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Abstract 
 

Regional frequency analysis (RFA) is used to obtain reliable estimates of local precipitation 

events for a variety of applications in water resources engineering. The focus of the presented 

research is on an initial step of the RFA process; that is the formation of precipitation regions 

(also referred to as regionalization). The aim of this study is to dissect the regionalization 

procedure into its individual components that require subjective user input, and to evaluate 

their respective influences on the results. All assessments are conducted in two of Canada's 

climate regions; namely the Prairie and Great Lakes-St. Lawrence lowlands. Additionally, a 

new fuzzy clustering approach to regionalization that uses optimization is proposed. It is 

evident that the outcomes are sensitive to the choice of the regionalization method, the 

number of regions into which the sites of the study area are partitioned, the climate site 

attributes and the temporal resolution of the precipitation data. Recommendations for the 

selection of such factors are provided based on their application. 

Keywords 

Regional frequency analysis, regionalization, climate, precipitation, ANUSPLIN, 

atmospheric variables, fuzzy c-means, L-moments, optimization, differential evolution, fuzzy 

Compromise programming 
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Chapter 1 

1. Introduction 

1.1 General 
 

Water resources engineers are responsible for the development of plans, designs and 

operational procedures for systems that control the distribution of water within a region of 

interest (Chin, 2006). Their ultimate challenge is to manage uncertain hydrologic processes 

while balancing the needs of the natural and socio-economic environments. Hydrologic 

processes (overland flow, groundwater flow, evaporation, infiltration, etc.) are primarily 

driven by precipitation events that are characterized by complex spatial and temporal 

distributions. Precipitation is considered to be a random event and therefore its occurrence is 

estimated through probabilistic (stochastic) methods. The accepted stochastic approach for 

estimating at-site precipitation magnitudes (of certain duration) is known as frequency 

analysis. The general approach to frequency analysis involves fitting a statistical probability 

distribution to the historical precipitation record measured at the site of interest (Chin, 2006). 

Estimates of precipitation magnitudes are extracted from the frequency distribution and used 

in a variety of water resources applications including water infrastructure design, forecasting 

and downscaling functions, drought frequency analysis, insurance risk calculations and 

hydrologic modeling for reservoir operations, among others (Hosking and Wallis, 1997). 

A major challenge facing water resources engineers is the absence of complete, sufficiently 

long precipitation records (Burn, 1990). For example, some engineering applications (water 

infrastructure design) must accommodate rare precipitation events that correspond to a large 
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return period (50, 100 years) that is defined as the average number of years between events 

of a certain magnitude. Complete records that are at least 50 or 100 years in length are 

difficult to obtain, and frequency distributions that are developed from datasets that are 

shorter than the return period of interest are unable to capture the true variability of the local 

precipitation. This is a major limitation of the traditional frequency analysis. To overcome 

this problem, data from several neighboring sites that exhibit similar statistical properties of 

precipitation can be combined into a single probability distribution from which precipitation 

occurrence is more reliably estimated. The modified approach is referred to as regional 

frequency analysis (RFA) (Chin, 2006; Chebana and Ouarda, 2008).  An important 

assumption of the RFA procedure is that the at-site frequency distributions of the observed 

precipitation records (that are to be combined into a single distribution) are identically 

distributed; that is also known as the rule of homogeneity (Hosking and Wallis, 1997). This 

criterion is approximately achieved by assigning sites to homogeneous precipitation regions 

in a process called regionalization; thus introducing the fundamental topic of the presented 

research.  

The general regionalization procedure involves the employment of a tool to partition climate 

sites of the study area into contiguous or non-contiguous regions based on the similarity of 

their attributes (that are typically site characteristics that drive the local precipitation) 

(Ouarda et al., 2001). Depending on the chosen method, similarity can be measured using 

correlation coefficients or distance metrics such as the Euclidean or Mahalanobis distance 

(Rao and Srinivas, 2005). The precipitation regions are subsequently validated for uniform 

precipitation test statistics. The most common method for validation is the L-moment 

regional heterogeneity test developed by Hosking and Wallis (1997).  
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Regionalization methods aim to achieve two objectives/criteria in their output: (i) 

maximization of the number of station-years in the regional precipitation records; and (ii) 

maximization of the number of homogeneous precipitation regions. The criteria are in 

conflict with one another because in order to maximize the number of station-years in the 

regional precipitation record, the climate sites should be assigned to a small number of large-

sized regions; however, a large number of regions that consist of fewer statistically similar 

sites are more likely to be classified as homogeneous. It is unlikely for climate sites to be 

partitioned into a set of regions that are entirely homogeneous without compromising the 

number of station-years of the regional precipitation record and manual adjustments to the 

sites’ memberships are often required to improve the results. 

The compositions of the precipitation regions depend upon several user preferences including 

the regionalization method, the number of regions to which the climate sites are assigned, the 

climate site attributes and the temporal resolution of the precipitation data. The regions 

derived for one application (that require a specific set of user preferences) may not be well 

suited to other uses (Srinivas, 2013) and therefore, the aim of this study is to dissect the 

regionalization procedure into its individual components that require subjective user input, 

and to evaluate their respective influences on the results. The fuzzy c-means clustering 

algorithm is employed to delineate precipitation regions in two climatically diverse study 

areas; namely, the Prairie and Great Lakes-St. Lawrence lowlands climate regions of Canada. 

Homogeneity of the precipitation regions is validated using the L-moment regional 

heterogeneity test developed by Hosking and Wallis (1997). The final step of performing 

manual adjustments to site membership is omitted from the analysis. 

Key research objectives are as follows: 
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• Justify the application of the fuzzy c-means algorithm to partition climate sites 

into precipitation regions in the subsequent tests; 

• Measure the ability of different climate site attributes to achieve the objective 

criteria in the regionalization outcomes. Several combinations of location 

parameters (latitude, longitude, elevation and distance to water bodies) and 

atmospheric variables recorded at different pressure levels are considered as 

potential attributes because of their strong influence on the variability of 

precipitation; 

• Study the effect of the temporal resolution on the formation of precipitation 

regions.  Monthly, seasonal and annual time scales are considered as well as the 

maximum annual series of the precipitation data; 

• Assess the available methods for determining the  preferred number of clusters for 

the climate sites to be assigned to (the c-value parameter of the fuzzy c-means 

clustering algorithm); 

• Introduce a new method (based on optimization and fuzzy Compromise 

programming) for the selection of input parameters to the fuzzy c-means 

algorithm; namely the fuzzifier (that controls the degree of fuzziness of a 

partitioning) and the c-value (that is the number of regions to which the climate 

sites are assigned). 

