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Abstract

This thesis investigates quantitative techniques for trading strategies on two com-
modities, the difference of whose prices exhibits a long-term historical relationship known
as mean-reversion. A portfolio of two commodity prices with very similar characteristics,
the spread may be regarded as a distinct process from the underlying price processes
so deserves to be modeled directly. To pave the way for modeling the spread processes,
the fundamental concepts, notions, properties of commodity markets such as the forward
prices, the futures prices, and convenience yields are described. Some popular commodity
pricing models including both one and two factor models are reviewed. A new mean-
reverting process to model the commodity spot prices is introduced. Some analytical
results for this process are derived and its properties are analyzed. We compare the
new one-factor model with a common existing one-factor model by applying these two
models to price West Texas Intermediate (WTI) crude oil, and discuss its advantages
and disadvantages. We investigate the recent behavioral change in the location spread
process between WTI crude oil and Brent oil.

The existing three major approaches to price a spread process namely cointegra-
tion, one-factor and two-factor models fail to fully capture these behavioral changes. We,
therefore, extend the one-factor and two-factor spread models by including a compound
Poisson process where jump sizes follow a double exponential distribution. We general-
ize the existing one-factor mean-reverting dynamics (Vasicek process) by replacing the
constant diffusion term with a nonlinear term to price the spread process. Applying the
new process to the empirical location spread between WTI and Brent crude oils dataset,
it is shown how the generalized dynamics can rigorously capture the most important
characteristics of the spread process namely high volatility, skewness and kurtosis. To
consider the recent structural breaks in the location spread between WTI and Brent, we
incorporate regime switching dynamics in the generalized model and Vasicek process by
including two regimes.

We also introduce a new mean-reverting random walk, derive its continuous time
stochastic differential equation and obtain some analytical results about its solution. This
new mean-reverting process is compared with the Vasicek process and its advantages dis-
cussed. We showed that this new model for spread dynamics is capable of capturing the
possible skewness, kurtosis, and heavy tails in the transition density of the price spread
process. Since the analytical transition density is unknown for this nonlinear stochastic
process, the local linearization method is deployed to estimate the model parameters.
We apply this method to empirical data for modeling the spread between WTI crude oil
and West Texas Sour (WTS) crude oil.

Finally, we apply the introduced trading strategies to empirical data for the location
spread between WTI and Brent crude oils, analyze, and compare the profitability of the
strategies. The optimal trading strategies for the spread dynamics in the cointegration
approach and the one-factor mean-reverting process are discussed and applied to our
considered empirical dataset. We suggest to use the stationary distribution to find opti-
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mal thresholds for log-term investment strategies when the spread dynamics is assumed
to follow a Vasicek process. To incorporate essential features of a spread process such as
skewness and kurtosis into the spread trading strategies, we extend the optimal trading
strategies by considering optimal asymmetric thresholds.

Keywords: Pairs trading; Commodity pricing model; Commodity spread process; Con-
venience Yield; Cointegration; Mean-reversion; Energy markets; Mean-reverting ran-
dom walk; The Kalman filter; Optimal Trading Strategy; Regime Switching Algorithm;
Ornstein-Uhlenbeck process; Crude Oil Futures Prices
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Chapter 1

COMMODITY MARKETS

1.1 Introduction

This thesis is about developing stochastic models for commodity prices and for spreads
between commodity prices. Based on these models, we build optimized trading strategies
on spreads (more detail is given in section 1.6). We begin the thesis with an introduction
to commodity markets.

When we review daily financial newspapers, we find that commodity-related news
provide many important headlines and columns. For instance, “corn is shining like gold”
was one headline in The Globe and Mail on July 04, 2012. The impact of the recent
decline in commodity prices are inevitable on national economies. Since countries such
as Canada, Russia, and Australia have commodity-based economies, falling commodity
prices will cause considerable decline in their gross domestic product (GDP), possibly
leading to financial crisis if the decline continues for a long period. For instance, accord-
ing to Statistics Canada, in 2009 approximately 58% of Canada’s entire exports were
from energy, forestry, mining, and agriculture. Most commodities prices, especially that
of crude oil, started to rise between 2002 to mid-2008 and peaked in mid-2008. Although
these prices started receding in October 2008 and dramatically dropped when the world
faced the financial crisis and the resulting economic recession, their prices remained sig-
nificantly higher and more volatile compared to 2005 and earlier. Again, the commodity
prices have been modestly increasing since mid-2009. These trends are not just of inter-
est to financiers; as a result, food prices extended to an all-time high in February 2011
(United Nations (2011)). This chapter is organized as follows:

First we explain commodities in general. In section 1.3, we describe how commodity
markets work. We review the commodity markets properties in section 1.4. Finally, in
section 1.5, we compare the commodity markets with equity markets.

1
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1.2 What is a commodity?

In economics, a commodity is a term that refers to any marketable item produced to ful-
fill wants or needs. Commodities comprise both goods and services, but the term is more
particularly used to refer to goods only. The word commodity comes into English from
the French word “commodit”, which is used to refer to any item that provide some ben-
efits or useful services. The term commodity applies to any good that is interchangeable
with another product of the same type without qualitative distinction across a market.
In other words, commodities produced by different producers are treated as equivalent
apart from their slightly different qualities. For instance, wheat produced by Russia,
USA and India is treated as equivalent. Any good which is supplied across the markets
without any product differentiation, and for which there exists demand, is a commodity.
By this definition, crude oil is a commodity because it does have a single price all around
the world on daily basis and the price is determined by supply and demand. Although
commodities are uniform, their prices may marginally vary with respect to transportation
costs, qualitative differences, currencies exchange rates and delivery places and times. To
cover these differences, commodities are usually graded. However, in order to be suitable
for trading and deliverable, a commodity must meet minimum acceptance standard which
is called “a basic grade”, “par grade”, or “contract grade” Chatnani (2010). Commodi-
ties are usually produced by many different producers in large quantities. Commodity
prices fluctuate based on supply and demand. Moreover, a commodity is considered as a
consumption asset that its “scarcity” has a significant impact on economic development,
international trade, world economic, and political stability. The demand for commodi-
ties including energy, grains, and metals as well as the availability of these commodities
has significantly increased over the centuries. To sum up the definition of an economic
commodity, a commodity is a good that has following properties:

• Produced and sold by different producers

• Between producers of the commodity, its quality is uniform

• Its price is determined based on supply and demand alone

Commodities are categorized as follow:

• Agricultural commodities: raw “grains” such as wheat, corn and oats

• Industrial metals: raw metals including aluminum, lead, and copper

• Precious metals: raw metals including gold, silver, and platinum

• Meat commodities: meat commodities are raw products like livestock
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• “Soft” commodities: including coffee, sugar, and lumber

• Energy commodities: including crude oil, gasoline, and heating oil

1.3 Commodity markets:

Commodities spot markets have existed over nearly the entire history of humankind
around the world. A commodity market is a physical or virtual marketplace in which
buyers and sellers meet in order to trade standardized or graded products. Although
“spot” contracts, for immediate delivery of a particular commodity, still exist, most
modern trading is done through forward, futures contracts, or derivatives. The contem-
porary futures markets were established in the Midwestern United States in the 19th
century, even though some sort of futures contracts already existed in Europe and Japan
centuries ago (Geman (2005)). A forward contract is an over-the-counter (OTC) con-
tract representing an agreement between two parties for the exchange of a commodity at
a certain time in the future for a price settled at the time of the agreement. A futures
contract is a particular type of forward contract. However, there are some specific dif-
ferences between futures and forward contracts. First, futures contracts are traded on
future exchanges and are standardized contracts; on the other hand, forward contracts
are agreements between individual counterparties and are more flexible in their speci-
fied terms and conditions. Since forward contracts are private agreements, and usually
the exchange of the commodity and its cash value is done at maturity, there is always
a possibility that one of the counterparties may default. To resolve this issue, future
contracts have clearing houses that guarantee the creditworthiness of transactions, which
considerably reduces the probability of default to almost zero.

A clearing house is a financial organization on a financial exchange that is main-
tained by banks and coordinates the delivery, confirmation and settlement of securities
transactions for a commission. In other words, a clearing house settles trading accounts,
clears trades, collects and maintains margin money. Furthermore, settlement of forward
contracts occur at the end of the contract, but futures contracts are marked-to-market
daily, which means that price changes are settled in counterparties margin accounts day
by day until the expiry date of the contract. Since futures contracts are standardized
with respect to quality, quantity, delivery terms and expiry dates and can be easily trans-
ferred to other parties, their liquidities are considerably higher than forward contracts.
Forward contracts, on the other hand, can only be traded on the exchange that created
that particular forward contract. Sometimes forward contracts are customized over the
counter contracts that are difficult to trade at all.
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The popularity of commodity derivatives trading has rapidly grown over the years.
In recent years, commodity exchanges have witnessed rapid growth in trading volume, the
diversity of contracts, wide range of underlying commodities, and market participants.
Commodity exchanges facilitate the access of market participants including speculators
and hedgers to commodity futures and other derivatives. The numbers of commodity ex-
changes have increased in recent decades. Most commodity exchanges are located in the
world’s leading financial centers including New York, Chicago, and London. The Chicago
Board of Trade (CBOT) was established in 1848 to trade agricultural products. CBOT
invented futures contracts trading in 1865 and is one of the oldest futures and options
trading exchanges. We can also mention some other prominent commodity exchanges
across the world namely the Chicago Mercantile Exchange (CME) (On July 12, 2007,
the CBOT merged with CME to form the CME Group), the New York Mercantile Ex-
change (NYMEX), the London Metal Exchange (LME), the world’s largest markets for
commodities (mainly metals) derivatives, and the Indian Commodity Exchange Limited
(ICEX).

1.4 Commodity markets properties:

Commodity markets have some properties that make them different from that of equity
markets. These properties even vary from one commodity to another. For instance,
seasonality is crucial to be considered when we attempt to build a model for agricultural
commodities whereas precious metals prices are not generally seasonal even though they
may be cyclical. In this section, we review some of these properties.

• Demand and Supply: The commodity spot prices are derived based on demand
and supply. When the demand is lower than supply, the commodity prices will drop
and vice versa. The intersection of the supply and demand curves will form the
spot prices. When the commodity price is low, some producers whose production
costs are high will decide to stop producing. Therefore, supply will fall. However,
low supply will make price trend upward sooner or later.

• Physical transactions: The commodity markets are associated with physical de-
livery. The producers and consumers must agree on the place and time of the
commodity exchange, although in the commodity exchanges, there are two types
of futures contracts: physical and financial settlements, contracts for differences
(CFD) for which there is no physical delivery and only cash value differences will
apply to the counterparties accounts. Huge volumes of trades are done by specula-
tors in these types of contracts.

• Liquidity: One of the issues of the commodity markets is illiquidity. Once inci-
dents occur, even in well covered markets, the volume of trades will sharply drop
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and the spreads (bid and ask) will widen. As a result, the market will be illiquid.

• Storage: Although for some commodities such as electricity, storage is either not
practical or economical, storage, holding and protecting commodities for future
consumption, plays a crucial role in most commodity markets. At every given time,
production plus inventory define supply. Low inventory for a given commodity will
drive its spot and futures prices up.

• Volatility: Major commodity prices are highly volatile. The commodity prices
have sharply peaked in recent years even though in some cases such as natural
gas, the prices have since retreated. The magnitude of commodities’ price rise had
extended five times or more in some cases. The volatile behaviors of commodity
prices have various reasons. First, demands for commodities, particularly grains,
are relatively inelastic- almost constant; as a result, when the supply fluctuates due
to some fundamental price drivers such as weather, the commodity prices display
volatile behaviors. In recent decades Asian countries, especially China and India,
have experienced rapid industrial development. Therefore, demands for major com-
modities such as metals, and energy as inputs to the production have considerably
added and caused price climbs. The increased number of market participants, par-
ticularly speculators, and the variety of derivatives on commodities also have added
price volatilities in commodity markets. Commodity markets abruptly respond to
events and news, and the frequency of news events are very high. For instance,
conflicts in crude oil suppliers can make price jump, or drought in main grains
producers countries such as USA, and Russia will cause prices to spike. Figure
1.1 depicts daily front contracts futures prices for Gold, Silver, Wheat, and WTI
crude oil from 1990-01-02 to 2013-12-31. The empirical data are obtained from the
CME group. These snapshots clearly demonstrate how volatile are the commodity
markets. For instance, silver was traded around $4 from per ounce 1990 until mid
2005 however it peaked over $46 per ounce in mid-2011.

• Supply and demand balancing: Nowadays, supply and demand can be bal-
anced at both the local and global level for major commodities with a few notable
exceptions. Some commodities such as electricity, cannot be balanced globally and
so electricity is traded on many local markets.

• Diversification: Most investors and financial institutions are increasingly consid-
ering commodities as assets and are trading commodities to diversify their portfo-
lios.

• Regulation and intervention: In order to stabilize the commodity prices in do-
mestic markets, most countries intervene in the commodity markets. For instance,
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Figure 1.1: The front contracts daily futures prices for Gold, Silver, Wheat, and WTI
crude oil from 1990-01-02 to 2013-12-31.

due to adverse weather conditions, in 2012, Russia expected to harvest 10-15 per-
cent less wheat than 2011. Consequently, the Russian agricultural ministry has
downgraded its export forecast by 20 percent. The Russian agricultural minis-
ter also pointed out that they might use “pinpoint intervention sales to contain
domestic prices”.

1.5 Commodity Markets versus Equity Markets:

Commodity markets are fast growing markets along several aspects including volume
of trades, number of participants, and importance for modern economies; however, in
comparison to equity markets, commodity markets are still relatively undeveloped. The
volume of papers, books, and research devoted to equity markets is very high compared
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to that devoted to commodity markets. The following reasons make commodity markets
so different from equity markets:

• Fundamental price drivers: In commodity markets, fundamental price drivers
are many, and sophisticated. These drivers are relatively complex to incorporate
into quantitative pricing models whereas in equity markets, these drivers are com-
paratively few and can be easily included into pricing models. When we attempt
to price financial derivatives for which the underlying is a commodity, we have to
deal with various issues such as weather, storage, transportation, and technological
progress. Commodities are continuously produced and consumed and stored at a
storage cost, which means there is a cost to physically holding the commodity. Even
this storage cost varies based on the commodity type. Consequently, the forward
price models for commodities will be different from the one in equity markets and
must be modified to be applied in commodity derivatives. Therefore, these issues
make commodity derivatives substantial different from pure financial investment
assets. In commodity markets, end users actually consume the commodity. Resi-
dential users, for instance, constantly consume energy for cooling in summer and
heating in winter. Other industries need energy or other commodities to keep their
production line running. Each commodity market participant, suppliers and con-
sumers, alike have their own set of drivers that should translate into pricing models.
When an event such as hurricane hits one part of the world, it will abruptly impact
commodity markets. Almost none of these kinds of drivers are issues in equity
markets. It is not easy to capture these drivers into quantitative models.

• Mean reversion and economic cycle: The economic cycle refers to the phe-
nomenon by which an economy fluctuates between states of growth (health) to
contraction (recession). The current state of the economic cycle can be inferred
from various factors including gross domestic product (GDP), unemployment rates,
interest rates, inflation rates, and consumer spending. The economic cycles expe-
rience four major phases: expansion, prosperity, contraction and recession. Devel-
oped countries may intervene to smooth the up peaks and down peaks. Traditional
financial markets are strongly responsive to economic cycles; however, the impact
of economic cycles is usually low for many commodities ( Pilipovic (2007)). “Mean
reversion” is a theory proposing that most of economic markets fluctuates around
or move back towards a “mean” or “average” (equilibrium level). The equilibrium
level can be the historical average commodity price, return for a stock or interest
rates. In pure financial markets such as interest rates, mean reversion occurs due
to economic cycle. However, there are totally different reasons for mean reversion
in commodity markets. Commodities prices are obtained based on supply and de-
mand. For example, when the supply is excessively higher than the demand for a
particular commodity, the suppliers with high cost of production tend to lower their
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production; consequently, the consumption will wipe out the excess supply with a
return to the more normal price. When the supply is low, the reverse circumstances
will happen. The mean reversion can also occur when events such as weather or
political situations in supplying countries hit in commodity markets, we will wit-
ness a spike (upward or downward) in commodity prices in short period of time.
However, the market will eventually return to “normal levels” over a longer period
of time. For instance, by applying point estimations, Bessembinder et al. (1995)
show that 44 percent of a usual front contract crude oil price spike is expected to
revert to equilibrium levels over the following eight months.

• Convenience yield: As far back as the 1930s and 1940s, some well-known
economists had noticed the benefit of the physical ownership of storable commodity
in the theory of storage (Geman (2005)). Having the commodity on hand (invento-
ries) enable agents to respond to the unpredictable, and abrupt demand and prevent
manufacturing interruption. Like the stock market dividends that are only paid to
the owner of stock rather than owner of derivatives such as options, this benefit is
paid merely to the holder of the commodity rather than to the holder of futures
or forward contracts and is known as the convenience yield. The convenience yield
is defined as the overall benefits that holder of commodity receive minus the costs
especially the cost of storage with exception of the cost of financing. When the spot
commodity price unexpectedly peaked, the inventories’ owners will tend to short
the physical inventories and perhaps replaced by the futures or forward contracts.
Conversely, when the commodity spot price dramatically drop, they will most likely
decide to increase their inventories. In general, the convenience yield is measured
by the existing demand and the accessible supply’s balance. In chapter 3, section
3.3, we will explain these ideas in more details.

• Seasonality: Many commodities show undoubtable seasonality in prices. Al-
though equity markets exhibit weak seasonality due to investment flows, during
different periods of time in year, the supply and demand have dramatic changes
in particular commodities in which drive seasonality in commodity markets. For
instance heating oil, or agricultural commodities exhibit significant seasonality. De-
mand for heating oil changes due to weather patterns (demand dramatically rises
in winters; conversely, demand drops in summers). seasonality in agricultural com-
modities is mostly driven by harvest cycles. Seasonality is implemented in models
as a deterministic trend function f(t) (usually as a sinusoidal function with semian-
nual periodicity). In chapter 4, we implement seasonality in the commodity spread
model.

The differences between equity and commodity markets are not only limited to the above.
Whereas equity markets, in commodity markets, frequency of events are high, liquidity
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is low and mostly is decentralized markets.

1.6 Thesis Road Map

This thesis focuses on commodity pricing models, commodity spread pricing models, and
optimal trading strategies for the spread processes. In commodity spread trading, we con-
struct a portfolio of two commodities with very similar characteristics sharing common
stochastic trends. The two commodities may even have identical usages (for instance, in
the location spread between Brent crude oil and West Texas Intermediate (WTI) crude
oil) or sometimes, the spread portfolio consists of two derivatives on the same commodity
(for instance, the spread between two WTI futures prices with different delivery dates).
We will discuss the spread dynamics and optimized strategies on spreads in detail later
in this thesis. This thesis is divided into four main parts.

The first part, Chapter 2, describes the concepts, implications and embedded condi-
tions of two estimation algorithms namely Kalman filter and the new local linearization,
introduced by Shoji and Ozaki (1998), in detail. These approaches will be deployed to
estimate parameters of the stochastic models throughout this study as relevant and are
not major contributions of this research, so it can be skipped by readers already familiar
with these tools.

Chapter 3 first provides an overview of forward and futures contracts, their dif-
ferences, and the convenience yield, one of the important state variables in commodity
markets. Second, we analyze a simple model to price a commodity, the one-factor mean-
reverting commodity pricing model introduced by Schwartz (1997), and the very popular
two-factor model proposed by Gibson and Schwartz (1990) to price commodities contin-
gent claims particulary for crude oil. Finally, we introduce the new generalized one-factor
commodity pricing model. We investigate the properties of this new dynamical model
and show that this one-factor process is able to capture the key characteristics of the
dynamics of commodity spot-prices including mean-reversion, heavy tails, skewness and
kurtosis. The new stochastic process is a nonlinear process with a unique but unknown
transition distribution; therefore, Shoji and Ozaki (1998)’s local linearization method will
be deployed to estimate the model’s parameters. The new generalized one-factor model
is compared with Schwartz’s one-factor dynamics by fitting these models to the WTI
crude oil’s front futures contracts. It will be argued which process is capable to explain
the reality of the commodity spot-price process more accurately using both observed and
estimated results.

Chapters 4 and 5 discusses the concepts, implications and stochastic models of
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spread trading in commodity markets. First, we describe cointegration and its applica-
tion in pairs trading, a one factor mean-reverting Vasicek process to model the spread
process, presented by Elliott et al. (2005), and the two factor model proposed by Demp-
ster et al. (2008) to model the spot spread process. Second, we apply these three models
to our empirical sample data and compare the results. Later, in Chapter 4, we analyze
the recent behavioral change in the location spread between WTI crude oil and Brent
oil. Since important news can generate a shock in a spread process, we propose to im-
plement a jump, which is compound Poisson process, in the one-factor and two-factor
spread models. In these models, jump sizes follow the double exponential distribution
introduced by Kou (2002). A new one-factor mean-reverting process is introduced to
explain not only the mean-reverting property of the spread process, but also the skewness
and the kurtosis characteristics of a spread process. The transition density of this nonlin-
ear mean-reverting stochastic process is unknown so the new local linearization method
is deployed to estimate the model’s parameters. Since the spread between WTI crude
oil and Brent oil has recently experienced a structural break for fundamental reasons,
we deploy Regime-Switching Models (RSM) in this generalized one-factor mean-reverting
dynamics to capture this phenomena in the spread process in Chapter 4. In Chapter 5,
we will develop a novel mean-reverting random walk, obtain its continuous time dynam-
ics, and use it to model the spread dynamics. The new mean-reverting process will be
compared to Elliott et al. (2005)’s one factor model and its advantages and disadvantages
are investigated. We will deploy both models: the new one factor mean-reverting model
and the Vasicek process, to price the spread between WTI and WTS crude oils. Using
both observed and estimated results, we will discuss which process can better describe
the reality of the spread process.

Finally, Chapter 6 provides a discussion of specifying some optimized trading strate-
gies for different classes of the spread dynamics. First, we empirically illustrate an exist-
ing trading strategies for the cointegration approach and Elliott et al. (2005)’s one-factor
model. Second, we explain how two different trading strategies can be implemented in
these two approaches. We review the optimal trading strategies for the cointegration ap-
proach. We also investigate the optimal trading strategies proposed by Bertram (2010)
in which he exploits first passage time results for the Ornstein-Uhlenbeck (OU) process
to find optimal upper and lower boundaries. We propose to deploy the stationary distri-
bution to obtain optimal barriers in the Vasicek dynamics which is appropriate for the
long-term investment strategy. Finally, we introduce two new trading strategies for the
spread process of WTI crude oil and Brent oil by considering the empirical facts and
behavioral process change.
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1.7 Conclusion

In this Chapter, we review some of essential notions, concepts, and difficulties that we
confront when we study the commodity markets and derivatives on the commodity such as
forward or futures pricing. In Chapter 3, we will frequently use these introduced notions
and consider these concepts in the commodity pricing models. But first in Chapter 2,
we will develop estimation tools including the Kalman filter algorithm as well as a new
local linearization approach to estimate parameters for SDEs.



Chapter 2

Estimating Time series using the
Kalman Filter and the Local
Linearization

2.1 Introduction

The Kalman filter (KF), a practical and powerful algorithm for estimating parameters for
time series, was introduced by R.E. Kalman (1960) and Kalman and Bucy (1961). This
model is designed to estimate parameters from noisy data on a linear system with errors
modelled using Gaussian white noise. The filter recursively updates the state variables
once new data becomes available. In order to apply the Kalman filter for prediction and
smoothing, a dynamical system should be presented in a specific state space form. The
state space representation is a statistical framework for unobservable variables. Due to
the simplicity of applying maximum-likelihood to estimate parameters in the model, the
flexibility of algorithm and the ability to manage missing values, this approach is widely
applied in time series analysis and econometrics. For instance, one of the implications of
commodity pricing models is that crucial state variables such as spot price and conve-
nience yield are usually unobservable. The Kalman filter algorithm is mainly applied to
calibrate unobserved state variables. The KF has been explained in many books. Tsay
(2010) focus on financial time series applications, Durbin and Koopman (2001) update
the approach, and Kim and Nelson (1999) applied the method in economic applications
as well to regime switching models. It might be assumed that once a dynamical system
is represented in state space form, the Kalman filter algorithm can easily be used to solve
the resulting estimation problems. However, two difficulties can arise. First, particularly
in some non-linear models, to come up with right state space forms is a challenging task.
Second, un-observability of state variables is a common issue for most dynamical sys-

12
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tems. We, therefore, confront various difficulties to apply the Kalman filter algorithm.
Despite these hardships, the Kalman filter algorithm is widely used to estimate many
sophisticated models. The chapter is organized as follows.

In Section 2.2 we first explain how a dynamical system can be depicted in the state
space model and then we introduce the required assumptions for the KF algorithm. In
Section 2.3, we derive the Kalman filter algorithm and explain classical inference problems
namely filtering, smoothing and forecasting and derive their relevant formulas. We derive
the log-likelihood function to estimate parameters using the Kalman filter algorithm in
Section 2.4. Finally, in Section 2.4.1, we review the new local linearization method
presented by Shoji and Ozaki (1998) that can be applied to estimate parameters of a
large class of one-dimensional and nonlinear stochastic differential equation with unique
but unknown transition densities.

2.2 Linear State space Models

Many financial time series can be formulated in the state space form including Autore-
gressive Integrated Moving Average (ARIMA) models, commodity pricing models, and
stochastic volatility models. Let yt = (y1t, . . . , ykt)

′
represent a k × 1 observation vector

at time t. This observed vector, yt, can be stated in terms of another, possibly unob-
served, m × 1 vector, αt = (α1t, . . . , αmt)

′
known as state vector. The state vector αt

usually follows a stochastic process. Also, let Ft denote all information at time t. For
simplicity, we consider the following convention:

F0 = ∅,Ft = {y1,y2, · · · ,yt} = {Ft−1,yt},

The general Gaussian linear state-space model is denoted by the following equations
system:

αt+1 = dt + T tαt +Rtηt, (2.1)

yt = ct +Ztαt + εt (2.2)

where dt (m× 1) and ct (k × 1) are deterministic vectors,
T t (m×m) and Zt (k ×m) are coefficient matrices,
Rt is a m× n matrix and
The observation error vector, εt (n×1) and process error vector, ηt (k×1) are Gaussian
white noises. More specifically:
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εt ∼ N (0,H t), ηt ∼ N (0,Qt),

E(εtε
′

τ ) =

{
H t for t = τ
0 elsewhere ,

and, E(ηtη
′

τ ) =

{
Qt for t = τ
0 elsewhere ,

We assume that Qt (n× n) and H t (k× k) are independent positive-definite matri-
ces; however,the independence condition can be relaxed at the cost of some additional
conditions as described by Durbin and Koopman (2001).
Equation 2.2 describe the relation at time t between the observation variables yt and the
state variables αt. This equation is called the observation or measurement equation with
measurement disturbance εt. Equation 2.1 generates the transition of the state variable
αt from period t to period t + 1 with innovation ηt, and it is known as the state or
transition equation. It is also a first-order Markov chain, given the above assumptions.
The matrices T t, Rt, Zt, Qt, and H t can be functions of some parameters θ as well as
time t. One can estimate the parameters in the matrices using the maximum-likelihood
approach as described by Tsay (2010).

It is assumed that the initial state, α1 is normally distributed with known mean
vector and covariance matrix α1 ∼ N (µ1,Σ1) and is independent of εt and ηt for t > 0.
The state space form for a given dynamic process is not usually unique. For some cases,
there are many approaches to find the state space form. However, in some particular
cases, finding the state space form can be quite challenging. We present one example to
show how we can handle this model.

Example 2.2.1. State space representation for autoregressive moving-average model
(ARMA(p, q)) process: As we mentioned before, state space forms are not unique. In
case of ARMA, there are many approaches to express in state space form such as Akaike,
Harvey, and Aoki’ s approaches. In this example, we explain Harvey’s approach for zero
mean ARMA(p, q) Harvey (1993).
First consider the ARMA(p, q) process expressed by:

φ(B)yt = θ(B)at. t = 0,±1, . . . (2.3)

where φ(B) = 1 −
∑p

i=1 φiB
i and θ(B) = 1 −

∑q
i=1 θiB

i (B is back-shift operator,
Bi at = at−i ) {at} is a Gaussian white noise series (at ∼ WN (µ1, σ

2
a)) and p and q are

nonnegative integers.
Consider m = max(p, q + 1); as a result, the ARMA can be rewritten as follows:

yt =
m∑
i=1

φiyt−i + at −
m−1∑
j=1

θjat−j. (2.4)
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where φi = 0 for i > p and θj = 0 for j > q ; as a result, the model is denoted as a
ARMA(m,m − 1) for which some of φ′is, θ

′
js are zero. Harvey (1993) introduce a state

space representation as follows:
He defines state vector αt = (α1t, . . . , αmt)

′
in which the first element is α1t = yt and the

rest of the elements can be obtained recursively from the ARMA(m,m − 1) model as
follows:
Step 1:

yt+1 = φ1yt +
m∑
i=2

φiyt+1−i −
m−1∑
j=1

θjat+1−j + at+1

= φ1α1t + α2t + ηt. (2.5)

where α1t = yt, α2t =
∑m

i=2 φiyt+1−i −
∑m−1

j=1 θjat+1−j and ηt = at+1.

Step 2: Now let us consider α2,t+1 :

α2,t+1 =
m∑
i=2

φiyt+2−i −
m−1∑
j=1

θjat+2−j

= φ2yt +
m∑
i=3

φiyt+2−i −
m−1∑
j=2

θjat+2−j − θ1at+1

= φ2α1t + α3t + (−θ1)ηt. (2.6)

where α3t =
∑m

i=3 φiyt+2−i −
∑m−1

j=2 θjat+2−j.

If we follow steps 1 and 2 repeatedly, we can conclude by induction that
αlt andαl,t+1 for (l < m) will be given as follows:

αlt =
m∑
i=l

φiyt+l−1−i −
m−1∑
j=l−1

θjat+l−1−j

αl,t+1 = φlyt +
m∑

i=l+1

φiyt+l−i −
m−1∑
j=l

θjat+l−j + (−θl−1)at+1

= φlα1t + αlt + (−θl−1)ηt, (2.7)

Finally, αm,t+1, is:

αl,t+1 = φmα1t + (−θm−1)ηt. (2.8)

and using the above equations 2.7 , 2.8, it is easy to show that the state space form is:

αt+1 = Tαt +Rηt, (2.9)

yt = Zαt (ηt ∼ N (0, σ2
a)). (2.10)
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where αt = (α1t, . . . , αmt)
′

, T , R and Z are time invariant and are:

Zt = (1, 0, 0, . . . , 0)(1×m),

T(m×m) =


φ1 1 0 · · · 0
φ2 0 1 · · · 0
...

...
... · · · ...

φm−1 0 0 · · · 1
φm 0 0 · · · 0

 ,

R(m×1 =


1
−θ1

−θ2
...

−θm−1

 ,

In this setting, there is no measurement noise and all the system matrices are con-
structed by using ARMA(m,m− 1) coefficients.

The results of Theorem 2.2.1 is extensively used in the derivation of the Kalman
filter algorithm.

Theorem 2.2.1. Suppose that x, y, and z, are random vectors such that their joint
distributions are multivariate normal with means µp and covariance matrices Σpp where
Σpp is nonsingular for p = x, y, z and Σyz=0. In this case, we have, as described in
Durbin and Koopman (2001):

(i) E[ x | y ] = µx + Σxy Σ−1
yy (y − µy)

(ii) V ar[ x | y ] = Σxx −Σxx Σ−1
yy Σ

′

xy,

(iii) E[ x | y, z ] = E[ x | y ] + Σxz Σ−1
zz (z − µz),

(iv) V ar[ x | y, z ] = V ar[ x | y ]−Σxz Σ−1
zz Σ

′

xz.

(i) and (ii) are standard results. To prove (iii), we apply (i) to vector (y, z)
′

which
is normal with following mean and covariance matrix:
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mean = (µy µz), and covariance matrix =

[
Σyy 0
0 Σzz

]
.

Since y and z are independent multivariate normal, we have:

E[ x | y, z ] = µx +
[

Σxy Σxz

] [ Σ−1
yy 0
0 Σ−1

zz

][
y − µy
z − µz

]
= µx + Σxy Σ−1

yy (y − µy) + Σxz Σ−1
zz (z − µz)

= E[ x | y ] + Σxz Σ−1
zz (z − µz)

And from condition (ii):

V ar( x | y, z ) = Σxx +
[

Σxy Σxz

] [ Σ−1
yy 0
0 Σ−1

zz

][
Σ
′

xy

Σ
′

xz

]
= Σxx −Σxy Σ−1

yy Σ
′

xy − Σxz Σ−1
zz Σ

′

xz

= V ar[ x | y ]−Σxz Σ−1
zz Σ

′

xz.

2.3 Classical inference:

The main objective of a state-space model is to study the evolution of the unobserved
state vectors α1 , α2 , · · · , αn for which we use the observed time series vectors
y1 , y2 , · · · , yn. In the Kalman filter algorithm, we discuss three types of important
typical inference problem namely filtering, forecasting, and smoothing:

(i) Filtering means to forecast the state variable αt given all available information at
time t (Ft). This is because αt is usually unobservable and we estimate αt by
eliminating the measurement noise from the data,

(ii) Smoothing means to estimate the state variable αt given all available information
at time T (FT ) where (T > t),

(iii) Forecasting means to predict the state variable αt+h or yt+h given all available
information at time t (Ft) where h > 0 and t is the forecasting origin.

We define some notation that we deploy to derive the Kalman algorithm as follows:
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• Ft = {y1,y2, · · · ,yt} = {Ft−1,yt} be all information available at time t,

• αt|j = E[ αt | Fj] , yt|j = E[ yt | Fj] be the conditional means of αt and yt given
Fj respectively,

• Σt|j = V ar[ αt | Fj] be conditional variance of αt given Fj,

• νt = yt − yt|t−1 be the 1-step-ahead forecasting error,

• V t = V ar[ νt | Ft−1] denotes the conditional covariance matrix of the 1-step-ahead
forecast error (νt) given Ft−1

Later in this chapter, we will derive all the above mentioned inference problems.

