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Abstract

The advent of the big data era presents new challenges and opportunities for those managing
portfolios, both of assets and of risk exposures, for the financial industry. How to cope with the
volume of data to quickly extract actionable information is becoming more crucial than ever
before. This information can be used, for example, in pricing various financial products or in
calculating risk exposures to meet (ever changing) regulatory requirements.

Stochastic differential equations are often used to model the risk factors in finance. Giv-
en the presumption of a functional form for the coefficients of these equations, the required
parameters can be calibrated using a large body of statistical techniques which have been de-
veloped over the past decades. However, the price to pay for this convenience is the problems
that occur if an incorrect functional form is used. To avoid this problem of misspecification,
nonparametric regression has recently become important in finance. In order to adequately es-
timate local structures, large sample sizes are always required and so nonparametric regression
is computationally intensive.

This thesis finds new ways to decrease the computational cost of non-parametric meth-
ods for estimating stochastic differential equations. Motivated by stochastic approximations,
we propose online nonparametric methods to estimate the drift and diffusion terms of typical
financial stochastic differential equations. Both stationary and non-stationary processes are
considered and this thesis provides asymptotic properties of the estimators. For the stationary
case, quadratic convergence, strong consistency, and asymptotic normality of the estimators
are established; for the non-stationary case, weak consistency of the estimators is proved.

In addition to numerical examples, we also apply our methods to market risk management.
We work from up to date examples based on the most recent Basel Committee documents
for a wide range of risk factors from equity, foreign exchange, interest rates, and commodity
prices. The advantages and disadvantages of applying our new statistical techniques to these
risk management problems are also discussed.

Keywords: online nonparametric estimation, stochastic differential equations, financial
modeling

ii



Acknowledgements

When writing this part, I come to realize that my student life will become memories of the
past. Recalling the last two years, from a novice in statistics and finance to writing this thesis,
I know how I benefited from the guidance and support of many people.

I greatly appreciate my supervisors, Dr. Murdoch and Dr. Davison, for their valuable
guidance, patience and enthusiasm during the years of my doctoral research. Dr. Murdoch’s
insight and knowledge in statistics broadened my horizons and deepened my understanding in
statistics, while Dr. Davison led me into the realm of finance and gave me an intuition beneath
the complicated concepts and techniques. They are my most valuable assets.

I would also like to thank my committee members, Dr. Reg Kulperger, Dr. Lars Stentoft,
Dr. Hubert Pun and Dr. Adam Kolkiewicz, for their constructive feedback. Many thanks are
given to my colleagues in TD Bank and office mates in the university for their kindness and
support.

Also, I am very grateful to my parents for their endless love, encouragement, support and
patience throughout my life.

Finally, my deep love goes to my wife Sulin Cheng, for her sacrifice and support, always
by my side whenever in my busy or dark times, all that keep me going.

iii



Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Ideas and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Kernel Methods in Risk Management 5
2.1 Market Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Kernel Density Estimators . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Kernel Regression Estimators . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Choice of Bandwidth and Kernel Function . . . . . . . . . . . . . . . . 16

2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Literature Review 22
3.1 Time-Homogeneous Diffusion Models . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Second-Order Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Time-Inhomogeneous Diffusion Models . . . . . . . . . . . . . . . . . . . . . 28
3.4 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Asymptotic Theory of Online Estimators for SDE 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Assumptions and Preliminary Lemmas . . . . . . . . . . . . . . . . . . 33
4.3.2 Quadratic Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3 Strong Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.4 Asymptotic Normality . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



5 Simulation and Case Study of Online Estimators 61
5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Comparison with offline estimators . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Sensitivity to parameters . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Case Study: US 3-Month Treasury Bill Rates . . . . . . . . . . . . . . . . . . 71
5.2.1 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.2 Application in Risk Management . . . . . . . . . . . . . . . . . . . . . 79

5.3 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Online Kernel Estimators for Second-Order Diffusion Models 88
6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Assumptions and a Preliminary Lemma . . . . . . . . . . . . . . . . . 89
6.2.2 Weak Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.1 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.2 Real Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Concluding Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Conclusion and Future Work 106
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 109

Appendix A Stochastic differential Equations 118

Appendix B Stochastic Approximation 124

Appendix C Mixing Processes 128

Curriculum Vitae 132

v



List of Figures

2.1 S&P/TSX Composite Index during the period from Jun 29, 1979 to Nov 2,
2014 (top) and Canadian 3-Month Treasury Bill Rate during the period from
Nov 2, 2004 to Oct 31, 2014 (bottom). . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Demonstration of VaR, where the percentage of the shaded area is 1 − α. . . . . 6
2.3 Demonstration of historical simulation, where τ = 1, T = 250 and N = 251.

So in this case, the 99% VaR is △x(3) and 97.5% ES is the average of △x(1) to
△x(7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Historical simulation for S&P/TSX Composite Index where daily shocks are
used for demonstration and 99% VaR and 97.5% ES are calculated to compare
with PnL. The darkest bar represents the red zone, the lightest bar represents
the yellow zone and the rest represents the green zone. . . . . . . . . . . . . . 9

2.5 The Monte Carlo method for S&P/TSX Composite Index where 99% VaR and
97.5% ES are calculated to compare with PnL. The darkest bar represents the
red zone, the lightest bar represents the yellow zone and the rest represents the
green zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Boundary effect for the Nadaraya-Watson estimator and the local linear estima-
tor, where the data are generated by y = −(x − 0.5)2 + 0.05ε with ε ∼ N(0, 1).
The solid line is the true curve y = −(x − 0.5)2, and the dotted line gives the
fitted values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Four Nadaraya-Watson estimators for Canadian male wage data on 1971, where
the bandwidth are hn = 0.5, hn = 1.0, hn = 5.0 and hn = 10.0. . . . . . . . . . . 17

2.8 The leave-one-out CV is performed on the same Canadian male wage data
seen in Figure 2.7 (left) and y = −(x − 0.5)2 (right). The optimal bandwidth is
hopt

n = 1 for the left and hopt
n = 0.01 for the right. . . . . . . . . . . . . . . . . . 18

2.9 Historical simulation for S&P/TSX Composite Index where daily shocks are
used for demonstration and 99% VaR and 97.5% ES are calculated to compare
with PnL. All trading days are in green zone. . . . . . . . . . . . . . . . . . . . 20

5.1 The sample path of (5.1) and (5.2) with the same random seed where △ = 1/260
and T = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Demonstration of MISE for sequential observations, parameters as in Table 5.1. 63
5.3 Fitting values by offline and online estimators which are averaged on 1000

replications, and the 95% confidence band of the online estimators, parameters
as in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 MISE for both offline and online estimators when △ = 1/12 and 1/52 given
n = 1000 and m = 0.2n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 MISE for both offline and online estimators when T = 10 and 50 given △ =
1/260 and m = 0.2n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



5.6 Sensitivity to △ = 1/12, 1/52 and 1/260 where n = 1000 and m = 0.2n. The
solid line represents the true value and the shadow area is the 95% confidence
band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Sensitivity to T = 10, 15 and 20 where △ = 1/260 and m = 0.2n. The solid line
represents the true value and the shadow area is the 95% confidence band. . . . 69

5.8 Sensitivity to m = 0.1n, 0.3n and 0.5n given △ = 1/260 and n = 5200, where
the solid line represents the true value and the shadow area is the 95% confi-
dence band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.9 The daily US 3-month treasury bill rates from May 8, 1978 to November 14,
2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.10 The absolute shocks of the daily US 3-month treasury bill rates. . . . . . . . . . 72
5.11 Histogram and QQ-plot of the US 3-month treasury bill rates between May 8,

1978 and November 14, 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.12 Nonparametric marginal density of the data, where the solid line represents true

values and the shadow area is the 95% confidence band. . . . . . . . . . . . . . 73
5.13 Comparison between nonparametric marginal density function and those of the

Vasicek and CIR model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.14 Estimation of the drift and diffusion by the calibrated Vasicek and CIR model,

and the online method with different bandwidths hi = σ̂i × i−0.2 (the top) and
hi = σ̂i × i−0.02 (the bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.15 Estimation of the drift and diffusion as well as 90% pointwise confidence band
by the online method for the bandwidths hi = σ̂i × i−0.2 (the top) and hi =

σ̂i × i−0.02 (the bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.16 Comparison of the drift and diffusion specification by the offline and online

methods for the bandwidths hi = σ̂i × i−0.2 (the top) and hi = σ̂i × i−0.02 (the
bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.17 Calculation of -VaR by historical simulation, Monte Carlo method by the Va-
sicek and CIR model, and online method, where the dashed line is shocks and
the solid line is -VaR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.18 Calculation of -ES by historical simulation, Monte Carlo method by the Va-
sicek and CIR model, and online method, where the dashed line is shocks and
the solid line is -ES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.19 95% Confidence band for daily 99% VaR and 97.5% ES by historical simula-
tion and the online method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.20 20-day 99% VaR and 97.5% ES by historical simulation. . . . . . . . . . . . . 86

6.1 The sample path of (6.7) as well as the integrated process . . . . . . . . . . . . 95
6.2 MISE behaviors of (6.4) and (6.6) for sequential observations . . . . . . . . . 96
6.3 The 95% confidence band of the estimators (6.4) and (6.6). The solid line is

the true value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 The time series of the stock index GSPTSE, DJI, IXIC and SSE from Jan 2,

1991 to Jan 16, 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5 The proxy of the stock index GSPTSE, DJI, IXIC and SSE (daily data from Jan

2, 1991 to Jan 16, 2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.6 Online estimation of the drift and diffusion in the latent process {X̃i} for the

stock index GSPTSE, DJI, IXIC and SSE. . . . . . . . . . . . . . . . . . . . . 100

vii



6.7 The FX rate of CAD/CNY, CAD/USD, CAD/GBP and CAD/EUR from Jan
31, 2010 to Jan 16, 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.8 The proxy of CAD/CNY, CAD/USD, CAD/GBP and CAD/EUR. . . . . . . . . 102
6.9 Online estimation of the drift and diffusion in the latent process {X̃i} for the FX

rate CAD/CNY, CAD/USD, CAD/GBP and CAD/EUR. . . . . . . . . . . . . . 103
6.10 The time series of the crude oil prices and gold prices as well as their proxies. . 104
6.11 Online estimation of the drift and diffusion in the latent process {X̃i} for the

crude oil prices and gold prices. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1 Trajectories of GBM and Brownian motion, where GBM is dXt = 0.2Xtdt +
0.375XtdWt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 Stock prices of RBC, TD Bank, BMO, Scotiabank and CIBC where data are
from Yahoo! Finance and the time interval is from Jan 3, 2007 to Nov 6, 2014. . 123

B.1 Demonstration of the Robbins-Monro algorithm. . . . . . . . . . . . . . . . . . 125

viii



List of Tables

5.1 Common parameters in simulation. . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Running time for △ = 1/12, 1/52 and 1/260 where n = 1000 and m = 0.2n.

That is, the time period T = n△ = 1000/12, 1000/52 and 1000/260 for each
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Running time for T = 10, 20 and 30 given △ = 1/260 and m = 0.2n. . . . . . . 66
5.4 Running time for m = 0.1n, 0.3n, 0.5n and 0.7n where △ = 1/260 and n = 5200. 67
5.5 Summary statistics of US 3-month treasury bill rates between May 8, 1978 and

November 14, 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 Hypothesis tests of the data for the stationarity, independence and normality. . . 73
5.7 Calibration of parameters in the Vasicek and CIR model. . . . . . . . . . . . . 75
5.8 Comparison of VaR and ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Augmented Dickey-Fuller stationarity test of stock indices GSPTSE, DJI, IXIC
and SSE as well as their proxies. . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 The calibrated parameters if GBM is assumed to model the stock index. . . . . 99
6.3 The convergent bandwidth in online estimators of the drift and diffusion. . . . . 99
6.4 The calibrated parameters if GBM is assumed to model the FX rate. . . . . . . 102

A.1 Estimation of the drift and diffusion for the stock prices of RBC, TD Bank,
BMO, Scotiabank and CIBC from Jan 3, 2007 to Nov 6, 2014. . . . . . . . . . 123

ix



Chapter 1

Introduction

This thesis proposes online nonparametric estimators for stochastic differential equations, espe-
cially for time-homogeneous diffusion models. For the stationary case, we establish quadratic
convergence, strong consistency and asymptotic normality of our estimators. Numerical exam-
ples and a case study are used to validate effectiveness and efficiency of our methods. For the
non-stationary case, a class of second-order stochastic differential equations is considered and
online estimators are proposed and studied.

In this chapter, we first present background materials and some motivation for this thesis.
Then the ideas and our contributions are discussed. Finally the organization of this thesis is
outlined.

1.1 Background and Motivation

Stochastic differential equations (SDEs) are an essential tool to describe the randomness of a
dynamic system. For example, physicists use this tool to model the time evolution of particles
due to thermal fluctuations (Sobczyk, 2001) and ecologists study two interacting populations
such as predator and prey by SDEs (Allen, 2007). In the financial system, many different SDEs
have been developed to model a particular financial product or class of products, e.g. geometric
Brownian motion (GBM) by Osborne (1959) for modeling stock prices or stock indices, and for
modeling interest rates the Vasicek model (Vasicek, 1977), the CIR model (Cox et al., 1985)
and the CKLS model (Chan et al., 1992). Financial institutions make use of SDEs to price
their derivatives or measure the risks of their portfolios. For example, when pricing financial
products, one needs to specify the form of SDEs driving the appropriate randomness and then
estimate the parameters of interest in the equation to generate future scenarios; when measuring
risks, one needs to calculate shocks based on these generated scenarios to obtain Value-at-Risk
or Expected Shortfall. Therefore, this presumption of functional forms is always considered as
a parametric method.

1



2 Chapter 1. Introduction

In the last two decades, nonparametric regression has attracted more academic and pro-
fessional attention. The reason for this growing attention is that nonparametric regression is
distribution-free, i.e. requiring little prior information on the data generation, so misspecifica-
tion in the parametric method can be avoided. Now nonparametric regression has become a
vital area in statistics (Härdle, 1990; Li and Racine, 2006) and it has many successful applica-
tions in finance (Campbell et al., 1988; Tsay, 2005). When nonparametric regression is applied
in finance, an approach is to study the general SDE

dXt = a(t, Xt)dt + b(t, Xt)dWt (1.1)

where a(t, Xt) and b2(t, Xt) are the functions of our concern, called the drift and diffusion coef-
ficients respectively1. They represent the expected return and volatility of the underlying vari-
able, and are important factors to price assets, manage risks and choose portfolios. Through
discretization of the equation, one can derive nonparametric estimators for the drift and dif-
fusion coefficients by kernel methods (Fan and Gijbels, 1996) or smoothing splines (Wahba,
1990), and use these estimators to fulfill the financial purpose.