 

1.2 Organization of the Thesis 
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Chapter 2 contains a literature review of research pertaining to the regionalization of 

precipitation. First an evaluation of regionalization methods is presented, followed by a 

review of the approaches used to select the optimal number of regions to which the climate 

sites are assigned; typically referred to as cluster validity indices. Subsequently a comparison 

of regionalization outcomes for the employment of different site attributes is presented, 

followed by a review of the related studies that have applied different temporal resolutions of 

precipitation data. The proposed model for selecting input parameters to the fuzzy c-means 

clustering algorithm is introduced in Chapter 3. Application of the tests including the study 

areas and data used are described in Chapter 4. Chapter 5 explains the methodology used in 

four main steps: (i) formation of the attribute sets; (ii) selection of the number of regions; (iii) 

delineation of precipitation regions; and (iv) validation of regional homogeneity. Afterward 

the method for the proposed model for regionalization is described. Chapter 6 presents the 

results of the following investigations: (i) justification for the use of the fuzzy c-means 

algorithm; (ii) influence of the choice of site attributes on the regionalization outcomes; (iii) 

effect of the temporal resolution of the precipitation data on the regional compositions; (iv) 

analysis of the output from the proposed regionalization model. Finally, a summary of the 

results and concluding remarks are provided in Chapter 7.  
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Chapter 2 

2. Literature Review 
 

In this Chapter a review of the literature pertaining to various aspects of the regionalization 

procedure is presented including: (i) regionalization methods; (ii) techniques for determining 

the preferred number of clusters into which the climate sites are partitioned; (iii) selection of 

climate site attributes that drive the local precipitation; and (iv) choice of the temporal 

resolution of the precipitation datasets.  

 

2.1 Regionalization Methods 
 

Several regionalization methods are available including: (i) correlation analysis; (ii) principle 

component analysis; (iii) region of influence; and (iv) cluster analysis, among others. The 

following sections analyze some of the most commonly used regionalization techniques (and 

their variations) for the delineation of coherent hydrologic and pluviometric (precipitation) 

regions. A substantial amount of literature is available on the formation of hydrologic regions 

for flood frequency analysis and therefore, major findings from the aforementioned works 

are included where they are also applicable to the regionalization of precipitation.  

 

2.1.1 Correlation Analysis 
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Correlation analysis is one approach used to delineate precipitation regions. The general 

procedure involves partitioning climate sites that exhibit strong, positive correlations 

between their precipitation records into uniform pluviometric regions. Certain extensions of 

the correlation analysis technique are explained below.  

Elementary linkage analysis is a simple variation of correlation analysis and its procedure is 

as follows: Two climate sites that form the strongest positive correlation with one another are 

identified and combined into a provisional region. Additional climate sites that demonstrate a 

significant correlation with those belonging to the provisional region are also assigned as 

members; (a correlation coefficient that exceeds a predefined threshold value is considered to 

be significant). After all significantly correlated sites are assigned to the current group the 

process is repeated until the entire study area is partitioned into coherent precipitation 

regions. Adelekan (1998) used elementary linkage analysis to better understand the spatial 

and temporal variations of thunderstorm patterns in Nigeria and to study the effects of high 

intensity rainfall on flooding and soil erosion in the resultant regions.  

Saikranthi et al. (2013) and Gadgil et al. (1993) used another variation of correlation analysis 

to identify homogeneous rainfall regions in India. The technique differs from elementary 

linkage analysis in that the initial step is to identify the sites that form the weakest correlation 

between their precipitation records. These sites become seed points for the development of 

two distinct regions. Additional seed points are established based on the following criteria: (i) 

the average correlation between the site (potential seed point) and all other seed points is a 

minimum value; and (ii) the correlation between the site (potential seed point) and all other 

seed points is insignificant (less than a predefined threshold value). After all seed points have 
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been established, the precipitation regions are formed around them. Sites are assigned to the 

region corresponding to the seed point that they are most strongly correlated with. 

Canonical correlation analysis (CCA) is another variation of the correlation analysis 

approach that has been used in regional flood frequency analyses. Cavadias (1990) and 

Ouarda et al. (2001) employed this technique in the Canadian provinces of Newfoundland 

and Ontario, respectively. Using CCA the correlation structure between sets of basin 

characteristics and hydrologic parameters is assessed. The linear combination of the basin 

characteristics that forms the strongest correlation with the hydrologic parameters is 

identified and employed in the regional estimation procedure.   

CCA is advantageous as it can be used to form homogeneous regions for gauged and 

ungauged basins. Furthermore, it is superior to the Pearson correlation approaches 

(elementary linkage analysis and its variations) as it provides additional information on the 

correlation structure between basin characteristics and hydrologic parameters (Ouarda, 

2001). Major limitations of all correlation analysis methods include: (i) the subjectivity 

involved in selecting a threshold value for site membership; and (ii) their inability to detect 

differences in the magnitudes of the correlated datasets (Unal, 2003).  

 

2.1.2 Principal Component Analysis 

 

Principal component analysis (PCA) is another common approach to regionalization. The 

procedure first requires computation of the principal components of the sites’ precipitation 

records; i.e. the transformation of the sites’ precipitation records into a set of linearly 
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uncorrelated (orthogonal) vectors.  The regions are subsequently formed using one of the 

following techniques: (i) mapping; or (ii) maximum loading. 