2.3.1 Preliminary Derivations:

Now, we attempt to derive all the model involved elements. Based on the model as-
sumptions, the prediction error νt is independent of Ft−1; as a result, V ar[ νt | Ft−1] =
V ar[ νt ]. Since all distributions in the model are assumed normal, all conditional in-
volved distributions are also normal and we need only study the mean and covariance
matrix to determine the distribution of αt. From equations 2.1 and 2.2, we have:

yt|t−1 = E[ yt | Ft−1] = E[ (ct +Ztαt + εt) | Ft−1]

= ct +ZtE[αt | Ft−1] + E[ εt | Ft−1]

= ct +Ztαt|t−1. (2.11)

And we have:

αt+1|t = E[ αt+1 | Ft] = E[ (dt + T tαt +Rtηt) | Ft]
= dt + T tE[αt | Ft] +RtE[ηt | Ft]
= dt + T tαt|t. (2.12)

Also, based on the model assumptions, we have:

Σt+1|t = V ar[ αt+1 | Ft] = V ar[ (dt + T tαt +Rtηt) | Ft]
= T tV ar[αt | Ft]T

′

t +RtV ar[ηt | Ft]R
′

t

= T tΣt|tT
′

t +RtQtR
′

t. (2.13)

By definition and equations 2.2 and 2.11 , we have:

νt = yt − yt|t−1 = yt − (ct +Ztαt|t−1)

= ct +Ztαt + εt − (ct +Ztαt|t−1)

= Zt(αt − αt|t−1) + εt. (2.14)
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We also have:

E[ νt | Ft−1] = E[ (yt − yt|t−1 ) | Ft−1]

= E[ yt | Ft−1] − yt|t−1 = yt|t−1 − yt|t−1 = 0,

(2.15)

Cov( νt yj ) = E[νt yj ] = E[E(νt yj | Ft−1)]

= E[yjE(νt | Ft−1)] = E[yj × 0] = 0, for 1 ≤ j < t.(2.16)

Therefore, νt is independent of Ft−1, and from equation 2.14, we have:

V t = V ar[ νt | Ft−1] = V ar( νt )

= V ar[Zt(αt − αt|t−1) + εt ]

= ZtΣt|t−1Z
′

t + H t. (2.17)

By using Theorem 2.2.1 and Ft = {Ft−1,yt} = {Ft−1,νt} , we can derive:

αt|t = E[αt | Ft ] = E[αt | Ft−1 , νt ]

= E[αt | Ft−1 ] + Cov( αt , νt )V ar( νt )−1(νt − 0 )

= αt|t−1 + Ct, V
−1
t νt. (2.18)

where Ct = Cov( αt , νt ),
As a result, we apply the above equations 2.18 to derive:

Ct = Cov( αt , νt ) = E[αtν
′

t ]

= E[E(αtν
′

t | Ft−1 ) ]

= E[E[αt(Zt(αt − αt|t−1) + εt)
′ | Ft−1 ] ]

= E[E[αt(αt − αt|t−1)
′
Z
′

t | Ft−1 ] ]

= E[E[αt(αt − αt|t−1)
′ | Ft−1 ] ]Z

′

t

= Σt|t−1Z
′

t (2.19)

Since H t is assumed nonsingular, V t is nonsingular too. This assumption can sometimes
be relaxed; see Durbin and Koopman (2001). Applying equations 2.12 and 2.18, we can
obtain:

αt+1|t = dt + T tαt|t

= dt + T t(αt|t−1 + Ct V
−1
t νt)

= dt + T tαt|t−1 + T tCt V
−1
t νt

= dt + T tαt|t−1 + Kt νt, for t = 1, 2, . . . , n. (2.20)
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With

Kt = T tCt V
−1
t = T t Σt|t−1Z

′

t V
−1
t , (2.21)

in equation 2.20, we obtain αt+1|t as a linear function of αt|t−1 and νt. Kt is called
the Kalman gain at time t. Using Theorem 2.2.1 , we obtain:

Σt|t = V ar[ αt | Ft] = V ar[ αt | Ft−1 , νt ]

= V ar[ αt | Ft−1] − Cov( αt , νt )V ar( νt )−1Cov( αt , νt )
′

= Σt|t−1 − Ct V
−1
t C

′

t

= Σt|t−1 − Σt|t−1Z
′

t V
−1
t Zt Σt|t−1. (2.22)

Substituting equation 2.22 into equation 2.13, we have:

Σt+1|t = T t( Σt|t−1 − Σt|t−1Z
′

t V
−1
t Zt Σt|t−1 )T

′

t + RtQtR
′

t

= T t Σt|t−1 (T t − T t Σt|t−1 Z
′

t V
−1
t Zt )

′
+ RtQtR

′

t

= T t Σt|t−1 (T t − KtZt )
′

+ RtQtR
′

t

= T t Σt|t−1L
′

t + RtQtR
′

t, for t = 1, 2, . . . , n, (2.23)

where

Lt = T t − KtZt.

2.3.2 The Kalman Filter Recursion:

Considered together, the previous derived equations give the Kalman filter for the general
state-space model defined in equations 2.1 and 2.2. These equations provide us the means
to recursively revise our knowledge of the state space system each time new observations
are revealed. Collecting the derived equations and assuming that mean vector, α1|0 and
the variance covariance matrix, Σ1|0 for the initial state are given, we have the Kalman
filter algorithm as follows:

νt = yt − ct − Ztαt|t−1,

V t = ZtΣt|t−1Z
′

t + H t,

Kt = T t Σt|t−1Z
′

t V
−1
t , (2.24)

Lt = T t − KtZt,

αt+1|t = dt + T tαt|t−1 + Kt νt,

Σt+1|t = T t Σt|t−1L
′

t + RtQtR
′

t, for t = 1, 2, . . . , n.
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Durbin and Koopman (2001) prove that when the normality assumption of the
observations do not hold, but Zt and T t are independent of previous yt ’s, αt+1|t, the es-
timate of αt+1, minimizes the mean square-error under some appropriate assumptions. It
is worth emphasizing that if we relax the normality assumption for the involved variables,
the resulting estimate is still statistically optimal in the sense of minimum mean-square
errors. In the Kalman filter algorithm, sometimes we also attempt to estimate filtered
values, αt|t and Σt|t; therefore, we add “contemporaneous” filtering equations 2.18 and
2.22 to the algorithm. The modified algorithm is:

νt = yt − ct − Ztαt|t−1,

Ct = Σt|t−1Z
′

t,

V t = ZtCt + H t,

Σt|t = αt|t−1 + Ct, V
−1
t νt,

Σt|t = Σt|t−1 − Σt|t−1Z
′

t V
−1
t Zt Σt|t−1, (2.25)

αt+1|t = dt + T tαt|t,

Σt+1|t = T t Σt|t−1L
′

t + RtQtR
′

t, for t = 1, 2, . . . , n.

We should emphasize that the only difficult step in the Kalman filter algorithm is to
calculate the determinant and inverse of V t. If we fail to compute either determinant or
inverse of V t, the algorithm will halt.

2.3.3 State Smoothing:

As we mentioned before smoothing means to estimate αt given FT ( α̂t = αt|T ) and its
associated error variance matrix Σt|T when t < T . In other word, smoothing means to
estimate the unobserved αt given the entire observations series {y1,y2, · · · ,yT}.
Now let xt be the state forecast error which is:

xt = αt − αt|t−1.

Therefore, the variance matrix of xt is:

V ar(xt | Ft−1) = V ar[αt − αt|t−1 | Ft−1] = V ar(αt | Ft−1 ) = Σt|t−1

Using equations 2.1 , 2.20 and 2.14, we have:

xt+1 = αt+1 − αt+1|t

= dt + T tαt + Rt ηt − (dt + T tαt|t−1 + Kt νt )

= T t (αt − αt|t−1 ) + Rt ηt − Kt νt

= T t xt + Rt ηt − Kt (Zt(αt − αt|t−1) + εt)

= Lt xt + Rt ηt − Kt εt. (2.26)
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where

Lt = T t − KtZt,

As a result, the state space form for νt is :

xt+1 = Lt xt + Rt ηt − Kt εt, (2.27)

νt = Zt xt + εt. (2.28)

where

x1 = α1 − α1|0,

Note that in equations 2.15 and 2.16 , we show that 1-step-ahead forecast errors
{νt} are independent of each other and the forecast errors, νt is also independent of Ft−1.
Now we focus on state smoothing:
We wish to estimate αt|T where (T > t). By applying Theorem 2.2.1 to the joint
distribution of αt and

{νt,νt+1, · · · ,νT} given Ft−1, we have:

αt|T = E[αt | Ft−1 , νt, · · · ,νT ]

= E[αt | Ft−1 ] +
T∑
j=1

Cov( αt , νj )V ar( νj )−1 νj

= E[αt | Ft−1 ] +
T∑
j=1

Cov( αt , νj )V −1
j νj. (2.29)

To obtain Cov( αt , νj ) , we use equation 2.28 as follows:

Cov( αt , νj ) = E[αt ν
′

j ]

= E[αt (Zj xj + εj )
′
]

= E[αt x
′

j ]Z
′

j, for j = 1, 2, . . . , n. (2.30)



2.3. Classical inference: 23

Also, using equation 2.27, we have:

E[αt x
′

t ] = E[αt (αt − αt|t−1 )
′
]

= V ar(αt ) = Σt|t−1,

E[αt x
′

t+1 ] = E[αt (Lt xt + Rt ηt − Kt εt )
′
]

= Σt|t−1L
′

t, (2.31)

E[αt x
′

t+2 ] = Σt|t−1L
′

tL
′

t+1,

...

E[αt x
′

T ] = Σt|t−1L
′

tL
′

t+1 · · · L
′

T−1.

Note that all the above expressions are conditional on Ft−1.
By substituting the previous equations 2.31 and 2.30 into equation 2.29, we obtain:

αT |T = αT |T−1 + ΣT |T−1Z
′

T V
−1
T νT ,

αT−1|T = αT−1|T−2 + ΣT−1|T−2Z
′

T−1 V
−1
T−1 νT−1

+ ΣT−1|T−2L
′

T−1Z
′

T V
−1
T νT ,

...

αt|T = αt|t−1 + Σt|t−1Z
′

t V
−1
t νt

+ ΣT−1|T−2L
′

T−1Z
′

T V
−1
T νT + · · ·

+ Σt|t−1L
′

tL
′

t+1 · · · L
′

T−1Z
′

T V
−1
T νT , (2.32)

for t = T − 2, T − 3, . . . , 1.

Note: When t = T , L
′

tL
′

t+1 · · · L
′

T = Im.
The smoothed state vectors, αt|T , can be depicted as follows:

αt|T = αt|t−1 + Σt|t−1 qt. (2.33)

where

qT−1 = Z
′

T V
−1
T νT ,

qT−2 = Z
′

T−1 V
−1
T−1 νT−1 + L

′

T−1Z
′

T V
−1
T νT ,

...

qt−1 = Z
′

t V
−1
t νt + L

′

tZ
′

t+1 V
−1
t+1 νt+1 + · · ·

+ L
′

tL
′

t+1 · · · L
′

T−1Z
′

T V
−1
T νT , for t = T − 2, T − 3, . . . , 1. (2.34)

By applying equations 2.34, we can obtain the smoothed state vectors, αt|T , by using
backward recursion as follows:
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qt−1 = Z
′

t V
−1
t νt + L

′

t qt,

αt|T = αt|t−1 + Σt|t−1 qt, for t = T, T − 1, . . . , 1. (2.35)

where qT = 0.
It is worth mentioning that αt|t−1 , Σt|t−1 , Lt, andV t are outputs of the Kalman filter
algorithm.

2.3.4 Forecasting:

In forecasting, we would like to predict the state variable yt+i given all available informa-
tion at time t (Ft) for i = 1, 2, . . . , h where h > 0 and t is the time at which the forecast
is made. It is easy to show that the i-step-ahead forecast, ŷt+i is the expectation of yt+i
given (Ft) which is ŷt+i = E[yt+i | Ft]. By deploying the Kalman filter in equation 2.24,
we derive these predictions, ŷt+i , and the covariance matrices of their prediction errors
by considering {y1,y2, · · · ,yt} as missing values (Tsay (2010)) as follows:
By using the equation 2.11 , the 1-step-ahead prediction is:

ŷt+1 = E[ yt+1 | Ft]
= ct+1 +Zt+1αt+1|t, (2.36)

which αt+1|t is the output of the Kalman filter. Its prediction error is:

êt+1 = yt+1 − ŷt+1

= Zt+1 (αt+1 − αt+1|t) + εt+1. (2.37)

Using equation 2.37, the covariance matrix of the 1-step-ahead of prediction errors is:

V ar[ êt+1 ] = V t+1 = V ar( νt+1 )

= Zt+1Σt+1|tZ
′

t+1 + H t+1. (2.38)

We repeat the derivation in equation 2.36 for the i-step-ahead prediction, so obtaining:

ŷt+i = E[ yt+i | Ft]
= ct+i +Zt+iαt+i|t, (2.39)

The prediction error for this i-step-ahead prediction is:
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êt+i = yt+i − ŷt+i
= Zt+i (αt+i − αt+i|t) + εt+i. (2.40)

Using equation 2.40, the covariance matrix of the i-step-ahead prediction error is :

V ar[ êt+i ] = V t+i = V ar( νt+i )

= Zt+iΣt+i|tZ
′

t+i + H t+i. (2.41)

From equation 2.12, we also obtain:

αt+i+1|t = dt+i + T t+iαt+i|t. (2.42)

Using equation 2.42, we obtain:

αt+i+1 − αt+i+1|t = T t+i (αt+i − αt+i|t) + Rt+i ηt+i. (2.43)

Finally, taking the covariance from equation 2.43, given Ft, we obtain:

Σt+i+1|t = T t+i Σt+i|t T
′

t+i + Rt+iQt+iR
′

t+i. (2.44)

Note that equations 2.39 and 2.44 are the iterations of the Kalman filter in the step,
t+ i, for i = 1 , 2 , . . . , h with the assumption that νt+i = 0 and Kt+i = 0.

2.4 Parameter Estimation:

We attempt to estimate the parameters of the model in equations 2.1 and 2.2 using the
Kalman filter to evaluate the log-likelihood function. The model matrices T t ,Rt , Zt ,Qt,
and H t are the functions of some parameters θ in which we want to estimate using maxi-
mum likelihood method. As we mentioned prior in this chapter all involved distributions
are either normal or multivariate normal distributions. In equations 2.15 , 2.16 and 2.17,

we show that νt is independent of Ft−1 and νt ∼ N (0,V t) = (2π)
−k
2 | V t |

−1
2 eν

′
tV
−1

t νt .
Therefore, the likelihood function is:

L(θ | y1 , y2 , · · · , yn) = f(y1 , y2 , · · · , yn | θ)

=
n∏
t=1

f(yt | Ft−1,θ)

=
n∏
t=1

f(νt | Ft−1,θ)

=
n∏
t=1

(
(2π)

−k
2 | V t |

−1
2 eν

′
tV
−1

t νt
)
. (2.45)
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Taking the logarithm of the likelihood function in equation 2.45, we derive the log-
likelihood function as follows:

lnL(θ | y1 , y2 , · · · , yn) = −kn
2

ln(2π)− 1

2

n∑
t=1

| V t | −
1

2

n∑
t=1

ν
′

tV
−1
t νt. (2.46)

As a result, the Kalman filter algorithm can be applied to recursively generate the log-
likelihood function. We illustrate the Kalman filter algorithm and estimate the parame-
ters of the simulated ARMA(2, 1) given in example 2.4.1.

Example 2.4.1. Consider the ARMA(2, 1) time series in equation 2.47. We simulate a
sample size of 1000 for the ARMA(2, 1) model using 5610 as a seed for the distribution
innovation εt. We present the ARMA(2, 1) model in the state space form applying
Harvey’s approach as explained in example 2.2.1. Finally, we fit the simulated data to
the ARMA(2, 1) model using the Kalman filter algorithm (by deploying FKF package
in R programming written by Luethi et al.) and reported the results as follows:

yt = 0.6 yt−1 − 0.2 yt−2 + εt − 0.2 εt, where εt ∼ N (0, σ2
ε = 0.8), (2.47)

Figure 2.1 shows the time plot of simulated data: Plot (a) shows the simulated series and
its corresponding filtered series derived by Kalman filter algorithm . Plot (b) checks for
linear serial dependence in the residual series through autocorrelation function (ACF).
The state space representation is given in equations 2.9 and 2.10 where the T , R and
Z are time invariant and are:

Z = ( 1 , 0) , T =

[
0.6 0
−0.2 0

]
, and R =

[
1
−0.2

]
. (2.48)

The model parameters are estimated and given in the table 2.1.

Table 2.1: Estimated parameters for 1000 sample size data generated based on the
ARMA(2, 1) model in equation 2.47 using the Kalman filter algorithm.

φ1 φ2 θ1 σε
value 0.6763 -0.2548 0.2676 0.8665
Sd.Err 0.161 0.0597 0.1647 0.0194

2.4.1 New Local Linearization Method

Estimating parameters for a SDE from discrete observations is usually a practical, cru-
cial, complicated task, and numerically unstable in many cases. Since a wide range of
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practical and flexible SDEs are nonlinear ones for which the transition densities are not
known, we are limited to using numerical or approximation methods. In some of the
dynamics, studied in this thesis, such as those given by equations 3.62, 4.59 and 5.27, we
are dealing with SDEs with nonlinear and unknown transition densities. We are, there-
fore, limited to numerical or approximation methods. Some of these methods can be
categorized by simulations based methods (Gallant and Tauchen (1996)), nonparametric
methods (Stanton (1997)), approximating the transition densities (Aı̈t-Sahalia (2002)),
and local linearization method (Ozaki (1992)). In this research, we deploy the new local
linearization method (NLLM) introduced by Shoji and Ozaki (1998) to estimate param-
eters of mentioned SDEs earlier in this section. The new local linearization method is
a pseudo-maximum likelihood estimation method for a usually nonlinear SDE with dis-
cretely observed data. The main idea behind this method is to approximate the original
nonlinear SDE by a linear diffusion process. This method is a generalized version of the
local linearization method introduced by Ozaki (1992). This method can be applied to
a one-dimensional diffusion process of the following form:

dYt = f(Yt, t,θ) dt+ g(Yt,θ) dWt, (2.49)

where
f(Yt, t,θ) is a two times continuously differentiable function with respect to Yt,
f(Yt, t,θ) and g(Yt,θ) are continuously differentiable functions with respect to t and Yt
respectively, where θ is the vector of the model parameters.

By transforming using the Lamperti transformation

(
x =

∫
1

g(y,θ)
dy

)
and applying Itô’s

lemma, Shoji and Ozaki (1998) show that this process, 2.49 can be transformed into a
more tractable diffusion process of the form as follows:

dXt = h(Xt, t,θ) dt+ σ dWt. (2.50)

Applying Itô’s lemma to the drift function h(Xt, t,θ), we derive:

dh(Xt, t,θ) =

(
∂h(Xt, t,θ)

∂t
+
σ2

2

∂2h(Xt, t,θ)

∂x2

)
dt+

∂h(Xt, t,θ)

∂x
dXt. (2.51)

Assuming ∂h(Xs,s,θ)
∂x

, ∂h(Xs,s,θ)
∂t

and ∂2h(Xs,s,θ)
∂x2 are constant, h(Xt, t,θ) can be linearized

in terms of Xt and t if t ∈ [s, s+ ∆s) and ∆s to be quite small. Therefore, we have:

h(Xt, t,θ) ' h(Xs, s,θ) +

(
∂h(Xs, s,θ)

∂t
+
σ2

2

∂2h(Xs, s,θ)

∂x2

)
(t− s)

+
∂h(Xs, s,θ)

∂x
(Xt −Xs). (2.52)
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Therefore, we have:
h(Xt, t,θ) ' LsXt +Mst+Ns, (2.53)

where Ls, Ms, and Ns are constant and equal:

Ls =
∂h(Xs, s,θ)

∂x
,

Ms =
σ2

2

∂2h(Xs, s,θ)

∂x2
+
∂h(Xs, s,θ)

∂t
,

Ns = h(Xs, s,θ) − Xs
∂h(Xs, s,θ)

∂x
− sMs.

As a result, we can consider the following bilinear SDE instead of the original nonlinear
SDE in 2.50 when t ∈ [s, s+ ∆s):

dXt = (LsXt +Mst+Ns) dt+ σ dWt. (2.54)

Let Zt = e−LstXt, and applying Itô’ lemma, it is easy to show that this SDE, 2.54 has
an explicit solution as follows:

Zt = Zs +

∫ t

s

(uMs +Ns)e
−Lsu du+ σ

∫ t

s

e−Ls udWu. (2.55)

Consequently, after discretization and simplification, we obtain:

Xt = Xs +
h(Xs, s,θ)(eLs(t−s) − 1)

Ls
+
Ms(e

Ls(t−s) − 1− Ls(t− s))
L2
s

+ σ

∫ t

s

eLs(t−u)dWu.

(2.56)
Equation 2.56 shows that the conditional distribution of Xt given Xs is normally dis-
tributed with mean and variance :

Es = E[Xt|Xs] = Xs +
h(Xs, s,θ)(eLs(t−s) − 1)

Ls

+
Ms(e

Ls(t−s) − 1− Ls(t− s))
L2
s

, (2.57)

Vs = V ar[Xt|Xs] =
σ2

2Ls
( e2Ls (t−s) − 1 ). (2.58)

We note that Shoji and Ozaki (1998) show that since the new local linearization
method considers the stochastic behavior of Xt when h(Xt, t,θ) is discretized locally, its
accuracy is higher than two other methods namely the local linearization method (Ozaki
(1992)) and the Euler method particularly when the time step size, ∆s is relatively big.
This method is also fairly simple to implement. Shoji and Ozaki (1998) also show that if
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time t approaches s, the absolute mean and square values of the one-step forecast errors
converge to zero with O((t− s)2) and O((t− s)3) respectively.

Since the distribution of Xt | Xs is approximately normal, for observations series
{x1, x2, · · · , xn}, the log-likelihood function can be obtained as follows (See Shoji and
Ozaki (1998) for more detail):

lnL(θ | x1 , x2 , · · · , xn) = −1

2

n−1∑
i=1

{
(xi+1 − Ei)2

Vi
+ ln(2ΠVi)

}
+ ln(p(x1)), (2.59)

where p(x1) is the density function of X1.

2.5 Conclusion

In time series, the Kalman filter is a well-known and powerful algorithm to estimate
parameters by using maximum-likelihood function. In this chapter, we reviewed the
concepts, implications, embedded conditions, the state space representations, and the
algorithm itself. We argue that the Kalman filter algorithm is mostly deployed in the
models that the state variables are unobservable. We also describe the new local lineariza-
tion method that can be used to calibrate parameters of a nonlinear and one-dimensional
SDE when its transition density is unique but unknown. In remaining chapters, whenever
we want to estimate a dynamics’s parameters, we deploy one of these two outstanding
methods based on characteristics of the SDE, as relevant.
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Figure 2.1: Time plot of the simulated data and fitting model to the ARMA(2, 1) model
in equation 2.47: Plot (a) shows the 1000 simulated series and its corresponding filtered
series. Plot (b) checks for linear serial correlation in the residual series through ’acf’.
Here, we use 5610 as a seed to generate this series.



Chapter 3

NEW AND EXISTING
COMMODITY PRICE MODELS

3.1 Introduction

Commodity markets are increasingly important in modern economies. Nowadays, mar-
ket participants are widely applying stochastic commodity price models. However, these
models have many features which make them difficult to analyze. Several factors make
commodity models more complicated than other assets models. As we discussed in
Chapter 1, commodity markets require us to deal with issues including many influential
fundamental prices drivers, seasonality, frequent price jumps, decentralization, low liq-
uidity, and stochastic convenience yields and interest rates. Moreover, for commodity
based assets, the main state variables such as spot price and convenience yield are unob-
servable (as only forward/futures are traded by speculators and price discovery happens
in these markets), escalating the complexity level. This is why we need the Kalman filter
algorithm. Commodities can be categorized into various classes namely agricultural, en-
ergy, precious metals, and base metals. Although each commodity has its own particular
properties, and we should consider these characteristics in our modeling, we attempt
to establish a general structure which can be applicable in the modeling of derivatives
with any kind of underlying commodities. In this Chapter we will review several popular
models. We also propose a new one-factor mean-reverting process to model a commodity
price.

We review forward and futures contracts and their differences in Section 3.2. In
Section 3.3, convenience yield, one of the important state variables in commodity mar-
kets, will be introduced. In Section 3.4, we explain a simple model to price a commodity
in which the commodity spot price is considered to follow geometric Brownian motion.
We review the one-factor mean-reverting commodity pricing model proposed by Schwartz

31
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(1997) in Section 3.5. In Section 3.6, we analyze the most popular two-factor model intro-
duced by Gibson and Schwartz (1990) to price commodity contingent claims particulary
for crude oil. Finally, in Section 3.7, a new generalized one-factor commodity pricing
model is introduced. Properties of this new dynamical model will be investigated and
it will be shown that this one-factor process is able to capture the key characteristics of
the dynamics of commodity spot-prices including mean-reversion, heavy tails, skewness
and kurtosis. The new stochastic process is a nonlinear process with a unique but un-
known transition distribution; therefore, the new local linearization method, introduced
by Shoji and Ozaki (1998), will be deployed to estimate the model’s parameters. The
new generalized one-factor model is compared with Schwartz’s one-factor dynamics by
fitting these models to the WTI crude oil’s front futures contracts. It will be argued
which process is capable to explain the reality of the commodity spot-price process more
accurately using both observed and estimated results.

3.2 Futures Contracts versus Forward contracts

As we discussed in Section 1.3, a forward contract is a non-standardized contract between
two parties to exchange an asset or a commodity at specified price at a fixed date in the
future, known as the maturity or delivery date. A futures contract is a special type of for-
ward contract with some crucial features. In futures contracts, the underlying commodity
or asset’s quantity, quality and delivery location are standardized which are not generally
the case for forward contracts. Unlike forward contracts, futures contracts are traded in
centralized exchanges. Futures contracts are marked-to-market contracts and their prices
are updated periodically (usually daily), which means that day by day, price changes are
applied to counterparties’ accounts through clearing houses of exchanges until maturity.
At maturity, the future price is simply its spot price, whereas in forward contracts, the
agreement only settles once at maturity. Therefore, futures contracts’ counterparties are
not exposed to credit risk. Although both contracts have a zero initial values, the futures
and forward contracts’ cash flows are different and in order to maintain margin, a futures
contract makes parties to deposit interim payments in their margin accounts during its
life. Two important reasons why the futures and forward prices with identical maturity
and underlying asset are not the same: include stochastic interest rates and credit risk.

3.2.1 Forward Prices

For simplicity, consider f(t, T ) to be the forward price at time t on non-dividend stock
maturing at date T . Define B(t, T ) to be the price of a risk-free zero-coupon bond at
time t with maturity T and face value $1. We also assume that there is no credit risk in
the forward market and here, we ignore transaction costs and taxes. To find the forward
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price, we deploy a no-arbitrage argument, which is based on the law of one price (if
two investment strategies have identical payoffs, their current value must be the same as
well). We construct a strategy at time t as follows:

• Short one unit of stock and receive S(t),

• Invest dollar amount of S(t) in zero-coupon bond B(t, T ),

• Long a forward contract f(t, T ) with S(t) as underlying.

As we can see, the amount of investment in this strategy is zero at time t. Since there is
no interim payment, the payoff of the strategy at maturity T will be:

• Use stock from long forward to close short,

• Your investment will grow to S(t)
B(t,T )

,

• Pay the amount of f(t, T ) in exchange for receiving one unit of stock.

Based on a no-arbitrage argument, the cost of the strategy must be zero at time T as
well; therefore, we have:

f(t, T ) =
S(t)

B(t, T )
. (3.1)

As we can see if the interest rate is the constant r and same for all maturities, the forward
price will be f(t, T ) = S(t) er(T−t). We should note that the forward price f(t, T ) at

time t is the value of a contract that pays S(T )
B(t,T )

at maturity T (Cox et al. (1981)) .

3.2.2 Futures Prices

Consider the futures price F (t, T ) at time t maturing at date T on a non-dividend paying
stock S(t). We consider that futures contracts are rolled-over daily, which means profit or
loss is credited or charged to the counterparties’ margin accounts daily. We also consider
that time interval [t, T ] is portioned daily,which means t1 = t, t2 = t+1, . . . , tn = T . Let
B(ti, ti+1) be the one-period, [ti, ti+1], zero-coupon bond price. We calculate how much
a futures contract F (t, T ) at maturity T will pay using the following strategy:

• Invest F (t, T ) amount at time t repeatedly in one-period zero-coupon bonds until
maturity time T ,

• At each time ti i = 1, 2, . . . , n− 1, buy (long) 1∏i
j=1 B(tj ,tj+1)

number of the futures

contract F (ti, T ) and liquidate (close) the position at time ti+1,
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• At time ti+1, i = 1, 2, . . . , n − 1, we will have F (ti+1,T )−F (ti,T )∏i
j=1B(tj ,tj+1)

profit or loss from

closing long position in the future contract that we bought prior day. Each time,
we invest this payoff in one-period zero-coupon bond continually until maturity T .
Final value of this investment will be:

F (ti+1, T )− F (ti, T )∏i
j=1 B(tj, tj+1)

1∏n−1
j=i+1B(tj, tj+1)

=
F (ti+1, T )− F (ti, T )∏n−1

j=1 B(tj, tj+1)
.

At maturity T , the strategy will have the following payoff:

F (t, T )∏n−1
j=1 B(tj, tj+1)

+
n−1∑
i=1

F (ti+1, T )− F (ti, T )∏n−1
j=1 B(tj, tj+1)

=

F (T, T )∏n−1
j=1 B(tj, tj+1)

=
S(T )∏n−1

j=1 B(tj, tj+1)
. (3.2)

Therefore, a long position in a futures contract F (t, T ) at time t, will generate the payoff
equal to that given by equation 3.2.
Cox et al. (1981) shows that under the risk neutral measure Q, the futures price at time
t with maturity T must be equal to F (t , T , St) = Et,Q[ST ]. We will apply this result
to derive futures prices throughout this chapter and the remaining chapters.

3.2.3 Relationship between Futures Prices and Forward Prices:

One of the crucial relationship between futures and forward prices when their underlying
and maturity time T are identical is that if risk-free interest rate is constant and equal for
all maturities, futures and forward prices are equal. We can easily see this relationship
as follows:
When interest rate is constant, all one-period zero-coupon bonds, B(ti, ti+1) for i =
1, 2, . . . , n− 1 are equal and we have:

B(t, T ) =
n−1∏
i=1

B(ti, ti+1). (3.3)

Results in equations 3.1, 3.2 and 3.3 prove this claim. In general, Cvitanic and Zapatero
(2004) show that futures and forward prices for the same maturity and underlying has
following relationship:

f(t, T, St) − F (t, T, St) =
Covt,Q[S(T ), B(0, T )]

Et,Q[B(0, T )]
. (3.4)

Clearly, this result shows that if and only if the interest rate and the underlying asset or
commodity are uncorrelated under Q measure, the futures and forward prices are equal.
This is obviously the case when the interest rate is constant.
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3.2.4 Forward Price Curve

Forward (futures) prices, bringing liquidity and considered as way of price discovery,
are the most crucial part of any risk management and derivatives pricing. The forward
price curves give the market perception of the futures prices of their underlying assets
or commodities to the markets’ participants. The forward curve for a particular under-
lying commodity or asset can be defined as a collection of existing forward prices as a
function of their maturity time. In other words, a mark-to-market forward curve demon-
strates the future prices of multiple contracts with the same underlying asset but different
maturities. Construction of forward price curves is a complicated process, because the
resulting curves must not only match the existing market prices, but also, when there
are limited available prices, the forward curve model should be the best representation
of market behavior. Pilipovic (2007) claims that in energy commodity markets, since
the correlations of interest rate and energy futures prices are close to zero and the credit
risk associated to forward prices can be resolved through collateral such as bonds, the
futures price and its corresponding forward price are approximately equal. As a result,
market participants may use futures price and forward price notions interchangeably. It
is worth mentioning that, in the case of crude oil, if the oil price increases and stays high
for a relatively long time, it will impact inflation and the short interest rate will rise as
inflation consequence so some type of structured correlation is indicated. Generally, the
construction of an appropriate forward curve is a sophisticated task and involves making
assumptions, interpreting market data, and comprehension of the market price behav-
ior. We should also associate the impact of important factors such as convenience yield,
seasonality, and arrival of highly influential news in the forward curves. Forward curves
for nonseasonal commodities such as crude oil usually have different shapes namely con-
tango, backwardation, or more complex humped shapes. If a forward curve is a increasing
(decreasing) function of expiry dates it is called contango (backwardation) respectively.
Figure 3.1 shows four different shapes of forward curves for WTI crude oil in different
times. As we can see at time 5/22/2008, the forward curve shows backwardation for the
near-portion followed by contango for the longer-term portion. Here, since WTI crude
oil is not seasonal, we build its forward curve using the gam (generalized additive models)
function in R mgcv package utilizing the smoothing B-spline option in the function. We
can also construct forward curves using a specified model for forward prices. For in-
stance, in the rest of this chapter, we explore three different models to price commodities
in which we derive their futures prices formulas. After calibrating these models, we can
easily build their theoretical forward curves.
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Figure 3.1: The observed futures prices for WTI crude oil in given dates and their
corresponding fitted forward curves using smoothing B-spline.

