := µ({0}) ≥ 0. By Corollary 3.4.1 part b), for all x > 0, we have

f (x) =

∫
[0,∞)

e−xt µ(dt) = a +

∫
(0,∞)

e−xt
(
b +

∫
(0,t]

1
s
τ(ds)

)
dt

= a +
b
x

+

∫
(0,∞)

∫
[s,∞)

e−xt 1
s

dt τ(ds) = a +
b
x

+

∫
(0,∞)

e−xs

xs
τ(ds)

= a +
b
x

+

∫
(0,∞)

l(xs) τ(ds),

where τ satisfies conditions (3.30). The uniqueness of τ follows from the uniqueness of µ.
For the sufficiency, suppose (3.33) holds. By Lemma 3.4.2 part b) we know l(x) is com-

pletely monotone with convex measure. So is completely monotone function l(sx) for all s > 0.
Since 1/x is also completely monotone with convex measure, the proof follows. �

Combining Corollary 3.4.1 part b) with Proposition 2.2.1, we have the following corollary.

Corollary 3.4.2 Suppose f (x) is completely monotone with convex measure µ. It can not have
a Bernstein primitive, unless f (x) is a constant.

Proof We only have to verify the integrability condition (2.21) can not be satisfies unless µ
vanishes on (0,∞). By (3.29), we have∫

(0,∞)

1
1 + t

µ(dt) =

∫
(0,∞)

1
1 + t

(
b +

∫
(0,t]

1
s
τ(ds)

)
dt

=

∫
(0,∞)

b
1 + t

dt +

∫
(0,∞)

1
s

∫
[s,∞)

1
1 + t

dt τ(ds).

However, 1/(1 + t) is not integrable on [s,∞) for any s > 0. So f (x) can not have a primitive
which is Bernstein, unless b = 0 and τ vanishes on (0,∞). That implies that µ vanishes on
(0,∞) and f (x) is a constant. �
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In [71, Theorem 3.1, Lemma 4.1] the following hereditary properties are shown.

(a) If a completely monotone function f (x) has (harmonically) convex measure, then − f ′(x)
also has (harmonically) convex measure; and

(b) If a Bernstein function g(x) has Lévy measure with harmonically concave tail, then g′(x)
has harmonically convex measure.

Alternatively, Corollary 3.4.2 says that the derivative of a Bernstein function g(x), cannot
have convex measure, unless g(x) is affine. Curiously, we have a partial converse of (a).

Proposition 3.4.2 Suppose f (x) is completely monotone. If − f ′(x) has convex measure, then
f (x) has harmonically convex measure.

Proof Note that the measure for completely monotone function − f ′(x) has no mass at {0}.
Then, by Theorem 4.1.5, functions −x f ′(x) is completely monotone. So is f (x) − x f ′(x).
Theorem 4.1.1 now shows that f (x) has harmonically convex measure. �

However, some other converses fail. For completely monotone function f (x), even if − f ′(x)
has convex measure, f (x) may not have convex measure. Consider completely monotone func-
tion f (x) = 2x−1/2 with − f ′(x) = x−3/2. It is clear that − f ′(x) has convex measure. But f (x)
does not have convex measure. See Example 2.4.4.

Meanwhile, if g(x) is Bernstein, then g′(x) having harmonically convex measure does not
necessarily implies g(x) have Lévy measure with harmonically concave tail. Consider Bern-
stein function and its completely monotone derivative

g(x) =

∫
(0,∞)

(1 − e−xt)
1

t(t + 1)2 dt and g′(x) =

∫
(0,∞)

e−xt 1
(t + 1)2 dt.

It can be shown that g(x) is well-defined, as∫
(0,1)

1
(t + 1)2 dt < 1 and

∫
(1,∞)

1
t(t + 1)2 dt = ln(2) −

1
2
.

Note that g′(x) has harmonically convex measure, because its cumulative distribution function
is F(t) = t/(t + 1) and (tF(t))′′ = 2/(t + 1)3 ≥ 0. However, the Lévy measure ν for g(x) does
not have harmonically concave tail. Because the tail is ν̄(t) = ln(t + 1) − ln(t) − 1/(t + 1), and
ν̄(1/t) is not concave. Indeed,

d
dt2 ν̄(1/t) =

1 − t
(t + 1)3 .

It changes sign on (0,∞).

3.5 Harmonically convex tail measures
This section is devoted to prove Theorem 3.5.1, which characterize measure with harmonically
convex tail. Then, Corollary 3.5.1 shows that there are no Bernstein function whose measure
has harmonically convex tail, unless it degenerates to affine function.
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We do not consider harmonically concave measure as a counterpart, as Radon measures
on [0,∞) can not be harmonically concave unless µ[0,∞) is constant. This is because the
cumulative function F(x) is non-negative and increasing. F(1/x) is concave if and only if
F(1/x) is constant. This trivial case is not interesting.

Theorem 3.5.1 A measure ν on (0,∞) has harmonically convex tail, if and only if there is a
measure τ on (0,∞) such that

ν(x,∞) =
b
x

+

∫
(0,∞)

( 1
xs
− 1

)+

τ(ds), (3.34)

where b ≥ 0 and τ satisfies ∫
(0,1]

1
s
τ(ds) < ∞. (3.35)

Proof First, we show the sufficiency. If (3.34) and (3.35) hold, then

ν(1/x,∞) = bx +

∫
(0,∞)

( x
s
− 1

)+

τ(ds).

And the integral is convergent for all x > 0. Since the function x 7→ (x/s − 1)+ is convex, the
integral on the right hand side is convex, which implies that ν has harmonically convex tail.

Now, we show necessity. If ν has harmonically convex tail, then function ϕ(x) := ν(1/x,∞)
is non-negative, non-decreasing and convex. The following limits exist and are non-negative:

lim
x→0+

ϕ(x) = 0, b := lim
x→0+

ϕ′+(x) < ∞.

Define the Radon measure µ∗ on (0,∞) by

µ∗(p, q] =

 ϕ′+(q) − ϕ′+(p), if 0 < p < q < ∞,

ϕ′+(q) − lim
x→0+

ϕ′+(x), if 0 = p < q < ∞.

Note that for any t > 0, we have
µ∗(0, t] = ϕ′+(t) − b.

Consider the measure τ defined by τ(dt) = tµ∗(dt) on (0,∞). By (2.38), for ε > 0,

ϕ(x) = ϕ(x) − ϕ(ε) + ϕ(ε) =

∫
(ε,x)

ϕ′+(t) dt + ϕ(ε).

Letting ε approaching 0, and using Fubini’s theorem, we obtain

ϕ(x) =

∫
(0,x)

ϕ′+(t) dt = bx +

∫
(0,x)

(ϕ′+(t) − b) dt = bx +

∫
(0,x)

∫
(0,t]

µ∗(ds) dt

= bx +

∫
(0,x)

∫
[s,x)

1
s

dt τ(ds) = bx +

∫
(0,∞)

( x
s
− 1

)+

τ(ds).

Representation (3.34) follows. The integrability condition (3.35) holds, because∫
(0,1]

1
s
τ(ds) ≤

∫
(0,1]

(2
s
− 1

)
τ(ds) ≤

∫
(0,∞)

(2
s
− 1

)+

τ(ds) ≤ ϕ(2) < ∞.

The proof is completed. �
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Corollary 3.5.1 (a) A measure ν on (0,∞) is convex, if and only if

ν(dx) =
1
x2

(
b +

∫
(0,1/x]

1
s
τ(ds)

)
dx, (3.36)

for some constant b ≥ 0 and measure τ satisfying (3.35).

(b) A Lévy measure ν can not have harmonically convex tail, unless ν(0,∞) = 0.

Proof (a) Formula (3.36) follows immediately from the following representation

ν(x,∞) =
b
x

+

∫
(0,1/x)

∫
(0,t]

1
s
τ(ds) dt,

inferred from the proof of Theorem 3.5.1, and τ satisfies (3.35).
(b) If Lévy measure ν has harmonically convex tail, representation (3.36) holds. As ν is a

Lévy meausre, by (2.17), the following is finite:∫
(0,1]

t ν(dt) =

∫
(0,1]

1
t

(
b +

∫
(0,1/t]

1
s
τ(ds)

)
dt =

∫
(0,1]

b
t

dt +

∫
(0,1]

1
t

∫
(0,1/t]

1
s
τ(ds) dt

=

∫
(0,1]

b
t

dt +

∫
(1,∞)

1
s

∫
(0,1/s]

1
t

dt τ(dt) +

∫
(0,1]

1
s

∫
(0,1]

1
t

dt τ(dt).

The above is convergent if and only if b = 0 and τ vanishes on (0,∞), which is equivalent to
ν(0,∞) = 0. �



Chapter 4

Completely monotone functions with
convexity on their measures

In this chapter, we consider completely monotone functions with various convexity properties
on their measures. Different characterizations are given and the connections are stressed.

Note that completely monotone function could not have harmonically concave measure
unless it is degenerated to constant. In fact, as mentioned in the paragraph below Definition
2.4.3 and in the introduction of Section 3.5, Radon measures on [0,∞) have harmonically
concave measure if and only if it vanishes on (0,∞).

Suppose f (x) is completely monotone with measure µ. Define a non-negative sequence
An(x) as

An(x) :=
(−1)n

n!
f (n)(x)

for x > 0 and n ≥ 1. Also define function on (0,∞) by

Mβ(x) := β(β − 1)
f (x)

x
− 2(β − 1) f ′(x) + x f ′′(x) − β(β − 1)

µ({0})
x

.

As a summary, our main results are listed in Table 4.1 and Table 4.2.

4.1 Characterizations
In this section, we characterize completely monotone functions with various convexity proper-
ties. The results correspond to the ones numbered (a) in Table 3.3.

4.1.1 Harmonically convex measure

Theorem 4.1.1 (Harmonically convex measure) Suppose f (x) is completely monotone with
measure µ. Then, measure µ is harmonically convex if and only if f (x) − x f ′(x) ∈ CM.

Proof Let F(t) = µ[0, t] be the cumulative distribution function of µ. Without loss of general-
ity, assume a := F(0) = µ({0}) = 0. Otherwise, consider the shifted function f (x) − a ∈ CM.

52
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Table 4.1: Characterization for f (x) ∈ CM with convexity properties on its measure µ

Property on µ No. Characterization Reference

harmonically
convex

(a) f (x) − x f ′(x) ∈ CM Thm 4.1.1

(b) λ f (x) − x( f (x + λ) − f (x)) ∈ CM, ∀λ > 0 Thm 4.2.1

(c) (n − 1)An(x) ≤ (n + 1)xAn+1(x), ∀n ≥ 1 Thm 4.3.1

concave

(a) f (x) + x f ′(x) ∈ CM Thm 4.1.3

(b) λ f (x) + x( f (x + λ) − f (x)) ∈ CM, ∀λ > 0 Thm 4.2.2

(c) An(x) ≥ xAn+1(x), ∀n ≥ 1 Thm 4.3.2

convex

(a) x( f (x) − µ({0})) ∈ CM Thm 4.1.5

(b) N/A N/A

(c) An(x) ≤ xAn+1(x), ∀n ≥ 1 Thm 4.3.3

harmonically
concave

N/A f (x) = a N/A

For sufficiency, suppose f (x) − x f ′(x) is completely monotone. We show F(t) is harmoni-
cally convex, which is equivalent to show tF(t) is convex. Define the functions

Gn(t) :=
∫

(0,t]
Ln( f (x); u) du,

where the operator Ln( f (x); u) is defined by (2.11). By Theorem 2.1.4, we know limn→∞Gn(t) =

F(t) at every point of continuity of F(t). By Lemma A.1.12, it suffices to show tGn(t) is convex
on (0,∞) for n ≥ 1. Indeed, observing for all n ≥ 1,

G′n(t) :=
(−1)n

n!
xn+1 f (n)(x)

∣∣∣∣
x=n/t

,

and

G′′n (t) =
(−1)n

n!

(
(n + 1)xn f (n)(x) + xn+1 f (n+1)(x)

)∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+1

n! · n

(
(n + 1)xn+2 f (n)(x) + xn+3 f (n+1)(x)

)∣∣∣∣
x=n/t

.

Thus by (tGn(t))′′ = 2G′n(t) + tG′′n (t), we obtain

(tGn(t))′′ =
(−1)n

n!
2xn+1 f (n)(x) +

(−1)n+1

n! · x

(
(n + 1)xn+2 f (n)(x) + xn+3 f (n+1)(x)

)∣∣∣∣
x=n/t
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Table 4.2: Characterization for f (x) ∈ CM with β-convexity on its measure µ

Property on µ Characterization Reference

β-convex Mβ(x) ∈ CM Thm 4.4.1 part a)

β-concave −Mβ(x) ∈ CM Thm 4.4.1 part b)

=
(−1)n

n!
xn+1

(
(1 − n) f (n)(x) − x f (n+1)(x)

)∣∣∣∣
x=n/t

=
(−1)n

n!
xn+1

(
f (x) − x f ′(x)

)(n)∣∣∣∣
x=n/t

.

The last equation follows from Corollary A.1.1. As f (x) − x f ′(x) ∈ CM, we get (tGn(t))′′ ≥ 0
for all n ≥ 1. Therefore µ is harmonically convex.

Conversely, suppose F(t) is harmonically convex on (0,∞). So (tF(t))′ is non-decreasing.
Note that by Lemma A.2.7 and Lemma A.2.9,

f (x) − x f ′(x) = x
∫

(0,∞)
e−xtF(t) dt + x

∫
(0,∞)

e−xtt dF(t) = x
∫

(0,∞)
e−xt d(tF(t))

= x
∫

(0,∞)
e−xt(tF(t))′ dt = −e−xt(tF(t))′

∣∣∣∣∞
t=0

+

∫
(0,∞)

e−xt d(tF(t))′

= lim
t→0+

(tF(t))′ +
∫

[0,∞)
e−xt d(tF(t))′.

The first equation follows from (2.6) and the last equation follows from Lemma 2.5.5. As tF(t)
is non-decreasing and convex, we know (tF(t))′ is non-decreasing and limt→0+(tF(t))′ ≥ 0 is
finite. Thus f (x) − x f ′(x) is completely monotone. The proof is complete. �

Notice that we have already represented completely monotone functions with harmonically
convex measures in Proposition 3.2.1. There could be an alternative proof.

Alternative proof for Theorem 4.1.1 Suppose measure µ has mass a at {0} in the proof of
both directions.

If f (x) has harmonically convex measure, by Proposition 3.2.1, we know f (x) has repre-
sentation (3.13). Thus, using [31, Theorem A.5.2] for differentiating under the integral, we
have

f (x) − x f ′(x) = a −
∫

(0,∞)

x2

s2 k′
( x

s

)
τ(ds) = a +

∫
(0,∞)

e−x/s τ(ds),

where a ≥ 0 and τ satisfies integrability condition (3.6), which ensures the convergence of the
last integral. Thus f (x) − x f ′(x) defines a completely monotone function.

Conversely, if f (x) − x f ′(x) is completely monotone, we have

f (x) − x f ′(x) = a′ +
∫

(0,∞)
e−xt η(dt),
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for a′ ≥ 0 and Bernstein measure η on (0,∞). Therefore, we obtain

f ′′(x) =
( f (x) − x f ′(x))′

−x
=

1
x

∫
(0,∞)

e−xtt η(dt).

Integrating both sides twice using Fubini’s theorem,

f (x) − a =

∫
(x,∞)

∫
(v,∞)

f ′′(u) du dv =

∫
(x,∞)

∫
(v,∞)

∫
(0,∞)

e−utt
u

η(dt) du dv

=

∫
(0,∞)

( ∫
(x,∞)

∫
(x,u)

e−ut

u
dv du

)
t η(dt) =

∫
(0,∞)

( ∫
(x,∞)

e−ut du − x
∫

(x,∞)

e−ut

u
du

)
t η(dt)

=

∫
(0,∞)

(e−xt

t
− xE1(xt)

)
t η(dt) =

∫
(0,∞)

xtk(xt) η(dt).

Here k(x) is defined in (3.9). Let Fη(x) = η(0, x] and note that −Fη(1/s) is a non-decreasing
function. Define measure τ on (0,∞) by τ(ds) := d(−Fη(1/s)). Thus, change variable by
t = 1/s, we have

f (x) = a +

∫
(0,∞)

x
s

k
( x

s

)
τ(ds).

By Proposition 3.2.1, to show f (x) has harmonically convex measure, it suffices to show τ
satisfies (3.6). Indeed,

τ(1,∞) =

∫
(1,∞)

d(−Fη(1/s)) = Fη(1) − lim
s→∞

Fη(1/s) = Fη(1) < ∞.

And∫
(0,1]

∫
(0,1)

e−x/ts dt τ(ds) =

∫
(0,1]

∫
(0,1)

e−x/ts dt d(−Fη(1/s)) =

∫
(1,∞)

∫
[1,∞)

e−xuv

v2 dFη(u) dv,

where in the last equality, we changed the variables by v = 1/t and u = 1/s, and also inter-
change the order of integration using Fubini’s theorem. Therefore,∫

(1,∞)

∫
[1,∞)

e−xuv

v2 dFη(u) dv ≤
( ∫

(1,∞)

1
v2 dv

)( ∫
(0,∞)

e−xu η(du)
)

= f (x) − x f ′(x) − a′ < ∞.

Measure τ satisfies (3.6). The proof is completed. �

Example 4.1.2 Function

kt(x) = x
∫

(x,∞)

e−st

s2 ds

is completely monotone with harmonically convex measure for all t > 0.

Proof This function is non-negative. Its first derivative is

k′t (x) =

∫
(x,∞)

e−st

s2 ds −
e−xt

x
≤ e−xt

∫
(x,∞)

1
s2 ds −

e−xt

x
= 0,
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and its second derivative is

k′′t (x) = −
e−xt

x2 −
−xte−xt − e−xt

x2 =
te−xt

x
∈ CM.

Thus, kt(x) is completely monotone. Notice that kt(x)−xk′t (x) = e−xt ∈ CM. By Theorem 4.1.1,
kt(x) has harmonically convex measure for all t > 0. �

It is known that the product of two completely monotone functions is still such, from where
follows the next corollary.

Corollary 4.1.1 Suppose f (x) is completely monotone with measure µ. For α ∈ R, consider

xα( f (x) − x f ′(x)). (4.1)

(a) If for some α ≥ 0, (4.1) is completely monotone, then, measure µ is harmonically convex.

(b) If measure µ is harmonically convex, then, (4.1) is completely monotone for any α ≤ 0.

It can be shown that the set of completely monotone functions with harmonically convex
measures is a convex cone, and it is closed under non-negative scalar multiplication and pos-
itive scaling. That is, if f1(x) and f2(x) are completely monotone with harmonically convex
measures µ1 and µ2, then so are

λ f1(x) + (1 − λ) f2(x) and c f1(ρx),

for λ ∈ [0, 1], c ≥ 0, and ρ > 0. They follow trivially from the fact that the cumulative
distribution functions for the measure of above completely monotone functions are

λF1(t) + (1 − λ)F2(t) and cF1(t/ρ),

where F1(t), F2(t) are the cumulative distribution function of µ1 and µ2 respectively. One can
also use Theorem 4.1.1 to verify. In addition, Theorem 4.1.1 implies that the aforementioned
set is closed under point-wise limit.

Corollary 4.1.2 Let { fn(x)}n∈N be a sequence of completely monotone functions such that their
point-wise limit f (x) = limn→∞ fn(x) exists for x on (0,∞). If fn(x) has harmonically con-
vex measure for all n ≥ 1, then f (x) is also completely monotone with harmonically convex
measure.

Proof It is shown in Proposition 2.1.1 that f (x) ∈ CM and f ′(x) = limn→∞ f ′n(x). Notice that
fn(x) − x f ′n(x) ∈ CM for all n ≥ 1 by Theorem 4.1.1. Therefore, for all x ∈ (0,∞) we obtain

f (x) − x f ′(x) = lim
n→∞

fn(x) − x f ′n(x).

As the CM is closed under point-wise limit, we conclude f (x) − x f ′(x) ∈ CM. This implies
f (x) has harmonically convex measure by Theorem 4.1.1. �
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4.1.2 Concave measures
Theorem 4.1.3 (concave measure) Suppose f (x) is completely monotone with measure µ.
Then, measure µ is concave if and only if f (x) + x f ′(x) ∈ CM.

Proof Let F(t) = µ[0, t] be the cumulative distribution function of µ. Without loss of general-
ity, assume a := F(0) = µ({0}) = 0. Otherwise, consider the shifted function f (x) − a ∈ CM.

For sufficiency, suppose f (x) + x f ′(x) is completely monotone. We show F(t) is concave.
Define the functions

Gn(t) :=
∫

(0,t]
Ln( f (x); u) du,

where the operator Ln( f (x); u) is defined by (2.11). By Theorem 2.1.4, we know limn→∞Gn(t) =

F(t) for every point of continuity of F(t). By Lemma A.1.12, it suffice to show Gn(t) is concave
on (0,∞) for all n ≥ 1. Indeed, observing for all n ≥ 1,

G′n(t) :=
(−1)n

n!
xn+1 f (n)(x)

∣∣∣∣
x=n/t

,

and

G′′n (t) =
(−1)n

n!

(
(n + 1)xn f (n)(x) + xn+1 f (n+1)(x)

)∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+1

n! · n

(
(n + 1)xn+2 f (n)(x) + xn+3 f (n+1)(x)

)∣∣∣∣
x=n/t

=
(−1)n+1

n! · n
xn+2

(
f (x) + x f ′(x)

)(n)∣∣∣∣
x=n/t

.

The last equation utilizes Lemma A.1.1. As f (x) + x f ′(x) ∈ CM, we get G′′n (t) ≤ 0 for all
n ≥ 1. This shows that Gn(t) is concave on (0,∞). And thus µ is concave.

Conversely, suppose now that F(t) is concave on (0,∞). To show f (x) + x f ′(x) ∈ CM, it
suffices to show x f (x) ∈ BF because f (x) + x f ′(x) = (x f (x))′. By (2.6) and Lemma A.2.9,

x f (x) = x
∫

(0,∞)
e−xt dF(t) = x

∫
(0,∞)

e−xtF′(t) dt

= (1 − e−xt)F′(t)
∣∣∣∣∞
t=0+

+

∫
(0,∞)

(1 − e−xt) d(−F′(t)).

As F(t) is concave, F′(t) is non-negative and non-increasing, thus limt→∞ F′(t) = c ≥ 0 is
finite. The second equation implies F′(t) is integrable at zero. By Lemma A.2.1, we obtain
limt→0 tF′(t) = 0. As a result, limt→0+(1 − e−xt)F′(t) = 0, and

x f (x) = c +

∫
(0,∞)

(1 − e−xt) d(−F′(t)).

The finiteness of left side ensures the integrability of the last integral. One can also verify this
without much difficulty. Therefore, x f (x) is Bernstein and the proof is complete. �

Notice that we have already represented completely monotone functions with concave mea-
sures in Proposition 3.24. There could be an alternative proof. In fact, we could prove the next
corollary
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Corollary 4.1.3 Suppose f (x) is completely monotone with measure µ. The following condi-
tions are equivalent:

(a) µ is concave;

(b) x f (x) ∈ BF ;

(c) f (x) + x f ′(x) ∈ CM.

Proof The equivalence between (b) and (c) is trivial given f (x) ∈ CM. We only need to show
(a) and (b) are equivalent. If f (x) has concave measure, by Proposition 3.3.1, we have

x f (x) = ax + b +

∫
(0,∞)

(1 − e−xs)
1
s
τ(ds),

where a, b ≥ 0 and τ satisfies (3.17). This shows that x f (x) is Bernstein with Lévy measure
τ(ds)/s. Conversely, if x f (x) is Bernstein with triplet (a′, b′, η), we know

f (x) =
a′

x
+ b′ +

∫
(0,∞)

1 − e−xs

x
η(ds) =

a′

x
+ b′ +

∫
(0,∞)

r(xs) s η(ds),

where a′, b′ ≥ 0, r(x) is defined in (3.21) and η satisfies (2.17). Define measure τ on (0,∞) by
τ(ds) = sη(ds). The integrability condition on η implies that τ satisfies (3.17). By Proposition
3.3.1, completely monotone function f (x) has concave measure. This shows the equivalence
between (a) and (b). �

Example 4.1.4 Function

rt(x) =
(1 − e−xt)

xt
is completely monotone with concave measure for all t > 0.

