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Abstract 

 

Infantile hemangioma (IH) is the most common tumour of infancy.  The 

recommended treatment for IH is a non-selective β-adrenergic receptor antagonist, 

propranolol.  Although propranolol is effective in regressing hemangiomas, the 

mechanism of its action is poorly understood.  Moreover, some hemangiomas 

regrow following cessation of treatment.  We have recently shown that IH arise from 

multi-potent stem cells.  Whether IH stem cells are responsive to propranolol is 

unknown and is the focus of this study.  Hemangioma-derived stem cells and 

vascular endothelial cells were exposed to propranolol and were assayed for cellular 

and molecular alterations.  Our studies show that propranolol inhibits the growth of 

hemangioma stem cells but does not cause apoptosis.  We further show that the 

mechanism may involve serotonin receptors in hemangioma stem cells.  These 

findings are in contrast to endothelial cells, which exhibit apoptosis potentially 

through the action of propranolol on β-adrenergic receptors.  This study reveals that 

propranolol’s therapeutic effect is β-adrenergic receptor-independent in 

hemangioma-derived stem cells.   
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Chapter 1  

1 Introduction1,2  

1.1 Infantile hemangioma 

Infantile hemangioma (IH) is the most common vascular tumour of infancy, 

affecting one of every 100 newborns [1, 2].  For reasons unknown, IH affects 

more females than males, and is also more prevalent in premature and 

Caucasian babies [3, 4].  IH is often noticed soon after birth where approximately 

80% of these lesions are found in the head and neck regions, but they can be 

located elsewhere in the body [5-7].  It has been well-established that IH follows 

three developmental phases [8, 9].  The first phase entails expansion of 

undifferentiated tumour cells [10, 11].  This proliferating stage is completed by 8 

months of age in most cases [11].  In the following involuting phase, these 

tumour cells differentiate into atypical vascular endothelial cells (ECs) [12, 13].  

Uniquely, IH endothelium exhibits robust expression of glucose transporter-1 

(Glut1) [14, 15].  The involuting phase, like the proliferating phase, is a continuum 

of cellular and molecular changes with the end result being appearance of 

adipocytes and fibrofatty residuum [8, 9, 13].  Most IHs resolve spontaneously 

and do not require treatment [16].  However, therapeutic intervention is 

necessary in cases where the lesion grows in certain locations and to sizes that 

could result in life-threatening complications.  An example of such a situation is 

the growth of IH in the airway to obstruct the respiratory system [17]. 
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1 Parts of this chapter have been published: Kum JJY, Khan ZA.  Mechanisms of 
propranolol action in infantile hemangioma.  Dermato-Endocrinology.  2014; 6:1, 
e979699, DOI: 10.4161/19381980.2014.979699.  Dermato-Endocrinology 
applies the Creative Commons Attribution License (CC-BY Attribution 2.0) to 
works.  Under this license, authors retain ownership of the copyright for their 
content.  No permission is required from the publishers.   
2 Parts of this chapter have been published: Kum JJY, Khan ZA.  Propranolol 
inhibits growth of hemangioma-initiating cells but does not induce apoptosis.  
Pediatric Research.  2014;75:381-8.  DOI:10.1038/pr.2013.231.  Pediatric 
Research applies the Nature Publishing Group (NPG) author licence policy to 
works.  Under the license, authors retain ownership of the copyright for their 
published contributions.  No permission is required from the publisher of the 
journal. 

 

1.2 Treatment options for hemangioma 

Although many attempts have been made, the treatment guidelines for IH are not 

fully established due to differential effects of diverse therapeutic options, the 

differences in the location, stage, and size of the tumour, and the age of patients 

[16].  Typically, treatment is initiated as soon as possible to avoid unnecessary 

disfigurement as hemangioma growth is highly unpredictable.  Hence, many 

treatments are introduced during the early proliferative phase of IH.  Currently, 

laser treatments, β-blockers, surgery and corticosteroids are available for 

hemangioma patients [18-21].  Although many treatment options are available, 

the therapeutic mechanism of action of the pharmacological treatment options is 

poorly understood.  Many studies suggest that treatments target the anti-

angiogenic pathway to reduce the rapid growth of blood vessels during the early 

proliferative phase of hemangiomas.   

Corticosteroids were once considered to be a standard treatment for 

hemangiomas.  Unfortunately, high doses of systemic corticosteroid treatment 
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over extended periods of time have produced severe side effects including 

severe growth retardation, immunosuppression, and inhibition of wound healing 

[22, 23].   

Propranolol is a synthetic non-selective β-adrenergic receptor (β-ADR) 

antagonist, commonly referred to as a β-blocker.  It is a commonly used drug for 

cardiac complications, such as hypertension and myocardial infarctions.  In 2008, 

propranolol was accidentally found to be an effective pharmacological alternative 

for hemangiomas in two infants [24].  These infants, while receiving 

corticosteroids for hemangioma, were also given propranolol to treat cardiac 

complications.  Upon propranolol treatment, hemangiomas regressed rapidly in 

these patients.  Since then, propranolol has been used world-wide as the first-

line treatment option for hemangioma patients.  Many studies have compared 

corticosteroids and propranolol use for hemangiomas, and it has been shown 

that propranolol is more effective with minimal side effects when compared to 

corticosteroid use [24, 25].   

Despite remarkable efficacy of propranolol [26], there are some adverse effects, 

which include sleep disturbances, acrocyanosis, hypotension, and hypoglycemia 

[25, 27, 28].  There are also reports of IH regrowth following cessation of 

treatment in as many as 20% of the cases [29, 30].  Therefore, greater 

understanding of the potential mechanisms underlying the therapeutic effect is 

needed to develop better and safer treatment options.  Many mechanisms have 

been proposed, though only tested in culture studies, to explain the therapeutic 

mechanism of propranolol in treating IH.  Theories involving vasoconstriction 
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[31], EC apoptosis via β-ADR signaling [32, 33] and caspase activation [34, 35], 

and inhibition of angiogenesis via the modulation of vascular growth factors [33, 

36, 37] have been suggested.   

 

1.3 β-adrenergic receptors (β-ADRs) 

Propranolol has been known to bind to β-ADRs.  β-ADRs are a family of G 

protein-coupled receptors (GPCRs) that mediate physiological responses to 

adrenaline and noradrenaline.  It has been previously shown that the 

transmembrane region of β-ADRs play a critical role in determining the binding of 

selective agonists/antagonists [38].  To date, three subtypes of β-ADRs have 

been identified: β1-3 ADRs.  There is limited information available on β1-3 ADR 

distribution at the cellular and tissue levels.  Highest levels of β1-ADR are 

thought to be observed in the heart and brain [39].  β2-ADR shows a wide 

distribution pattern and β3-ADR is believed to be predominantly expressed in 

adipose tissue [40, 41].  In blood vessels, studies have utilized β-ADR antagonist 

binding to show sites in all cellular layers of vessels [42, 43].  Predominant ADR 

subtypes in vessels include β1- and β2- as confirmed by β-ADR subtype 

knockout studies [42].  Using immunohistochemistry, β1- and β2-ADR proteins 

have been localized to IH endothelium (co-localized to CD31-positive cells) as 

well as perivascular cells (co-localized to α-smooth muscle actin-positive cells) 

[44, 45].  In addition, β3-ADR has also been reported in all phases of IH [37].  

Given that β-ADRs are present in normal vessels and IH vessels, the question 
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arises as to the role of β-ADRs in vessel function and the effect of β-ADR 

blockade in IH resolution.   

1.3.1 β-ADR signaling events  

β-ADRs associate with downstream signaling molecules upon activation (Figure 

1).  β1 and β3 generally couple with Gs (stimulatory) proteins, whereas β2 may 

couple with Gs or Gi (inhibitory).  In the unstimulated state, the trimeric G protein 

is bound to GDP.  Activation of ADRs promotes exchange of GDP for GTP.  The 

G protein α subunit with bound GTP then dissociates from the β and γ subunits 

to activate adenylate cyclase (AC) and increase intracellular cyclic adenosine 

monophosphate (cAMP) levels.  Gi may counteract this increase by inhibiting AC.  

Intracellular cAMP activates cAMP-dependent protein kinase A (PKA) which may 

have multiple cellular consequences [46].  For example, PKA has been shown to 

be involved in elaboration of angiogenic factors through cAMP response 

element-binding protein (CREB) [47].  In addition to PKA-mediated signaling, 

activated AC may also activate mitogen-activated protein kinase (MAPK) 

pathway through exchange protein activated by adenylate cyclase (EPAC) [48, 

49].  Dissociated Gβγ may also lead to activation of phosphatidylinositol-4,5-

bisphosphate 3-kinase (PI3 kinase) and Akt/protein kinase B.  Interestingly, it has 

been shown that Akt activation can ultimately increase vessel size and 

angiogenesis [50].  In addition, ADR signaling may entail a G protein 

independent signaling pathway.  A well-characterized example is the β-arrestin-

mediated activation of MAPK pathways [51, 52].  Involvement of these pathways 
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indicates that inhibiting β-ADR through propranolol in IH may, indeed, have 

beneficial effects by reducing cell survival as well as inhibiting angiogenesis.   