However, relaxing the assumption on the data generation in nonparametric regression does
not come at no cost. In fact, compared to its parametric counterparts, nonparametric regression
is computationally intensive. One reason is that each nonparametric estimator is the result of
multiple local fits. Modern computers have drastically reduced the running time of the meth-
ods making them more practically available than ever before. But nonparametric regression
uses the data themselves to tell the story, so larger sample sizes are always required to keep
local structures for estimation. This implies that the computational cost is still quite large.
In addition, nonparametric estimation methods have lower rate of convergence. This could
be a serious impediment in some financial applications, where often time series exhibit non-
stationary behavior that prevents us from using longer data sets. Thus we need new ways to
lower the computational cost as well as make accurate estimates, which is our motivation of
this thesis.

1.2 Ideas and Contributions

If we have the current data items of (x1, y1), (x2, y2), . . . , (xn, yn) and must estimate the value of y

at x where x , xi for 1 ≤ i ≤ n, in this case we can use nonparametric regresion (such as kernel
regression) to achieve this task. But at the moment a new observation (xn+1, yn+1) is available,
then in order to obtain the real-time estimate, we have to use nonparametric regression again

1Sometimes b(t, Xt) is called the diffusion (Fan and Zhang, 2003) but some works refer to b2(t, Xt) as the
diffusion (Aı̈t-Sahalia, 1996; Jiang and Knight, 1997). This thesis adopts the latter notation.



1.2. Ideas and Contributions 3

for all n + 1 data items. It is clear that the complexity2 of this procedure is at least O(n). When
a great deal of data are available sequentially and real-time estimation is required, it is not hard
to imagine that nonparametric regression is not adequate to this job because the computational
cost is quite large. This often happens in real cases. Financial institutions need to calculate
Value-at-Risk and Expected Shortfall so as to meet the regulator’s capital requirement, but
in order to fulfill this task, they calibrate the parameters in the model by combining existing
observations and the use of Monte Carlo simulation to generate scenarios. Often large financial
institutions have very complicated portfolios. This means that they obtain millions of new
observations each business day and so should use all their existing data plus the new data to
repeat their calculations. Therefore how to obtain real-time results for a huge quantity of time
series data is an important issue in practice.

However note that the previous estimate of the value of interest contains important histori-
cal information and can be used to derive the new one, so each time it is not necessary to use
all current and all historical data. In this thesis, one of our main contributions is to propose
an incremental way of computing nonparametric estimates for SDEs (called online methods3)
and apply our methods in finance. In our methods, new data are used to update the previous
estimate to yield the new one, hence the complexity of each update is O(1) which is far better
than O(n) when n is large. Our methods can meet real-time demand in financial institutions.

This thesis studies the diffusion process as described in (1.1) and proposes online kernel
estimators for the drift and diffusion. Here our main focus is on the diffusion process driven
by Brownian motion instead of by other more general Lévy processes because such kind of
processes are widely used in practice. We consider the time-homogeneous case, that is, the
drift and diffusion do not depend on the time t directly

dXt = a(Xt)dt + b(Xt)dWt (1.2)

In this thesis, we study both stationary and non-stationary processes. For example, GBM is a
non-stationary time-homogeneous process; the Vasicek model, CIR model and CKLS model
are stationary time-homogeneous processes. In addition, we theoretically prove quadratic con-
vergence, strong consistency and asymptotic normality of online estimators for the stationary
case, and weak consistency for the non-stationary case. By simulation we validate effective-
ness and efficiency of our methods for both the stationary and non-stationary cases. We also
test these new methods in real applications to calculate Value-at-Risk and Expected Shortfall
for market risk management.

2In computer science, “big O” and “small o” are widely used notations to measure the computational com-
plexity. Given two sequences {an} and {bn}, then an = O(bn) means |an| ≤ c|bn| where c is some positive constant,
whereas an = o(bn) means an/bn → 0 as n → ∞. Thus an = O(1) indicates an is bounded and an = o(1) implies
an → 0. Additionally in probability theory, given a random variable sequence {Xn}, then Xn = op(1) means Xn

converges to zero in probability, i.e. limn→∞ P(|Xn| > ε) = 0 for any ε > 0.
3In order to differentiate, conventional nonparametric regression are called offline.



4 Chapter 1. Introduction

There are several things to note in this thesis. First, we propose online kernel-type esti-
mators because in practice kernel methods are easy to implement. But similar ideas can be
used to derive estimators of other types such as smoothing splines. Second, we are concerned
with high-frequency data. With the development of modern technology, more data are mea-
sured every minute, so called one minute bars, and have become available than ever before.
So it is of practical significance to propose online estimators for high-frequency data. Third,
we build up estimators on a discrete-time sample of observations. Although the continuous
sample path has been considered for many years (Rao, 1999), it is impossible to obtain with
digital continuous-time observations in real applications. Thus our estimators are derived from
discrete-time observations. Fourth, previous studies on nonparametric estimation of SDEs give
offline estimators. To the best of our knowledge online nonparametric estimation has never
been applied to SDEs, therefore our work bridges the gap between these areas and supplies
feasible estimators for financial practice. Additionally, we give the rate of mean squared errors
and asymptotic normality for further inference such as constructing confidence intervals.

1.3 Outline of This Thesis

This thesis is organized as follows. Chapter 2 begins by supplying basic concepts and measures
in market risk management, then provides a brief introduction to kernel methods including ker-
nel density estimators, kernel regression estimators and the bandwidth choice. We also discuss
the applications of these methods in finance through empirical examples. Chapter 3 gives
a literature review on recent studies of nonparametric estimation of SDEs. Some necessary
preliminaries are included in the appendices. Next follows Chapter 4, in which online non-
parametric estimators of the drift and diffusion in the stationary time-homogeneous diffusion
process are developed. Quadratic convergence, strong consistency and asymptotic normality
are also established for our proposed estimators. In Chapter 5, we give numerical examples
to validate effectiveness and efficiency of our methods. In addition, an empirical case study
of US 3-month treasury bill yields is also considered in this chapter, where Value-at-Risk and
Expected Shortfall are calculated for financial practice. Chapter 6 studies online estimators
in a non-stationary time-homogeneous process. After some transformation, the non-stationary
process can be represented as a second-order SDE. Similarly weak consistency of estimators
is also proved, and simulations and applications are also considered. The seventh and final
chapter summarizes this thesis and points to ideas for further work.



Chapter 2

Kernel Methods in Risk Management

Since the 2007 financial crisis, the importance of the internal control has become clear not
just to risk management but to the entire world. Yet risk management failures continue. For
example, JP Morgan suffered large trading losses in 2012 for its ineffectiveness and failure
of risk management in controlling trading activities, so-called the “London Whale” case1. A
similar case occurred in 2013 at Everbright Securities, a Chinese Brokerage, because of the
lack of risk management systems for monitoring trading errors2. On the other hand, there have
been many studies of kernel methods in different areas such as finance (Fan and Yao, 2013),
economics (Li and Racine, 2006) and meteorology (Xu, 2008), but little attention is paid to
their applications for risk management. In this chapter, we first introduce the basic concepts
and methods of both market risk management and kernel methods. Then we give an example
to illustrate how to apply kernel methods to measure market risk.

2.1 Market Risk Management

As is shown in Figure 2.1, the prices of most financial products (e.g. stocks, bonds and their
derivatives) fluctuate all the time. When financial institutions include these products into their
portfolios, they have to use approaches to measure the risks of the exposure to these risk factors.

2.1.1 Risk Measures

Value-at-Risk (VaR) is a widely used measure of the market risk of losses on a portfolio. Let X

denote the profit-and-loss (PnL) of a portfolio over a time period t, then the VaR of the portfolio
is defined as follows:

VaRα = sup{−x : Pt(X > x) ≤ α} (2.1)

1See details in http://en.wikipedia.org/wiki/2012_JPMorgan_Chase_trading_loss.
2See details in http://www.bloomberg.com/news/2013-08-16/everbright-securities-

investigates-trading-system-error-1-.html.

5
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Figure 2.1: S&P/TSX Composite Index during the period from Jun 29, 1979 to Nov 2, 2014
(top) and Canadian 3-Month Treasury Bill Rate during the period from Nov 2, 2004 to Oct 31,
2014 (bottom).

where α ∈ (0, 1) is a significance level, e.g. taking 99% or 99.9%, see demonstration in Figure
2.2. From the definition, it can be seen that VaR estimation has the prediction of tail losses as
its primary goal.

1 − α

−VaR
Loss Gain

Figure 2.2: Demonstration of VaR, where the percentage of the shaded area is 1 − α.

As a risk measure, VaR describes how bad the PnL is likely to get, but is often criticized
on the grounds that it is not sensitive to the shape of the PnL distribution’s tail (Hull, 2012)
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and not a coherent risk measure (Schied, 2006). Hence the Basel Committee suggest using the
Expected Shortfall (ES) as an alternative. This ES metric is also called the conditional VaR
and is given by

ES α = E[−X|X ≤ −VaRα] (2.2)

Different from VaR, the above definition of ES is about the expected loss given that the PnL is
“bad”. It can be found that ES is more sensitive to the shape of tail events because it provides
more information on the tail.

Note that (2.1) and (2.2) are related to the distribution function of X, which unfortunately is
usually unknown to us. In this case, it is often practical to use order statistics of X to calculate
VaR and ES instead. Let X1, X2, . . . , Xn be n independently and identically distributed (i.i.d.)
samples of X, and the k-th order statistic denoted by X(k). Then an empirical way to calculate
VaR and ES (Hull, 2012) is listed as below

VaRα = −X(⌈n(1−α)⌉) (2.3)

ES α =
−1

⌈n(1 − α)⌉

⌈n(1−α)⌉∑
i=1

X(i) (2.4)

For example, if there are n = 100, 000 PnL scenarios, then 99.9% VaR is the 100th worst value
and 97.5% ES is the average of the first 2,500 values in ordered PnL scenarios.

2.1.2 Approaches

The PnL distribution can be used to calculate VaR and ES according to (2.1) and (2.2). This
part introduces two main approaches, historical simulation and the Monte Carlo method, about
estimation of the PnL distribution based on a time series of observations. Let {Xt} denote the
time series of some risk factor with liquidity horizon τ and time horizon T . For example,
the Basel Committee prescribe a liquidity horizon for the interest rate be 20 days and a time
horizon be at least one year.

Historical Simulation

According to the work by Mehta et al. (2012), the majority of banks surveyed use historical
simulation as their main approach. This is because of its greater simplicity with fewer simula-
tions and more importantly, no additional presumption on the distribution of the asset returns.
Thus it is considered as a nonparametric method. The procedure of historical simulation is
listed as below (see demonstration in Figure 2.3)
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Algorithm 1: Historical Simulation
input : A time series of observations {xt} where t = 1, 2, . . . ,N, liquidity horizon τ, time

horizon T , and confidence levels α and β for VaR and ES respectively
output: A times series of {VaRα,t} and {ES β,t}
i← T + τ;
while i ≤ N do

j← 1;
while j ≤ T − 1 do

Calculate the shock of the j-th scenario △x j = xi−T+ j − xi−T+ j−τ;
j← j + 1;

end
Sort scenarios by increasing order and denote them by △x(1),△x(2), . . . ,△x(T−1);
Calculate nα = ⌈(T − 1)(1 − α)⌉ and nβ = ⌈(T − 1)(1 − β)⌉;
VaRα,i ← −△x(nα) and ES β,i ← −

∑nβ
k=1 △x(k)/nβ;

i← i + 1;

end
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Figure 2.3: Demonstration of historical simulation, where τ = 1, T = 250 and N = 251. So in
this case, the 99% VaR is △x(3) and 97.5% ES is the average of △x(1) to △x(7).

Algorithm 1 illustrates that the essential idea of historical simulation is recurrence of past
events in the same way as before, i.e. by using previous scenarios to predict the PnL distri-
bution. A breach event describes the case in which the actual PnL exceeds the estimated VaR
(or ES) loss. The Basel Committee require that for every 250 trading days, the breaches are in
green zone if the number is smaller than or equal to 4, in yellow zone if it is between 5 and 9,
and in red zone if it is no smaller than 10. Financial institutions have the goal of developing
justifiable statistical methods which, while accurately reflecting market reality, result in as few
breaches as possible. This allows them to meet regulatory capital requirements with as little
reserve capital as possible, hence increasing the return on equity on their balance sheets. We
apply the procedure in Algorithm 1 to S&P/TSX Composite Index in Figure 2.1, and calculate
the daily 99% VaR and the 97.5% ES to make comparison with true PnLs (see in Figure 2.4).
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Figure 2.4: Historical simulation for S&P/TSX Composite Index where daily shocks are used
for demonstration and 99% VaR and 97.5% ES are calculated to compare with PnL. The darkest
bar represents the red zone, the lightest bar represents the yellow zone and the rest represents
the green zone.

Despite its simplicity and distribution-free assumption, there are three restrictions of his-
torical simulation. First, it uses equal weights for all PnLs. But more recent experience might
be more important or, alternatively, experience observed at past times judged to be similar to
the present in the business cycle might be deemed more important. Thus weighted historical
simulation has been studied (Boudoukh et al., 1998). Second, historical simulation uses the
past observations to yield its predictions. This means that the number of scenarios are limited
to those actually experienced, a major restriction. Hence multiyear time horizon is often used
(Mehta et al., 2012). Third, independent and identical distribution of the shocks is assumed
in using historical simulation, but it could be violated for the shocks with overlapped time
interval. So a filtered method has been devised for correlated data (Barone-Adesi et al., 1999).

Monte Carlo Method

Different from historical simulation, the Monte Carlo method needs to specify the underlying
process for the risk factor and then uses observations to estimate the parameters in the model.
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Therefore, it can provide a comprehensive picture of risks in the tail distribution. In addition,
once the model is specified, as many scenarios as one likes can be obtained by the Monte Carlo
method.