Proof It is trivial that rt(x) is completely monotone because 1 − e−xt ∈ BF . Notice

kt(x) + xk′t (x) =
(1 − e−xt)

xt
+

e−xtxt − (1 − e−xt)
xt

= e−xt ∈ CM.

By Theorem 4.1.3, we know kt(x) has concave measure for t > 0. �

The next corollary follows from the fact that the set of completely monotone functions is
closed under product. This is analogous to Corollary 4.1.1

Corollary 4.1.4 Suppose f (x) is completely monotone with measure µ. For α ∈ R, consider

xα( f (x) + x f ′(x)). (4.2)

(a) If for some α ≥ 0, (4.2) is completely monotone, then the measure µ is concave.

(b) If the measure µ is concave, then (4.2) is completely monotone for any α ≤ 0.
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The set of completely monotone functions with concave measures is a convex cone, and
it is closed under non-negative scalar multiplication and positive scaling. That is, if f1(x) and
f2(x) are completely monotone with concave measures µ1 and µ2, then so are

λ f1(x) + (1 − λ) f2(x) and c f1(ρx),

for λ ∈ [0, 1], c ≥ 0, and ρ > 0. They follow trivially from the fact that the cumulative
distribution functions for the measure of above completely monotone functions are

λF1(t) + (1 − λ)F2(t) and cF1(t/ρ),

where F1(t), F2(t) are the cumulative distribution function of µ1 and µ2 respectively. One can
also use Theorem 4.1.3 to verify. In addition, Theorem 4.1.3 implies that the aforementioned
set is closed under point-wise limit.

Corollary 4.1.5 Let { fn(x)}n∈N be a sequence of completely monotone functions such that their
point-wise limit f (x) = limn→∞ fn(x) exists for x on (0,∞). If fn(x) has concave measure for all
n ≥ 1, then f (x) is also completely monotone with concave measure.

Proof It is shown in Proposition 2.1.1 that f (x) ∈ CM and f ′(x) = limn→∞ f ′n(x). Notice that
fn(x) + x f ′n(x) ∈ CM for all n ≥ 1 by Theorem 4.1.3. Therefore, for all x ∈ (0,∞) we obtain

f (x) + x f ′(x) = lim
n→∞

fn(x) + x f ′n(x).

As the CM is closed under point-wise limit, we conclude f (x) + x f ′(x) ∈ CM. This implies
f (x) has concave measure by Theorem 4.1.3. �

4.1.3 Convex measures
Next Theorem extends Proposition 2.7.13 from [3] for completely monotone functions with
convex measure.

Theorem 4.1.5 (Convex measure) Suppose f (x) is completely monotone with measure µ hav-
ing mass a at {0}. Then, measure µ is convex if and only if x( f (x) − a) ∈ CM.

Proof Let F(t) = µ[0, t] be the cumulative distribution function of µ. Without loss of general-
ity, assume a := F(0) = µ({0}) = 0. Otherwise, consider the shifted function f (x) − a ∈ CM.

For sufficiency, suppose x f (x) is completely monotone. We want to show F(t) is convex.
Define the functions

Gn(t) :=
∫

(0,t]
Ln( f (x); u) du,

where the operator Ln( f (x); u) is defined by (2.11). By Theorem 2.1.4, we know limn→∞Gn(t) =

F(t) at every point of continuity of F(t). By Lemma A.1.12, it suffices to show Gn(t) is convex
on (0,∞) for n ≥ 1. Indeed, observing

G′n(t) :=
(−1)n

n!
xn+1 f (n)(x)

∣∣∣∣
x=n/t

,
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and

G′′n (t) =
(−1)n

n!

(
(n + 1)xn f (n)(x) + xn+1 f (n+1)(x)

)∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+1

n! · n

(
(n + 1)xn+2 f (n)(x) + xn+3 f (n+1)(x)

)∣∣∣∣
x=n/t

=
(−1)n+1

n! · n
xn+2

(
x f (x)

)(n+1)∣∣∣∣
x=n/t

.

The last equation implements Lemma A.1.1. Thus, using x f (x) − ax ∈ CM, we get G′′n (t) ≥ 0
for all n ≥ 1. This shows that Gn(t) is convex on (0,∞) and thus µ is convex.

Conversely, suppose now that F(t) is convex on (0,∞). By (2.6) and Lemma A.2.9, we
have

x( f (x) − a) = x
∫

(0,∞)
e−xt µ(dt) = x

∫
(0,∞)

e−xt dF(t) = x
∫

(0,∞)
e−xtF′(t) dt

= −

∫
(0,∞)

F′+(t) d(e−xt) = −e−xtF′(t)
∣∣∣∣∞
t=0+

+

∫
(0,∞)

e−xt dF′(t).

The integrability implies limt→∞ e−xtF′(t) = 0. As F(t) is non-decreasing and convex, F′(t) is
non-negative and non-decreasing, which indicates limt→0 F′(t) = c ≥ 0 is finite. Therefore,

x( f (x) − a) = c +

∫
(0,∞)

e−xt dF′(t).

The function F′(t) is non-decreasing and right-continuous, hence it defines a measure on (0,∞).
We conclude that x( f (x) − a) is completely monotone. The proof is complete. �

Notice that we have already represented completely monotone functions with convex mea-
sures in Proposition 3.4.1. There could be an alternative proof.

Alternative proof for Theorem 4.1.5 If f (x) has convex measure, by Proposition 3.4.1, we
have

f (x) = a +
b
x

+

∫
(0,∞)

e−xs

xs
τ(ds),

where a, b ≥ 0 and τ satisfies (3.30). It is clear that limx→∞ f (x) = a, which is the mass at {0}
for the Bernstein measure of f (x). Therefore,

x( f (x) − a) = b +

∫
(0,∞)

e−xs 1
s
τ(ds),

which defines a completely monotone function.
Conversely, if x( f (x) − a) is completely monotone with measure η, then

f (x) = a +
η{0}

x
+

∫
(0,∞)

e−xs

xs
s η(ds),

where η is a Bernstein measure. Define measure τ on (0,∞) by τ(ds) = sη(ds). The integrabil-
ity condition on η implies that τ satisfies (3.30). By Proposition 3.4.1, completely monotone
function f (x) has convex measure. �
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In fact, by Lemma 2.4.7, we can easily see that if f (x) ∈ CM and x f (x) ∈ CM, then f (x),
the product of x f (x) and 1/x, has convex measure. Because 1/x is completely monotone and
its measure has no mass at {0}.

Theorem 4.1.5 provides us an easier way to prove Theorem 4.1.1 as below.

Another proof for Theorem 4.1.1 Let F(x) = µ[0, x] be cumulative distribution function of
the measure µ. Extend this function by defining F(x) = 0 for x < 0. This extension is right
continuous and with bounded variation on compact sets. By definition, the harmonic convexity
of µmeans that F(1/t) is convex on (0,∞) and as pointed out, that is equivalent to the convexity
of tF(t). Integrate by parts by Theorem A.2.6, we have∫

[0,∞)
e−xt d(tF(t)) = lim

b→∞

(
e−xttF(t)

∣∣∣∣b
t=0−
−

∫
[0,b]

e−xt(−x)tF(t) dt
)
,∫

[0,∞)
e−xtt dF(t) = lim

b→∞

(
e−xttF(t)

∣∣∣∣b
t=0−
−

∫
[0,b]

e−xtF(t)(1 − xt) dt
)
.

Subtracting the second equation, both sides of which are finite, from the first gives

x
∫

[0,∞)
e−xt d(tF(t)) = x

∫
[0,∞)

e−xtF(t) dt + x
∫

[0,∞)
e−xtt dF(t)

=

(
− e−xtF(t)

∣∣∣∣∞
t=0−

+

∫
[0,∞)

e−xt dF(t)
)
− x

∫
[0,∞)

e−xt(−t) dF(t)

= f (x) − x f ′(x).

For the second equality, we used the integration by parts Theorem A.2.6 again. Noticing the
measure defined by d(tF(t)) has no mass at {0}, applying Theorem 4.1.5, we know µ is har-
monically convex if and only if f (x) − x f ′(x) ∈ CM. �

Next corollary follows from Theorem 4.1.5 and the fact that the set of completely monotone
functions is closed under product.

Corollary 4.1.6 Suppose f (x) is completely monotone with measure µ having mass a at {0}.

(a) If for some α ≥ 1, the function xα( f (x) − a) ∈ CM, then the measure µ is convex.

(b) If the measure µ is convex, then xα( f (x) − a) ∈ CM, for any α ≤ 1.

It can be shown that the set of completely monotone functions with convex measures is a
convex cone, and it is closed under non-negative scalar multiplication and positive scaling. If
f1(x) and f2(x) are completely monotone with convex measures µ1 and µ2, then so are

λ f1(x) + (1 − λ) f2(x) and c f1(ρx),

for λ ∈ [0, 1], c ≥ 0, and ρ > 0. They follow trivially from the fact that the cumulative
distribution functions for the measure of above completely monotone functions are

λF1(t) + (1 − λ)F2(t) and cF1(t/ρ),

where F1(t), F2(t) are the cumulative distribution function of µ1 and µ2 respectively. One can
also use Theorem 4.1.5 to verify. In addition, Theorem 4.1.5 implies this set is closed under
point-wise limit.
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Corollary 4.1.7 Let { fn(x)}n∈N be a sequence of completely monotone functions such that their
point-wise limit f (x) = limn→∞ fn(x) exists for x on (0,∞). If fn(x) has convex measure for all
n ≥ 1, then f (x) is also completely monotone with convex measure.

Proof Denote fn(x) is associated with measure µn having mass an at {0}. It is shown in Propo-
sition 2.1.1 that f (x) ∈ CM. Denote the measure for f (x) has mass a at {0}. by Theorem 4.1.5,
to see f (x) has convex measure, it suffice to show

x( f (x) − a) ∈ CM.

Observe x( f (x) − a) ≥ 0 and its first derivative is f (x) − a + x f ′(x). By Lemma 2.1.3, we have

lim
x→∞

f (x) − a + x f ′(x) = 0.

Therefore, it suffice to show its second derivative 2 f ′(x) + x f ′′(x) is completely monotone.
Notice x( fn(x) − an) ∈ CM for all n ≥ 1 by Theorem 4.1.5. So is 2 f ′n(x) + x f ′′n (x). By
Proposition 2.1.1, we observe

2 f ′(x) + x f ′′(x) = lim
n→∞

2 f ′n(x) + x f ′′n (x).

As the CM is closed under point-wise limit, we conclude 2 f ′(x) + x f ′′(x) is completely mono-
tone. The proof is complete. �

4.2 Derivative free characterizations
In this section, we try to remove the derivatives from the characterizations for completely
monotone functions with harmonically convex measure and concave measure. The results
correspond to the ones listed under (b) in Table 4.1.

4.2.1 Harmonically convex measures
Theorem 4.2.1 Suppose f (x) is completely monotone with measure µ. Then µ is harmonically
convex, if and only if λ f (x) − x( f (x + λ) − f (x)) ∈ CM for all λ > 0.

Proof We show sufficiency first. If λ f (x) − x( f (x + λ) − f (x)) is completely monotone for all
λ > 0, so is

f (x) −
x( f (x + λ) − f (x))

λ
.

Letting λ approaching 0, we know that f (x)− x f ′(x) is completely monotone, which implies µ
is harmonically convex by Theorem 4.1.1.

For necessity, assume f (x) has harmonically convex measure. We want to show λ f (x) −
x( f (x + λ) − f (x)) is completely monotone for all λ > 0. Denote

Λ(x) := λ f (x) − x( f (x + λ) − f (x)) = (x + λ) f (x) − x f (x + λ).
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As f (x) is decreasing, we know K(x) ≥ 0. Thus, it suffices to show −Λ′(x) ∈ CM.

−Λ′(x) = − f (x) − (x + λ) f ′(x) + f (x + λ) + x f ′(x + λ)
= ( f (x) − x f ′(x)) − ( f (x + λ) − (x + λ) f ′(x + λ))
− 2 f (x) − λ f ′(x) + 2 f (x + λ) − λ f ′(x + λ).

Because f (x) has harmonically convex measure, f (x) − x f ′(x) is completely monotone, indi-
cating ( f (x) − x f ′(x)) − ( f (x + λ) − (x + λ) f ′(x + λ)) is also completely monotone. It suffices
to show

−2 f (x) − λ f ′(x) + 2 f (x + λ) − λ f ′(x + λ) ∈ CM.

By Bernstein representation (2.1), we obtain

−2 f (x) − λ f ′(x) + 2 f (x + λ) − λ f ′(x + λ) =

∫
[0,∞)

e−xt(−2 + λt + 2e−λt + λte−λt) µ(dt).

By Lemma A.1.4 d), we know −2 + λt + 2e−λt + λte−λt ≥ 0 for all λ ≥ 0. Thus, above integral
defines a completely monotone function, and the proof is complete. �

4.2.2 Concave measures
Lemma 4.2.2 Suppose f (x) is completely monotone with measure µ. Then, measure µ has
concave measure if and only if λ f (x) + x( f (x + λ) − f (x)) ∈ CM for all λ > 0.

Proof We show sufficiency first. If λ f (x) + x( f (x + λ) − f (x)) is completely monotone for all
λ > 0, so is

f (x) +
x( f (x + λ) − f (x))

λ
.

Letting λ approach 0, we know that f (x) + x f ′(x) is completely monotone. By Theorem 4.1.3,
f (x) has concave measure.

For necessity, assume f (x) has concave measure. Denote

Λ(x) := x f (x + λ) − (x − λ) f (x) = x f (x + λ) + (λ − x) f (x).

We show Λ(x) is completely monotone for all λ > 0. As f (x) is convex,

Λ(x) = x f (x + λ) − (x − λ) f (x) ≥ x( f (x) + λ f ′(x)) − (x − λ) f (x)
= λ(x f ′(x) + f (x)) ≥ 0,

where f (x)+x f ′(x) is completely monotone, by Theorem 4.1.3. It suffices to show Λ′(x) ∈ CM.

−Λ′(x) = − f (x + λ) − x f ′(x + λ) + f (x) + (x − λ) f ′(x)
= ( f (x) + x f ′(x) − f (x + λ) − (x + λ) f ′(x + λ)) + λ( f ′(x + λ) − f ′(x)).

As f (x) + x f ′(x) and − f ′(x) are completely monotone, we know

f (x) + x f ′(x) − f (x + λ) − (x + λ) f ′(x + λ) ∈ CM, and f ′(x + λ) − f ′(x) ∈ CM.

Thus, we obtain −Λ′(x) ∈ CM for all λ > 0, and so is Λ(x). This closes the proof. �
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4.3 Sequential characterizations
In this section, we characterize same objectives in terms of sequences. This idea finds its root
in the definition of Hirsch Class. Suppose f (x) is completely monotone. Define a non-negative
sequence An(x) as

An(x) =
(−1)n

n!
f (n)(x)

for every x > 0 and n ≥ 0. If {An(x)}n≥0 is log-convex, then f (x) is in Hirsch class, see
[68, Definition 11.22]. Analogously, The shape of the measures can also be characterized by
{An(x)}n≥1. The results corresponds to the items listed by (c) in Table 4.1.

4.3.1 Harmonically convex measures
Theorem 4.3.1 Suppose f (x) is completely monotone with measure µ. Then, measure µ is
harmonically convex, if and only if the sequence {An(x)}n≥1 satisfies

n − 1
n + 1

An(x) ≤ xAn+1(x) (4.3)

for all x > 0 and n ≥ 1.

Proof Proof of sufficiency. We need to show F(t) is harmonically convex given (4.3). This
proof utilizes Inverse Laplace transformation formula in Theorem 2.1.4. Define

Gn(t) :=
∫

(0,t]
Ln( f (x); u) du.

where the operator Ln is defined in (2.11). Therefore, we know limn→∞Gn(t) = F(t) − F(0)
at every point of continuity of F(t). To show F(t) is harmonically convex, it suffices to show
tF(t) is convex. By lemma A.1.12, it suffices to show tGn(t) is convex for all n ≥ 1. Notice that
Gn(t) is infinitely differentiable. Observe

G′n(t) =
(−1)n

n!
xn+1 f (n)(x)

∣∣∣∣
x=n/t

= xn+1An(x)
∣∣∣∣
x=n/t

,

and

G′′n (t) =
(−1)n

n!

(
(n + 1)xn f (n)(x) + xn+1 f (n+1)(x)

)∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+1

n! · n

(
(n + 1)xn+2 f (n)(x) + xn+3 f (n+1)(x)

)∣∣∣∣
x=n/t

= −
n + 1

n
xn+2An(x) +

(n + 1)
n

xn+3An+1(x)
∣∣∣∣
x=n/t

.

Thus, we obtain

(tGn(t))′′ = 2G′n(t) + tG′′n (t)

= 2xn+1An(x) −
n
x

n + 1
n

xn+2An(x) +
n
x

(n + 1)
n

xn+3An+1(x)
∣∣∣∣
x=n/t
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≥ (1 − n)xn+1An(x) + (n − 1)xn+1An(x) = 0.

We used (4.3) in the last inequality. So tGn(t) is convex for all n ≥ 1.
Proof of necessity. Suppose measure µ is harmonically convex. We need to show inequality

(4.3) holds. The case n = 1 is trivial as An(x) ≥ 0. Consider n ≥ 2. As µ is harmonically
convex, function F(1/t) is convex, which implies its left derivative (F(1/t))′− = −F′(1/t)/t2 is
non-decreasing, indicating F′(t)t2 is non-decreasing. Therefore, by Lemma A.2.9

An(x) =
(−1)n

n!
f (n)(x) =

1
n!

∫
(0,∞)

e−xttn dF(t) =

∫
(0,∞)

tn

n!
e−xtF′(t) dt

=
tn+1

(n + 1)!
e−xtF′(t)

∣∣∣∣∞
t=0+
−

∫
(0,∞)

tn+1

(n + 1)!
d(e−xtF′(t)).

Lemma 2.5.5 implies for any n ≥ 1,

lim
t→∞

tn+1e−xtF′(t) = 0,

and
lim
t→0

tn+1e−xtF′(t) = lim
t→0

tn−1e−xtF′(t)t2 = 0.

Therefore by lemma A.2.7 and noticing the finiteness of An(x) for any n ≥ 1,

An(x) = −

∫
(0,∞)

tn+1

(n + 1)!
d(e−xtt−2t2F′(t))

= x
∫

(0,∞)

tn+1

(n + 1)!
e−xtF′(t) dt + 2

∫
(0,∞)

tn+1

(n + 1)!
e−xtt−3t2F′(t) dt

−

∫
(0,∞)

tn+1

(n + 1)!
e−xtt−2 d(t2F′(t))

≤ x
∫

(0,∞)

tn+1

(n + 1)!
e−xt dF(t) +

2
n + 1

∫
(0,∞)

tn

n!
e−xt dF(t)

= xAn+1(x) +
2

n + 1
An(x),

which simplifies into (4.3). This closes the proof. �

In fact, the condition (4.3) is equivalent to f (x)− x f ′(x) ∈ CM. By Lemma A.1.1, we know
f (x) − x f ′(x) ∈ CM is equivalent to

(−1)n
(
− x f (n+1)(x) − (n − 1) f (n)(x)

)
≥ 0,

for all n ≥ 1. Rewriting the above inequality in terms of An(x) reveals (4.3).

4.3.2 Concave measures
Theorem 4.3.2 Suppose f (x) is completely monotone with measure µ. Then, measure µ is
concave, if and only if the sequence {An(x)}n≥1 satisfies

An(x) ≥ xAn+1(x) (4.4)

for all x > 0 and n ≥ 1.
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Proof Proof of sufficiency. Given (4.4) for all n ≥ 1, we need to show measure µ is concave.
This proof utilizes the Inverse Laplace transformation formula. Define

Gn(t) :=
∫

(0,t]
Ln( f (x); u) du

where the operator Ln is defined in (2.11). By Theorem 2.1.4, we know limn→∞Gn(t) = F(t) −
F(0) at every point of continuity of F(t). By lemma A.1.12, to show F(t) is concave, it suffices
to show Gn(t) is concave for all n ≥ 1. Notice that Gn(t) is infinitely differentiable, and

G′n(t) = Ln( f (x); t) =
(−1)n

n!
xn+1 f (n)(x)

∣∣∣∣
x=n/t

.

Therefore,

G′′n (t) =
(−1)n

n!

(
(n + 1)xn f (n)(x) + xn+1 f (n+1)(x)

)∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+1

n! · n

(
(n + 1)xn+2 f (n)(x) + xn+3 f (n+1)(x)

)∣∣∣∣
x=n/t

= −
n + 1

n
xn+2An(x) +

(n + 1)
n

xn+3An+1(x)
∣∣∣∣
x=n/t

≤ −
n + 1

n
xn+2An(x) +

(n + 1)
n

xn+2An(x)
∣∣∣∣
x=n/t

= 0.

The last inequality utilizes (4.4). This indicates Gn(t) is concave for all n ≥ 1.
Proof of necessity. Suppose measure µ is convex. We want to show (4.4). As F(t) is

concave, its right derivative F′(t) exists and is non-increasing. Therefore, for any n ≥ 1,

An(x) =
(−1)n

n!
f (n)(x) =

1
n!

∫
(0,∞)

e−xttn dF(t) =

∫
(0,∞)

tn

n!
e−xtF′(t) dt

=
tn+1

(n + 1)!
e−xtF′(t)

∣∣∣∣∞
t=0
−

∫
(0,∞)

tn+1

(n + 1)!
d(e−xtF′(t)).

Lemma 2.5.5 implies
lim
t→0

tn+1e−xtF′(t) = lim
t→∞

tn+1e−xtF′(t) = 0,

for all x > 0 and n ≥ 1. Therefore by Lemma A.2.7,

An(x) = x
∫

(0,∞)

tn+1

(n + 1)!
e−xtF′(t) dt −

∫
(0,∞)

tn+1

(n + 1)!
e−xt dF′(t)

≥ x
∫

(0,∞)

tn+1

(n + 1)!
e−xt dF(t) = xAn+1(x).

The proof is complete. �

In fact, the condition (4.4) is equivalent to f (x)+ x f ′(x) ∈ CM. By Lemma A.1.1, we know
f (x) + x f ′(x) ∈ CM is equivalent to

(−1)n
(
(n + 1) f (n)(x) + x f (n+1)(x)

)
≥ 0,

for all n ≥ 1. Rewriting the above inequality in terms of An(x) reveals (4.4).
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4.3.3 Convex measures
Theorem 4.3.3 Suppose f (x) is completely monotone Then, measure µ is convex, if and only
if the sequence {An(x)}n≥1 satisfies

An(x) ≤ xAn+1(x) (4.5)

for all x > 0 and n ≥ 1.

Proof Proof of sufficiency. Given (4.5) for all n ≥ 1, we need to show measure µ is convex.
This proof utilizes the Inverse Laplace transformation formula. Define

Gn(t) :=
∫

(0,t]
Ln( f (x); u) du.

where the operator Ln is defined in (2.11). By Theorem 2.1.4 b), we know limn→∞Gn(t) =

F(t) − F(0) at every point of continuity of F(t). By lemma A.1.12, to show F(t) is convex, it
suffices to show Gn(t) is convex for all n ≥ 1. Notice that Gn(t) is infinitely differentiable, and

G′n(t) = Ln( f (x); t) =
(−1)n

n!
xn+1 f (n)(x)

∣∣∣∣
x=n/t

.

Therefore,

G′′n (t) =
(−1)n

n!

(
(n + 1)xn f (n)(x) + xn+1 f (n+1)(x)

)∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+1

n! · n

(
(n + 1)xn+2 f (n)(x) + xn+3 f (n+1)(x)

)∣∣∣∣
x=n/t

= −
n + 1

n
xn+2An(x) +

n + 1
n

xn+3An+1(x)
∣∣∣∣
x=n/t

≥ −
n + 1

n
xn+2An(x) +

n + 1
n

xn+2An(x)
∣∣∣∣
x=n/t

= 0.

The last inequality utilizes (4.5). This indicates Gn(t) is convex for all n ≥ 1.
Proof of necessity. Supposing measure µ is convex, we show (4.5) holds. As F(t) is convex,

its right derivative F′(t) exists, and is non-decreasing. Therefore, for any n ≥ 1,

An(x) =
(−1)n

n!
f (n)(x) =

1
n!