 

Figure 1: Schematic illustrating β-ADR signaling.   

Ligand binding to β-ADRs results in Gs-mediated activation of adenylate cyclase 

(AC) and conversion of ATP into cAMP.  Intracellular cAMP activates PKA to 

phosphorylate target proteins.  cAMP may also activate exchange protein 

activated by adenylate cyclase (EPAC) leading to mitogen-activated protein 

kinase signaling pathway and downstream effects on cellular processes.  

Another pathway activated by β-ADRs is the PI3 kinase and protein kinase B (Akt) 

pathway.  In addition to G protein-mediated signaling, β-ADRs may also 

participate in G protein-independent signaling through β-arrestin and MAPK.  

Figure reproduced from Kum JJY, Khan ZA.  Mechanisms of propranolol action in 

infantile hemangioma.  Dermato-Endocrinology.  2015; 6:1, e979699. 
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1.4 Hemangioma-derived endothelial cells (HemECs) 

Exposure of endothelial cells (ECs) isolated from hemangioma specimens to 

propranolol has been shown to induce apoptosis [53].  This is evident upon 

exposure to 100 µM propranolol in the culture media [35, 53].  Previous literature 

has found significant increase in caspase-3 and -9 cleavage products, but not 

caspase-8 cleavage following propranolol exposure, suggestive of an intrinsic 

apoptotic pathway mediated by propranolol [53].  However, other studies have 

found an increase in protein and mRNA levels of caspase-8 [35], indicative of 

both intrinsic and extrinsic involvement of the apoptotic pathway.  At the mRNA 

level, it was reported that propranolol induces expression of apoptotic genes, 

such as Bax, p53, caspase-8, and cytochrome c in hemangioma ECs that may 

be responsible for its apoptotic effect [35, 53].  These studies have essentially 

examined the effect of propranolol without the addition of β-ADR stimulation.  

This may suggest a constitutively active β-ADR pathway.  A caveat worth noting 

here is that these ECs are considered to be hemangioma tumour-derived 

(hemECs).  Because there is no specific marker or cellular activity of 

hemangioma tumour ECs, it is possible that these cultures may represent a 

heterogeneous population of tumoural and non-tumoural ECs (recruited or 

angiogenic cells).  Interestingly, propranolol’s effect is not specific to hemECs, as 

it has been shown to cause apoptosis in a similar manner in other EC types as 

well including normal human dermal ECs [32, 54]. 

In addition to caspase-mediated apoptosis, propranolol may block 

phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR-2) [55].  
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It was found that when hemECs were challenged with higher concentrations of 

propranolol (50 and 100 µM), the expression of vascular endothelial growth factor 

(VEGF) at the protein level was reduced in a dose-dependent manner [53, 56].  

This reduction in the level of activated VEGFR-2 and VEGF protein upon 

propranolol exposure was a critical element that affected the survivability of these 

hemECs [55, 57].  In addition, decrease in key cyclin levels and an increase in 

cell cycle inhibitor levels were observed [55].  This suggested that cell cycle 

regulation is also another mechanism involved in mediating propranolol’s 

therapeutic effect.  HemECs show a greater proportion of cells in the G1 phase 

than the S/G2 phase when treated with propranolol [32, 55].  This was further 

confirmed with decreased expression of cyclin proteins such as cyclins A1, A2, 

B2, D1, D2, D3 [32, 55], while cell cycle inhibitor proteins p15, p21, p27 [55], 

were up-regulated.   

Many studies have gone in-depth with analyzing the expression levels of the 

different β-ADR subtypes.  It has been shown that hemECs and other EC types 

express both β1- and β2-ADRs at very similar levels, but not β3 [55, 58].  Despite 

the various β-ADRs expressed, it is believed that the main mechanism of action 

of propranolol in hemECs may involve β1 and/or β2-ADR pathway.  A recent 

report has shown that ICI-118551 (selective β2-ADR antagonist) was more 

effective than metaprolol (selective β1-ADR antagonist) in inhibiting hemECs 

proliferation [59]. 
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1.5 Hemangioma-derived pericytes (HemPericytes) 

Pericytes are cells that control EC proliferation and survival by stabilizing the 

vascular wall and releasing pro-survival signals [60].  In addition, pericytes 

promote survival of ECs through vascular endothelial growth factor A (VEGF-A) 

signaling and Bcl-w [61].  It is known that addition of β-ADR agonists and cAMP 

analogues can induce relaxation of pericytes [62].  Recently, pericytes isolated 

from hemangiomas (hemPericytes) have also been tested for a potential role in 

propranolol-mediated vascular regression.  When hemPericytes were exposed to 

propranolol, epinephrine-induced relaxation was prevented [63].  Furthermore, 

the proliferative capacity of hemPericytes was reduced.  These pericytes also 

expressed β2-ADRs on their cell surface [63].  With knockdown of β2-ADR, 

hemPericytes lost epinephrine-induced relaxation and propranolol had no effect 

[63].  This suggested that β2-ADR is involved with relaxation and contractility of 

hemPericytes in response to propranolol [63].  In addition, when hemPericytes 

co-implanted with hemECs were exposed to propranolol, propranolol decreased 

the vascular volume indicative of increased vasoconstriction [63].  This may be 

suggestive of a possible mechanism by which propranolol causes increased 

constriction of the vasculature in IH to reduce the blood flow to the tumor, limiting 

its growth. 
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1.6 Hemangioma-derived stem cells (HemSCs) 

We have shown that IHs are derived from multipotential stem cells termed 

hemangioma stem cells (hemSCs) [10].  Clonally expanded hemSCs differentiate 

into ECs and produce Glut1-positive microvessels in immunodeficient mice.  

Interestingly, hemECs are unable to produce microvessels in nude mice showing 

that hemangioma initiating cells are hemSCs.  Binding of VEGF-A and vascular 

endothelial growth factor B (VEGF-B) to vascular endothelial growth factor 

receptor 1 (VEGFR-1) expressed on the surface of hemSCs has been shown to 

be required for the induction of hemSCs to EC differentiation, and for blood 

vessel formation [64].  Immunostaining of IH specimens shows co-labelling of EC 

markers and stem cell markers indicative of an immature EC phenotype in IH [13].  

Therefore, these cells represent the true cellular target to understand the 

mechanism of propranolol action in hemangiomas.   

 

1.7 Effect of propranolol in other neoplasms 

The progression of various cancers has been associated with alteration of β-ADR 

signaling pathways.  Hence, β-blockers have been proposed as therapeutic 

agents for various cancers.  Pediatric melanoma is a rare disease but its 

incidence has increased in the young population.  Melanoma is accountable for 

up to 3% of all pediatric malignancies [65].  Similar to IH, melanoma cases are 

more commonly diagnosed in Caucasian and female patients [66], and almost 

20% of malignant melanoma occurs in the head and neck region [67].  

Melanocyte stem cells (MelSCs) generate melanocytes that produce melanin-
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pigment throughout adult life.  The pathogenesis of melanoma is still subject to 

debate, but many have suggested mutations in MelSCs involving the cell cycle 

and apoptosis pathways, such as tumour protein p53 pathways, and stressors 

that increase catecholamines are involved in tumour progression [68, 69].   

The increase in norepinephrine and epinephrine primarily modulates the β-ADR 

pathways through PKA and MAPK signaling mechanisms, ultimately affecting the 

growth and progression of melanoma [70].  Additionally, increase in the 

expression of VEGF, interleukin (IL) -6 and IL-8 after catecholamine stimulation 

correlates with the aggressiveness of the tumour [70, 71].  Melanoma cells 

express both β1- and β2-receptors with β1-ADR expression being weaker 

relative to β2-ADR [68, 70]. Recently, β3-ADRs have been proposed to be 

involved in melanoma growth and vascularization [72], and the use of β-blockers 

in malignant melanoma decreased the risk of progression [73].  Although the 

exact mechanism underlying the effectiveness of these medications in reducing 

tumour progression is unknown, it has been suggested that β-blockers reduce 

angiogenic factors and metastatic progression [73].  β-blockers may inhibit 

angiogenesis by reducing VEGF activity via MAPK signaling.  In addition, β-

blockers modulate matrix metalloproteinases (MMPs) that can alter the tumour 

microenvironment involved with angiogenesis [74].  Recently, specific inhibition 

of β3-ADRs in melanoma cells was found to impair cell growth and induce 

apoptosis [72]. 