There is no general procedure for the Monte Carlo method because it is different from case
to case. We use a simple example to illustrate its application to calculate VaR and ES, where
GBM is used to model S&P/TSX Composite Index. The introduction to SDEs including GBM
can be seen in Appendix A. For GBM dXt = µXtdt + σXtdWt, the parameters are estimated by
(A.13), that is,

µ̂ =
m + s2/2
△ and σ̂ =

s
√
△

where m = n−1 ∑n−1
i=0 Ri, s2 = (n − 1)−1 ∑n−1

i=0 (Ri − m)2 and Ri = log(Xi+1) − log(Xi) is the log-
return over the time horizon as is considered. Then the procedure of the Monte Carlo method
for GBM is listed as below

Algorithm 2: The Monte Carlo method for GBM
input : A time series of observations {xt} where t = 1, 2, . . . ,N, discretization step size

△, time horizon T , sample size n, and confidence levels α and β for VaR and ES

respectively
output: A times series of {VaRα,t} and {ES β,t}
i← T + 1;
while i ≤ N do

j← 1;
while j ≤ T − 1 do

Calculate the log-returns r j = log(xi− j) − log(xi− j−1);
j← j + 1;

end
Calculate mi = (T − 1)−1 ∑T−1

k=1 rk and s2
i = (T − 2)−1 ∑T−1

k=1 (rk − mi)2;
Base on (A.13) to calculate µ̂i and σ̂i;
Based on (A.9), generate samples x̂i,1, x̂i,2, . . . , x̂i,n;
Calculate the PnL △x j = x̂i, j − xi−1;
Calculate nα = ⌈(T − 1)(1 − α)⌉ and nβ = ⌈(T − 1)(1 − β)⌉;
VaRα,i ← −△x(nα) and ES β,i ← −

∑nβ
k=1 △x(k)/nβ;

i← i + 1;

end

It can be found that the core idea of the Monte Carlo method is to estimate parameters in
the presumed model based on the past observations, and then generate samples and calculate
PnLs for VaR and ES. Figure 2.5 demonstrates the application of the Monte Carlo method
to calculation of VaR and ES for S&P/TSX Composite Index. At each time step, 100,000
PnL scenarios are simulated. Note that compared to the results by historical simulation in
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Figure 2.5: The Monte Carlo method for S&P/TSX Composite Index where 99% VaR and
97.5% ES are calculated to compare with PnL. The darkest bar represents the red zone, the
lightest bar represents the yellow zone and the rest represents the green zone.

Figure 2.4, the Monte Carlo method gives more breaches of VaR and ES but a smaller amount
of reserve capital (see in Figure 2.5). From the perspective of the regulators, they are more
concerned with the number of breaches so as to avoid systemic risk3.

Although the Monte Carlo method is regarded as the better theoretical approach, it suffers
from two main problems. One of them is the computational complexity. For example, for
each risk factor, 100, 000 simulated scenarios could be generated. As a result, the running time
for a portfolio including thousands of factors is unacceptable. So in practice sampling for a
longer period is often applied (Glasserman, 2003). Another problem is misspecification of the
underlying process. The remedy could rely on one’s prior experience and trial-and-error for
new assumptions and models.

3Systemic risk refers to the risk that an event triggers a collapse of the financial system, whereas systematic
risk refers to overall market risk.
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2.2 Kernel Methods

As described above, financial risk managers are concerned with the distribution of risk factors,
estimation of parameters or how these risk factors vary over time for the purpose of managing
market risks.

To estimate the distribution, one can assume a specific form for the variables and validate
the assumption by some criterion. For example, changes to the logarithm of the stock prices are
usually assumed to be normally distributed, so graphical techniques (e.g. histogram and Q-Q
plot) or statistical test (e.g. Jarque-Bera test and Shapiro-Wilk test) can be used to determine the
normality of the distribution. To estimate the parameters, one can specify the model first, apply
the maximum likelihood method and finally test the validity of the assumption. For example,
the interest rate is supposed to follow the square-root CIR process but many researchers devote
a great deal of attention to studying the plausible form of the drift and diffusion (Andersen and
Lund, 1997; Conley et al., 1997; Chapman et al., 1999; Ang and Bekaert, 2002). To forecast
future values, one can use the ARMA-GARCH model to fit the data and then make prediction
based on the model, but the linearity or nonlinearity of the terms must be tested when the model
is used.

Parametric methods as described above cannot avoid the problem of misspecification. Al-
though changes to the logarithm of the stock prices are assumed to be normally distributed,
these log returns are often observed to be skewed and to have fat tails. As a result, this mis-
specification may result in large estimation bias and the assumption of log-normality could be
violated. In this case, one has to propose a new assumption and test it again. Also, except the
CIR model and other descriptions of the dynamic, the actual forms to characterize the short-
term interest rate are still on exploration. This trial-and-error process largely depends on one’s
prior experience. Therefore it is more or less inevitable to use the wrong form by parametric
methods.

In such cases, the nonparametric technique could be an alternative to its parametric coun-
terpart. One of its advantages is that instead of requiring prior information on specifying the
parametric form, the technique lets the data speak of the appropriate functional form so that
misspecification can be avoided. This is why nonparametric regression has received grow-
ing attention from academia and industry. But the nonparametric technique is not a panacea
because they do result in higher computational costs. In addition, some criticize that the meth-
ods are “black-box” and lack intuitive interpretation. In fact, nonparametric and parametric
methods are complementary to each other from a practical perspective.

Generally speaking, there are two branches of nonparametric regression: kernel regression
and smoothing splines. The former is regarded as a local method in that the local polynomial
is used to approximate the data, whereas the latter is considered as a global method in that a
group of basis functions are constructed and smoothness is imposed globally. Compared to
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smoothing splines, kernel regression is easy to implement and popular in real applications. So
this thesis mainly focuses on kernel-type estimators.

2.2.1 Kernel Density Estimators

As mentioned above, one of the concerns with density estimation in finance is related to char-
acterizing tail events such as calculation of VaR or ES. So in this part density estimation by
kernel methods is introduced.

Suppose that the data X1, X2, . . . , Xn come from a common density function f . We know
that the distribution function F(x) is equal to P(X ≤ x), so the empirical distribution function
is expressed as

F̂n(x) =
1
n

n∑
i=1

I(Xi ≤ x)

where I(·) is the indicator function. If it is also assumed that X is continuous, then F(x) =∫ x

−∞ f (u)du, that is, f (x) = dF(x)/dx. Thus we can use an empirical distribution function to
derive the estimator of the density, that is, for a small positive constant hn

f̂n(x) =
F̂n(x + hn/2) − F̂n(x − hn/2)

hn
=

1
nhn

n∑
i=1

I(|Xi − x| ≤ hn/2)

By letting K(x) = I(|x| ≤ 1/2), the above expression is rewritten as

f̂n(x) =
1

nhn

n∑
i=1

K
(

Xi − x
hn

)
(2.5)

Here hn is called the bandwidth (or smoothness parameter) and K(·) is called the kernel func-
tion. In addition to the uniform kernel K(x) = I(|x| ≤ 1/2), we can also take other forms
for K(·), which results in different estimators. Informally, K(·) is the kernel function from
R to R which satisfies

∫ ∞
−∞ K(x)dx = 1. K(·) is non-negative if K(x) ≥ 0 and symmetric if

K(x) = K(−x). The j-th moment of K(·) is defined as m j =
∫ ∞
−∞ x jK(x)dx and the order of K(·)

is defined as inf{ j : m j , 0}. For example, if m1 = 0 and m2 > 0, then K(·) is a second-order k-
ernel. It can be verified that the Gaussian kernel K(x) = 1√

2π
e−x2/2 is a symmetric, non-negative

and second-order kernel function; this kernel is commonly used in practice. The Epanechnikov
kernel K(x) = 3

4 (1 − x2)+ is also commonly used in real applications.

2.2.2 Kernel Regression Estimators

Regression analysis is one of the most widely used statistical tools to estimate the relationships
among variables. For example, in the capital asset pricing model, we can use simple linear
regression to estimate the parameter (namely β) in the model. In addition, regression can be
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used to assist interpolation and extrapolation for missing data in some data sources.

Given the data (X1,Y1), (X2,Y2), . . . , (Xn,Yn), the simple linear regression model is given by

Yi = β0 + β1Xi + εi

where β0, β1 are parameters, and the errors ε1, ε1, . . . , εn satisfy E(εi) = 0 and Var(εi) = σ2.
More generally, one would like to specify nonlinear relationships such as the exponential or
logarithm function between X and Y . But as mentioned above, it is rare to know the true
functional form in real applications, so lack of prior information could lead to inconsistent
estimation by the presumed model. Nonparametric regression avoids this problem by freeing
the assumption of the functional form about the data generation process. In the nonparametric
regression model, we are concerned about estimation of g(x) such that

Yi = g(Xi) + εi (2.6)

where g(·) satisfies some regularity conditions such as smoothness and moment conditions.

We can use Taylor expansion to approximate g(Xi) in a neighborhood of x

g(Xi) = g(x) + (Xi − x)g′(x) +
1
2

(Xi − x)2g′′(x) + o
(
|Xi − x|2

)
The functional form of g(·) is usually unknown, so by letting β j,x denote the estimate of the j-th
order derivative of g(x), kernel regression uses the weighted least squares technique to fit the
data at the neighborhood of x by a polynomial of degree p, which minimizes

n∑
i=1

Yi −
p∑

j=0

β j,x(Xi − x) j


2

Khn(Xi − x) (2.7)

where Khn(x) = K(x/hn)/hn. Thus the estimator β̂0,x gives the estimated value of g(x), and
similarly we can approximate the j-th order derivative of g(x) by β̂ j,x.

Moreover let

Y =


Y1

Y2
...

Yn


X =


1 (X1 − x) . . . (X1 − x)p

1 (X2 − x) . . . (X2 − x)p

· · · · · · · · · · · ·
1 (Xn − x) . . . (Xn − x)p

 βx =


β0,x

β1,x
...

βp,x


(2.8)

and Wx = Diag{Khn(X1 − x),Khn(X2 − x), . . . ,Khn(Xn − x)}, then the least-squares estimate to
(2.7) at x is given by

β̂x =
(
XTWxX

)−1
XTWY (2.9)
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thus the estimator of g(x) is

ĝn(x) = eT
1 β̂x = eT

1

(
XTWxX

)−1
XTWY

where eT
1 = (1, 0, . . . , 0)T . When p = 0 in (2.7), the estimator is reduced to be locally constant

(also known as the Nadaraya-Watson estimator) proposed by Nadaraya (1964) and Watson
(1964), which can be rewritten as

ĝn(x) =

n∑
i=1

YiKhn(Xi − x)

n∑
i=1

Khn(Xi − x)
(2.10)

The local linear estimator, i.e. p = 1 in (2.7), is proposed by Fan (1993) with the closed form

ĝn(x) =

n∑
i=1

wiYi

n∑
i=1

wi + n−2

where wi = K
(

x−Xi
hn

)
[sn,2 − (x − Xi)sn,1] with

sn, j =

n∑
i=1

K
(

x − Xi

hn

)
(x − Xi) j

For general p, there is no such closed form for ĝn(x). Fan and Gijbels (1996) gave a detailed
study of this general case but advocated that the local linear estimator is enough in practice.

Moving beyond the local constant and local linear estimators, Hall et al. (1999) and Cai
(2002) proposed a weighted Nadaraya-Watson estimator given by

ĝn(x) =

n∑
i=1

pi(x)YiKhn(Xi − x)

n∑
i=1

pi(x)Khn(Xi − x)

where pi(x) are weights and satisfy: (1) pi(x) ≥ 0; (2)
∑n

i=1 pi(x) = 1; (3)
∑n

i=1 pi(x)Khn(Xi−x) =
0. Hall et al. (1999) and Cai (2002) proved that the weighted Nadaraya-Watson estimator and
the local linear estimator have the same asymptotic distribution.

Although the Nadaraya-Watson estimator is easy to implement and popular in practice, it
suffers from the boundary effect, i.e. its bias has lower order at the boundary than in the interior
domain. From the definition of the Nadaraya-Watson estimator, it can be found that the estima-
tor can make use of two-sided sample in the interior but only a one-sided sample can be used at
the boundary. Thus lack of sample results in the big bias of the estimator at the boundary of the
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domain, which is so called the boundary effect. To overcome this problem, many methods have
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Figure 2.6: Boundary effect for the Nadaraya-Watson estimator and the local linear estimator,
where the data are generated by y = −(x − 0.5)2 + 0.05ε with ε ∼ N(0, 1). The solid line is the
true curve y = −(x − 0.5)2, and the dotted line gives the fitted values.

been proposed to remove the boundary bias such as the geometrical method (Hall and Wehrly,
1991) and the boundary correction approach (Gray and Schucany, 1972; Rice, 1984). In ad-
dition, the local linear estimator and the weighted Nadaraya-Watson estimator as mentioned
above have automatically boundary adaption (see in Figure 2.6).

2.2.3 Choice of Bandwidth and Kernel Function

Relative to the kernel function, the choice of the bandwidth hn is critical to the performance
of the estimator (Wand and Jones, 1995). From the definition of the kernel function, it can
be found that the bandwidth controls how many sample points are included in estimation. In
fact, there is a tradeoff between bias and variance (see Figure 2.7). Larger hn will include more
sample points such that the estimator is not sensitive to the randomness, so the variance can be
reduced. But in this case the estimator tends to be further away from those local points, as a
result there is a larger bias. Similarly smaller hn will result in smaller bias but larger variance.
So it is very important to have a reliable choice of bandwidth which trades off between these
two extremes.