∫
(0,∞)

e−xttn dF(t) =

∫
(0,∞)

tn

n!
e−xtF′(t) dt

=
tn+1

(n + 1)!
e−xtF′(t)

∣∣∣∣∞
t=0+
−

∫
(0,∞)

tn+1

(n + 1)!
d(e−xtF′(t)).

Lemma 2.5.5 implies for all n ≥ 1,

lim
t→∞

tn+1e−xtF′(t) = 0, and lim
t→0

tn+1e−xtF′(t) = 0.

Therefore by Lemma A.2.7,

An(x) = x
∫

(0,∞)

tn+1

(n + 1)!
e−xtF′(t) dt −

∫
(0,∞)

tn+1

(n + 1)!
e−xt dF′(t)

≤ x
∫

(0,∞)

tn+1

(n + 1)!
e−xt dF(t) = xAn+1(x).

The proof is complete. �
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The condition (4.5) is equivalent to x( f (x) − a) ∈ CM where a = µ{0} = limx→∞ f (x) ≥ 0.
By Lemma A.1.1, we know x( f (x) − a) ∈ CM is equivalent to

(−1)n
(
(n) f (n−1)(x) + x f (n)(x)

)
+ a1{n=1} ≥ 0,

for all n ≥ 1. Rewriting the above inequality in terms of An(x), we have

xAn(x) + a1{n=1} ≥ An−1(x).

This implies (4.4). Conversely, we only need to verify −( f (x) + x f ′(x)) + a ≥ 0. It is trivial, as

−( f (x) + x f ′(x)) =

∫
(x,∞)

(2 f ′(t) + t f ′′(t)) dt = 2
∫

(x,∞)
(tA2(t) − A1(t)) dt ≥ 0.

In addition, notice that (4.5) implies (4.3), which agrees with the fact that convex measure
is harmonically convex. Also notice condition (4.4) and (4.5) hold simultaneously if An(x) =

xAn+1(x), which corresponds to completely monotone function f (x) = a + b/x.
However, there is a non-trivial sub-class of completely monotone functions such that both

(4.4) and (4.3) hold, in which the measures are both concave and harmonically convex. For
example, completely monotone function f (x) = x−α has measure which is both concave and
harmonically convex if α ∈ (0, 1).

4.4 Completely monotone functions with β-convexity or β-
concavity

In this section, we study completely monotone functions with β-convexity type properties. See
Section (2.5) for definitions. These results generalize the characterizations in previous sections
in this chapter.

4.4.1 Characterizations
Theorem 4.4.1 Suppose f (x) is completely monotone with measure µ. Consider the function

Mβ(x) = β(β − 1)
f (x)

x
− 2(β − 1) f ′(x) + x f ′′(x) − β(β − 1)

µ({0})
x

. (4.6)

(a) Measure µ is β-convex, if and only if Mβ(x) is completely monotone.

(b) Measure µ is β-concave, if and only if −Mβ(x) is completely monotone.

Proof Notice Mβ(x) can be rewritten as

Mβ(x) = β(β − 1)
f (x) − µ({0})

x
− 2(β − 1) f ′(x) + x f ′′(x).

Without loss of generality, we can assume µ({0}) = 0. Otherwise consider f (x) − µ({0}).
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(a) For sufficiency, suppose Mβ(x) is completely monotone. Anticipating the use of Inver-
sion formula in Theorem 2.1.4, define

Gn(t) :=
∫

(0,t]
Ln( f (x); u) du, (4.7)

where the operator Ln is defined in (2.11). By Theorem 2.1.4, we have limn→∞Gn(t) = F(t) at
every point of continuity of F(t). By Lemma A.1.12, it suffices to show Gn(t) is β-convex on
(0,∞) for every n ≥ 2, that is to show

(tβGn(t))′′ = tβ−2(β(β − 1)Gn(t) + 2βtGn(t)′ + t2G′′n (t)) ≥ 0.

Indeed, one can see that

G′n(t) = Ln( f (x); t) =
(−1)n

n!
xn+1 f (n)(x)

∣∣∣∣
x=n/t

,

G′′n (t) =
(−1)n

n!

(
xn+1 f (n)(x)

)′∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+1

n · n!
xn+2(x f (x))(n+1)

∣∣∣∣
x=n/t

.

The second equation for G′′n (t) utilizes Lemma 2.14. Using identity (2.15) reversely and by
Lemma 2.7, we observe

Gn(t) =

∫
(0,t]

Ln( f (x); u) du =
n − 1

n

∫
(0,t]

L′n−1

( f (x)
x

;
(n − 1)u

n

)
du

= Ln−1

( f (x)
x

;
(n − 1)u

n

)∣∣∣∣t
u=0+

=
(−1)(n−1)

(n − 1)!
xn

( f (x)
x

)(n−1)∣∣∣∣
x=n/t

.

Therefore, we show

(tβGn(t))′′ =
(−1)(n−1)tβ−2

(n − 1)!
xnM(n−1)

β (x)
∣∣∣∣
x=n/t

.

As Mβ(x) is completely monotone, we know that (−1)n−1M(n−1)
β (x) ≥ 0 for all x > 0 and n ≥ 2,

which implies (tβGn(t))′′ ≥ 0.
Now we show necessity. Suppose measure µ is β-convex, we prove Mβ(x) is completely

monotone. First, by (2.6) and using [31, Theorem A.5.2] to differentiate under the integral, we
have

f ′(x) =

∫
(0,∞)

e−xtF(t) dt − x
∫

(0,∞)
e−xttF(t) dt,

f ′′(x) = −2
∫

(0,∞)
e−xttF(t) dt + x

∫
(0,∞)

e−xtt2F(t) dt.

To simplify the notation, denote

an(x) =

∫
(0,∞)

e−xttnF(t) dt, bm(x) =

∫
(0,∞)

e−xttm d(tβF(t)).
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Note that an(x) is finite for all n ≥ 0 and bm(x) is also convergent for all m ≥ 1 − β, which can
be verified by Lemma A.2.7. With these notations, we can rewrite

f (x)
x

= a0(x), f ′(x) = a0(x) − xa1(x), x f ′′(x) = −2xa1(x) + x2a2(x).

Therefore,

Mβ(x) = β(β − 1)a0(x) − 2(β − 1)(a0(x) − xa1(x)) − 2xa1(x) + x2a2(x)

= (β − 2)(β − 1)a0(x) + 2(β − 2)xa1(x) + x2a2(x).

By Lemma A.2.7 and (2.6) , we have

xa1(x) = x
∫

(0,∞)
e−xttF(t) dt = −

∫
(0,∞)

tF(t) d(e−xt) = tF(t)e−xt
∣∣∣∣∞
t=0+

+

∫
(0,∞)

e−xt d(tβF(t)t1−β)

=

∫
(0,∞)

e−xtt1−β d(tβF(t)) + (1 − β)
∫

(0,∞)
e−xtF(t) dt = b1−β(x) + (1 − β)a0(x).

In addition, by Lemma 2.5.5 and Lemma A.2.7, we obtain

x2a2(x) = x2
∫

(0,∞)
e−xtt2F(t) dt = −xt2F(t)e−xt

∣∣∣∣∞
t=0

+ x
∫

(0,∞)
e−xt d(tβF(t)t2−β)

= (2 − β)x
∫

(0,∞)
e−xttF(t) dt + x

∫
(0,∞)

e−xtt2−β d(tβF(t))

= (2 − β)xa1(x) + x
∫

(0,∞)
e−xtt2−β(tβF(t))′ dt

= (2 − β)xa1(x) − t2−β(tβF(t))′e−xt
∣∣∣∣∞
t=0+

+

∫
(0,∞)

e−xt d(t2−β(tβF(t))′)

= (2 − β)xa1(x) +

∫
(0,∞)

e−xtt2−β d(tβF(t))′ + (2 − β)
∫

(0,∞)
e−xt(tβF(t))′t1−β dt

= (2 − β)xa1(x) +

∫
(0,∞)

e−xtt2−β d(tβF(t))′ + (2 − β)b1−β.

Note the above equations also hold if µ is β-concave. Therefore, it can be shown that

Mβ(x) =

∫
(0,∞)

e−xtt2−β d(tβF(t))′.

As tβF(t) is convex, (tβF(t))′ is non-decreasing. Above is the Laplace transform for Radon
measure t2−β d(tβF(t))′ on (0,∞). By Bernstein representation, Mβ(x) is completely monotone.

(b) The proof is very much analogous to the proof for part a), so we only provide a sketch.
One can easily recover the full details by comparing with the proof for part a).

For sufficiency, suppose −Mβ(x) is completely monotone. Define Gn(t) as (4.7). Without
any further assumption, we could have for all n ≥ 2,

(tβGn(t))′′ =
(−1)(n−1)tβ−2

(n − 1)!
xnM(n−1)

β (x)
∣∣∣∣
x=n/t

.
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As −Mβ(x) is completely monotone, we know that tβGn(t) is concave. By Lemma A.1.12, we
conclude that measure µ is β-concave.

For necessity, suppose µ is β-concave, we prove −Mβ is completely monotone. Applying
the notation an(x) and bm(x) in part a), we also have

Mβ(x) = β(β − 1)a0(x) − 2(β − 1)(a0(x) − xa1(x)) − 2xa1(x) + x2a2(x).

And the following identities hold as well given µ is β-concave.

xa1(x) = b1−β(x) + (1 − β)a0(x),

x2a2(x) = (2 − β)xa1(x) +

∫
(0,∞)

e−xtt2−β d(tβF(t))′ + (2 − β)b1−β.

Thus, we obtain

−Mβ(x) =

∫
(0,∞)

e−xtt2−β d(−tβF(t))′.

As tβF(t) is concave, −(tβF(t))′ is non-decreasing. Above is the Laplace transform for Radon
measure t2−β d(−tβF(t))′ on (0,∞). Hence, function −Mβ(x) is completely monotone. �

4.4.2 Connections with (harmonic) convexities
In this section, we prove several theorem from Section 4.1 as corollaries. They reveals β-
convexity is indeed a generalization for both harmonic convexity and convexity.

Corollary 4.4.1 (Theorem 4.1.1) Suppose f (x) is completely monotone with measure µ. Then
measure µ is harmonically convex, if and only if f (x) − x f ′(x) ∈ CM.

Proof Without loss of generality, we can assume µ has no mass at {0}. By Theorem 4.4.1 part
(a), measure µ is harmonically convex, if and only if x f ′′(x) is completely monotone. We show
this condition is equivalent to f (x) − x f ′(x) being completely monotone.

If f (x) − x f ′(x) is completely monotone, then

x f ′′(x) = −( f (x) − x f ′(x))′ ∈ CM.

Conversely, if x f ′′(x) is completely monotone, to see f (x) − x f ′(x) is completely monotone, it
suffices to show its non-negativity. This is trivial, because f (x) ≥ 0 and f ′(x) ≤ 0. �

Corollary 4.4.2 (Theorem 4.1.3) Suppose f (x) is completely monotone with measure µ. Then
measure µ is concave, if and only if f (x) + x f ′(x) ∈ CM.

Proof Without loss of generality, we can assume µ has no mass at {0}. By Theorem 4.4.1 part
(b), measure µ is concave, if and only if −2x f ′(x) − x f ′′(x) is completely monotone. We show
this condition is equivalent to f (x) + x f ′(x) being completely monotone.

If f (x) + x f ′(x) is completely monotone, then

−2x f ′(x) − x f ′′(x) = −( f (x) + x f ′(x))′ ∈ CM.
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Conversely, if −2x f ′(x) − x f ′′(x) is completely monotone, to see f (x) + x f ′(x) is completely
monotone, it suffices to show it is non-negative. As its derivative is non-positive, f (x) + x f ′(x)
is non-increasing. By (2.7), we obtain

lim
x→∞

f (x) + x f ′(x) = 0.

So f (x) + x f ′(x) ≥ 0. This closes the proof. �

Corollary 4.4.3 (Theorem 4.1.5) Suppose f (x) is completely monotone with measure µ hav-
ing mass a at {0}. Then, measure µ is convex, if and only if x( f (x) − a) ∈ CM.

Proof Consider the shifted function f (x)− a. By Theorem 4.4.1 part (a), measure µ is convex,
if and only if 2 f ′(x) + x f ′′(x) is completely monotone. We show this condition is equivalent to
x( f (x) − a) being completely monotone.

If x( f (x) − a) is completely monotone, then

2 f ′(x) + x f ′′(x) = (x( f (x) − a))′′ ∈ CM.

Conversely, suppose 2 f ′(x) + x f ′′(x) is completely monotone. To see x( f (x)− a) is completely
monotone, we only have to show

x( f (x) − a) ≥ 0 and x f ′(x) + f (x) − a ≤ 0.

The first inequality is trivial, because f (x) − a ≥ 0. For the second inequality, as 2 f ′(x) +

x f ′′(x) ≥ 0, we know x f ′(x) + f (x) − a is non-decreasing. By (2.7), we obtain

lim
x→∞

x f ′(x) + f (x) − a = 0.

The second inequality follows. �

Corollary 4.4.4 Suppose f (x) is completely monotone with measure µ having mass a at {0}.
Then, measure µ is harmonically concave, if and only if f (x) = a.

Proof Sufficiency is trivial. We show necessity. By Theorem 4.4.1 part b), if measure µ is
harmonically concave, then −x f ′′(x) is completely monotone. Notice that f ′′(x) ≥ 0. So
f ′′(x) = 0, which implies − f ′(x) ∈ CM is linear. Therefore f (x) = a. �

4.5 Convex shape preserving transformations
In this section, we revisit [69, Corollary 5.4], and investigate transformations that maps a com-
pletely monotone function into another with certain convexity properties on its measure.

In addition, we investigate some transformations that can preserve certain convexity prop-
erties on measures. Let f : (0,∞) 7→ R. For any x > 0, define operator

H[ f ](x) := x
∫

(x,∞)

f (s)
s2 ds. (4.8)

Obviously, the integrability needs more insight on f (x). Fortunately, H[ f ](x) is well-defined
for all f (x) ∈ CM.
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Proposition 4.5.1 The set of CM with harmonically convex measure is{
H[ f ](x) : f (x) ∈ CM

}
.

Proof It is trivial that the above set is well-defined for any completely monotone function f (x).
To show H[ f ](x) is completely monotone with harmonically convex measure, recall (2.1) to
rewrite H[ f ](x) as

H[ f ](x) = x
∫

(x,∞)

∫
[0,∞)

e−st

s2 µ(dt) ds =

∫
[0,∞)

x
∫

(x,∞)

e−st

s2 ds µ(dt).

It suffices to verify

kt(x) := x
∫

(x,∞)

e−st

s2 ds

is completely monotone with harmonically convex measure for all t > 0. This is true by
Example 4.1.2.

Conversely, suppose h(x) ∈ CM has harmonically convex measure with mass a at {0}. By
Theorem 4.1.1, we know f (x) := h(x) − xh′(x) ∈ CM and limx→∞ f (x) = a by (2.7). Note that
1/x is an integrating factor, solving the differential equation

h′(x) − (1/x)h(x) + (1/x) f (x) = 0

reveals h(x) = H[ f ](x) + cx for some constant c ∈ R. L’Hopital rule indicates

lim
x→∞

H[ f ](x) = lim
x→∞

− f (x)/x2

−1/x2 = a.

And applying the limit condition limx→∞ h(x) = a, the constant can be determined to be c = 0.
Therefore, there is a completely monotone function f (x) such that h(x) = H[ f ](x). �

To describe the set of completely monotone functions with concave measure, we need the
next operator. Let f : (0,∞) 7→ R. For any x > 0, define operator

K[ f ](x) :=
1
x

∫
(0,x)

f (s) ds. (4.9)

Again, the integrability need more insight on function f (x).

Proposition 4.5.2 The set of CM with concave measure is{
K[ f ](x) : f (x) ∈ CM, such that the integral is convergent

}
.

Proof Suppose f (x) is completely monotone with measure µ, such that K[ f ](x) is well-defined.
By Fubini’s theorem, it can be rewritten as

K[ f ](x) =
1
x

∫
(0,x)

∫
[0,∞)

e−st µ(dt) ds =

∫
[0,∞)

1 − e−xt

xt
µ(dt).
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It suffices to show kt(x) := (1 − e−xt)/xt is completely monotone with concave measure for all
t > 0. This is true due to Example 4.1.4.

Conversely, if h(x) ∈ CM has concave measure, then f (x) := h(x) + xh′(x) is completely
monotone. Solving the differential equation

h′(x) + (1/x)h(x) − (1/x) f (x) = 0

reveals h(x) = K[ f ](x)+a/x+c/x for a = limx→0 xh(x) and some constant c ∈ R. The existence
of a follows from xh(x) ∈ BF , see Corollary 4.1.3. The integrability of K[ f ](x) follows form
the finiteness of h(x). Applying the limit condition again, we obtain

a = lim
x→0

xh(x) = lim
x→0

xK[ f ](x) + a + c = a + c.

This implies c = 0. Therefore, we know h(x) = K[ f ](x) for some f (x) ∈ CM. �

Tauberian Theorem also provides us with an sufficient condition such that K[ f ](x) is well-
defined. If there is some constant γ ∈ (0, 1), such that the cumulative function F(t) for the
measure of f (x) satisfies F(t) = O(tγ), as t → ∞, then f (x) = O(1/xγ) as x approaches zero, by
[80, Corollary 1a, Chapter V]. As γ ∈ (0, 1), we obtain the integrability of f (x) at zero, which
is equivalent to K[ f ](x) being well-defined.

For completeness, we state the next proposition, which follows from Theorem 4.1.5.

Proposition 4.5.3 The set of CM with convex measure is{ f (x)
x

+ a : f (x) ∈ CM and a ≥ 0
}
.

Next we consider transformations that preserve certain convexity properties on measures.

Proposition 4.5.4 Suppose f (x) is completely monotone.

(a) f (x) has harmonically convex measure, if and only if f (x) − f (x + λ) has harmonically
convex measure for all λ > 0.

(b) f (x) has concave measure, if and only if f (x + λ) has concave measure for all λ > 0.

(c) f (x) has convex measure, if and only if f (x)− f (x + λ) has convex measure for all λ > 0.

Proof (a) Sufficiency is trivial by taking λ approach infinity. To see necessity, assume f (x) has
harmonically convex measure. Thus, f (x) − x f ′(x) ∈ CM by Theorem 4.1.1. Consider

( f (x) − f (x + λ)) − x( f (x) − f (x + λ))′

= ( f (x) − x f ′(x) − ( f (x + λ) − (x + λ) f ′(x + λ))) − λ f ′(x + λ).

It is completely monotone, as both terms are. Hence, completely monotone function f (x) −
f (x + λ) has harmonically convex measure by Theorem 4.1.1.

(b) Sufficiency is trivial by taking λ approach zero. To see necessity, assume f (x) has
concave measure. Thus, f (x) + x f ′(x) ∈ CM by Theorem 4.1.3. Consider

f (x + λ) + x f ′(x + λ) = ( f (x + λ) + (x + λ) f ′(x + λ)) − λ f ′(x + λ).
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It is completely monotone, as both terms are. Hence f (x + λ) has concave measure by Theo-
rem 4.1.3.

(c) Sufficiency is trivial by taking λ approach infinity. To see necessity, assume f (x) has
convex measure with mass a at {0}. Thus, x( f (x) − a) ∈ CM by Theorem 4.1.5. Clearly,
completely monotone function f (x) − f (x + λ) has measure with no mass at {0}. Consider

x( f (x) − f (x + λ)) = (x( f (x) − a) − (x + λ)( f (x + λ) − a)) + λ( f (x + λ) − a).

It is completely monotone, as both terms are such. Therefore, completely monotone function
f (x) − f (x + λ) has convex measure by Theorem 4.1.5. �

From this proposition, we can see that f (x) − f (x + λ) preserve harmonic convexity and
convexity property on the measure of f (x). Hence, if completely monotone function f (x) has
convex measure, f (x) − f (x + λ) have harmonically convex measure for any λ > 0. However,
if completely monotone function f (x) has harmonically convex measure, f (x) − f (x + λ) may
not have convex measure for any λ > 0.

Example 4.5.1 Completely monotone function

f (x) =

∫
(0,∞)

e−xt 1
t + 1

dt

has harmonically convex measure. However f (x) − f (x + λ) does not have convex measure.

In fact, the measure for f (x) has cumulative function F(t) = ln(t + 1), which is harmonically
convex, as (tF(t))′′ = (t + 2)/(t + 1)2 ≥ 0. Meanwhile,

f (x) − f (x + λ) =

∫
[0,∞)

e−xt(1 − e−λt)
1

t + 1
dt.

This completely monotone function has convex measure, if and only if (1 − e−λt)/(t + 1) is
non-decreasing for any λ > 0. However, it can be easily shown negatively. See Figure 4.1.

Figure 4.1: Function f (x) = (1 − e−λt)/(t + 1) for λ = 0.1, 1, 10.



Chapter 5

Bernstein functions with convexity on
their measures

In this chapter, we consider Bernstein functions with various convexity properties on the tail of
their measures. Different characterizations are given and the connections are studied.

Note that Bernstein function could not have Lévy measure with concave tail, nor harmoni-
cally convex tail, unless it degenerates to affine function. In fact, as mentioned in the paragraph
below Definition 2.4.3 in Section 3.4, as well as Corollary 3.5.1 part b), a Lévy measures on
(0,∞) have concave tail or harmonically convex tail if and only if it vanishes on (0,∞).

Throughout this chapter, readers will find how surprisingly resemble it is to Chapter 4.
As shown in Table 5.1 and Table 4.1, the characterization for Bernstein function whose Lévy
measure has harmonically concave tail is closely related with the one for completely monotone
functions with harmonically convex measures, while Bernstein function whose Lévy measure
has convex tail connects to completely monotone functions with concave measures. These
analogies trace back to Chapter 3, where Table 3.1 and Table 3.2 could give us a clue, as well
as Table 3.3 and Table 3.4.

Suppose g(x) is Bernstein Lévy triplet (a, b, ν). Define non-negative sequence {Bn(x)}n≥1 as

Bn(x) =
(−1)n+1

n!
g(n)(x)

for all x > 0 and n ≥ 1. Also define function on (0,∞) by

Nβ(x) := β(β − 1)
g(x)

x
− 2(β − 1)g′(x) + xg′′(x) − β(β − 1)

a
x
− (β − 1)(β − 2)b.

A summary of our main results are given in Table 5.1 and Table 5.2.

5.1 Characterizations

In this section, we characterize Bernstein functions with various convexity properties on their
tails. The results correspond to the ones numbered (a) in Table 5.1.

76
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Table 5.1: Characterization for g(x) ∈ BF with convexity properties on its Lévy measure ν

Property on ν No. Characterization Reference

harmonically
concave tail

(a) g(x) − xg′(x) ∈ BF Thm 5.1.1

(b) λg(x) − x(g(x + λ) − g(x)) ∈ BF , ∀λ > 0 Thm 5.2.1

(c) (n − 1)Bn(x) ≤ (n + 1)xBn+1(x), ∀n ≥ 1 Thm 5.3.1

convex tail

(a) g(x) + xg′(x) ∈ BF Thm 5.1.3

(b) λg(x) + x(g(x + λ) − g(x)) ∈ BF , ∀λ > 0 Thm 5.2.2

(c) Bn(x) ≥ xBn+1(x), ∀n ≥ 1 Thm 5.3.2

concave tail g(x) = a + bx N/A

harmonically
convex tail

g(x) = a + bx Cor 3.5.1 b)

Table 5.2: Characterization for g(x) ∈ BF with β-convexity convexity on its Lévy measure ν

Property on ν Characterization Reference

β-convex tail Nβ(x) ∈ CM Thm 5.4.1 a)

β-concave tail −Nβ(x) ∈ CM Thm 5.4.1 b)

5.1.1 Measures with harmonically concave tail
Theorem 5.1.1 (Harmonically concave tail) Suppose g(x) is Bernstein with triplet (a, b, ν).
Then, measure ν has harmonically concave tail if and only if g(x) − xg′(x) ∈ BF .

Proof By Lemma 2.4.2, measure ν has harmonically concave tail if and only if tν̄(t) is concave.
Recall formula (2.25).

g(x) − xg′(x) = a + x2
∫

(0,∞)
e−txtν̄(t) dt.