Using the former approach the sites’ component loadings are plotted on a map of the study 

area. (Note that the loadings indicate the degree of variance of the sites’ precipitation records 

that are described by each component; higher loadings are representative of greater 

variances). The loadings are contoured and the contoured areas that exceed a predefined 

threshold value are classified as coherent precipitation regions. The process is conducted 

such that there is one map per component. Typically each component map forms one unique 

region; however it is possible for certain sites to have significant loadings under multiple 

components resulting in overlapping regions (Serra et al., 1996). Maximum loading is 

another approach to regionalization that uses PCA. For this method, each component is 

representative of a region and sites are assigned to the region (component) in which they 

have the highest loading (Chen, 2009). 

PCA is not an effective means of regionalization when a large number of components 

account for the total variance of the precipitation records because the process of assigning 

sites to regions becomes more subjective and difficult to manage (Srivinas, 2013). Serra et al. 

(1996) employed PCA to delineate homogeneous rainfall regions in Spain. They found that 

the local orography and land-sea interactions contributed to significant spatial variations in 

rainfall patterns across the country. As a result the leading principal components were unable 

to capture much of the total variance of the study area’s precipitation records. The sites had 

significant loadings under many components resulting in a highly subjective decision-making 

process when determining their regional memberships. Evidently, PCA may not be an 
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effective regionalization method for areas with complex topography or local influences such 

as significant water bodies.   

 

2.1.3 Region of Influence 

 

The concept of the site-focused pooling approach to regionalization was originally conceived 

by Acreman and Wiltshire (1987) and was later extended by Burn (1990) into what is known 

as the region of influence (ROI) method. Using this method, contiguous regions are formed 

around individual target sites such that they each have their own, unique region. Sites of the 

study area are assigned to a target site's region of influence if the similarity between their 

attributes is greater than a predefined threshold value and similarity is measured using a 

distance metric.  

The procedure requires the subjective selection of a threshold value. The subjectivity, 

however, can be eliminated by assigning the minimum number of sites needed to obtain a 

desirable precipitation record length to the region, where the desired record length depends 

upon the application. The ROI approach is advantageous as it is flexible, meaning that the 

regions shift according to the site that is under investigation and as such, each region is 

comprised of the sites that are most similar to the target. Ga’al et al (2008) found that the 

flexible regions formed by the ROI approach provide superior results for regional frequency 

analysis compared to the fixed regions that may be formed using correlation analysis, 

principal component analysis, cluster analysis, among other methods. Overall ROI is a choice 

approach to regionalization and it is particularly useful for site specific applications.  
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2.1.4 Cluster Analysis 

 

Clustering algorithms are perhaps the most popular regionalization methods in climate 

literature (Rao and Srinivas, 2005; Satyanarayana and Srinivas, 2008; 2011; Srinivas, 2013; 

Asong, 2015). Many clustering algorithms are available for delineating precipitation regions. 

Their general procedure involves partitioning climate sites into regions according to the 

similarity of their attributes where attributes are drivers of the local precipitation and 

similarity is measured using a distance metric such as the Euclidean or Mahalanobis distance 

(Rao and Srinivas, 2005).  

Clustering algorithms are categorized as hierarchical and partitional; and hierarchical 

algorithms are further divided into agglomerative and divisive classifications. Agglomerative 

algorithms merge individual sites into larger clusters and conversely, divisive algorithms 

divide one large cluster (that is composed of all sites in the study area) into smaller regions. 

Divisive algorithms are uncommon in regionalization literature; however several types of 

agglomerative algorithms have been used including single linkage, complete linkage, average 

linkage and Ward’s algorithm. The underlying difference between most agglomerative 

algorithms is the means by which similarity is measured between site attributes (Kalkstein, 

1978; Rao and Srinivas, 2005). 

Partitional clustering algorithms partition/divide sites of a study area into regions. They work 

to minimize the value of an objective function that measures the sum of the distances 

between climate sites belonging to the same region in the attribute space; as such, the within 

cluster similarity and likewise, the between cluster separation are maximized (Zalik and 

Zalik, 2011). The k-means clustering algorithm is a very common partitional algorithm, 

developed by MacQueen (1967), that measures similarity as the distance between the climate 
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sites and the cluster centroids (the average attribute value of the member sites of the cluster) 

in the attribute space (Burn and Goel, 2000; Pelchzer, 2008; Satyanarayana and Srinivas, 

2008; Dikbas, 2013). At each step of the iterative process a climate site is assigned to the 

region to which it is most similar and the value of the cluster centroid is updated to 

incorporate its new member. Following recalculation of the cluster centroid, it is possible for 

its member sites to exhibit stronger similarities to other clusters and therefore, site 

memberships may be reassigned. Other partitional algorithms include: (i) the k-medoids 

approach where similarity is measured between a climate site and the median value of the 

member site attributes (Kaufman, 1987); and (ii) the k-modes algorithm where similarity is 

measured between the climate site and mode of the member site attributes (Huang, 1998).   

The ability of the algorithms to update site membership values at each iteration is considered 

to be a major advantage of all partitional algorithms over the hierarchical approaches. A 

disadvantage of partitional algorithms is their sensitivity to the initialization of the cluster 

centres; however, to address this limitation the algorithm is evaluated several times until the 

objective function yields a global minimum value. Gong and Richman (1995) compared 

hierarchical (single linkage, complete linkage, average linkage, Ward's method) and non-

hierarchical (k-means, principle component analysis) clustering methods and determined that 

the non-hierarchical algorithms provided more accurate results.  

Rao and Srinivas (2005) recognized the merits and limitations of both hierarchical and 

partitional algorithms and therefore, combined them into a hybrid clustering algorithm that 

uses a hierarchical algorithm to initialize the cluster centres and the k-means technique to 

partition the climate sites into regions. They evaluated the outcomes of the single linkage, 

complete linkage, Ward's and k-means algorithms, and combinations of single linkage - k-
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means, complete linkage - k-means and Ward's - k-means algorithms and found that the latter 

produced the best results in terms of the maximization of within cluster similarity and 

between cluster separation.  

 

2.1.5 Fuzzy clustering algorithm 

 

All algorithms described in the previous section form hard clusters such that each site 

belongs to only one region (Zalik and Zalik, 2011); therefore, implying that member sites of 

the same region fully resemble one another, which is not a valid assumption (Srinivas, 2013). 