In theoretical and practical settings, several approaches of choosing the hn constant have
been proposed. One of them is cross-validation (CV), a fully automatic data-driven technique
proposed by Rudemo (1982), Stone (1984) and Bowman (1984). Note that different hn’s corre-
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Figure 2.7: Four Nadaraya-Watson estimators for Canadian male wage data on 1971, where
the bandwidth are hn = 0.5, hn = 1.0, hn = 5.0 and hn = 10.0.

spond to a variety of estimators, and the goal of CV is to validate how accurately the estimator
will perform in real applications, so one can use CV to choose the optimal hn based on some
criterion such as mean squared errors (MSE). This technique begins by splitting the whole set
of observations into the training dataset and the testing dataset. The motivation is that usually
we can only access the dataset with a limited size which could be far smaller than expected.
One simple way is to use the entire data for the training and testing purpose, but this will lead
to overfitting. So in this case it is better to split the data into subsets. Then for each hn, the
estimator derived from the training dataset is evaluated on the testing dataset and the optimal
bandwidth could be chosen based on evaluation. For example, given the nonparametric model



18 Chapter 2. KernelMethods in RiskManagement

(2.6), each time the leave-one-out CV uses one observation as the testing dataset and the re-
maining as the training dataset, and repeats until each observation is used to test (see Figure
2.8). In other words, given the fixed bandwidth hn, let Ŷ−i denote the fitted value on Xi obtained
by the trained model without considering Xi, i.e. Ŷ−i = ĝn,−i(Xi) where ĝn,−i(x) is constructed
on the entire dataset excluding (Xi,Yi). For the case of the Nadaraya-Watson estimator, ĝn,−i(x)
is given by

ĝn,−i(x) =

n∑
j=1
j,i

Y jKhn(X j − x)

n∑
j=1
j,i

Khn(X j − x)

After that, the optimal bandwidth is chosen as

hopt
n = arg min

hn

n∑
i=1

(Yi − Ŷ−i)2

In addition, the leave-one-out CV can be generalized to the leave-p-out CV (Shao, 1993;
Zhang, 1993), and partial data splitting schemes have been proposed in practice including
k-fold CV introduced by (Geisser, 1975).
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Figure 2.8: The leave-one-out CV is performed on the same Canadian male wage data seen in
Figure 2.7 (left) and y = −(x − 0.5)2 (right). The optimal bandwidth is hopt

n = 1 for the left and
hopt

n = 0.01 for the right.

Other ways to select the constant bandwidth include the rule-of-thumb approach (Silver-
man, 1986; Li and Racine, 2006). For the kernel density estimator, suppose that the l-th order
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kernel is used, then it can be calculated that

Bias[ f̂n(x)] =
1
l!

f (l)(x)hl
nml + o(hl

n)

Var[ f̂n(x)] =
f (x)

∫
R

K2(u)du

nhn
+ O

(
1
n

)
which leads to the asymptotic mean squared error (AMSE) given by

AMSE[ f̂n(x)] =
[

1
l!

f (l)(x)hl
nml

]2

+
f (x)

∫
R

K2(u)du

nhn

with this definition the asymptotic mean integrated squared error (AMISE) can be calculated
as

AMISE[ f̂n(x)] =
∫

R
AMSE[ f̂n(x)]dx =

[
hl

nml

l!

]2 ∫
R
[ f (l)(u)]2du +

∫
R

K2(u)du

nhn

Note that the above AMISE is a function of hn, which implies that the optimal hn can be taken
to minimize the AMISE. By taking the derivative of AMISE with respect to hn and setting it to
zero, we have

hopt
n =

 (l!)2
∫

R
K2(u)du

2lm2
l

∫
R
[ f (l)(u)]2du


1/(2l+1)

× n−1/(2l+1)

It is noted that hopt
n is related to

∫
R
[ f (l)(u)]2du but f (x) is an unknown function. So Silverman

(1986) suggested to use a plausible candidate such as the normal density to replace f (x). This
results in the rule-of-thumb for the bandwidth hopt

n = Cσ̂n−1/(2l+1) where C is some constant
and σ̂ is the sample standard deviation. If the standard normal kernel is used, the optimal
bandwidth is σ̂n−1/5.

Note that given the number of observations n, the bandwidth in (2.7) is constant, neither
incorporating the location of x nor that of Xi. As Fan and Gijbels (1996) pointed out, this
constant bandwidth may not estimate curves with a complicated shape very well. Thus they
introduced variable bandwidth h/α(Xi) such that (2.7) can be written as

n∑
i=1

Yi −
p∑

j=0

β j(Xi − x) j


2

Khn/α(Xi)(Xi − x)

where α(·) is positive and reflects the difference of each data point. Then AMISE is minimized
to obtain the optimal bandwidth hn and α(·). They found that by using variable bandwidth,
AMISE can be reduced more than by using constant bandwidth. Meanwhile the local linear
regressor with variable bandwidth shares the advantage of having no boundary effect. Similar
ideas have also been applied to kernel regression (Müller and Stadtmüller, 1987; Schucany,
1995).
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Recently the choice of kernel functions has also been studied because it is found that clas-
sical methods with symmetric kernels have significant bias errors on the boundary (Mackenzie
and Tieu, 2004). Michels (1992) used an asymmetric gamma kernel function to reduce the bias
in estimation, and found that the use of asymmetric kernels can lead to better predictions in a
time series model for environmental data. Chen (2002b) used asymmetric kernels in local lin-
ear regression and claimed that the flexible shape of asymmetric kernels supplies advantages of
having finite variance and resistance to sparse design. Abadir and Lawford (2004) studied the
class of optimal asymmetric kernels in the sense of the mean integrated squared error (MISE)
and analyzed its main properties.
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Figure 2.9: Historical simulation for S&P/TSX Composite Index where daily shocks are used
for demonstration and 99% VaR and 97.5% ES are calculated to compare with PnL. All trading
days are in green zone.

2.3 Example

In this section, a simple example is provided to demonstrate the application of kernel methods
in market risk management. As we have mentioned, the essential step in calculating VaR and
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ES is to predict the PnL distribution, so the kernel density estimator (2.5) can be used to fulfill
the task. For illustration, historical simulation with the same parameters as in Figure 2.4 is used
to generate the predicted shocks. Then instead of (2.3) and (2.4), we apply (2.5) to estimate
the density of these shocks and make use of the original definition (2.1) and (2.2) to find VaR
and ES. Figure 2.9 illustrates this application. It is noted in this case that for comparison with
Figure 2.4, the results given by the kernel density estimator are more conservative as there
are no breaches in the whole period. But we must admit that financial institutions might not
be satisfied with these results because they imply higher capital requirements and so a lower
return on equity.

In this chapter, we have discussed the industrial practice of calculating risk measures and
the application of kernel methods to estimate the distribution of the profit and loss. The next
chapter will provide a broader picture of the methodology by reviewing the recent develop-
ments of kernel regression in finance.



Chapter 3

Literature Review

In the last few decades, nonparametric regression has attracted growing attention from a-
cademia and industry because it requires little prior information on the process which gen-
erates the data. Nonparametric estimation for continuous-time models has been studied for
many years (Tuan, 1981; Rao, 1985; Soulier, 1998; Spokoiny, 2000; Papaspiliopoulos et al.,
2012), but the assumption of continuous time is unreasonable in real applications. Therefore
the purpose of this chapter is to review recent developments of nonparametric regression based
on discrete-time observations for estimation of the drift and diffusion in stochastic differen-
tial equations (SDEs). For those wishing a review, a brief introduction of SDEs, in particular
diffusion processes, is provided in Appendix A.

3.1 Time-Homogeneous Diffusion Models

Florens-Zmirou (1993) left the drift restriction-free and proposed the following kernel estima-
tor for the time-homogeneous diffusion by using the uniform kernel

b̂2
n(x) =

n−1∑
i=1

I(|Xi − x| < hn)n(Xi+1 − Xi)2

n∑
i=1

I(|Xi − x| < hn)

For high-frequency data, i.e. in the limit as the discretization step size tends to zero, the au-
thor proved quadratic convergence and asymptotic normality of the estimator by expanding the
transition density. By assuming the mean-reverted drift, Aı̈t-Sahalia (1996) proposed a non-
parametric estimator for the diffusion in the time-homogeneous case by using the Kolmogorov
forward equation with time-stationary transition density, i.e. ∂p(Xt+h |Xt)

∂t = 0, where p(Xt+h|Xt)
is the transition density of Xt+h given Xt in (A.5) in Appendix A. The Kolmogorov forward

22
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equation can yield

b2(Xt) =
2

p(Xt)

∫ Xt

0
a(y)p(y)dy

where p(y) is the stationary density function of the time series {Xt} and can be approximated
by the kernel density estimator as mentioned in Chapter 2. Note that the Kolmogorov forward
equation with the time-stationary transition density can also provide a relationship

a(Xt) =
1

p(Xt)
d

dXt
[b2(Xt)p(Xt)] (3.1)

so Jiang and Knight (1997) first proposed a kernel estimator of b2(x) given by

b̂2(x) =

n−1∑
i=1

(Xi+1−Xi)2

△ Khn(Xi − x)

n∑
i=1

Khn(Xi − x)
.

Based on (3.1) an estimator of a(x) is proposed by

â(x) =
1

p(x)
d
dx

[b2(x)p(x)] =
1
2

[
db̂2(x)

dx
+ b̂2(x)

p̂′(x)
p̂(x)

]
where p̂(x) is the estimator of the density function given by 1

n

∑n
i=1 Khn(Xi− x). The central limit

theorems for â(x) and b̂2(x) are established and valid conditionally on the path passing through
x. The methods are also applied to estimation of the short-term interest rate. Arapis and Gao
(2006) specified Jiang and Knight’s method by using a Gaussian kernel function to derive the
closed form of the estimators of a(x) and b2(x).

Stanton (1997) applied the infinitesimal generator (Øksendal, 2003) of the time-homogeneous
diffusion model to expand the function f (t, Xt) of t and Xt, where

L f (t, x) = lim
τ↓t

E( f (τ, Xτ)|Xt = x) − f (t, x)
τ − t

=
∂ f (t, x)
∂t

+ a(x)
∂ f (t, x)
∂x

+
1
2

b2(x)
∂2 f (t, x)
∂x2 .

Then E[ f (t + △, Xt+△)|Xt] can be expressed in the form of a Taylor expansion

E[ f (t + △, Xt+△)|Xt] = f (t, Xt) + △L f (t, Xt) +
1
2
△2L2 f (t, Xt) + · · · +

1
n!
△nLn f (t, Xt) + O(△n+1)

Then the first and second order approximations are

L f (t, x) =
1
△E[ f (t + △, Xt+△) − f (t, Xt)|Xt = x] + O(△)

L f (t, x) =
1

2△ {4E[ f (t + △, Xt+△) − f (t, Xt)|Xt = x] − E[ f (t + 2△, Xt+2△) − f (t, Xt)|Xt = x]} + O(△2)
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By taking f (t, x) = x, implying L f (t, x) = a(x), first and second order approximations of a(x)
are

ã(x) =
1
△E[Xt+△ − Xt|Xt = x] + O(△)

ã(x) =
1

2△ {4E[Xt+△ − Xt|Xt = x] − E[Xt+2△ − Xt|Xt = x]} + O(△2).

By taking f (t, x) = (x − Xt)2, implying L f (t, x) = 2a(x)(x − Xt) + b2(x) so L f (t, Xt) = b2(Xt),
first and second order approximations of b2(x) can be given by

b̃2(x) =
1
△E[(Xt+△ − Xt)2|Xt = x] + O(△)

b̃2(x) =
1

2△
{
4E[(Xt+△ − Xt)2|Xt = x] − E[(Xt+2△ − Xt)2|Xt = x]

}
+ O(△2),

where ã(x) and b̃2(x) can be estimated using data Xi, i = 0, . . . , n. Stanton applied the above
methods to estimate the drift and diffusion of the short-term rate and the market price of the
interest rate risk by using the daily three- and six-month treasury bill data. The author claimed
that higher order estimation should outperform lower order estimation. However, Fan and
Zhang (2003) found that this claim may not always hold true. They extended Stanton’s method
and gave the general high order estimation of the drift and diffusion coefficients by adding
weights

L f (t, Xt) =
1
△

k∑
i=1

ak,iEt[ f (t + i△, Xt+i△) − f (t, Xt)] + O(△k)

where ak,i = (−1)i+1
(

k
i

)
/i. Then local polynomial regression is used to derive the estimator of

a(x) and b2(x), and the asymptotic behaviors are obtained. They found that the asymptotic bias-
es of the higher order estimators can be reduced but the asymptotic variances increase with the
order of the estimator. However, the nonnegativity of the local linear estimator of the diffusion
cannot be guaranteed, so some researchers proposed different methods to overcome this short-
coming of local polynomial estimation. One method is through logarithmic transformation to
retain nonnegativity (Ziegelmann, 2002), i.e. the estimator of the diffusion is given by

(β̂0, β̂1) = arg max
β0,β1

n−1∑
i=1

[
(Xi+1 − Xi)2

△ − eβ0+β1(x−Xi)
]2

Khn(x − Xi)

Similar ideas can be also found in (Yu and Jones, 2004). In Yu and Jones’s method, one can
use the Euler scheme to approximate the time-homogeneous case by (A.8), that is,

Xi+1 = Xi + a(Xi)△i + b(Xi)
√
△iεi (3.2)
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Let Yi = Xi+1 − Xi, then the likelihood function for the process (3.2) is written as

n−1∏
i=1

1√
2πb2(Xi)△i

exp
{
− [Yi − a(Xi)△i]2

2b2(Xi)△i

}

and the log-likelihood function is proportional to

n−1∑
i=1

[
log(b2(Xi)△i) +

(Yi − a(Xi)△i)2

b2(Xi)△i

]
.

By letting a(Xi) = α0 + α1(x − Xi) and log b2(Xi) = β0 + β1(x − Xi), one can propose kernel
estimators of the drift and diffusion and use optimization procedures to determine the parame-
ters α0, α1, β0 and β1. Note that the above logarithmic transformation can retain nonnegativity
of the estimator of b2(x). But the transformation introduces an extra bias such that the re-
sulting estimators may not have closed-form representation. Cai (2001) proposed a weighted
Nadaraya-Watson estimator to capture both advantages from local constant and local polyno-
mial methods by defining the weights

wi(x) ≥ 0
n∑

i=1

wi(x) = 1 and
n∑

i=1

(Xi − x)wi(x)Khn(x − Xi) = 0

so one can use the weighted version of the Nadaraya-Watson method to estimate the diffusion
by

b̂2(x) =

n−1∑
i=1

wi(x)Khn(x − Xi)
(Xi+1−Xi)2

△

n∑
i=1

wi(x)Khn(x − Xi)

then the constrained optimization technique is used to determine the weights. Xu (2010) ex-
tended Cai’s method in more general settings. In addition, Arfi (2008) proved that the estima-
tors by Stanton (1997) have strong consistency under some regular conditions.

For low-frequency data, with the fixed discretization step size, Nicolau (2003) quantified
the bias of the Florens-Zmirou (1993) and Jiang and Knight (1997) estimators for the diffusion
in the time-homogeneous case. Meanwhile, based on the quantified bias, Nicolau proposed
a bias adjustment method to partially attenuate the distortion. In addition, weak consistency
and asymptotic normality are obtained for the estimators. Gobet et al. (2004) proposed kernel
estimators of the drift and diffusion under the assumption of ergodicity and proved quadratic
convergence by the spectral analysis of the associated Markov semigroup.