First suppose g(x)− xg′(x) ∈ BF . So is r(x) := g(x)− xg′(x)−a. We prove that tν̄(t) is concave.
One can see that r(x)/x2 is the Laplace transform of tν̄(t). Define the functions

Gn(t) := Ln

(r(x)
x2 ; t

)
=

(−1)n

n!
xn+1

(r(x)
x2

)(n)∣∣∣∣
x=n/t

,
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where the operator Ln(·; t) is defined by (2.11). By Theorem 2.1.4, we know limn→∞Gn(t) =

tν̄(t) at every point of continuity ν̄(t). By Lemma A.1.12, to show tν̄(t) is concave, it suffices to
show Gn(t) is concave for all n ≥ 1. Indeed, by (2.14), we obtain

G′n(x) =
(−1)n

n!

(
xn+1

(r(x)
x2

)(n))′∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+1

n · n!
xn+2

(r(x)
x

)(n+1)∣∣∣∣
x=n/t

.

As well as

G′′n (x) =
(−1)n+1

n · n!

(
xn+2

(r(x)
x

)(n+1))′∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+2

n2 · n!
xn+3r(n+2)(x)

∣∣∣∣
x=n/t

.

As r(x) ∈ BF , we conclude that G′′n (x) ≤ 0, implying Gn(x) is convex for all n ≥ 1. Therefore,
ν has harmonically concave tail.

Conversely, suppose now ν has harmonically concave tail, we prove that g(x) − xg′(x) is
Bernstein. Since tν̄(t) is concave and non-negative on (0,∞), it has to be non-decreasing.
Recall (2.25), and taking limit after applying Theorem A.2.6:

g(x) − xg′(x) − a = x2
∫

(0,∞)
e−txtν̄(t) dt = −x

∫
(0,∞)

tν̄(t) d(e−tx)

= −xtν̄(t)e−tx
∣∣∣∣∞
t=0+

+ x
∫

(0,∞)
e−tx d(tν̄(t)).

By (2.22), (2.24) and Lemma A.2.9, we have

g(x) − xg′(x) − a = x
∫

(0,∞)
e−tx d(tν̄(t)) = x

∫
(0,∞)

e−tx(tν̄(t))′ dt

= (1 − e−tx)(tν̄(t))′
∣∣∣∣∞
t=0+

+

∫
(0,∞)

(1 − e−tx) d(−(tν̄(t))′).

As noted above, tν̄(t) is non-negative and non-decreasing. Therefore, limt→∞(tν̄(t))′ = c ≥ 0.
Also note the above calculation implies (tν̄(t))′ is integrable on (0, 1), and by Lemma A.2.1,
limt→0+(1 − e−tx)(tν̄(t))′ = limt→0+ t(tν̄(t))′ = 0. Therefore,

g(x) − xg′(x) = (a + c) +

∫
(0,∞)

(1 − e−xt) d(−(tν̄(t))′).

The left-hand side defines a Bernstein function. The closes the proof. �

Notice that we have already represent Bernstein functions whose measure has harmonically
concave tail in Proposition 3.2.2. There could be an alternative proof.

Alternative proof for Theorem 5.1.1 Suppose g(x) has Lévy triplet (a, b, ν). If ν has harmon-
ically concave tail, by Proposition 3.2.2, we know g(x) has representation (3.15). Thus, using
[31, Theorem A.5.2] for differentiating under the integral, we have

g(x) − xg′(x) = a +

∫
(0,∞)

(
1 +

x2

s2 k′
( x

s

))
τ(ds) = a +

∫
(0,∞)

(1 − e−x/s) τ(ds),
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where a ≥ 0 and τ satisfies integrability condition (3.8). The integral is convergent and g(x) −
xg′(x) is Bernstein.

Conversely, suppose g(x) − xg′(x) is Bernstein with Lévy-Khintchine representation:

g(x) − xg′(x) = a′ + b′x +

∫
(0,∞)

(1 − e−xt) η(dt),

where a′, b′ ≥ 0, and η satisfies (2.17). Notice that

b′ = lim
x→∞

g(x) − xg′(x)
x

= lim
x→∞

g(x)
x
− lim

x→∞
g′(x) = b − b = 0.

Therefore, we obtain

−g′′(x) =
(g(x) − xg′(x))′

x
=

1
x

∫
(0,∞)

e−xtt η(dt).

Integrating twice both sides of this equality and using Fubini’s theorem, we obtain

g(x) − a − bx =

∫
(0,x)

∫
(v,∞)
−g′′(u) du dv =

∫
(0,x)

∫
(v,∞)

∫
(0,∞)

e−utt
u

η(dt) du dv

=

∫
(0,∞)

( ∫
(0,x]

∫
(0,u)

e−ut

u
dv du +

∫
(x,∞)

∫
(0,x)

e−ut

u
dv du

)
t η(dt)

=

∫
(0,∞)

(1 − e−xt

t
+ xE1(xt)

)
t η(dt) =

∫
(0,∞)

(1 − xtk(xt)) η(dt).

Here k(x) is defined in (3.9). The penultimate equality gives the following identity, which is
needed later.

g(z) − a − bz =

∫
(0,∞)

(1 − e−zt) η(dt) + z
∫

(0,∞)
tE1(zt) η(dt). (5.1)

Denote η̄(s) = η(s,∞). Utilizing the fact that η̄(1/s) is non-decreasing, define measure τ on
(0,∞) by τ(ds) = dη̄(1/s). Thus, changing variable t = 1/s, we have

g(x) = a + bx +

∫
(0,∞)

(
1 −

x
s

k
( x

s

))
τ(ds).

We only need to show that τ satisfies (3.8). Since η is a Lévy measure,

τ(0, 1] =

∫
(0,1]

dη̄(1/s) = η̄(1) − lim
s→0+

η̄(1/s) = η̄(1) < ∞.

Besides, by Lemma A.1.6, we have − ln(t) ≤ exE1(xt) for every t ∈ (0, 1) and x > 0. Therefore,∫
(1,∞)

ln(s)
s

τ(ds) =

∫
(1,∞)

ln(s)
s

dη̄(1/s) =

∫
(0,1)
−t ln(t) η(dt)

≤ ex
∫

(0,1)
tE1(xt) η(dt) ≤ ex

∫
(0,∞)

tE1(xt) η(dt).

The finiteness of the last integral follows from (5.1). We conclude τ satisfies (3.8) and close
the proof. �
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Example 5.1.2 Function

lt(x) = x
∫

(x,∞)

(1 − e−st)
s2 ds

is Bernstein whose Lévy measure has harmonically convex tail for all t > 0.

Proof First notice lt(x) ≥ 0. And the first derivative is

l′t(x) =

∫
(x,∞)

(1 − e−st)
s2 ds −

(1 − e−xt)
x

≥ (1 − e−xt)
∫

(x,∞)

1
s2 ds −

(1 − e−xt)
x

= 0.

The second derivative is

−l′′t (x) =
(1 − e−xt)

x2 +
e−xtxt − (1 − e−xt)

x2 =
e−xtt

x
∈ CM.

By definition, lt(x) is Bernstein. Notice

lt(x) − xl′t(x) = 1 − e−xt ∈ BF .

By Theorem 5.1.1, we know lt(x) has Lévy measure with harmonically convex tail. �

As the composition of two Bernstein functions is still such, it follows the next corollary.

Corollary 5.1.1 Suppose g(x) is Bernstein with Lévy measure ν. For any real α, consider

(g(x) − xg′(x))α. (5.2)

(a) If (5.2) is Bernstein for some α ≥ 1, then the measure ν has harmonically concave tail.

(b) If the measure ν has harmonically concave tail, then (5.2) is Bernstein for any 0 ≤ α ≤ 1.

It can be shown that the set of Bernstein functions whose Lévy measures have harmonically
concave tails is a convex cone, and it is closed under non-negative scalar multiplication and
scaling. That is, if g1(x) and g2(x) are Bernstein functions whose Lévy measures ν1 and ν2

have harmonically concave tails, then so are

λg1(x) + (1 − λ)g2(x) and cg1(ρx),

for λ ∈ [0, 1] and c, ρ ≥ 0. They follow trivially from the fact that the tail for the measure of
above Bernstein functions are

λν̄1(t) + (1 − λ)ν̄2(t) and cν̄1(t/ρ).

One can also use Theorem 5.1.1 to verify. In addition, Theorem 5.1.1 implies that the afore-
mentioned set is closed under point-wise limit.

Corollary 5.1.2 Let {gn(x)}n∈N be a sequence of Bernstein functions such that their point-wise
limit g(x) = limn→∞ gn(x) exists for x on (0,∞). If gn(x) has Lévy measure with harmonically
concave tail for all n ≥ 1, then g(x) is also Bernstein whose Lévy measure has harmonically
concave tail.
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Proof It is shown in Proposition 2.2.2 that g(x) ∈ BF and g′(x) = limn→∞ g′n(x). Notice that
gn(x) − xg′n(x) ∈ BF for all n ≥ 1 by Theorem 5.1.1. Therefore, for all x ∈ (0,∞) we obtain

g(x) − xg′(x) = lim
n→∞

gn(x) − xg′n(x).

As BF is closed under point-wise limit, we conclude g(x) − xg′(x) ∈ BF . This implies g(x)
has Lévy measure with harmonically concave tail by Theorem 5.1.1. �

We conclude this subsection with another curious fact. On one hand, if g(x) − xg′(x) is
Bernstein, then, so is g(x)− xg′(x)− a and hence (g(x)− xg′(x)− a)/x is completely monotone,
where a is from the Lévy triplet of g(x); on the other hand, if tν̄(t) is concave and positive on
(0,∞) then it is non-decreasing, and hence

x 7→
∫

(0,x]
tν̄(t) dt (5.3)

is a convex function. Theorem 5.1.1 shows that the premises in both ‘if-then’ clauses are
equivalent. The next proposition shows that the conclusions are also necessary and sufficient
for each other.

Proposition 5.1.1 Suppose g(x) is Bernstein with Lévy triplet (a, b, ν). Then, function (5.3) is
convex if and only if (g(x) − a)/x − g′(x) is completely monotone.

Proof Consider the function
V(x) :=

∫
(0,x]

tν̄(t) dt

which is finite for all x > 0 by (2.24). Dividing both sides of (2.25) by x gives

(g(x) − a)/x − g′(x) = x
∫

(0,∞)
e−txtν̄(t) dt = x

∫
(0,∞)

e−tx dV(x).

By Theorem 4.1.5, function V(x) is convex if and only if (g(x) − a)/x − g′(x) is completely
monotone. �

5.1.2 Measures with convex tail
Theorem 5.1.3 (Convex tail) Suppose g(x) is Bernstein with Lévy measure ν. Then, ν has
convex tail, if and only if g(x) + xg′(x) ∈ BF .

Proof First suppose g(x) + xg′(x) ∈ BF . We want to show ν̄(t) is convex. This proof utilizes
Inverse Laplace transformation formula in Theorem 2.1.4. By (2.23), we have

g(x) − a
x

− b =

∫
(0,∞)

e−xtν̄(t) dt.

Define for every n ≥ 1,

Gn(t) := Ln

(g(x) − a
x

− b; t
)
.
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Here operator Ln(·, t) is defined by (2.11). Notice Ln(a/x; t) = a, Ln(b; t) = 0 for all n ≥ 1. The
above formula simplifies into

Gn(t) = Ln

(g(x)
x

; t
)
− a =

(−1)n

n!
xn+1

(g(x)
x

)(n)∣∣∣∣
x=n/t
− a.

By Theorem 2.1.4, we know that limn→∞Gn(t) = ν̄(t) at every point of continuity of ν̄(t).
Notice ν̄(t) is non-increasing and right continuous. By Lemma A.1.12, it suffices to show Gn(t)
is convex for all n ≥ 1. Observe

G′n(t) =
(−1)n

n!

(
xn+1

(g(x)
x

)(n))′∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+1

n · n!

(
xn+2g(n+1)(x)

)∣∣∣∣
x=n/t

.

The second equation is due to (2.14). And also

G′′n (t) =
(−1)n+1

n · n!

(
xn+2g(n+1)(x)

)′∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+2

n2 · n!
xn+3

(
xg(x)

)(n+2)∣∣∣∣
x=n/t

.

As (xg(x))′ = g(x) + xg′(x) ∈ BF , we know (−1)n+2(xg(x))(n+2) ≥ 0 for all n ≥ 1. So Gn(t) is
convex for all n ≥ 1.

Conversely, suppose now g(x) is Bernstein with Lévy triplet (a, b, ν) where ν has convex
tail. We prove that g(x) + xg′(x) is Bernstein. Using (2.23), (2.25) and Lemma A.2.7,

g(x) + xg′(x) = 2g(x) − (g(x) − xg′(x))

= a + 2bx +

∫
(0,∞)

(1 − e−xt) ν(dt) + x
∫

(0,∞)
e−xtν̄(t) dt − x2

∫
(0,∞)

e−txtν̄(t) dt

= a + 2bx +

∫
(0,∞)

(1 − e−xt) ν(dt) + x
∫

(0,∞)
ν̄(t) d(te−xt)

= a + 2bx +

∫
(0,∞)

(1 − e−xt) ν(dt) + xν̄(t)te−xt
∣∣∣∣∞
t=0
− x

∫
(0,∞)

te−xt dν̄(t).

The limits (2.22) and (2.24) implies limt→∞ ν̄(t)te−xt = limt→0 ν̄(t)te−xt = 0. As ν̄(t) is convex,

g(x) + xg′(x) = a + 2bx +

∫
(0,∞)

(1 − e−xt) ν(dt) − x
∫

(0,∞)
te−xt dν̄(t)

= a + 2bx −
∫

(0,∞)
(1 − e−xt)ν̄′(t) dt − x

∫
(0,∞)

te−xtν̄′(t) dt

= a + 2bx −
∫

(0,∞)
ν̄′(t) d(t(1 − e−xt))

= a + 2bx − ν̄′(t)t(1 − e−xt)
∣∣∣∣∞
t=0

+

∫
(0,∞)

t(1 − e−xt) dν̄′(t).

Integrability condition (2.17) and the convexity of ν̄(t) implies

1
2

∫
(0,1)

(−ν̄′(t)) dt2 =

∫
(0,1)

t(−ν̄′(t)) dt < ∞ and
∫

(1,∞)
(−ν̄′(t)) dt < ∞.
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Notice (−ν̄′(t)) ≥ 0 is non-increasing. The first inequality, by Lemma A.2.1, implies

lim
t→0

ν̄′(t)t(1 − e−xt) = lim
t→0

ν̄′(t)t2 = 0,

while the second inequality implies limt→∞ tν̄′(t) = 0 by Lemma A.2.2. Therefore, we obtain

g(x) + xg′(x) = a + 2bx +

∫
(0,∞)

(1 − e−xt)t dν̄′(t).

Notice that ν̄′(t) is non-decreasing. So g(x) + xg′(x) is Bernstein with Lévy measure defined
by t dν̄′(t). Its integrability follows from the existence of g(x) + xg′(x). Indeed, integrating by
parts again, one could verify the measure tdν̄′(t) satisfies (2.17). The proof is complete. �

Notice that we have already represent Bernstein functions whose Lévy measure has har-
monically concave tail in Proposition 3.3.2. There could be an alternative proof.

Alternative proof for Theorem 5.1.3 Suppose g(x) has Lévy triplet (a, b, ν). If ν has convex
tail, using representation (3.26), we have that

g(x) + xg′(x) = a + 2bx +

∫
(0,∞)

(1 − r(xs) − xsr′(xs)) τ(ds) = a + 2bx +

∫
(0,∞)

(1 − e−xs) τ(ds).

Here r(x) is defined in (3.21). Since τ is a Lévy measure by Proposition 3.3.2, we obtain
g(x) + xg′(x) is Bernstein.

Conversely, if g(x) + xg′(x) is Bernstein with Lévy triplet (a′, b′, η), we know

g(x) + xg′(x) = a′ + b′x +

∫
(0,∞)

(1 − e−xt) η(dt).

Note that g(x) + xg′(x) = (xg(x))′ and limx→0 xg(x) = 0 by (2.18). Hence, we have

xg(x) =

∫
(0,x)

(
a′ + b′u +

∫
(0,∞)

(1 − e−ut) η(dt)
)

du = a′x +
b′

2
x2 +

∫
(0,∞)

∫
(0,x)

(1 − e−ut) du η(dt)

= a′x +
b′

2
x2 +

∫
(0,∞)

(
x −

1 − e−xt

t

)
η(dt).

Dividing both sides by x gives

g(x) = a′ +
b′

2
x +

∫
(0,∞)

(1 − r(xt)) η(dt),

where a′, b′ ≥ 0, r(x) is defined in (3.21), and η is a Lévy measure. Proposition 3.3.2 implies
that ν has convex tail. �

Example 5.1.4 Function

lt(x) = 1 −
1 − e−xt

xt
is Bernstein function whose Lévy measure has convex tail for all t > 0.
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Proof Notice (1 − e−xt)/xt ∈ CM and is bounded from above by 1, as 1 − e−xt ≤ xt for x > 0
and t > 0. So lt(x) is Bernstein. Note that

lt(x) + xl′t(x) = 1 − e−xt ∈ BF .

By Theorem 5.1.3, we know the Lévy measure for lt(x) has convex tail. �

As composition of Bernstein functions are Bernstein, next corollary follows trivially.

Corollary 5.1.3 Suppose g(x) is Bernstein with Lévy measure ν.

(a) if (xg(x))α is Bernstein for some α ≥ 1, then ν has convex tail;

(b) if ν has convex tail, then (xg(x))α is Bernstein for all 0 ≤ α ≤ 1.

It can be shown that the set of Bernstein functions whose Lévy measures have convex tails
is a convex cone, and it is closed under non-negative scalar multiplication and scaling. That is,
if g1(x) and g2(x) are Bernstein functions whose Lévy measures ν1 and ν2 have convex tails,
then so are

λg1(x) + (1 − λ)g2(x) and cg1(ρx),

for λ ∈ [0, 1] and c, ρ ≥ 0. They follow trivially from the fact that the tail for the measure of
above Bernstein functions are

λν̄1(t) + (1 − λ)ν̄2(t) and cν̄1(t/ρ).

One can also use Theorem 5.1.3 to verify. In addition, Theorem 5.1.3 implies that the afore-
mentioned set is closed under point-wise limit.

Corollary 5.1.4 Let {gn(x)}n∈N be a sequence of Bernstein functions such that their point-wise
limit g(x) = limn→∞ gn(x) exists for x on (0,∞). If gn(x) has Lévy measure with convex tail for
all n ≥ 1, then g(x) is also Bernstein whose Lévy measure has convex tail.

Proof It is shown in Proposition 2.2.2 that g(x) ∈ BF and g′(x) = limn→∞ g′n(x). Notice that
gn(x) + xg′n(x) ∈ BF for all n ≥ 1 by Theorem 5.1.3. Therefore, for all x ∈ (0,∞) we obtain

g(x) + xg′(x) = lim
n→∞

gn(x) + xg′n(x).

As BF is closed under point-wise limit, we conclude g(x) + xg′(x) ∈ BF . This implies g(x)
has Lévy measure with convex tail by Theorem 5.1.3. �

5.2 Derivative free characterizations
In this section, we try to remove the derivatives in the characterizations in previous Section 4.1.
The results correspond to the ones numbered (b) in Table 3.4.
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5.2.1 Measures with harmonically concave tail
Lemma 5.2.1 Suppose g(x) is Bernstein with Lévy triplet (a, b, ν). Then, Lévy measure ν has
harmonically concave tail if and only if λg(x) − x(g(x + λ) − g(x)) is Bernstein for all λ > 0.

Proof We show sufficiency first. If λg(x) − x(g(x + λ) − g(x)) is Bernstein for all λ > 0, so is

g(x) −
x(g(x + λ) − g(x))

λ
.

Letting λ approach 0, we know g(x) − xg′(x) is Bernstein. By Theorem 5.1.1, measure ν has
harmonically concave tail.

For necessity, assume measure ν has harmonically concave tail. Denote

Λ(x) := λg(x) − x(g(x + λ) − g(x)) = (λ + x)g(x) − xg(x + λ).

We show Λ(x) is Bernstein for all λ > 0. As g(x) is concave, and g(x) − xg′(x) ∈ BF by
Theorem 5.1.1,

Λ(x) = (λ + x)g(x) − xg(x + λ) ≥ (λ + x)g(x) − x[g(x) + λg′(x)] = λ[g(x) − xg′(x)] ≥ 0.

In addition,

Λ′(x) = (λ + x)g′(x) + g(x) − g(x + λ) − xg′(x + λ)

=
[(

g(x + λ) − (x + λ)g′(x + λ)
)
−

(
g(x) − xg′(x)

)]
− 2g(x + λ) + λg′(x + λ) + 2g(x) + λg′(x).

As g(x) − xg′(x) ∈ BF , we know (g(x + λ) − (x + λ)g′(x + λ)) − (g(x) − xg′(x)) is completely
monotone by fact 6 in section 2.2.1. It suffices to show

−2g(x + λ) + λg′(x + λ) + 2g(x) + λg′(x) ∈ CM.

By Lévy-Khintchine representation (2.16), we obtain

−2g(x + λ) + λg′(x + λ) + 2g(x) + λg′(x) =

∫
(0,∞)

e−xt(−2 + 2e−λt + λt + λte−λt) ν(dt).

By Lemma A.1.4, we know −2 + 2e−λt + λt + λte−λt ≥ 0 for all t > 0 and λ > 0. Therefore, the
above function is completely monotone and the proof is complete. �

5.2.2 Measures with convex tail
Lemma 5.2.2 Suppose g(x) is Bernstein with Lévy triplet (a, b, ν). Then measure ν has convex
tail, if and only if λg(x) + x(g(x + λ) − g(x)) is Bernstein for all λ > 0.

Proof We show sufficiency first. If λg(x) + x(g(x + λ) − g(x)) is Bernstein for all λ > 0, so is

g(x) +
x(g(x + λ) − g(x))

λ
.
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Letting λ approach 0, we know g(x) + xg′(x) is Bernstein. By Theorem 5.1.3, measure ν has
convex tail.

For necessity, assume measure ν has convex tail. Denote

Λ(x) := λg(x) + x(g(x + λ) − g(x)) = xg(x + λ) − (x − λ)g(x).

We show that Λ(x) is Bernstein for all λ > 0. It is trivial that Λ(x) ≥ 0 for x ≤ λ. For x > λ, as
g(x) is concave, we obtain

Λ(x) = xg(x + λ) − (x − λ)g(x)
≥ xg(x + λ) − (x − λ)[g(x + λ) − λg′(x + λ)] = λg(x + λ) + (x − λ)λg′(x + λ) ≥ 0.

Thus, it suffices to show Λ′(x) is completely monotone for all λ > 0.

Λ′(x) = g(x + λ) + xg′(x + λ) − (x − λ)g′(x) − g(x)
= g(x + λ) + (x + λ)g′(x + λ) − g(x) − xg′(x) + λ(g′(x) − g′(x + λ)).

As g(x)+xg′(x) is Bernstein, by Theorem 5.1.3 we know g(x+λ)+(x+λ)g′(x+λ)−g(x)−xg′(x) is
completely monotone. In addition, as g′(x) is completely monotone, we know g′(x)−g′(x+λ) ∈
CM, so is Λ′(x). The proof is complete. �

5.3 Sequential characterizations
In this section, we characterize same subjects in term of sequences. Suppose g(x) is Bernstein.
Define a non-negative sequence {Bn(x)} as

Bn(x) =
(−1)n+1

n!
g(n)(x)

for all x > 0 and n ≥ 1. The shape of its Lévy measure can be characterized by {Bn(x)}n. The
results correspond to the ones numbered (c) in Table 5.1.

5.3.1 Measures with harmonically concave tail
Theorem 5.3.1 Suppose g(x) is Bernstein with Lévy measure ν. Then, measure ν has harmon-
ically concave tail, if and only if the sequence {Bn(x)}n≥1 satisfies

n − 1
n + 1

Bn(x) ≤ xBn+1(x) (5.4)

for all x > 0 and n ≥ 1.

Proof Proof of sufficiency. We need to show ν̄(t) is harmonically concave, given (5.4). It
suffices to show tν̄(t) is concave. This proof utilizes Inverse Laplace transformation formula in
Theorem 2.1.4. Noticing (2.23), we have

−

(g(x) − a
x

)′
=

∫
(0,∞)

e−xttν̄(t) dt.
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Define for every n ≥ 1,

Gn(t) := Ln

(
−

(g(x) − a
x

)′
; t
)
.