β-ADR has also been implicated in breast cancer.  Breast cancer cells express 

both β1- and β2-ADRs [75, 76], and the polymorphisms of β-ADR subtypes may 
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be associated with breast cancer susceptibility [77].  Breast cancer patients who 

received propranolol for hypertension displayed reduced metastasis and cancer 

recurrence [78].  This may be due β-ADR involvement in gene expression within 

the primary tumour [79].  Further investigation of β-ADR signaling provided 

evidence that the β-ADR pathway controls the stimulation of the arachidonic acid 

cascade [80].  In breast cancer development, arachidonic acid is a critical 

molecule that has been shown to activate mTOR (mammalian target of 

rapamycin) and increase the activity of VEGF [81].  mTOR and VEGF seem to be 

a common pathway in breast cancer and in hemECs, involving enhanced 

angiogenesis. 
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1.8 Rationale 

A number of studies have investigated the effect of propranolol on IH-derived 

endothelial cells to offer insight into the mechanisms of therapeutic effect of 

propranolol [53, 55, 58].  These studies show that propranolol causes apoptosis 

in IH endothelial cells by activating caspase-3 and also blocks other cellular 

activities including migration and tubule formation [53, 55].  This effect of 

propranolol is also exhibited by normal endothelial cells [32, 55].  We have 

shown that IH arises from multipotent stem cells [10].  Utilizing stem cell antigen 

CD133, we isolated stem cells from hemangiomas and showed that these cells 

produce hemangioma lesions in mice.  Interestingly, IH-derived endothelial cells 

(exhibiting mature endothelial phenotype as assessed by endothelial cell 

markers) fail to produce Glut1-positive microvessels [10].  This suggests that the 

cell of interest, at least in proliferating phase IH when treatments are required, is 

the hemSCs.   

It has been observed that all hemangiomas do not respond the same way to 

propranolol, as up to 20% of cases of hemangiomas regrow upon cessation of 

propranolol treatment [82].  This puzzling finding has been attributed to early 

treatment withdrawal and/or long proliferating phase of IH.  Since IHs regrow in a 

significant proportion of patients that discontinue propranolol treatment [29], it is 

possible that hemSCs, unlike hemECs and normal vascular ECs, are not 

susceptible to propranolol-induced apoptosis.   
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1.9 Hypothesis 

We hypothesize that propranolol does not cause apoptosis in hemangioma stem 

cells.  If true, this may explain why recurrence of these tumours often occurs 

following cessation of treatment. 
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Chapter 2  

2 Materials and Methods 

2.1 Infantile hemangioma specimens and immunostaining 

All studies were conducted following approval by the Research Ethics Board at 

Western University, London, Ontario, Canada.  Paraffin-embedded IH specimens 

were obtained from the Department of Pathology Archives at the London Health 

Sciences Centre (LHSC, London Ontario, Canada).  The proliferating phase was 

confirmed through medical history, physical examination, and histological 

analysis of densely packed capillaries.  In addition, all hemangioma sections 

were immunostained with Glut1 to confirm diagnosis.  Tissue sections were 

deparaffinized, hydrated, and subjected to antigen retrieval using Tris/EDTA 

buffer (10 mM Trizma-base, 1 mM EDTA, 0.05% Tween-20, pH 9.0) in 2100 

Retriever (Electron Microscopy Sciences, Hatfield, PA).   

Slides were incubated slides with mouse anti-human CD31 (1:50; M0823, Dako 

Canada, Mississauga, ON) and rabbit anti-human CD133 antibody (1:100; 

ab19898, Abcam, Cambridge, MA) for 1 hour at room temperature.  Fluorescein- 

or texas red-conjugated secondary antibodies (Vector Laboratories, Burlington, 

ON) were used for detection.  Slides were counterstained with DAPI (Vector 

Laboratories).  Images were taken using the Olympus BX-51 microscope 

(Olympus Canada In., Richmond Hill, ON) equipped with a Spot Pursuit digital 

camera (SPOT Imaging Solutions, Sterling Heights, MI).   
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2.2 Infantile hemangioma cell culture 

Proliferating IH-derived CD133+ cells (hemSCs) were provided by Dr.  Joyce 

Bischoff (Children’s Hospital Boston, Boston, MA).  We have previously 

characterized these cells through qRT-PCR, immunostaining, and cellular activity 

assays [83].  Freshly isolated human bone marrow-mesenchymal progenitor cells 

(bm-MPCs; isolated from bone marrow mononuclear preparations; 2M-125B, 

Lonza Inc., Walkersville, MD) were used as normal stem/progenitor controls.  

Neonatal human dermal microvascular endothelial cells (HDMECs; CC-2516, 

Lonza Inc.) were also used as controls.  All cells were cultured on fibronectin-

coated (FN; 1 µg/cm2, FC010-10, Millipore, Temecula, CA) plates in complete 

EBM2 media (Lonza) supplemented with 20% fetal bovine serum (Lonza), EGM-

2 SingleQuots (CC-4176, Lonza Inc.) and 1X antibiotic antimycotic media (PSF; 

Life Technologies).  Cells were cultured under identical conditions and 

experiments were performed with a minimum of 2 biological replicates (different 

IH cell preparations) and 3 technical replicates. 

2.2.1 Cell growth assay 

To determine the effect of propranolol on cellular growth and survival, we plated 

each cell type at 5000 cell/cm2 in complete EBM2 growth media (described 

above).  After 24 hours, media was removed and cells were exposed to the 

following treatments: (RS)-1-[(1-Methylethyl)amino]-3-(1-naphthalenyloxy)-2-

propanol hydrochloride (25, 50, or 100 µM Propranolol; 0624, R&D Systems, 

Minneapolis, MN); CGP 20712 dihydrochloride (10 nM CGP; 1024, Tocris 

Bioscience); ICI 118,551 hydrochloride (10 nM ICI; 0821, Tocris Bioscience); 
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nadolol (25, 50, or 100 µM; 253175, Santa Cruz); 5-carboxamidotryptamine 

maleate (200 nM or 1 μM 5-CT; 0458, Tocris Bioscience, Bristol, UK); SDZ 

21009 (200 nM or 1 μM SDZ; 1516, Tocris Bioscience);  (S)-(6-Methoxyquinolin-

4-yl)((2R,4S,8R)- 8-vinylquinuclidin-2-yl)methanol hydrochloride (1, 25, 50, or 

100 µM Quinidine; 4108, Tocris Bioscience) in fresh EBM2 media (Table 1).  

Number of live cells was determined at 24 or 72 hours using Scepter 2.0 

Automated Cell Counter (Millipore) with appropriate histogram gating setup [84, 

85].  Data were normalized to each respective control groups as multiple 

experiments were performed in various plate sizes.   
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Table 1: List of treatments used 

Name Concentration Function Source 

Propranolol 

25 µM 

50 µM 

100 µM 

β1/2-ADR antagonist 
Tocris 

(CAS 3506-09-0) 

CGP 10 nM β1-ADR antagonist 
Tocris 

(CAS 1216905-73-5) 

ICI 10 nM β2-ADR antagonist 
Tocris 

(CAS 72795-01-8) 

5-CT 
200 nM 

1 μM 
5-HTR 1/7 agonist 

Tocris 

(CAS 74885-72-6) 

SDZ 
200 nm 

1 μM 

5-HTR antagonist 

potent activity for 1A/1B 

Tocris 

(CAS 39731-05-0) 

Nadolol 

25 µM 

50 µM 

100 µM 

β1/2-ADR antagonist 

Santa Cruz 

Biotechnology 

(CAS 42200-33-9) 

Quinidine 

1 μM 

25 µM 

50 µM 

100 µM 

Class 1A antiarrhythmic 

agent (Membrane 

stabilizing agent) 

Tocris 

(CAS 56-54-2) 
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2.2.2 Cellular transfection 

To transfect the cells with silencing RNA, we coated 12-well plates with basal 

EBM2 media (Lonza) supplemented with 20% fetal bovine serum (Lonza), EGM-

2 SingleQuots (CC-4176, Lonza Inc.) without GA-1000 (gentamicin sulfate; CC-

4381a, Lonza) and 1X antibiotic antimycotic media (PSF; Life Technologies) 

(EBM2 antibiotic/antimycotic free media) for 30 minutes on the day of 

transfection.  The cells were transfected with either control siRNA-A (sc-37007, 

Santa Cruz, Santa Cruz, CA), β1-adrenergic receptor siRNA (sc-29580, Santa 

Cruz), or β2-adrenergic receptor siRNA (sc-39866, Santa Cruz) at a 

concentration of 200 nM.  Cells were transfected with siRNA using an 

electroporation device (Neon® Transfection System, MPK5000S, Life 

Technologies).  Transfected cells were incubated for 24 hours in 

antibiotic/antimycotic-free EBM2 media.  After 24 hours, complete EBM2 media 

was added.  After 24 or 72 hours of culture, cells were collected for total number 

of live cells and for RNA isolation.  β1- or β2-ADR knockdown was confirmed by 

qRT-PCR.  Identical protocol was used to transfect both hemSCs and HDMECs.   

 

2.3 RNA isolation, mRNA profiling & quantitative RT-PCR 

RNA was isolated using Aurum Total RNA isolation kit (Bio-Rad) or RNeasy 

Micro Plus Kit (Qiagen, Mississauga, ON).  RNA was measured using Qubit RNA 

Broad Range Assay in a Qubit Fluorometer (Life Technologies).  cDNA was then 

synthesized using iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, 

CA).  We performed gene expression analyses using RT2 Human Cell Death 
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Pathway Finder PCR arrays (PAHS-212Z; Qiagen) (Table 2).  Data was 

analyzed by CFX Manager Software using normalized (ΔΔCT) method with two 

housekeeping genes (β-actin and GAPDH were both used for normalization after 

empirically determining the expression for stability in our treatment groups). 