3.3 Convenience Yield

Convenience yield is a fundamental state variable for storable commodities such as crude
oil and its derivatives. The convenience yield is the net benefit associated with physi-
cally ownership of a commodity, rather than its futures contract, less storage costs but
excluding financing costs and it can be positive or negative. In other words, when the
commodity (energy) is scarce and demand is high, industrial consumers are willing to
pay a premium (convenience yield) to get the minimum required commodity (energy)
to run their plants delivered today to avoid losses caused by stopping their production.
Since there is a strong negative correlation between convenience yield and the level of
inventories, the correlation between spot price and convenience yield is positive. In most
commodity pricing models, the convenience yield is considered as formally equivalent
to dividends in models of dividends-paying stocks. However, the convenience yield is
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not directly observable and, must be estimated from market data based on the specified
forward (futures) pricing models. In the rest of this chapter, we estimate convenience
yield using the specified forward price model. Here, we estimate convenience yield us-
ing empirical observed futures prices F (t, Ti), i = 1, 2, . . . , n, at time t. For a storable
commodity, the forward price F (t, s) on St (t < s) can be defined as follows:

F (t, s) = St e
∫ s
t ( rv − δv ) dv. (3.5)

we solve equation 3.5 to derive δt,s as follows:

δt,s = rt,s −
∂ln(F (t, s))

∂s
. (3.6)

where rt,s is the continuously compounded short interest rate applied to the interval of
[t, s]. To calculate implied convenience yield using equation 3.6, we need the forward
curve. We fitted the forward curve with smoothing B-splines using the observed futures
prices, F (t, Ti), i = 1, 2, . . . , n, in section 3.2.4. Figure 3.2 depicts the implied conve-
nience yields derived using the futures contracts of 2 and 3 months to maturities for the
daily futures prices of WTI crude oil from January 2, 2001 to September 6, 2011. We
deploy the constructed forward curve (from section 3.2.4), the estimated yield curve, and
equation 3.6 to derive the implied convenience yield curve. Figure 3.3 demonstrates the
implied convenience yields using the derivatives of fitted forward curves which are plotted
in figure 3.1 for WTI crude oil in given dates.

It is worth mentioning that if we assume convenience yield constant in the commod-
ity contingent claims, the forward curves will be monotonic either contango or backwar-
dation and the model will fail to fully explain the reality of the forward curves which
includes more complex humped shapes. As we can see here, to estimate the implied con-
venience yield, we need at least two futures prices (ideally two consecutive prices). As we
can notice from figures 3.2, unfortunately, the implied convenience yield derived by using
2 and 3 months to maturities futures prices does not agree with the one derived by using
11 and 12 months maturities futures prices. One solution for this issue is introduced by
Schwartz (1997). He estimates convenience yield using five different futures prices for
shorter maturity contracts and longer maturity contracts separately.

3.4 Preliminary model:

In this simplest class of models, we have only one factor (state variable), commodity
price, St which is assumed to follow a stochastic process. We consider that interest rate,
r and convenience yield, δ are constant. The spot price assumed to follow geometric
Brownian motion as follows:

dSt = (µ− δ )Stdt+ σStdWt, (3.7)
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Figure 3.2: Implied convenience yields derived using the futures contracts of 2 and 3
months to maturities for the daily futures prices of WTI crude oil staring from January
2, 2001 to September 6, 2011. For simplicity, we considered the short interest rates rt
constant and equal to 0.05.

where
St is the spot price at time t,
µ is the drift of the process and constant,
σ is the volatility of the process and constant,
δ is the convenience yield,
dWt is the increment of a standard Brownian motion.

Suppose that Ft is the value of forward contract (futures contract) on St at time t with
expiry time T . By using Ito’s lemma, we have:

dFt =

[
∂Ft
∂St

(µ− δ )St +
∂Ft
∂t

+
∂2Ft

2∂St
2 σ

2 S2
t

]
dt +

∂Ft
∂St

σ St dWt. (3.8)

We construct a portfolio to eliminate the risk contribution of the Brownian motion as
follows:

• sell (short) one Ft contract ( −Ft )



3.4. Preliminary model: 39

0 5 10 15 20 25

−
0.

3
−

0.
2

−
0.

1
0.

0

Date= 1/18/2002

Months to expiry

C
on

. Y
ie

ld

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

Date= 1/6/2005

Months to expiry

C
on

. Y
ie

ld

0 10 20 30 40 50 60 70

−
0.

02
0.

00
0.

02
0.

04
0.

06

Date= 5/22/2008

Months to expiry

C
on

. Y
ie

ld

0 10 20 30 40 50 60 70

−
0.

10
−

0.
05

0.
00

Date= 9/14/2010

Months to expiry

C
on

. Y
ie

ld

Figure 3.3: The interpolated convenience yields using smoothing B-spline for WTI crude
oil in given dates, which their corresponding fitted forward curves are plotted in figure
3.1. For simplicity, in these graphs, we considered the short interest rates rt,s to be
constant and equal to 5% for all dates and maturities.

• buy (long) ∂Ft
∂St

amount of the underlying commodity, St

(
+∂Ft
∂St
St

)
Define Πt to be the value of the portfolio; as a result, we have

Πt = −Ft +
∂Ft
∂St

St, (3.9)

The change in the value of the portfolio, dΠt in the time interval dt is given by:

dΠt = −dFt +
∂Ft
∂St

dSt, (3.10)
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We substitute equations 3.7 and 3.8 into 3.10 to obtain:

dΠt = −

[
∂Ft
∂St

(µ− δ )St +
∂Ft
∂t

+
∂2Ft

2∂St
2 σ

2 S2
t

]
dt − ∂Ft

∂St
σ St dWt

+
∂Ft
∂St

[(µ− δ )Stdt+ σStdWt]

=

[
− ∂Ft

∂t
− ∂2Ft

2∂St
2 σ

2 S2
t

]
dt. (3.11)

Since equation 3.11 does not depend on dWt, the portfolio must be riskless during
dt. Because part of the return comes from holding ∂Ft

∂St
amount of the commodity, St

and this ownership of the commodity earns at the rate of the convenience yield which is
δ ∂Ft
∂St

St dt, we have:

dΠt = rΠ dtt − δ
∂Ft
∂St

St dt, (3.12)

Notice that although convenience yield is not cash but rather insurance like. Substituting
equations 3.9 and 3.11 into 3.12, we derive:[

∂Ft
∂t

+
∂2Ft

2∂St
2 σ

2 S2
t

]
dt = r [Ft −

∂Ft
∂St

St ] dt + δ
∂Ft
∂St

St dt, (3.13)

As a result, the partial differential equation satisfied by the forward contract value is:

∂Ft
∂t

+ ( r − δ)St
∂Ft
∂St

+
∂2Ft

2∂St
2 σ

2 S2
t − r Ft = 0. (3.14)

With terminal condition FT (T, T ) = ST .
From equation 3.14, we can see that St under a risk neutral measure Q has the following
dynamics:

dSt = ( r − δ )Stdt + σ St dW
Q
t , (3.15)

where dWQ
t is the increment of a standard Brownian motion under the risk neutral

measure Q. Let Xt = lnSt. By applying Ito’s lemma, we have:

dXt = ( r − δ − σ2

2
) dt + σ dWQ

t ,

or

XT = Xt + ( r − δ − σ2

2
) (T − t ) + σWQ

T−t. (3.16)
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At time t, Xt is observed. Since Xt is an affine function of the normal variable WQ
T−t

and this is independent of Ft, the conditional distribution of XT given Ft (all information
available at time t) under the risk-neutral measure Q is normal with following mean and
variance:

EQ[XT |Ft ] = Xt + ( r − δ − σ2

2
) (T − t ),

V arQ[XT |Ft ] = σ2 (T − t). (3.17)

Since Xt = lnSt, the conditional distribution of ST given Ft under the risk-neutral
measure Q is log-normal with the same parameters. So the futures price (the forward
price) equals to:

Ft = EQ[ST |Ft ] = e{EQ[XT |Ft ] + 1
2
V arQ[XT |Ft ] },

= e{Xt + ( r− δ− σ2

2
) (T−t ) + 1

2
σ2 (T−t) },

= eXt + ( r− δ ) (T−t ),

= St e
( r− δ ) (T−t ). (3.18)

We can also derive the equation 3.18 using equation 3.15. Equation 3.15 shows that
St is log-normally distributed and using the moment generating function for normal
distribution, we obtain:

ST = St e
{ ( r− δ− σ2

2
) (T−t ) +σWQ

T−t },

Ft = EQ[ST |Ft ] = St e
( r− δ ) (T−t ).

3.5 One-factor model for the commodity spot price:

Schwartz (1997) introduced a mean-reverting one-factor stochastic process for a com-
modity spot price. In this model, he attempts to consider geometric Brownian motion
for a commodity spot price, St by implementing mean-reversion which modified to the
long-term value µ of the drift. He assumed that commodity spot price follows the dy-
namics:

dSt = κ(µ− lnSt )Stdt+ σStdWt, (3.19)

where
St is the spot price at time t,
µ is the long-run mean,
σ is the volatility of the process,
κ is the rate of mean reversion,
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dWt is the increment of a standard Brownian motion.

In this model the only state variable is the spot price St, which is the key in future
prices. Let Xt denote the logarithm of the spot price St at time t (Xt = ln (St)) then we
apply Ito’s lemma on 3.19 to show that the log spot price follows an Ornstein-Uhlenbeck
process: ∂Xt

∂St
= 1

St
, ∂2Xt

∂St2
= −1

S2
t

dXt = (κ(µ−Xt )
St
St
− 1

2S2
t

σ2 S2
t ) dt + σ

St
St
dWt,

= (κ(µ−Xt ) − σ2

2
)dt + σ dWt,

= κ(µ − σ2

2κ
−Xt )dt + σ dWt,

Let: α = µ − σ2

2κ
, As a result, we have :

dXt = κ(α − Xt )dt + σ dWt. (3.20)

where
α = µ − σ2

2κ
is the long-run mean of log-price Xt.

In this model, interest rate r is considered constant and convenience yield δ is not included
in the model. Neither of these assumptions are reasonable, particularly that of the
convenience yield. Under a risk-neutral measure Q, the Ornstein-Uhlenbeck process
3.20, can be written as:

dXt = κ(α∗ − Xt ) dt + σ dW ∗
t , (3.21)

where
α∗ = α − λ,
λ denotes the market price of risk (assumed constant),
dW ∗

t denotes the increment of a standard Brownian motion under risk-neutral mea-
sure Q.

Now, let Zt = eκ tXt and apply Ito’s lemma to the equation 3.21 to obtain:

dZt = κα∗ eκ t dt + σ eκ t dW ∗
t , (3.22)

We integrate the prior equation 3.22 from t to T where T > t to obtain:

ZT = Zt + α∗ ( eκT − eκ t ) + σ

∫ T

t

eκudW ∗
u . (3.23)
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Since XT = e−κT ZT , we replace in the prior equation 3.23 to obtain:

XT = e−κ (T−t) Xt + α∗ ( 1 − e−κ (T−t) ) + σ e−κT
∫ T

t

eκudW ∗
u . (3.24)

At time t , Xt is observed and XT |Xt is normally distributed; therefore, using the
prior equation 3.24, the conditional distribution of XT given Ft under the risk-neutral
measureQ is normal with the mean and variance as follows:

EQ[XT | Ft ] = e−κ (T−t) Xt + α∗ ( 1 − e−κ (T−t) ),

V arQ[XT | Ft ] =
σ2

2κ
( 1 − e−2κ (T−t) ). (3.25)

Since Xt = ln (St), the conditional distribution of ST given Ft under the risk-neutral
measure Q is log-normal with the same parameters. Therefore, the futures price (forward
price) is:

F ( t , T ) = EQ[ST |Ft ] = e{EQ[XT |Ft ] + 1
2
V arQ[XT |Ft ] }

= e{e
−κ (T−t) lnSt +α∗ ( 1− e−κ (T−t) ) + σ2

4κ
( 1− e−2κ (T−t) ) }. (3.26)

Taking logarithms in equation 3.26, we obtain:

lnF ( t , T ) = e−κ (T−t) lnSt + α∗ ( 1 − e−κ (T−t) ) +
σ2

4κ
( 1 − e−2κ (T−t) ). (3.27)

Applying Ito’s lemma to equation 3.27, in the risk neutral measure Q confirms that
d lnF (t , T , Xt) where Xt = lnSt satisfies:

d lnF (t , T , Xt) =
∂lnF

∂t
dt+

∂lnF

∂X
dXt +

1

2

∂2lnF

∂X2
dX2

t

= −σ
2

2
e−2κ(T−t) dt + σ e−κ(T−t) dW ∗

t . (3.28)

The result in equation 3.28 shows that the variance of the log futures returns in this
model is:

σ2
lnF = σ2 e−2κ(T−t). (3.29)

Equation 3.29 shows that as the maturity approaches to infinity, the volatility of the log
returns of future price converges to zero.
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3.5.1 The model drawbacks

One of the main drawback of this model is that the term structure of future prices is not
flexible enough to capture all possible shapes in real world. To show this we take the
limit of F ( t , T ) when T approaches infinity (T → +∞) , we obtain

F ( t , +∞ ) = exp (α∗ +
σ2

4κ
). (3.30)

As we can see in the equation 3.30, F ( t , +∞ ) is independent of the spot price St. As a
result, when the spot price is greater than this infinite maturity future price this model
will be in backwardation and when the spot price is less than F ( t , +∞ ), the model
will be in contango. As a result, the term structure of future price in not flexible enough
to match the reality of the commodities’ future markets. Another issue in this model is
that uncertainty on the commodities’s derivatives can not be summarized in one factor:
(spot price) and we should consider other drivers such as convenience yield and risk-free
interest rate in the modeling ( Pilipovic (2007)).

3.5.2 Parameter Estimation:

One of the implications in commodities pricing is that the state variables (in this model,
the spot price) are not straightly observable. We can generally consider the future front
contract as an approximation to the spot price in which is extensively traded in certain
exchanges. The Kalman filter algorithm is generally deployed to estimate unobserved
state variables. As a result, we construct the state space form (the transition and mea-
surement equations) for this model as follows:

3.5.2.1 Transition Equation:

We obtain the transition equation by exact discretization of equation 3.24 for this model
in the following form:

X t+1 = dt + T tX t +Rtηt, t = 1, . . . , NT, (3.31)

where

dt = α ( 1 − e−κ∆t ), T t = e−κ∆t,

Rt = σ

√
1 − e−2κ∆t

2κ
,

(3.32)

Here ηt is serially uncorrelated Gaussian white noise with E(ηt) = 0 and V ar(ηt) = 1.
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3.5.2.2 Measurement Equation:

The future prices in commodity market can be noisy. Consequently, the measurement
equation can be obtained using equation 3.27 plus Gaussian white noise as follows:

yt = ct +ZtX t + εt, t = 1, . . . , NT, (3.33)

where

yt is an N × 1 vector of observations, and ct &Zt areN × 1 vectors,

yt =
[

lnF (t , Ti )
]
, i = 1, . . . , N,

ct =

[
α∗ ( 1 − e−κ (Ti−t) ) +

σ2

4κ
( 1 − e−2κ (Ti−t) )

]
, i = 1, . . . , N,

Zt =
[
e−κ (Ti−t)

]
, i = 1, . . . , N,

(3.34)

Here εt is serially uncorrelated Gaussian white noise with E(εt) = 0 and V ar(εt) = H .
We will use these equations in 3.5.3 below when we estimate parameters.

3.5.3 Empirical Results

One of the most important energy assets for the world’s economy is crude oil. Recently,
there has been wide interest in trading of financial derivatives such as futures and options
on futures with oil as their underlying asset. We consider the daily observations of WTI
crude oil futures prices from January 2, 2001 to September 6, 2011. The dataset we used
is from the Chicago Mercantile Exchange (CME). We use this daily empirical data to
estimate the model’s parameters. We used futures contracts of 1,2,3,4 and 5 month to
maturity. Table 3.1 summarizes the calibration results for one-factor commodity pricing
model. Figure 3.4, plot (a) depicts the comparison between the filtered spot price and
the front contract futures prices realizations and plot (b) demonstrates the prediction
errors corresponding to the first and the second futures contracts. Here, in order to
decrease the number of parameters to estimate, we assume the variance of the futures
contracts’ disturbances (measurement errors) with all maturities to be identical which
means H = ζ2IN . Notice that when we estimate parameters in the one and two factor
commodity pricing models, we may sometimes confront multiple local maxima resulting
in inaccurate and nonsensical estimation. Therefore, we need to check parameters esti-
mation results using different initial values and holding some parameters constant until
we reach a confidence level (based on personal experience and heuristical optimization)
that the estimation results are both logically and statistically reasonable. Notice that
the estimation standard error of λ in table 3.1 is relatively high. This occurs because
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of the term α∗ = α − λ = µ − σ2

2κ
− λ in the measurement equation 3.33 generating

alternative optimal solutions for the MLE function of the model.

Table 3.1: Estimated parameters for one-factor model using the futures contracts of
1,2,3,4 and 5 months to maturities (the daily prices of WTI crude oil stating from January
2, 2001 to September 6, 2011).

µ σ κ λ ζ
value 4.543 0.3018 0.28 0.4876 0.0341
Sd.Err 0.3309 0.0064 0.00 0.3311 0.0022
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Figure 3.4: Time plot of the daily front futures prices for WTI crude oil from January 2,
2001 to September 6, 2011 using one-factor method: Plot (a) shows the estimated state
variable (filtered spot price) and the front contract futures prices. Plot (b) shows the
daily futures prediction errors corresponding to front and second futures contracts (the
futures contracts of 1,2,3,4 and 5 month maturities are used in the estimation).
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3.6 Two-Factor model for Commodity Prices:

Many empirical and theoretical studies including Gibson and Schwartz (1990) show that
the convenience yield plays an important role in connecting futures prices to spot prices.
Also Carmona and Ludkovski (2004) show that forward curves for commodities such
as crude oil have backwardation, contango or more complex shapes over time which
conflicts with the assumption of constant convenience yield. Gibson and Schwartz (1990)
introduced a two-factor model to price commodity (specifically crude oil) contingent
claims. In this model, two state variables are the commodity spot price St which follows
a geometric Brownian motion with a stochastic drift and the instantaneous convenience
yield denoted by δt. δt is commonly used in commodities pricing and assumed to follow
a mean-reverting Vasicek process. Since this model has two factors, the model is flexible
and can explain the reality of commodities forward curves and volatility structures in
comparison to a one-factor model. The joint stochastic process of this model is specified
as:

dSt = (µ − δt)St dt + σ1 St dW1t, (3.35)

dδt = κ (α− δt) dt + σ2 dW2t. (3.36)

where
the standard Brownian motion increments dW1t and dW2t are correlated with:

dW1t dW2t = ρ dt,

µ is the spot price drift,
σ1 and σ2 are the volatility of spot price and convenience yield respectively,
κ > 0 is the mean-reverting rate of convenience yield,
α is the long-run mean level of convenience yield.

In this model, it can be observed that if convenience yield is considered as a determin-
istic function of spot price St: δ(St) = κ lnSt instead of stochastic process, this model
reduces to the one-factor model explained in section 3.5. Since convenience yield is the
positive gain of holding a storable commodity minus its storage cost, it can take either
negative or positive values. The dynamics of convenience yield in equation 3.36 can allow
convenience yield be negative. From equation 3.35, we can observe that this model con-
siders commodity’s spot price like an asset with stochastic dividend yield δt. The joint
dynamics of this model under a risk-neutral measure Q is specified as:

dSt = ( r − δt)St dt + σ1 St dW
∗
1t, (3.37)

dδt = [κ (α− δt)− λ] dt + σ2 dW
∗
2t, (3.38)

dW ∗
1t dW

∗
2t = ρ dt.
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where λ is the market price of risk (assumed constant) associated with convenience yield
δt, r is risk free interest rate which is assumed constant, and dW ∗

1t and dW ∗
2t are the

standard Brownian motion increments under the equivalent risk-neutral measure Q.
Let Xt = lnSt and let Yt = eκtδt. By applying Itô’s lemma to equations 3.37 and 3.38,
we derive the solution for the joint stochastic differential equation 3.37, 3.38 for any
s (0 < t ≤ s) as follows:

Xs = Xt + ( r − σ2
1

2
) (s− t) −

∫ s

t

δudu + σ1

∫ s

t

dW ∗
1u, (3.39)

δs = e−κ (s−t) δt + α̂( 1 − e−κ (s−t) ) + σ2 e
−κ s

∫ s

t

eκ vdW ∗
2v. (3.40)

where (α̂ = α− λ
κ
),

To explicitly evaluate the integral
∫ s
t
δudu , we plug equation 3.40 into δu, so we obtain:∫ s

t

δudu =

∫ s

t

e−κ(u−t)δtdu+

∫ s

t

α̂(1− e−κ(u−t)) du+ σ2

∫ s

t

e−κu
∫ u

t

eκvdW ∗
2vdu.(3.41)

By changing the order of integration in
∫ s
t
e−κu

∫ u
t
eκvdW ∗

2vdu, we obtain:∫ s

t

δudu =
δt
κ

(1− e−κ(s−t)) + α̂(s− t)− α̂

κ
(1− e−κ(s−t))

+
σ2

κ

∫ s

t

(
1− e−κ(s−v)

)
dW ∗

2v. (3.42)

therefore, we substitute equation 3.42 into equation 3.39 to solve the joint stochastic
process in equations 3.37 and 3.38 as follows:

Xs = Xt + ( r − α̂ − σ2
1

2
) (s− t) +

α̂− δt
κ

(1− e−κ(s−t))

−σ2

κ

∫ s

t

(
1− e−κ(s−v)

)
dW ∗

2v + σ1

∫ s

t

dW ∗
1u, (3.43)

δs = e−κ (s−t) δt + α̂( 1 − e−κ (s−t) ) + σ2 e
−κ s

∫ s

t

eκ vdW ∗
2v. (3.44)

Notice that to derive the solution for the joint stochastic process in equations 3.35 and
3.36, we can exchange r with µ and α̂ with α in equations 3.43 and 3.44.
Equations 3.43 and 3.44 show that the joint distribution of Xs and δs is bivariate normal



3.6. Two-Factor model for Commodity Prices: 50

distribution where their expectations are:

EQ[Xs | Xt, δt ] = µX = Xt + ( r − α̂ − σ2
1

2
) (s− t)

− 1− e−κ(s−t)

κ
δt +

α̂

κ
(1− e−κ(s−t)), (3.45)

EQ[ δs | δt ] = µδ = e−κ (s−t) δt + α∗ ( 1 − e−κ (s−t) ), (3.46)

We deploy Ito’s isometry in stochastic integrals to calculate variances and covariance of
Xs and δs as follows:

V arQ[Xs | Xt, δt ] = σ2
X =

σ2
2

κ2
EQ

[(∫ s

t

(
1− e−κ(s−u)

)
dW ∗

2u

)2
]

− 2σ1σ2

κ
EQ

[∫ s

t

(
1− e−κ(s−u)

)
dW ∗

2u

∫ s

t

dW ∗
1u

]
+σ2

1 EQ

[(∫ s

t

dW ∗
1u

)2
]

=
σ2

2

κ2

{
(s− t)− 2

κ
(1− e−κ(s−t)) +

1

2κ
(1− e−2κ(s−t))

}
−2σ1σ2ρ

κ

{
(s− t)− 1

κ
(1− e−κ(s−t))

}
+ σ2

1 (s− t). (3.47)

V arQ[ δs | δt ] = σ2
δ =

σ2
2

2κ
( 1 − e−2κ (s−t) ), (3.48)

CovQ[ (Xs, δs) | (Xt, δt) ] = σXδ =
σ2

2

2κ2

(
1− e−2κ(s−t)

)
+

1

κ

(
σ1σ2ρ−

σ2
2

κ

)(
1− e−κ(s−t)

)
. (3.49)

3.6.1 The Futures Price for Two-Factor Model:

In section 3.5, we explained that under a risk neutral measure Q, the futures price
at time t with maturity T must be equal to F (t , T , St, δt) = EQ[ST | Xt, δt ]. Since
XT = ln (ST ), the conditional distribution of ST given St , δt under the risk-neutral mea-
sure Q is log-normal with the same parameters. Therefore, we use equations 3.45 and
3.47 to derive futures price, as follows:



3.6. Two-Factor model for Commodity Prices: 51

F (t , T , St, δt) = EQ[ST | St, δt ] = exp

{
µX +

1

2
σ2
X

}

= St exp

{
− 1− e−κ(T−t)

κ
δt + A(T, t)

}
, (3.50)

where

A(T, t) =

{
r − α̂ +

σ2
2

2κ2
− σ1σ2ρ

κ

}
(T − t) +

σ2
2(1− e−2κ(T−t))

4κ3

+

{
α̂κ + σ1σ2ρ −

σ2
2

κ

}
1− e−κ(T−t)

κ2
. (3.51)

We take logarithms in equation 3.50, and we obtain:

lnF (t , T , St, δt) = lnSt −
1− e−κ(T−t)

κ
δt + A(T, t). (3.52)

We apply Ito’s lemma to equation 3.52, in the risk neutral measure Q, and we see that
d lnF (t , T , Xt, δt) where Xt = lnSt satisfies:

d lnF (t , T , Xt, δt) =
∂lnF

∂t
dt+

∂lnF

∂X
dXt +

∂lnF

∂δ
dδt

+
1

2

∂2lnF

∂X2
dX2

t +
∂2lnF

∂X∂δ
dXt dδt +

1

2

∂2lnF

∂δ2
dδ2

t

=

{
−σ

2
1

2
− σ2

2

2κ2
+
σ1σ2ρ

κ

}
dt− σ2

2

2κ2
e−2κ(T−t) dt

+

{
σ2

2

κ
− σ1σ2ρ

}
e−κ(T−t)

κ
dt

+σ1 dW ∗
1t −

1− e−κ(T−t)

κ
dW ∗

2t. (3.53)

The result in equation 3.53 shows that in this model, the volatility of the log futures
returns is given by:

σ2
lnF = σ2

1 +
σ2

2

κ2

(
1− e−κ(T−t)

)2

− 2σ1σ2ρ

(
1− e−κ(T−t)

)
κ

. (3.54)
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In equation 3.54 when the maturity approaches to infinity, the volatility converges to
constant value as follows:

lim
T→∞

σ2
lnF = σ2

1 +
σ2

2

κ2
− 2σ1σ2ρ

κ
. (3.55)

3.6.2 Parameter Estimation:

Both state variables spot price St and convenience yield δt are unobserved; therefore, we
deploy the Kalman filter algorithm to calibrate this two-factor model. We construct the
transition and observation equations for this model as follows:

3.6.2.1 Transition Equation:

We derive the exact transition equation by discretizing equations 3.43 and 3.44 in which
we replace r with µ and α̂ with α in the following format:

[X t+1, δt+1]
′
= dt + T t [X t, δt]

′
+ ηt, t = 1, . . . , NT, (3.56)

where

dt =

(µ − α − σ2
1

2
) ∆t + α

κ
(1− e−κ∆t)

α(1− e−κ∆t)

 ,

T t =

1 e−κ∆t− 1
κ

0 e−κ∆t

 .
(3.57)

Here ηt is serially uncorrelated Gaussian white noise with:

E(ηt) = 0 and V ar(ηt) =

 σ2
X σXδ

σXδ σ2
δ

 ,
(3.58)
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with

σ2
X =

σ2
2

κ2

{
∆t− 2

κ
(1− e−κ∆t) +

1

2κ
(1− e−2κ∆t)

}
−2σ1σ2ρ

κ

{
∆t− 1

κ
(1− e−κ∆t)

}
+ σ2

1 ∆t,

σ2
δ =

σ2
2

2κ
( 1 − e−2κ∆t),

σXδ =
σ2

2

2κ2

(
1− e−2κ∆t

)
+

1

κ

(
σ1σ2ρ−

σ2
2

κ

)(
1− e−κ∆t

)
.

(3.59)

3.6.2.2 Measurement Equation:

We derive the measurement equation be using equation 3.52 and adding Gaussian white
noise as follows:

yt = ct +Zt [X t, δt]
′
+ εt t = 1, . . . , NT, (3.60)

where

yt is an N × 1 vector of observations, ct is N × 1 vector andZt isN × 2 matrix,

yt =
[

lnF (t , Ti )
]
, i = 1, . . . , N,

ct =
[
A(Ti, t)

]
, i = 1, . . . , N,

Zt =

[
1 ,

e−κ(Ti−t) − 1

κ

]
, i = 1, . . . , N. (3.61)

where A(Ti, t) is given in equation 3.51 and εt is serially uncorrelated Gaussian white
noise with E(εt) = 0 and V ar(εt) = H . Since the number of parameters to estimate
is quite large, we consider the variance of the future disturbances with all maturities to
be identical which means H = ζ2IN .

3.6.3 Empirical Results

We consider the daily observations of WTI crude oil futures prices from January 2, 2001
to September 6, 2011. We use this daily empirical data to estimate this two-factor model’s
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parameters. We use future contracts with 1,2,3,4 and 5 months maturities. Table 3.2
summarizes the calibration results for this two-factor commodity pricing model. Figure
3.5, plot (a) depicts the comparison between the filtered spot price and the front contract
futures prices realizations and plot (b) demonstrates the estimated filtered convenience
yield in this model. As we can notice from figure 3.2, implied convenience yield derived
using 2 and 3 months to maturity, and figure 3.5, estimated convenience yield using two
factor model, are relatively close.

Table 3.2: Estimated parameters for this two-factor model using the futures contracts
of 1,2,3,4 and 5 months to maturities (the daily prices of WTI crude oil staring from
January 2, 2001 to September 6, 2011).

µ σ1 κ α σ2 ρ λ ζ
value 0.2040 0.2911 1.5087 0.0272 0.3096 0.7606 0.00 0.08
Sd.Err 0.0706 0.0393 0.2141 0.0352 0.1708 0.5423 0.00 0.00

Schwartz (1997) proposes a three-factor model for commodity derivatives. In this
model, three state variables are the commodity spot price st, the instantaneous conve-
nience yield δt and the interest rate rt. Schwartz (1997) adds a third interest rate factor
into the two-factor model, explained in this section, and the assumed interest rate fol-
lows a simple Vasicek mean-reverting process. Since the volatility of convenience yield
dominates the volatility of risk-free interest rate (has higher order of magnitude volatil-
ity), considering interest rate as third factor (stochastic), will not significantly improve
the model accuracy as shown by Carmona and Ludkovski (2004). Beside in the futures
(forward) price models, what matters most is the interest rate and convenience yield
difference. Therefore, by fixing the interest rate (constant), all volatility of interest rates
will be captured by stochastic process of convenience yield.
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Figure 3.5: Time plot of the daily front futures prices for WTI crude oil from January
2, 2001 to September 6, 2011: Plot (a) shows the estimated filtered spot prices and the
front contract futures prices derived by two-factor model. Plot (b) shows the estimated
filtered convenience yield derived by two-factor model (the futures contracts of 1,2,3,4
and 5 month maturities are used in the estimation).
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3.7 Generalized One-factor model for the commod-

ity spot pricing

The mean-reverting property of commodity prices has been taken into account in several
studies including Gibson and Schwartz (1990), Bessembinder et al. (1995) and Schwartz
(1997). Schwartz (1997), reviewed in section 3.5, considered a one-factor mean-reverting
model in which log-price follows a Vasicek process. The model has some disadvantages
including an inability to fully explain either the reality of futures prices term structure
and the high volatility of commodity prices, caused by remarkable uncertainty in the
commodity markets. Here, we introduce a one-factor model that not only can capture
the mean reverting nature of commodity prices but also can capture the undeniable high
volatility of a commodity spot price by deploying a nonlinear drift term in the process.
In this model, we assume that a commodity spot price, St, the only state variable, follows
the dynamics:

dSt = κ

(
µ− (lnSt − θ)√

(lnSt − θ)2 + 1

)
Stdt+ σStdWt, (3.62)

where
St is the spot price at time t,
µ is a real number and −1 < µ < 1,
θ is a real number, σ is the volatility of the process,
κ is the speed of mean reversion,
dWt is the increment of a standard Brownian motion.

Notice that the condition −1 < µ < 1 guarantees the log-price series to be a mean-
reverting process. θ gives the model freedom to explore log-run mean for the log-process.
Consider Xt as the logarithm of the spot price St at time t (Xt = ln (St)). Applying
Ito’s lemma on 3.62, the log spot price follows the stochastic process:

dXt = κ

(
α− (Xt − θ)√

(Xt − θ)2 + 1

)
dt+ σdWt, (3.63)

where α = µ − σ2

2κ
.

To simplify the model, the interest rate is assumed to be constant. Although convenience
yield plays important role in commodity pricing models, the modeling of convenience yield
dynamics is not an intention of this model. This model under a risk-neutral measure Q
can be expressed as follows:

dXt = κ

(
α∗ − (Xt − θ)√

(Xt − θ)2 + 1

)
dt+ σdW ∗

t , (3.64)
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where α∗ = α− λ (λ is the market price of risk and assumed to be constant), and dW ∗
t

denotes the increment of a standard Brownian motion under risk-neutral measure Q.

The volatility of the WTI crude oil price is very high, so the constant assumption of
log-price in Schwartz (1997)’s one-factor is not quite appropriate. In this new model,
although the diffusion term for log-price is still assumed to be constant, the model can
not only capture the potential mean-reverting characteristics of the log-price evolution
but it can also capture high volatility of the log-price of a commodity using its nonlinear
drift term. Since Schwartz (1997)’s one-factor model assumed the commodity spot price
transition density follows geometric Brownian motion, the model is incapable of captur-
ing left skewness and it cannot also capture skewness in the log-price series. This new
model, however, can capture this phenomena when the transition density is skewed to
the left and it can also capture right skewness of log-price dynamics. To demonstrate
this prominent property and compare with Schwartz (1997)’s model process, we simulate
10, 000 paths for both processes for five years and plot empirical densities depicted in fig-
ure 3.6. The plot 3.6 evidently shows that the empirical log simulated transition density
for the new model is skewed to the left whereas the empirical log simulated transition
density for the other model is symmetric. When µ is negative, the log-process in the new
model is skewed to the left and vice versa.