Notice that

Ln

((a
x

)′
; t
)

=
(−1)n

n!
xn+1

(a
x

)(n+1)∣∣∣∣
x=n/t

= −
(n + 1)t

n
.

So Gn(x) simplifies into

Gn(t) :=
(−1)n+1

n!
xn+1

(g(x)
x

)(n+1)∣∣∣∣
x=n/t
−

(n + 1)t
n

.

By Theorem 2.1.4, limn→∞Gn(t) = tν̄(t) at every point of continuity of ν̄(t). By lemma (A.1.12),
it suffices to show Gn(t) is concave for all n ≥ 1. Notice Gn(t) is infinitely differentiable.
Observe

G′n(t) =
(−1)n+2

n · n!

(
(n + 1)x(n+2)

(g(x)
x

)(n+1)
+ xn+3

(g(x)
x

)(n+2))∣∣∣∣
x=n/t
−

n + 1
n

.

By (2.14), we obtain

G′′n (t) =
(−1)n+2

n · n!

(
(n + 1)xn+1g(n+2)(x) + xn+2g(n+3)(x)

)∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+3

n2 · n!

(
(n + 1)xn+3g(n+2)(x) + xn+4g(n+3)(x)

)∣∣∣∣
x=n/t

=
(n + 1)2(n + 2)

n2 xn+3Bn+2(x) −
(n + 1)(n + 2)(n + 3)

n2 xn+4Bn+3(x)
∣∣∣∣
x=n/t

≤
(n + 1)(n + 2)(n + 3)

n2

(
xn+4Bn+3(x) − xn+4Bn+3(x)

)∣∣∣∣
x=n/t

= 0.

The last inequality implements (5.4). So Gn(t) is concave for all n ≥ 1.
Proof of necessity. Suppose measure ν has harmonically concave tail. We want to show

inequality (5.4) holds. The case n = 1 is trivial as Bn(x) ≥ 0. Consider n ≥ 2.
As ν has harmonically concave tail, function ν̄(1/t) is concave, which implies its left deriva-

tive (ν̄(1/t))′− = −ν̄′(1/t)/t2 is non-increasing, indicating ν̄′(t)t2 is non-increasing. Noticing
limt→∞ ν̄(t) = 0 and taking limits in (2.38), we obtain

−ν̄(t) =

∫
(t,∞)

ν̄′(s) ds.

Therefore, for any n ≥ 2,

Bn(x) =
(−1)n+1

n!
g(n)(x) =

1
n!

∫
(0,∞)

e−xttn ν(dt) = −

∫
(0,∞)

tn

n!
e−xtν̄′(t) dt

= −
tn+1

(n + 1)!
e−xtν̄′(t)

∣∣∣∣t=∞
t=0

+

∫
(0,∞)

tn+1

(n + 1)!
d(e−xtν̄′(t)).

By Lemma A.1.11, we have

lim
t→∞

tn+1e−xtν̄′(t) = 0, and lim
t→0

tn+1e−xtν̄′(t) = lim
t→0

tn−1e−xtν̄′(t)t2 = 0.
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for n ≥ 2 and x > 0. Therefore by Lemma A.2.7 and the finiteness of Bn(x),

Bn(x) =

∫
(0,∞)

tn+1

(n + 1)!
d(e−xtt−2t2ν̄′(t))

= −x
∫

(0,∞)

tn+1

(n + 1)!
e−xtν̄′(t) dt − 2

∫
(0,∞)

tn+1

(n + 1)!
e−xtt−3t2ν̄′(t) dt

+

∫
(0,∞)

tn+1

(n + 1)!
e−xtt−2 d(t2ν̄′(t))

≤ x
∫

(0,∞)

tn+1

(n + 1)!
e−xt ν(dt) +

2
n + 1

∫
(0,∞)

tn

n!
e−xt ν(dt)

= xBn+1(x) +
2

n + 1
Bn(x).

It simplifies into (5.4). This closes the proof. �

In fact, the condition (5.4) is equivalent to g(x)− xg′(x) ∈ BF . By Lemma A.1.1, we know
g(x) − xg′(x) ∈ BF is equivalent to

(−1)n(−xg(n+1)(x) − (n − 1)g(n)(x)) ≤ 0,

for all n ≥ 1. Rewriting the above inequality in terms of Bn(x) reveals (5.4).

5.3.2 Measures with convex tails
Theorem 5.3.2 Suppose g(x) is Bernstein with Lévy measure ν. Then, measure ν has convex
tail, if and only if the sequence {Bn(x)}n≥1 satisfies

Bn(x) ≥ xBn+1(x) (5.5)

for all x > 0 and n ≥ 1.

Proof Proof of sufficiency. We need to show ν̄(t) is convex given (5.5). This proof utilizes
Inverse Laplace transformation formula in Theorem 2.1.4. By (2.23), we have

g(x) − a
x

− b =

∫
(0,∞)

e−xtν̄(t) dt.

Define for every n ≥ 1,

Gn(t) := Ln

(g(x) − a
x

− b; t
)
.

Notice that Ln(a/x; t) = a and Ln(b; t) = 0 for all n ≥ 1. The above formula simplifies into

Gn(t) =
(−1)n

n!
xn+1

(g(x)
x

)(n)∣∣∣∣
x=n/t
− a.

By Theorem 2.1.4, we know limn→∞Gn(t) = ν̄(t) at every point of continuity for ν̄(t). To show
ν has convex tail, by lemma A.1.12, it suffices to show Gn(t) is convex for all n ≥ 1. Notice
Gn(x) is infinitely differentiable. Observe

G′n(t) =
(−1)n+1

n · n!
xn+2g(n+1)(x)

∣∣∣∣
x=n/t

.
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And also

G′′n (t) =
(−1)n+1

n · n!

(
(n + 2)xn+1g(n+1)(x) + xn+2g(n+2)(x)

)∣∣∣∣
x=n/t

(
−

n
t2

)
=

(−1)n+2

n2 · n!

(
(n + 2)xn+3g(n+1)(x) + xn+4g(n+2)(x)

)∣∣∣∣
x=n/t

=
(n + 2)!
n2 · n!

xn+3Bn+1(x) −
(n + 2)!
n2 · n!

xn+4Bn+2(x)
∣∣∣∣
x=n/t

≥
(n + 2)!
n2 · n!

(
xn+4Bn+2(x) − xn+4Bn+2(x)

)∣∣∣∣
x=n/t

= 0.

We use (5.4) in the last inequality. So Kn(t) is convex for all n ≥ 1.
Proof of necessity. Suppose measure ν has convex tail. We show inequality (5.5) holds. It

suffices to show (5.5) for a = b = 0 in (2.16). As ν̄(t) is convex, its right derivative ν̄′(t) is
non-decreasing. Noticing limt→∞ ν̄(t) = 0 and taking limits in (2.38), we get

−ν̄(t) =

∫
(t,∞)

ν̄′(s) ds.

Therefore, for any n ≥ 1,

Bn(x) =
(−1)n+1

n!
g(n)(x) =

1
n!

∫
(0,∞)

e−xttn ν(dt) = −

∫
(0,∞)

tn

n!
e−xtν̄′(t) dt

= −
tn+1

(n + 1)!
e−xtν̄′(t)

∣∣∣∣t=∞
t=0

+

∫
(0,∞)

tn+1

(n + 1)!
d(e−xtν̄′(t)).

As tne−xtν̄′(t) is integrable at infinity, its limit is zero when t approaches infinity for all x > 0,
which implies

lim
t→∞

tn+1e−xtν̄′(t) = 0,

for all x > 0. On the other hand, from (2.17), we obtain

2
∫

(0,1)
t ν(dt) = −

∫
(0,1)

2tν̄′(t) dt =

∫
(0,1)
−ν̄′(t) dt2 < ∞.

Noticing −ν̄′(t) ≥ 0 is non-increasing, by Lemma A.2.1, we obtain ν̄′(t) is o(1/t2) when t
approaches zero. That is limt→0 ν̄

′(t)t2 = 0. Thus,

lim
t→0

tn+1e−xtν̄′(t) = lim
t→0

tn−1e−xtν̄′(t)t2 = 0,

for all n ≥ 1 and x > 0. Therefore, by Lemma A.2.7 and noticing the finiteness of Bn+1(x), we
obtain

Bn(x) = −x
∫

(0,∞)

tn+1

(n + 1)!
e−xtν̄′(t) dt +

∫
(0,∞)

tn+1

(n + 1)!
e−xt dν̄′(t)

≥ x
∫

(0,∞)

tn+1

(n + 1)!
e−xt ν(dt) = xBn+1(x).

It simplifies into (5.5). This closes the proof. �
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In fact, the condition (5.5) is equivalent to g(x) + xg′(x) ∈ BF . Note that g(x) + xg′(x) ≥ 0
holds trivially. By Lemma A.1.1, we know g(x) + xg′(x) ∈ BF is equivalent to

(−1)n+1(xg(n+1)(x) + (n + 1)g(n)(x)) ≥ 0,

for all n ≥ 1. Rewriting the above inequality in terms of Bn(x) connects to (5.5).
In addition, notice that there is a sub-class of Bernstein functions such that both (5.4) and

(5.5) hold, in which the Lévy measures have both harmonically concave tail and convex tail.
For example, Bernstein function g(x) = xα has Lévy measure which has both harmonically
concave tail and convex tail if α ∈ (0, 1).

5.4 Bernstein functions with β-convexity or β-concavity
In this section, we characterize Bernstein functions with β-convexity properties on the tails of
Lévy measures. See Section (2.5) for definitions. These results generalize the characterizations
in previous sections this chapter.

5.4.1 Characterizations
In Theorem 5.4.1, Bernstein functions whose measures have β-concave tail and β-convex tail
are considered.

Theorem 5.4.1 Suppose g(x) is Bernstein with Lévy triplet (a, b, ν). Consider the function

Nβ(x) = β(β − 1)
g(x)

x
− 2(β − 1)g′(x) + xg′′(x) − β(β − 1)

a
x
− (β − 1)(β − 2)b. (5.6)

(a) Measure ν has β-convex tail, if and only if Nβ(x) is completely monotone.

(b) Measure ν has β-concave tail, if and only if −Nβ(x) is completely monotone.

Proof Notice Nβ(x) can be rewritten as

Nβ(x) := β(β − 1)
g(x) − a − bx

x
− 2(β − 1)(g′(x) − b) + xg′′(x).

Without loss of generality, we can assume a = b = 0. Otherwise consider g(x) − a − bx. By
(2.23) we have

g(x) = x
∫

(0,∞)
e−xtν̄(t) dt. (5.7)

(a) We show sufficiency first. Suppose Nβ(x) is completely monotone. Anticipating the use of
Inversion formula in Theorem 2.1.4, define

Gn(t) := Ln

(g(x)
x

; t
)

= (−1)nxn+1
(g(x)

x

)(n)∣∣∣∣
x=n/t

, (5.8)
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where the operator Ln is defined in (2.11). Theorem 2.1.4 part b) shows that limn→∞Gn(t) = ν̄(t)
for every point of continuity of ν̄(t). By Lemma A.1.12, it suffices to show tβGn(t) is convex on
(0,∞) for every n ≥ 1. Notice that by (2.14),

G′n(t) = (−1)n
(
xn+1

(g(x)
x

)(n))′∣∣∣∣
x=n/t

(
−

n
t2

)
= (−1)n+1 1

n
xn+2g(x)(n+1)

∣∣∣∣
x=n/t

,

and

G′′n (t) = (−1)n+1 1
n

(
xn+2g(x)(n+1)

)′∣∣∣∣
x=n/t

(
−

n
t2

)
= (−1)n+2 1

n2 xn+3(xg(x))(n+2)
∣∣∣∣
x=n/t

.

So we have

(tβGn(t))′′ = tβ−2
(
β(β − 1)Gn(t) + 2βtGn(t)′ + t2Gn(t)′′

)
= tβ−2xn+1(−1)nN(n)

β (x)
∣∣∣∣
x=n/t

.

As Nβ(x) is completely monotone, we know (−1)nN(n)
β (x) ≥ 0 for all x > 0 and n ≥ 1, which

implies tβGn(t) is convex.
Now we show necessity. Suppose measure ν has β-convex tail. As a result, function tβν̄(t)

is convex and s1−βν̄(1/s) is also convex by Corollary 2.5.1. We prove that Nβ(x) is completely
monotone. By (5.7) and change of variable s = 1/t,

g(x)
x

=

∫
(0,∞)

e−xtν̄(t) dt =

∫
(0,∞)

e−x/ss−2ν̄(1/s) ds.

Therefore, differentiating under integral by [31, Theorem A.5.2], we have

g′(x) =

∫
(0,∞)

e−x/ss−2ν̄(1/s) ds − x
∫

(0,∞)
e−x/ss−3ν̄(1/s) ds,

g′′(x) = −2
∫

(0,∞)
e−x/ss−3ν̄(1/s) ds + x

∫
(0,∞)

e−x/ss−4ν̄(1/s) ds,

To simplify the notation, denote

cn(x) =

∫
(0,∞)

e−x/ss−2−nν̄(1/s) ds, dm(x) =

∫
(0,∞)

e−x/ss−2+m d(s1−βν̄(1/s)).

Note that cn(x) is finite for all n ≥ 0 and dm(x) is also convergent for all m ≤ β, which could be
verified by Lemma A.2.7. With these notations, we can rewrite

g(x)
x

= c0(x), g′(x) = c0(x) − xc1(x), xg′′(x) = −2xc1(x) + x2c2(x).

Hence
Nβ(x) = β(β − 1)c0(x) − 2(β − 1)(c0(x) − xc1(x)) − 2xc1(x) + x2c2(x).

By (2.22), Lemma 2.5.6 and Lemma A.2.7, we have

xc1(x) = x
∫

(0,∞)
e−x/ss−3ν̄(1/s) ds =

∫
(0,∞)

s−1ν̄(1/s) d(e−x/s)
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= s−1ν̄(1/s)e−x/s
∣∣∣∣∞
s=0+
−

∫
(0,∞)

e−x/s d(s1−βν̄(1/s)sβ−2)

= −

∫
(0,∞)

e−x/ssβ−2 d(s1−βν̄(1/s)) + (2 − β)
∫

(0,∞)
e−x/ss−2ν̄(1/s) ds

= −dβ(x) + (2 − β)c0(x).

In addition, by Lemma 2.5.6, Lemma A.2.7 and Lemma A.2.9,

x2c2(x) = x2
∫

(0,∞)
e−x/ss−4ν̄(1/s) ds = xs−2ν̄(1/s)e−x/s

∣∣∣∣∞
s=0+
− x

∫
(0,∞)

e−x/s d(s1−βν̄(1/s)sβ−3)

= (3 − β)x
∫

(0,∞)
e−x/ss−3ν̄(1/s) ds − x

∫
(0,∞)

e−x/ssβ−3 d(s1−βν̄(1/s))

= (3 − β)xc1(x) − x
∫

(0,∞)
e−x/ssβ−3(s1−βν̄(1/s))′ ds

= (3 − β)xc1(x) − sβ−1(s1−βν̄(1/s))′e−x/s
∣∣∣∣∞
s=0+

+

∫
(0,∞)

e−x/s d(sβ−1(s1−βν̄(1/s))′)

= (3 − β)xc1(x) +

∫
(0,∞)

e−x/ssβ−1 d(s1−βν̄(1/s))′ + (β − 1)
∫

(0,∞)
e−x/ssβ−2 d(s1−βν̄(1/s))

= (3 − β)xc1(x) +

∫
(0,∞)

e−x/ssβ−1 d(s1−βν̄(1/s))′ + (β − 1)dβ.

Note that the above equations also hold if ν has β-concave tail. Therefore, it can be shown that

Nβ(x) =

∫
(0,∞)

e−x/ssβ−1 d(s1−βν̄(1/s))′.

As s1−βν̄(1/s) is convex, (s1−βν̄(1/s))′ is non-decreasing. It defines a Radon measure. One can
see Nβ(x) is completely monotone by definition.

(b) The proof is very much analogous to the proof for part a), so we only provide the sketch
of the proof. One can recover the full details without much difficulty. For sufficiency, suppose
−Nβ(x) is completely monotone. Define Gn(t) as (5.8). Without any further assumption,

(tβGn(t))′′ = tβ−2xn+1(−1)nN(n)
β (x)

∣∣∣∣
x=n/t

.

As −Nβ(x) is completely monotone, we know that tβGn(t) is concave. By Lemma A.1.12, we
conclude that ν has β-concave tail.

For necessity, suppose ν has β-concave tail, we prove −Nβ(x) is completely monotone.
Applying the notation cn(x) and dm(x) in part a), we also have

xc1(x) = −dβ(x) + (2 − β)c0(x),

x2c2(x) = (3 − β)xc1(x) +

∫
(0,∞)

e−x/ssβ−1 d((s1−βν̄(1/s))′) + (β − 1)dβ.

Thus, we obtain

−Nβ(x) =

∫
(0,∞)

e−x/ssβ−1 d(−(s1−βν̄(1/s))′).
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As function sβν̄(s) is concave, we know s1−βν̄(1/s) is concave by Corollary 2.5.1, which implies
−(s1−βν̄(1/s))′ is non-decreasing. Hence it defines a Radon measure and we conclude −Nβ(x)
is completely monotone. �

5.4.2 Connections with (harmonic) convexities on tails
In this section, we prove several theorems in Section 5.1 as corollaries. They reveals β-
convexity on tail is indeed a generalization for both harmonically concave tail and convex
tail.

Corollary 5.4.1 (Theorem 5.1.1) Suppose g(x) is Bernstein with Lévy triplet (a, b, ν). Then,
measure ν has harmonically concave tail, if and only if g(x) − xg′(x) ∈ BF .

Proof Consider the shifted Bernstein function g(x)−a−bx. By Theorem 5.4.1 part b), measure
ν has harmonically concave tail, if and only if −xg′′(x) is completely monotone. We show this
condition is equivalent to g(x) − xg′(x) being Bernstein. If g(x) − xg′(x) is Bernstein, then

−xg′′(x) = (g(x) − xg′(x))′ ∈ CM.

Conversely, If −xg′′(x) is completely monotone, then, to show g(x) − xg′(x) is Bernstein, it
suffices to show it is non-negative. As its derivative is non-negative, g(x) − xg′(x) is non-
decreasing. Noticing limx→0+ xg′(x) = 0 by (2.26), we obtain

lim
x→0

g(x) − xg′(x) = a ≥ 0.

So g(x) − xg′(x) ≥ 0, and this closes the proof. �

Corollary 5.4.2 (Theorem 5.1.3) Suppose g(x) is Bernstein with Lévy triplet (a, b, ν). Then,
measure ν has convex tail, if and only if g(x) + xg′(x) ∈ BF .

Proof Consider the shifted Bernstein function g(x)−a−bx. By Theorem 5.4.1 part a), measure
ν has convex tail, if and only if 2g′(x) − 2b + xg′′(x) is completely monotone. We show this
condition is equivalent to g(x) + xg′(x) being Bernstein.

If g(x) + xg′(x) is Bernstein, then

2g′(x) + xg′′(x) = (g(x) + xg′(x))′ ∈ CM.

It suffice to show 2g′(x) + xg′′(x) ≥ 2b. This is true, as 2g′(x) + xg′′(x) is non-increasing and
by (2.18)

lim
x→∞

2g′(x) + xg′′(x) = lim
x→∞

(g(x) + xg′(x))′ = lim
x→∞

g(x) + xg′(x)
x

= 2b.

The second equation follows from g(x) + xg′(x) ∈ BF .
Conversely, If 2(g′(x)− b) + xg′′(x) is completely monotone, then it suffices to show g(x) +

xg′(x) ≥ 0 to see g(x) + xg′(x) is Bernstein. This is trivial, because g(x) ≥ 0 and g′(x) ≥ 0. �
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It could also be used to show Lévy measure could not have concave tail or harmonically
convex tail unless it vanishes on (0,∞).

Corollary 5.4.3 Suppose g(x) is Bernstein with Lévy triplet (a, b, ν). Then, measure ν has
harmonically convex tail, if and only if g(x) = a + bx.

Proof Sufficiency is trivial. For necessity, by Theorem 5.4.1 part a), measure ν has harmoni-
cally convex tail, then xg′′(x) is completely monotone. Because g(x) is Bernstein, g′′(x) ≤ 0.
Thus, we obtain g′′(x) = 0, which implies g(x) = a + bx. �

Corollary 5.4.4 Suppose g(x) is Bernstein with Lévy triplet (a, b, ν). Then, measure ν has
concave tail, if and only if g(x) = a + bx.

Proof Sufficiency is trivial. For necessity, by Theorem 5.4.1 part b), measure ν has concave
tail, then −2(g′(x) − b) − xg′′(x) is completely monotone. Thus, its anti-derivative g(x) − a −
bx + x(g′(x) − b) is non-increasing. Notice

lim
x→0

g(x) − a − bx + x(g′(x) − b) = 0.

We know g(x) − a − bx + x(g′(x) − b) ≤ 0. Note that g(x) − a − bx ≥ 0 and g′(x) − b ≥ 0 by
definition. Thus, both terms are identical to 0, indicating g(x) = a + bx. �

5.5 Convex shape preserving transformations
In this section, we revisit [69, Corollary 5.4 and 6.2], and investigate transformations that maps
a Bernstein function into another with certain convexity properties on the tail of its measure.

In addition, we investigate some transformations that can preserve certain convexity prop-
erties. For any function g : (0,∞) 7→ R, recall operator H[g](x) is defined in (4.8) as following.

H[g](x) := x
∫

(x,∞)

g(s)
s2 ds.

Proposition 5.5.1 The set of BF whose Lévy measure has harmonically concave tail is{
H[g](x) : g(x) ∈ BF , such that the integral is convergent

}
.

Proof Suppose g(x) ∈ BF has Lévy triplet (a, b, ν) such that H[g](x) is convergent. It can be
rewritten as

H[g](x) = x
∫

(x,∞)

a
s2 ds + x

∫
(x,∞)

b
s

ds + x
∫

(x,∞)

∫
(0,∞)

(1 − e−st)
s2 ν(dt) ds.

Integrability implies b = 0 and the last integral is convergent. By Fubini’s Theorem,

H[g](x) = a + x
∫

(0,∞)

∫
(x,∞)

(1 − e−st)
s2 ds ν(dt) = a +

∫
(0,∞)

x
∫

(x,∞)

(1 − e−st)
s2 ds ν(dt).
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It suffices to show
lt(x) := x

∫
(x,∞)

(1 − e−st)
s2 ds

is Bernstein with measure having harmonically concave tail for all t > 0. This is true by
Example 5.1.2.

Conversely, suppose h(x) ∈ BF with Lévy triplet (a′, b′, η). If measure η has harmonically
concave tail, then, by Theorem 5.1.1, we know g(x) := h(x) − xh′(x) ∈ BF . It can be shown
that h(x) = H[g](x) + cx is the solution to the above differential equation, where c ∈ R is
constant. Using the limit condition limx→∞ h(x)/x = b′, we could get c = 0. Therefore we
obtain h(x) = H[g](x), implying h(x) belongs to the above set. This closes the proof. �

Tauberian Theorem provides us with an sufficient condition such that H[g](x) is well-
defined. Suppose g(x) ∈ BF with Lévy triplet (a, b, ν). If b = 0 and there is some constant
γ > 0, such that measure ν satisfies∫

(0,u)
t ν(dt) = O(uγ), as u→ 0,

then g′(x) = O(1/xγ) as x approaches infinity, by [80, Corollary 1a, Chapter V]. Hence, inte-
grating by parts, we obtain∫

(x,∞)

g(s)
s2 ds = −

∫
(x,∞)

g(s) d(1/s) = −
g(s)

s

∣∣∣∣∞
s=x

+

∫
(x,∞)

g′(s)
s

ds

= −b +
g(x)

x
+

∫
(x,∞)

g′(s)
s

ds < ∞.

This means H[g](x) being well-defined.
Bernstein functions with convex tail measure also entitled with a similar description. For

function g : (0,∞) 7→ R recall operator K[g](x) is defined in (4.9) as following.

K[g](x) :=
1
x

∫
(0,x)

g(s) ds.