Various receptor levels and downstream signaling gene expression was 

assessed by qRT-PCR (Table 2,3).  Reactions consisted of 10 µL ssoFast 

Evagreen (1725200, Bio-Rad), 2 µL of both forward and reverse primers (at a 10 

µM concentration), 2 µL cDNA, and 6 µL of H2O.  Target gene mRNA data was 

normalized to β-actin (QT01680476, Qiagen).  All reactions were performed for 

40 cycles using the following temperature profiles: 95°C for 2 minutes (initial 

denaturation); and 60°C for 30 seconds (annealing and extension).  Data was 

analyzed using normalized (ΔΔCT) method or relative quantity (ΔCT). 

Adipogenesis-specific gene expression was also assessed by qRT-PCR (Table 

2).  Adipogenesis was assessed by C/EBPα (QT00203357, Qiagen) and 

PPARγ2 (sequence shown in [86]).  Target gene mRNA data was normalized to 

β-actin (QT01680476, Qiagen).  All reactions were performed for 40 cycles using 

the following temperature profiles: 95°C for 2 minutes (initial denaturation); and 

55°C for 12 seconds (annealing and extension).  Data was analyzed using 

relative quantity (ΔCT).  
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Table 2: List of primers used 

Gene Length (bp) Source (catalogue #) 

B-cell CLL/lymphoma 2 

(BCL2) 

108 Bio-Rad (qHsaCED0057245) 

Actin, beta (β actin) 104 Qiagen (QT01680476) 

Cyclin-D1 (CCND1) 96 Qiagen (QT00495285) 

CCAAT/enhancer binding 

protein alpha (C/EBPα) 

88 Qiagen (QT00203357) 

Peroxisome proliferator-

activated receptor gamma 2 

(PPARγ2) 

113 Qiagen (QT00029841) 

v-akt murine thymoma viral 

oncogene homolog 1 (AKT 1) 

138 Qiagen (QT00085379) 

v-akt murine thymoma viral 

oncogene homolog 2 (AKT 2) 

139 Qiagen (QT00085001) 

v-akt murine thymoma viral 

oncogene homolog 3 (AKT 3) 

138 Qiagen (QT00082138) 

Beta-1-adrenoceptor  

(β1-ADR) 

112 Qiagen (QT00204309) 

Beta-2-adrenoceptor  

(β2-ADR) 

136 Qiagen (QT00200011) 

Beta-3-adrenoceptor  

(β3-ADR) 

 

86 Qiagen (QT00200004) 

Plate   

RT2 Human Cell Death 

Pathway Finder PCR arrays 

 Qiagen (PAHS-212X) 
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Table 3: List of primers used in customized plate  

Gene Length (bp) Source (assay ID)  

Housekeeping gene  

Actin, beta (ACTB) 

 

62 Bio-Rad (Hs.520640) 

Adrenergic Receptors   

adrenergic, alpha-1A-, receptor 

(α1A-ADR) 

96 Bio-Rad (Hs.709175) 

adrenergic, alpha-1B-, receptor 

(α1B-ADR) 

112 Bio-Rad (Hs.368632) 

adrenergic, alpha-1D-, receptor 

(α1D-ADR) 

140 Bio-Rad (Hs.557) 

adrenergic, alpha-2A-, receptor 

(α2A-ADR) 

102 Bio-Rad (Hs.249159) 

adrenergic, alpha-2B-, receptor 

(α2B-ADR) 

119 Bio-Rad (Hs.247686) 

adrenergic, alpha-2C-, receptor 

(α2C-ADR) 

145 Bio-Rad (Hs.123022) 

adrenergic, beta-1-, receptor  

(β1-ADR) 

94 Bio-Rad (Hs.99913) 

adrenergic, beta-2-, receptor  

(β2-ADR) 

82 Bio-Rad (Hs.2551) 

adrenergic, beta-3-, receptor  

(β3-ADR) 

 

77 Bio-Rad (Hs.2549) 

Downstream signaling molecules  

v-akt murine thymoma viral 

oncogene homolog 1 (AKT1) 

143 Bio-Rad (Hs.525622) 

v-akt murine thymoma viral 

oncogene homolog 2 (AKT2) 

71 Bio-Rad (Hs.631535) 
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v-akt murine thymoma viral 

oncogene homolog 3 (AKT3) 

97 Bio-Rad (Hs.498292) 

B-cell CLL/lymphoma 2 (BCL2) 108 Bio-Rad (Hs.150749) 

Cyclin-D1 (CCND1) 143 Bio-Rad (Hs.523852) 

cAMP responsive element 

binding protein 1 (CREB1) 

76 Bio-Rad (Hs.516646) 

protein kinase, cAMP-dependent, 

catalytic, alpha (PRKACA) 

74 Bio-Rad (Hs.631630) 

protein kinase, cAMP-dependent, 

catalytic, beta (PRKACB) 

88 Bio-Rad (Hs.487325) 

protein kinase, cAMP-dependent, 

catalytic, gamma (PRKACG) 

 

84 Bio-Rad (Hs.158029) 

5-hydroxytryptamine (Serotonin) receptors  

5-hydroxytryptamine (serotonin) 

receptor 1A (HTR1A) 

86 Bio-Rad (Hs.247940) 

5-hydroxytryptamine (serotonin) 

receptor 1B (HTR1B) 

108 Bio-Rad (Hs.123016) 

5-hydroxytryptamine (serotonin) 

receptor 1D (HTR1D) 

89 Bio-Rad (Hs.121482) 

5-hydroxytryptamine (serotonin) 

receptor 1E (HTR1E) 

99 Bio-Rad (Hs.1611) 

5-hydroxytryptamine (serotonin) 

receptor 1F (HTR1F) 

73 Bio-Rad (Hs.248136) 

5-hydroxytryptamine (serotonin) 

receptor 2A (HTR2A) 

63 Bio-Rad (Hs.654586) 

5-hydroxytryptamine (serotonin) 

receptor 2B (HTR2B) 

81 Bio-Rad (Hs.421649) 

5-hydroxytryptamine (serotonin) 

receptor 2C (HTR2C) 

 

144 Bio-Rad (Hs.149037) 
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5-hydroxytryptamine (serotonin) 

receptor 3A (HTR3A) 

140 Bio-Rad (Hs.413899) 

5-hydroxytryptamine (serotonin) 

receptor 4 (HTR4) 

97 Bio-Rad (Hs.483773) 

5-hydroxytryptamine (serotonin) 

receptor 5A (HTR5A) 

105 Bio-Rad (Hs.65791) 

5-hydroxytryptamine (serotonin) 

receptor 6 (HTR6) 

150 Bio-Rad (Hs.22180) 

5-hydroxytryptamine (serotonin) 

receptor 7 (HTR7) 

142 Bio-Rad (Hs.73739) 
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2.4 Protein quantification 

Total proteins from the cultured cells were extracted using Cell Extraction Buffer 

(Life Technologies) with complete protease inhibitor cocktail (Roche Diagnostics, 

Laval, Quebec).  Proteins were measured by BCA Protein Assay Reagent 

(Pierce BCA Protein Assay Kit, Thermo Scientific, Rockford, IL) and equal 

amounts were used for various protein measurements.   

2.4.1 Caspase-3 and Cyclin-D1 measurements 

To measure activated caspase-3, caspase-3 (active) Human ELISA kit (Life 

Technologies) was used.  Data were collected using Thermo Scientific Multiskan 

FC Microplate Photometer (Thermo Scientific), measuring absorbance at 450nm.  

Cyclin-D1 level was measured similarly using PathScan Total Cyclin-D1 

Sandwich ELISA kit (Cell Signaling Technology Inc., Danvers, MA).   

2.4.2 Protein Kinase A Activity measurement 

To quantify Protein kinase A (PKA) activity, PKA Kinase Activity kit (Abcam) was 

used.  Data were collected using Thermo Scientific Multiskan FC Microplate 

Photometer (Thermo Scientific), measuring absorbance at 450nm.   
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2.5 Adipogenic Differentiation 

To induce adipogenic differentiation, hemSCs were seeded at a density of 

40,000 cells/cm2 in StemPro Adipogenesis differentiation media (Adipo media; 

Life Technologies).  Control media consisted of Dulbecco's Modified Eagle 

Medium supplemented with 10% FBS.  Media was changed every other day.  

RNA was isolated from cells after 7 days to perform qRT-PCR for β-adrenergic 

receptor expression.  To determine whether cell growth/proliferation may alter 

adipogenesis, we pretreated hemSCs with 10 μg/mL mitomycin C (MitoC; Sigma 

Aldrich, Oakville, ON) for 2 hours.  Cells were then washed, resuspended, and 

plated at 40,000 cells/cm2 in adipogenesis media.  RNA was isolated at day 4 to 

assay for C/EBPα and PPARγ2 levels (transcription factors essential for 

adipogenic differentiation). 