To address this limitation the fuzzy c-means algorithm was developed (Bezdek, 1981). The 

fuzzy c-means algorithm is very similar to the k-means technique except that it computes the 

degree to which a site belongs to each cluster on a scale of 0 to 1 where a value of 1 

represents full membership. As such, each climate station can partially belong to several 

clusters theoretically providing a more accurate partitioning of the sites. The outcomes of the 

regionalization procedure often require subjective and manual adjustments to site 

membership in order to improve the regional homogeneity of precipitation variability to an 

acceptable level. Its membership function provides useful information for removing or 

relocating discordant stations; thereby offering another advantage of the fuzzy c-means 

algorithm over traditional hard clustering techniques (Srinivas, 2013). Rao and Srinivas 

(2006) and Goyal and Gupta (2014) have conducted comparative analyses between the fuzzy 

c-means and k-means algorithms for regional flood frequency analysis. They concluded that 

the former technique outperformed the latter by achieving a greater number of homogeneous 



 

14 

 

hydrologic regions. Although the analyses were conducted for the regionalization of flood 

quantiles, their findings also apply to the formation of precipitation regions.  

Evidently the fuzzy c-means algorithm provides several advantages over the traditional hard 

clustering algorithms; however it does have certain limitations. A major drawback is its 

requirement for subjective input parameters; namely, the fuzzifier (the parameter that 

controls the fuzziness of the membership function) and the c-value (the number of regions to 

which the climate sites are assigned). The magnitudes of the input parameters significantly 

impact the regionalization outcomes. The requirement for the number of clusters to which the 

climate sites are assigned to be solved for a priori is a disadvantage of all clustering 

algorithms; they are all incapable of establishing the number of clusters that provides for the 

best partitioning of the sites. 

 

2.1.6 Summary 

 

The available approaches to regionalization include but are not limited to the methods that 

have been introduced above. Other techniques include spectral analysis (Azad et al., 2010), 

common factor analysis (Carter and Elsner, 1997) and artificial neural networks 

(Michaelidies et al., 2001). In addition, new methods and variations of existing techniques 

are continuing to emerge in climate literature. Of the regionalization methods that are 

available at this time, clustering algorithms are preferred for their innate ability to recognize 

underlying patterns in complex datasets.  

Traditionally, hard clustering methods have been used to partition climate sites such that they 

each belong to exactly one region. The k-means clustering algorithm is favoured for its 
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ability to update site membership at each iteration in order to achieve the global minimum 

value of its objective function. More recently, however, the fuzzy c-means clustering 

algorithm has been gaining popularity in climate literature for the inclusion of its 

membership function that assigns partial membership values to the sites for each cluster. This 

feature provides a more accurate partitioning of climate sites into coherent precipitation 

regions.  

Based on the information provided in literature, the fuzzy c-means algorithm has been 

elected as the choice regionalization method to be employed in the presented research. 

Chapter 6, section 1 presents a comparison between the performances of the k-means and 

fuzzy c-means clustering algorithms. The purpose of this investigation is to further justify the 

application of the fuzzy c-means technique for the subsequent analyses.   

 

2.2 Number of Precipitation Regions  
 

A review of the literature pertaining to the delineation of precipitation regions recognizes 

clustering algorithms as superior regionalization approaches. They are limited, however, by 

their inability to identify the number of clusters that provide for the natural partitioning of the 

climate sites into precipitation regions. Consequently, the number of clusters must be solved 

for prior to the employment of the algorithm (Gurrutxaga, 2013). The fuzzy c-means 

algorithm (that is elected as the choice regionalization method for this research) requires two 

subjective input parameters to be solved for a priori; namely, the c-value and the fuzzifier. 

These parameters are most reliably solved for using the trial and error method where their 

values are varied for a range of magnitudes and used as input to the algorithm. The resultant 
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partitionings are validated for regional homogeneity of the statistics of the precipitation 

records. The parameters that result in the partitioning with the highest proportion of 

homogeneous regions are retained and used for regional frequency analysis applications. 

Although the trial and error method provides accurate results it is very computationally 

demanding because the algorithm must be evaluated for all combinations of the c and 

fuzzifier parameters.  

To address this issue cluster validity indices (CVIs) are employed to solve for the optimal 

values of the input parameters, particularly for the c-value. CVIs are used to evaluate a 

partitioning of objects (climate sites) for their compactness (similarity between climate site 

attributes belonging to the same region) and separation (distinction between clusters that is 

measured as the distance between cluster centres in the attribute space) for a range of 

different input parameters (Kim and Ramakrishna, 2005). Many different CVIs are available. 

Together they produce a variety of outcomes and currently, a single, universally accepted 

measure has not been identified. Satyanarayana and Srinivas (2011) employed five CVIs to 

determine the magnitudes of the c and fuzzifier input parameters to the fuzzy c-means 

algorithm for a regional frequency analysis application. The following CVIs were 

considered: (i) the fuzzy partition coefficient; (ii) the fuzzy partition entropy; (iii) the 

fuzziness performance index; (iv) the normalized classification entropy; and (v) the extended 

Xie-Beni index. Of these indices, the first four demonstrated trends that increased or 

decreased monotonically and as such, they were deemed unsuitable for the solving for the 

magnitudes of the input parameters. They found that the extended Xie-Beni index performed 

relatively well.   
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Besides the lack of consistency between their outputs, a major drawback of the CVIs for their 

applications in the regionalization of precipitation is the disconnect between the natural 

grouping of climate sites in the attribute space (that is solved for using CVIs) and the 

inherent partitioning of the precipitation data (that is desired for regional frequency analysis). 

Since climate site attributes (that are drivers of the local precipitation) are used as input to the 

clustering algorithm and precipitation is reserved as an independent dataset for validation, the 

natural grouping of the site attributes is unlikely to directly correspond to that of the 

precipitation data. 