Proposition 5.5.2 The subset of BF with convex tail measure is{
K[g](x) : g(x) ∈ BF

}
.

Proof It is trivial that the set above is well-defined for any Bernstein function. Suppose g(x)
has Lévy triplet (a, b, ν), then by Fubini’s theorem

K[g](x) = a +
1
2

bx +

∫
(0,∞)

1
x

∫
(0,x)

(1 − e−st) ds ν(dt) = a +
1
2

bx +

∫
(0,∞)

(
1 −

1 − e−xt

xt

)
ν(dt).

It suffices to show
lt(x) := 1 −

1 − e−xt

xt
is Bernstein whose Lévy measure has convex tail for all t > 0. This is true by Example 5.1.4.

Conversely, if h(x) ∈ BF has convex tail measure, then by Theorem 5.1.3, we know g(x) :=
h(x) + xh′(x) is Bernstein. It can be shown that h(x) = K[g](x) + c/x, where c ∈ R is constant.
Using the condition limx→0 xh(x) = 0, we conclude c = 0. Therefore h(x) = K[g](x), lying in
the above set. This closes the proof. �
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Next we consider transformations that preserve certain convexity properties on measures.
Part a) in the following proposition generalizes Lemma 2.4.3.

Proposition 5.5.3 Suppose g(x) ∈ BF . If it has harmonically concave tail Lévy measure, then

(a) g(x + λ) − g(x) ∈ CM has harmonically convex measure for all λ > 0.

(b) g(x) + g(λ) − g(x + λ) ∈ BF also has Lévy measure with harmonically concave tail for
all λ > 0.

Proof (a) By fact 2 listed in Section 2.2.1, we know g(x + λ) − g(x) is completely monotone.
To show it has harmonically convex measure, consider

g(x + λ) − g(x) − x(g(x + λ) − g(x))′

= g(x + λ) − (x + λ)g′(x + λ) − g(x) + xg′(x) + λg′(x + λ).

As g(x) − xg′(x) ∈ BF by Theorem 5.1.1, we know

g(x + λ) − (x + λ)g′(x + λ) − g(x) + xg′(x) ∈ CM.

Note that g′(x+λ) ∈ CM. Thus, the above function is completely monotone and g(x+λ)−g(x)
has harmonically convex measure by Theorem 4.1.1.

(b) By Theorem 5.1.1, we know g(x) − xg′(x) is Bernstein and hence −xg′′(x) ∈ CM. Also
by Theorem 5.1.1, it suffices to show g(x) + g(λ) − g(x + λ) − x(g′(x) − g′(x + λ)) is Bernstein.
Notice

lim
x→0

g(x) + g(λ) − g(x + λ) − x(g′(x) − g′(x + λ)) = lim
x→0

g(x) − xg′(x) = g(0+) ≥ 0.

It suffices to show −x(g′′(x) − g′′(x + λ)) ∈ CM. We obtain

−x(g′′(x) − g′′(x + λ)) = −xg′′(x) + (x + λ)g′′(x + λ) − λg′′(x + λ).

Since −xg′′(x)+(x+λ)g′′(x+λ) ∈ CM and −g′′(x+λ) ∈ CM, the above function is completely
monotone. This closes the proof. �

In general, if Bernstein function g(x) has Lévy measure with convex tail, then the above
transformations do not have such convexity properties.

Example 5.5.1 Consider Bernstein function

g(x) = 1 −
1 − e−x

x

Its Lévy measure has convex tail, and

(a) the measure for g(x + 1) − g(x) ∈ CM is not concave measure, nor convex measure;

(b) the Lévy measure for g(x) + g(1) − g(x + 1) ∈ BF does not have harmonically concave
tail, nor convex tail.
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Figure 5.1: Function f (x) − x f ′(x), f (x) + x f ′(x) and x f (x) where f (x) = g(x + 1) − g(x) and
g(x) = 1 − (1 − e−x)/x

By Theorem 5.1.3, noticing g(x) + xg′(x) = 1− e−x ∈ BF , we know g(x) has Lévy measure
with convex tail. Consider completely monotone function f (x) := g(x + 1) − g(x). Note that
limx→∞ f (x) = 0. In addition, we know

f (x) − x f ′(x) < CM, f (x) + x f ′(x) < CM, and x f (x) < CM.

See Figure 5.1. By Theorem 4.1.1, Theorem 4.1.3 and Theorem 4.1.5, f (x) does not have
harmonically convex measure, concave measure, or convex measure.

Consider Bernstein function h(x) := g(x) + g(1) − g(x + 1). It can be shown that

h(x) − xh′(x) < BF and h(x) + xh′(x) < BF .

See Figure 5.2. By Theorem 5.1.1 and Theorem 5.1.3, h(x) does not have Lévy measure with
harmonically concave tail, or convex tail.

Figure 5.2: Function h(x) − xh′(x) and h(x) + xh′(x) where h(x) = g(x) + g(1) − g(x + 1) and
g(x) = 1 − (1 − e−x)/x



Chapter 6

Sub-classes of Bernstein functions

In this section, we introduce a family of completely monotone functions. And then we iden-
tify a sub-class of Bernstein functions which enable us to construct completely monotone and
Bernstein functions with convexity properties on their measures by compositions. It is shown
that these sub-classes can be characterized by their convolution semigroups.

6.1 A family of completely monotone functions
In this section, we identify a class of completely monotone functions which play important
roles

Lemma 6.1.1 For any α ∈ [0, 2/3] and s ≥ 0, the function

f (x) = e−sxα(1 + sαxα)

is completely monotone.

Proof By the definition of completely monotone function, it suffices to verify the n-th deriva-
tives satisfy (−1)n f (n)(x) ≥ 0 for all n ≥ 0. This is trivially true for n = 0. For n ≥ 1, we will
use mathematical induction to show that

f (n)(x) = sαe−sxα xα−nPn(xα), (6.1)

where Pn(x) = a(n)
0 + a(n)

1 x + · · · + a(n)
n xn, whose coefficients satisfy

(−1)na(n)
k ≥ 0 for all k = 0, 1, 2, . . . , n. (6.2)

For n = 1, it can be shown that

f ′(x) = e−sxα(−sαxα−1)(1 + sαxα) + e−sxα sα2xα−1

= sαe−sxα xα−1(−(1 − α) − sαxα) = sαe−sxα xα−1P1(xα),

where we defined P1(x) = a(1)
0 + a(1)

1 x := −(1 − α) − sαx. Since both coefficients a(1)
0 and a(1)

1
are negative, we are done in this case.

98
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For n = 2, we have

f ′′(x) =
d
dx

(
sαe−sxα[−(1 − α)xα−1 − sαx2α−1]

)
= sαe−sxα(−sαxα−1)[−(1 − α)xα−1 − sαx2α−1]

+ sαe−sxα[−(1 − α)(α − 1)xα−2 − sα(2α − 1)x2α−2]

= sαe−sxα xα−2[(1 − α)2 + sα(2 − 3α)xα + s2α2x2α]

= sαe−sxα xα−2P2(xα),

where we defined P2(x) = a(2)
0 + a(2)

1 x + a(2)
2 x2 := (1 − α)2 + sα(2 − 3α)x + s2α2x2. Using

the condition α ∈ [0, 2/3] one readily sees that the three coefficients a(2)
0 , a(2)

1 and a(2)
2 are

non-negative, concluding the case.
Suppose representation (6.1) and conditions (6.2) hold for n ≥ 2. We need to show they

also hold for n + 1.

f (n+1)(x) =
d
dx

f (n)(x) =
d
dx

(
sαe−sxα xα−n(a(n)

0 + a(n)
1 xα + · · · + a(n)

n xnα)
)

=
d
dx

(
sαe−sxα(a(n)

0 xα−n + a(n)
1 x2α−n + · · · + a(n)

n x(n+1)α−n)
)

= sαe−sxα
(
− sαxα−1

)(
a(n)

0 xα−n + a(n)
1 x2α−n + · · · + a(n)

n x(n+1)α−n
)

+ sαe−sxα
(
a(n)

0 (α − n)xα−(n+1) + a(n)
1 (2α − n)x2α−(n+1)

+ · · · + a(n)
n ((n + 1)α − n)x(n+1)α−(n+1)

)
= sαe−sxα xα−(n+1)

[
− a(n)

0 sαxα − a(n)
1 sαx2α − · · · − a(n)

n sαx(n+1)α

+ a(n)
0 (α − n) + a(n)

1 (2α − n)xα + · · · + a(n)
n ((n + 1)α − n)xnα

]
= sαe−sxα xα−(n+1)

[
a(n)

0 (α − n) +
(
a(n)

1 (2α − n) − a(n)
0 sα

)
xα

+ · · · +
(
a(n)

n ((n + 1)α − n) − a(n)
n−1sα

)
xnα + a(n)

n (−sα)x(n+1)α
]

= sαe−sxα xα−(n+1)Pn+1(xα),

where the coefficients a(n+1)
0 , a(n+1)

1 , . . . , a(n+1)
n+1 of the polynomial Pn+1(x) are defined inductively

by

a(n+1)
0 = (α − n)a(n)

0 ,

a(n+1)
k = ((k + 1)α − n)a(n)

k − sαa(n)
k−1 for k = 1, 2, . . . , n,

a(n+1)
n+1 = −sαa(n)

n .

Utilizing conditions (6.2), we obtain

(−1)(n+1)a(n+1)
0 = (−1)(n+1)(α − n)a(n)

0 = (n − α)(−1)(n)a(n)
0 ≥ 0,

(−1)(n+1)a(n+1)
n+1 = (−1)(n+1)(−sαa(n)

n ) = sα(−1)(n)a(n)
n ≥ 0.

Next, fixing an index k ∈ {1, 2, . . . , n}, we have

(−1)(n+1)a(n+1)
k = (n − (k + 1)α)(−1)(n)a(n)

k + sα(−1)(n)a(n)
k−1.
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Since n ≥ 2, we have
n

k + 1
≥

n
n + 1

≥
2
3
≥ α.

Together with (6.2) this implies that (−1)(n+1)a(n+1)
k ≥ 0 and concludes the induction. �

Next proposition shows that the set of all numbers α in [0, 1], for which (8.1) is a completely
monotone function for all s ≥ 0, is a closed interval. Because completely monotone functions
are closed under point-wise convergence.

Proposition 6.1.1 If for some r ∈ (0, 1] the function

fr(x) := e−sxr
(1 + srxr)

is completely monotone for all s ≥ 0, then f (x) = e−sxα(1 + sαxα) is completely monotone for
all α ∈ [0, r] and all s ≥ 0.

Proof Since 0 ≤ α/r ≤ 1, the function

fr(xα/r) = e−sxα(1 + srxα)

is the composition of the completely monotone function fr(x) and the Bernstein function xα/r,
hence, it is completely monotone for all s ≥ 0. The function that we are interested in is

f (x) = e−sxα(1 + sαxα) = e−s(1− αr )xαe−
sα
r xα

(
1 +

sα
r

rxα
)
. (6.3)

Note that e−s(1−α/r)xα is the composition of the completely monotone function e−s(1−α/r)x and the
Bernstein function xα, hence it is completely monotone. Thus, (6.3) expresses the left-hand
side as a product of two completely monotone functions, hence it is completely monotone for
all s ≥ 0. �

Our numerical experiments show that the largest number r such that fr(x) ∈ CM for all
s ≥ 0 is around 0.7424. In addition, Example 6.1.2 implies that it is less than 1.

Example 6.1.2 Function f(x) = e−x0.9
(1 + 0.9x0.9) < CM.

This can be verified easily, see Figure 6.1.

6.2 Sub-classes of Bernstein functions
By Theorem 2.2.4, we know that for any f (x) ∈ CM and g(x) ∈ BF , their composition
f (g(x)) ∈ BF . And it is also know that BF is closed under composition. In this section, we
identify sub-classes of BF , such that their compositions with completely monotone or Bern-
stein functions have particular convexity properties on their measures. Notations are defined
below.
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Figure 6.1: Function f(x) = e−x0.9
(1 + 0.9x0.9)

Definition 6.2.1 Sub-classesHCM,HBF ⊂ BF are defined as following.

HCM := {g(x) ∈ BF : f (g(x)) has harmonically convex measure, ∀ f (x) ∈ CM};
HBF := {g(x) ∈ BF : h(g(x)) has harmonically concave tail Lévy measure, ∀h(x) ∈ BF }.

From the definition follows some trivial properties of these sub-classes.

(a) They are not empty. Non-negative constant functions lie in every sub-classes.

(b) They are closed under composition. For example if g(x), h(x) ∈ HCM, then g ◦ h ∈ HCM.

(c) They are closed under left composition with BF . For example if h(x) ∈ BF and g(x) ∈
HCM, then h ◦ g ∈ HCM.

(d) For any g(x) ∈ HBF , it has Lévy measure with harmonically concave tail.

Next theorems imply that these sets are not trivial. Moreover, we will show that HCM =

HBF in Thereom 6.3.1.

Theorem 6.2.2 Let g(x) = xα, where α ∈ [0, 2/3]. Then for any f (x) ∈ CM, the composition
f ◦ g(x) = f (xα) is completely monotone with harmonically convex measure.

Proof The composition f (g(x)) is completely monotone, we need to show its measure is har-
monically convex. Consider

h(x) = f (g(x)) − x( f (g(x)))′ = f (xα) − αxα f ′(xα).
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By Theorem 4.1.1, it suffices to verify that h(x) is completely monotone. Notice that

h(x) =

∫
[0,∞)

e−txα µ(dt) + αxα
∫

[0,∞)
e−txαt µ(dt) =

∫
[0,∞)

e−txα(1 + tαxα) µ(dt).

By Lemma 6.1.1, the integrand e−txα(1 + tαxα) is completely monotone with for all t ≥ 0.
Therefore h(x) is also completely monotone. The proof is complete. �

A quick observation from Theorem 6.2.2 is that the setHCM is not trivial, and

{xα, α ∈ [0, 2/3]} ⊂ HCM.

As corollary, we can represent completely monotone functions in terms of harmonically convex
measure.

Corollary 6.2.1 For any completely monotone function f (x) and a number α ∈ (0, 2/3], there
exists a unique harmonically convex measure µα on [0,∞), such that

f (x) =

∫
[0,∞)

e−tx1/α
µα(dt).

This corollary follows immediately by a simple change of variables in the Bernstein repre-
sentation for the completely monotone function f (xα).

It is worth to point out that Theorem 6.2.2 fails when α is close to 1. Consider completely
monotone function f (x) = e−x and Bernstein function g(x) = x0.9. It can be show by Theo-
rem 4.1.1 and Example 6.1.2 that f (g(x)) = e−x0.9

does not have harmonically convex measure.

Theorem 6.2.3 Let g(x) = xα, where α ∈ [0, 2/3]. Then, for any h(x) ∈ BF , the composition
h ◦ g(x) = h(xα) is Bernstein whose Lévy measure has harmonically concave tail.

Proof Let h(x) be any Bernstein function determined by a Lévy triplet (a, b, η). Suppose α ∈
[0, 2/3]. We want to show that the Lévy measure corresponding to the composition h ◦ g has
harmonically concave tail. By Theorem 5.1.1, consider

h(g(x)) − x(h(g(x)))′ = h(xα) − αxαh′(xα)

= a + bxα +

∫
(0,∞)

(1 − e−txα) η(dt) − αxα
(
b +

∫
(0,∞)

e−txαt η(dt)
)

= a + b(1 − α)xα +

∫
(0,∞)

(
1 − e−txα(1 + tαxα)

)
η(dt).

It suffices to show this function is Bernstein. By Lemma 6.1.1, e−txα(1 + tαxα) is completely
monotone for every t. By (2.33), we know 1 − e−txα(1 + tαxα) is Bernstein for every t ≥ 0. The
proof is completed. �

A quick conclusion from Theorem 6.2.3 is that the setHBF is not trivial as well, and

{xα, α ∈ [0, 2/3]} ⊂ HBF .

It also implies the next corollary, where Bernstein functions are represented in terms of measure
with harmonically concave tail.
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Corollary 6.2.2 For any Bernstein function g(x) and a number α ∈ (0, 2/3], there exists a
unique triplet (a, b, να), such that

g(x) = a + bx1/α +

∫
(0,∞)

(1 − e−tx1/α
) να(dt),

where a, b ≥ 0 are constants, and να is a measure on (0,∞) with harmonically concave tail.
The measure να satisfies ∫

(0,∞)
(1 ∧ t) να(dt) < ∞.

Theorem 6.2.2 follows immediately by a simple change of variables in the Lévy-Khintchine
representation for the Bernstein function g(xα).

Analogously, Theorem 6.2.3 fails when α is close to 1. Consider Bernstein functions
h(x) = log(1 + x) and g(x) = x0.9. It can be shown that the Lévy measure for h(g(x)) does not
have harmonically concave tail by Theorem 5.1.1 and Example 6.1.2.

6.3 Connections with convolution semigroups
In this section, we characterize the sets HCM and HBF in terms of convolution semigroups.
First recall convolution semigroups νt is uniquely associated with Bernstein functions g(x) by
(2.28). See Section 2.2.2 for details.

Lemma 6.3.1 A Bernstein function g(x) is inHCM if and only if the measure νt in its convolu-
tion semigroup is harmonically convex for all t ≥ 0.

Proof If g(x) ∈ HCM, then e−tg(x) is completely monotone with harmonically convex measure
for all t ≥ 0. Harmonic convexity of measure νt follows from definitions.

Conversely, for any completely monotone function f (x), the composition f (g(x)) has mea-
sure ξ given by Theorem 2.2.8, implying

ξ[0, x] =

∫
[0,∞)

νs[0, x] µ(ds), (6.4)

where µ is the measure of f (x) and {νt}t≥0 is the convolution semigroup of g(x). Hence, har-
monic convexity of ξ follows from the harmonic convexity of νt for all t ≥ 0. �

Lemma 6.3.2 A Bernstein function g(x) is inHBF if and only if the measure νt in its convolu-
tion semigroup is harmonically convex for all t ≥ 0.

Proof If g(x) is in HBF , then 1 − e−tg(x) is Bernstein whose Lévy measure has harmonically
concave tail for all t ≥ 0. By Theorem 5.1.1,

1 − e−tg(x) − xtg′(x)e−tg(x) = 1 − e−tg(x)(1 + txg′(x)) ∈ BF . (6.5)

This implies e−tg(x)(1 + txg′(x)) is completely monotone by inequality (2.33) and fact 6 on
Bernstein functions in Section 2.2.1. Therefore, by Theorem 4.1.1, we concludes that νt is
harmonically convex for all t ≥ 0.
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Conversely, suppose νt is harmonically convex for all t ≥ 0. For any Bernstein function
h(x) with Lévy triplet (a, b, η), their composition h(g(x)) has Lévy measure γ given by Theo-
rem 2.2.7, implying

γ(x,∞) = bν(x,∞) +

∫
(0,∞)

νs(x,∞) η(ds), (6.6)

where ν is the Lévy measure for g(x).
Since νt is sub-probability measure, it is finite on [0,∞). Therefore νt is harmonically con-

vex if and only if it has harmonically concave tail, because νt[0, x] = νt[0,∞) − νt(x,∞). Thus
νt has harmonically concave tail for t ≥ 0 and the integral in (6.6) is harmonically concave. It
suffices to show that ν has harmonically concave tail as well. Theorem 4.1.1 implies that

e−tg(x)(1 + txg′(x)) ∈ CM.

By (2.33), we know 1 − e−tg(x)(1 + txg′(x)) is Bernstein. Therefore, for any t > 0,

1 − e−tg(x)(1 + txg′(x))
t

∈ BF .

As Bernstein functions are closed under point-wise convergence, we obtain

lim
t→0+

1 − e−tg(x)(1 + txg′(x))
t

= −
d
dt

(
e−tg(x)(1 + txg′(x))

)∣∣∣∣
t=0+

= g(x) − xg′(x) ∈ BF .

Theorem 5.1.1 shows that ν has harmonically concave tail. The proof is complete. �

Combining Lemma 6.3.1 and Lemma 6.3.2, we arrive at the following equivalence.

Corollary 6.3.1 We haveHCM = HBF .

Applying derivative free characterizations for completely monotone function with harmon-
ically convex measure, we have the following corollary.

Corollary 6.3.2 Suppose g(x) is Bernstein. The following statements are equivalent:

(a) g(x) ∈ HBF;

(b) for all t ≥ 0, function e−tg(x)(1 + txg′(x)) ∈ CM;

(c) for all t ≥ 0 and λ > 0, function (x + λ)e−tg(x) − xe−tg(x+λ) ∈ CM .

We’ve shown {xα : α ∈ [0, 2/3]} ⊂ HBF . Following examples show some more.

Example 6.3.3 Let αk ∈ [0, 2/3] for all k = 1, . . . , n, then
∑n

k=1 xαk ∈ HBF .

Indeed, let α := max{α1, . . . , αn} ≤ 2/3. Consider the Bernstein functions f (x) :=
∑n

k=1 xαk/α

and g(x) = xα. Since g(x) ∈ HBF and HBF is closed under left composition with Bernstein
functions, we conclude

f (g(x)) =

n∑
k=1

xαk ∈ HBF .

Assigning coefficients and taking limit, we have
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Example 6.3.4 Suppose c(α) ≥ 0 is defined on α ∈ [0, 2/3]. Then∫
[0,2/3]

c(α)xα dα ∈ HBF ,

if the above integral is convergent.

Next two examples need detailed verifications.

Example 6.3.5 Consider the Lévy measure ν given by density

π(s) =
1

Γ(1 + s)
ss−1e−s, s > 0.

The Bernstein function g(x) defined by Lévy triplet (0, 0, ν) is a member ofHBF .

Proof In [22], the authors provide explicit densities for the measure νt from the convolution
semigroups for g(x) as following:

pt(s) =
t

Γ(1 + t + s)
st+s−1e−s, s > 0.

By Lemma 6.3.2 , to show g(x) ∈ HBF , it suffices to show the measures νt is harmonically
convex for all t ≥ 0. In terms of its density pt(s), it is equivalent to verify

2pt(s) + sp′t(s) ≥ 0. (6.7)

Note
2pt(s) + sp′t(s) =

tss+te−s

Γ(1 + t + s)

(
ln(s) − ψ(s + t + 1) +

(t + 1)
s

)
.

Here ψ(s) is the digamma function. Denote

ft(s) := ln(s) − ψ(s + t + 1) + (t + 1)/s.

By Example (2.4.6), we know ft(s) is completely monotone with convex measure having no
mass at zero, which indicates that (6.7) holds on (0,∞) for all t ≥ 0. This closes the proof. �

Example 6.3.6 Consider the Lévy measure ν given by density

π(s) =
cθ−1

Γ(1 + cs)

( s
θ

)cs−1
e−s/θ, s > 0,

where c, θ > 0 are constants . The Bernstein function g(x) defined by Lévy triplet (0, 0, ν) is a
member ofHBF if and only if cθ = 1.

Proof In [22], the authors provide explicit densities for measures νt in its convolution semi-
groups for g(x) as following.

pt(s) =
cθ−1t

Γ(1 + c(t + s))

( s
θ

)c(t+s)−1
e−s/θ+at, s, t > 0.
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Here a = 0 if cθ ≤ 1 and a = −1/θ − cW−1(−e−1/cθ/(cθ)) if cθ > 1, and W−1 is one of the two
real branches of the Lambert W-function. See [22, Section 3.2] for details.

By Lemma 6.3.2 , Bernstein function g(x) ∈ HBF if and only if the measure νt is h-convex
for all t ≥ 0, which is equivalent to verify

2pt(s) + sp′t(s) ≥ 0. (6.8)

Notice that

2pt(s) + yp′t(s) =
c2t(s/θ)c(s+t)e(aθt−s)/θ

Γ(c(t + s) + 1)

(
ln

( s
θ

)
− Ψ(c(s + t) + 1) +

ct + 1
cs
−

1
cθ

+ 1
)
.

Change variable by letting u = cs,T = ct, and ξ = cθ, we can rewrite

ln
( s
θ

)
− Ψ(c(s + t) + 1) +

ct + 1
cs
−

1
cθ

+ 1 = ln(u) − Ψ(u + T + 1) +
(T + 1)

u
+ 1 −

1
ξ
− ln(ξ).