 

2.6 Statistical Analysis 

The data were expressed as means ± SEM.  Where appropriate, student’s 

unpaired t-tests or analysis of variance (ANOVA) were performed.  P values < 

0.05 were considered statistically significant. 
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Chapter 3  

3 Results 

3.1 Atypical phenotype of hemangioma endothelium 

Previous studies have investigated the effect of propranolol on IH-derived 

endothelial cells to offer insight into its mechanism of therapeutic effect [53, 55, 

58].  However, we have shown that CD133-selected cells from human IH initiate 

hemangioma lesions in mice, producing Glut1-positive microvessels [10].  This 

suggests that the mechanism of therapeutic effect of propranolol needs to be 

investigated on hemSCs.  Therefore, we performed immunostaining for CD133 to 

probe for microvessels that are lined by CD133-expressing cells (hemangioma 

vessels).  Results from two proliferating IH specimens show that all microvessels 

within IH tissues are immunoreactive to CD133 (Figure 2).  This suggested that 

for understanding the effect of propranolol, CD133-selected hemSCs are 

essential.   
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Figure 2: Hemangioma vessels are lined with CD133-positive cells. 

Proliferating hemangioma specimens were characterized through 

immunostaining.  Hemangioma specimens were double labeled for CD31 

(endothelial cell marker; red) and CD133 (stem cell antigen; green).  4′,6-

Diamidino-2-phenylindole (blue) was used as counterstain.  Staining illustrates 

complete co-localization of CD31 and CD133 in both proliferating hemangioma 

specimens (images were taken at magnification of ×20; insets illustrate high 

magnification; bar = 200 μm).  Human skin and placenta were used as negative 

and positive controls respectively for CD133 (Data not shown). 
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3.2 Propranolol inhibits hemSCs growth 

Our next objective was to determine the effect of propranolol on the growth of 

hemSCs.  We cultured the cells with 25, 50, or 100 µM propranolol and assayed 

for live cell number at both 24 and 72 hours.  We chose these concentrations 

based on previous studies that have observed significant differences in IH 

endothelial cells [32, 55].  Furthermore, propranolol has been shown to have 

immediate effects in inhibiting cell viability at 24 hours [53].  Interestingly, no 

significant changes to cell number were observed in hemSCs at 24 hours (Figure 

3A).  At 72 hours, bm-MPCs and HDMECs showed significant reductions in cell 

number at all concentrations of propranolol when compared to control (Figure 

3B).  In contrast, a proliferative effect was observed when hemSCs were treated 

with 25 µM propranolol and a reduction in live cell number with 100 µM 

propranolol (Figure 3B).   
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Figure 3: 100 μM propranolol reduces hemSCs growth after 72 hours. 

Live cell number after (A) 24 hours and (B) 72 hours of treatment with different 

concentrations of propranolol.  Propranolol treatment at 100 μM reduced number 

of cells compared with control after 72 hours. (*P < 0.05 compared with 

respective control). 
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3.3 Reduced cell number following propranolol treatment is not due to 
apoptosis in hemSCs 

As the cell number decreased significantly for all cell types when cultured in 100 

µM propranolol (at 72 hours), we examined whether this was due to apoptosis.  

Therefore, cells treated with propranolol were assayed for active caspase-3.  

Caspase-3 is the most frequently activated death protease and has been shown 

to play a role in inducing endothelial cell apoptosis upon propranolol treatment 

[53, 55].  Unexpectedly, hemSCs treated with 100 µM propranolol showed a 

significant reduction in the level of active caspase-3.  This suggested that in 

hemSCs, the reduction in cell number might be due to inhibited cell growth and 

not apoptosis.  bm-MPCs did not show a significant difference upon propranolol 

treatment as caspase-3 levels remained unchanged (Figure 4A).  On the other 

side of the spectrum, propranolol-treated HDMECs showed a significant increase 

in the level of activated caspase-3 as expected.  These data demonstrate that 

propranolol treatment induces apoptosis in HDMECs, whereas the decrease in 

cell number in hemSCs and possibly bm-MPCs is mediated by a reduction in cell 

growth.   
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3.4 Propranolol halts cell cycle progression but does not induce 
apoptosis in hemSCs 

We examined the effect of propranolol on cyclin-D1 level.  Cyclin-D1 is a key 

regulator in the progression from G1/S phase and has recently been shown to be 

maintained in G2 phase [87].  Recent studies have shown that propranolol 

reduces cyclin-D1 in a time-dependent manner in endothelial cells [32].  

Surprised by previous experimental findings, we wanted to determine if 

propranolol reduces cyclin-D1 in hemSCs.  Our results do show significantly 

reduced cyclin-D1 in hemSCs upon propranolol treatment (Figure 4B).  Similarly, 

bm-MPCs and HDMECs cyclin-D1 levels were also significantly reduced (Figure 

4B).  The greatest change in cyclin-D1 was seen in bm-MPCs which may explain 

the reduced cell number seen earlier.  These results suggest that propranolol 

inhibits cell cycle progression in all cell types by decreasing level of cyclin-D1. 
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Figure 4: Propranolol inhibits caspase-3-mediated apoptosis in hemSCs. 

Levels of (A) active caspase-3 and (B) cyclin-D1 in hemSCs, bm-MPCs, and 

HDMECs following 100 μM propranolol treatment for 72 hours by ELISA. 

(*P < 0.05 compared with respective control). 
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3.5 Propranolol induces anti-apoptotic pathways in hemSCs 

In order to understand the possible mechanism by which propranolol induces 

apoptosis in endothelial cells but not hemSCs, we used quantitative RT-PCR to 

profile for genes important in the central mechanisms of cellular death.  We used 

a Human Cell Death Pathway Finder PCR Array (Qiagen; see Methods for 

details) which comprises 84 key genes important for cell survival and apoptosis.  

HemSCs, bm-MPCs, and HDMECs were cultured in normal growth media or in 

media containing different concentrations of propranolol for 72 hours.  Using this 

PCR-based array, we found that propranolol significantly induces various anti-

apoptotic pathways in hemSCs and normal bm-MPCs (Figure 5).  These included 

Akt (also known as protein kinase B; induced 31.2x in hemSCs, 7.58x bm-MPC), 

Bcl2 (295.9 x in hemSCs, 143.2x bm-MPC)/Bcl2A (23.4x in hemSCs, 10.9x in 

bm-MPC), and insulin-like growth factor receptor-1 (IGFR1, 53.6x in hemSCs, 

9.2x in bm-MPC).  In contrast, we did not observe any alteration of these anti-

apoptotic pathways in HDMECs (Figure 5).   
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Figure 5: Propranolol induces anti-apoptotic signaling pathways in 

hemSCs. 

Propranolol induced the expression of anti-apoptotic genes in hemSCs and bm-

MPCs but not in HDMECs. (mRNA levels were measured using RT2 Cell Death 

Pathway Finder (Qiagen, Mississauga, ON) and normalized to β-actin and 

glyceraldehyde 3-phosphate dehydrogenase levels; red dashed lines highlight 

100 μM propranolol groups; graph shown are representative of multiple PCR 

arrays). 
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3.6 β2 and β3 are the predominant β-ADRs in hemSCs  

We next assayed for β-ADR expression in hemSCs and compared the levels to 

mature endothelial cells.  Our results show that hemSCs express both β2- and 

β3-ADRs (Figure 6).  β1-ADR mRNA levels, although detectable, were 

significantly lower.  Interestingly, we found that bm-MPCs share β-ADR profile 

with hemSCs.  Mature endothelial cells (human microvascular endothelial cells; 

HDMECs) on the other hand exhibited higher level of β1-ADR expression (Figure 

6).  No significant differences were found in the level of β2- or β3-ADRs between 

endothelial cells, hemSCs, and bm-MPCs.   
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Figure 6: β2/3-ADRs are predominantly expressed in hemSCs. 

qRT-PCR analysis of β-ADRs in hemSCs, bm-MPCs, and HDMECs were 

determined by real-time quantitative reverse-transcriptase PCR. (Data 

normalized to β-actin; *P < 0.05 compared with β1-ADR mRNA levels in hemSCs 

and bm-MPCs; †P < 0.05 compared with β2- and β3-ADR mRNA levels).  RNA 

was isolated from cells cultured in Endothelial Basal Media-2 (EBM2) under 

identical conditions.  The specificity of the amplification was determined by 

melting curve analysis (Appendix A). 
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3.7 β-ADR downstream signaling molecules are detectable, but too low 
to quantify in hemSCs 

To ensure the effects we observed upon propranolol exposure were through β-

ADR inhibition, we investigated the change in key downstream signaling 

molecules upon propranolol exposure.  PKA is an important mediator for cellular 

processes where its function depends on cAMP.  Although we have observed a 

linear standard curve for active PKA standards in our study (Figure 7, Table 4), 

PKA activity upon 25 and 100 µM propranolol was below the detection limit in 

both hemSCs and HDMECs.  Even with the addition of 20 ng of exogenous 

active PKA in hemSC and HDMEC protein samples, the amount of active PKA 

remained below the quantitative limit (Table 5).   