Note that in Chapter 6, for the assessments of the impacts of the chosen regionalization 

method, climate site attributes, and temporal resolution of the precipitation data on the 

regionalization outcomes, the value of the fuzzifier is set equal to 2 and the c-value is solved 

for using a trial and error method. The fuzzifier can take on a value in the range of 1 to 

infinity; however the range is more commonly reduced to 1 to 10. Although it is more 

accurate to solve for the value of the fuzzifier parameter that provides for the optimal 

partitioning of the data, it is not important to do so for the aforementioned assessments as 

long as a consistent value is used. Fixing the magnitude of the fuzzifier significantly reduces 

the computational time required to run the tests. As such, the fuzzifier is set equal to 2 that is 

the most common value used in other research initiatives (Pal and Bezdek, 1995).  

 

2.3 Climate Site Attributes 
 

Clustering algorithms are used to partition climate sites into regions based on the similarity 

of their attributes and therefore, attribute selection has a significant influence on the 
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composition of the precipitation regions. In the past, precipitation statistics were assigned to 

sites as attributes (Easterling, 1989; Kulkarni and Kripalani, 1998; Dikbas et al., 2012). 

There are two disadvantages associated with this: (i) it eliminates the availability of an 

independent dataset to validate regional homogeneity; and (ii) it requires a large number of 

sites with long records to accurately represent the precipitation statistics (Burn, 1997; 

Satyanarayana and Srinivas 2008; 2011). Complete and sufficiently long observed climate 

records are frequently unavailable, and in certain applications it is the lack of complete data 

that necessitates the implementation of the regionalization procedure. This applies to the 

development of climatic design values such as rainfall magnitudes of a specific return period. 

Observed precipitation records must contain a sufficiently large number of station-years to 

provide for reliable estimates of rainfall for the return period of interest.  

Evidently an alternative set of attributes is needed to form precipitation regions. Burn (1997) 

used seasonality measures to regionalize catchments in Western Canada. Seasonality is 

defined as the timing of flooding (precipitation) events within the year. If the timing of 

precipitation events varies across the study area, the use of seasonality may be extended to 

regionalize precipitation; however this may not be effective for smaller areas. Comrie and 

Glenn (1998) successfully adopted the seasonal timing of monthly precipitation to delineate 

precipitation regions in the Southwestern United States and Northern Mexico. They 

attributed the variation in seasonality to the different atmospheric drivers and changes in 

elevation across the large study area.  

 

Satyanarayana and Srinivas (2008) proposed an alternative set of attributes including large 

scale atmospheric variables that influence precipitation processes. In their study the k-means 
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clustering algorithm was employed to partition climate grid points into summer monsoon 

rainfall (SMR) regions in India using location parameters and a suite of atmospheric 

variables that drive SMR. Satyanarayana and Srinivas (2011) later extended their work to a 

fuzzy environment, where climate grid points are assigned to more than one region. 

Seasonality measures were used as input to the fuzzy c-means algorithm (Bezdek, 1981) in 

addition to the atmospheric variables and location parameters. More recently, Asong et al. 

(2015) conducted a study in the Canadian Prairie provinces where the fuzzy c-means 

algorithm was employed to partition climate stations into precipitation regions based on the 

similarity of atmospheric variables, teleconnection indices and location parameters.  

 

Any set of attributes can be used as input to the pooling or clustering algorithms; however in 

order to obtain meaningful results it is important to select attributes that are relevant to the 

problem under consideration. It is therefore recommended to use variables that influence 

local precipitation processes. Statistical analyses are used to assess the significance of the 

relationship between precipitation and the potential attributes. Asong et al. (2015) performed 

principle component analysis and canonical correlation analysis to determine the inter-

relationships between precipitation and a set of potential attributes including geographical 

site parameters and 21 atmospheric variables. The attributes that formed statistically 

significant relationships with the local precipitation were retained and used in the 

regionalization procedure. Selecting attributes that are physically meaningful to the problem 

under investigation can have several merits including reduced computational time and 

improved regional homogeneity (Wagener, 2004; Jafaar, 2011).  
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In Chapter 6, section 2 of this thesis the performances of four attribute sets are evaluated for 

their ability to form large regions with uniform precipitation statistics in a timely fashion. 

Topography, geographic location and atmospheric circulation patterns are considered to be 

the most influential factors affecting precipitation variability; therefore, location parameters 

and a suite of atmospheric variables are employed as potential attributes (Johnson and 

Hanson, 1995). The main objective of this investigation is to evaluate the need for a 

screening procedure and the selection of statistically relevant site attributes.  

 

2.4 Temporal Resolution of Precipitation 
 

The composition of precipitation regions depends upon several factors including the 

implemented time scale. Certain applications require precipitation to be obtained for a 

specific temporal resolution. Several uses of precipitation regions and their associated 

temporal resolutions are described below. 

Homogeneous precipitation regions are often used in climate forecasting applications where 

relationships between precipitation and atmospheric variables are formed and used to project 

weather patterns. Projections are found to be more accurate over uniform regions than large 

heterogeneous areas. Long-term precipitation projections (annual, seasonal and monthly 

temporal scales) are used in applications involving water availability including the 

development of a water budget (Johnson and Hanson, 1995; Saikranith et al., 2012). Short-

term precipitation projections (hourly and sub-hourly temporal scales) are used in hydrologic 

model calibration and the estimation of soil erosion and infiltration rates for agricultural 

purposes (Jebari, 2007). Extreme hydrologic events such as flooding and drought are related 
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to precipitation variability at different time scales; thus requiring a multi-temporal scale 

analysis to enhance the predictability of hydrologic models (Jiang et al, 2013). Regions of 

extreme precipitation are used to derive climatic design values such as the magnitude of the 

rainfall for a specified return period, as is done with Intensity-Frequency-Duration (IDF) 

curves. Precipitation data measured within the same pluviometric area is combined into a 

regional probability distribution from which the design value is attained (Burn, 2014).  

Research has been conducted to study the effect of the temporal scale on the formation of 

precipitation regions. Saikranthi et al., (2012) studied the spatial and temporal variability of 

monsoon rainfall over India using annual and seasonal resolutions. The spatial distribution of 

rainfall varied for the employment of the two time scales. Johnson and Hanson (1995) 

studied the relationships of daily, monthly and seasonal precipitation with topography and 

atmospheric variables over a mountainous area in Idaho, USA. Again, unique relationships 

were observed for the implementation of different time scales. Conversely, Jebari et al. 