3.7.1 The Stationary Solution

To show that a SDE has mean-reverting feature, we show that it has a stationary distri-
bution ( A SDE such as 3.63 has a stationary distribution if a unique solution, denoted
by Pst(x), exists such that Pst(x) = limt→+∞ P (x , t) where P (x , t) is the transition
distribution). Here, we derive the stationary distribution for the new process’s log-spot
SDE given in equation 3.63 as follows:

Pst(x) =
e−

2κ(
√

(x−θ)2+1−µx)
σ2

c
, (3.65)

where c is the normalization factor and equals to:

c =

∫ ∞
−∞

e−
2κ(
√

(x−θ)2+1−µx)
σ2 dx. (3.66)

We could not solve this integral 3.66 analytically; however, we can simply use numerical
methods to calculate c.
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Figure 3.6: The plot depicts comparison between empirical transition densities for log-
processes in the new model and Schwartz (1997)’s models after five years using 10, 000
simulated paths. Here it is assumed κ = 3.2, µ = −0.86, σ = 0.3, and θ = 6 for this new
process 3.62 and we also assumed κ = 0.27, µ = 4.62, σ = 0.3 for the Schwartz (1997)’s
process 3.19. For both models, ∆t = 1

252
, and T = 5 are assumed using identical random

generated numbers.

3.7.2 Approximation of Transition Density

It can be shown that this new nonlinear SDE 3.62 has a unique transition distribution;
however, all attempts to solve the SDE analytically failed. As a result, we deploy a
numerical method to approximate the transition density. Moreover, we apply the new
local linearization method (NLLM) developed by Shoji and Ozaki (1998) to estimate the
model parameters. Since the method considers the stochastic behavior of the SDE’s drift
and diffusion terms in its approximation, the method has a high degree of accuracy. As
reviewed in chapter 2.4.1, the nonlinear SDE is required to be in general form 2.49 with
given conditions. Then the general stochastic process must to be transformed to a more
tractable form as follows;

dXt = h(Xt, t,θ) dt+ σ dWt. (3.67)
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We derive this form 3.67 for our new dynamics 3.62 and give in equation 3.63. The

log-price process’s drift h(x, t,θ) = κ

(
α− (x−θ)√

(x−θ)2+1

)
has all conditions required for

this approximation method. When t ∈ [s, s + ∆s) and ∆s is a small number, the SDE
3.67 can be linearized in the form as follows:

dXt = (LsXt +Mst+Ns) dt+ σ dWt, (3.68)

where Ls, Ms, and Ns are constant and equal:

Ls =
∂h(Xs, s,θ)

∂x
,

Ms =
σ2

2

∂2h(Xs, s,θ)

∂x2
+
∂h(Xs, s,θ)

∂t
,

Ns = h(Xs, s,θ) − Xs
∂h(Xs, s,θ)

∂x
− sMs.

Here, the first derivatives with respect to x and t and second derivatives with respect to
x of h(x, t,θ) are derived as follows:

∂h(Xs, s,θ)

∂x
=

−κ(
(Xs − θ)2 + 1

) 3
2

,

∂h(Xs, s,θ)

∂t
= 0,

∂2h(Xs, s,θ)

∂x2
=

3κ(Xs − θ)(
(Xs − θ)2 + 1

) 5
2

.

The dynamics 3.68 is in an Ornstein-Uhlenbeck stochastic process and using Itô’ lemma,
it can be easily shown that this SDE has an explicit solution as follows:

Xt = Xs +
h(Xs, s,θ)(eLs(t−s) − 1)

Ls
+
Ms(e

Ls(t−s) − 1− Ls(t− s))
L2
s

+ σ

∫ t

s

eLs(t−u)dWu.

(3.69)
Equation 3.69 shows that the conditional distribution of XT given Xs (s < T ) is approx-
imately normally distributed with mean and variance as follows:

E(T, s) = E[XT |Xs] = Xs +
h(Xs, s,θ)(eLs(T−s) − 1)

Ls

+
Ms(e

Ls(T−s) − 1− Ls(t− s))
L2
s

, (3.70)

V (T, s) = V ar[XT |Xs] =
σ2

2Ls
( e2Ls (T−s) − 1 ). (3.71)
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Notice that if we replace α by α∗ in all involved terms in equations 3.70 and 3.71, we will
derive the equivalent expected value and the equivalent variance under the risk-neutral
measure Q.

3.7.3 The Futures Price for Generalized One-Factor Model:

Since the transition density for this new model is unknown, the futures price is approx-
imated. The conditional distribution of ST given St under the risk-neutral measure Q
or real measure is approximated by log-normal distribution with the parameters given in
equations 3.70 and 3.71. Therefore, the close approximation for futures price in this new
model equals to:

F ( t , T ) = EQ[ST |Ft ] = e{EQ[XT |Ft ] + 1
2
V arQ[XT |Ft ] }

= eE(T,t) + 1
2
V (T,t). (3.72)

where α is substituted by α∗ in all involved terms in equations 3.70 and 3.71.
By taking logarithm in equation 3.72, we derive:

lnF ( t , T ) = E(T, t) +
1

2
V (T, t). (3.73)

3.7.4 Parameter Estimation

Since the futures front contracts is extensively traded in certain exchanges, it is consid-
ered as proxy to the spot prices . The Kalman filter algorithm is mostly deployed to
estimate unobserved state variable (here the spot prices). However, since transition and
measurement equations that can be derived for this method are not linear, the linear
Kalman filter algorithm cannot be applied to estimate the model’s parameters. Instead,
we apply the NLLM, explained in 3.7.2 algorithm to the front contracts as for this new
model. To compare the new one-factor model and Schwartz’s one-factor model, we also
apply the NLLM to the same observations. It worth mentioning that the NLLM algo-
rithm will generate exact maximum likelihood function for Schwartz’s one-factor model.
This is because the Schwartz’s one-factor model is a linear stochastic process.

3.7.5 Empirical Results

Here, the front month futures prices are used as close approximation to the spot prices
for WTI crude oil. The daily observations of WTI for front futures prices from October
1, 2004 to December 31, 2014, illustrated in left plot of figure 3.7, is chosen to study. For
highlighting the difference between these two model more clearly, it can be seen that the
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dataset used here is different form the one is used in the earlier sections. The right plot
in figure 3.7 demonstrates the empirical density in this observed dataset. The empirical
density of log-spot price clearly shows that the density is left skewed and leptokurtotic.
Comparison between the Schwartz’s one-factor model and this new generalized one-factor
model is our purpose in this section. As it is shown in section 3.5, the transition density
of the commodity spot price in Schwartz’s one-factor model is log-normally distributed.
The Schwartz’s model, therefore, cannot capture the left skewness and excess kurtosis
in the observed density of log-spot prices, shown in figure 3.7. Our model will cap-
ture these lacking important properties of real data. To calibrate the parameters of the
Schwartz’s one-factor model and this generalized one-factor model, the new local lin-
earization method, reviewed in section 3.7.2, is deployed. The estimation results fitted to
the observed dataset in both two models: Schwartz one-factor and the new generalized
one-factor are summarized in table 3.3. In both models, κ is the mean-reverting speed
and positive but κ of model is bigger than Schwartz’s model κ due to different approach
to capture mean-reversion. In this new model, µ is the skewness parameter whereas in
Schwartz’s model, µ is the long-run mean, so it is expected to be different. The estimated
diffusion terms in both models σ are relatively close.
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Figure 3.7: Left plot show time plot of the daily front futures prices for WTI crude oil
from October 1, 2004 to December 31, 2014 (price in $/barrel). Right plot depicts the
empirical density of the logarithm of the same dataset, given in the left plot.
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Table 3.3: Estimated parameters for these two processes namely the new generalized one-
factor and Schwartz one-factor models based on the observed daily WTI front futures
prices from October 1, 2004 to December 31, 2014.

Model κ µ σ θ -2 logl1 AIC2 BIC3

The New Process 3.182 -0.738 0.335 5.50 -12037.2 -12031.2 -12021.5
Schwartz Process 1.117 4.364 0.392 - -11701.2 -11695.2 -11685.5
Note: 1-Log-likelihood, 2-Akaike information criterion, 2- Bayesian information criterion.

3.7.6 Goodness of Fit

Which of these two models namely the generalized one-factor model and Schwartz’s one-
factor model can describe the reality of the commodity pricing dynamics more clearly?
This is the question of this section. The calibration results as well as the tests results
for goodness of fit are given in table 3.3 for the observed daily WTI front futures prices
from October 1, 2004 to December 31, 2014. Both AIC and BIC values assure that this
generalized one-factor model entirely dominate Schwartz’s one-factor model. Figure 3.8
illustrates the comparison between the empirical density for logarithm of the observed
daily front futures prices of WTI with the fitted stationary distributions for both models
derived using estimation results summarized in table 3.3. The plot depicts the superiority
of the new one-factor model. It also shows that the new model is capable of capturing
the most crucial properties of a commodity log-price dynamics such as skewness, heavy
tails and kurtosis.

3.8 Conclusion

Pricing derivatives on commodities mainly rely on the assumed commodity pricing mod-
els. In this chapter, we first reviewed three important concepts in commodity markets
namely forward contract, futures contract, and convenience yield. We then described
three commodity pricing models namely preliminary, Schwartz (1997)’ one-factor and
Gibson and Schwartz (1990)’ two-factor models in detail. In these models, we also de-
rived futures and forward prices. This two-factor model is one of the most commonly
applied for pricing by market participants. Later, we proposed a new generalized one-
factor mean-reverting dynamics to model a commodity spot-price process. Since the
new process has nonlinear dynamics with unknown transition density, the new local lin-
earization algorithm was applied to estimate the model parameters. We argued that
the new generalized SDE posses some key characteristics to capture the most essential
properties including skewness, heavy tails and excess kurtosis, observed in a commodity
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Figure 3.8: The plot shows comparison between the empirical density for the logarithm
of observed daily WTI front futures prices staring from October 1, 2004 to December
31, 2014 with the fitted stationary distributions of these two models namely Schwartz
one-factor and the new generalized one-factor for log-spot prices. The fitted parameters
are summarized in table 3.3.

spot-price evolution. The new one-factor and Schwartz one-factor models were compared
by fitting both models to daily front futures prices of WTI crude oil from October 1,
2004 to December 31, 2014. The calibration results confirmed the superiority of the new
SDE. In chapters 4 and 6, we will directly or indirectly deploy these concepts and models
in the spread models or trading strategies for the spread models with commodities as
underlying.



Chapter 4

MODELING PRICES OF
SPREADS

4.1 Introduction

Pairs trading is a “market neutral” trading strategy employed with the goal of making
profit no matter whether the market has an upward or a downward trend. A mar-
ket neutral strategy is a strategy the return of which is uncorrelated to the broader
market return. Ideally, market neutral strategies also have a low volatility. Its return
risk also remains largely unaffected by the market risk (see Vidyamurthy (2004)). The
specific market neutral strategy of pairs trading is practiced by many hedge funds and
money institutions. It was first introduced by Gerry Bamberger and later led by Nun-
zio Tartaglia of Morgan Stanley’s quantitative department in the 1980s (Latte (2011)).
Pairs trading, which is also called spread trading, has several categorizes namely statisti-
cal arbitrage/relative value trading and risk arbitrage/merger arbitrage. Relative pricing
is the fundamental base for the statistical arbitrage pairs trading and risk arbitrage pairs
trading can be applied in a merger agreement between two companies. Merger agreement
has two main types: a cash merger, and a stock merger. In a cash merger agreement, the
acquiring company offers to buy shares of the target company for an agreed cash price.
Since there is uncertainty that the acquisition does not complete on time or the deal
does not close at all, the target company’s shares typically trade lower than expected
value in which arbitragers step into buying target company’s shares and simultaneously
selling acquire company’s shares. In a stock merger, the merger agreement imposes rigid
parity relationship between underlying companies’s stocks prices where the traders can
take advantage and trigger their trades upon the specified parity relationship. In this
study, we focus on statistical arbitrage. It is worth mentioning that despite the apparent
contrast with risk arbitrage, a statistical arbitrage strategy is not a risk free strategy at
all. In the equity markets, pairs trading is a investment strategy in which a portfolio is

64
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simply two stocks with similar characteristics (for instance in the same market sector)
that are out of their historical equilibrium level or long-run mean. The portfolio involves
a long position (buy) in the underpriced stock, a short position (sell) in the overpriced
stock with a predetermined ratio to maintain market neutrality. The overpriced stock
and the underpriced stock are chosen based on relative pricing and do not depend on
the actual prices of individual securities. Pairs trading can be deployed in commodity
markets too. The price spread between gasoline and crude oil, called the crack spread
and the location (geographical) spread of West Texas Intermediate (WTI) crude oil and
Brent oil spot prices (front contracts) are two examples in this regard. The pairs in this
strategy are selected based on historical long-term relationship between the underlying
assets. Therefore, the spread process can be modeled as a mean-reverting dynamic pro-
cess. Selecting trading pairs is a crucial and essential part of the strategy. Formerly, the
pairs were chosen based on non-parametric methods or correlation. However, it is easy
to show that these methods are no longer valid without careful investigating and testing
data to see whether there is solid evidence to back up the long-run relationship both
economically and statistically. Instead, the pairs should be chosen based on long-run
relationship of underlying pairs known as mean-reversion. In other words, the trading
pairs will be chosen if the pairs are cointegrated or a linear combination of price pro-
cesses of underlying assets or commodities is a stationary process. When the spread is
considerably away from its long-term equilibrium level, the strategy suggests taking a
short position in the overvalued member of pair and long position in the undervalued
pair simultaneously based on hedging ratio (linear combination). We expect that the
deviation from the equilibrium level is temporary and the spread eventually reverts back
to its long-run mean when the portfolio is in the money and profit can be realized by
closing both positions.

This chapter is organized as follows: In section 4.2 we introduce cointegration and its
application in pairs trading. Elliott et al. (2005) introduced a one factor mean-reverting
Vasicek process to model the spread process that we review in section 4.3. In section 4.4,
we review the two factor model proposed by Dempster et al. (2008) to model the spot
spread process in energy markets to evaluate spread options. As we explained in chapter
3 , the spot prices for commodities such as crude and Brent oils are unobservable; as a
result, we cannot use the two underlying commodities to test mean-reversion and find
an appropriate hedging ratio for the commodities pairs. Instead, we can use the pair’s
future prices to model the spread process. In section 4.5, we apply these three models
to our real empirical sample data and compare the results. Later, we analyze the recent
behavioral change in the location spread between WTI crude oil and Brent oil. Finally,
in sections 4.7, since highly important news can generate a shock in a spread process,
we propose to implement a jump, which is compound Poisson process, in the one-factor
and two-factor spread models introduced in sections 4.3 and 4.4 respectively. In these
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models, jump sizes follow the double exponential distribution introduced by Kou (2002).
Finally, in section 4.8, a new one-factor mean-reverting process is proposed to explain
not only the mean-reverting property of the spread process, but also the skewness and
the kurtosis characteristics of a spread process. The transition density of this nonlinear
mean-reverting stochastic process is unknown so the new local linearization method,
proposed by Shoji and Ozaki (1998) is used to estimate the model’s parameters. Since
the spread between WTI crude oil and Brent oil has recently experienced a structural
break due to fundamental reasons, we deploy Regime-Switching Models (RSM) in this
generalized one-factor mean-reverting dynamics to capture this phenomena in the spread
process.

4.2 Cointegration Approach:

In recent times, much research has focused on the efficient markets hypothesis. The
hypothesis argues that all existent information in the markets and economic realities
have been incorporated into the asset prices ( Serletis (2007)). In other words, the price
changes are random and there is no arbitrage opportunity. In finance, an asset log re-
turn time series is commonly assumed to be weakly stationary or covariance stationary ;
however, asset price series, interest rates, or foreign exchange rates tend to be non-
stationary. The standard classical estimation methods such as the ordinary least squares
(OLS) method cannot be deployed to estimate the relationship between non-stationary
variables because these methods are based on fundamental assumptions that the means
and the variances of variables must be well-defined time-invariant constants. These as-
sumptions fail to hold in the case of non-stationary variables. As such, applying these
methods will give misleading inferences. This problem is referred as spurious regression
in the statistical literature Phillips (1986). To analyze the long-run relationship between
two non-stationary variables, we should take advantage of the well-known cointegration
property. Now, it is time to define the terms and notions that we will frequently use in
this research. A nonstationary process is a process whose moments (mainly mean and/or
variance) change over time. A nonstationary time series, for instance, has no stable level
in time: no constant long-run mean. A random walk as defined by xt in equation 4.2
is an obvious example of a non-stationary process. A time series {rt} is called weakly
stationary if (1) E[rt] = µ (µ is a constant) and (2) Cov(rt , rt+τ ) = γτ ( only depends
on time difference τ not time t). When a time series such as {rt} is weakly stationary,
any given observations, {rt1 , rt2 , . . . , rtn} will fluctuate with a fixed variance around a
equilibrium level namely the long-run mean. If rt is a stationary time series then a time
series in the following form is called a trend-stationary time series :

yt = β0 + β1t+ rt (4.1)
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where β1 is the linear growth rate. A simple check shows that yt is autocorrelated. How-
ever, the autocorrelation of yt is different from the autocorrelation of a random walk.
This because by de-trending yt will generate a stationary series, but a random walk is a
non-stationary series (E[W 2

t ] = t). In a trend-stationary series the mean E[yt] = β0 +β1t
is time dependent whereas the variance V ar[yt] = V ar(rt), is constant. If in equation 4.1
rt assumes as a simple random walk then both the mean E[yt] = β0 +β1t and the variance
V ar[yt] = tσ2 are time dependent. A trend-stationary series can simply be transformed
into a stationary process by excluding the time trend. The trend in many economic series
cannot be justified by deterministic functions (deterministic trends). Indeed these series
have stochastic trends. The idea of transforming a non-stationary process with stochastic
trend known as unit-root non-stationary into a stationary process is called differencing
(Hamilton (1994)). Assume yt is a unit-root non-stationary process, yt is integrated of
order d denoted by I(d) if after d times differencing, the transformed process has a sta-
tionary invertible ARMA representation. In other words,

yt ∼ I(d) if (1−B)dyt is a stationary process,
where B is back shift Byt = yt−1 or:
(1−B)yt = yt − yt−1 = ∆yt, and
(1−B)2yt = (1−B)(1−B)yt = (1−B)(yt − yt−1)

= (1−B)yt − (1−B)yt−1 = ∆yt −∆yt−1 = ∆2yt and etc.

According to this definition, if yt is already a stationary process, it is called I(0) (in-
tegrated of order 0). One of the common errors in differencing is over-differencing and
it should be avoided. For instance, differencing an I(1) process twice is considered over-
differencing. The lowest order of differencing that transforms a unit-root non-stationary
process into a stationary process is the appropriate order of integration. In ARMA(p, q),
if we allow that the AR polynomial (characteristic equation of AR) has a root of unity
as a characteristic root, then the extended ARMA(p, q) is unit-root non-stationary and
has a unit-root or, alternatively is integrated of order one (I(1)). This extended model is
called the Autoregressive integrated moving average (ARIMA(p, d = 1, q)) model. Since
the other roots of the characteristic equation are less than one in absolute value, the
first difference of the time series will be weakly stationary. In this model, if one is a
root of multiplicity order d, then the ARIMA(p, d, q) is integrated of order d, denoted
I(d). To analyze relationship and interrelation between different markets and also to
study jointly multiple assets, one can deploy vector or multivariate time series. Vector
ARMA(p, q) models (V ARMA(p, q)) is the generalization of univariate ARMA mod-
els. Unlike univariate ARMA, we may confront the issue of identifiability, the model
may not be uniquely defined. To overcome this issue, structural specification method
(Tsay (1991)) can be applied. In V ARMA(p, q), if MA polynomial has unit-roots, the
V ARMA(p, q) models are said to be noninvertible. The spurious regression problem
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occurs when we attempt to regress two unrelated non-stationary (for example two I(1)
variables) or trend stationary time series on each other and the ordinary least squares
(OLS) method indicates existence of statistically significant relationship between them
when such a relationship does not exist in reality.

Example 4.2.1. Consider regressing two independent random walks with drift on each
other:

xt = µ1 + xt−1 + ε1,t

yt = µ2 + yt−1 + ε2,t (4.2)

where ε1,t and ε2,t are i.i.d Gaussian white noises.
We generate 500 samples from each random walks, xt, yt (µ1 = 0.2, µ2 = 0.5,) and then
regress yt on xt. Figure (4.1) shows the simulated data. Although the Gaussian white
noises are i.i.d, the correlation in simulated data is 0.9831.The regression results sum-
marized in table (4.1) shows an incorrectly statistically significant relationship between
them. However, the Durbin Watson (DW) statistic is 0.0434 with p-value < 2.2e-16,
which confirms that the residual series is autocorrelated, as a result, the mentioned re-
lationship is no longer valid. In this model, when n (number of observations) gets large,
the OLS estimator will approach to the ratio of two drifts ( β̂ → µ2

µ1
); moreover, the OLS

estimator will incorrectly indicate a statistically significant relationship. The spurious
problem is not limited to trend nonstationary processes. In driftless nonstationary pro-
cesses and trend stationary processes, we can also confront this issue. Differencing will
resolve the problem, but when we use differencing, we lose some important information
and the results typically have no economical or logical explanation.

Table 4.1: Regression results based on model (4.2) when µ1 = 0.2, µ1 = 0.5, and variances
of innovations are 1. Number of simulations is 500 (y ∼ x) and 56984 is used as seed to
generate series.

Estimate Sd.Err t value Pr(> |t|)
Intercept -11.94971 1.22604 -9.747 <2e-16 ***
x 2.60172 0.02171 119.862 <2e-16 ***

Cointegration is deployed to estimate the long-run equilibrium levels between two
unit-root variables such as two stocks in the same sector. In other words, two unit-root
processes are called cointegrated if there exists a linear combination of them that is a
stationary process. In general, let X t be a vector of n integrated of order d (I(d)) time
series. Cointegration exists if a vector βt( 6= 0) exists such that Zt = β

′
X t and Zt is
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Figure 4.1: The time plots are simulated series for xt (solid line) and yt (dotted line)
based on model 4.2 when µ1 = 0.2, µ2 = 0.5, and variances of innovations are 1. Number
of simulations is 500 and 56984 is used as seed to generate the series.

integrated of order I(h) where 0 < h < d. β is called the cointegrating vector. The
d − h is the number of common I(1) stochastic trends. If cointegration exists between
two financial markets and can be justified economically, then we have a possibility to
deploy at least one of the markets to benchmark (forecast) the other one.

Example 4.2.2. Consider the bivariate time series as follows:

y1,t = y1,t−1 + µ1 + θ1zt−1 + φ1ε1,t

y2,t = y2,t−1 + µ2 + θ2zt−1 + φ2ε2,t

zt = Dt + y1,t + β y2,t

where Dt is a deterministic function of time and (ε1,t, ε2,t) is a Gaussian bivariate white
noise with the positive definite covariance matrix Σ. In this setting, if zt is a (trend)
stationary time series, y1,t and y2,t are cointegrated. We derive the (trend) stationary
condition for zt as follows:

zt = Dt + y1,t + β y2,t

= Dt + y1,t−1 + µ1 + θ1zt−1 + φ1ε1,t + βy2,t−1 + βµ2 + βθ2zt−1 + βφ2ε2,t

= Dt − Dt−1 + µ1 + βµ2 + ( 1 + θ1 + βθ2)zt−1 + φ1ε1,t + βφ2ε2,t (4.3)
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Equation 4.3 shows that zt is a AR(1) process; therefore, the (trend) stationary
condition for zt is :

| 1 + θ1 + βθ2 |< 1 (4.4)

It is also worth mentioning that both y1,t and y2,t are integrated of order one (I(1)).
We simulate the following bivariate cointegrated time series to show how cointegration
works:

y1,t = y1,t−1 + 0.2zt−1 + ε1,t

y2,t = y2,t−1 + zt−1 + ε2,t

zt = y1,t − 0.7 y2,t (4.5)

where the variance covariance matrix of the bivariate white noise, Σ is equal to I (Σ = I).
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Figure 4.2: The time plots are simulated series for y1,t and y2,t and their cointegration
residuals based on model (4.5) when variances of i.i.d white noises ε1,t and ε2,t are 1.
Number of simulations is 500 and 2987 is used as seed to generate series.

Four main steps are required to take when we attempt to apply cointegration tech-
nique. These steps are:
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Step 1: Unit-Root Test: These tests indicate whether or not the involved time series
individually have a unit-root. The augmented Dickey-Fuller test (ADF) is a well-
known unit-root test. The ADF test assumes that the time series yt has a general
ARMA(p, q) structure with unknown order. The null hypothesis and alternative
hypothesis are defined as follows:

The null hypothesis (H0): The time series yt has a unit-root (yt ∼ I(1)).

The alternative hypothesis (H1): yt is a (trend) stationary series (yt ∼ I(0)).

The ADF test can be performed applying the following test regression:

yt = Dt + βyt−1 +

p∑
i=1

ψi∆yt−i + εt, (4.6)

Or, equivalently:

∆yt = Dt + βcyt−1 +

p∑
i=1

ψi∆yt−i + εt. (4.7)

where Dt is a deterministic time function (constant, trend, or etc,) and chosen
based on the assumed behavior of yt, with the t ratio statistics respectively are:

ADF-test: t(β̂=1) =
β̂ − 1

sd(β̂)
, (4.8)

ADF-test: t(β̂c=0) =
β̂c

sd(β̂c)
. (4.9)

where β̂ is the estimate of β using a least-squares method. Testing for a unit
root is usually not an easy task and is statistically difficult for some series such
as a stationary series contaminated by a structural shift. There are several tests
for a unit root and the results, from one test to another, can be quite different.
Consequently, we should use different tests and in particular more recent tests such
as Phillips & Perron test ( Phillips and Perron (1988)), Elliot, Rothenberg & Stock
test (ERS) ( Elliott et al. (1996)), or Zivot & Andrews (Zivot and Andrews (1992))
test.

Step 2: Cointegration Tests: Another crucial step is to test whether the study assets
or commodities are cointegrated or not. If tests show the series are cointegrated, we
can proceed and apply cointegrated V ECM model to estimate parameters includ-
ing β (cointegrating vector). Cointegration tests may encounter hardships such as
overlooking the scaling effects in actual applications Tsay (2010). Normally, we first
choose, for instance, two stocks from the same sector that share the identical set
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of fundamental properties (for example TD Canada Trust and Royal Bank) which
we expect to be cointegrated. Then if cointegration tests such as the Johansen
test Johansen (1991) confirm the existence of long-term equilibrium relationship,
we can be confident that cointegration is not accidental and that the long-run rela-
tionship likely remain significant in the future. In this case, we can implement the
cointegration trading strategies in the considered pairs.

Step 3: We estimate the short-term disequilibrium level (relative mispricing) based on
the long-run equilibrium relationship that we estimate in the second step.

Step 4: We should check the robustness of short-term disequilibrium relationships, then
we should define the pairs trading strategy if the short-term disequilibrium level
reach certain levels.

The following example 4.2.3 is a cointegrated V ARMA(1, 1) and depicts the cointegration
system in vector form.

Example 4.2.3. Consider the following cointegrated V ARMA(1, 1) model,[
y1,t

y2,t

]
=

[
0.5 0.25
1 0.5

][
y1,t−1

y2,t−1

]
+

[
ε1,t

ε2,t

]
−

[
0.1 0.2
0.2 0.4

][
ε1,t−1

ε2,t−1

]
, (4.10)

where the covariance matrix of the bivariate white noise, and where Σ = I. The eigen-
values of the AR coefficient matrix are 0 and 1; therefore, the V ARMA(1, 1) is not a
stationary time series, Tsay (2010). First we should make sure that the two time series
(y1,t and y2,t) are integrated of order 1, so we reorganize the model as follows:[

1− 0.5B −0.25B
−B 1− 0.5B

][
y1,t

y2,t

]
=

[
1− 0.1B −0.2B
−0.2B 1− 0.4B

][
ε1,t

ε2,t

]
, (4.11)

To diagonalize the AR matrix polynomial, we multiply equation 4.11 by:

[
1− 0.5B 0.25B

B 1− 0.5B

]
,

We derive, [
1−B 0

0 1−B

][
y1,t

y2,t

]
=

[
1− 0.6B 0.05B

0.8B 1− 0.9B

][
ε1,t

ε2,t

]
. (4.12)

Figure (4.3) depicts that both component time series are highly autocorrelated. Also,
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Figure 4.3: The time plots are simulated series for y1,t and y2,t and their autocorrelation
functions based on model (4.10) when variances of i.i.d white noises ε1,t and ε2,t are 1.
Number of simulations is 500 and 6987 is used as seed to generate series.

the result in equation 4.12 shows that both marginal time series (y1,t and y2,t) have a unit
roots (I(1)). To show that in the model 4.10, y1,t and y2,t are cointegrated, we calculate
the linear combination zt = y1,t − 0.5y2,t as follows,

zt = ε1,t − 0.5ε2,t. (4.13)

The result in equation 4.13 shows that zt is a white noise series meaning that zt is a
stationary series; as a result, y1,t and y2,t are cointegrated.

As mentioned before, the vector time series may be noninvertible. To overcome the
issue of estimating noninvertible cointegrated V ARMA(p, q) models, Engle and Granger
(1987) proposed the vector error correction model(V ECM). We merely illustrate the
bivariate cointegrated V ECM representations. The bivariate V ECM representations
can be easily generalized. Interested readers can refer to Tsay (2010).
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4.2.1 Bivariate Cointegrated V ECM(p, q)

Consider y1,t and y2,t (yt = (y1,t, y2,t)
′
) to be both integrated of order one (I(1)) and

let y1,t and y2,t be cointegrated with cointegrating vector β = (1, β)
′
. Consequently,

β
′
yt = y1,t + βy2,t is a stationary process (I(0)) , then a V ECM(p, q) representation

exists in the form of:[
∆y1,t

∆y2,t

]
=

[
γ1

γ2

]
[ 1 , β]

[
y1,t−1

y2,t−1

]
+

p−1∑
i=1

Φ∗i

[
∆y1,t−i
∆y2,t−i

]

+

[
ε1,t

ε2,t

]
−

q∑
i=1

Θi

[
∆ε1,t−i
∆ε2,t−i

]
, (4.14)

where the Φ∗i (AR polynomial coefficient matrices) can be derived using the Φi of the
original model as follows:

Φ∗i = −
p∑

j=i+1

Φj, i = 1, . . . , p− 1,

γβ
′

= −
p∑
i=1

Φi − I, (4.15)

where

γ =

[
γ1

γ2

]
.

One can see that since ∆yt = (∆y1,t,∆y2,t)
′

is stationary, but yt−1 = (y1,t−1, y2,t−1)
′

is

a nonstationary series, the β
′
yt−1 process must be a stationary in order to have a plausi-

ble relationship for the cointegrated V ECM representations. Consider the cointegrated
V ARMA(1, 1) in equation 4.10. Based on the prior explanations in this section, the
equivalent V ECM representation of the equation will be:

[
∆y1,t

∆y2,t

]
=

[
−0.5

1

]
[ 1 , −0.5]

[
y1,t−1

y2,t−1

]
+

[
ε1,t

ε2,t

]

−

[
0.1 0.2
0.2 0.4

][
ε1,t−1

ε2,t−1

]
. (4.16)

It is worth mentioning that, in some studies, the cointegration tests are applied for log-
prices. Vidyamurthy (2004), for example, adapts the cointegration test for a model in
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which the log-price of stock A is regressed on the log-price of stock B. He then develops
the pairs trading strategy using the following cointegration system:

ln(pAt ) = µ + β ln(pBt ) + εt, (4.17)

where β is the cointegration coefficient and µ is the long-run equilibrium level. In this
system, if the two stocks are cointegrated, the estimated residuals must be a stationary
series.

4.2.2 Empirical Results

Since as mentioned in chapter 3, spot WTI and Brent crude oils prices are unobservable,
the front month future contracts can be considered as approximations of the spot prices
for both crude oils. In order to compare our results with the results found in Dempster
et al. (2008), we first test for cointegration in WTI crude oil and Brent oil monthly data.
Chicago Mercantile Exchange (CME) monthly future prices (the front contract) of WTI
crude oil and Intercontinental Exchange (ICE) monthly future prices (the front contract)
of Brent oil are used from April 1994 to January 2005. Although it is generally accepted
that WTI crude oil and Brent oil are unit root processes (I(1)), we use ADF and ERS
tests to test for the unit root in WTI and Brent oils and their difference series to follow
the cointegration algorithm’s steps. The null hypothesis in both tests is that the series
contains a unit root. The results of the tests are summarized in table 4.2. Both unit root
tests for each Brent and WTI price series confirm that the null hypothesis should not
be rejected in favor of the alternative hypothesis at the one percent level of significance.
The tests also indicate that the null hypothesis for each differenced series of Brent and
WTI should be rejected in favor of the alternative hypothesis at one percent level of
significance. Therefore, the WTI crude oil series and Brent oil series are integrated of
order 1 (I(1)). Figure 4.4 depicts the monthly front contracts future prices of WTI and
Brent oils.

We applied the Johansen test (JT) to check whether WTI crude oil and Brent oil
for our monthly data are cointegrated or not. The test results are summarized in table
4.3. The null hypothesis is no cointegration. The JT with maximal eigenvalue statistic
rejects the null hypothesis in favor of the alternative hypothesis at 5 percent level of
significance. Therefore, the WTI crude oil series and Brent oil series are cointegrated.
The estimated V ECM representation is in equation 4.18.
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Figure 4.4: The monthly front contracts future prices for WTI crude oil and Brent oil
from April 1994 to January 2005 (price in $/barrel).