 

 

Figure 7: Linear standard curve for active PKA standards.   
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Table 4: PKA activity in purified PKA standards 

PKA Standards 
(ng) 

Active PKA 
amount (ng) 

0 0 

9.375 9.48 

18.75 18.70 

 

Table 5: PKA activity in hemSCs and HDMECs 

Cell type Treatment 
Active PKA amount (ng) 

with addition of exogenous 
20 ng of active PKA 

HemSCs 

Control 1.93 

25 µM Propranolol 1.93 

100 µM Propranolol 2.03 

HDMECs 

Control 1.13 

25 µM Propranolol 1.32 

100 µM Propranolol 1.50 
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3.8 Specific β-ADR antagonist does not affect hemSCs 

As β1-ADR was predominantly expressed in the well-differentiated endothelial 

cells, we questioned whether specific β1-ADR antagonists can mimic propranolol.  

We cultured the cells with 10 nM CGP (β1-selective blocker) and/or ICI (β2-

selective blocker) and assayed for live cell number after 72 hours.  If propranolol 

is acting through β1-receptor that is predominantly expressed in endothelial cells, 

then we would expect decreased growth in this particular cell type with CGP.  

Indeed, our results show that 10 nM of CGP, but not ICI, significantly decrease 

cell number when compared with control (Figure 8).  When CGP and ICI are 

combined to represent propranolol’s non-selective binding characteristic, 

HDMEC number is also significantly reduced (Figure 8).  In contrast, no 

significant changes to live cell number were observed in hemSCs with all 

treatments using specific β-ADR antagonists (Figure 8).  This suggests that β-

ADR signaling pathway may not be involved in hemSCs. 
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Figure 8: Specific β1- and β2-ADR antagonist does not affect growth of 

hemSCs. 

Live cell number after 72 hours of treatment with selective β-ADR antagonists.  

β1- and β2-selective blockers did not affect the cell number compared to control 

in hemSCs. (*P < 0.05 compared to respective control). 
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3.9 Specific β-ADR silencing does not affect hemSCs growth 

To rule out propranolol’s β-ADR-dependent mechanism of action in hemSCs, we 

transfected hemSCs with specific β-ADR silencing RNA (siRNA) in complete 

growth media with or without 100 µM propranolol.  Similar to specific β-ADR 

antagonist use, the growth of hemSCs was not affected upon knockdown of β1- 

and β2-ADR (Figure 9A).  However, control and β1 siRNA-transfected hemSCs 

exposed to propranolol significantly reduced cell growth.  This was not seen with 

β2 siRNA-transfected hemSCs cultured in propranolol media (Figure 9A). 

In contrast, β-ADR knockdown significantly decreased HDMECs cellular growth 

(Figure 9A).  Specific β1 siRNA-transfected HDMECs cultured with propranolol 

significantly reduced cell number compared to β1 knockdown in complete growth 

media (Figure 9A).  Interestingly, β1-ADR knockdown HDMECs cultured with 

propranolol significantly increased growth when compared to control transfection 

with propranolol (Figure 9A).  Our findings indicate live cell number is affected in 

HDMECs with β-ADR knockdown, but not hemSCs. 

Transfection efficiency was confirmed by qRT-PCR.  We were able to achieve 

greater than 80% suppression of β2-ADR in hemSCs and HDMECs (Figure 

9B,C), and greater than 70% suppression of β1-ADR in HDMECs (Figure 9C). 
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Figure 9: Specific β1- and β2-ADR siRNA does not affect growth of hemSCs. 

Transfecting hemSCs with β1- and β2-ADR siRNA (A) did not affect growth, 

unlike HDMECs. (*P < 0.05 as compared to respective control; †P < 0.05 as 

compared to respective β-siRNA; γP < 0.05 as compared to respective control 

siRNA with propranolol).  (B,C) Knockdown efficiency was measured through β-

ADR mRNA levels.  β2-ADR knockdown efficiency was greater than 80% in both 

cell types.  β1-ADR knockdown efficiency was greater than 70% in HDMECs.  

(*P < 0.05 as compared to respective control). 
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3.10 5-HTR7 levels are significantly high in hemSCs 

To investigate β-ADR-independent mechanism of propranolol, we have profiled 

various ADRs and downstream signaling molecules.  We also measured the 

expression of 5-HTRs to which propranolol has been shown to bind [88].  

Interestingly, all of α- and β-ADR subtypes were significantly lower in hemSCs 

when compared to HDMECs (Figure 10A).  As well, majority of downstream 

signaling molecules were lower in level in hemSCs, except Bcl2 (Figure 10B).  

Similarly, many 5-HTRs were significantly lower in hemSCs, except 5-HTR7 

(Figure 11).  This hinted to us that propranolol may mediate its effects in hemSCs 

through 5-HTR7. 
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Figure 10: Low expression of α-ADR, β-ADR, and downstream signaling 

molecules in hemSCs. 

Gene profiling assay was performed to observe the mRNA levels of (A) α- and β-

ADRs and (B) downstream signaling molecules. (*P < 0.05 compared to 

HDMECs). 
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Figure 11: 5-HTR7 is highly expressed in hemSCs. 

Gene profiling assay was performed to observe the mRNA levels of 5-HTRs.  

(*P < 0.05 compared to HDMECs). 
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3.11 Serotonin agonist decreases hemSCs growth 

Previous literature has reported that propranolol can interact with 5-HTRs 

(serotonin receptors) [88].  Therefore, we explored the possibility that the 

reduction in cellular growth upon propranolol exposure in hemSCs is mediated 

through 5-HTR pathway.  Since it is not known whether binding of propranolol to 

5-HTRs leads to activation or inhibition, we first tested hemSCs with a selective 

5-HTR1/7 agonist, 5-CT, at various concentrations.  Interestingly, both 

concentrations of 5-CT significantly reduced live cell number after 72 hours, 

similar to propranolol.  If propranolol affected the hemSCs through 5-HTR 

pathway, then we would expect no significant difference when we combine 

propranolol with 5-HTR antagonist to eliminate propranolol’s effect.  Indeed, 

when we combine SDZ with propranolol, the cell number is normalized to control 

levels (Figure 12A).  Surprisingly, 5-CT at 200 nM had no significant effect on 

HDMECs, unlike hemSCs (Figure 12B).  This suggests that the two cell types 

may exhibit different cellular signaling pathways upon propranolol exposure.   
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Figure 12: 5-CT mimics the effect of propranolol in hemSCs growth. 

Live cell number after 72 hours of treatment with (A) 5-CT (5-HTR agonist) and 

combination of propranolol with SDZ (5-HTR antagonist) in hemSCs and (B) 5-

CT in hemSCs and HDMECs. (*P < 0.05 compared to respective control). 
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3.12 Propranolol-induced altered differentiation in hemSCs 

While our studies were underway, a report showed that presence of propranolol 

in adipogenic differentiation media increased the differentiation level in hemSCs 

as compared to cells in adipogenic media alone [34].  Higher levels of C/EBPβ 

and δ were found at day 4.  Interestingly, when the cells were maintained in the 

differentiation media supplemented with propranolol for 7 days, significant cell 

death was observed.  This is in contrast to our observations in normal growth 

media where a significant reduction in cell number is evident without apoptosis.  

Therefore, we explored the possibility that this enhanced adipogenic 

differentiation with propranolol is mediated through cell growth regulation.  To 

test this idea, we treated hemSCs with mitomycin C to inhibit proliferation and 

tested for C/EBP expression.  Our results show that C/EBPα was significantly 

higher when mitomycin C-treated hemSCs were exposed to adipogenic 

differentiation media for 4 days (Figure 13A).  No change was observed in 

PPARγ2 levels.  C/EBPα is a critical transcription factor in adipogenesis and 

enhanced levels suggest that inhibition of cell proliferation increases the 

differentiation capacity of hemSCs and this may be the mechanism underlying 

propranolol’s effect.  We then assayed for β-ADR expression and show here that 

adipogenesis is associated with significantly higher levels of all three ADRs 

(Figure 13B).  Therefore, cell death in adipogenic media supplemented with 

propranolol [34] might be due to increased expression of β-ADRs, which 

accompanies hemSCs differentiation. 
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Figure 13: Growth inhibition enhances adipogenesis. 