(2007) found similarities between the distribution of sub-hourly and daily rainfall in Tunisia, 

thus permitting the disaggregation of relatively coarse to fine resolutions of precipitation 

within the study area.  

An assessment of the effect of the temporal scale on the composition of the precipitation 

regions is presented in Chapter 6, section 3 of this thesis. Annual, seasonal and monthly 

resolutions are considered in addition to the maximum annual series that is used in design 

applications.  
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Chapter 3 

3. Proposed regionalization model using a fuzzy clustering 

technique 
 

In this section a new approach to the regionalization of precipitation using a fuzzy clustering 

technique is presented. First the need for a new method is explained; then the proposed 

model is introduced; and finally, a description of the model components is provided.  

 

3.1 Problem Description 
 

As discussed in Chapter 2, section 2 many researchers employ cluster validity indices (CVIs) 

to select the input parameters (the c-value and fuzzifier) to the fuzzy c-means clustering 

algorithm (Satyanarayana and Srinivas, 2011; Goyal and Gupta, 2014). CVIs are used to 

determine the values of the input parameters that provide a natural partitioning of the climate 

sites in the attribute space, and they are a substitute for the trial and error method that is 

computationally demanding. Several different validity indices are available and together they 

produce a wide range of results (Bhatia et al., under review) that are highly uncertain. In 

addition they do not take into account the inherent grouping of the sites in terms of the 

variability of their precipitation records. As such, there is a great need for an alternative 

method to select input parameters to the fuzzy c-means algorithm that accounts for the 

quality of the regionalization outcomes (a high percentage of homogeneous precipitation 

regions and a large number of station-years per region) in a timely fashion.   
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3.2 Problem Objective 
 

A model is presented for the regionalization of precipitation using a fuzzy clustering 

approach. It uses optimization to select input parameters (the c-value and fuzzifier) to the 

fuzzy c-means clustering algorithm such that two objectives are achieved in the results: (i) 

maximization of the numbers of station-years of the regional precipitation records; and (ii) 

maximization of the number of homogeneous precipitation regions. The model employs a 

programming technique that is comprised of two main steps: (i) differential evolution 

optimization (Storn and Price, 1995; Price and Storn, 1997) to generate a set of optimal 

solutions; and (ii) fuzzy Compromise programming (Bender and Simonovic, 2000) to assist 

in the selection of a single preferred solution that is the pair of input parameters that best 

satisfy the objectives of the regionalization output.  

In Chapter 6, section 4, the model is demonstrated in the Great Lakes-St Lawrence lowlands 

climate region of Canada using monthly precipitation data that is organized into four seasons. 

Climate sites are partitioned into regions according to the similarity of their geographic 

locations including latitude, longitude and distance to major water bodies. The optimal 

solutions are ranked based on the preferences of three different decision makers: (i) Decision 

Maker 1 assigns equal criteria weights to the objective functions; (ii) Decision Maker 2 

assigns a criteria weight of 1 to the percentage of regions with homogeneous precipitation 

statistics and a criteria weight of 2 to the minimum number of climate sites belonging to a 

region; and (iii) Decision Maker 3 allocates criteria weights that are opposite to Decision 
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Maker 2. Model output is presented and assessed for its ability to satisfy the objective 

functions and reflect the priorities of three unique decision makers.  

 

3.3 Model Description and Theoretical Background 
 

This section explains how systems analysis methods are applied to solve the presented 

regionalization problem. Justification for selection of the differential evolution and fuzzy 

Compromise programming methods for inclusion in the model is provided.  

The systems approach to solving engineering problems utilizes mathematical models to 

represent a physical system. Three fundamental engineering systems techniques exist: (i) 

optimization; (ii) simulation; and (iii) multi-objective analysis. Optimization is the procedure 

for determining the set of decision variables (subject to constraints) that optimize an 

objective function. Simulation is used to assess a system's response to various input 

parameters. It is useful when the system is too complicated to obtain an optimal solution. 

Multi-objective analysis is similar to optimization; however there are several objective 

functions that are in conflict with one another. As such, a single optimal solution does not 

exist and a set of trade-off (non-dominated) solutions are generated instead (Simonovic, 

2009). The models can be solved for using deterministic, probabilistic or fuzzy techniques. 

Deterministic models employ fixed, known decision variables and parameters while models 

that contain random or uncertain variables and parameters are classified as probabilistic or 

stochastic. Probabilistic methods require knowledge of historical events in order to develop a 

frequency distribution from which the probability of occurrence of an event is estimated. The 

amount of available historical data, however, is often insufficient to capture the true statistics 
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of the event occurrence and as such, fuzzy set theory can be applied to address the issues of 

human input, subjectivity and deficient historical records. Fuzzy set theory was ultimately 

developed to incorporate the uncertainty that is caused by a lack of knowledge into a model 

and it is used to measure the degree to which an event occurs (Simonovic, 2009). The 

proposed systems tool uses a combination of optimization and fuzzy set theory to derive 

solutions to two objective functions simultaneously and to select a preferred outcome. 

 Several methods are available for solving optimization problems. The proposed 

regionalization model employs a combination of differential evolution (DE) and fuzzy 

Compromise programming. DE generates a set of solutions (decision variables subject to a 

set of defined constraints) that best satisfy the objective functions. Fuzzy Compromise 

programming is subsequently used to evaluate and rank the alternative solutions to assist in 

the selection of a single preferred solution.  

The DE belongs to a family of evolutionary algorithms (EA). They are simple search 

mechanisms that mimic evolutionary theory and they work by generating an initial 

population of solutions (decision variables) subject to a set of defined constraints that are 

referred to as the parent solutions. Evolutionary operators (mutation and crossover functions) 

are employed to perturb and recombine the parent solutions to form a population of 

provisional solutions. The fitness levels of the parent and provisional solutions are computed. 