By Example 2.4.6, we observe that ln(u) − Ψ(u + t + 1) + (t + 1)/u is completely monotone in
u with convex measure having no mass at zero. By A.1.7, the constant 1 − 1/ξ − ln(ξ) ≤ 0 for
ξ > 0, while it takes value zero if and only if ξ = 1. So (6.8) is non-negative on (0,∞) if and
only if ξ = 1, which implies g(x) is a member ofHBF if and only if cθ = 1. �

Remark 6.3.7 Regarding different convexity properties, we could also define other sub-classes
CCM,CBF ,VCM ⊂ BF as following.

CCM := {g(x) ∈ BF : f (g(x)) has concave measure, ∀ f (x) ∈ CM};
CBF := {g(x) ∈ BF : h(g(x)) has convex tail Lévy measure, ∀h(x) ∈ BF };
VCM := {g(x) ∈ BF : f (g(x)) has convex measure, ∀ f (x) ∈ CM}.

However, these sub-classes are trivial. That is,

CCM = CBF = VCM = {g(x) = c, c > 0}.

Suppose g(x) ∈ BF and its convolution semigroups is {νt}t≥0. Lemma 6.3.1 and 6.3.2 can be
modified to shown that

(a) g(x) ∈ CCM if and only if the measure νt is concave for all t ≥ 0.

(b) g(x) ∈ CBF if and only if the measure νt is concave for all t ≥ 0.

(c) g(x) ∈ VCM if and only if the measure νt is convex for all t ≥ 0.

Therefore, CCM = CBF . However, if measure νt is concave for t ≥ 0, by Theorem 4.1.3,

e−tg(x)(1 − txg′(x)) ∈ CM.

This is true if and only if g′(x) = 0. Otherwise, if there is some x0 such that g′(x0) > 0, the
above function would be negative for t large enough. This implies g(x) is constant.

On the other hand, if measure νt is convex for t ≥ 0, by Theorem 4.1.5,

x(e−tg(x) − lim
x→∞

e−tg(x)) ∈ CM.

Notice the limit for above function is zero when x approaches zero. Hence it is identical to zero
on (0,∞). This implies g(x) is a constant.
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Applications

7.1 Coupon collector’s problem and BAG functions
In the Coupon Collector’s problem, an agent is interested in obtaining at least one copy of n
different coupons. Every time the agent purchases a coupon, they get coupon i with probability
xi. Let T be the minimum number of purchases required to obtain at least one coupon of each
type. It is well-known that

E[T ] =

n∑
i=1

1
xi
−

∑
1≤i< j≤n

1
xi + x j

+ · · · + (−1)n−1 1
x1 + · · · + xn

.

It is shown in [18] that this function is convex in (x1, . . . , xn) on (0,∞)n. Of interest to us is
the minimum variance conjecture for the Coupon Collector’s problem, see [30]. It says that
Var [T ] is mininized when x1 = · · · = xn = 1/n. In order to express the variance in a succinct
way we introduce the following notation. For a function f defined on a domain in R, let

F[ f ](x1, . . . , xn) :=
n∑

i=1

f (xi) −
∑

1≤i< j≤n

f (xi + x j) + · · · + (−1)n−1 f (x1 + · · · + xn).

Thus, E[T ] = F[1/x] and for the variance of T , we have, see [30], that

Var [T ] = 2F[1/x2] − F[1/x] −
(
F[1/x]

)2
.

We quote the following result from [71].

Theorem 7.1.1 Let f (x) be a completely monotone function with measure µ and g(x) be a
Bernstein function with Lévy measure ν.

(a) If µ is harmonically convex, then F[ f ] is convex and non-negative on Rn
++.

(b) If ν has a harmonically concave tail, then the function F[g] is concave and non-negative
on Rn

++.

Before we continue with the Coupon Collector’s problem, we note the following curious
corollary, obtained by combining Theorems 6.2.2, 6.2.3, and 7.1.1.

107
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Corollary 7.1.1 Let α be any number in [0, 2/3].

(a) For any completely monotone function f , the function F[ f (xα)] is convex and non-
negative on Rn

++.

(b) For any Bernstein function g, the function F[g(xα)] is concave and non-negative on Rn
++.

Theorem 7.1.1 together with Example 2.4.4 show that Var [T ] is the difference of two con-
vex functions

Var [T ] = 2F[1/x2] −
(
F[1/x] +

(
F[1/x]

)2)
.

The fact that Var [T ] can be represented as difference of convex functions is not surprising
since every C2 function has this property, see [36]. The explicit representation is the key. It is
conceivable that the conjecture may benefit from duality techniques in optimization.

Our next goal is to give an explicit representation of any (central) moment of T as a differ-
ence of two convex functions. In [30], it is given that

G(z) := E[z−T ] = 1 + (z−1 − 1)
∞∑

k=1

z−(k−1)P{T ≥ k} = 1 + (z − 1)
∑

J⊂{1,...,n}
J,∅

(−1)|J|

z − 1 +
∑

j∈J x j
.

Denote

g(z) :=
∑

J⊂{1,...,n}
J,∅

(−1)|J|

z − 1 +
∑

j∈J x j
.

Therefore,

G(k)(z) = E[(−1)kT (T + 1) · · · (T + k − 1)z−T−k], and

g(k)(z) = (−1)k
∑

J⊂{1,...,n}
J,∅

(−1)|J|

(z − 1 +
∑

j∈J x j)k+1 .

Observing that G(k)(z) = kg(k−1)(z) + (z − 1)g(k)(z), we obtain

G(k)(1) = kg(k−1)(1) = k(−1)k−1
∑

J⊂{1,...,n}
J,∅

(−1)|J|

(
∑

j∈J x j)k .

Next, letting
Nm,k := E[(T + k) · · · (T + 1)T m],

we have, for all m > 1 and k ≥ 0, the recursive relationship

Nm,k = Nm−1,k+1 − (k + 1)Nm−1,k, (7.1)

with the initial condition, for all k ≥ 0,

N1,k = E[(T + k) · · · (T + 1)T ] = (−1)k+1G(k+1)(1)
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= (k + 1)
∑

J⊂{1,...,n}
J,∅

(−1)|J|−1

(
∑

j∈J x j)k+1 = (k + 1)F
[ 1

xk+1

]
.

Theorem 7.1.1 together with Example 2.4.4 show that N1,k is a non-negative, convex function.
Noting that Nm,0 = E[T m] is the m-th moment of T , one sees that E[T m] is linear combination
of N1,0,N1,1, . . . ,N1,m−1, thus, one can group the terms with positive and negative coefficients
together to express E[T m] as a difference of two convex functions. For example:

E[T ] = N1,0,

E[T 2] = N2,0 = N1,1 − N1,0,

E[T 3] = N3,0 = N1,2 − 3N1,1 + N1,0.

To get a rather general expression for the m-th moment of T , define the infinite dimensional
vectors and the infinite matrix A, having diagonal (−1,−2, . . .), a superdiagonal (1, 1, . . .), and
zeros everywhere else. Then, using the recursive relationship (7.1), it can be shown that, for
any m ≥ 1, one has

Nm = Am−1N1.

More work is required to express the central moments of T as a difference of two convex
functions. Note that

E[(T − E[T ])m] =

m∑
i=0

(−1)i

(
m
i

)
E[T m−i](E[T ])i =

m∑
i=0

(−1)i

(
m
i

)
Nm−i,0N i

1,0.

As discussed above, Nm−i,0 is a linear combination of the functions N1,0,N1,1, . . . , N1,m−i−1. So,
it suffices to show that N1,kN s

1,0 is a convex function for every k ≥ 0 and s ≥ 0. We show a bit
more with the use of the following particular case of [71, Theorem 5.1].

Theorem 7.1.2 Let f be a completely monotone function with measure µ. If the function x 7→
log(µ[0, x]) is harmonically convex, then the function log(F[ f ]) is non-negative and convex on
Rn

++.

Proposition 7.1.1 For any integer n,m ≥ 0 and real r, s ≥ 0, the function Nr
1,nN s

1,m is convex.

Proof Since logarithmic convexity of a function implies its convexity, it is enough to show
that log(N1,n) is convex for any integer n ≥ 0. By Theorem 7.1.2, we need to show that x 7→
log(µ[0, x]) is harmonically convex, where µ is the measure corresponding to f (x) = 1/xn+1.
By Example 2.4.4, we have

log(µ[0, x]) = (n + 1) log(x) − log((n + 1)Γ(n + 1)),

which is clearly harmonically convex.
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7.2 Spectral functions
Let S n denote the Euclidean space of n × n symmetric matrices with inner product 〈X,Y〉 :=
tr (XY). For a vector x ∈ Rn, denote by Diag (x) the diagonal matrix with x on the main
diagonal. It is well-known that every X ∈ S n has n real eigenvalues, counting multiplicities,
denoted by

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

Define the map λ : X → Rn by λ(X) := (λ1(X), λ2(X), . . . , λn(X)). If all eigenvalues of X are
positive (reps. non-negative) then X is called positive definite (reps. semidefinite) matrix. The
set of all such matrices is a convex cone denoted by S n

++ (reps. S n
+).

The spectral decomposition theorem says that for every X ∈ S n, there is an orthogonal U,
such that

A function g : Rn → R is called symmetric if it is invariant under arbitrary permutations of
its arguments. The following result is attributed to [28] see also [48, Corollary 2.7].

Theorem 7.2.1 Let g : Rn → R be a symmetric and convex function defined on a (convex)
domain D ⊂ Rn. Then the function G : S n → R defined by

G(X) := g(λ(X))

is convex on the (convex) domain {X ∈ S n : λ(X) ∈ D}.

Combining Theorem 7.2.1 with Theorem 7.1.1 we obtain the next results.

Theorem 7.2.2 Let f (x) be a completely monotone function with measure µ and g(x) be a
Bernstein function with Lévy measure ν.

(a) If µ is harmonically convex, then F[ f ] ◦ λ is convex and non-negative on S n
++.

(b) If ν has a harmonically concave tail, then the function F[g] ◦ λ is concave and non-
negative on S n

++.

The following corollary is obtained by combining Theorem 7.2.2 and Corollary 7.1.1.

Corollary 7.2.1 Let α be any number in [0, 2/3].

(a) For any completely monotone function f , the function F[ f (xα)] ◦ λ is convex and non-
negative on S n

++.

(b) For any Bernstein function g, the function F[g(xα)] ◦ λ is concave and non-negative on
S n

++.

The matrix theoretic interpretation of the function F[ f ]◦λ is interesting in its own right and
this is what we proceed to describe next. Let f : R→ R be a function defined on an interval I.
It defines a primary matrix function on the domain

{X ∈ S n : λi(X) ∈ I for all i = 1, . . . , n} (7.2)
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by It can be shown, see [13, Chapter V], that this definition does not depend on the choice of
U. Hence, the primary matrix function is defined on the domain (7.2) and takes its values in
S n.

There are deep connections between the primary matrix functions and the Bernstein func-
tions. For example, the operator monotone functions f : (0,∞) → [0,∞) (that is, having the
property that f (A)− f (B) ∈ S n

+ whenever A−B ∈ S n
+) are precisely the so-called complete Bern-

stein functions (defined by the property that their Lévy measure has a completely monotone
density). See for example [68, Theorem 11.17].

We now proceed to describe the additive compound matrices, see [54, Chapter 19]. Con-
sider the lexicographical ordering between all ordered k-tuples (i1, . . . , ik), where 1 ≤ i1 < · · · <
ik ≤ n. Given an n × n matrix A, the k-th multiplicative compound matrix, denoted A(k), is the(

n
k

)
×

(
n
k

)
matrix whose rows and columns are labeled by ordered k-tuples and the entry in roll

(i1, . . . , ik) and column ( j1, . . . , jk) is the k×k determinant of A formed from the elements at the
intersection of rolls i1, . . . , ik with columns j1, . . . , jk. If λ1(A), . . . , λn(A) are the eigenvalues of
A, then the eigenvalues of A(k) are {λi1(A) · · · λik(A) : 1 ≤ i1 < · · · < ik ≤ n}, hence the word
‘multiplicative’ in the name of the matrix A(k). Note that A(1) = A and A(n) = det A.

The k-th additive compound matrix, denoted A[k], is the
(

n
k

)
×

(
n
k

)
matrix appearing as the

coefficient of t in the expansion

(I + tA)(k) = I + tA[k] + · · · .

The eigenvalues of A[k] are {λi1(A) + · · · + λik(A) : 1 ≤ i1 < · · · < ik ≤ n}, hence the word
‘additive’ in the name of the matrix A(k). Note that A[1] = A and A[n] = tr A.

With this notation, Theorem 7.2.2 and Corollary 7.2.1 may be rewritten as follows.

Theorem 7.2.3 Let f (x) be a completely monotone function with measure µ and g(x) be a
Bernstein function with Lévy measure ν.

(a) If µ is harmonically convex, then

A 7→
n∑

k=1

(−1)k−1tr f (A[k]) (7.3)

is convex and non-negative on S n
++.

(b) Let g(x) be a Bernstein function with measure ν. If ν has a harmonically concave tail,
then the function

A 7→
n∑

k=1

(−1)k−1tr g(A[k]) (7.4)

is concave and non-negative on S n
++.

Corollary 7.2.2 Let α be any number in [0, 2/3].

(a) For any completely monotone function f̃ , let f (x) := f̃ (xα), then function (7.3) is convex
and non-negative on S n

++.

(b) For any Bernstein function g̃, let g(x) := g̃(xα), then function (7.4) is concave and non-
negative on S n

++.



Chapter 8

Open questions and future works

8.1 Open questions
We would like to list some open questions which are encountered in our researches.

Problem 8.1.1 Find the largest number r ∈ [0, 1] such that the function

f (x) = e−sxα(1 + sαxα) (8.1)

is completely monotone for every α ∈ [0, r] and s ≥ 0.

This problem roots in Section 6.1. Proposition 6.1.1 indicates this open question is well-
defined, as the set of all α ∈ [0, 1], for which (8.1) is completely monotone for all s ≥ 0,
is a continuous closed interval. We shown that r > 2/3 in Lemma 6.1.1 and r < 0.9 in
Example 6.1.2. However, the exact number of r is unknown, though our numerical experiments
show that r is around 0.7424.

Problem 8.1.2 Suppose f (x) is completely monotone. Is the inverse function of f (x)/x com-
pletely monotone? Suppose g(x) is Bernstein, Is the inverse of xg(x) Bernstein?

This problem rises when we want to find more ways to construct completely monotone and
Bernstein functions. It also connects to the Lambert W-function, see [26] and [22]. Lambert
W-function is defined as the inverse to the function w → wew. When z , 0, the equation
wew = z has infinitely many solutions, including two real branches. The increasing branch is
denoted as W0 and the decreasing branch is denoted as W−1. See [26] for details. We wonder
whether the increasing real branch of the Lambert W-function is Bernstein on (0,∞).

Problem 8.1.3 Suppose measures µ and ν on [0,∞) are both β-convex measures for β ∈ [0, 1].
Does their convolution µ ∗ ν have γ-convexity for some γ ∈ [0, 1]?

It is shown in Lemma 2.4.7 that if Bernstein measure µ is convex and µ({0}) = 0, then
µ ∗ ν is convex for any Bernstein measure ν. This connects to the case β = γ = 0 in the above
question. However, the other cases are unknown. Investigation of this problem contributes to
understand the product of completely monotone functions and the shape of their measures.
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8.2 Future works
Besides these specific open questions, we have some other general topics for future researches.

8.2.1 The structure ofHBF

It is shown in Example 6.3.3 and Example 6.3.4 that the linear combination

c1xα1 + c2xα2 + · · · + cnxαn ∈ HBF ,

for ci ≥ 0, αi ∈ [0, 2/3], i = 1, 2, . . . , n. It remains unknown if this property can be extended
onto the entire set ofHBF . In other words, it is interesting to show if the following function is
fromHBF:

c1g1(x) + c2g2(x) + · · · + cngn(x),

where ci ≥ 0 and gi(x) ∈ HBF for all i = 1, 2, . . . , n.
A special case of this linear combination is the convex combination. In this scenario, the

objective is to investigate whether the setHBF is a convex cone, that is to prove or disprove

λg1(x) + (1 − λ)g2(x) ∈ HBF ,

for g1(x), g2(x) ∈ HBF and λ ∈ [0, 1].
Another aspect regarding the structure of HBF is to identify its generator. Function h(x) ∈

HBF is called a generator, if it can not be represented as h(x) = g(h∗(x)) for some non-affine
Bernstein function g(x) ∈ BF and some h∗ ∈ HBF . In other words, if h(x) is a generator of
HBF , then for any identity such that

h(x) = g(h∗(x)),

where g(x) ∈ BF and h∗(x) ∈ HBF , the function g(x) must have Lévy ν(0,∞) = 0. For
example, consider {xα : α ∈ [0, 2/3]} ⊂ HBF . Its generator is h(x) = x2/3.

It is unclear what are the generators of HBF . However, if we could identify the set of
generators, denoted as GHBF , then we have identified all functions inHBF as the following:

HBF = {g ◦ h(x) : g(x) ∈ BF and h(x) ∈ GHBF}.

8.2.2 Connections to complete Bernstein functions
Definition 8.2.1 Suppose g(x) ∈ BF . It is complete Bernstein function if its Lévy measure ν
has a completely monotone density m(t) with respect to Lebesgue measure.

In other words, a function g(x) is complete Bernstein function if it admits

g(x) = a + bx +

∫
(0,∞)

(1 − e−xt)m(t) dt,

for a, b ≥ 0 and m(t) is completely monotone, satisfying∫
(0,∞)

(t ∧ 1)m(t) dt < ∞.
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The set of complete Bernstein function is denoted as CBF . It is easy to verify that for any
g(x) ∈ CBF , it has Lévy measure with convex tail. However, the converse is not true. Hence
the Bernstein functions whose Lévy measures have convex tail generalize CBF .

There are a lot of interesting properties for complete Bernstein functions. For example, the
set CBF is closes under composition. That is, if g1(x), g2(x) ∈ CBF , then g1(g2(x)) ∈ CBF .
See [68, Corollary 7.6]. Another example can be the characterization of the set

CBF
α := {gα(x) : g(x) ∈ CBF } = {g(x) ∈ CBF : x1−αg(x) ∈ CBF }.

It is unknown how these properties could be generalized onto the set of Bernstein functions
whose Lévy measures have convex tails.

8.2.3 Connections to subordinators
It is shown in Section 2.3.2 that Bernstein function is closely related with subordinator pro-
cesses. They differ from the Laplace exponent of subordinators by a constant a ≥ 0.

We would like to try to characterize Bernstein functions whose Lévy measures have various
convexity properties in terms of associated subordinators. Besides, it is interesting to investi-
gate the emerging properties of the subordinators with these convexity properties on their Lévy
measures.
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Appendix A

Auxiliary facts and their proofs

In this appendix, we list some facts that are used in our contents. Some of the statements are
easy to comprehend but requires prolonged close arguments to prove, while some others may
be of more interests with wide applications.

A.1 On functions
Lemma A.1.1 For infinite differentiable function f (x), we have

(x f (x))(n) = x f (n)(x) + n f (n−1)(x).

It could be easily verified by mathematical induction. The next corollaries follow trivially.

Corollary A.1.1 For infinite differentiable function

( f (x) − x f ′(x))(n) = −x f (n+1)(x) − (n − 1) f (n)(x).

Corollary A.1.2 For infinite differentiable function

( f (x) + x f ′(x))(n) = x f (n+1)(x) + (n + 1) f (n)(x).

Lemma A.1.2 Suppose the left (right) directional derivative of ϕ : (0,∞) → R exists at x.
Then, the right (left) directional derivative of h(x) := ϕ(1/x) exists at 1/x and

h′+(x) = −ϕ′−

(1
x

) 1
x2 , resp. h′−(x) = −ϕ′+

(1
x

) 1
x2 .

Proof We only need to verify the case for h′+(x). The other follows similarly. By definition,

h′+(x) = lim
λ→0+

ϕ
( 1

x + λ

)
− ϕ

(1
x

)
λ

= lim
λ→0+

ϕ
(1

x
−

(1
x
−

1
x + λ

))
− ϕ

(1
x

)
1
x
−

1
x + λ

·

1
x
−

1
x + λ
λ

= −
1
x2 lim

δ→0+

ϕ
(1

x
− δ

)
− ϕ

(1
x

)
δ

= −
1
x2ϕ

′
−

(1
x

)
.

We change variable by letting δ = 1/x − 1/(x + λ) in second line. The verification is closed. �
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Lemma A.1.3 If function h : (0,∞)→ R is convex (concave), then the directional derivatives
of xph(x) exist for all p ∈ R. More precisely, it can be shown that

(xph(x))′+ = pxp−1h(x) + xph′+(x) and (xph(x))′− = pxp−1h(x) + xph′−(x).

Proof We only need to verify the case for (xph(x))′+. The other follows similarly. By definition,

(xph(x))′+ = lim
λ→0+

(x + λ)ph(x + λ) − xph(x)
λ

= lim
λ→0+

(x + λ)ph(x + λ) − xph(x + λ)
λ

+ lim
λ→0+

xph(x + λ) − xph(x)
λ

= pxp−1h(x) + xph′+(x).

The last equation utilizes the continuity of h(x). The verification is closed. �

Lemma A.1.4 The following functions are positive on (0,∞).

(a) f0(s) = s − 1 + e−s;

(b) f1(s) = s2 − 2s − 2e−s + 2;

(c) f2(s) = −s2e−s + e−2s − 2e−s + 1;

(d) f3(s) = −se−s − e−s + 1;

(e) f4(s) = se−s + 2e−s + s − 2;

(f) f5(s) = (1 − e−s)2 − 2e−s(e−s + s − 1).

Proof (a) This is trivial because

f0(s) = s − (1 − e−s) =

∫
(0,s)

(1 − e−u) du.

(b) Notice f ′1(s) = 2 f0(s) > 0 for s > 0 by (a). Thus f1(s) is increasing on (0,∞). Noticing
lims→0 f1(s) = 0, we can conclude f1(s) > 0 on (0,∞).

(c) Notice f ′2(s) = e−s f1(s) > 0 for s > 0 by (b). Thus f2(s) is increasing on (0,∞). Noticing
lims→0 f2(s) = 0, we can conclude f2(s) > 0 on (0,∞).

(d) Notice f ′3(s) = se−s > 0 for s > 0. Thus f3(s) is increasing on (0,∞). Noticing
lims→0 f3(s) = 0, we can conclude f3(s) > 0 on (0,∞).

(e) Notice f ′4(s) = f3(s) > 0 for s > 0 by (d). Thus f4(s) is increasing on (0,∞). Noticing
lims→0 f4(s) = 0, we can conclude f4(s) > 0 on (0,∞).

(f) Notice f ′5(s) = 2e−s(s − (1 − e−s)) > 0 for s > 0. Thus f5(s) is increasing on (0,∞).
Noticing lims→0(1 − e−s)2 − 2e−s(e−s + s − 1) = 0, we conclude f5(s) > 0 on (0,∞). �

Lemma A.1.5 Function fs(t) = e−st(t − te−s + 1) is decreasing on (0,∞) for any s > 0.
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Proof Consider its derivative, which is f ′s (t) = e−st(−st + ste−s− s + 1− e−s). It suffices to show
f ′s (t) < 0 for s, t > 0. Notice

−st + ste−s − s + 1 − e−s = −(1 − e−s)st + 1 − e−s − s.

It is linear in t with negative slope and negative intercept for any s > 0. Hence f ′s (t) < 0 and
fs(t) is decreasing on (0,∞). �

Lemma A.1.6 Consider the exponential integral function E1(x) on (0,∞), defined by

E1(x) :=
∫

(x,∞)

e−t

t
dt.

We have 0 < − ln(t) < E1(st)es for every t ∈ (0, 1) and s > 0.

Proof To prove this, define
qs(t) := e−s ln(t) + E1(st).

Note that q′s(t) = (e−s − e−st)/t < 0 for t ∈ (0, 1) and s > 0. Hence qs(t) is decreasing on
(0, 1). Also note that qs(1) = E1(s) > 0. Hereby we conclude qs(t) > 0, which implies
0 < − ln(t) < E1(st)es for every t ∈ (0, 1) and s > 0. �

Lemma A.1.7 Function f (x) = 1−1/x−ln(x) is non-positive on (0,∞). In particular, f (x) = 0
if and only if x = 1.

Proof Notice that
f ′(x) =

1 − x
x2 .