Effect of mitomycin C treatment on adipogenic differentiation (A) in hemSCs at 

day 4. (*P < 0.05 compared with control media; †P < 0.05 compared with 

adipogenic differentiation media without mitomycin C treatment).  (B) Induction of 

β-ADRs following adipogenic differentiation in hemSCs at day 7. (*P < 0.05 

compared with control media). 
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3.13 β-ADR levels change with propranolol exposure 

Changes in β-ADR expression upon hemSC differentiation prompted us to 

assess the changes in receptor profile in the presence of propranolol.  Therefore, 

we measured the level of β-ADR mRNA upon 100 µM propranolol exposure after 

72 hours.  In contrast to what we had expected based on Figure 13 (increase in 

β-ADR to increase susceptibility of hemSCs for cell death/cell cycle inhibition), 

hemSCs significantly decreased β2-receptor level after propranolol exposure 

(Figure 14A).  Furthermore, only β1-ADR level significantly increased upon 

propranolol challenge in HDMECs, whereas β2-ADR level did not significantly 

differ (Figure 14B).  Our findings indicate that the apoptosis of HDMECs with 

propranolol media may be due to the increase in β1-ADR (Figure 14B).  In 

addition, our observations indicate that propranolol changes the receptor profile 

of both cells differently, which may explain why a difference in response is 

observed. 
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Figure 14: Propranolol alters level of β-ADRs. 

Effect of propranolol exposure on β-ADR mRNA levels (A) in hemSCs and (B) 

HDMECs after 72 hours. (*P < 0.05 compared to respective control). 
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3.14 Nadolol inhibits hemSCs growth 

There have been indications that propranolol can cause central nervous system-

related side effects due to its lipophilic properties [89].  Therefore, we utilized 

nadolol, a non-selective β-ADR antagonist that is hydrophilic.  It has also been 

suggested that due to its inability to cross blood brain barrier, use of nadolol may 

be a safer treatment alternative.  We cultured the cells with 25, 50, or 100 μM 

nadolol and measured cell number at 72 hours.  Interestingly, 25 and 100 μM 

nadolol significantly reduced hemSC number when compared to control (Figure 

15).  In HDMECs, only at 100 μM was there a significant decrease in cell number, 

suggesting that nadolol may have its effect in our cell types through an 

alternative pathway, different from propranolol’s mechanism. 
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Figure 15: Nadolol decreases growth of hemSCs. 

Live cell number after 72 hours of treatment of hemSCs and HDMECs with 

different concentrations of nadolol.  Nadolol at 25 μM reduced hemSC number, 

while 100 μM reduced both hemSCs and HDMECs compared to respective 

controls. (*P < 0.05 compared to respective control). 
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3.15 Quinidine decreases hemSCs growth 

Propranolol has been observed to have membrane stabilizing effects [90].  

Hence, we wanted to examine whether this property mediates the effect of 

propranolol.  To investigate whether propranolol’s effect in hemSCs is through 

stabilizing the membrane, we exposed hemSCs to 1, 25, 50, or 100 μM quinidine, 

a membrane stabilizing agent.  Surprisingly, at the lowest concentration of 

quinidine we used, 1 μM, there was a significant increase in hemSCs growth; 

however, at high concentration of 100 μM, significant reduction of hemSCs 

growth was observed (Figure 16).  Surprisingly, HDMECs were unaffected 

across the various concentrations of quinidine.  Our findings indicate that 

propranolol may mediate its effects in hemSCs through stabilizing the membrane. 
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Figure 16: Quinidine affects hemSCs growth. 

Live cell number after 72 hours of treatment with different concentrations of 

quinidine.  Quinidine treatment at 100 μM reduced number of hemSCs compared 

to control. (*P < 0.05 compared to respective control). 
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Chapter 4  

4 Discussion & Future direction 

4.1 Discussion 

Propranolol is a widely used treatment for IH; however, the mechanism of 

therapeutic effect is still unknown.  In addition, some IH regrow after stopping 

propranolol treatment [29, 30, 91].  In the present study, we have demonstrated 

that proliferating hemangioma specimens are atypical in nature as IH 

microvessels express endothelial (CD31) and stem cell (CD133) markers (Figure 

2).  We have also shown that propranolol does not induce apoptosis in CD133-

expressing hemSCs, as seen in mature/differentiated endothelial cells (Figure 

4A).  This suggests that the direct effect of propranolol in IHs may be through 

modulating mature endothelial cells and angiogenesis.  The mechanism by which 

hemSCs and possibly normal progenitor cells (modeled here by bm-MPCs) 

escape apoptosis may include induction of anti-apoptotic pathways, a novel 

mechanism we have observed (Figure 5).  We found Akt, Bcl2/Bcl2A, and IGFR1 

to be significantly induced in hemSCs and bm-MPCs.  Akt induction is of 

particular importance here as this pro-survival kinase counteracts caspase-3 

activity [92-94].  Bcl2 downregulation has been shown to increase caspase-3 in 

breast cancer cells [95].  Furthermore, Bcl2A mediates anti-apoptotic effects of 

fibroblast growth factor in chrondogenic progenitor-like cell line [96].  Therefore, 

these pathways may be involved in reducing/counteracting caspase-3 activity in 

hemSCs that is not evident in mature endothelial cells. 



59 

 

Another interesting finding of this study is that hemSCs predominantly express 

β2- and β3-ADRs (Figure 6).  β1-ADR levels are almost ten-fold lower.  Vascular 

endothelial cells, on the other hand, express significantly high level of β1-

receptor compared to β2/3.  These findings suggest that the differential effect of 

propranolol in hemSCs and endothelial cells may be due to distinct roles of β-

ADR subtypes.  Studies have shown that β1- and β2-ADR have opposing effects 

on regulating apoptosis [97-99].  For example, Communal et al. have shown that 

activation of β1-receptors on cardiac myocytes induces apoptosis, whereas β2-

ADR activation opposes cell death [97].  Although this study involved activation 

of β-ADR and not antagonism, the concept of a distinct, receptor subtype-specific 

role is pertinent here.  Moreover, Panjala et al. have demonstrated that β1-ADR 

knockout mice exhibit increased formation of degenerate capillaries in retina 

[100].  These are interesting findings because retinal endothelial cells express 

β1-ADR but not β2 [101].  Also associated with acellular capillaries in the retina 

in knockout mice were increased level of cleaved caspase-3.  Based on our data, 

we suggest that antagonizing β1-receptor in IH endothelial cells is associated 

with cell death while β2 may be involved in cell cycle regulation (Figure 17).  We 

know that hemSCs predominantly express β2- and β3-receptors and show 

almost 10-fold lower β1-level (Figure 6).  bm-MPCs showed a similar response to 

propranolol in cellular activity and molecular alterations, and share the β-ADR 

profile with hemSCs (Figure 5,6).   
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Figure 17: Proposed mechanism of therapeutic effect of propranolol. 

Schematic illustrating the proposed mechanism of propranolol action on hemSCs 

and mature endothelial cells.  (A) Diagram illustrating the penetrance of apoptotic 

effect of propranolol in hemangioma regression.  (B) Propranolol leads to 

apoptosis in endothelial cells and other mature cell types, including adipocytes, 

through alteration of β1-ADR signaling.  Engagement of β2- (and possibly β3-) 

ADRs in ECs leads to cell cycle arrest and growth inhibition (potentially through 

decreasing cyclin-D1).  Propranolol may also activate of 5-HTRs in hemSCs.   

(? denotes unclear mechanism through 5-HTR pathway).   

Figure modified from Kum JJY, Khan ZA.  Propranolol inhibits growth of hemangioma-

initiating cells but does not induce apoptosis.  Pediatric Research.  75:381-8. 
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A recent report by Ji et al. have shown that ICI-118551 (a selective β2-ADR 

antagonist) was more effective than metaprolol (selective β1-antagonist) in 

inhibiting hemECs proliferation [59].  However, our data suggests the opposite.  

β1-antagonist decreases cell growth, whereas β2-antagonist had no effect in 

HDMECs (Figure 8).  When β1 and β2 specific antagonists were given 

simultaneously, it had less of an impact on the growth compared with β1-

antagonist alone (Figure 8).  As mentioned earlier, a similar phenomenon has 

been reported in cardiac myocytes where β1-receptors induce apoptosis and β2-

ADR activation opposes cell death [102].  Our findings indicate that the key 

mediator in promoting apoptosis in mature endothelial cells is β1-ADRs.   

To ensure the inhibition of β-ADR with propranolol in our model system, we 

measured for the downstream signaling molecule, PKA.  Previous studies have 

shown that pre-treatment with β-agonist followed by β-antagonist can decrease 

cAMP levels in a dose-dependent manner [58].  However, our study suggests 

that without exogenously activating the β-ADR system, the cells do not exhibit 

sufficient β-ADR downstream signaling (Figure 8).  We transfected our cells with 

β-ADR siRNA to determine whether propranolol mediates its effects directly 

through modulating β-ADR pathway.  Interestingly, knocking down β-ADRs in 

HDMECs significantly reduced cell growth that was not evident in hemSCs 

(Figure 9A).  These findings indicate that propranolol inhibits β-ADRs in HDMECs.  

Another unique finding is that there was an increase in cell number with β1-

siRNA transfection under propranolol exposure when compared with control 

siRNA with propranolol (Figure 9A).  When β1-ADR is knocked down in HDMECs, 
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there may not be sufficient levels of β1-ADR for propranolol to inhibit, relieving 

the apoptotic effect observed in control transfection with propranolol.  This 

highlights β-ADR-dependent mechanism of propranolol in HDMECs.  In contrast, 

hemSCs are not affected upon transfection with β-ADR siRNA alone (Figure 9A).  