The fitness values provide a measure of the solutions’ abilities to satisfy the objective 

functions. The parent and provisional solutions are compared and those that achieve a higher 

level of fitness are retained and become the next generation of parent solutions. The process 

continues until a maximum number of generations (as specified by the user) is reached or the 

solutions converge. The procedure is described in more detail in section 5.5.1.  
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EAs are systems tools that are capable of solving optimization problems that exhibit 

complexities such as very large search spaces, uncertainty, noise and disjoint solution sets 

(Coello Coello, 2007). They are also capable of simultaneously generating multiple solutions 

that are close to the global optimum (Simonovic, 2009). EAs are elected as the most 

appropriate method for incorporation in the proposed regionalization model for their ability 

to generate solutions to multiple objective functions simultaneously and to solve for the 

percentage of homogeneous precipitation regions (that involves a very complex procedure) 

without any simplification (see section 5.3 and 5.4). In addition, EAs are capable of 

generating solutions while maintaining discrete values of c (that is, the number of regions to 

which the climate sites are assigned). The fuzzy c-means algorithm requires discrete, whole 

numbers of the c-value in order to operate. The DE algorithm is chosen over the traditional 

genetic algorithm for its ability to provide better coverage of the outcomes of the objective 

functions corresponding to the optimal solutions (Schardong and Simonovic, 2011). 

The proposed optimization technique produces a set of solutions that best satisfy at least one 

of the objective functions. A single ideal solution that optimizes all objective functions does 

not exist since the ideal point (that provides optimal solutions for all objectives) is infeasible 

for a convex region. In order to select the preferred solution, the Compromise programming 

method is employed to evaluate and rank the optimal (alternative) solutions based on their 

closeness to the ideal solution in the objective space. Closeness is measured using a distance 

metric. The Compromise programming method also incorporates criteria weights (that 

provide an indication of the relative importance of the objective functions) into the 

evaluation of alternative solutions (Simonovic, 2009). 
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Figure A38: Correlation analysis results for the JJA season in the Prairie region. There is one plot per atmospheric 

variable: (i) relative humidity (hur); (ii) specific humidity (hus); (iii) air temperature (ta); (iv) geopotential height 

(zg); (v) Northward wind component (va); (vi) Eastward wind component (ua). The number of climate sites and 

pressure levels (x10 kPa) are plotted on the x and y axes. The colour scale corresponds to the correlation coefficient. 
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Figure A39: Correlation analysis results for the SON season in the Prairie region. There is one plot per atmospheric 

variable: (i) relative humidity (hur); (ii) specific humidity (hus); (iii) air temperature (ta); (iv) geopotential height 

(zg); (v) Northward wind component (va); (vi) Eastward wind component (ua). The number of climate sites and 

pressure levels (x10 kPa) are plotted on the x and y axes. The colour scale corresponds to the correlation coefficient. 

 

 

 

  



 

 

APPENDIX B - Sample of the fuzzy distance metric 

membership functions

 

Figure B40: Fuzzy distance metrics of the 

The distance metric corresponding to the top ranked solution is highlighted in red. Distance is computed between the 

weighed centre of gravity of the membership function and where the x

solution). 
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Sample of the fuzzy distance metric 

membership functions 

 

Fuzzy distance metrics of the alternative solutions generated for the DJF season and Decision Maker 1. 

The distance metric corresponding to the top ranked solution is highlighted in red. Distance is computed between the 

weighed centre of gravity of the membership function and where the x-axis equals zero (that represents the ideal 

 

Sample of the fuzzy distance metric 

solutions generated for the DJF season and Decision Maker 1. 

The distance metric corresponding to the top ranked solution is highlighted in red. Distance is computed between the 

als zero (that represents the ideal 
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APPENDIX C - Instructions for running the regionalization code 
 

Note: Please contact Sarah Irwin at sirwin9@uwo.ca to request for a copy of the 

files required to run the regionalization code. 

 

Required programs: 

• MATLAB (R2011; R2012) 

• R Statistical Software (R 3.1.0; R 3.1.1; R 3.1.2; download http://cran.r-

project.org/bin/windows/base/old/3.1.1/) 

• RStudio (download http://www.rstudio.com/products/rstudio/download/)  

 

Content of Sarah_Run_Folder: 

 

Scripts: 

• cluster_fcmeans_ver1.m 

• fun_feavec_ver5.m 

• fun_validation_fcm_ver1.m 

• RFA.R 

Data files: 

• distance2water.csv 

• Coordinate_List_GLR_18km.csv 

• Coordinate_List_prairie_18km.csv 

 

• glr_precip_annual_18km.csv 

• glr_precip_djf_18km.csv 

• glr_precip_mam_18km.csv 

• glr_precip_jja_18km.csv 

• glr_precip_son_18km.csv 

• glr_precip_djf_total_18km.csv 

• glr_precip_mam_total_18km.csv 

• glr_precip_jja_total_18km.csv 

• glr_precip_son_total_18km.csv 

• glr_precip_jan_18km.csv 

• glr_precip_feb_18km.csv 

• glr_precip_mar_18km.csv 

• glr_precip_apr_18km.csv 
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• glr_precip_may_18km.csv 

• glr_precip_jun_18km.csv 

• glr_precip_jul_18km.csv 

• glr_precip_aug_18km.csv 

• glr_precip_sep_18km.csv 

• glr_precip_oct_18km.csv 

• glr_precip_nov_18km.csv 

• glr_precip_dec_18km.csv 

• ta_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_glr18.csv 

• hur_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_glr18.csv 

• hus_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_glr18.csv 

• zg_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_glr18.csv 

• va_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_glr18.csv 

• ua_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_glr18.csv 

 

• prairie_precip_annual_18km.csv 

• prairie_precip_djf_18km.csv 

• prairie_precip_mam_18km.csv 

• prairie_precip_jja_18km.csv 

• prairie_precip_son_18km.csv 

• prairie_precip_djf_total_18km.csv 

• prairie_precip_mam_total_18km.csv 

• prairie_precip_jja_total_18km.csv 

• prairie_precip_son_total_18km.csv 

• prairie_precip_jan_18km.csv 

• prairie_precip_feb_18km.csv 

• prairie_precip_mar_18km.csv 

• prairie_precip_apr_18km.csv 

• prairie_precip_may_18km.csv 

• prairie_precip_jun_18km.csv 

• prairie_precip_jul_18km.csv 

• prairie_precip_aug_18km.csv 

• prairie_precip_sep_18km.csv 

• prairie_precip_oct_18km.csv 

• prairie_precip_nov_18km.csv 

• prairie_precip_dec_18km.csv 

• ta_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_prairie18.csv 

• hur_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_prairie18.csv 

• hus_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_prairie18.csv 
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• zg_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_prairie18.csv 

• va_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_prairie18.csv 

• ua_Amon_CanESM2_historical_r1i1p1_185001_200512_pelv_[pl]_prairie18.csv 

 

Procedure: 

1) Install MATLAB, R-studio and R-statistical software to your personal computer. 