However as pointed by Phillips (1973) and Hansen and Sargent (1983), it is harder to
estimate the drift than the diffusion except by imposing stronger conditions on the drift. This
is similar to the well-known “aliasing problem”, that is, different continuous-time paths may
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be indistinguishable in discrete time points. This is seen by the Cameron-Martin-Girsanov
transformation to give an unnoticeable change in the drift. So the estimates of the drift do not
have the same precision as those of the diffusion. In order to overcome this problem and obtain
accurate estimates, Bandi and Phillips (2003) proposed estimators of the drift and diffusion as
△ → 0 and n△ → ∞ given by

â(x) =

n∑
i=1

Khn(x − Xi)ã(Xi)

n∑
i=1

Khn(x − Xi)
and b̂2(x) =

n∑
i=1

Khn(x − Xi)b̃2(Xi)

n∑
i=1

Khn(x − Xi)

where

ã(x) =

n−1∑
i=1

I(|x − Xi| < bn) (Xi+1−Xi)
△

n∑
i=1

I(|x − Xi| < bn)
and b̃2(x) =

n−1∑
i=1

I(|x − Xi| < bn) (Xi+1−Xi)2

△

n∑
i=1

I(|x − Xi| < bn)

Without assuming the stationarity of the process, the authors derived the limit theory of the
estimators in more general settings. In fact, Cai and Hong (2009) pointed out that Bandi and
Phillips’s estimators can be considered as a two-step kernel smoothing method, where the
estimators on the first step are used to derive the ones on the second step. One can extend this
idea to obtain a multi-step kernel method, but with the increase of steps, it is harder to figure out
the relationship between steps and bandwidths. Arfi (1998) studied a particular diffusion model
under the assumption of ergodicity. The author proposed a kernel estimator of the diffusion and
proved strong consistency of the estimator as △ → 0.

In addition, Chesney et al. (1993) considered the transformation Yt = exp(Xt) and f (Yt),
and then applied the Milstein scheme to obtain the approximation of Yt and f (Yt). After some
algebraic operations, the author approximated b2(Xt) by

b̃2(Xt) =
2
α△

[
Y1+α

t+△ − Y1+α
t

(1 + α)Y1+α
t
− Yt+△ − Yt

Yt

]
then a kernel smoother can be used to estimate b̃2(x). Note that the choice of the power α must
satisfy some technical conditions to guarantee the positivity of the estimator.

In addition to theoretical studies as mentioned above, there have been many empirical anal-
yses on the form of the drift and diffusion for the short-term interest rate. Aı̈t-Sahalia (1996)
and Stanton (1997) claimed that the drift should have a nonlinear form. However Chapman
and Pearson (2000) asked whether the drift is actually nonlinear or it is due to the bias of the
estimator. Although the form of the drift is inconclusive in the paper, the authors found sig-
nificant biases in the estimators of Aı̈t-Sahalia (1996) and Stanton (1997) for fitting the linear
drift. One reason for such biases is the original effect caused by the kernel estimator. In order
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to overcome the problem of the boundary effect, great progress has been made in proposing the
methods to improve the performance of the estimator of the drift in the origin bound. The lo-
cal linear method (Fan and Zhang, 2003) and asymmetric kernels (Gospodinov and Hirukawa,
2012) can be used for this purpose.

3.2 Second-Order Diffusion Models

For a non-stationary process {Xt}, one can isolate temporal components to make the process
stationary. However this detrending requires more assumptions and extra steps, so in practice
differencing is a popular approach to remove a mean trend from the non-stationary process
(Box et al., 1994). For example, while raw financial data usually exhibits non-stationarity and
non-normality, it is practical to use differencing to model the stationary shocks because there
are many theoretical methods applicable for stationary processes.

In order to accommodate this idea, Nicolau (2007) considered a second-order diffusion
model for the process {Yt} given by dYt = Xtdt

dXt = a(Xt)dt + b(Xt)dWt

(3.3)

where {Xt} is a stationary process and {Yt} is a differentiable integrated process. Note that the
above equations can be written as d (dYt/dt) = a(Xt)dt + b(Xt)dWt, so this is called a second-
order equation. Nicolau (2007) obtained the proxy of Xt by

X̃i =
Yi − Yi−1

△

because usually the process {Xt} is unobservable. Then the author proposed kernel estimators
of the drift and diffusion based on the proxy data, which are given by

p̂n(x) =
1
n

n∑
i=1

Khn(x − X̃i) ân(x) =
An(x)
p̂n(x)

b̂2
n(x) =

Bn(x)
p̂n(x)

where

An(x) =
1

n△n

n∑
i=1

Khn(x − X̃i)
(
X̃i+1 − X̃i

)
Bn(x) =

3
2n△n

n∑
i=1

Khn(x − X̃i)
(
X̃i+1 − X̃i

)2

and proved weak consistency and asymptotic normality of the estimators. After that, Nicolau
(2008) applied the proposed estimators to make an empirical analysis of the stock price and
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exchange rate.

Wang and Lin (2011) extended Nicolau’s idea to propose local linear estimators of the drift
and diffusion for (3.3), which are given by

(α̂0, α̂1) = arg min
α0,α1

n∑
i=1

(
X̃i+1 − X̃i

△n
− α0 − α1(x − X̃i)

)2

Khn(x − X̃i)

(β̂0, β̂1) = arg min
β0,β1

n∑
i=1

 3
2 (X̃i+1 − X̃i)2

△n
− β0 − β1(x − X̃i)

2

Khn(x − X̃i)

Then weak consistency is established in the paper and simulation results are used to validate the
theory. However nonnegativity of the local linear estimator of the diffusion may not be guar-
anteed, thus similar to (Cai, 2001), Wang et al. (2012) proposed a weighted kernel estimator,
and studied weak consistency and asymptotic normality of the estimators.

3.3 Time-Inhomogeneous Diffusion Models

The time-homogeneous model has its limitations and may not capture time varying character-
istics of diffusion models. For example, economic and market conditions could vary from time
to time (Cheng and Wang, 2007). So many efforts have been made to explicitly characterize
the time inhomogeneity. Such kind of models include Ho and Lee (1986)’s model

dXt = a(t)dt + b(t)dWt,

Hull and White (1990)’s model

dXt = [a0(t) + a1(t)Xt]dt + σdWt,

Black et al. (1990)’s model

dXt =

[
a(t)Xt +

b′(t)
b(t)

Xt ln Xt

]
dt + b(t)XtdWt,

and Black and Karasinski (1991)’s model

dXt = [a0(t)Xt + a1(t)Xt ln Xt] dt + b(t)XtdWt.

Note that all the above models can be written as the following general form

dXt = [a0(t) + a1(t) f (t, Xt)]dt + b(t)[g(Xt)]γ(t)dWt. (3.4)
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For example, when a1(t) = 0 and γ(t) = 0, (3.4) is the Ho and Lee model; when f (t, Xt) =
Xt and γ(t) = 0, (3.4) is the Hull and White model. Also (3.4) includes the popular time-
homogeneous diffusion models. For example, when a0(t) = 0, a1(t) = µ, f (t, Xt) = Xt, b(t) =
σ, g(Xt) = Xt and γ(t) = 1, (3.4) is the GBM; when a0(t) = ab, a1(t) = −a, f (t, Xt) = Xt, b(t) = c

and γ(t) = 0, (3.4) is the Vasicek model; when a0(t) = ab, a1(t) = −a, f (t, Xt) = Xt, b(t) =
c, g(Xt) = Xt and γ(t) = 1/2, (3.4) is the CIR model.

Fan et al. (2003) studied the refined model of (3.4) by assuming the linearity of f (t, Xt) and
g(Xt) which is given by

dXt = [a0(t) + a1(t)Xt]dt + b(t)Xγ(t)
t dWt. (3.5)

The discretized form of (3.5) is written as

Xi+1 − Xi = [a0(ti) + a1(ti)Xi]△i + b(ti)X
γ(ti)
i

√
△iεi,

where the step △i = ti+1 − ti, and note that

a(t, Xt) = lim
△→0

E
[Xt+△ − Xt

△

∣∣∣∣∣Xt

]
and b2(t, Xt) = lim

△→0
E

[
(Xt+△ − Xt)2

△

∣∣∣∣∣Xt

]
,

using a locally constant approximation of a0(t) and a1(t), the authors proposed the following
estimator of the drift

(α̂0, α̂1) = arg min
α0,α1

n−1∑
i=1

[
Xi+1 − Xi

△i
− α0 − α1Xi

]2

Khn(ti − t0)

in which â0(t) = α̂0 and â1(t) = α̂1 depend on the time t. Let â(t, Xt) = â0(t) + â1(t)Xt and
Ri =

1√△i
[Xi+1 − Xi − â(ti, Xi)△i] and assume locally constant approximation of b(t) and γ(t), the

authors proposed the estimator of the diffusion based on the quasi-likelihood function

(β̂, γ̂) = arg min
β,γ

n−1∑
i=1

Khn(ti − t0)

ln(β2X2γ
i ) +

R2
i

βX2γ
i


then b̂(t) = β̂ and γ̂(t) = γ̂ depend on the time t. The authors applied the proposed estimators to
study the short-term treasury bill data. However, the process {Xt} may not be stationary due to
the time-varying drift and diffusion, thus the authors did not obtain the asymptotic properties of
the estimators, instead validating their results by simulations and real applications. Wang and
Xiao (2013) generalized Fan et al. (2003)’s work for the more general time-inhomogeneous
model (3.4) where the forms of f (·) and g(·) are given. The authors proposed local linear
estimators and under regular conditions, weak consistency and asymptotic normality are estab-
lished for the estimator of the diffusion. In addition, Yu et al. (2009) proposed the penalized
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smoothing estimators for the drift and diffusion in the time-inhomogeneous case and proved
the asymptotic properties of the estimators.

3.4 Remark

In addition to kernel estimation in diffusion processes, many efforts have been made to explore
nonparametric estimation in jump-diffusion processes for modeling the behaviors with discon-
tinuities or jumps caused by unpredicted events (Lobo, 1999; Bollerslev and Zhou, 2002; Liu
et al., 2002; Johannes, 2004). For example, Bandi and Nguyen (2003) proposed the estima-
tors for the time-homogeneous jump-diffusion process and provided the asymptotic properties
for the estimators. Hanif (2013) studied local linear estimation for jump-diffusion models
by using asymmetric kernels to overcome the boundary effect of kernel methods. Song and
Lin (2013) applied the empirical likelihood method to make inference of the second-order
jump-diffusion model based on Nadaraya-Watson estimators. Schmisser (2014) used the pe-
nalized least squares method to propose two adaptive estimators of the drift and characterized
the bounds for the risks of both estimators. Song et al. (2013) proposed weighted Nadaraya-
Watson estimators of a second-order jump-diffusion model and gave the asymptotic properties
of these estimators. Cai and Hong (2009) provided detailed summary of the developments of
nonparametric regression in these areas. However, all methods mentioned above are offline,
namely taking all past observations in each calculation. When there are a great amount of data,
the computing time is unbearable as discussed in Chapter 1. So in order to accelerate the pro-
cedure, it is necessary to put forward an incremental approach with linear complexity. This is
what we will do in Chapter 4.



Chapter 4

Asymptotic Theory of Online Estimators
for SDE

4.1 Introduction

The purpose of this chapter is twofold. First, we propose online kernel estimators of the drift
and diffusion in the time-homogeneous stationary diffusion models for discrete-time sequential
observations. Second, we study large sample properties of the estimators by establishing their
quadratic convergence, strong consistency and asymptotic normality.

In this chapter, we start from time-homogeneous stationary diffusion models because many
such models have been developed to describe stochastic behaviors of a wide range of risk
factors including interest rates, for example the Vasicek (VAS) model (Vasicek, 1977) and the
Cox, Ingersoll and Ross (CIR) model (Cox et al., 1985):

(VAS): dXt = (α0 + α1Xt)dt + σdWt

(CIR): dXt = (α0 + α1Xt)dt + σX1/2
t dWt

where Xt is the risk factor we are concerned with and Wt is a Brownian motion. Moreover the
study of time-homogeneous stationary models can provide us with valuable intuition for the
non-stationary case. The proposed online estimators of the drift and diffusion are new in that
previous work on nonparametric estimation of diffusion models developed offline procedures,
and our estimators can meet real-time demands of managing risks which are often required in
practice. Here we concentrate on high-frequency data with sufficiently long time interval, i.e.
the discretization step size △ → 0 and the time period T = n△ → ∞, because there are more one
minute bars available with the development of modern technology. In this case, we establish
the asymptotic properties of the proposed estimators. In this chapter, we mainly present the
theoretical analysis of the online technique which will be useful for further inference, and
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leave numerical examples and a case study to the next chapter.

This chapter is organized as follows. In Section 4.2, we derive online kernel estimators for
the drift and diffusion. Section 4.3 presents the theoretical analysis of online estimators. In this
section, some assumptions are made and useful lemmas from previous work are provided for
our proof. Then we prove quadratic convergence, strong consistency and asymptotic normality
respectively. A brief conclusion is contained in Section 4.4.

4.2 Method

Suppose the discrete-time sequential observations {Xi}i≥0 at the time ti ≥ 0 and the discretiza-
tion step size △i = ti+1 − ti, where {Xi}i≥0 are from the time-homogeneous stationary diffusion
model

dXt = a(Xt)dt + b(Xt)dWt (4.1)

where {Wt} is the Wiener process and a(·), b2(·) are called the drift and diffusion respectively.
The infinitesimal generator gives the precise form of the drift and diffusion by

a(Xt) = lim
△→0

1
△E[(Xt+△ − Xt)|Xt] and b2(Xt) = lim

△→0

1
△E[(Xt+△ − Xt)2|Xt]

Then Nadaraya-Watson kernel regression gives the estimator
∑n

i=0
Xi+1−Xi
△i

Khn(x−Xi)/
∑n

i=0 Khn(x−
Xi) for the drift and

∑n
i=0

(Xi+1−Xi)2

△i
Khn(x − Xi)/

∑n
i=0 Khn(x − Xi) for the diffusion. It can be found

that as n increases, more observations are included for estimation and the past ones are used
over and over again. This results in inefficiency of the offline estimators. However inspired
by the idea of stochastic approximation (which is provided in Appendix B), we can estimate
the drift and diffusion more efficiently by a semi-recursive procedure. In this thesis, the online
estimator of a(x) is proposed as follows:

ĝn(x) = ĝn−1(x) +
1
n

[YnKhn(x − Xn) − ĝn−1(x)] (4.2)

f̂n(x) = f̂n−1(x) +
1
n

[Khn(x − Xn) − f̂n−1(x)] (4.3)

ân(x) =
ĝn(x)

f̂n(x)
(4.4)

where Yn =
Xn+1−Xn
△n

and Khn(x) = K(x/hn)/hn with the kernel function K(·), and the online
estimator of b2(x) is as follows:

d̂n(x) = d̂n−1(x) +
1
n

[ZnKhn(x − Xn) − d̂n−1(x)] (4.5)

b̂2
n(x) =

d̂n(x)

f̂n(x)
(4.6)
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where Zn =
(Xn+1−Xn)2

△n
. From a practical view, it is required to give an initial value to trigger the

online estimator so as to make it work. We suggest to use the offline estimator with a small
number of observations to decide ĝ0(x), d̂0(x) and f̂0(x).