Our findings indicate that propranolol may mediate its effect through a β-ADR-

independent pathway in hemSCs. 

To investigate β-ADR-independent mechanism of propranolol in hemSCs, we 

have performed a receptor profiling assay.  All α- and β-ADRs and majority of 5-

HTRs in hemSCs were significantly lower compared to HDMECs (Figure 10A, 

Figure 11).  However, 5-HTR7 expression was almost 40 times more abundant 

(Figure 11).  This was a unique finding in our study as it suggests that 

propranolol may be working through this receptor pathway.  Previous studies 

have suggested that propranolol may bind to 5-HTRs with substantial affinity [102, 

103].  There is also experimental evidence that propranolol acts as a 5-HT1A 

antagonist and a 5-HT1B agonist in the rat cortex [104].  Treatment with 

propranolol also inhibited basal cAMP and steroidogenesis in rat leydig cells, with 

effects evident at 0.1 µM [103].  Based on the data from previous studies and our 

receptor profile data, we examined whether activating or inhibiting 5-HTRs would 

mimic propranolol’s effect.  We found that 5-HTR 1/7 agonist, 5-CT, can 

significantly reduce hemSCs growth (Figure 12A,B).  Since 5-CT mimicked 

propranolol, we tested hemSCs growth in the presence of propranolol and 5-HT 

antagonist, SDZ.  If propranolol’s mechanism of action is through activating 5-

HTRs, exposing the cells with SDZ simultaneously will normalize the effect of 
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propranolol.  Indeed, this is what we have observed.  With the same 

concentration of 5-CT used for SDZ and simultaneously exposing hemSCs to 

propranolol, we were able to bring hemSCs growth to control levels (Figure 12A).  

Therefore, 5-HT pathway may in part be involved with propranolol’s effect in 

hemSCs. 

Wong et al. have shown that propranolol enhances adipogenesis in hemSCs 

[34].  Specifically, presence of propranolol in adipogenic media initially caused 

differentiation of hemSCs but significant cell death at day 7 [34], which is the 

typical in vitro time for full functional adipocyte differentiation.  We reasoned that 

the initial effect of propranolol might be mediated through cell cycle disruption.  

To test this possibility, we treated hemSCs with mitomycin-C before exposing the 

cells the adipogenic differentiation media.  We noted that mitomycin-C treated 

cells had significantly higher levels of C/EBPα induction (Figure 13A), suggesting 

that enhanced adipogenesis in hemSCs may be related to a change in the 

differentiation timeline (reduced growth and earlier differentiation).  We also 

tested whether adipogenesis itself alters β-ADR expression in hemSCs, thereby 

making cells more sensitive to propranolol’s direct effect through β-ADR.  Indeed, 

differentiation of hemSCs significantly increased the expression of all β-ADR 

subtypes including β1 (29.47-fold increase as reported in our study) (Figure 13B).  

IH ends its continuous developmental phase when adipocytes replace majority of 

the tumour lesion.  Yu et al. first reported presence of cells with adipogenic 

differentiation potential in proliferating phase IH [105].  Culturing hemSCs in the 

presence of propranolol enhances adipogenesis and this may offer another 
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possible mechanism of the beneficial effects of propranolol in IH resolution.  

Furthermore, continuous culture of hemSCs in adipogenic differentiation media 

supplemented with propranolol causes cell death [34].  These results suggested 

that propranolol treatment accelerated the dysregulated differentiation process in 

hemSCs that ultimately resulted in increased apoptosis of adipocytes derived 

from hemSCs [34].  It is possible that differentiation of hemSCs causes a shift in 

β-ADR expression profile and an increase in β1-ADR which may induce 

apoptosis.   

It has been noted that propranolol causes more central nervous system-related 

side effects than hydrophilic β-blockers as it can cross the blood-brain barrier [89].  

Therefore, we wanted to determine whether nadolol, a hydrophilic non-selective 

β-blocker, can have similar effects as propranolol in hemSCs.  Nadolol may be 

used as a safer alternative as it does not cross the blood-brain barrier and have 

little myocardial effect, unlike propranolol [106, 107].  Interestingly, hemSCs 

growth was significantly reduced at 25 and 100 µM nadolol.  A significant 

reduction of HDMECs was also evident but only at 100 µM nadolol treatment 

(Figure 15).  Clinically, it has been shown that nadolol effects are more favorable 

compared to propranolol-use after 24 weeks with similar doses administered 

[108].  These findings suggest that other β-blockers can offer another therapeutic 

option; however, further studies need to be performed to understand the 

mechanism of how these various β-blockers may be regressing IH. 

Previous studies have observed that propranolol can act as a membrane 

stabilizing agent [90, 109].  To determine whether propranolol’s effect was 
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mediated through receptors expressed on the cell surface or indirectly by 

stabilizing the cell membrane, we have treated the cells with quinidine, a 

membrane stabilizing agent that can block sodium and potassium channels.  

Interestingly, it has been noted that 100 µM quinidine can inhibit proliferation and 

induce apoptosis by increasing caspase-3 and -9 in human glioma U86-MG cells 

[110].  Surprisingly, at 1 µM quinidine, there was a significant increase in live 

hemSCs number and only at 100 µM quinidine did it significantly decrease 

hemSCs growth compared with control (Figure 16).  This profile is identical to the 

one seen with propranolol at 25 and 100 µM after 72 hours (Figure 3B).  

Surprisingly, HDMECs were unaffected at all concentrations of quinidine used 

when compared with control (Figure 16).  Our data suggest that the cellular 

components of hemSCs and HDMECs are quite different, and it would be 

important to investigate whether the decrease in hemSCs upon 100 µM quinidine 

is due to apoptosis and/or cell cycle arrest.  Furthermore, our findings highlight 

the importance of understanding the cellular receptor components to target 

hemSCs.  Our study demonstrates that although hemSCs are responsive to 

propranolol by inhibiting cellular growth and inducing anti-apoptotic genes, the 

mechanism by which propranolol mediates its effects in hemSCs are through β-

ADR-independent effects. 
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4.1.1 Concluding remarks 

Propranolol has shown promising effects in IH resolution and many studies have 

sought to understand the mechanism of propranolol’s effective treatment.  

Although the mechanism of action is not fully understood, our study represents 

an important step towards understanding propranolol’s action.  Our findings 

provide novel insight into the possibility that propranolol may affect hemangioma-

initiating cells (hemSCs) through a β-adrenergic receptor-independent pathway, 

potentially involving 5-HTRs and membrane stabilization.  Identification of 

cytoplasmic regulatory proteins in hemSCs that interact with β-ADR and 5-HTRs 

may represent an attractive future research area for the development of cell-type 

specific therapies. 
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4.2 Future Direction 

Although propranolol is efficacious, there is quite a bit of knowledge gap.  There 

are possibilities that need to be explored: 1) involvement of receptor dimerization 

and α-ADR signaling, 2) involvement of 5-HT signaling, and 3) role of membrane 

stabilizing effects.   

Although data is limited, propranolol does stereoselectively bind and inhibit α-

ADR in the heart [111].  Immunoprecipitation studies also show that β1-ADR and 

α2-ADR heterodimerize when co-expressed [112].  This interaction changes the 

pharmacological properties of β1-ADR as shown by ligand binding assays.  β1- 

and β2- ADR have also been shown to heterodimerize [113, 114].  These 

findings suggest that the profile of ADR receptors may have functional cellular 

consequence and represents an area of significant future research interest.  In 

addition, our data suggest that β1-ADR is the key receptor that mediates 

apoptosis in HDMECs, and since hemSCs β1-ADR level is hardly detectable, 

apoptosis is not evident in this cell type.  Therefore, it would be interesting to 

investigate whether overexpression of β1-ADR in hemSCs would induce 

apoptosis upon propranolol exposure.   

Moreover, a number of pressing questions remain.  For example, is propranolol 

selective to IH vessels? Based on recent findings in endothelial cells (normal vs 

IH-derived) and our own findings in hemSCs, this seems unlikely.  Alternatively, 

the effectiveness of propranolol in IHs may be a function of increased levels that 

are sustained in the capillary mass of IHs.   
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Lastly, are there better alternatives to propranolol? Further studies need to be 

conducted to determine whether activation of 5-HTRs can induce apoptosis 

and/or reduce anti-apoptotic genes.  This would allow for alternative treatments 

to target 5-HTRs rather than β-ADRs as it is highly expressed in hemSCs.  Also, 

based on our data, nadolol has similar growth effect in hemangioma-derived 

stem cells to propranolol.  Therefore, further studies are needed to determine 

whether similar anti-apoptotic gene profile is induced, and whether it can induce 

apoptosis in hemSCs to prevent recurrence of hemangiomas.  Moreover, it would 

be interesting to observe the receptor profile after nadolol exposure and compare 

to the changes of propranolol’s receptor profile. 

These studies are underway in our laboratory and the findings may enhance our 

understanding of the mechanism of therapeutic action of propranolol and may 

provide more effective treatment options.  
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