[
∆y1,t

∆y2,t

]
=

[
−0.5986
−0.3380

]
[ 1 , −0.918]

[
y1,t−1

y2,t−1

]
+

[
1.0058 −1.0118
0.9921 −1.0399

][
∆y1,t−1

∆y2,t−1

]

+

[
0.4179 −0.5751
0.4251 −0.5673

][
∆y1,t−2

∆y2,t−2

]
+

[
0.7817 −0.7723
0.7833 −0.7762

][
∆y1,t−3

∆y2,t−3

]
.(4.18)

4.3 One Factor Model for the Spread Process:

The main fundamental property of the spread process for a good pairs trading strategy
is that they are mean-reverting; therefore, Elliott et al. (2005) proposed that the spread
dynamic follows the Vasicek process. In this model, the spot spread, Xt is the only
factor (state variable) and is assumed to follow the Vasicek stochastic process. The
Vasicek model is a classical mean-reverting one-factor model which was initially intended
to model short interest rates Vasicek (1977) as follows:

dXt = a( b−Xt ) dt+ σdWt. (4.19)

where the model assumes that the linear combination, Xt evolves as an Ornstein-
Uhlenbeck process with constant coefficients, a > 0 is mean-reverting speed, b is the
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Table 4.2: Unit root tests for WTI and Brent front monthly contracts future price series
and their differenced series from April 1994 to January 2005.

Series ADF test (CV) ERS test (CV)
t-Stat 1pct 5pct 10pct t-Stat 1pct 5pct 10pct

Brent -1.1558 -3.46 -2.88 -2.57 22.0692 1.91 3.17 4.33
∆Brent -8.2466 -2.58 -1.95 -1.62 0.5905 1.91 3.17 4.33
WTI -0.7803 -3.46 -2.88 -2.57 28.4303 1.91 3.17 4.33
∆WTI -8.4363 -2.58 -1.95 -1.62 0.9181 1.91 3.17 4.33

Table 4.3: The Johansen test results to check whether WTI crude oil and Brent oil prices
for the specified data ( monthly front contract prices from April 1994 to January 2005)
are cointegrated or not.

#Coint.Rel (r) Johansen test (CV) Eigenvalues
t-Stat 10pct 5pct 1pct λ1 λ2

r ≤ 1 0.06 6.50 8.18 11.65 0.119 0.0005

r = 0 15.86 12.91 14.90 19.19 β
′
=( 1 , -0.918)

long-run mean of the spread, σ is the volatility of the process, and dWt is the increment
of a standard Brownian motion. Under the risk neutral measure Q, the Vasicek dynamic
can be expressed as follows:

dXt = a( b∗ −Xt ) dt+ σdW ∗
t . (4.20)

where the b∗ = b− λ , λ is the market price of risk and dW ∗
t is the equivalent increment

of a standard Brownian motion under Q.
By applying Ito’s lemma, it is easy to show that the stochastic differential equation

(SDE), 4.20 for any s (0 < t ≤ s) has a solution as follows:

Xs = e−a (s−t)Xt + b∗ ( 1 − e−a (s−t) ) + σ e−a s
∫ s

t

ea udW ∗
u . (4.21)

Equation 4.21 shows that the conditional distribution of XT given Xt is normally
distributed with mean and variance :

EQ[XT | Xt ] = µs = e−a (T−t) Xt + b∗ ( 1 − e−a (T−t) ), (4.22)

V arQ[XT | Xt ] = σ2
s =

σ2

2a
( 1 − e−2a (T−t) ). (4.23)



4.3. One Factor Model for the Spread Process: 78

4.3.1 The Future Spread Pricing:

Since for most commodities, the spot prices are not directly observable, we must instead
consider the future spread. Let DF (t , T , Xt) to be the future price for the spread with
maturity T at time t. we assume that interest rate and market price of risk are constants.
As a result, the future (forward) spread is equal to the expected value of the prices spread
at time T under the corresponding risk neutral measure. We have:

DF (t , T , Xt) = EQ[XT | Xt ] = e−a (T−t) Xt + b∗ ( 1 − e−a (T−t) ), (4.24)

Applying Ito’s lemma to equation 4.24, we derive:

dDF (t , T , Xt) =
∂DF

∂t
dt+

∂DF

∂Xt

dXt +
1

2

∂2DF

∂X2
dX2

t = σ e−a (T−t) dW ∗
u . (4.25)

The result in equation 4.25 proves that in this setting, the future spread process is
a martingale and its corresponding volatility decreases exponentially in time to maturity
T .

4.3.2 Parameter Estimation:

One of the implications in commodities pricing is that the state variables are mostly
unobservable. To estimate latent state variables, the Kalman filter as discussed in chapter
2 is generally deployed. Therefore, we construct the transition and observation equations
for this model as follows:

4.3.2.1 Transition Equation:

In this model, the transition equation can be obtained by exact discretization of equation
4.21 in the following form:

X t+1 = dt + T tX t +Rtηt, t = 1, . . . , NT, (4.26)

where

dt = b ( 1 − e−a∆t ), T t = e−a∆t,

Rt = σ

√
1 − e−2a∆t

2a
,

(4.27)

Here ηt is serially uncorrelated Gaussian white noise with E(ηt) = 0 and V ar(ηt) = 1.
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4.3.2.2 Measurement Equation:

There are several reasons why the future spread prices in commodity market can be
noisy including bid-ask spreads, differing maturity dates for underlying commodities,
and observing the underlying prices non-simultaneously. Therefore, the measurement
equation can be derived using equation, 4.24 plus Gaussian white noise as follow:

yt = ct +ZtX t + εt, t = 1, . . . , NT, (4.28)

where

yt is an N × 1 vector of observations, and ct &Zt areN × 1 vectors,

yt =
[
DF (t , Ti )

]
, i = 1, . . . , N,

ct =
[
b∗ ( 1 − e−a (Ti−t) )

]
, i = 1, . . . , N,

Zt =
[
e−a (Ti−t)

]
, i = 1, . . . , N,

(4.29)

Here εt is serially uncorrelated Gaussian white noise with E(εt) = 0 and V ar(εt) = H .

Elliott et al. (2005) pointed out that the method has advantages including capturing
mean-reversion, the fundamental property of pairs trading strategy, considering time
continuous process for the spread process and tractability of the method (the parameters
can be simply estimated using the Kalman filter algorithm). However, there are some
convincing reasons why this method cannot be applied to most commodities spread
processes. First, there is now enough evidence to support the statement that the behavior
of most commodities spread process cannot be summarized in one factor. Secondly, the
underlying commodities (future) prices in the spread process rapidly respond to eventful
market news. These events sometimes highly impact on one of the underlying prices and
have less impact on the other one causing the volatility of the spread process increases.

4.3.3 Empirical Results

The same data sample for WTI and Brent crude oils that is used in section 4.2.2 is
considered. Moreover, monthly future location spread prices (the front contract) between
WTI crude oil and Brent oil are used from April 1994 to January 2005. We attempt
to fit the model for location spreads between WTI and Brent oils. We assume the
location spread to be difference between WTI crude oil price (C) and Brent oil price
(B). We should mention that the cointegration coefficient between WTI and Brent is
β = 0.918 in the study data set and C − β B is natural choice; however, since the
location spread is such a common trade that even options are written on the location
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spreads and traded in practice in various exchange including CME group, we consider to
fit the model for location spreads. As in previous example 4.2.2, we use monthly data
to estimate the model’s parameters. The monthly futures location spread are calculated
with five different maturities from April 1994 to January 2005. The involved future
contracts are the 1,3,6,9 and 12 months to maturities. Figure 4.5 depicts the monthly
front contract future prices’ location spread between WTI and Brent oils. Table 4.4 lists
the estimation results for Elliott’s one factor model. Figure 4.6 depicts how estimates
of parameters evolve in the model maximum likelihood optimization function for our
sample data. Also, figure 4.7 compares the filtered spot spread with the front contract
realizations which usually assumed as spot spread.
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Figure 4.5: The monthly front contract location spread between WTI crude oil and brent
oil from April 1994 to January 2005 (spread in $/barrel).

4.4 Two-Factor model for the Spread Process:

The uncertainly on the commodities spread models is high and requires more than one
factor to have enough flexibility. Dempster et al. (2008) introduced a two factor model
to price the spread options in energy markets. In this model, the spot spread, Xt and de-
viation from the long-run mean of the spot spread, δt are two unobserved state variables.
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Table 4.4: Estimated parameters for Elliott’s one factor model using monthly location
spread between WTI and Brent oils for future contracts of 1,3,6,9 and 12 months to
maturities from April 1994 to January 2005.

a σ b λ ζ
value 0.954 1.499 2.057 0.971 0.233
Sd.Err 0.062 0.129 0.482 0.486 0.056
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Figure 4.6: Elliot’s model parameters estimation showing how parameters evolve in op-
timization’s function generated by Kalman filter. As we can see, after some iterations,
all parameters along with maximum likelihood function converge and stabilize. The data
set is monthly location spread between WTI and Brent oils for future contracts of 1,3,6,9
and 12 months to maturities from April 1994 to January 2005.
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Figure 4.7: Compare Elliot’s model filtered spot spread series with the front contract
monthly realization. The data set that is used to estimate filter spot spread is monthly
location spread between WTI and Brent oils for future contracts of 1,3,6,9 and 12 months
to maturities from April 1994 to January 2005

Both factors are considered to follow mean-reverting Ornstein-Uhlenbeck processes and
so the joint stochastic process is:

dXt = κ1(α + ϕ(t) + δt − Xt ) dt + σ1 dW1t, (4.30)

dδt = −κ2 δt dt + σ2 dW2t. (4.31)

where the standard Brownian motion increments, dW1t and dW2t, are correlated with:

dW1t dW2t = ρ dt, (4.32)

α and 0 are the long-run means of the two factors, Xt and δt respectively,
κ1 > 0 and κ2 > 0 are the mean reverting rates (speeds),
σ1 and σ2 are the volatility of the processes,
ϕ(t) is the seasonality component of the spread process.

The equation 4.30 shows that the spot process Xt is a mean-reverting process with a
stochastic long-term mean process, α + δt. The seasonality component, ϕ(t) is inherited
from the underlying commodities prices. For instance, the crack spread between gasoline
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and WTI crude oil shows clear evidence of seasonality and is inherited from the gasoline
price. In this model, the applied Fourier-series type seasonality function ϕ(t) is used.
The seasonality function ϕ(t) was proposed by Durbin and Koopman (1997) and defined
as:

ϕ(t) =
k∑
i=0

{ai cos (2πit) + bi sin (2πit)}. (4.33)

where ai and bi are constant. The one-factor model 4.3 and cointegration method such as
V ECM assume that long-term mean relationship between the underlying commodities
prices is constant. On the other hand, Dempster et al. (2008) correctly claims that several
reasons including high frequency of events, consumers’ behaviorial change and economical
crises require this long-term relationship not to be constant. As a result, the deviation
from the long-run mean δt was considered to follow another mean-reverting stochastic
process with enough flexibility to confront the reality of the commodities spread model.
The joint dynamics of the model under a risk-neutral measure Q can be written as:

dXt = κ1 (α − λ1 + ϕ(t) + δt − Xt ) dt + σ1 dW
∗
1t, (4.34)

dδt = κ2 (−λ2 − δt ) dt + σ2 dW
∗
2t, (4.35)

dW ∗
1t dW

∗
2t = ρ dt.

where λ1, λ2 are the market price of risks (assumed constants) for the state variables Xt,
δt respectively and dW ∗

1t and dW ∗
2t are the standard Brownian motion increments under

the equivalent risk-neutral measure Q.
By applying Ito’s lemma,we derive the solution for the joint stochastic differential equa-
tion (SDE) 4.34, 4.35 for any s (0 < t ≤ s) as follows:

Xs = e−κ1(s−t) Xt + (α − λ1 ) ( 1 − e−κ1(s−t) ) + κ1 e
−κ1s

∫ s

t

δu e
κ1udu

+κ1 e
−κ1 s

∫ s

t

ϕ(u) eκ1udu + σ1 e
−κ1 s

∫ s

t

eκ1 udW ∗
1u, (4.36)

δs = e−κ2 (s−t) δt − λ2 ( 1 − e−κ2 (s−t) ) + σ2 e
−κ2 s

∫ s

t

eκ2 vdW ∗
2v. (4.37)
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We plug 4.37 into 4.36 to derive:

Xs = e−κ1(s−t) Xt + (α − λ1 ) ( 1 − e−κ1(s−t) )

+
κ1δt

(κ1 − κ2)

{
e−κ2(s−t) − e−κ1(s−t)

}
− λ2 ( 1 − e−κ1(s−t) )

+
κ1λ2

(κ1 − κ2)

{
e−κ2(s−t) − e−κ1(s−t)

}
+ G(t, s)

+
κ1σ2

(κ1 − κ2)

∫ s

t

{
e−κ2(s−v) − e−κ1(s−v)

}
dW ∗

2v

+σ1 e
−κ1 s

∫ s

t

eκ1 udW ∗
1u, (4.38)

δs = e−κ2 (s−t) δt − λ2 ( 1 − e−κ2 (s−t) ) + σ2 e
−κ2 s

∫ s

t

eκ2 vdW ∗
2v. (4.39)

where G(t, s) is the seasonality function and assumed to be:

G(t, s) = κ1 e
−κ1 s

∫ s

t

ϕ(u) eκ1udu. (4.40)

Equations 4.38 and 4.39 show that the conditional distribution of XT given Xt and δt
is normal and has mean and variance (using Ito’s isometry in stochastic integrals) as
follows:

EQ[XT | Xt, δt ] = µX = e−κ1 (T−t)Xt + (α − λ1 ) ( 1 − e−κ1(T−t) )

+
κ1δt

(κ1 − κ2)

{
e−κ2(T−t) − e−κ1(T−t)

}
− λ2 (1− e−κ1(T−t))

+
κ1λ2

(κ1 − κ2)

{
e−κ2(T−t) − e−κ1(T−t)

}
+ G(t, T ), (4.41)

V arQ[XT | Xt, δt ] = σ2
X = A1 + A2 + 2ρA3. (4.42)
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where

A1 =
σ2

1

2κ1

( 1 − e−2κ1 (T−t)),

A2 =
κ2

1σ
2
2

(κ1 − κ2)2

{
1

2κ1

( 1 − e−2κ1 (T−t)) +
1

2κ2

( 1 − e−2κ2 (T−t))

− 2

(κ1 + κ2)
( 1 − e−(κ1+κ2)(T−t))

}
,

A3 =
κ1σ1σ2

(κ1 − κ2)

{
1

(κ1 + κ2)
( 1 − e−(κ1+κ2)(T−t))

− 1

2κ1

( 1 − e−2κ1 (T−t))

}
.

In equation 4.42, if we take the limit as T →∞, we will find constant variance:

lim
T→∞

V arQ[XT | Xt, δt ] =
σ2

1

2κ1

+
κ1σ

2
2

2κ2(κ1 + κ2)
+

σ1σ2ρ

κ1 + κ2

. (4.43)

4.4.1 The Futures Price of the Spot Spread:

As we explained in section 4.3.1, under the risk neutral measure Q the futures price
for the spot spread with maturity T at time t must be equal to DF (t , T , Xt) =
EQ[XT | Xt, δt ], so we have:

DF (t , T , Xt) = EQ[XT | Xt, δt ] = e−κ1 (T−t) Xt + (α − λ1 ) ( 1 − e−κ1(T−t) )

+
κ1δt

(κ1 − κ2)

{
e−κ2(T−t) − e−κ1(T−t)

}
− λ2 (1− e−κ1(T−t))

+
κ1λ2

(κ1 − κ2)

{
e−κ2(T−t) − e−κ1(T−t)

}
+ G(t, T ). (4.44)
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Applying Ito’s lemma to equation 4.44, in the risk neutral measure Q, shows that
dDF (t , T , Xt) satisfies:

dDF (t , T , Xt) =
∂DF

∂t
dt+

∂DF

∂X
dXt +

∂DF

∂δ
dδt

+
1

2

∂2DF

∂X2
dX2

t +
∂2DF

∂X∂δ
dXt dδt +

1

2

∂2DF

∂δ2
dδ2

t

=
κ1σ2

(κ1 − κ2)

{
e−κ2(T−t) − e−κ1(T−t)

}
dW ∗

2t

+σ1e
−κ1(T−t) dW ∗

1t. (4.45)

The result in equation 4.45 shows that in this model, the future spread process is a Q
martingale.

4.4.2 Parameter Estimation:

Since the state variables spot spreads, Xt and deviation from long-term mean, δt are
unobserved, to calibrate this two factor model, we apply the Kalman filter algorithm.
The transition and observation equations for this model can, therefore, be constructed
as follows:

4.4.2.1 Transition Equation:

We obtain the transition equation using exact discretization of equations 4.38 and 4.39
in the following format:

[X t+1, δt+1]
′
= dt + T t [X t, δt]

′
+ ηt, t = 1, . . . , NT, (4.46)

where

dt =

[
α ( 1 − e−κ1∆t ) + G(t, t+ ∆t)

0

]
,

T t =

[
e−κ1∆t κ1

(κ1−κ2)

{
e−κ2∆t − e−κ1∆t

}
0 e−κ2∆t

]
,

(4.47)

and ηt is serially uncorrelated Gaussian white noise with:

E(ηt) = 0 and V ar(ηt) =

[
σ2
X σXδ

σXδ σ2
δ

]
.

(4.48)
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where

σ2
X =

σ2
1

2κ1

( 1 − e−2κ1 ∆t)

+
κ2

1σ
2
2

(κ1 − κ2)2

{
1

2κ1

( 1 − e−2κ1 ∆t) +
1

2κ2

( 1 − e−2κ2 ∆t)

− 2

(κ1 + κ2)
( 1 − e−(κ1+κ2)∆t)

}
+

2ρκ1σ1σ2

(κ1 − κ2)

{
1

(κ1 + κ2)
( 1 − e−(κ1+κ2)∆t)

− 1

2κ1

( 1 − e−2κ1 ∆t)

}
,

σ2
δ =

σ2
2

2κ2

( 1 − e−2κ2 ∆t),

σXδ =
κ1σ2

(κ1 − κ2)

{
− 1

(κ1 + κ2)
( 1 − e−(κ1+κ2)∆t)

+
1

2κ1

( 1 − e−2κ1 ∆t)

}
+

ρ

(κ1 + κ2)
( 1 − e−(κ1+κ2)∆t).

(4.49)

Dempster et al. (2008) shows that the correlation ρ between short and long end fluctua-
tions approaches zero; therefore, ρ is assumed to be zero in the model estimation.

4.4.2.2 Measurement Equation:

In section 4.3.2.2, we argue that the future spread prices in commodity market are noisy.
Therefore, we derive the measurement equation using equation 4.44 and add Gaussian
white noise as follows:

yt = ct +Zt [X t, δt]
′
+ εt t = 1, . . . , NT (4.50)
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where

yt is an N × 1 vector of observations, ct is N × 1 vector andZt isN × 2 matrix,

yt =
[
DF (t , Ti )

]
, i = 1, . . . , N,

ct =
[

(α − λ1 ) ( 1 − e−κ1(Ti−t) )− λ2 (1− e−κ1(Ti−t))

+
κ1λ2

(κ1 − κ2)

{
e−κ2(Ti−t) − e−κ1(Ti−t)

}
+ G(t, Ti)

]
, i = 1, . . . , N,

Zt =

e−κ1 (Ti−t) ,
κ1

{
e−κ2(Ti−t) − e−κ1(Ti−t)

}
(κ1 − κ2)

 . i = 1, . . . , N. (4.51)

In these expressions, εt is serially uncorrelated Gaussian white noise with E(εt) = 0
and V ar(εt) = H . Since the number of parameters to estimate is quite large, we con-
sider the variance of the future spreads disturbances with all maturities to be identical
which means H = ζ2IN .

4.4.3 Empirical Results

The same data set that we describe in section 4.3.3 was used to compare the results
with other models explained in this chapter. Here we apply Dempster et al. (2008)’s
model to fit to our sample set to location spread between WTI and Brent crude oils.
Since there is not enough evidence to support seasonality in the WTI and Brent oils’
location spread, the seasonality component is considered to be zero (ϕ(t) = 0). Table 4.5
summarizes the calibration results for Dempster’s two factor model and comparison with
Dempster’s estimated results. As we see in table 4.5, the results are slightly different
which arises from using slightly different data samples. Figure 4.9 depicts how estimates
of parameters evolve in the model’s maximum likelihood optimization function for our
sample data. Also figure 4.8 compares the filtered spot spread with the front contract
realizations which usually assumed as approximation for spot spread.

4.5 Analysis of Recent Behavioral Change in Spread

between WTI and Brent Crude oils:

In recent years, the behavior of the Brent and WTI crude oils’ spread has experienced
an unprecedented change. Historically, WTI crude oil has mostly traded at higher price
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Table 4.5: Estimated parameters for Dempster’s two factor model using monthly fu-
ture location spread between WTI and Brent oils from April 1994 to January 2005 and
comparison with Dempster’s estimated parameters.

Estimated by K1 α σ1 λ1 K2 σ2 λ2 ζ
Moosavi value 4.86 0.00 3.736 0.195 0.137 0.965 0.482 0.104

Sd.Err 0.265 0.00 0.313 1.19 0.019 0.070 0.298 0.0285
Dempster value 5.04 0.00 3.93 0.50 0.14 1.45 0.21 0.12

Sd.Err 0.28 0.00 0.28 1.18 0.02 0.10 0.28 0.03
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Figure 4.8: Compare Dempster’s model filtered spot spread series with the front contract
monthly realization. The data set that is used to estimate filter spot spread is monthly
location spread between WTI and Brent oils for future contracts of 1,3,6,9 and 12 months
to maturities from April 1994 to January 2005.

over Brent oil. Recently1, Brent oil has traded at dramatically higher price than the
WTI crude oil. Figure 4.10 illustrates the daily spread process between WTI crude
oil and Brent oil from April 1994 to November 2013 which clearly depicts a significant

1Early 2011.
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Figure 4.9: Dempster’s model parameters estimation showing how estimates of param-
eters evolve in optimization’s function for Kalman filter. As we can see, after some
iterations, all parameters along with maximum likelihood function converge and stabi-
lize. The data set is monthly location spread between WTI and Brent oils for future
contracts of 1,3,6,9 and 12 months to maturities from April 1994 to January 2005.

behavioral change (reversal) starting from early 2011. Although WTI and Brent are
two major global crude oil benchmarks, the WTI price describes the price for most
U.S. oil consumers pay and the Brent price mostly represents the price for European
and international consumption. In spite of the fact that the quality of WTI crude oil
is slightly higher than that of Brent oil and theoretically the WTI should be more or
less the same, the spread between WTI and Brent oils had greatly differed. The most
common reasons for this significant widening in the spread are: the unexpected recent
hike in production in the United States has built up the inventories at Cushing, Oklahoma
where the WTI crude oil is delivered and priced, and has logistical; economic constraints
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(Borenstein and Kellogg (2012)). This excessive supply has caused imbalance in supply
and demand, leading to a lower equilibrium price for WTI crude oil compare to the Brent
oil at the hub. Furthermore, the tension in oil producing countries, particularly Middle
East countries and Venezuela mainly affects the Brent oil rather than WTI crude oil.
It worth mentioning that when the WTI has traded lower then the Brent, the U.S. oil
producers earned relatively less money compare to the other international producers.
With the advent of contemporary technologies and improvement in oil’s extraction and
process, the United States and Canada are expecting booms in oil production. This
resulting increased production will make them self-sufficient and they will no longer need
to import crude oil in the near future (Ingrid (2013)). These kind of events are imposing
a significant level of volatility in spread between WTI and Brent oils. We attempt to
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Figure 4.10: The daily front contract of WTI crude oil prices and Brent crude oil prices
and their location spread series from April 1994 to November 2013 (price in $/barrel).

explore the validity of all three approaches, which we explained and implemented for
monthly spread from April 1994 to January 2005 in this chapter to the recent daily
spread from April 1994 to November 2013. First, we applied the Johansen test (JT)
to check whether WTI crude oil and Brent oil for our daily data are cointegrated or
not. The test results are summarized in table 4.6. As we expected that there is not
enough evidence to reject the null hypothesis, that they are not cointegrated, using the
JT with maximal eigenvalue statistic at any percent level of significance. Therefore, the
daily WTI crude oil series and Brent oil series are no longer cointegrated. Although the
cointegration test fail to support the comovement and cointegration between the WTI
and Brent oils, still many industry members and economists believe that the spread
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will inevitably approach parity in the near future. We can also argue that the spread
series has some merits of mean-reverting which logically, economically and fundamentally
make sense. Elliott’s and Dempster’s models can still be deployed to model the spread
series; however, these models are not flexible enough to capture all recent behavioral
changes in the daily spread process. As we can see in figure 4.10, the volatility in
the spread process is significantly high, and is eventful. Sometimes, events have very
different impact on WTI crude oil vs Brent oil. For instance, the Libyan Civil war in
2011 had higher impact on Brent oil than it did on WTI crude oil, which makes sense
since Brent is European vs North American WTI (see figure 4.10). These shocks may
persist for quite long time, so Elliott’s and Dempster’s models cannot fully capture all
these type of empirical phenomena. All of this empirical evidence has economic and
physical interpretation. To capture all empirical phenomena in the spread process, we
extend both Elliott’s and Dempster’s models by adding a compound Poisson process where
jump sizes follow a double exponential distribution. Intuitively, the jump component of
the models may capture the market reaction to the highly important outside events. In
other words, when there is no outstanding news, the spread process follow the normal
Elliott’s and Dempster’s models and when the highly influential news arrives based on
a Poisson process, the spread process changes based on jump size distribution. In the
following sections, we will introduce this new method in detail.

Table 4.6: Johansen test results to check whether WTI crude oil , Brent oil for the
specified daily data are cointegrated or not.

#Coint.Rel (r) Johansen test(CV)
t-Stat 10pct 5pct 1pct

r ≤ 1 5.32 6.50 8.18 11.65
r = 0 12.49 12.91 14.90 19.19

4.6 One-factor Mean-reverting Model with Jump

The Merton (1976) jump diffusion (MJD) model represents one attempt to modify
the Black-Scholes model. The model tries to capture the skewness and excess kurtosis
of the log-returns density of risky financial assets. Merton (1976) showed that the
change in a risky asset price has two components: the “normal” and “abnormal”. The
normal variations in the price explain the small daily changes caused by some regular
characteristics of market such as supply and demand, and the abnormal variations in the
price explain the sudden shocks (jumps). In MJD model, normal continuous changes in
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the log-returns is expressed by a Brownian motion with drift process similar to the Black-
Scholes model, and the discontinuous jumps are expressed by a compound Poisson process
with jump sizes that follow a normal distribution. Later, Kou (2002) extend the MJD
method by employing double exponential distribution for jump sizes. Here, we extend
the one-factor spread model that we explained in section 4.3 by adding a compound
Poisson process where jump sizes follow double exponential distribution. Under the real
measure P , the spread process Xt evolves as an Ornstein-Uhlenbeck process plus jump
as follows:

dXt = a( b−Xt ) dt+ σdWt + YtdNt. (4.52)

where a > 0 is mean-reverting speed, b is the long-run mean of the spread, σ is the
volatility of the process, dWt is the increment of a standard Brownian motion, Nt is the
Poisson process governing the jumps of Xt and has a jump intensity parameter λ (the
average number of jumps per year; therefore, the probability of a jump in time ∆t is
λ∆t). The jump size Yt follows an asymmetric double exponential distribution. The
double exponential distribution is given as:

fY (y) =

{
pη1e

−η1y, if y ≥ 0

qη2e
η2y, if y < 0

(4.53)

where the upward and downward jumps follow the two independent exponential distri-
butions with rates η1 , η2 > 0 respectively, and p, q ≥ 0 , p + q = 1 are assumed to be
the probabilities of upside and downside spikes respectively. Notice that jumps are a
sequence of independent identically distributed (i.i.d.) random variables. In the model,
all sources of randomness Wt,Nt, and Yt are assumed to be independent. It is easy to
show that:

E(Y ) =
p

η1

− q

η2

, V ar(Y ) = pq(
1

η1

+
1

η2

)2 + (
p

η2
1

+
q

η2
2

). (4.54)

In the compound Poisson process, in a short time interval, ∆t, either there is only one
jump or there is not a jump. The probability of one jump in the time interval, ∆t is:

P (Nt+∆t −Nt = 1) = λ∆te−λ∆t ' λ∆t.

Therefore, the Euler discretization of the model will be:

Xt+∆t =

{
Xt + a ( b−Xt ) ∆t + σ

√
∆tN(0, 1), with probability 1− λ∆t,

Xt + a ( b−Xt ) ∆t + σ
√

∆tN(0, 1) + Yt, with probability λ∆t.
(4.55)



4.7. Two-Factor Model with Jumps for the Spread Process: 94

4.7 Two-Factor Model with Jumps for the Spread

Process:

As we mentioned in section 4.4, the uncertainly on the commodity spread models is very
high and may require more than one factor to have enough flexibility. The commodities
spread process is also quite eventful. When highly important news arrives in the markets,
underlying commodities may be affected in remarkably different ways (for instance, in
the WTI-Brent spread process, some events may have higher impact on WTI crude oil
rather than Brent oil and vice versa). The rate and magnitude of these types of events
also different causing jumps upwards and downwards with different rates and size in the
spread process. Therefore, we are motivated to extend the Dempster et al. (2008) two
factor model by adding a jump component where jump sizes follow an asymmetric double
exponential distribution to price the spread options in energy markets. In this model, the
spot spread process Xt and the deviation from the long-run mean of the spot spread Yt
are two unobserved state variables. Both factors are considered to follow mean-reverting
Ornstein-Uhlenbeck processes and the joint stochastic process plus jump is:

dXt = κ1(α + ϕ(t) + δt − Xt ) dt + σ1 dW1t + YtdNt, (4.56)

dδt = −κ2 δt dt + σ2 dW2t, (4.57)

where:
The standard Brownian motion increments, dW1t and dW2t are correlated with:

dW1t dW2t = ρ dt, (4.58)

α and 0 are the long-run means of the two factors, Xt and δt respectively,
κ1 > 0 and κ2 > 0 are the mean reverting rates (speeds),
σ1 and σ2 are the volatility of the processes,
ϕ(t) is the seasonality component of the spread process,
Nt is the Poisson process governing the jumps of Xt and has a jump intensity
parameter λ (the average number of jumps per year),
The jump size Yt follows the asymmetric double exponential distribution given in
equation 4.53,
ϕ(t) is the seasonality component, given in equation 4.33 and is inherited from the
underlying commodities prices.

Notes that jumps are a sequence of independent identically distributed (i.i.d.) ran-
dom variables. Except W1t andW2t, all other sources of randomness including W1t, W2t,
Nt, and Yt are assumed to be independent.
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4.8 The Generalized One-factor Mean-reverting Model

Figure 4.10 confirms that the behavior of the Brent and WTI crude oils’ spread has
recently experienced an unprecedented change. Both Elliott et al. (2005)’s one factor
mean-reverting model, reviewed in section 4.3, and the two factor model proposed by
Dempster et al. (2008) and reviewed in section 4.4 to model the spot spread process
have failed to capture these structural changes in the spread process between the Brent
and WTI crude oils. The skewness, heavy tails, kurtosis and volatility variant are some
fundamental unquestionable factors of the spread process that cannot be captured by
the above mentioned models. Here, we attempt to capture all these crucial properties in
a single factor model. In this generalized one-factor mean-reverting model (GOFMRM),
the only factor is the spot spread Xt and its dynamics is considered to follow:

dXt = κ (µ − Xt) dt+ σ
√
ν2(Xt − θ)2 + 1 dWt, (4.59)

where
µ is the long-run mean,
κ ≥ 0 is the mean reversion rate,
σ > 0, ν ≥ 0 are the volatility parameters of the process and are considered constant,
θ is the skewness parameter and constant,
dWt is the increment of a standard Brownian motion.

As we can see the volatility is no longer constant. The total volatility can be decomposed
into two parts: The first part σ is constant and does not depend on the spot spread Xt

location and the second part ν is imposed based on the location of the spread from the
long-run mean µ with different weights (forces) in two sides based on θ. In other words,
when µ = θ, the process is symmetric, when θ < µ, the process is skewed to the right and
when θ > µ, the process is skewed to the left. Moreover, when ν increases the process
will have heavier tail or tails and higher peak (kurtosis). It is worth mentioning that
when ν = 0, the model reduces to the Vasicek model. Figure 4.11 illustrates these claims
based on the simulation results using different parameter settings.

Let y = ϕ(x) =
∫

dx√
ν2(x−θ)2+1

= sinh−1(ν(x−θ))
ν

and applying Itô’s lemma, we derive:

dYt =

{
κ(µ− θ)sech(νYt) −

(
κ

ν
+ σ2ν

)
tanh(νYt)

}
dt+ σ dWt, (4.60)

If θ = µ, the SDE will be symmetric and will be simplified in the form as follows:

dYt = −
(
κ

ν
+ σ2ν

)
e2νYt − 1

e2νYt + 1
dt+ σ dWt, (4.61)
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Figure 4.11: The empirical distributions using the three different parameter settings for
the generalized on-factor mean-reverting process. We simulated 10,000 paths where the
∆t = 1

252
, and T = 5 are considered using identical random generated numbers.