It is positive on (0, 1) and negative on (1,∞). Thus f (x) is increasing on (0, 1) and decreasing
on (1,∞). The global maximum takes place at x = 1 with f (1) = 0. �

Lemma A.1.8 Function fk(x) = xke−xk/(k+1) is bounded from above by (k + 1)ke−k on (0,∞) for
all k ≥ 1. In particular, fk(x) = (k + 1)ke−k if and only if x = k + 1.

Proof Notice that

f ′k (x) = kxk−1e−xk/(k+1) −
k

k + 1
xke−xk/(k+1) = kxk−1e−xk/(k+1)

(
1 −

x
k + 1

)
.

It is positive if x < k + 1 and negative if x > k + 1. Thus fk(x) is increasing on (0, k + 1)
and decreasing on (k + 1,∞). The global maximum takes place at x = k + 1 with fk(k + 1) =

(k + 1)ke−k. �

Lemma A.1.9 Consider the function

ft(s) = 1 −
se−ts

1 − e−s

on (0,∞), where t > 0. Then we have the following properties.
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(a) If t ≥ 1/2, then ft(s) ≥ 0;

(b) If 0 < t < 1/2, then there is only one solution for s on (0,∞) such that ft(s) = 0.

Proof (a) Suppose t ≥ 1/2. L’Hopital rule implies lims→0 ft(s) = 0. To verify ft(s) ≥ 0, it
suffices to show its derivative is non-negative. Notice

f ′t (s) =
e−ts((1 − e−s)st + e−s + se−s − 1)

(1 − e−s)2 .

It is equivalent to show (1 − e−s)st + e−s + se−s − 1 ≥ 0. Notice that this function is linear in t
with positive slope. We just need to show it is non-negative when t = 1/2, which is equivalent
to show

s
2

+
se−s

1 − e−s − 1 ≥ 0.

By L’Hopital rule, we obtain

lim
s→0

( s
2

+
se−s

1 − e−s − 1
)

= 0.

Thus it suffices to show this function in non-decreasing. Indeed, notice( s
2

+
se−s

1 − e−s − 1
)′

=
1
2
−

e−s(e−s + s − 1)
(1 − e−s)2 =

(1 − e−s)2 − 2e−s(e−s + s − 1)
2(1 − e−s)2 .

The numerator is non-negative by Lemma A.1.4 (f).
(b) Suppose 0 < t < 1/2, we want to show there is an unique solution to ft(s) = 0. Rewrite

ft(s) = 0 in the following way,

t =
1
s

ln
( s
1 − e−s

)
=: h(s).

By L’Hopital rule,

lim
s→∞

h(s) = lim
s→∞

1 − e−s − se−s

s(1 − e−s)
= 0,

lim
s→0

h(s) = lim
s→0

1 − e−s − se−s

s(1 − e−s)
= lim

s→0

se−s

1 − e−s + se−s = lim
s→0

−e−s + se−s

−2e−s + se−s =
1
2
.

To show ft(s) = 0 has one unique solution on (0,∞) for any 0 < t < 1/2, if suffices to show
h(s) is strictly decreasing on (0,∞). Consider its derivative

h′(s) =
1
s2

(1 − (s + 1)e−s

1 − e−s − ln
( s
1 − e−s

))
=:

1
s2 g(s).

It suffices to show g(s) > 0 for all s > 0. Notice

lim
s→0

1 − (s + 1)e−s

1 − e−s = lim
s→0

1 − e−s − se−s

e−s = 0, and lim
s→0

ln
( s
1 − e−s

)
= ln

(
lim
s→0

s
1 − e−s

)
= 0.

Therefore, lims→0 g(s) = 0 and it suffices to prove g(s) is strictly increasing. Consider

g′(s) =
1 − e−s − se−s

s(1 − e−s)
−

e−s(s − 1 + e−s)
(1 − e−s)2 =

e−2s − s2e−s − 2e−s + 1
s(1 − e−s)2 .

The numerator is positive on (0,∞) by A.1.4 (c). Therefore, g′(s) > 0 on (0,∞) and there exists
one unique solution to ft(s) = 0 on (0,∞) for 0 < t < 1/2. �



A.1. On functions 125

Lemma A.1.10 If ν is a Radon measure on (0,∞) and ν̄(x0) < ∞ for some x0 > 0. Then
limx→∞ ν̄(x) = 0.

Proof First notice that ν̄(x) is non-negative and non-increasing. Hence the limit exists as x
approaches infinity. As ν is inner regular, we obtain ν[x0 + 1,∞) = limx→∞ ν[x0 + 1, x].

Note ν[x0 + 1,∞) = ν[x0 + 1, x] + ν̄(x) for x large. Letting x approaching infinity, using
ν[x0 + 1,∞) < ν̄(x0) being finite, we get limx→∞ ν̄(x) = 0. �

Lemma A.1.11 Suppose ν is Lévy measure with harmonically concave tail. Then

(a) lim
t→∞

tν̄′+(t) = 0;

(b) lim
t→0+

t2ν̄′+(t) = 0.

Proof (a) Because ν has harmonically concave tail, the function tν̄(t) is concave on (0,∞). Its
right derivative ν̄(t) + tν̄′+(t) is decreasing. Thus, lim

t→∞
[ν̄(t) + tν̄′+(t)] exists in [−∞,∞) and us-

ing formula (2.22) we obtain that limt→∞ tν̄′+(t) exists in [−∞, 0] because ν̄′+(t) is non-positive.
Noticing formula (2.38) holds for harmonically convex (concave) functions on (0,∞), integra-
bility condition (2.17) gives

∞ >

∫
(1,∞)

ν(dt) = −

∫
(1,∞)

dν̄(t)

We extend ν̄(x) onto (−∞, 0) by defining ν̄(−x) = ν̄(x). Then,∫
(1,∞)

dν̄(t) =

∫
(−1,−∞)

dν̄(t) =

∫
(1,0)

dν̄
(
−

1
s

)
=

∫
(1,0)

(
ν̄
(
−

1
s

))′
+

ds

= −

∫
(1,0)

ν̄′−

(
−

1
s

) 1
s2 ds =

∫
(1,∞)

ν̄′−(−t) dt =

∫
(1,∞)

ν̄′+(t) dt

The first equation in second line is the property of even extension. The second equation fol-
lows [80, Theorem 11a] by change of variable t = −1/s, and Lemma 2.39 implies the first
equation in second line. Change of variable is applied again by s = 1/t in the next equation
and the last one is the property of even extension. We obtain

∞ > −

∫
(1,∞)

dν̄(t) = −

∫
(1,∞)

ν̄′+(t) dt =

∫
(1,∞)

1
t
(−tν̄′+(t)) dt ≥ 0

The convergence of this integral implies that lim
t→∞

tν̄′+(t) = 0.
(b) As ν has harmonically concave tail, function ν̄(1/t) is concave and non-decreasing. By

Lemma 2.39, and the basic properties of concave functions, we have that

(ν̄(1/t))′− = −ν̄′+(1/t)/t2

is non-increasing and non-negative.
Hence, t2ν̄′+(t) is non-increasing and non-positive. limt→0+(−t2ν̄′+(t)) exists in [0,∞]. Inte-

gration by parts shows, for ε ∈ (0, 1), that∫
(ε,1]

ν̄(t) dt =

∫
(ε,1]

t ν(dt) + ν̄(1) − εν̄(ε).
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As tν̄(t) is concave, its right derivative

(tν̄(t))′+ = ν̄(t) + tν̄′+(t)

satisfies ∫
(ε,1]

tν̄′+(t) + ν̄(t) dt = ν̄(1) − εν̄(ε).

Therefore,

0 ≤ −
∫

(ε,1]
tν̄′+(t) dt =

∫
(ε,1]

ν̄(t) dt + εν̄(ε) − ν̄(1) =

∫
(ε,1]

t ν(dt) ≤
∫

(0,1]
t ν(dt) < ∞,

where the last inequality follows from (2.17). Letting ε approach 0, we obtain

0 ≤ −
∫

(0,1]
tν̄′+(t) dt =

∫
(0,1]

1
t
(−t2ν̄′+(t)) dt < ∞.

The convergence of the last integral, reveals that lim
t→0+

t2ν̄′+(t) = 0. �

Lemma A.1.12 Suppose F(x) : (0,∞) → (0,∞) is right continuous, non-decreasing (or non-
increasing), and there exists a sequence of functions {Gn(x)} such that limn→∞Gn(x) = xαF(x)
at every point of continuity of F(x) for some α ≥ 0.

(a) If Gn(x) is convex for all n ≥ 1, then xαF(x) is also convex;

(b) If Gn(x) is concave for all n ≥ 1, then xαF(x) is also concave.

Proof First note that the point of continuity of xαF(x) is the same as F(x) for all α ≥ 0.
(a) Suppose F(t) to be non-decreasing. Let x, y ∈ (0,∞) be points of continuity of F(t). Choose
λ ∈ [0, 1], such that (1 − λ)x + λy is also a point of continuity of F(t). So we have

lim
n→∞

Gn(t) = tαF(t),

for every t ∈ {x, y, (1 − λ)x + λy} and since Gn is convex for every n, we obtain

((1 − λ)x + λy)αF((1 − λ)x + λy) ≤ (1 − λ)xαF(x) + λyαF(y). (A.1)

It suffices to show that F(t) is continuous function on (0,∞). Indeed, suppose that u ∈ (0,∞) is
a jump point for the right-continuous, non-decreasing functions F(t), that is, F(u−) < F(u). Let
{yn} be a decreasing sequence of points of continuity of F(t), converging to u. Such sequence
exists, since the number of jumps of F(t) is at most countable. Using the density of the points of
continuity, for every n large enough, we can choose an λn ∈ [1/4, 3/4] and a point of continuity
xn < u such that the following three conditions are satisfied:

1) the sequence {xn} converges to u from the left;

2) (1 − λn)xn + λnyn is a point of continuity for every n; and

3) u ≤ (1 − λn)xn + λnyn for every n.
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So we get for every n large enough,

((1 − λn)xn + λnyn)αF((1 − λn)xn + λnyn) ≤ (1 − λn)xαn F(xn) + λnyαn F(yn). (A.2)

Note that {λn} is bounded away from 1 and 0. Without loss of generality, assume the sequence
{λn} converges to some λ ∈ [1/4, 3/4]. Otherwise select a subsequence. Taking the limit as n
approaches infinity in (A.2), using that F(t) is right-continuous, we obtain

uαF(u) ≤ (1 − λ)uαF(u−) + λuαF(u).

Since λ , 1 we reach the contradiction F(u) ≤ F(u−).
If F(t) is non-increasing, inequality (A.1) still holds for points of continuity. It suffices to

show F(t) is continuous on (0,∞). If there is a jump point u, such that F(u−) > F(u), then we
can also construct sequences {xn}, {yn} and {λn}, satisfying the conditions above with modified
condition 3) as (1 − λn)xn + λnyn ≤ u for every n. Taking limit in (A.2), using that F(t) is
right-continuous, we obtain

uαF(u−) ≤ (1 − λ)uαF(u−) + λuαF(u).

Since λ , 0 we reach the contradiction F(u−) ≤ F(u).
(b) The proof is analogous. Suppose F(t) to be non-decreasing. We could have

((1 − λ)x + λy)αF((1 − λ)x + λy) ≥ (1 − λ)xαF(x) + λyαF(y). (A.3)

Here x, y, (1 − λ)x + λy are points of continuity of F(t). It suffices to show F(t) is continuous
on (0,∞). If there is a jump point u, such that F(u−) < F(u), we could also find sequences
{xn}, {yn} and {λn} satisfying the conditions above with modified condition 3) as (1 − λn)xn +

λnyn ≤ u for every n. Taking limit in

((1 − λn)xn + λnyn)αF((1 − λn)xn + λnyn) ≥ (1 − λn)xαn F(xn) + λnyαn F(yn), (A.4)

and using that F(t) is right-continuous, we obtain

uαF(u−) ≥ (1 − λ)uαF(u−) + λuαF(u).

Since λ , 0 we reach the contradiction F(u−) ≥ F(u).
If F(t) to be non-increasing. We could have (A.3) for points of continuity as well. It suffices

to show F(t) is continuous on (0,∞). If there is a jump point u, such that F(u−) > F(u), we
can also construct sequences {xn}, {yn} and {λn}, satisfying the conditions as listed. Taking limit
in (A.2), using that F(t) is right-continuous, we obtain

uαF(u) ≥ (1 − λ)uαF(u−) + λuαF(u).

Since λ , 1 we reach the contradiction F(u) ≥ F(u−). �



128 Chapter A. Auxiliary facts and their proofs

A.2 On integrals
In this sections, we show some properties of Lebesgue-Stieltjes integrals. Several of them are
not easy to find, but are quite useful in our developments.

Lemma A.2.1 Suppose f (t) ≥ 0 is non-increasing. If for some T > 0∫
(0,T )

f (t) dt < ∞,

then f (t) is o(1/t) as t approaches zero.

Proof Suppose f (t) is not o(1/t) as t approaches zero. Then for some ε > 0, we have a
decreasing sequence {xn} approaching zero, such that x1 < T and xn f (xn) > ε for all n ≥ 1.
Without loss of generality, we can assume xn+1 < xn/2, otherwise choose a subsequence.

As f (x) is non-increasing, we know that∫
(0,T )

f (t) dt ≥
∞∑

n=1

(xn − xn+1) f (xn) ≥ ε
∞∑

n=1

xn − xn+1

xn
≥ ε

∞∑
n=1

(
1 −

xn+1

xn

)
.

As it is assumed that xn+1 < xn/2, we know 1 − xn+1/xn > 1/2 and the above series does
not converge, which contradicts the integrability condition. So we know f (t) is o(1/t) as t
approaches 0. �

Lemma A.2.2 Suppose f (t) ≥ 0 is non-increasing. If for some T > 0,∫
(T,∞)

f (t) dt < ∞,

then f (t) is o(1/t) as t approaches infinity.

Proof Suppose f (t) is not o(1/t) as t approaches infinity. Then for some ε > 0, we have an
increasing sequence of {x1} such that xn > T and xn f (xn) > ε for all n ≥ 1.

Denote y0 = x1 and yn = xn+1−xn. Without loss of generality, we can assume yn is increasing
and approaches infinity, otherwise we choose a subsequence of xn. As f (x) is non-increasing,
we know that∫

(T,∞)
f (t) dt ≥

∞∑
n=1

(xn − xn+1) f (xn) ≥ ε
∞∑

n=1

xn+1 − xn

xn+1
≥ ε

∞∑
n=1

yn

yn + yn−1 + · · · + y1 + y0

= ε

∞∑
n=1

1
n + 1

·
yn

yn + yn−1 + · · · + y1 + y0

n + 1

≥ ε

∞∑
n=1

1
n + 1

.

The last series does not converge. Thus it contradicts our integrability assumption. So we know
f (t) is o(1/t) as t approaches infinity. �
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Lemma A.2.3 Suppose f (t) ≥ 0 is non-increasing and g(t) is strictly increasing with g(0) = 0.
If for some T > 0, ∫

(0,T )
f (t) d(g(t)) < ∞,

then f (t) is o(1/g(t)) as t approaches zero.

Proof As g(t) is strictly increasing with g(0) = 0, its inverse function g−1(t) is also strictly
increasing with g−1(0) = 0. Change variable by setting t = g−1(s). Note f (g−1(s)) is non-
increasing and ∫

(0,g(T ))
f (g−1(s)) ds < ∞.

So f (g−1(s)) is o(1/s) as s approaches zero, which implies limt→0 f (t)g(t) = 0. �

By taking g(t) = tp in the above lemma, we could have the next handy corollary.

Corollary A.2.1 Suppose f (t) ≥ 0 is non-increasing. If there exists some T > 0∫
(0,T )

f (t) d(tp) < ∞,

for p > 0. Then f (t) is o(1/tp) as t approaches zero.

Lemma A.2.4 For any t > 0, we have the following equation:∫
(y,∞)

∫
(0,∞)

e−us
(
1 −

se−ts

1 − e−s

)
ds du =

∫
(0,∞)

∫
(y,∞)

e−us
(
1 −

se−ts

1 − e−s

)
du ds.

Proof If t ≥ 1/2, by Lemma A.1.9, we know 1 − se−ts/(1 − e−s) ≥ 0 on (0,∞). By Fubini
theorem, the above equation holds.

If 0 < t < 1/2, to interchange the integral by Fubini-Tonelli theorem, it suffices to verify∫
(0,∞)

∫
(y,∞)

∣∣∣∣∣∣e−us
(
1 −

se−ts

1 − e−s

) ∣∣∣∣∣∣ du ds =

∫
(0,∞)

∣∣∣∣∣∣1s − e−ts

1 − e−s

∣∣∣∣∣∣ e−ys ds < ∞.

Denote

ht(s) :=
1
s
−

e−ts

1 − e−s .

Consider the shape of ht(s). By L’Hopital rule, we observe that,

lim
s→∞

sht(s) = 1 − lim
s→∞

se−ts

1 − e−s = 1,

lim
s→0

ht(s) = lim
s→0

1 − e−s − se−ts

s(1 − e−s)
= lim

s→0

−e−ts + ste−ts + e−s

1 − e−s + se−s = lim
s→0

2te−ts − st2e−ts − e−s

2e−s − se−s = t −
1
2
.

The first limit implies sht(s) > 0 for s large. By Lemma A.1.9, we know that there is an unique
solution for s on (0,∞) such that sht(s) = 0. Since ht(s) approaches t−1/2 < 0 as s approaches
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zero, we know ht(s) is negative on (0, s∗) and positive on (s∗,∞), where s∗ is the unique solution
of sht(s) = 0. Therefore, we obtain∫

(0,∞)

∣∣∣∣∣∣1s − e−ts

1 − e−s

∣∣∣∣∣∣ e−ys ds =

∫
(0,s∗]
−ht(s)e−ys ds +

∫
(s∗,∞)

ht(s)e−ys ds.

It is clear that the first term is finite, because ht(s∗) = 0 and lims→0 −ht(s)e−ys = 1/2 − t. The
second term is also finite, because lims→∞ ht(s) = 0 and therefore ht(s) is bounded on (s∗,∞).
Its Laplace transformation is well-defined. Hence for any y > 0∫

(0,∞)

∣∣∣ht(s)
∣∣∣ e−ys ds < ∞.

Fubini-Tonelli Theorem is applicable to interchange the integral. �

The following lemma is a particular case of the change of variable formula for Lebesgue-
Stieltjes integrals, see [80, Theorem 11a].

Lemma A.2.5 Suppose f (x) is continuous on (0,∞) and g(x) has bounded variation on (0,∞).
Then ∫

(0,∞)
f (x) dg(x) = −

∫
(0,∞)

f (1/t) dg(1/t).

The following theorem describes integration by parts for Lebesgue-Stieltjes integrals on
finite intervals, see [24, Theorem 6.2.2]. They can be extend onto (0,∞) by taking limits.

Theorem A.2.6 Let f , g : I → R be right-continuous functions of bounded variation. If f is
also continuous, for any [a, b] ⊂ I, we have∫

[a,b]
f dg +

∫
[a,b]

g d f = f (b)g(b) − f (a−)g(a−),∫
(a,b]

f dg +

∫
(a,b]

g d f = f (b)g(b) − f (a)g(a),∫
(a,b)

f dg +

∫
(a,b)

g d f = f (b−)g(b−) − f (a)g(a).

Lemma A.2.7 Suppose f (x) is continuous on (0,∞) and g(x) is right-continuous with bounded
variation on (0,∞). For right-continuous and non-negative function m(x) on (0,∞),∫

(0,∞)
m(x) d( f (x)g(x)) =

∫
(0,∞)

m(x) f (x) dg(x) +

∫
(0,∞)

m(x)g(x) d f (x), (A.5)

given one of the integrals on the right hand side is convergent,

Proof Step 1: Show that A.5 holds for g(x) increasing on close interval [a, b] ⊂ (0,∞). For
partition a = x0 < x1 < · · · < xn = b, we have∫

[a,b]
m(x) d( f (x)g(x))



A.2. On integrals 131

= lim
∆→0

n−1∑
i=0

m(xi)( f (xi+1)g(xi+1) − f (xi)g(xi))

= lim
∆→0

n−1∑
i=0

m(xi) f (xi)(g(xi+1) − g(xi)) + lim
∆→0

n−1∑
i=0

m(xi)g(xi)( f (xi+1) − f (xi))

+ lim
∆→0

n−1∑
i=0

m(xi)( f (xi+1) − f (xi))(g(xi+1) − g(xi))

=

∫
[a,b]

m(x) f (x) dg(x) +

∫
[a,b]

m(x)g(x) d f (x)

+ lim
∆→0

n−1∑
i=0

m(xi)( f (xi+1) − f (xi))(g(xi+1) − g(xi)).

Here ∆ = maxi=0,...,n−1|xi+1 − xi|. Notice that f (x) continuous, thus uniformly continuous on
[a, b]. For any ε > 0, there exists δ > 0, such that for any t, s ∈ [a, b] and |t − s| < δ, we have∣∣∣ f (t) − f (s)

∣∣∣ < ε. For any partition such that ∆ < δ, we obtain

lim
∆→0

∣∣∣∣∣∣∣∣
n−1∑
i=0

m(xi)[ f (xi+1) − f (xi)][g(xi+1) − g(xi)]

∣∣∣∣∣∣∣∣
≤ ε lim

∆→0

n−1∑
i=0

∣∣∣m(xi)[g(xi+1) − g(xi)]
∣∣∣ = ε

∫
[a,b]

m(x) dg(x).

So this limit can be arbitrary small, which indicates∫
[a,b]

m(x) d( f (x)g(x)) =

∫
[a,b]

m(x) f (x) dg(x) +

∫
[a,b]

m(x)g(x) d f (x).

Step 2: For any g(x) with bounded variation on [a, b], A.5 holds, as such g(x) can be
represented as the difference of two increasing functions.

Step 3: Taking a approaches zero and b approaching infinity, A.5 holds on (0,∞), given
one of the integrals on right hand side is convergent. �

Remark A.2.8 From step 3 above, we can see that if f (x) and g(x) are both non-negative and
non-decreasing, then A.5 holds by the monotone convergence theorem, in which case, we can
remove the condition that one of the integral on the right is convergent.

Lemma A.2.9 Suppose real valued function g(x) is non-decreasing and convex (or concave)
on (0,∞). Then, ∫

(0,∞)
m(x) dg(x) =

∫
(0,∞)

m(x)g′(x) dx, (A.6)

where m(x) is continuous and non-negative on (0,∞).
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Proof First consider interval [a, b] ⊂ (0,∞). For partition a = x0 < x1 < · · · < xn = b, by
(2.38), we have ∫

[a,b]
m(x) dg(x) −

∫
[a,b]

m(x)g′(x) dx

= lim
∆→0

n−1∑
i=0

m(xi)(g(xi+1) − g(xi)) −
n−1∑
i=0

∫
(xi,xi+1)

m(x)g′(x) dx

= lim
∆→0

n−1∑
i=0

∫
(xi,xi+1)

(m(xi) − m(x))g′(x) dx.

Here ∆ = maxi=0,...,n−1|xi+1 − xi|. As g′(x) is right-continuous on [a, b], it is bounded, that is∣∣∣g′(x)
∣∣∣ ≤ M for some M > 0.

On the other hand, as m(x) is continuous on (0,∞), it is uniformly continuous on [a, b].
For any ε > 0, there exists δ > 0, such that for any t, s ∈ [a, b] and |t − s| < δ, we have∣∣∣m(t) − m(s)

∣∣∣ < ε. For any partition such that ∆ < δ, we obtain∫
(xi,xi+1)

∣∣∣(m(xi) − m(x))g′(x)
∣∣∣ dx ≤ M

∫
(xi,xi+1)

∣∣∣(m(xi) − m(x))
∣∣∣ dx ≤ εM(xi+1 − xi).

Therefore, we obtain∣∣∣∣∣∣
∫

[a,b]
m(x) dg(x) −

∫
[a,b]

m(x)g′(x) dx

∣∣∣∣∣∣ ≤ εM(b − a).

As ε could be arbitrarily small, we know∫
[a,b]

m(x) dg(x) =

∫
[a,b]

m(x)g′(x) dx.

Taking limit and letting a approach zero and b approaches infinity, we could have (A.6) by
monotone convergence theorem. �
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