It is worth mentioning the difference between the “online” and “offline” methods. The
offline procedure stores all the samples and each time as new samples become available, the
algorithm must recalculate the estimate at x using all samples. In contrast, the online procedure
stores just the most recent sample and uses this to update the estimate at x. Therefore the
proposed online estimators have the attractive properties of saving memory and running time.
In addition, another technical difference is that the offline procedure applies one bandwidth
to all current history samples and the online version uses a bandwidth for the most recent
sample. But as Huang (2011) pointed out, online methods could have a larger bias but a
smaller asymptotic variance even though the same convergence rate could be achieved as their
offline counterparts. It is because the choice of the bandwidth usually depends on the number
of samples. On average, online methods use a bigger bandwidth.

4.3 Theoretical Analysis

4.3.1 Assumptions and Preliminary Lemmas

In this part, we will prove the asymptotical properties of the estimators ân(x) and b̂2
n(x) in (4.4)

and (4.6). We need the following assumptions:

A1 For the time-homogeneous case, a(·) and b2(·) have at least first-order bounded deriva-
tives and

∫ T

0
|a(Xt)|dt < ∞ and

∫ T

0
|b2(Xt)|dt < ∞ almost surely which imply that a(·) and

b2(·) are bounded almost surely for Xt, t ∈ [0, T ]. In addition, a(·) and b(·) satisfy the
linear growth condition, i.e. for some constant C > 0 we have

|a(x)| ≤ C(1 + x2)1/2 and 0 ≤ b(x) ≤ C(1 + x2)1/2

and satisfy the uniform Lipschitz condition in x, i.e. for x, y ∈ R and t ∈ [0,T ], there is
some positive constant D such that |a(x)−a(y)| ≤ D|x−y| and |b(x)−b(y)| ≤ D|x−y|. Based
on (Jiang and Knight, 1997), this assumption ensures that (4.1) has a unique solution

Xt = X0 +

∫ t

0
a(Xt)dt +

∫ t

0
b(Xt)dWt

A2 The stationary process {Xt} has the bounded marginal distribution f (x) with at least first-
order bounded derivative on the support {x ∈ R : f (x) > 0}. In addition, for any t and s,
Xt and Xs have the joint density f (x, y) which satisfies sup

x,y∈R
| f (x, y)| < ∞.
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A3 Assume that

lim
x→+∞

sup
(
a(x)
b(x)

− b′(x)
2

)
< 0 and lim

x→−∞
sup

(
a(x)
b(x)

− b′(x)
2

)
> 0

Based on (Nicolau, 2003), this assumption implies that the process is ρ-mixing with
exponential decay, i.e., the mixing coefficient ρk = O(e−rk) for some positive constant r.
The definition of a ρ-mixing process can be seen in Appendix C.

A4 The kernel function satisfies

sup
x∈R
|K(x)| < ∞ and

∫
R
|K(x)|dx < ∞ (4.7)

∫
R

K(x)dx = 1 (4.8)

and for all l ≥ 0
cl =

∫
R

xlK(x)dx < ∞ (4.9)

A5 The step of discretization △n = △ = O(k−1) where k/n → 0 as k → ∞ and n → ∞,
implying that △ → 0 and n△ → ∞. Note that k represents the sampling frequency
which is determined by the current development of technology. With the development of
communication techniques, we can sample higher frequency of observations (i.e. k →
∞). The intuition behind k/n→ 0 and n△ → ∞ is that we can always obtain a sufficiently
large sample of high-frequency data as long as we sample for sufficiently long time1.

A6 The bandwidth hn → 0, nhn → ∞ and nhn△ → ∞ as k → ∞ and n→ ∞. We also assume

β = lim
n→∞

1
n

n∑
i=1

hi

hn
< ∞ (4.10)

αl = lim
n→∞

1
n

n∑
i=1

(
hn

hi

)l

< ∞ for l = 1/2, 1, 3/2, 2, 3 (4.11)

Note that (4.10) and (4.11) can always be satisfied. For example, if hn = cn−γ is taken, then

β =
1
n

n∑
i=1

hi

hn
=

1
n

n∑
i=1

( i
n

)−γ
≤

∫ 1

0
x−γdx =

1
1 − γ

αl =
1
n

n∑
i=1

(
hn

hi

)l

≤ 1
1 + lγ

1Note that this assumption is not enough to sample for longer time at a low frequency, as then the data will be
too far apart in state space to get a good Taylor series type estimate.
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Therefore in this case, 0 < γ < 1 can guarantee that (4.10) and (4.11) hold true. In addition, we
assume that the item in the expression O(△k) or o(△k) is uniform in its domain for any k ≥ 0.

The following lemmas owing to Bochner (Wheeden and Zygmund, 1977), Toeplitz (Loève,
1977), and Fan and Zhang (2003) are useful to our later proof.

Lemma 4.3.1 (Bochner). Suppose K(x) satisfies (4.7) and hn → 0 as n → ∞. Let g(x) ∈ L1,

then

lim
n→∞

∫
R

Khn(x − u)g(u)du = g(x)
∫

R
K(u)du

Lemma 4.3.2 (Toeplitz). Let {an,k}∞n,k=1 be a matrix of real numbers satisfying: (1) limn→∞ an,k =

0 for each k; (2)
∑

k |an,k| ≤ C < ∞ for each n and (3) limn→∞
∑

k an,k = A < ∞. Let {xn} be a

sequence of real numbers with a finite limit x as n→ ∞. Then∑
k

an,kxk → Ax as n→ ∞

In addition, similar to Taylor expansion, for a function m(·) ∈ L2(p+1), we have E[m(Xt+△)|Xt] =∑p
j=0L jm(Xt)△

j

j! where the operator L = a d
dx +

1
2b2 d2

dx2 is based on the infinitesimal generator.
Then there is the following lemma

Lemma 4.3.3 (Fan and Zhang). For the time-homogeneous diffusion process (4.1),

E[(Xt+△ − Xt)|Xt] = a(Xt)△ + O(△2) (4.12)

E[(Xt+△ − Xt)2|Xt] = b2(Xt)△ + O(△2) (4.13)

E[(Xt+△ − Xt)3|Xt] = 3b2(Xt)
[
a(Xt) +

1
2

(b2)′(Xt)
]
△2 + O(△3) (4.14)

E[(Xt+△ − Xt)4|Xt] = 3b4(Xt)△2 + O(△3) (4.15)

4.3.2 Quadratic Convergence

In this section we establish quadratic convergence of the proposed estimators. Our proof par-
tially follows Masry (1986)’s argument for the totally recursive estimator of the density func-
tion, but goes beyond it by considering the semi-recursive estimators for diffusion models.

Proposition 4.3.4. Under A1-A6, we have

Eĝn(x) = a(x) f (x) − (a(x) f ′(x) + a′(x) f (x))c1βhn + O(h2
n + △) (4.16)
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Proof. Note that (4.2) can be rewritten as

ĝn(x) = ĝn−1(x) +
1
n

[YnKhn(x − Xn) − ĝn−1(x)] =
n − 1

n
ĝn−1(x) +

1
n

YnKhn(x − Xn)

=
n − 1

n

[
n − 2
n − 1

ĝn−2(x) +
1

n − 1
Yn−1Khn−1(x − Xn−1)

]
+

1
n

YnKhn(x − Xn)

=
n − 2

n
ĝn−2(x) +

1
n

[Yn−1Khn−1(x − Xn−1) + YnKhn(x − Xn)] = . . . . . . =
1
n

n∑
i=1

YiKhi(x − Xi)

thus taking expectation on both sides of the above expression yields

Eĝn(x) =
1
n

n∑
i=1

E[YiKhi(x − Xi)] =
1
n

n∑
i=1

E{E[YiKhi(x − Xi)|Xi]}

=
1
n

n∑
i=1

E{Khi(x − Xi)E[Yi|Xi]} =
1
n

n∑
i=1

∫
R

Khi(x − z)E[Yi|Xi = z] f (z)dz

Then, Lemma 4.3.3 implies E[Xi+1 − Xi|Xi = z] = a(z)△ + O(△2) and thus

Eĝn(x) =
1
n

n∑
i=1

∫
R

Khi(x − z)[a(z) + O(△)] f (z)dz

Take z = x − hiu and apply Taylor expansion to yield

Eĝn(x) =
1
n

n∑
i=1

∫
R

K(u)[a(x − hiu) + O(△)] f (x − hiu)du

=
1
n

n∑
i=1

∫
R

K(u)[a(x) − hiua′(x) + O(h2
i + △)][ f (x) − hiu f ′(x) + O(h2

i )]du

=
1
n

n∑
i=1

∫
R

K(u){a(x) f (x) − hiu[a′(x) f (x) + a(x) f ′(x)] + O(h2
i + △)}du

= a(x) f (x) − [a(x) f ′(x) + a′(x) f (x)]
hn

n

n∑
i=1

hi

hn

∫
R

uK(u)du + O(h2
i + △)

= a(x) f (x) − [a(x) f ′(x) + a′(x) f (x)]c1βhn + O(h2
n + △)

�

Proposition 4.3.5. Under A1-A6, the following statement holds true

E f̂n(x) = f (x) − f ′(x)c1βhn + O(h2
n + △) (4.17)
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Proof. Similar to the proof of Proposition 4.3.4. �

Using Proposition 4.3.4 and 4.3.5, we can characterize the ratio Eĝn(x)
E f̂n(x)

by the following
statement:

Proposition 4.3.6. Under A1-A6,

Eĝn(x)

E f̂n(x)
− a(x) = −a′(x)c1βhn + O(h2

n + △)

Proof. It can be seen that

Eĝn(x)

E f̂n(x)
− a(x) =

a(x) f (x) − (a(x) f ′(x) + a′(x) f (x))c1βhn + O(h2
n + △)

f (x) − f ′(x)c1βhn + O(h2
n)

− a(x)

=
−a′(x) f (x)c1βhn + O(h2

n + △)
f (x) − f ′(x)c1βhn + O(h2

n)
= −a′(x)c1βhn + O(h2

n + △)

�

In addition, we refer to the following lemma for the expectation and variance of ratio of
two random variables (Elandt-Johnson and Johnson, 1980)

Lemma 4.3.7. For the random variables X and Y,

E
(X
Y

)
=

µX

µY
+ O(Var(X) + Var(Y) +Cov(X,Y))

Var
(X
Y

)
≈ 1

µ2
Y

Var(X) − 2
µX

µY
Cov(X,Y) +

(
µX

µY

)2

Var(Y)


where µX = EX and µY = EY.

In order to obtain the bias Eân(x) − a(x), it suffices to calculate Var[ĝn(x)],Var[ f̂n(x)] and
Cov[ĝn(x), f̂n(x)].

Proposition 4.3.8. Under A1-A6,

Var[ĝn(x)] = O
(

1
nhn△

)
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Proof. Here we have

Var[ĝn(x)] = Var

1
n

n∑
i=1

YiKhi(x − Xi)

 = 1
n2 Var

 n∑
i=1

YiKhi(x − Xi)


=

1
n2

n∑
i=1

Var[YiKhi(x − Xi)] +
1
n2

n∑
i, j=1
i, j

Cov[YiKhi(x − Xi),Y jKh j(x − X j)]

, In + Rn

First, note that

In =
1
n2

n∑
i=1

Var[YiKhi(x − Xi)] =
1
n2

n∑
i=1

{
E[YiKhi(x − Xi)]2 − E2[YiKhi(x − Xi)]

}
, In1 − In2

where

In1 =
1
n2

n∑
i=1

E[YiKhi(x − Xi)]2 =
1
n2

n∑
i=1

∫
R

K2
hi

(x − z)E[Y2
i |Xi = z] f (z)dz

Lemma 4.3.3 implies E[Y2
i |Xi = z] = b2(z)

△ + O(1), thus

In1 =
1
n2

n∑
i=1

∫
R

K2
hi

(x − z)
[
b2(z)
△ + O(1)

]
f (z)dz

=
1
n2

n∑
i=1

1
hi

∫
R

1
hi

K2
(

x − z
hi

) [
b2(z)
△ + O(1)

]
f (z)dz

It can be checked that K2(x) satisfies the assumption for Lemma 4.3.1 as well, so as i→ ∞∫
R

1
hi

K2
(

x − z
hi

) [
b2(z) + O(△)

]
f (z)dz→ [b2(x) + O(△)] f (x)

∫
R

K2(u)du

By Lemma 4.3.2 where an,i =
hn
nhi

for i ≤ n and an,i = 0 for i > n and from (4.11)

lim
n→∞

n∑
i=1

an,i = lim
n→∞

1
n

n∑
i=1

hn

hi
< ∞

thus

In1 =
1

nhn△

1
n

n∑
i=1

hn

hi

∫
R

1
hi

K2
(

x − z
hi

) [
b2(z) + O(△)

]
f (z)dz


= O

(
1

nhn△

)
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In addition,

In2 =
1
n2

n∑
i=1

E2[YiKhi(x − Xi)] =
1
n2

n∑
i=1

[∫
R

Khi(x − z)(a(z) + O(△)) f (z)dz
]2

By Lemma 4.3.1 and
∫

R
K(x)dx = 1, we have

{∫
R

Khi(x − z)[a(z) + O(△)] f (z)dz
}2
→ a2(x) f 2(x),

and by Lemma 4.3.2 so In2 = O(1/n). Therefore we can obtain In = In1 − In2 = O
(

1
nhn△

)
.