4.8.1 The Stationary Solution

Consider a stochastic differential equation as follows:

dXt = µ(Xt) dt+ σ(Xt) dWt. (4.62)

When this stochastic process 4.62 satisfies some relatively simple conditions, the process
has a unique limiting distribution (stationary distribution) of XT as T approaches infinity
(see McLeish (2005) for more detail) where the distribution is in the following form:

Pst(x) =
1

c σ2(z)
exp

(
2

∫ x

0

µ(z)

σ2(z)
dz

)
, (4.63)

where c is the normalization constant equal to:

c =

∫ ∞
−∞

1

σ2(z)
exp

(
2

∫ x

0

µ(z)

σ2(z)
dz

)
dx <∞, (4.64)
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Based on this definition, we derive the stationary solution for the mean-reverting
process defined in equation 4.59 as follows:

Pst(x) =

exp

{
2κ
σ2

(
(µ−θ) arctan(ν(x−θ))

ν
− ln(ν2(x−θ)2+1)

2 ν2

)}
c σ2(ν2(x− θ)2 + 1)

, (4.65)

where c equals to:

c =

∫ ∞
−∞

exp

{
2κ
σ2

(
(µ−θ) arctan(ν(x−θ))

ν
− ln(ν2(x−θ)2+1)

2 ν2

)}
σ2(ν2(x− θ)2 + 1)

dx, (4.66)

To derive c, we first change variables (u = arctan(ν(x − θ))) in the integral, then use
Mathematica to obtain c as follows:

c =
ν

κ
i−

2κ
σ2ν2 2−

2κ
σ2ν2−1

i 2κ
σ2ν2

 2F1

(
− 2κ
σ2ν2 ,

iκ(µν−θν+i)
σ2ν2 , σ

2ν2+iκ(µν−θν+i)
σ2ν2 ,−1

)
µν − νθ + i

−

2F1

(
− 2κ
σ2ν2 ,

κ(−iµν+iθν−1)
σ2ν2 , σ

2ν2+κ(−iµν+iθν−1)
σ2ν2 ,−1

)
µν − νθ − i

+

Γ

(
2κ

σ2ν2
+ 1

)
Γ
(
σ2ν2+iκ(µν−θν+i)

σ2ν2

)(
sinh

(
πκ(µ−θ)
σ2ν

)
− cosh

(
πκ(µ−θ)
σ2ν

))
(µν − νθ + i)Γ

(
σ2ν2+κ(1+iµν−iθν)

σ2ν2

) +

Γ
(
σ2ν2+κ(−iµν+iθν−1)

σ2ν2

)(
sinh

(
πκ(µ−θ)
σ2ν

)
+ cosh

(
πκ(µ−θ)
σ2ν

))
(µν − νθ − i)Γ

(
σ2ν2+κ(1−iµν+iθν)

σ2ν2

)

 . (4.67)

where

2F1(a, b, c, z) is the the hypergeometric function and defined as:

2F1(a, b, c, z) =
∞∑
k=0

(a)k(b)kz
k

(c)k k!

(a)0 = 1, (a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1),
Notice that the definite integration of this real-valued function is a complex answer,
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which does not sound quite right. However, when the result is numerically evaluated,
the complex component is infinitesimally zero and such a tiny imaginary component
is caused by round-off error. This is because Mathematica deploys a set of symbolic
methods in the more general complex domain. Since calculation of this analytical result
is more complicated than calculating the original integral 4.66 numerically, we prefer
numerical computation of the integral over evaluating the expression 4.67. Figure 4.65
shows the stationary distribution for this mean-reverting process given in equation 4.59
in which its derived stationary solution is in equation 4.65. By looking at these graphs,
we can see that the stationary distribution in this example is skewed to the left. The

long-run mean, the variance, the skewness γ1 = E[X3]−3E[x]V ar(X)−(E[X])3

(V ar(X))
3
2

, and the excess

kurtosis γ2 =
E[(X−E[X])4]

σ4 − 3 of the stationary distribution 4.65 can be easily calculated
numerically.
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Figure 4.12: The plot depicts the stationary solutions (distributions) for this mean-
reverting process given in the SDE form in equation 4.59 in which its derived stationary
solution is in equation 4.65. Here, we have set κ = 1, µ = 1, σ = 1, ν = 0.4 and θ = 2.

4.8.2 Parameter Estimation

This new mean-reverting SDE 4.59 is a nonlinear diffusion with a unique but unknown
transition density. As a result, we are restricted to apply numerical or approximation
methods. As we explained in 2.4.1, the new local linearization method introduced by
Shoji and Ozaki (1998) is a strong approximation method that can be applied to the fairly
general one-dimensional dynamics in the form 2.49 with given conditions. Therefore, since
this new mean-reverting process 4.59 is in the required form and meets all conditions,
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we can deploy this method to estimate the model’s parameters. As it was reviewed this
method in 2.4.1, the SDE should be transferred to the more tractable process in the form
as follows:

dYt = h(Yt, t,θ) dt+ σ dWt. (4.68)

This form was derived for this new mean-reverting model 4.59 in equation 4.60. Here

h(y, t,θ) = κ(µ − θ)sech(νy) −
(
κ
ν

+ σ2ν
)

tanh(νy) and y = ϕ(x) = sinh−1(ν(x−θ))
ν

. Then
the SDE 4.68 was linearized in the following bilinear SDE when t ∈ [s, s+ ∆s):

dYt = (LsYt +Mst+Ns) dt+ σ dWt, (4.69)

where Ls, Ms, and Ns are constant and equal:

Ls =
∂h(Ys, s,θ)

∂y
,

Ms =
σ2

2

∂2h(Ys, s,θ)

∂y2
+
∂h(Ys, s,θ)

∂t
,

Ns = h(Ys, s,θ) − Ys
∂h(Ys, s,θ)

∂y
− sMs.

Here, the first derivatives with respect to y and t and second derivatives with respect to
y of h(y, t,θ) are as follows:

∂h(Ys, s,θ)

∂y
=

−κ(µ− θ)
Ys
√

1− ν2Y 2
s

− κ+ ν2σ2

1 + ν2Y 2
s

,

∂h(Ys, s,θ)

∂t
= 0,

∂2h(Ys, s,θ)

∂y2
=

κ(µ− θ)(1− 2ν2Y 2
s )

Y 2
s (1− ν2Y 2

s )
3
2

+
2ν2(κ+ ν2σ2)Ys

(1 + ν2Y 2
s )2

.

In section 2.4.1, we show that the conditional distribution of Yt given Ys is normally
distributed with mean and variance as follows:

Es = E[Yt |Ys] = Ys +
h(Ys, s,θ)(eLs(t−s) − 1)

Ls
+
Ms(e

Ls(t−s) − 1− Ls(t− s))
L2
s

,(4.70)

Vs = V ar[Yt |Ys] =
σ2

2Ls
( e2Ls (t−s) − 1 ). (4.71)

Thus, using transformation rule in probability density, we obtain the conditional
distribution of Xt given Xs as follows:

fXt|Xs(xt) =
1

√
2ΠVs

√
1 + ν2(xt − θ)2

exp

−
(

sinh−1(ν(xt−θ))
ν

− Es
)2

2Vs

 , (4.72)
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where Es and Vs are given in equations 4.70 and 4.71 respectively and can be evaluated

at xs using Ys = ϕ(xs) = sinh−1(ν(xs−θ))
ν

.
Notice that if we substitute µ∗ = µ−λ, λ may be interpreted as the market price of risk.
For µ in equation 4.59 and all related formulas, the results will be under the risk neutral
measure Q.
Using the distribution of Xt | Xs in this model for observations series {x1, x2, · · · , xn},
its log-likelihood function can be expressed as follows (see Shoji and Ozaki (1998) for
more details):

lnL(θ | x1 , x2 , · · · , xn) = −1

2

n−1∑
i=1


(

sinh−1(ν(xi+1−θ))
ν

− Ei
)2

Vi
+ ln(2ΠVi)

+

ln(f(x1))− 1

2

n−1∑
i=1

ln(1 + ν2(xi − θ)2). (4.73)

4.8.3 The Futures Spread Price

Let DF (s , T , Xs) to be the futures price for the spread with maturity T at time s.
Consider the interest rate and the market price of risk to be constants. Therefore, the
expected value of the spot spread price at time s under the risk neutral measure is
the futures (forward) spread price. Unfortunately, the transition density of this model
is unknown; therefore, the new local linearization method was used to approximate the
transition density, given in equation 4.72. Using this transition density, the futures spread
price can be approximated as follows:

DF (s , T , Xs) = EQ[XT | Xs ] =

∫ ∞
−∞

x

exp

−
(

sinh−1(ν(x−θ))
ν

−E∗s
)2

2V ∗s

√
2ΠV ∗s

√
1 + ν2(x− θ)2

dx

=
e
ν(−2Es+νV ∗s )

2 (e2νE∗s − 1)

2ν
+ θ, (4.74)

where E∗s and V ∗s are derived using equations 4.70 and 4.71 respectively when µ∗ = µ−λ
is substituted for µ.

4.9 One-factor Regime Switching Model

Many financial and economic variables respond abruptly to some major events including
financial crises (recession), major political decisions (quantitative easing), or natural
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disaster (earthquake) causing a significant behavioral changes. Political instabilities or
tensions in major crude oil producers and exporters will cause abrupt crude oil price
increase, and rise its volatility. It is a commonly accepted fact that many economic and
financial time series behave very differently in each business cycles namely expansion
(boom), medium, or contraction (recession) (see Hamilton (2008)). In constructing a
model for asset prices, each business cycle can be considered as a regime (state). Hidden
Markov Models (HMM) (for more details see Elliott et al. (1995) and Cappe et al. (2005))
or Regime-Switching Models (RSM) are increasingly deployed in different subjects such
as finance, economics, psychology, speech recognition, and genetics by scholars and can
capture these abrupt behavioral changes in the term structures. Some applications of
hidden Markov models can be found in studies such as Erlwein and Mamon (2009).
Here, we will deploy the regime-switching model in which the spread between WTI and
Brent crude oil follows our GOFMRM term structure in each regime. Figure 4.10 clearly
illustrates that in early 2011, there was fundamentally abrupt structural changes in the
observed spread (Section 4.5 provides some reasons for these changes). One can see that
prior to 2011, the constant assumption of volatility in both one Elliott et al. (2005) and
two Dempster et al. (2008) factor models is not quite an appropriate assumption; however,
this new one factor model can capture this phenomena. Assume zk to be a homogenous
Markov chain with a finite state {s1, s2, . . . , sn} in discrete time (k = 0, 1, 2, . . . ) and has
dynamics as follows:

zk+1 = Πzk + ζk, (4.75)

where ζk is the martingale increment (E[ζk|Fk−1] = 0) and Π = (πij) is the transition
probability matrix.
Each state in the Markov chain si can be presented with the canonical basis ei ∈ <n,
where ei is the unit vector taking 1 in the ith position and 0 elsewhere i = 1, 2, . . . , n.
We consider < zk, ei >= 1{zk=ei} to express each zk in canonical basis, where < ., . >
presents the ordinary Euclidean scalar product in <n. For instance, if n = 2, < zk, e1 >
and< zk, e2 > represent two different states in the model. Let κ = (κ1, κ2, . . . , κn)T , µ =
(µ1, µ2, . . . , µn)T ,σ = (σ1, σ2, . . . , σn)T , ν = (ν1, ν2, . . . , νn)T and θ = (θ1, θ2, . . . , θn)T

to be the new mean-reverting model’s parameters in regime switching form. Here, T
represents matrix transposition. To simplify the notation, we also assume κ(zk) =<
κ, zk >, µ(zk) =< µ, zk >, σ(zk) =< σ, zk >, ν(zk) =< ν, zk >, and θ(zk) =<
θ, zk >. This assumptions lead that this generalized mean-reverting dynamics to be
expressed in regime switching form as follows:

dXt = κ(zt)
(
µ(zt) − Xt

)
dt+ σ(zt)

√
ν(zt)2(Xt − θ(zt))2 + 1 dWt. (4.76)

It follows from the explanations in this section and section 4.5 that the behavior of the
spread between WTI and Brent crude oils made a fundamental structural change in early
2011. Consequently, the spread switched to a new regime and has stayed in this new
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regime since. In a general regime-switching algorithm, at any given time, there is always
the possibility to switch from one regime to another based on the transition probability
matrix. However, based on the empirical observations, it is assumed that there are
two regimes and it is exactly known to which regime each observation belongs. This
observation considerably simplifies the calibration of the model. As a result, to calibrate
the model, we merely first fit the daily spread observations between WTI crude oil and
Brent oil from April 1994 to December 2010 to this new generalized mean-reverting
process and it is considered as first regime and then separately fit the daily observations
between WTI crude oil and Brent oil from January 2011 to November 2013 to the model
and it is considered as a second regime. This exclusive property of this spread enable
us to implement the regime switching model without using actual a regime switching
algorithm. Therefore, it is not necessary to discuss the regime switching algorithm in
further detail here and interested readers can be referred to Elliott et al. (1995) and
Cappe et al. (2005). It is required to emphasize that although we explained the regime
switching algorithm, the way the model was implemented, the structural break model
was really deployed not regime switching algorithm.

4.9.1 Empirical Results

The spot spread (front contracts spread) between WTI and Brent crude oils from April
1994 to November 2013 is considered. Here we compare the two models, and Elliott et al.
(2005)’s one-factor model, Vasicek, reviewed in section 4.3, and the new mean-revering
process, introduced in this section using regime switching algorithm. It will be shown
which one can capture this spread process properties. The new local linearization method
(2.4.1) is deployed to estimate the parameters of the Vasicek and the generalized mean-
revering models for the daily spread between WTI and Brent crude oils from April 1994
to December 2010 for the first regime and applied to the observed data from January
2011 to November 2013 to estimate the second regime parameters in both methods. The
calibration results in both regimes for both models applied to our dataset are summarized
in table 4.7.

4.9.2 Goodness of Fit

Whether this generalized one-factor mean-reverting process can capture the reality of
the spread process better than the Vasicek process or not is the question of section. The
estimation results with the tests results for goodness of fit is summarized in table 4.7 for
the observed spread series between WTI and Brent oils in two regimes. It is seen that
both AIC and BIC values in both regimes confirm the superiority of this generalized
mean-reverting model over the Vasicek model and this new model especially leads the
Vasicek in first regime. Figure 4.13 demonstrates the comparisons results for the fitted
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Table 4.7: Estimated parameters for two processes: generalized mean-reverting and Va-
sicek one-factor models using daily spread between WTI and Brent oils in two regimes
when first regime observations are from April 1994 to December 2010 and second regime
observations are from January 2011 to November 2013.

Model Regime κ µ σ ν θ -2 logl2 AIC3 BIC4

New MR First 7.054 1.573 4.215 1.254 1.455 4564.6 4574.6 4581.2
Process Second 3.444 -15.840 12.415 0.054 -2.444 2008.1 2018.1 2021.3
Vasicek First 15.923 1.105 9.468 - - 7250.3 7256.3 7267.0
Process Second 3.970 -15.886 15.485 - - 2035.6 2041.6 2048.8

Note: 1-Log-likelihood, 2-Akaike information criterion, 2- Bayesian information criterion.

models in both regimes for both models based on estimated parameters summarized in
table 4.7: The left plot depicts comparison between the empirical density for the observed
daily spread between WTI and Brent crude oils data (April 1994 to December 2010) in
first regime with the fitted stationary distributions of these two models: Vasicek and
generalized one-factor mean-reverting. The right plot shows the comparison between the
empirical density for the observed daily spread between WTI and Brent crude oils data
(January 2011 to November 2013) in second regime with the fitted stationary distribu-
tions of these two models. These subplots of figure 4.13 show how this new powerful
dynamics captures the main attributes of the observed data in both regimes especially
in the first regime.

4.10 Conclusion:

In this chapter, we described three main approaches to pricing a spread process namely
cointegration, one-factor and two-factor models. We apply these three models to our real
empirical sample data and compare the results. Later, we analyze the recent behavioral
change in the location spread between WTI crude oil and Brent oil. Since these models
are not flexible enough to capture all behavior changes, we extend the one-factor and
two-factor spread models by adding a compound Poisson process where jump sizes follow
a double exponential distribution. However, the implementation of these two processes
with jumps are left for future studies. Later, the generalized one-factor mean-reverting
dynamics is introduced to capture the major properties of spread processes, compared to
Vasicek process and showed the new model’s absolute superiority by fitting to the spread
between WTI and Brent oils. Since the spread between WTI and Brent in observed data
is experienced fundamental change in early 2011, the generalized model and Vasicek
process are deployed in regime switching framework by considering two regimes. The
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Figure 4.13: The left plot depicts comparison between the empirical density for the ob-
served daily spread between WTI and Brent crude oils data (April 1994 to December
2010) in first regime with the fitted stationary distributions of these two models: Vasicek
and generalized one-factor mean-reverting. The right plot shows the comparison between
the empirical density for the observed daily spread between WTI and Brent crude oils
data (January 2011 to November 2013) in second regime with the fitted stationary dis-
tributions of these two models. The fitted parameters are summarized in table 4.7 in
both regimes.

estimation results are fully justified applying the regime switching algorithm. The AIC
and BIC criteria in both regimes choose this new generalized model. In chapter 5, we will
introduce a novel mean-reverting random walk, obtain its continuous stochastic process,
generalized the continuous dynamics, and apply to empirical data to show the flexibility
of the model and its advantages over the Elliott et al. (2005)’s one-factor model.



Chapter 5

MODELING ENERGY SPREADS
WITH A NOVEL
MEAN-REVERTING
STOCHASTIC PROCESS

5.1 Introduction

There are well developed futures markets for crude oil, in various grades, delivered at
various locations, and delivered at various dates. Market participants often trade spreads
between these futures because of the fundamental relationships between them. The main
concept behind the spread trading strategy relies on fluctuation about the equilibrium
level (long-run mean) of the spread process. In other words, mean-reversion is the most
important property of the spread process that makes market participants consider tak-
ing advantage of it. In spread trading, we construct a portfolio of two commodities
that are closely related to each other and have similar characteristics. In some cases
as, for instance, the spread between West Texas Intermediate (WTI), low-sulfur, a low-
density crude oil priced in Cushing, Oklahoma and West Texas Sour (WTS), high-sulfur,
a medium-density crude oil priced in Midland, Texas, the underlying commodities fulfill
nearly identical needs. The spread trading belongs to the market neutral class of trading
strategies. This is because its return is largely independent of the market return (for
more details see Vidyamurthy (2004)). The fundamental base for the spread trading,
known as pairs trading in stock markets, is relative pricing. The choice of assets used
in pairs trading is based on the philosophy “if it walks like a duck and quacks like a
duck, it must be a duck”. In other words, pick assets with similar characteristics. In
fact, a comprising the difference portfolio of two similar assets the price of which devi-
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ate from their historical equilibrium level known as the long-run mean is constructed.
The portfolio involves a short position in the overpriced and a long position in the un-
derpriced security with a predetermined ratio or hedging ratio. In spread trading, the
hedging ratio is sometimes known and need not be estimated. The location spread (e.g.
spread between WTI and Brent crude oils) and calendar spread (e.g. spread between
two futures prices with different expiries for WTI) are other examples in the energy mar-
kets. Spread trading can also be used for hedging purposes. For instance, refineries use
various crack spreads (spread between crude oil and refined products) to hedge against
exposure to the price risk between their input; output commodities. One simple way to
model a spread portfolio is to consider each underlying commodity’s spot prices sepa-
rately, for instance, to follow the classical two-factor model introduced by Gibson and
Schwartz (1990) where their returns are correlated. However, due to high volatility of
energy markets, Alexander (1999) shows that a constant correlation assumption is not
quite appropriate. Other classical methods to model the spread are based on long-term
relationship between underlying equities or commodities known as cointegration. Two
unit-root processes (integrated of order 1) are called cointegrated if a linear combina-
tion of them that is a stationary process exists. If two securities or commodities are
cointegrated, their spread can be modeled directly. However, the cointegration based
models may fail to capture all properties of some spread processes (e.g. spread between
WTI and Brent crude oils) in energy markets. The Vasicek process is another trivial
stochastic model to capture an essential property of the spread process, mean-reversion.
Elliott et al. (2005) introduced the Vasicek process to model the spread process in eq-
uity markets. However, in section 5.3, we will show that the Vasicek dynamics cannot
fully describe the reality of the spread process. Dempster et al. (2008) also proposed a
two factor model to model the spot spread process in energy markets to evaluate spread
options. In this study, we introduce a one-factor mean-reverting process to capture not
only the mean-reverting property of the spread process, but also the skewness, the heavy
tails and the kurtosis features of the spread process. This chapter is organized as follows:

In section 5.2, we empirically analyze the observed spread between WTI and WTS
crude oils. We review Elliott et al. (2005)’s one-factor Vasicek-like model and list its
advantages and disadvantages in section 5.3. In section 5.4, we define the contempo-
rary mean-reverting random walk. In section 5.5, we derive the scaling limit of this
mean-reverting RW and find its stochastic process. The new mean-reverting process
is compared to Elliott et al. (2005)’s one factor model and its advantages are listed in
section 5.6. Section 5.7 reviews the new local linearization method introduced by Shoji
and Ozaki (1998) to estimate parameters of this nonlinear stochastic process. In section
5.8, we deploy both models: the new one factor mean-reverting model and the Vasicek
process, to price the spread between WTI and WTS crude oils. Using both observed and
estimated results, we discuss which process can better describe the reality of the spread
process.
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5.2 Empirical Analysis of The Spot Spread Process

The West Texas Intermediate (WTI) crude spot prices are unobservable, but the front
month futures prices are commonly considered as approximation of the spot prices for
WTI crude oil. In this paper, Chicago Mercantile Exchange (CME) daily futures prices
(the front contract) of WTI crude oil and CME spot prices of West Texas Sour (WTS)
oil are used from January 2000 to January 2013 (Bloomberg (2014)). Figure 5.1 depicts
the daily front contract of WTI crude oil prices and spot WTS crude oil prices and
their spread series. The spread dataset is summarized in table 5.1 and the spread’s
empirical density plotted in figure 5.2. Both the summarized data and the empirical
density evidently show that the spread series is right skewed and leptokurtic. Although it
is generally accepted that WTI crude oil and WTS crude oil are unit root processes (I(1))
(see e.g. Dempster et al. (2008)), we apply the augmented Dickey-Fuller test (ADF) and
Elliot, Rothenberg & Stock test (ERS) tests to test for the unit root in WTI and WTS oils
price series. The null hypothesis in both tests is that the series contains a unit root. The
results of the tests are summarized in table 5.2. Both unit root tests for each WTI and
WTS price series confirm that the null hypothesis should not be rejected in favor of the
alternative hypothesis at one percent level of significance. Figure 5.3 illustrates the mean-
reversion property of the observed spread dataset using two subplots: the difference of
standardized spread vs standardized spread and average of partitioned difference spread
vs average of partitioned standardized spread. The spread series also seems to show that
when the WTI and WTS prices increase, their spread becomes more volatile although
this conclusion is drawn from the 2008 to 2010 financial crisis must be interpreted with
caution. Their spread also starts widening in favor of WTI due to higher quality (lighter
and lower in sulfur) of WTI. This phenomena can generate right skewness.

Table 5.1: The summarized information of the observed dataset (the daily spread between
WTI and WTS from January 2000 to January 2013.

Min. 1st Qu. Median Mean 3rd Qu. Max. Skew. E. Kurtosis
-0.540 1.840 2.700 3.146 4.300 10.750 0.873 0.663

5.3 One Factor Model for the Spread Process:

The Vasicek process was initially proposed by Vasicek (1977) to model the evolution
of short interest rates so as to capture one crucial feature of such rates, their mean-
reversion. Under the Vasicek process, interest rates can become negative in principle,
which at one time was considered to be a major disadvantages when the process is used to
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Figure 5.1: The daily front contract of WTI crude oil prices and spot WTS crude oil
prices and their spread series from January 2000 to January 2013 (price in $/barrel).

Table 5.2: Unit root tests for daily WTS spot prices and WTI front daily contracts future
price series and their differenced series from January 2000 to January 2013.

Series ADF test (CV) ERS test (CV)
t-Stat 1pct 5pct 10pct t-Stat 1pct 5pct 10pct

WTS -1.2566 -3.46 -2.88 -2.57 17.4293 1.99 3.26 4.48
∆WTS -40.2462 -2.58 -1.95 -1.62 0.015 1.99 3.26 4.48
WTI -1.2424 -3.46 -2.88 -2.57 19.1049 1.99 3.26 4.48
∆WTI -41.0425 -2.58 -1.95 -1.62 0.0179 1.99 3.26 4.48

model interest rates. However, this is not a disadvantage, but rather an essential feature
to model spread processes. Because of this and because of its simplicity and analytical
tractability, Elliott et al. (2005) proposed that the spread dynamics follows the Vasicek
process. In this model, the spot spread, Xt is the only factor (state variable) and is
assumed to follow the Vasicek stochastic process as follows:

dXt = κ (µ − Xt) dt+ σ dWt, (5.1)

where the model assumes that the linear combination, Xt evolves as an Ornstein-
Uhlenbeck process with constant coefficients, κ > 0 is the speed of mean-reversion, µ
is the long-run spread mean, σ is the volatility of the process, and dWt is the increment
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Figure 5.2: The plot depicts the empirical density of the observed daily spread between
WTI and WTS crude oil from January 2000 to January 2013.

of a standard Brownian motion. By applying Ito’s lemma, it is easy to show that the
stochastic differential equation (SDE), 5.1 for any s (0 < t ≤ s) has a solution as follows:

Xs = e−κ (s−t) Xt + µ ( 1 − e−κ (s−t) ) + σ e−κ s
∫ s

t

eκudWu. (5.2)

Equation 5.2 shows that the conditional distribution of XT given Xt is normally
distributed with mean and variance:

E[XT | Xt ] = e−κ (T−t) Xt + µ ( 1 − e−κ (T−t) ), (5.3)

V ar[XT | Xt ] =
σ2

2κ
( 1 − e−2κ (T−t) ). (5.4)

Elliott et al. (2005) pointed out that the method has advantages including capturing
mean-reversion, the fundamental property of pairs trading strategy, considering time
continuous process for the spread process and tractability of the method (the parameters
can easily be estimated using the Kalman filter algorithm). However, there are some
convincing reasons why this method cannot be applied to most commodities spread
processes. The underlying commodities (future) prices in the spread process rapidly
respond to eventful market news. These events sometimes highly impact one of the
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Figure 5.3: Left panel is difference of standardized spread ( spread−µ(spread)
σ(spread)

) vs standardized
spread, showing slight evidence of mean-reversion. To show the pattern more clearly, we
binned the horizontal axis into 25 bins of equal width; calculate the average of the points
in the bins in right panel. This shows mean-reversion more clearly.

underlying prices and have less impact on the other one causing the volatility of the
spread process to increase. This phenomenon can be tracked in the form of skewness,
kurtosis, heavy tails in the transition density of the price spread process, and the empirical
results discussed in section 5.2 confirm this claim. To model the spread dynamics, we
propose a new mean-reverting process to resolve these issues with of Elliott et al. (2005)’s
model. Without sacrificing simplicity; its small number of parameters, we will, as shown
below have to sacrifice some analytical tractability. We first construct its random walk
model in section 5.4. Then we derive its continuous stochastic form and its generalized
dynamics in sections 5.5 and 5.6 respectively.

5.4 Mean-reverting Random Walk:

A random walk (RW) is a mathematical mechanism to model a path based on a succes-
sion of random steps. A random walk can be applied to trace the behavior of various
paths including the evolution of stock prices, the financial status of a gambler, a drunk-
ard walking, and a molecule traveling in liquid. Random walks are deployed in many
sciences such as finance, physics, economics, and computer science to capture behaviors
of various processes. Random walks have various forms and are usually considered as
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Markov chains, but sometimes can define more complicated walks. Random walks can
occur in one, two, or many dimensions. Moreover, random walks may change based on
the time parameters. For example, simple discrete time walks are indexed by the nat-
ural numbers while some sophisticated walks can be assumed to take steps at random
times. Here, we construct a walk that is mean-reverting. In this mean-reverting RW, we
define the probabilities of taking each step either forward or backward to depend on the
current location of the walker. When the walker diverges from the mean, by changing
the probabilities of traveling forward and backward, the walker will tend to revert back
to the mean, which means that the force will be stronger as the walker deviates further
away from the mean. Let Si be the position at ith step and let Pi be the probability of
moving right when we take ith step. We update the probabilities of moving to right or
left based on following function:

Pi(right) =


1

2 + aSi−1

, if Si−1 ≥ 0

1 − 1

2 − aSi−1

, elsewhere

=


1

2
− aSi−1

2(2 + aSi−1)
, if Si−1 ≥ 0,

1

2
− aSi−1

2(2 − aSi−1)
, elsewhere,

(5.5)
where
Si−1 ∈ Z is the current location,
a ≥ 0 is the mean-reversion speed.

We can see as Si−1 increases the probability of going right decreases and vice versa.
When Si−1 approaches infinity, Pi approaches zero. As a decreases, positive Pi decreases
or negative Pi increases with lower speed and approaches to a simple random walk as a
approaches to zero. Consider n be the number of steps taken and let each step to be +1
or −1. Then the number of possible different paths that can be traveled will be 2n. The
number of walks that satisfy Sn = k where k > 0 equal to the number of ways of choosing
(n + k)/2 elements from an n element set (for this to be non-zero, it is necessary that
n+ k be an even number),

(
n

(n+k)/2

)
. Note that for simple random walk the P (Sn = k) is

equal to 2−n
(

n
(n+k)/2

)
. Here, in this new setting, the probability changes according to the

location; as a result, each path to reach k from origin in n walks has its own probability
and may be different from another path. One evident but impractical way to calculate
this probability is to calculate the probability for every possible path and sum them up
to come up with the P (Sn = k).

Lemma 5.4.1. The mean-reverting random walk generated by the transition probability
function 5.5 is symmetric:

We need to show that P (Sn = k) = P (Sn = −k) where k > 0. To show this it is sufficient
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to prove that for any arbitrary path, R = {0 → k1 → k2 · · · → kn−1 = k − 1 → k} that
reaches k starting from origin, there exists a corresponding path, R− = {0 → −k1 →
−k2 · · · → kn−1 = −k + 1 → −k} to reach −k starting from origin with identical proba-
bility. To build path R− from path R, we start from origin and in each step of path R, we
take a step for R− in opposite direction so by continuing this method at any given stage
of building the paths, the locations in the paths have identical distances but opposite di-
rection from origin. Clearly, based on the definition of the transition probability function
5.5, the probabilities of path R and R− are equal.

5.5 Mathematical Derivation of Continuous-time Form

We attempt to derive probability of being in location k after taking n steps, P (k , n). We
obtain the difference equation to calculate P (k , n) for k ∈ {−n,−n + 2, · · · , n − 2, n}
as follows:

P (k , n) =



(
1

2
+

a(k + 1)

2(2 + a(k + 1))

)
P (k + 1 , n− 1) +(

1

2
− a(k − 1)

2(2 + a(k − 1))

)
P (k − 1 , n− 1), if k ≥ 1,(

1 + a

2 + a

)
P (1 , n− 1) +(

1 + a

2 + a

)
P (−1 , n− 1), if k = 0,(

1

2
+

a(k + 1)

2(2 − a(k + 1))

)
P (k + 1 , n− 1) +(

1

2
− a(k − 1)

2(2 − a(k − 1))

)
P (k − 1 , n− 1), if k ≤ −1,

(5.6)

where {
P (0 , 0) = 1,

P (k , 0) = 0 for k 6= 0.

It might be easier to solve this difference equation, (5.6) by transforming to continuous
form and attempting to solve its corresponding partial differential equation (PDE). To
do so, we define step size as ∆x taking each ∆t time. But before we proceed, we must
modify the probabilities of moving right or left in equation 5.5 such that to be applicable
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in continuous form as follows:

P (right) =


1

2
− ax

2(2 + ax)

∆t

∆x
, if x ≥ 0,

1

2
− ax

2(2 − ax)

∆t

∆x
, elsewhere,

(5.7)

Note that at given arbitrary location x, the probability of moving right, Pr =
1
2
− ax

2(2 + a|x| ) and the probability of moving left, Pl = 1
2

+ ax
2(2 + a|x| ) lead to an aver-

age drift of Pr − Pl = −ax
2 + a|x| space steps per time step. In other words, a speed of{

−ax
2 + a|x|

∆x
∆t

}
. That is all fine as long as we keep the time and space steps the same.

But it leads us into problems when we refine the grid by taking the limit as ∆x → 0
and ∆t → 0. We observe that we want to make the mean speed the same no matter
what time step we pick. To get that we write Pr = 1

2
− ax∆t

2∆x(2 + a|x| ) and similarly for

Pl = 1
2

+ ax∆t
2∆x(2 + a|x| ) . This will give us a net speed of −ax∆t

∆x(2 + a|x|)
∆x
∆t

= −ax
2 + a|x| , independent

of the discretization. In the original integer lattice setting, we do not see this because
∆t = ∆x = 1, so it does not make any difference. As we can see, this mean-reverting
random walk resembles a single random walk with drift. The probability that a particle
is at location x = k∆x at time t = n∆t, where k ∈ Z and n ∈ Z+ is:

P (x , t) =



(
1

2
+

a(x + ∆x)

2(2 + a(x + ∆x))

∆t

∆x

)
P (x+ ∆x , t−∆t) +(

1

2
− a(x − ∆x)

2(2 + a(x − ∆x))

∆t

∆x

)
P (x−∆x , t−∆t), if x > 0,(

1

2
+

a(x + ∆x)

2(2 − a(x + ∆x))

∆t

∆x

)
P (x+ ∆x , t−∆t) +(

1

2
− a(x − ∆x)

2(2 − a(x − ∆x))

∆t

∆x

)
P (x−∆x , t−∆t), if x < 0,

(5.8)

Equivalently, equation 5.8 can be written in the following general form for arbitrary
x ∈ <:

P (x , t) =

(
1

2
+

a(x + ∆x)

2(2 + a | x + ∆x |)
∆t

∆x

)
P (x+ ∆x , t−∆t) +(

1

2
− a(x − ∆x)

2(2 + a | x − ∆x |)
∆t

∆x

)
P (x−∆x , t−∆t), (5.9)
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To calculate P (x , t+ ∆t) for arbitrary (x ∈ <), we deploy equation 5.9 as follows:

P (x , t+ ∆t) =

(
1

2
+

a(x + ∆x)

2(2 + a | x + ∆x |)
∆t

∆x

)
P (x+ ∆x , t) +(

1

2
− a(x − ∆x)

2(2 + a | x − ∆x |)
∆t

∆x

)
P (x−∆x , t) (5.10)

or equation 5.10 can be written in the form as follows:

P (x , t+ ∆t) =
1

2

[
P (x+ ∆x , t) + P (x−∆x , t)

]
+

∆t

2 ∆x

[
f(x+ ∆x , t) − f(x−∆x , t)

]
, (5.11)

where f(x , t) =
(

ax
2 + a|x|

)
P (x , t).