2) Open R-Studio and install required packages: R.matlab, doParallel, lmomRFA 

(Hosking and Wallis, 2013) 

- Select Install Packages (bottom right window); input the names of the three 

required packages as listed above (one at a time); select Install 

3) Open fun_validation_fcm_ver1.m in MATLAB 

- Ensure the correct R-version and file location are written in Line 43 that currently 

reads: 

 eval(['!C:/PROGRA~1/R/R-3.1.1/bin/Rscript ' CurrentDirectory 

'/RFA.R']) 

 

4) Open the MATLAB command window 

- Set the working directory to the Regionalization_Codes location 

- Type cluster_fcmeans_ver1 in the command window and select Enter 

 

5) Enter values to the command prompts: 

i. Select the study area (data for the Great Lakes and Prairie region has been 

provided) 
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ii. Select the set of climate site attributes: 

 

iii. Select the temporal resolution/period for precipitation data: 



 

119 

 

 

 

iv. Select the range of c-values (numbers of clusters to which the sites are 

assigned): 
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6) The program stores the following output in the current directory: 

fcm_[study_area]_[temporal_resolution/period]_choice_[attribute_set].mat 

- The file saves two variables that are essential to the analysis: 

- idx contains the index values that represent the cluster to which each climate 

site belongs (climate sites are listed in rows, in the same order as the site list 

in the location file - Coordinate_List_[study_area]_18km.csv) 

- tableH provides the percentage of regions that are classified as homogeneous 

for each partitioning of the sites; this information is used directly in the 

figures and tables in the analysis 

7) Precipitation region maps are created in ArcGIS 10.2 (http://resources.arcgis.com/ 

last accessed Nov, 2014) by plotting the climate site locations and colour coding them 

according to the index of the cluster to which they have the maximum membership. 
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APPENDIX D - Instructions for running the systems model 
 

Note: Please contact Sarah Irwin at sirwin9@uwo.ca to request for a copy of the 

files required to run the systems model. 

 

Required programs: 

• MATLAB (R2011; R2012) 

• R Statistical Software (R 3.1.0; R 3.1.1; R 3.1.2; download http://cran.r-

project.org/bin/windows/base/old/3.1.1/) 

• RStudio (download http://www.rstudio.com/products/rstudio/download/)  

• Fuzzy Compromise Programming for Group Decision Making  

 

Content of Run_Folder: 

 

Scripts: 

• run_DE.m 

• DE.m 

•  regionalizaiton_DE.m 

• my_creationfcn_de.m 

• fun_validation_ver6.m 

• RFA.R 

Data files: 

• glr_precip_djf_18km.csv 

• glr_precip_mam_18km.csv 

• glr_precip_jja_18km.csv 

• glr_precip_son_18km.csv 

• distance2water.csv 

 

Procedure: 

1) Install MATLAB, R-studio and R-statistical software to your personal computer. 

 

2) Open R-Studio and install required packages: R.matlab, doParallel, lmomRFA 

(Hosking and Wallis, 2013) 
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- Select Install Packages (bottom right window); input the names of the three 

required packages as listed above (one at a time); select Install 

3) Open fun_validation_ver6.m in MATLAB 

- Ensure the correct R-version and file location are written in Line 48 that currently 

reads: 
 eval(['!C:/PROGRA~1/R/R-3.1.1/bin/Rscript ' CurrentDirectory 
'/RFA.R']) 

 

4) Open the MATLAB command window 

- Set the working directory to the Run_Folder location 

- Type run_DE in the command window and select Enter 

 

5) Enter values to the command prompts: 

i. Select the study area (data for the Great Lakes region has been provided): 

 

 
 

ii. Select the season for precipitation data: December, January, February (DJF); 

March, April, May (MAM); June, July, August (JJA); September, October, 

November (SON): 

 

 

iii. Input the size of the initial population of solutions (decision variables) for the 

Differential Evolutionary (DE) algorithm (recommended value is 50): 
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iv. Input the maximum number of generations for the DE algorithm 

(recommended value is equal to the number of decision variables x the 

population size that is 100):  

 
 

 

v. Define the constraints of the decision variables (recommended c-value limits 

are 2 to 50 and fuzzifier limits are 1.1 to 3): 

 

 

vi. Indicate whether the to save the results: 
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6) The program stores the following output in the current directory: 

- OUT_[date and time].m - that contains several variables including the final output 

of the differential evolutionary algorithm that is the set of optimal, alternative 

solutions and the corresponding values of the objective functions. Note that the values 

of objective functions are negative because the script has been developed to minimize 

the objectives. Since the objectives of this model are to be maximized, their values 

are multiplied by a value of -1.  

- fcpgdm_input_[study_area]_[season].xlsx - that contains the input file to the 

Fuzzy Compro GDM program. Manually convert the XLS-file to a CSV-file so that it 

can be directly imported to Fuzzy Compro GDM.  

7) Open Fuzzy Compro GDM 

- Select File - New - Data Import and load the input file created in the previous step. 

 

8) Select Computation - Do Rank 

- The ranks of optimal, alternative solutions for Decision Maker 1, Decision Maker 2 

and Decision Maker 3 (see section 6.4) are provided as the Distance Metric Value 

section of the user interface.  
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