For the other part,

|Rn| ≤
1
n2

n∑
i, j=1
i, j

|Cov[YiKhi(x − Xi),Y jKh j(x − X j)]|

≤ 1
n2

n∑
i, j=1
i, j

E1/2[YiKhi(x − Xi)]2E1/2[Y jKh j(x − X j)]2|ρ(| j − i|)|

where note that

E|YiKhi(x − Xi)|2 =
∫

R
K2

hi
(x − z)

[
b2(z)
△ + O(1)

]
f (z)dz

=
1

hi△

∫
R

1
hi

K2
(

x − z
hi

)
[b2(z) + O(△)] f (z)dz ,

1
hi△

qi(x)

by Lemma 4.3.1 it follows that

qi(x) =
∫

R

1
hi

K2
(

x − z
hi

)
[b2(z) + O(△)] f (z)dz→ b2(x) f (x)

∫
R

K2(u)du

thus by Cauchy-Schwartz inequality

|Rn| ≤
1
n2

n∑
i, j=1
i, j

|ρ(| j − i|)|
[

1
hi△

qi(x)
]1/2 [

1
h j△

q j(x)
]1/2

≤ 1
nhn△

1
n

n∑
i=1

hn

hi
|ρ(i)|qi(x)

1/2 1
n

n∑
j=1

hn

h j
|ρ( j)|q j(x)


1/2

note that |ρ(n)|qn(x)→ 0 and by Lemma 4.3.2, we have

1
n

n∑
i=1

hn

hi
|ρ(i)|qi(x) = o(1)

1
n

n∑
j=1

hn

h j
|ρ( j)|q j(x) = o(1)
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implying that |Rn| = o
(

1
nhn△

)
. So

0 ≤ Var[ĝn(x)] = In + Rn ≤ In + |Rn| = O
(

1
nhn△

)
Therefore

Var[ĝn(x)] = O
(

1
nhn△

)
�

Similarly, we can prove that Var[ f̂n(x)] = O
(

1
nhn

)
and Cov[ĝn(x), f̂n(x)] = O

(
1

nhn△1/2

)
.

Theorem 4.3.9. Under A1-A6,

E[ân(x) − a(x)]2 = O
(
h2

n + △2 + hn△ +
1

nhn△

)
→ 0

that is, ân(x)
L2

→ a(x).

Proof. Note that
E[ân(x) − a(x)]2 = [Eân(x) − a(x)]2 + Var[ân(x)]

From Propositions 4.3.6 and 4.3.8 and Lemma 4.3.7, we have

Eân(x) − a(x) =
Eĝn(x)

E f̂n(x)
− a(x) + O(Var[ĝn(x)] + Var[ f̂n(x)] +Cov[ĝn(x), f̂n(x)])

= O
(
hn + △ +

1
nhn△

)
and

Var[ân(x)] = Var
[
ĝn(x)

f̂n(x)

]
=

1

E2 f̂n(x)

Var[ĝn(x)] − 2
Eĝn(x)

E f̂n(x)
Cov[ĝn(x), f̂n(x)] +

(
Eĝn(x)

E f̂n(x)

)2

Var[ f̂n(x)]


= O

(
1

nhn△

)
1

E2 f̂n(x)

(
1 − Eĝn(x)

E f̂n(x)

)2

= O
(

1
nhn△

)
Therefore, we have

E[ân(x) − a(x)]2 =

[
O

(
hn + △ +

1
nhn△

)]2

+ O
(

1
nhn△

)
= O

(
h2

n + △2 + hn△ +
1

nhn△

)
→ 0
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that is, ân(x)
L2

→ a(x). �

Using similar steps, we can obtain quadratic convergence of b̂2
n(x). Here we give just a

sketch of the proof. To do so, the following statements are useful:

Lemma 4.3.10. Under A1-A6, then

(1) E[(Xt+△ − Xt)8|Xt] = 105b8(Xt)△4 + O(△5)

(2) Ed̂n(x) = b2(x) f (x) − [b2(x) f ′(x) + (b2)′(x) f (x)]c1βhn + O(h2
n + △)

(3) Var[d̂n(x)] = O
(

1
nhn

)
and Cov[d̂n(x), f̂n(x)] = O

(
1

nhn

)
Proof. For (1), from the definition of the infinitesimal generator L = a d

dx +
1
2b2 d2

dx2 , by letting
m(x) = (x − Xt)8, we find that

Lm(Xt) = 0 and L2m(Xt) = 0 and L3m(Xt) = 0

and

L4m(Xt) =
8!
24 b8(Xt)

△4

4!
+ O(△5)

that is, the approximation of order △4 is

E[(Xt+△ − Xt)8|Xt] = 105b8(Xt)△4 + O(△5)

Actually, for any integer m ≥ 1, it can be calculated that

E[(Xt+△ − Xt)2m|Xt] =
(2m)!

2m b2m(Xt)
△m

m!
+ O(△m+1)

For (2), Lemma 4.3.1, Lemma 4.3.2 and Lemma 4.3.3 imply that

Ed̂n(x) =
1
n

n∑
i=1

E[ZiKhi(x − Xi)] =
1
n

n∑
i=1

∫
R

Khi(x − x)[b2(z) + O(△)] f (z)dz

=
1
n

n∑
i=1

∫
R

K(u)[b2(x) − hiu(b2)′(x) + O(h2
i + △)][ f (x) − hiu f ′(x) + O(h2

i )]du

= b2(x) f (x) − [b2(x) f ′(x) + (b2)′(x) f (x)]c1βhn + O(h2
n + △).

For (3), we have

Var[d̂n(x)] =
1
n2

n∑
i=1

Var[ZiKhi(x − Xi)] +
1
n2

∑
i, j=1
i, j

Cov[ZiKhi(x − Xi),Z jKh j(x − X j)]

, In + Rn
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then note that

In =
1
n2

n∑
i=1

Var[ZiKhi(x − Xi)] =
1
n2

n∑
i=1

{E[ZiKhi(x − Xi)]2 − E2[ZiKhi(x − Xi)]}

=
1
n2

n∑
i=1


∫

R
K2

hi
(x − z)[3b4(z) + O(△)] f (z)dz −

[∫
R

Khi(x − z)[b2(z) + O(△)] f (z)dz
]2


= O
(

1
nhn

)
.

For Rn, note that

|Rn| ≤
1
n2

n∑
i, j=1
i, j

|Cov[ZiKhi(x − Xi), Z jKh j(x − X j)]|

≤ 1
n2

n∑
i, j=1
i, j

E1/2[ZiKhi(x − Xi)]2E1/2[Z jKh j(x − X j)]|ρ(| j − i|)|

where
E[ZiKhi(x − Xi)]2 =

1
hi

∫
R

1
hi

K2
(

x − z
hi

)
[b4(z) + O(△)] f (z)dz = O(1/hi)

so

|Rn| ≤
1

nhn

1
n

n∑
i=1

O(hn/hi)|ρ(i)|
1/2 1

n

n∑
j=1

O(hn/h j)|ρ( j)|


1/2

= o
(

1
nhn

)
then we have

0 ≤ Var[d̂n(x)] = In + Rn ≤ In + |Rn| ≤ O
(

1
nhn

)
.

therefore
Var[d̂n(x)] = O

(
1

nhn

)
Similarly, it can be obtained that Cov[d̂n(x), f̂n(x)] = O

(
1

nhn

)
. �

Then quadratic convergence of b̂2
n(x) is illustrated by the following theorem

Theorem 4.3.11. Under A1-A6,

E[b̂2
n(x) − b2(x)]2 = O

(
h2

n +
1

nhn

)
→ 0

that is, b̂2
n(x)

L2

→ b2(x).
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Proof. First of all, we have

Ed̂n(x)

E f̂n(x)
− b2(x) =

b2(x) f (x) − [b2(x) f ′(x) + (b2)′(x) f (x)]c1βhn + O(h2
n + △)

f (x) − f ′(x)c1βhn + O(h2
n)

− b2(x)

=
−(b2)′(x) f (x)c1βhn + O(h2

n + △)
f (x) − f ′(x)c1βhn + O(h2

n)
= −(b2)′(x)c1βhn + O(h2

n + △)

then

Eb̂2
n(x) − b2(x) =

Ed̂n(x)

E f̂n(x)
− b2(x) + O

(
Var[d̂n(x)] + Var[ f̂n(x)] +Cov[d̂n(x) + f̂n(x)]

)
= O

(
hn +

1
nhn

)
and

Var[b̂2
n(x)] = Var

[
d̂n(x)

f̂n(x)

]
=

1

E2 f̂n(x)

Var[d̂n(x)] − 2
Ed̂n(x)

E f̂n(x)
Cov[d̂n(x), f̂n(x)] +

(
Ed̂n(x)

E f̂n(x)

)2

Var[ f̂n(x)]


= O

(
1

nhn

)
1

E2 f̂n(x)

(
1 − Ed̂n(x)

E f̂n(x)

)2

= O
(

1
nhn

)
Therefore, we have

E[b̂2
n(x) − b2(x)]2 =

[
O

(
hn +

1
nhn

)]2

+ O
(

1
nhn

)
= O

(
h2

n +
1

nhn

)
→ 0

From the above theorems, we can find that b̂2
n(x) has a faster quadratic convergence rate

than ân(x), implying that the diffusion is more easily estimated than the drift. This is consistent
with the result of the argument by Jiang and Knight (1999). �

4.3.3 Strong Consistency

In this part, we establish strong consistency, that is, ân(x)
a.s.→ a(x) and b̂2(x)

a.s.→ b2(x). First,
strong consistency of ân(x) is proved. To do so, the two following lemmas are required. One is
owing to Kronecker (Shiryaev, 1996) and the other is owing to Masry (1987):

Lemma 4.3.12 (Kronecker). If bn is an increasing real sequence with bn → ∞, and xn is a real
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sequence such that
∑∞

n=1 xn exists, then as n→ ∞

1
bn

n∑
i=1

bixi → 0

Lemma 4.3.13 (Masry). Let {Xn} be an α-mixing process2 and gn(·) is a sequence of Borel

measurable functions on the real line R. Let Zi = gi(Xi) − Egi(Xi), and put S n =
∑n

i=1 Zi. If∑∞
i=1[E|Zi|r]2/r < ∞ and

∞∑
n=1

(log n)(log2 n)1+δα1−2/r
n ·

∞∑
i=n

[E|Zi|r]2/r < ∞

for some r > 2 and δ > 0, then S n converges almost surely to a finite limit as n→ ∞.

In addition, we need the extra assumption:

A7 Suppose the bandwidth hn and the mixing coefficient of the process ρn satisfy

i.
∑∞

i=1[i2h3/2
i △]−1 < ∞

i.
∑∞

n=1(log n)(log2 n)1+δρ1/2
n ·

∑∞
i=n[i2h3/2

i △]−1 < ∞

We use the expansion

ân(x) − a(x) =
ĝn(x) − a(x) f̂n(x)

f̂n(x)

=
ĝn(x) − a(x) f̂n(x) − E[ĝn(x) − a(x) f̂n(x)] + E[ĝn(x) − a(x) f̂n(x)]

f̂n(x)

Then it can be proved that

Proposition 4.3.14. Under A1-A6,

E[ĝn(x) − a(x) f̂n(x)]→ 0

Proof. From Proposition 4.3.4 and 4.3.5, it can be seen that

E[ĝn(x) − a(x) f̂n(x)] = Eĝn(x) − a(x)E f̂n(x) = −a′(x) f (x)c1βhn + O(h2
n + △)→ 0

�
2The reader who wishes a brief review on mixing processes is directed to Appendix C.
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Proposition 4.3.15. Under A1-A7, we have

ĝn(x) − Eĝn(x)
a.s.→ 0

Proof. From the definition of ĝn(x) and Lemma 4.3.3, we have

ĝn(x) − Eĝn(x) =
1
n

n∑
i=1

[YiKhi(x − Xi) − EYiKhi(x − Xi)]

Let Wi =
1
i [YiKhi(x − Xi) − EYiKhi(x − Xi)], then it follows that

E|Wi|4 =
1
i4 E[YiKhi(x − Xi) − EYiKhi(x − Xi)]4

Now from Lemma 4.3.3, we have

1
i4 EY4

i K4
hi

(x − Xi) =
1
i4

∫
R

K4
hi

(x − z)
[
3b4(z)
△2 + O(1/△)

]
f (z)dz = O

(
1

i4h3
i △2

)
and

1
i4 EY3

i K3
hi

(x − Xi) · EYiKhi(x − Xi)

=
1
i4

∫
R

K3
hi

(x − z)
3a(z)b2(z) + 3

2b2(z)(b2)′(z)
△ + O(1)

 f (z)dz

·
∫

R
Khi(x − z)[a(z) + O(△)] f (z)dz = O

(
1

i4h2
i△

)
and similarly we can obtain that

1
i4 EY2

i K2
hi

(x − Xi) · [EYiKhi(x − Xi)]2 = O
(

1
i4hi△

)
1
i4 [EYiKhi(x − Xi)]4 = O

(
1
i4

)
.

Thus by combining the above expressions, it follows that E|Wi|4 = O
(

1
i4h3

i △2

)
, which implies

that
∞∑

i=1

[E|Wi|4]1/2 =

∞∑
i=1

O

 1

i2h3/2
i △

 < ∞.
Note that A7 and Lemma 4.3.13 imply that

∑n
i=1 Wi converges almost surely to a finite limit.
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Also it can be seen that

ĝn(x) − Eĝn(x) =
1
n

n∑
i=1

iWi.

From Lemma 4.3.12 by taking bi = i, it follows that as n→ ∞

ĝn(x) − Eĝn(x)
a.s.→ 0.