Now, we expand all terms on both side of equation 5.11, in a Taylor series as follows:

P (x , t+ ∆t) = P (x, t) +
∂P (x, t)

∂t
∆t +

1

2

∂2P (x, t)

∂t2
∆t2 + O(∆t3),

1

2

[
P (x+ ∆x , t) + P (x−∆x , t)

]
= P (x, t) +

1

2

∂2P (x, t)

∂x2
∆x2 + O(∆x4),

∆t

2 ∆x

[
f(x+ ∆x , t) − f(x−∆x , t)

]
=

∆t

∆x

{
∂f(x, t)

∂x
∆x + O(∆x3)

}
, (5.12)

we plug the results in equation 5.12 into equation 5.11 and after simplifying and dividing
both sides by ∆t , we have:

∂P

∂t
+

∂2P

2∂t
∆t + · · · =

∂

∂x

{
ax

2 + a | x |
P

}
+

1

2

∂2

∂x2

{
P

∆x2

∆t

}
+ · · · (5.13)

For this approach to work, we must take the limit in equation (5.13) as ∆x→ 0 and as
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∆t→ 0 in a particular way such that:

D = lim∆x,∆t→0
∆x2

∆t
, some number D.

Therefore, the resulting PDE for arbitrary x ∈ < is:

∂P (x , t)

∂t
= − ∂

∂x

(
−ax

2 + a | x |
P (x , t)

)
+
D

2

∂2P (x , t)

∂x2
. (5.14)

It is now easy to generalize the PDE in equation 5.14 by including another parameter
κ > 0, to have another control for mean-reverting speed for arbitrary x ∈ <, as follows:

∂P (x , t)

∂t
= − ∂

∂x

(
−κax

2 + a | x |
P (x , t)

)
+
D

2

∂2P (x , t)

∂x2
, (5.15)

where the boundary conditions and the initial condition are as follows:

lim
x→±∞

P (x , t) = lim
x→±∞

∂P (x , t)

∂x
= 0,

P (x , t = 0) = δ(x), (5.16)

and δ(x) is the Dirac delta function

(
δ(x) = limε→0

1
ε
√

2π
exp

(
−x2

2ε2

))
.

5.5.1 The Fokker Planck Equation

The Fokker Planck equation (FPE) provides a practical methods for stochastic modeling
in wide range of studies including finance, physics, and biology Risken (1989). The FPE
describes the probability density function that evolves in time (the continuous stochas-
tic process) as a partial differential equation. The general one-dimension FPE for the
probability density function, P (x , t) is in the following generic form:

∂P (x , t)

∂t
= − ∂

∂x

[
µ(x, t)P (x , t)

]
+

1

2

∂2

∂x2

[
D(x, t)P (x , t)

]
, (5.17)

where µ(x, t) is the drift or force and D(x, t) is the diffusion coefficient.
The stochastic differential equation (SDE) for this P (x , t) is in the following form:

dXt = µ(Xt, t) dt+
√
D(Xt, t) dWt. (5.18)

Therefore, the equivalent SDE for our FPE in equation 5.15 is given:

dXt =
−κaXt

2 + a | Xt |
dt+ σ dWt, (5.19)
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where κ, a and σ > 0, and dWt is the increment of a standard Brownian motion.
The SDE in equation 5.19 is clearly mean-reverting since the drift is always the opposite
sign to the location of the particle. The drift also increases with the distance of the
particle to the origin, although it reaches a limit. Figure 5.4 depicts comparison between
simulated probability density functions of Xt for the SDE in equation 5.18 for given
parameters. By looking these graphs, we can see that as we decrease a, the distribution
approaches to normal and as we increase a , the distribution has higher peak and thinner
tails comparing to normal , which is what we would expect.

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

D
en

si
ty

a=0.5
a=0
a=0.1

Figure 5.4: Comparison between simulated probability density functions of Xt for the
SDE in equation 5.18 for given parameters. Here, for all these three random walks, we
assumed κ = 1, σ = 1, ∆t = 1/252 , T = 1 and 100, 000 simulated paths.

Definition 5.5.1. Stationary Solution (Distribution): A unique solution to the
FPE 5.17 or its equivalent SDE 5.18 is called a stationary distribution and is denoted
by Pst(x) if the limiting distribution of XT as T → +∞ exists:

lim
t→+∞

P (x , t) = Pst(x). (5.20)
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We should note that in FPE 5.17 or its equivalent SDE 5.18, if the process has
a stationary solution (distribution), µ(x, t) and D(x, t) are independent of t but not
necessarily vice versa.

5.5.2 The Stationary Solution

We attempt to derive a stationary solution for the mean-reverting process defined in equa-
tion 5.15 (or equivalently in equation 5.19). Based on the stationary solution definition
and from equation 5.15, we have:

− d

dx

[
−κax

2 + a | x |
Pst(x)

]
+
σ2

2

d2Pst(x)

dx2
= 0. (5.21)

Or

− d

dx

[
−κax

2 + a | x |
Pst(x) − σ2

2

dPst(x)

dx

]
= 0. (5.22)

Based on the boundary conditions, we will have zero flux:

−κax
2 + a | x |

Pst(x) − σ2

2

dPst(x)

dx
= c, with c = 0 (by applying BC (5.16)). (5.23)

Therefore, we have:

dPst(x)

Pst(x)
=

−2κax

σ2(2 + a | x |)
dx. (5.24)

Integrating equation 5.24 yields the solution as follows:

Pst(x) =


c−1 exp

(
4κ ln(2+ax)

a σ2 − 2κx
σ2

)
, if x ≥ 0,

c−1 exp
(

4κ ln(2−ax)
a σ2 + 2κx

σ2

)
, otherwise,

(5.25)

where c is the normalization constant and equals to:

c = 2

∫ ∞
0

exp

(
4κ ln(2 + ax)

a σ2
− 2κx

σ2

)
dx,

Using Mathematica, we derive c as follows:

c =
22+ 4κ

a σ2 e
4κ
a σ2

a
E−4κ

a σ2

(
4κ

a σ2

)
, (5.26)
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where En(z) is the exponential integral function, which is defined as En(z) =
∫∞

1
e−zt

tn
dt.

Figure 5.5 shows the stationary solutions (distributions) for the MRW given in the
SDE form in equation 5.18 in which its derived stationary solution is in equation 5.25.
By looking these graphs, we can see that as a increases, the stationary distribution has
higher peak and thinner tails. It worth mentioning that the long-run mean and the
skewness of the stationary solution 5.25 are both zero.
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Figure 5.5: The plot depicts the stationary solutions (distributions) for the MRW given
in the SDE form in equation 5.18 in which its derived stationary solution is in equation
5.25. By looking these graphs, we can see that as a increases, the stationary distribution
has higher peak and thinner tails. Here, for these two stationary solutions, we assumed
κ = 1, σ = 1.

5.5.3 Analytical Time Dependent Solution

To simplify and drop one of parameters in SDE 5.19, let Yt = aXt and apply Ito’s lemma
to derive:

dYt =
−αYt

2 + | Yt |
dt+ σ

′
dWt, (5.27)

where α = aκ and σ
′
= aσ. Equivalently, its corresponding PDE is:

∂P (x , t)

∂t
= − ∂

∂x

(
−αx

2 + | x |
P (x , t)

)
+
D

2

∂2P (x , t)

∂x2
, (5.28)
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where D = σ
′
.

We apply the transformation in equation 5.29 to equation 5.28 to pave the way for
deriving the time dependent solution as follows:

P (x , t) = exp

(
−2

D

V (x)

2

)
q(x , t), (5.29)

where the V (x) is obtained using the stationary solution in equation 5.25 as follows:

V (x) = α(| x | −2 ln(2+ | x |)). (5.30)

By applying this transformation, the FPE 5.28 is converted to the Schrödinger type
equation as follows:

∂q(x , t)

∂t
= −Vs(x)q(x , t) +

D

2

∂2q(x , t)

∂x2
, (5.31)

where the Vs(x) is:

Vs(x) =

(
αx2

2D
− 1

)
α

(2+ | x |)2
. (5.32)

The PDE 5.31 might be solved using superposition method when the eigenvalues are
discrete as follows:

q(x , t) =
∞∑
n=0

an(0)e−λntψn(x), (5.33)

where λn ≥ 0 and ψn(x) are eigenvalues and eigenfunctions respectively, and can be
derived solving the following eigenvalues problem:

D

2

d2ψn(x)

dx2
− Vs(x)ψn(x) = −λnψn(x), (5.34)

Since ψn(x) must be symmetric, we assume x > 0. Let z = x+2
a

where a > 0 is a constant;
therefore, we have:

d2ψn(z)

dz2
−


(
− α

2

D2
+

2λn
D

)
a2 +

4α2a
D2

z
−

α(4α−2D)
D2

z2

ψn(z) = 0, (5.35)

Let a = 1√
4α2

D2 −
8λn
D

where 0 ≤ λn <
α2

2D
, κ = 4α2a

D2 and µ =| 1
2
− 2α

D
|. These assumptions

will lead the ordinary differential equation (ODE), 5.35 to the following format:

d2ψn(z)

dz2
−

{
−1

4
+
κ

z
+

1
4
− µ2

z2

}
ψn(z) = 0, (5.36)
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The ODE, 5.36 is known as Whittaker’s equation and has nontrivial general solutions as
follows:

C1Wκ,µ

(
x+ 2

a

)
+ C2Mκ,µ

(
x+ 2

a

)
, (5.37)

where x >= 0, and Wκ,µ(z) and Mκ,µ(z) are Whittaker functions.
For arbitrarily x ∈ < , it is easy to show that the general solutions is in the following
form:

C1Wκ,µ

(
|x|+ 2

a

)
+ C2Mκ,µ

(
|x|+ 2

a

)
, (5.38)

Based on our boundary conditions given in equations 5.16, only Wκ,µ(z) satisfies these
boundary conditions all time. Since Wκ,µ(z) = Wκ,−µ(z), without loss of generality, we
can consider µ = 2α

D
− 1

2
.

In this section, we attempt to solve this mean-reverting SDE analytically to find transition
density; however, we unfortunately failed to solve explicitly this particular stochastic
process. The trouble is mostly caused by the absolute value term in the SDE.
Consider the stochastic process of the form as follows:

dXt = f(Xt) dt+ σ dWt, (5.39)

Craddock and Dooley (2001) deploy Lie group symmetries to classify the SDEs of the
form 5.39 based on the drift function f(x) (heat equations) that. They show that have a
point symmetry that obtains a constant solution to the fundamental solution. Here, we
state their theorem (without proof) as follows:

Theorem 5.5.1. There exists a point symmetry for the equivalent heat equations of the
SDEs in the form of 5.39 taking 1 to the fundamental solution if and only if f(x) fulfills
one of the following Ricatti equations:

f ′(x) +
1

2
f 2(x) =

A

x2
− B

2
,

f ′(x) +
1

2
f 2(x) =

x2

8
+
C

x2
,

f ′(x) +
1

2
f 2(x) =

C

(x+ 2)2
,

f ′(x) +
1

2
f 2(x) =

2

3
Cx,

f ′(x) +
1

2
f 2(x) =

Cx2

2
+D, (5.40)

where A, B, C, andD ∈ < and arbitrary.
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Unfortunately, the drift term of this new mean-reverting dynamics 5.27 does not
satisfy one of the Ricatti equations 5.40; therefore, we could not find explicit solution for
this SDE.

5.6 The New Mean-reverting Process versus Va-

sicek Process

The new mean-reverting process, 5.27 and Vasicek, 5.1 both have the mean-reverting
property that is crucial to model a spread process. We need to compare them to see
which one is more appropriate to model a commodity spread process. Since the long-run
mean in a spread process does not have to be zero, we generalize this mean-reverting
dynamic, 5.27 as follows:

dXt = κ

(
µ − Xt

2+ | Xt |

)
dt+ σ dWt, (5.41)

where
µ is a real number and −1 < µ < 1,
σ is the volatility of the process,
κ is the mean reversion rate (speed),
dWt is the increment of a standard Brownian motion.

One should notice that unlike the Vasicek process 5.1, in this new process 5.41, the
long-run mean is not µ. We will derive the long-run mean later in this section. We
should emphasize that when |µ| ≥ 1, the process is no longer mean-reverting. This
nonlinear SDE does not have analytical transition density; therefore, we are limited to
apply a numerical method to estimate parameters. Here, we will deploy the new local
linearization method introduced by Shoji and Ozaki (1998), which we discuss in section
2.4.1. The equivalent Vasicek process for this process is given in equation 5.1. In these
two stochastic processes, when the process tends to deviate away from their long-run
means, their drift functions impose force to revert back to long-run mean quite differently.
Figure 5.9 depicts their drift functions. By looking these graphs, we can see that in the
Vasicek model as the process attempts to deviate from the long-term mean µ, the drift
linearly increases the force to revert back the process to mean µ; however, in the MRW
model as the process diverges away from its long-run mean, up to certain ranges of x, the
amount of force approximately increases linear, then asymptotically becomes constant.
This suggests that this new mean-reverting process has more chance to stay away from
the long-run mean for a longer time; in other words, it has relatively heavier tails, which
is usually a property of financial processes.

To comparison these two processes, we simulate 10, 000 paths for both processes with
identical parameters and random values. We also simulate Brownian motion. In each
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Figure 5.6: The plot depicts the drift functions for the new mean-reverting process given
in equation 5.41 and the Vasicek process given in equation 5.1. We assumed κ = 1, µ = 0
for both models.

step, we record the empirical variance for all three processes. The constructed variance
paths are shown in figure 5.7, plot (a). The empirical densities are depicted in the same
figure, plot (b).

The new generalized process 5.41 has another crucial advantage over the Vasicek
process when its long-run mean is not zero. In this case, the process can generate
skewness which is another well-known property of financial processes. To show this
interesting property and compare with the Vasicek process, we simulate 10, 000 paths
for both processes for five years and plot empirical densities shown in figure 5.8. Figure
5.8 clearly depicts this important property of this new mean-reverting process. When
µ is negative, the process is skewed to the left and vice versa. Since the reverting force
asymptotically becomes constant and no longer increases when the spread deviate enough
far from the long-run mean. Therefore, the long-run mean partially plays as a role of
drift similar to Brownian motion with drift. Although we derived the stationary solution
of this new process in section 5.5.2 when µ = 0, we rederive the stationary distribution
due to fundamental changes in the process as follows:

Pst(x) =


c−1 exp

(
2δ
[
2 ln(2 + x) + (µ− 1)x

])
, if x ≥ 0,

c−1 exp
(

2δ
[
2 ln(2− x) + (µ+ 1)x

])
, otherwise,

(5.42)
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Figure 5.7: Time plots of variance and empirical densities for 10, 000 simulated paths:
Plot (a) shows how empirical variances evolve through the time in these three models.
Plot (b) shows comparison between empirical densities in these two models after five
years. We assumed κ = 0.4, µ = 0, σ = 1, ∆t = 1

252
, and T = 5 for both models by using

identical random generated numbers.

where c is the normalization constant and equals to:

c =

∫ 0

−∞
exp

(
2δ
[
2 ln(2− x) + (µ+ 1)x

])
dx+

∫ ∞
0

exp
(

2δ
[
2 ln(2 + x) + (µ− 1)x

])
dx,

Using Mathematica, we derive the c as follows:

c = 21+4δ e−4δ(−1+µ)
{
E1 + e8δµE2

}
, (5.43)

We also derive the mean (long-run mean), the variance and the skewness of the stationary
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Figure 5.8: The plot depicts comparison between empirical densities in these two models
after five years using 10000 simulated paths. We assumed κ = 4, µ = 0.3, σ = 2.1 for
this new process 5.41 and we also assumed κ = 0.86, µ = 1.2, σ = 2.1 for the Vasicek
process 5.1. for both models ∆t = 1

252
, and T = 5 are considered by using identical

random generated numbers.

distribution as follows:

E[X] =
−2µσ2e4δ(µ−1) − (µ+ 1)(4κµ+ σ2)E1 + (µ− 1)(4κµ− σ2)e8δµE2

2κ(µ2 − 1)
{
E1 + e8δµE2

} ,(5.44)

E[X2] = e8δµ 2−1−8δ

(µ+ 1)3
(δ(µ+ 1))−4δ(8κ2µ2 + 2κ(1− 2µ)σ2 + σ4)×{

(32κ3 + 48κ2σ2 + 22κσ4 + 3σ6)Γ(4δ)

κ2(2κ+ σ2)(4κ+ σ2)(4κ+ 3σ2)
{
E1 + e8δµE2

}}−
4σ6e8δµ M

[
1 + 4δ, 4 + 4δ,−4δ(µ+ 1)

]
(2κ+ σ2)(4κ+ σ2)(4κ+ 3σ2)

{
E1 + e8δµE2

} −
2−1−8δ 1

(µ− 1)3
(δ(1− µ))−4δ(8κ2µ2 + 2κ(1 + 2µ)σ2 + σ4)×{

(32κ3 + 48κ2σ2 + 22κσ4 + 3σ6)Γ(4δ)

κ2(2κ+ σ2)(4κ+ σ2)(4κ+ 3σ2)
{
E1 + e8δµE2

}}−
4σ6 M

[
1 + 4δ, 4 + 4δ, 4δ(µ− 1)

]
(2κ+ σ2)(4κ+ σ2)(4κ+ 3σ2)

{
E1 + e8δµE2

} , (5.45)
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E[X3] = 2−2−8δ (δ(1− µ))−4δ(32κ3µ3 + 24κ2µ(µ+ 1)σ2 + 2κ(6µ+ 5)σ4 + 3σ6)×{
(32κ4 + 80κ3σ2 + 70κ2σ4 + 25κσ6 + 3σ8)Γ(4δ)

κ3(µ− 1)4(κ+ σ2)(2κ+ σ2)(4κ+ σ2)(4κ+ 3σ2)
{
E1 + e8δµE2

}}+

6σ8 M
[
1 + 4δ, 5 + 4δ, 4δ(µ− 1)

]
(κ+ σ2)(2κ+ σ2)(4κ+ σ2)(4κ+ 3σ2)

{
E1 + e8δµE2

} +

2−2−8δ e8δµ(δ(1 + µ))−4δ(32κ3µ3 − 24κ2µ(µ− 1)σ2 + 2κ(6µ− 5)σ4 − 3σ6)×{
(32κ4 + 80κ3σ2 + 70κ2σ4 + 25κσ6 + 3σ8)Γ(4δ)

κ3(µ+ 1)4(κ+ σ2)(2κ+ σ2)(4κ+ σ2)(4κ+ 3σ2)
{
E1 + e8δµE2

}}−
6× e8δµσ8 M

[
1 + 4δ, 5 + 4δ,−4δ(µ+ 1)

]
(κ+ σ2)(2κ+ σ2)(4κ+ σ2)(4κ+ 3σ2)

{
E1 + e8δµE2

} , (5.46)

V ar(X) = E[X2]− (E[X])2, (5.47)

γ1 =
E[X3]− 3E[x]V ar(X)− (E[X])3

(V ar(X))
3
2

, (5.48)

where
δ = κ

σ2 , E1 = E−4δ

(
−4δ(µ− 1)

)
, E2 = E−4δ

(
4δ(µ+ 1)

)
,

M[a, b, z] is the Kummer confluent hypergeometric function defined as:

M[a, b, z] =
∞∑
n=0

(a)n 2n

(b)n n!
,

(a)0 = 1, (a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1),
Γ(z) is the gamma function and defined as Γ(z) =

∫∞
0
tz−1e−tdt

γ1 is the skewness of the X,
En(z) is the exponential integral function, which is defined as En(z) =

∫∞
1

e−zt

tn
dt.

5.7 Parameter Estimation:

As discussed in section 5.5.3, this mean-reverting process is a nonlinear SDE with a
unique but unknown transition density. As a results, we must apply a numerical or
approximation method. Here, we apply the new local linearization method (NLLM),
explained in detail in chapter 2, to estimate the model parameters.
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Since the first and second derivatives of the drift function h(x,θ) = κ
(
µ− x

2+|x|

)
for this mean-reverting diffusion 5.41 do not exist at zero, as they violate conditions of
equation 2.49, this algorithm cannot be applied without some treatments. Fortunately,
the discontinuity of the first derivative at zero can be removed. So the treated first
derivative is h′(x,θ) = −2κ

(2+|x|)2 . The second derivative is h′′(x,θ) = 4κx
|x|(2+|x|)3 which

clearly shows that second derivative has a vertical asymptote at zero. To resolve this
issue, we take a viscosity-like approach and redefine the second derivative as follows:

h′′(x,θ) =

{
0 if −ε < x < ε,

4κx
|x|(2+|x|)3 otherwise,

(5.49)

where ε is a small positive value.
One can see that in this mean-reverting process, since the first derivative is always pos-
itive, when time approaches infinity, the variance approaches to limt→∞ V ar[Xt |Xs] =
−σ2

2Ls
.

There is also another important fact that we want to express here. Any function that
has similar behavior and looks (see figure 5.9) like the drift term of this mean-reverting
process can generate identical results and identical properties. Here, we list a few alter-
native processes, having drifts which are twice continuously differentiable functions with
respect to Xt:

dXt = κ

(
µ − Xt√

2 +X2
t

)
dt+ σ dWt, (5.50)

dXt = κ

(
µ − eXt − 1

eXt + 1

)
dt+ σ dWt, (5.51)

dXt = κ
(
µ − arctan(Xt)

)
dt+ σ dWt. (5.52)

One should note that since the Vasicek process is a linear process, NLLM method will
calculate the analytical transition density (normal distribution) and the pseudo-maximum
likelihood will turn into exact maximum likelihood method to estimate parameters of the
model.

5.8 Empirical Results

The spot spread between WTI and WTS crude oils is considered from January 2000 to
January 2013 in this study, as empirically analyzed in section 5.2. Here we intend to
compare these two models, the Vasicek and the new mean-revering processes and show
which one can better explain the reality of the spread processes. We apply the new local
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estimation method (2.4.1) to estimate the parameters of the Vasicek and the new mean-
reverting models for the daily spread between WTI and WTS crude oils from January
2000 to January 2013. We will also consider time transformation (time scale) to the
estimated parameters. In other words, if we consider s = f(t) = vt, the resulting process
will be identical to the original process. For example, the time transformed process for
our mean-reverting process 5.41 will be as follows:

dXs =
κ

v

(
µ − Xs

2+ | Xs |

)
dt+

σ√
v
dWs. (5.53)

One can see that the time transformation is nothing but scaling κ and σ in a way that
guaranteed to generate identical process. We apply the new local linearization method to
estimate parameters and summarize the estimation results of the data fitted both to the
Vasicek and the new mean-reverting dynamics and their time scaled diffusions in table
5.3. Figure 5.9 depicts the fitted drift functions in both models: the new mean-reverting
process and the Vasicek process using the time scaled estimated parameters for κ, and µ
that are summarized in table 5.3. The plot shows that these drift functions impose force
to revert back to long-run mean quite differently in these two models.

Table 5.3: Estimated parameters for two processes: new mean-reverting and Vasicek
one-factor models using daily spread between WTI and WTS oils from January 2000
to January 2013 and comparison between them. We also apply estimation method by
scaling the spread empirical data in two different ways namely scale a day as a day and
scale a day as a month.

Model Scale κ µ σ σ2

2κ
LRM1 -2 logl2 AIC3 BIC4

New MR No Scale 117.23 0.564 7.58 0.245 3.147 3961.5 3967.5 3977.5
Process s = 250

12
t 5.6273 0.564 1.662 0.245 3.147 3961.5 3967.5 3977.5

Vasicek No Scale 9.092 3.143 7.548 3.133 3.143 3968.5 3974.5 3984.5
Process s = 250

12
t 0.4364 3.143 1.654 3.133 3.143 3968.5 3974.5 3984.5

Note: 1-Long-run Mean, 2-Log-likelihood, 3-Akaike information criterion, 4- Bayesian information criterion.

Using the fitted parameters (summarized in table 5.3) for both Vasicek and the new
mean-reverting processes with their time scaled dynamics, we simulated 10, 000 paths for
four fitted processes with ∆t = 1

252
, and T = 15 are considered using identical random

generated numbers. The simulations results after 15 years, and empirical observations are
summarized in table 5.4. Figure 5.10 depicts the empirical distributions using the fitted
parameters (summarized in table 5.3) for both the Vasicek and the new mean-reverting
processes with their scaled diffusions. The left plot compares the results for the fitted
with its time scaled for the new mean-reverting process and right plot compares for the
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Figure 5.9: The plot depicts the fitted drift functions for the new mean-reverting process
and the Vasicek process using the time scaled estimated parameters for κ, and µ that are
summarized in table 5.3.

results for the fitted with its time scaled variant for the Vasicek process. Observation
results for both processes confirm that the fitted and its scaled process for both models
are identical and we can choose upon our preference and logic. We can also observe that
the stationary distributions for the fitted and its time scaled diffusions in both models
are exactly the same.

Table 5.4: The simulations results for the fitted parameters (summarized in table 5.3)
for both the Vasicek and the new mean-reverting processes with time scaled processes,
we simulated 10, 000 paths for four fitted processes where the ∆t = 1

252
, and T = 15 are

considered using identical random generated numbers with 21745 as a seed. The last row
is the summarized information of the observed dataset (the daily spread between WTI
and WTS from January 2000 to January 2013).

Simulated by T. Scale Min. 1st Qu. Median Mean 3rd Qu. Max. Skew.
New MR No Scale -2.192 1.910 2.953 3.145 4.169 12.420 0.70
Process s = 250

12
t -1.517 1.908 2.932 3.124 4.173 13.930 0.66

Vasicek No Scale -4.268 1.906 3.115 3.122 4.333 9.340 0.03
Process s = 250

12
t -3.920 1.938 3.101 3.113 4.329 9.276 0.00

Observed D. Daily -0.540 1.840 2.700 3.146 4.300 10.750 0.87

We conclude that estimation results comes from the original and the time scaled
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Figure 5.10: The empirical distributions using the fitted parameters (summarized in table
5.3) for both the Vasicek and the new mean-reverting processes with their time scaled
dynamics. The left plot compares the results for the fitted with its time scaled for the
new mean-reverting process and right plot compares for the results for the fitted with
its time scaled for Vasicek process. We simulated 10, 000 paths for four fitted processes
with ∆t = 1

252
, and T = 15 are considered using identical random generated numbers

with 21745 as a seed.

results are identical to the fitted process and can be deployed interchangeably. However,
we prefer the time scaled estimated parameters because the fitted mean-reversion speeds
in both processes give misleading impression that mean-reverting feature of the observed
spread is quite strong. Figure 5.1 does not illustrate a high mean-reversion property.
Here high mean-reversion speed is merely to offset the their higher volatilities. As a
result, the fitted processes with time scaled make more sense.

5.8.1 Goodness of Fit

We checked whether this novel stochastic process can explain the reality of the spread
process better than the Vasicek process or not. We summarized the estimation results
with the tests results for goodness of fit in table 5.3. As we can see both AIC and BIC
values suggest superiority of our mean-reverting model over the Vasicek model. Figure
5.11 depicts the comparisons results for the fitted models for both models (estimated
parameters are summarized in table 5.3): The left plot depicts comparison between
simulated empirical densities in the Vasicek and the new mean-reverting after fifteen



5.9. Conclusion: 130

years using 10, 000 simulated paths. The right plot shows the empirical density for
the observed daily spread between WTI and WTS crude oil data, the fitted stationary
distributions for these models. Both left; right subplots of figure 5.11 clearly confirm
our claims that this new diffusion can capture the most important characteristics of the
observed data including skewness, kurtosis, and heavy tails, which are crucial attributes
for an appropriate model.
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Figure 5.11: The left plot depicts comparison between simulated empirical densities in
these two models: Vasicek and the new mean-reverting after fifteen years using 10, 000
simulated paths using the fitted parameters (summarized in table 5.3). The right plot
shows the comparison between the empirical density for the observed daily spread be-
tween WTI and WTS crude oil data with the fitted stationary distributions of these two
models. We assumed that the ∆t = 1

252
, and T = 15 using identical random generated

numbers with 21745 as a seed for the simulation.

5.9 Conclusion:

In this chapter, we introduced a new mean-reverting random walk, and derive its con-
tinuous time limit. Its stationary distribution was derived, but all attempts to solve this
nonlinear dynamics analytically for transition density unfortunately failed. We also gen-
eralized this new mean-reverting process to equip the diffusion to capture possible skew-
ness of the spread process. We compare this one-factor model to Elliott et al. (2005)’s
one-factor model and using simulation results, we showed that this new mean-reverting
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one-factor model has capability to capture the potential heavy tail or tails, kurtosis, and
skewness of the spread processes. To estimate parameters of this nonlinear dynamics,
the new local linearization method was deployed. We applied this new SDE and Vasicek
processes to the daily spread between WTI and WTS crude oils from January 2000 to
January 2013. The maximum log-likelihood value, AIC, BIC all endorsed that this new
SDE outperformed compare to Vasicek process. In chapter 6, we will introduce optimal
trading strategies for a spread process in which we assume the spread process follows
models discussed in chapter 4 and this chapter.



Chapter 6

TRADING STRATEGIES FOR
THE SPREAD PROCESSES

6.1 Introduction

The main concept behind any pairs trading strategy relies on fluctuations about the
equilibrium level (long-run mean) of the spread process. In other words, the key property
of spread process is mean-reversion. We attempt to take advantage of mean-reversion
property of the spread process while we consider realistic features of the tradable spread
process. Each of the methods to model spread processes explained earlier in this thesis can
be applicable for some particular cases, and the model is chosen based on the behavior of
the underlying assets or commodities in the spread portfolio. Therefore, a spread trading
strategy should build upon the method that we choose to price the spread process. As
we explained in chapter 4, we briefly review three essential steps involved in any pairs
trading strategies as follows:

1. Identifying assets (stocks) or commodities pairs that could potentially share a com-
mon non-stationary trend (stochastic trend). This process can be proceeded using
the economical and fundamental information (sharing similar risk factors). In other
words, the potential pairs are chosen when they are showing certain characteristics
of comovement, arising from common fundamental drivers. Vidyamurthy (2004)
lays out a method to choose potential pairs namely the score/distance measure in
the stock markets.

2. Applying statistical methods on historical data, we should verify existence of coin-
tegration or long-term relationship (mean-reversion) in the potential pairs. We
should also estimate the cointegration coefficient β to build the spread portfolio.
One should notice that in most cases, we confront pairs that are not precisely coin-
tegrated and differ from ideal cointegration conditions even though the pair is still

132
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tradable. Therefore, we should select an appropriate method to model the spread
process by investigating empirical evidence.

3. Once we construct the spread portfolio (the linear combination of the underlying
assets or commodities) and choose a proper method to model the spread process, we
need to specify when we should consider placing a trade. When the spread deviates
sufficient enough from the equilibrium level, we enter a trade in the direction hoping
that the temporary deviation form the long-run mean will revert back and we
can unwind the trade. It is important to identify what are the specifications of
substantial deviation from the long-run mean to decide when to enter into a trade.
We also need to specify upper and lower optimal threshold or thresholds ( in case
of multiple thresholds) in the intended spread dynamics. We attempt to define
set of simple trading rules known as trading signals in proper fashion based on
maximization of profits. Finally we need to identify when we should unwind the
trade position and realize profit.

In this chapter, we attempt to specify some trading strategies for different classes
of the spread dynamics and answer the questions in step 3. This chapter is organized as
follows: In section 6.2, we empirically illustrate an existing trading strategy for the coin-
tegration approach. We explain how two different trading strategies can be implemented
for Elliott et al. (2005)’s one-factor model in section 6.3. In section 6.5, we first review
the optimal trading strategies for the cointegration approach. Second we investigate the
optimal trading strategies introduced by Bertram (2010) in which he exploits first passage
time results for the Ornstein-Uhlenbeck (OU) process to find optimal upper and lower
boundaries. We propose to deploy the stationary distribution to obtain optimal barriers
in the Vasicek dynamics for which is appropriate for the long-term investment strategy.
Finally, we introduce two new trading strategies for the spread process of WTI crude oil
and Brent oil by considering the empirical facts and behavioral process change.

6.2 Trading Strategy for Cointegration Approach

The fundamental notion behind this strategy is the mean reversion property of the spread
series. Here we assume that first the tradable pair is chosen. Second the cointegration
tests and economical and fundamental drivers reviewed in chapter 4 confirm the existence
of cointegration in the specified pair. Finally we also identified the long-run mean, µr,
the cointegration coefficient, β and constructed the spread series. The residual series,
rt (rt = pAt − βpBt − µr, where pAt and pBt are the underlying assets or commodities
prices or log prices depending on the model) must be a stationary ARMA series model.
We fit ARMA to the sample residual series using the Kalman filter, estimate the model
parameters including the volatility σr. Consider η be the trading costs of executing a pairs
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trade which are bid-ask spreads of two underlying assets or commodities components of
the transaction costs are known as slippage, marginal interest rates, and commissions.
Let also ∆ be the optimal deviation from the equilibrium level, µr when we decide to
open a new position or unwind the existing position. One obvious condition for executing
a trade is 2 ∆ > η. We attempt to determine a value for ∆ so as to maximize the profits.
The profitability of the trades can be measured by mean-reverting rate, which here is
related to the zero-crossing rate. When the zero-crossing rate is high, the process is
quick to revert back to its equilibrium level. This implies that the holding time of a
paired position is significantly short and the frequency of trades is high. Note that we
can deploy Rice’s formula to estimate the zero-crossing rate for rt after estimating the
stationary ARMA parameters. We can establish the optimal upper and lower barriers
(in this case, since rt is a symmetric process, the upper and lower barriers are µr + ∆
and µr − ∆ respectively) by maximizing profit (expected return) while minimizing the
risk strategies in terms of volatility. Assume the optimal ∆ is estimated. Then a simple
trading strategy can be as follows:

• When the spread process has diverged ∆ from the long-run mean, µr, we place
an appropriate position in the two underlying assets or commodities based on the
cointegration coefficient β ( at time t, when pAt − βpBt = µr ± ∆ ,we sell (buy) one
unit of A and simultaneously buy (sell) β units of B),

• Wait until the mispricing has been corrected. Depending on the spread series, we
can either unwind the position at time T (T > t), when pAt − βpBt = µr with profit
∆ − η or unwind the position at time T (T > t), when pAt − βpBt = µr ∓ ∆ with
profit of 2∆− η and enter into a new position in the opposite direction.

Notice that we assume that any given time we hold at most one paired trade and we do
not open a new position unless we close the previous trade.

6.2.1 Empirical Demonstration

To illustrate the cointegration strategy, we consider the spread process between WTI
crude oil, PC

t and Brent oil, PB
t for daily price of front contracts from April 1994 to

January 2005. In chapter 4, we showed that WTI crude oil and Brent oil are cointegrated
in our sample data. We again apply Engle-Granger two step test. In the two step test,
first we apply simple linear regression: PB

t = α+βPC
t +rt, where rt is the residual series.

The fitted model is:

PB
t = 0.932PC

t + r̂t, where σr = 0.816.

Figure 6.1 depicts the residual time series, r̂t. The plot illustrates that the residual series
is indeed a stationary process and shows long-run relationship between WTI and Brent
oils series. We also apply ADF to test for the unit root in the residual series.
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Figure 6.1: Time plot of the estimated spread process between WTI crude oil and Brent
oil daily front contracts prices from April 1994 to January 2005 in cointegration approach:
Plot (a) shows the series of trades in strategy (a) in which whenever we hit the lower
barrier, `1 = µ−∆ = 0−0.816 or upper barrier, `2 = µ+∆ = 0+0.816, we close existing
paired trade and open new position in opposite direction. Plot (b) shows the series of
trades in strategy (b) in which whenever we hit the lower barrier, `1 = µ−∆ = 0−0.816
or upper barrier, `2 = µ+∆ = 0+0.816, we only open a new position in proper direction
and we wait until to revert to long-run mean, 0 when we unwind existing paired trade.
Plot (c) depict how profit/loss growth is both strategies.
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The test indicates that the null “unit root” hypothesis for the residual series should
be rejected in favor of the alternative hypothesis at one percent level of significance.
Moreover, we fit ARMA(1,1) to r̂t using the FitARMA package in the R programming
language written by McLeod and we derive:

r̂t = 0.9353 r̂t−1 + εt − 0.1103 εt−1.

6.2.1.1 Illustration of Simple Trading Strategy:

Although the optimal ∆ can be derived using the expected first passage time for the
estimated ARMA(p, q) model for the spread series, to illustrate how the algorithm works,
we choose ∆ to be the volatility of the spread process, r̂t. Therefore, ∆ = σr = 0.816.
Figure 6.1 demonstrates the time plot of the spread series r̂t. In figure 6.1, strategy
(a), each triangle represents the time when the existing paired trade is closed with profit
of at least 2 ∆ = $1.632 ( assuming the transition cost is zero) and enter into a new
paired trade in the opposite direction of closed position. In figure 6.1, strategy (b), each
triangle also represents the time that we decide to open a new paired trade in appropriate
direction and square represents the time that we decide to close the only existing position
with a profit of at least ∆ = $0.816 (assuming the transition cost is zero). In figure 6.1,
profit/loss (c), we also depict how the profit or loss in both strategies, (a) and (b) evolves
through the specified time frame. We summarize the trades with respect to two different
strategies (a) and (b) in our sample data in table 6.1. As we can see, for this data set,
strategy (a) has better performance than strategy (b) in two aspects: first it has higher
profit and second it has lower number of trades meaning that it has lower transaction
costs. We would like to come up with a rigorous method to select optimal ∆ and optimal
closing time for the trades.

Table 6.1: Summary of trades in two different strategies (a) & (b) shown in figure 6.1 in
the spread process between WTI crude oil and Brent oil daily front contracts prices from
April 1994 to January 2005 in cointegration approach.

Strategy (a) Strategy (b)
Number of Profit per Expected Total Number of Profit per Expected Total
trades trade total profit profit trades trade total profit profit

31 $1.632 $48.96 $67.60 48 $0.816 $38.35 $60.22

6.3 Trading Strategy for One-factor Spread Process

This trading strategy assumes that the spread process follows the Vasicek process, pro-
posed by Elliott et al. (2005), and explained in detail in section 4.3 of this thesis. Notice
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that first, we assume that the linear combination of underlying assets or commodities
to form the spread process is already estimated and known. We also estimated the pa-
rameters of the model using the sample data (the algorithm was explained in chapter
4). As we explained before, the spot spread process, Xt is assumed to follow the Vasicek
stochastic process as follows:

dXt = a( b−Xt ) dt+ σdWt (6.1)

where the model assumes that the linear combination Xt evolves as an Ornstein-
Uhlenbeck process with constant coefficients, a > 0 is mean-reversion rate, b is the
long-run mean of the spread, σ is the volatility of the process, and dWt is the increment
of a standard Brownian motion.

Let −∆ and ∆ (∆ > 0) be the lower and upper deviations from the equilibrium
level b where we decide to open a new position, unwind the existing position, or both.
Therefore, the lower barrier is `1 = b−∆ and the upper barrier is `1 = b+∆. We attempt
to determine ∆ so as to maximize the profits of the trades. The profitability of the trades
can be measured by the mean-reversion rate a which here is related to the zero-crossing
rate and the location of ∆. When the zero-crossing rate is high, the process quickly
reverts back to the equilibrium level b meaning the holding time of a paired position is
significantly short and frequency of trades is high. Now, we need to define notations that
are required here. For the stochastic process Xt, the first passage time τx is defined as
τx = inf{t ≥ 0 : Xt = x | X0 = x0} where if Xt never hits x, τx is assigned a value of
infinity (τx =∞). We also define the first exit time from interval [`1 , `2] as follows:

τ = inf{t ≥ 0 : Xt = `1 or `2 | X0 = `0 and `0ε[`1 , `2] }

Let τ∆ be the expected first passage time for Xt starting at `1 and ending at `2. Since Xt

is symmetric, the expected passage time for starting at `2 and ending at `1 will be the
same as τ∆. The rate R at which the trades deliver is R = 2∆

τ∆
. We select ∆ to maximize

this rate. Assume the optimal ∆ is estimated. Then a simple trading strategy can be as
follows:

• When the spread process has diverged ∆ from the long-run mean, b, we place an
appropriate position in the two underlying assets or commodities based on the
linear combination coefficient, β,

• Wait for the mispricing to be corrected. Depending on the spread series, we can
either unwind the position at time T (T > t), when the spread process reverts back
to the long-run mean b with profit ∆− η, η is the transaction costs of carrying out
of the paired trade, or unwind the position at time T (T > t), when the spread
process hit the barrier in the opposite direction of previous hit with profit of 2∆−η
and enter into a new position in the opposite direction.
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Note that we assume that we only hold at most one paired trade at any given time in
both strategies, and we do not open new position unless we close the previous trade.

6.3.1 Empirical Demonstration

To illustrate one-factor strategy, we consider the location spread process between WTI
crude oil, PC

t and Brent oil, PB
t for daily price of five contracts from April 1994 to January

2005 where the involved future contracts are the 1,3,6,9 and 12 months to maturities.
In chapter 4, we explained the model parameters’s estimation methodology. We fit the
model for location spreads between WTI and Brent oils. Figure 6.2 depicts the daily
front contract future prices of location spread process between WTI and Brent oils. Table
6.2 lists the estimation results for the one factor model using our sample data.

Table 6.2: Estimated parameters for one-factor model using future contracts of 1,3,6,9
and 12 months to maturities (daily location spread between WTI and Brent oils from
April 1994 to January 2005).

a σ b λ ζ
value 1.158 0.843 1.649 0.467 0.281
Sd.Err 0.0174 0.0198 0.0498 0.0510 0.0142

6.3.1.1 Illustration of Simple Trading Strategy:

As we mentioned prior in this section, −∆ and ∆ (∆ > 0) is the lower and upper
deviations from the equilibrium level b where we decide to open a new position, unwind
the existing position or both. Although the optimal ∆ can be derived using the expected
first passage time for the estimated one-factor model for the location spread process
(Vasicek), to illustrate how the algorithm works, we consider ∆ to be the estimated
volatility of the location spread process, σ̂. Therefore, ∆ = σ̂ = 0.843. Figure 6.2 shows
the time plot of the location spread process for the front contract. In figure 6.2, strategy
(a), each triangle represents the time when the existing paired trade is closed with profit
of at least 2 ∆ = $1.686 (assuming the transition cost is zero) and enter into a new paired
trade in the opposite direction of closed position. In figure 6.2, which depicts strategy
(b), each triangle also represents the time that we decide to open a new paired trade
in appropriate direction and square represents the time that we decide to close the only
existing position with profit of at least ∆ = $0.843 ( assuming the transition cost is zero).
In figure 6.2, profit/loss (c), we also demonstrate how the profit or loss in both strategies,
(a) and (b) evolves through the specified time frame.
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Figure 6.2: Time plot of the location spread process between WTI crude oil and Brent
oil daily front contracts prices from April 1994 to January 2005 in one-factor method:
Plot (a) shows the series of trades in strategy (a) in which whenever we hit the lower
barrier, `1 = b − ∆ = 1.649 − 0.843 or upper barrier, `2 = b + ∆ = 1.649 + 0.843,
we close existing paired trade and open new position in opposite direction. Plot (b)
shows the series of trades in strategy (b) in which whenever we hit the lower barrier,
`1 = b−∆ = 1.649− 0.843 or upper barrier, `2 = b+ ∆ = 1.649 + 0.843, we only open a
new position in proper direction and we wait until to revert to long-run mean, b = 1.649
when we unwind existing paired trade. Plot (c) depict how profit/loss growth is both
strategies.
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We summarize the trades with respect to two different strategies (a) and (b) in
our sample data in table 6.3. As we can see, for this data set, unlike the cointegration
approach, strategy (b) performs slightly better than strategy (a) because it has higher
total profit. However, if we include the transaction costs of trades, we can see these two
strategies have more less equal performance.

Table 6.3: Summary of trades in two different strategies (a) & (b) shown in figure 6.2
in the location spread process between WTI crude oil and Brent oil daily front contracts
prices from April 1994 to January 2005 in one-factor method.

Strategy (a) Strategy (b)
Number of Profit per Expected Total Number of Profit per Expected Total
trades trade total profit profit trades trade total profit profit

19 $1.686 $30.35 $42.05 36 $0.843 $29.51 $45.5

6.4 Cointegration approach and One-factor Method

results Comparison:

Once we compare the outcomes of trades of these two approaches in tables 6.1 and
6.3, we immediately find out that the cointegration approach has a dramatically higher
total profit and higher number of trades in both strategies (a) and (b). This comparisons
approach might be irrelevant because the spread process in cointegration approach, rt =
pAt −βpBt (β = 0.93) and location spread process in one-factor method, Xt = pAt − pBt are
fundamentally different. By looking at figures 6.2 and 6.1, the location spread process
has significant behavior change in last five years and unlike the spread process, we rarely
trade in location spread in last five years. It worth mentioning that if we fit the spread
process, rt = pAt −βpBt sample data to a one-factor model, we may have equivalent results
in both approaches.

6.5 Analysis of Optimal Trading Strategies

Here, we attempt to derive the optimal strategies for both models namely the cointegra-
tion and Elliott et al. (2005)’s one-factor process. In other words, we will derived optimal
∆ for both strategies, (a) and (b) for both models. As we explained, ∆ is considered to
be the deviation from the equilibrium level µr. Strategy (a) is defined as follows: Once
the lower barrier, `1 = µr−∆ or upper barrier, `2 = µr+∆ is crossed, the existing paired
trade will be closed and a new position in the opposite direction will be opened. Strategy
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(b) is defined the same as strategy (a) for opening a new position, but liquidating the
opened position will be at equilibrium level, µr. Notice that in the one-factor model µr
is replaced by b (long-run mean). Vidyamurthy (2004) shows that if the spread process
assumes to be a Gaussian white noise series (N (0, σ2)), a profitability measure function
for trading strategy (a) in the time interval (0, T ) is pmf(∆) = 2T∆

(
1− Φ(∆

σ
)
)

where
Φ(x) is the standard normal cumulative distribution. Therefore, the optimal deviation
∆∗ can be derived by maximizing of pmf(∆) and the optimal deviation ∆∗ occurs at
0.75σ. It worth mentioning that the profitability measure function remains identical for
the strategy (b), which means ∆∗ = 0.75σ . Figure 6.3 clearly illustrates the optimal
amount of sigma away from the long-run mean in the given profitability measure function
for a Gaussian white noise. Since in the cointegration approach, simple linear regression
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Figure 6.3: The plot depicts the optimal amount of sigma away from long-run mean in
the given profitability measure function for a Gaussian white noise

is deployed to estimate the model parameters such as the hedging ratio, the spread or
residual series rt can be considered to be a Gaussian white noise. Therefore, the optimal
deviation ∆∗ can be considered for this approach. It worth mentioning that in section
6.2.1, using Engle-Granger two step method, we showed that the residual series rt for our
dataset follows the stationary ARMA(1,1), so we might do better with the optimal devia-
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tion ∆∗ derived using ARMA(1,1)’s optimal hitting time; however, the results are already
impressive based on this simplifying assumption. In section 6.2.1, the cointegration ap-
proach is deployed to the spread process between WTI crude oil and Brent oil for daily
price of front contracts from April 1994 to January 2005 and the estimated parameters
are given. The optimal deviation ∆∗ for this dataset is ∆∗ = 0.75σ̂ = 0.75∗0.816 = 0.612.
The trades with respect to two different strategies (a) and (b) using the optimal devi-
ation ∆∗ in our sample data are summarized in table 6.4. As we can see, likewise, the
analysis of trades in the cointegration approach using arbitrary ∆ = 0.816, summarized
in table 6.1, strategy (a) has better performance than strategy (b) using optimal ∆∗ in
two aspects: first it has higher profit and second it has lower number of trades meaning
that it has lower transaction costs. As it was expected, the profitability of trades in both
strategies (a) and (b) using optimal ∆∗ = 0.612 are quite higher than that of arbitrary
∆ = 0.816. In general, investigating the first passage time (define as a random variable)

Table 6.4: Summary of trades, implemented for the observed dataset, in two different
strategies (a) & (b) using the optimal deviation ∆∗ = 0.612 in the spread process between
WTI crude oil and Brent oil daily front contracts prices from April 1994 to January 2005
in cointegration approach.

Strategy (a) Strategy (b)
Number of Profit per Expected Total Number of Profit per Expected Total
trades trade total profit profit trades trade total profit profit

41 $1.225 $50.21 $70.73 63 $0.612 $ 38.57 $65.61

involves calculating the probability density function of first passage time for any given
stochastic process. This derivation, in most cases is complicated and there is no explicit
solution for the first passage time density. The moments of the first passage time have
been studied for several special cases. Linetsky (2004) and Wang and Yin (2008) are
some of these studies. In particular, the first passage time for Ornstein-Uhlenbeck (OU)
process has been investigated in several studies. For instance, for the standard case of
OU where a = 1, b = 0, and σ =

√
2 in equation 6.1, the density and the moments of

the first passage time have been derived in Blake and Lindsey (1973), Thomas (1975),

and Ricciardi and Sato (1988). By using Yτ =
√

2a
σ

(Xt− b) and τ = at, and transforming
equation 6.1 into the dimensionless process, Bertram (2010) derives analytical solution
for optimal lower and upper thresholds when the spread dynamics is considered to follow
an OU process. He also shows that the optimal thresholds are symmetric around the
long-run mean b for both his optimal strategy choices namely maximizing the expected
return and maximizing the Sharpe ratio. Since Bertram (2010) does not consider short
selling, he merely builds his strategy to enter in a trade at lower optimal threshold (-∆∗)
and exit at upper optimal threshold (∆∗). However, his optimal thresholds are consistent
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with both trading strategies (a) and (b).
Here, we state the final results of Bertram (2010)’s paper for the optimal expected return
choice. To do so, we first explain his model’s assumptions as follows: Let Xt = ln(St)
to be the logarithm of an asset or commodity that is mean-reverting; he assumes Xt to
follow an OU process. Without loss of generality, he considers the long-run mean of Xt

to be zero (b = 0 in equation 6.1). He defines his continuous trading strategy by entering
at xt = l, exiting at Xt = m (l < m), and waiting until the process to revert back to
xt = l, when the trading cycle is complete. He also considers c to be the transition
costs of entering and exiting a trade. For profitability of a trade, it is required to have
m > l + c. Bertram (2010) derives the expected profit per unit time for the maximum
expected return strategy as follows:

µ(l,m, c) =
a(m− l − c)

π

(
Erfi

(
m
√
a

σ

)
− Erfi

(
l
√
a
σ

)) , (6.2)

where Erfi(z) is an entire function called the imaginary error function (Erfi(z) =iErf(iz)
and Erf(z) = 2√

π

∫ z
0
e−u

2
du).

By maximizing the expected return function given in equation 6.2 with respect to l and
m, Bertram (2010) shows that l < 0 and m = −l. This finding confirms that optimal
lower (entry) and upper (exit) thresholds are symmetric about long-run mean b. Using

Taylor series expansion, he approximates the optimal l∗ for small values of l
√
a
σ

as follows:

∆∗ = −l∗ =
c

4
+

c2a

4(c3a3 + 24ca2σ2 − 4
√

3c4a5σ2 + 36c2a4σ4)
1
3

+
(c3a3 + 24ca2σ2 − 4

√
3c4a5σ2 + 36c2a4σ4)

1
3

4a
. (6.3)

One can see that when the transaction cost c equals zero, the difference between optimal
entry and exit thresholds of a trade approaches zero. This means that at any given time,
the trader should progressively balance the positions to fulfil as many trades as possible.
In such a case, the frequency of the trades are unprecedentedly high in theory. This
observation leads to the fact that the optimal strategy based on this model will be more
appropriate for high frequency trading. Sometimes the spread traders may consider to
have an optimal trading strategy which is more suitable for long term investment. In this
case we propose to derive the optimal thresholds based on stationary distribution, which
is normal for Elliott et al. (2005)’s one-factor process. Therefore, since the stationary
distribution is N (0, σ

2

2a
), the optimal deviation ∆∗ based on the stationary distribution

is ∆∗ = 0.75 σ√
2a

. Note that the optimal deviation based on the stationary distribution is
independent of the transaction cost. The trades with respect to two different strategies
(a) and (b) using the optimal deviation ∆∗ derived by Bertram (2010)’s method and
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stationary distribution for Elliott et al. (2005)’s one-factor model in our sample data are
summarized in table 6.5. The results show that in both strategies (a) & (b), the total
expected profit and the total profit derived by stationary distribution’s optimal deviation
are higher than that of Bertram (2010)’s method. This observation confirms our claim
that the optimal deviation derived by stationary solution is more suitable to long-term
investment strategy.

Table 6.5: Summary of trades, implemented for the observed dataset, in two different
strategies (a) & (b) using the optimal deviation obtained by Bertram (2010)’s method
and stationary distribution in the spread process between WTI crude oil and Brent oil
daily front contracts prices from April 1994 to January 2005 in Elliott et al. (2005)’s
one-factor model. The estimated parameters are given in table 6.2 and transaction cost
c is assumed to be $0.08.

Strategy (a) Strategy (b)
Method ∆∗ # of Profit per Expected Total # of Profit per Expected Total

trades trade total profit profit trades trade total profit profit

Bertram 0.354 40 $0.628 $25.11 $41.89 69 $0.274 $ 18.90 $43.69
St. Dis. 0.415 34 $0.751 $25.53 $43.27 65 $0.335 $ 21.80 $45.56

In chapters 4 and 5, it was discussed that the spread processes are usually highly
volatile, exhibit weak stationary, skewness (asymmetric), kurtosis, and heavy tails in
their transition densities. The model parameters might also switch from time to time.
To consider these undeniable characteristics two new models, namely the generalized one-
factor regime switching and the new one-factor mean-reverting process, are introduced.
The analysis confirms that the transition densities of the spread processes are mainly
non-Gaussian. As a result, the Gaussian assumption of the transition densities are not
quite correct. As another consequences is that the optimal thresholds derived based on
the Gaussian assumption cannot be the best choices. Here, we attempt to discuss other
measures that can be taken to improve the optimal trading strategies. Constructing
the optimal thresholds based on a more realistic model for the spread process such as
our introduced models can considerably improve the trading strategies. Based on the
skewness, kurtosis, and heavy tails appropriate to a given spread process, the optimal
thresholds are not necessarily symmetric. The opened position by hitting the optimal
upper threshold, and opened position by hitting the optimal lower threshold might be
needed to close based on different closing thresholds. To show how these considerations
can improve the optimal trading strategies, we illustrate these ideas empirically by im-
plementing in our dataset. The trades based on two altered versions of strategies (a)
& (b) are summarized in table 6.6. Strategy (a∗) is the asymmetric version of strategy
(a) which means that lower deviation ∆1 = ∆4 and upper deviation ∆2 = ∆3 have
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different distances from the long-run mean b. Strategy (b∗) is the asymmetric and mod-
ified version of strategy (b) which means the trader take proper positions (enter in a
trade) in the lower deviation ∆1 and upper deviation ∆2 from the long-run mean b. and
closes the existing position at two different deviations ∆3 and ∆4 (if the position was
executed at ∆1, it would close at ∆3 and if the position was executed at ∆2, it would
close at ∆4). All deviations are from the long-run mean b. Figure 6.4 illustrates how the
trades are placed and are unwound as well as their profit and lost diagrams in these two
evolved trading strategies (a∗) & (b∗) for the location spread between WTI and Brent
oils in our dataset. Strategy (b∗) has exceptionally the highest performance among all
four strategies (a), (b), (a∗) & (b∗) in this particular empirical experiment. Comparison
between the summary of the trades based on the new asymmetric strategies (a∗) & (b∗)
and the summary of the trades based on symmetric strategies (a) & (b) using the optimal
deviations, derived by Bertram (2010)’s method and stationary distribution reveal the
advantages of these new asymmetric strategies (a∗) & (b∗) over the the symmetric (a) &
(b) including higher expected total profit and total profit. These empirical observations
suggest to consider more realistic both for modeling the spread process itself and the
optimal trading strategies.

Table 6.6: Summary of trades, implemented for the observed dataset, in two different
modified strategies (a∗) & (b∗): strategy (a∗) is the asymmetric version of strategy (a)
meaning that lower deviation ∆1 = ∆4 and upper deviation ∆2 = ∆3 have different
distances from the long-run mean b. strategy (b∗) is the asymmetric and modified version
of strategy (b) which means the trader take proper positions (enter in a trade) in the
lower deviation ∆1 and upper deviation ∆2 from the long-run mean b. and closes the
existing position at two different deviations ∆3 and ∆4 (if the position was executed at
∆1, it would close at ∆3 and if the position was executed at ∆2, it would close at ∆4). All
deviations are from the long-run mean b. The empirical data is the observations of the
spread process between WTI crude oil and Brent oil daily front contracts prices from April
1994 to January 2005. The strategies are implemented based on Elliott et al. (2005)’s
one-factor model. The estimated parameters are given in table 6.2 and transaction cost
c is assumed to be $0.08.

Strategy ∆1 ∆2 ∆3 ∆4 # of Profit per Expected Total
trades trade total profit profit

(a∗) -0.632 1.345 1.345 -0.632 17 $1.90 $ 32.32 $42.96
(b∗) -0.628 1.346 0.189 0.332 46 $0.737(0.934) $ 38.04 $60.24
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Figure 6.4: Time plot of the location spread process between WTI crude oil and Brent
oil daily front contracts prices from April 1994 to January 2005 in one-factor method:
Plot (a) shows the series of trades in revised strategy (a∗) in which whenever we hit the
lower barrier, `1 = b+ ∆1 = 1.649− 0.632 or upper barrier, `2 = b+ ∆2 = 1.649 + 1.345,
we close existing paired trade and open new position in opposite direction. Plot (b)
shows the series of trades in revised strategy (b∗) in which whenever we hit the lower
barrier, `1 = b + ∆1 = 1.649 − 0.628 or upper barrier, `2 = b + ∆2 = 1.649 + 1.346, we
only open a new position in proper direction and we wait until to revert to the proper
closing barriers: `3 = b + ∆3 = 1.649 + 0.189 (when existing trade was opened at `1) or
`4 = b + ∆3 = 1.649 + 0.332 (when existing trade was opened at `2) when we unwind
existing paired trade. Plot (c) depict how profit/loss growth is both strategies.
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6.6 Conclusion:

In this chapter, we focused on building the optimal trading strategies for the spread pro-
cesses. The study is inspired by the main property of a spread process: mean-reversion.
Two trading strategies (a) & (b) were explained in detail and empirically shown how they
work in two cases: when cointegration approach is considered for modeling the spread
and when the spread dynamics is assumed to follow the Elliott et al. (2005)’s one-factor
process. The optimal trading strategies based on Vidyamurthy (2004)’s algorithm for
Gaussian white noise, applicable for cointegration approach, were explained and applied
for our observed dataset, the spread between WTI and Brent crude oils. Bertram (2010)’s
optimal trading strategies, constructed based on maximization of the expected return,
were reviewed when the spread process is assumed to follow the Ornstein-Uhlenbeck (OU)
process. For the long-term investment strategies, we proposed to deploy the stationary
distribution to obtain the optimal thresholds when the spread processes are considered to
follow Vasicek dynamics. Two new trading strategies (a∗) & (b∗), modified asymmetric
versions of (a) & (b), were developed. To demonstrate how these new modified strategies
can enhance the optimal trading strategies, the strategies were empirically applied to
our dataset. The results confirm the superiority of these newly defined strategies. The
study of how to obtain the optimal thresholds (∆∗1 and ∆∗2) for strategy (a∗), and how to
derive the optimal entering thresholds (∆∗1 and ∆∗2) and exiting thresholds (∆∗3 and ∆∗4)
for strategy (b∗) were left for future research.



Chapter 7

SUMMARY AND FUTURE
RESEARCH DIRECTIONS

7.1 Conclusions and Contributions

This thesis is mainly concentrated on the commodity pricing models, the commodity
spread pricing models, and the optimal trading strategies for the spread processes. Ex-
tensive numerical works, stochastic models and mathematical formulations, performed
in each model, are the major features of this thesis. First, in Chapter 1, we reviewed
some of crucial notions, concepts, and difficulties that we confront when we study the
commodity markets and derivatives on the commodity. The Kalman filter algorithm and
the new local linearization method were investigated and reviewed in Chapter 2. Based
on characteristics of the model SDE, one of these two powerful algorithms was exploited
to estimate parameters of the commodity pricing models and the spread pricing models.

In Chapter 3, we described three commodity pricing models namely preliminary,
Schwartz (1997)’ one-factor and Gibson and Schwartz (1990)’ two-factor models in de-
tail. In these models, we also derived futures and forward prices. This two-factor Gibson
& Schwartz model is one of the most commonly applied for pricing by market partici-
pants. We developed a new generalized one-factor mean-reverting dynamics to model a
commodity spot price process. Since the new process is a nonlinear dynamics with un-
known transition density, the new local linearization algorithm was applied to estimate
the model parameters. We argued that the new generalized SDE posses some key char-
acteristics to capture the most essential properties including skewness, heavy tails and
excess kurtosis, observed in a commodity spot-price evolution. The new one-factor and
Schwartz one-factor models were compared by fitting both models to daily front futures
prices of WTI crude oil from October 1, 2004 to December 31, 2014. The calibration
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results confirmed the superiority of the new SDE.

In Chapter 4, we also investigated three main approaches to price a spread process
namely cointegration, one-factor and two-factor models. We apply these three models to
our real empirical sample data and compare the results. Later, we analysis the recent be-
havioral change in the location spread between WTI crude oil and Brent oil. Since these
models are not flexible enough to capture all behavior changes, we extended the one-factor
and two-factor spread models by adding a compound Poisson process where jump sizes
follow double exponential distribution. Later, the generalized one-factor mean-reverting
dynamics is introduced to capture the major properties of spread processes, compared
to Vasicek process and showed the new model’s absolute superiority by fitting to the
spread between WTI and Brent oils. Since the spread between WTI and Brent in ob-
served data is experienced fundamental change in early 2011, the generalized model and
Vasicek process are deployed in regime switching framework by considering two regimes.
The estimation results fully justified applying the regime switching algorithm. The AIC
and BIC criteria in both regimes chose this new generalized model.

In Chapter 5, we introduced a new mean-reverting random walk, and derive its
continuous stochastic process. Its stationary distribution was derived, but all attempts
to solve this nonlinear dynamics analytically for transition density unfortunately failed.
We also generalized this new mean-reverting process to equip the diffusion to capture
possible skewness of the spread process. We compare this one-factor model to Elliott
et al. (2005)’s one-factor model and using simulation results, we showed that this new
mean-reverting one-factor model has capability to capture the potential heavy tail or
tails, kurtosis, and skewness of the spread processes. To estimate parameters of this
nonlinear dynamics, the new local linearization method was deployed. We applied this
new SDE and Vasicek processes to the daily spread between WTI and WTS crude oils
from January 2000 to January 2013. The maximum log-likelihood value, AIC, BIC all
endorsed that this new SDE outperformed compare to Vasicek process.

Finally, in Chapter 6, we mainly focused on building the optimal trading strategies
for the spread processes. The study is inspired by the main property of a spread process:
mean-reversion. Two trading strategies (a) & (b) were explained in details and empir-
ically shown how they work in two cases: when cointegration approach is considered
for modeling the spread and when the spread dynamics is assumed to follow the Elliott
et al. (2005)’s one-factor process. The optimal trading strategies based on Vidyamurthy
(2004)’s algorithm for Gaussian white noise, applicable for cointegration approach, were
explained and applied for our observed dataset, the spread between WTI and Brent crude
oils. Bertram (2010)’s optimal trading strategies, constructed based on maximization of
the expected return, were reviewed when the spread process is assumed to follow the
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Ornstein-Uhlenbeck (OU) process. For the long-term investment strategies, we proposed
to deploy the stationary distribution to obtain the optimal thresholds when the spread
processes are considered to follow the Vasicek dynamics. Two new trading strategies (a∗)
& (b∗), modified and asymmetric versions of (a) & (b), were developed. To demonstrate
how these new modified strategies can enhance the optimal trading strategies, the strate-
gies were empirically applied to our dataset. The results confirm the superiority of these
newly defined strategies.

7.2 Principal Contributions

The four main contributions of this thesis can be summarized as follows: (i) introducing
of a new generalized one-factor mean-reverting dynamics to model a commodity spot
price process in Chapter 3; (ii) generalizing one-factor mean-reverting dynamics to model
the spread processes and implementing regime switching framework with two regimes in
the new model, which were investigated in Chapter 4; (iii) presenting a novel mean-
reverting random walk and deriving its continuous stochastic process which is a great
choice to model spread pricing models as presented in Chapter 5; (iv) revising two existing
spread trading strategies: (a) & (b) by considering asymmetric thresholds as described
in Chapter 6.

7.3 Future Research Directions

There are several possible extensions to improve the models studied in this thesis that
can be investigated further in future. Here, we mention some of these extensions in detail
as follows:

• The state variables of the dynamics, studied in this research, are unobserved. The
state space form is a framework for unobservable variables. Since the state-space
forms that can be generated to the newly developed models in this thesis are non-
linear, we exploited the new local linearization method by using the front futures
prices as proxy for the spot prices. To deal with this limit, we suggest to de-
ploy Particle Filters or sequential Monte Carlo methods, which can be applied in
nonlinear state-space form, for future work.

• In Chapter 4, we extended the one-factor and two-factor spread models by adding
a compound Poisson process where jump sizes follow double exponential distribu-
tion to capture sudden abrupt breaks. However, the implementation of these two
processes with jumps have not been carried out and can be considered for future
studies.



7.3. Future Research Directions 151

• In Chapter 5, we attempted to find analytical transition density for the novel mean-
reverting spread process; however, we failed to solve the SDE analytically. Perhaps,
it is worth investigating further to solve the dynamics analytically.

• In Chapter 6, the optimal trading strategies have not been discussed for Demp-
ster et al. (2008)’s two-factor spot spread process, so future study of the optimal
thresholds for this model may lead to high performance spread trading strategies.
Performance of the optimal trading strategies heavily rely on the assumption of
statics spread model parameters, so considering regime-switching framework for
the optimal strategies can end up increasing the profit and the performance. We
introduced asymmetric spread trading strategies (a∗) and (b∗); however, the study
of how to obtain the optimal thresholds (∆∗1 and ∆∗2) for strategy (a∗), and how
to derive the optimal entering thresholds (∆∗1 and ∆∗2) and exiting thresholds (∆∗3
and ∆∗4) for strategy (b∗) can be considered for future work.



.1. Appendix 152

.1 Appendix

Commodity: In economics, a commodity is a term that refers to any marketable item
produced to fulfill wants or needs. Commodities comprise both goods and services, but
the term is more particularly used to refer to goods only

Par grade: Minimum acceptance standard for a commodity is called “a basic grade”,
“par grade”, or “contract grade”

Spot price: Spot price is the price for immediate delivery of a particular commod-
ity

Front month contract: Front month contract used in futures trading to refer to the
contract month with an expiration date closest to the current date, which is often in the
same month. In other words, this would be the shortest duration contract that could be
purchased in the futures market

Convenience yield: The convenience yield is defined as the overall benefits that holder
of commodity receive minus the costs especially the cost of storage with exception of the
cost of financing

Mean reversion: Mean reversion” is a theory proposing that most of economic markets
fluctuates around or move back towards a “mean” or “average” (equilibrium level)

Seasonality: During different periods of time in year, the supply and demand have
dramatic changes in particular commodities in which drive seasonality in commodity
markets

Unobservable variables: In statistics, latent variables, hidden variables or unobserv-
able variables, are variables that are not directly observed but are rather inferred (through
a mathematical model) from other variables that are observed
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