�

Following the above pattern, we can obtain that f̂n(x) − E f̂n(x)
a.s.→ 0. Therefore from

Proposition 4.3.14 and 4.3.15, we have

Theorem 4.3.16. Under A1-A7,

ân(x)
a.s.→ a(x)

Proof. As mentioned above, it is noted that

ân(x) − a(x) =
ĝn(x) − a(x) f̂n(x) − E[ĝn(x) − a(x) f̂n(x)] + E[ĝn(x) − a(x) f̂n(x)]

f̂n(x)

=
[ĝn(x) − Eĝn(x)] − a(x)[ f̂n(x) − E f̂n(x)]

f̂n(x)
+

E[ĝn(x) − a(x) f̂n(x)]

f̂n(x)

We have shown that ĝn(x) − Eĝn(x)
a.s.→ 0, f̂n(x) − E f̂n(x)

a.s.→ 0 and E[ĝn(x) − a(x) f̂n(x)] → 0.
Meanwhile in Proposition 4.3.5, E f̂n(x)→ f (x), thus

f̂n(x) = f̂n(x) − E f̂n(x) + E f̂n(x)
a.s.→ f (x)

Therefore it follows that
ân(x)

a.s.→ a(x)

�

Now to prove strong consistency of b̂2
n(x), we need the following lemma

Proposition 4.3.17. Under A1-A7, we have

(1) E[d̂n(x) − b2(x) f̂n(x)]→ 0

(1) d̂n(x) − Ed̂n(x)
a.s.→ 0

Proof. For (1), it is noted that

E[d̂n(x) − b2(x) f̂n(x)] = Ed̂n(x) − b2(x)E f̂n(x) = −(b2)′ f (x)c1βhn + O(h2
n + △)→ 0
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For (2), we have

d̂n(x) − Ed̂n(x) =
1
n

n∑
i=1

[ZiKhi(x − Xi) − EZiKhi(x − Xi)] ,
1
n

n∑
i=1

iWi

where
E|Wi|4 =

1
i4 E[ZiKhi(x − Xi) − EZiKhi(x − Xi)]4

It follows that

1
i4 EZ4

i K4
hi

(x − Xi) = O
(

1
i4h3

i

)
1
i4 EZ3

i K3
hi

(x − Xi) · EZiKhi(x − Xi) = O
(

1
i4h2

i

)
1
i4 EZ2

i K2
hi

(x − Xi) ·
[
EZiKhi(x − Xi)

]2
= O

(
1

i4hi

)
thus A7 implies that

∑∞
i=1[E|Wi|4]1/2 < ∞. And also from Lemma 4.3.13 and Lemma 4.3.12, as

n→ ∞, we have d̂n(x) − Ed̂n(x)
a.s.→ 0. �

So the following theorem can be obtained

Theorem 4.3.18. Under A1-A7, we have

b̂2
n(x)

a.s.→ b2(x)

Proof. It can be seen that

b̂2
n(x) − b2(x) =

[d̂n(x) − Ed̂n(x)] − a(x)[ f̂n(x) − E f̂n(x)]

f̂n(x)
+

E[d̂n(x) − a(x) f̂n(x)]

f̂n(x)

By Proposition 4.3.17 and f̂n(x)
a.s.→ f (x) in Theorem 4.3.16, we can prove that b̂2

n(x)
a.s.→ b2(x).

�

4.3.4 Asymptotic Normality

Before showing asymptotic normality of ân(x), the following assumption and lemma are useful:

A8 The bandwidth and discretization step size satisfy nh3
n△ → 0 as k → ∞ and n→ ∞
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Lemma 4.3.19. Under A1-A6, we have for any i and j

|Cov[YiKhi(x − Xi),Y jKh j(x − X j)]| = O
[(

hih j△2
)−1/2

]
(4.18)

|Cov[YiKhi(x − Xi),Kh j(x − X j)]| = O
[(

hih j△
)−1/2

]
(4.19)

|Cov[Khi(x − Xi),Kh j(x − X j)]| = O
[(

hih j

)−1/2
]

(4.20)

Proof. Here we only prove (4.18) because the same steps can be applied to (4.19) and (4.20).
Note that

|Cov[YiKhi(x − Xi),Y jKh j(x − X j)]|
≤ |EYiY jKhi(x − Xi)Kh j(x − X j)| + |EYiKhi(x − Xi)| · |EY jKh j(x − X j)|

where by the Hölder inequality, Lemma 4.3.3 and Lemma 4.3.1

|EYiY jKhi(x − Xi)Kh j(x − X j)| ≤ E|YiY jKhi(x − Xi)Kh j(x − X j)|

≤
[
EY2

i K2
hi

(x − Xi) · EY2
j K2

h j
(x − X j)

]1/2

=

{
h−1

i

∫
R

h−1
i K2

(
x − z

hi

)
[△−1b2(z) + O(1)] f (z)dz

}1/2

·
{

h−1
j

∫
R

h−1
j K2

(
x − z

h j

)
[△−1b2(z) + O(1)] f (z)dz

}1/2

= (hih j△2)−1/2b2(x) f (x)
∫

R
K2(u)du + o

[(
hih j△2

)−1/2
]
= O

[(
hih j△2

)−1/2
]

and

|EYiKhi(x − Xi)| · |EY jKh j(x − X j)|

=

∣∣∣∣∣ ∫
R

Khi(x − z)[a(z) + O(△)] f (z)dz ·
∫

R
Kh j(x − z)[a(z) + O(△)] f (z)dz

∣∣∣∣∣
= a2(x) f 2(x) + O(hi + h j + △) = o

[(
hih j△2

)−1/2
]

therefore we have

|Cov[YiKhi(x − Xi),Y jKh j(x − X j)]| = O
[(

hih j△2
)−1/2

]
�
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In order to establish asymptotic normality of ân(x), it can be seen that

ân − a(x) =
[ĝn(x) − g(x)] − a(x)[ f̂n(x) − f (x)]

f̂n(x)

where g(x) = a(x) f (x). Then in the following propositions, we will show that for λ2
1 + λ

2
2 , 0√

nhn△{λ1[ĝn(x) − g(x)] + λ2[ f̂n(x) − f (x)]} → N(0, ι2(x))

where
ι2(x) = λ2

1α1b2(x) f (x)
∫

R
K2(u)du (4.21)

In Proposition 4.3.4 and 4.3.5 and A8, we have established that√
nhn△[Eĝn(x) − g(x)]→ 0

√
nhn△[E f̂n(x) − f (x)]→ 0

therefore we need to prove that√
nhn△{λ1[ĝn(x) − Eĝn(x)] + λ2[ f̂n(x) − E f̂n(x)]} → N(0, ι2(x))

Let

Ui =
√

hn△{λ1[YiKhi(x − Xi) − EYiKhi(x − Xi)] + λ2[Khi(x − Xi) − EKhi(x − Xi)]}

and S n =
∑n

i=1 Ui, then it is equivalent to prove n−1/2S n → N(0, ι2(x)). Here we borrow the
“big block” and “small block” technique introduced by Doob (1953) and Masry (1986) to prove
asymptotic normality of n−1/2S n. Partition the set Ξn = {1, 2, . . . , n} into 2r + 1 subsets

Ξn =

r−1∪
i=0

Ξ
′

i,n +

r−1∪
i=0

Ξ
′′

i,n + Ξ
′′′

r,n

where

Ξ
′

i,n = {i(p + q) + 1, . . . , i(p + q) + p} for i = 0, 1, . . . , r − 1

Ξ
′′

i,n = {i(p + q) + p + 1, . . . , (i + 1)(p + q)} for i = 0, 1, . . . , r − 1

Ξ
′′′

r,n = {r(p + q) + 1, . . . , n}

In the above, p = pn, q = qn, r = rn depend on n such that

p2
n

nhn△
→ 0

qnrn

n
→ 0
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For j = 0, . . . , r − 1
η j =

∑
i∈Ξ′j,n

Ui ξ j =
∑
i∈Ξ′′j,n

Ui

and
ζr =

∑
i∈Ξ′′′r,n

Ui

Then

S n =

n∑
i=1

Ui =

r−1∑
j=0

η j +

r−1∑
j=0

ξ j + ζr , S
′

n + S
′′

n + S
′′′

n

It is easy to prove that

Lemma 4.3.20. Under A1-A6,

Var(Ui) = O(hnh−1
i )

Proof. From the definition of Ui, we know that

Var(Ui) = hn△{λ2
1Var[YiKhi(x − Xi)] + λ2

2Var[Khi(x − Xi)]

+2λ1λ2Cov[YiKhi(x − Xi),Khi(x − Xi)]}

By Lemma 4.3.19 for the case i = j,

Var[YiKhi(x − Xi)] = O
(
h−1

i △−1
)

Var[Khi(x − Xi)] = O
(
h−1

i

)
Cov[YiKhi(x − Xi),Khi(x − Xi)] = O

(
h−1

i △−1/2
)

thus

Var(Ui) = hn△O(h−1
i △−1) = O(hnh−1

i )

�

Proposition 4.3.21. Under A1-A6, we have

n−1E[S
′′′

n ]2 → 0
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Proof. It can be found that

1
n

E[S
′′′

n ]2 =
1
n

Var(S
′′′

n ) =
1
n

n∑
i=r(p+q)+1

Var(Ui) +
2
n

n∑
i, j=r(p+q)+1

i< j

Cov(Ui,U j)

where by Lemma 4.3.20

1
n

n∑
i=r(p+q)+1

Var(Ui) =
1
n

n∑
i=r(p+q)+1

O(hnh−1
i ) =

n − r(p + q)
n

O(1) =
(
1 − qr

n
− pr

n

)
O(1)

Note that qr/n→ 0 and pr/n→ 1, thus

1
n

n∑
i=r(p+q)+1

Var(Ui)→ 0 (4.22)

On the other hand, by the Cauchy-Schwartz inequality

1
n

n∑
i, j=r(p+q)+1

i< j

Cov(Ui,U j) ≤
1
n

n∑
i, j=r(p+q)+1

i< j

|Cov(Ui,U j)| ≤
1
n

n∑
i, j=r(p+q)+1

i< j

|ρ( j − i)|
√

Var(Ui)
√

Var(U j)

≤ 1
n


n∑

i, j=r(p+q)+1
i< j

ρ2( j − i)


1/2 

n∑
i, j=r(p+q)+1

i< j

Var(Ui) · Var(U j)


1/2

=
1
n

n−r(p+q)∑
k=1

kρ2(k)


1/2


n∑

i, j=r(p+q)+1
i< j

O(h2
nh−1

i h−1
j )


1/2

=

(
1 − qr

n
− pr

n

)
O(1) ·

n−r(p+q)∑
k=1

kρ2(k)


1/2

Since the ρ-mixing coefficient has exponential decay, we have
∑∞

n=1 nρ2(n) < ∞, implying that[
n−r(p+q)∑

k=1
kρ2(k)

]1/2

is bounded by some constant. So

1
n

n∑
i, j=r(p+q)+1

i< j

|Cov(Ui,U j)| → 0 (4.23)

Through (4.22) and (4.23), it can be found that

0 ≤ n−1E[S
′′′

n ]2 ≤ 1
n

n∑
i=r(p+q)+1

Var(Ui) +
2
n

n∑
i, j=r(p+q)+1

i< j

|Cov(Ui,U j)| → 0
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that is, n−1E[S
′′′
n ]2 → 0. �

Proposition 4.3.22. Under A1-A6, we have

n−1E[S
′′

n ]2 → 0

Proof. Note that

1
n

E[S
′′

n ]2 =
1
n

Var(S
′′

n ) =
1
n

Var

 r−1∑
j=0

ξ j

 = 1
n

r−1∑
j=0

Var(ξ j) +
2
n

r−1∑
i, j=0
i< j

Cov(ξi, ξ j)

Let l j = j(p + q) + p, we have

1
n

r−1∑
j=0

Var(ξ j) =
1
n

r−1∑
j=0

q∑
i=1

Var(Ul j+i) +
2
n

r−1∑
j=0

q∑
i,k=1
i<k

Cov(Ul j+i,Ul j+k)

Similar to Proposition 4.3.21, we have

1
n

r−1∑
j=0

q∑
i=1

Var(Ul j+i) =
1
n

r−1∑
j=0

q∑
i=1

O(hnh−1
l j+i) =

qr
n

O(1) = o(1)

and

1
n

r−1∑
j=0

q∑
i,k=1
i<k

Cov(Ul j+i,Ul j+k) ≤
1
n

r−1∑
j=0

q∑
i,k=1
i<k

|Cov(Ul j+i,Ul j+k)|

=
1
n

r−1∑
j=0

q∑
i,k=1
i<k

|ρ(k − i)|
√

Var(Ul j+i)
√

Var(Ul j+k)

by the Cauchy-Schwartz inequality,

1
n

r−1∑
j=0

q∑
i,k=1
i<k

|Cov(Ul j+i,Ul j+k)| ≤
1
n

 r−1∑
j=0

q∑
i,k=1
i<k

ρ2(k − i)


1/2  r−1∑

j=0

q∑
i,k=1
i<k

Var(Ul j+i)Var(Ul j+k)


1/2

=
1
n

 r−1∑
j=0

q−1∑
k=1

kρ2(k)


1/2  r−1∑

j=0

q∑
i,k=1
i<k

O(h2
nh−1

l j+ih
−1
l j+k)


1/2

≤ 1
n

 r−1∑
j=0

∞∑
k=1

kρ2(k)


1/2

 r−1∑
j=0

q∑
i,k=1
i<k

O(h2
nh−1

l j+ih
−1
l j+k)


1/2
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Since the ρ-mixing coefficient has exponential decay, we have
∑∞

k=1 kρ2(k) < ∞, implying that∑r−1
j=0

∑∞
k=1 kρ2(k) = O(r). Thus

1
n

r−1∑
j=0

q∑
i,k=1
i<k

|Cov(Ul j+i,Ul j+k)| ≤
√

r
√

q2r
n

O(1) =
qr
n

O(1) = o(1)

So we have
1
n

r−1∑
j=0

Var(ξ j) = o(1). (4.24)

On the other hand, it can be seen that

1
n

r−1∑
i, j=0
i< j

Cov(ξi, ξ j) ≤
1
n

r−1∑
i, j=0
i< j

|Cov(ξi, ξ j)| ≤
1
n

r−1∑
i, j=0
i< j

∑
k1∈Ξ′′i,n

∑
k2∈Ξ′′j,n

|Cov(Uk1 ,Uk2)|

=
1
n

r−1∑
i, j=0
i< j

q∑
k1=1

q∑
k2=1

|Cov(Uli+k1 ,Ul j+k2)|

that is,

1
n

r−1∑
i, j=0
i< j

|Cov(ξi, ξ j)| ≤
1
n

r−1∑
i, j=0
i< j

q∑
k1=1

q∑
k2=1

|ρ(l j + k2 − li − k1)|
√

Var(Uli+k1)
√

Var(Ul j+k2)

by the Cauchy-Schwartz inequality,

1
n

r−1∑
i, j=0
i< j

|Cov(ξi, ξ j)| ≤
1
n


r−1∑
i, j=0
i< j

q∑
k1=1

q∑
k2=1

ρ2(l j + k2 − li − k1)


1/2 

r−1∑
i, j=0
i< j

q∑
k1=1

q∑
k2=1

Var(Uli+k1)Var(Ul j+k2)


1/2

=
1
n


r−1∑
i, j=0
i< j

q∑
k1=1

q∑
k2=1

ρ2(l j + k2 − li − k1)


1/2 

r−1∑
i, j=0
i< j

q∑
k1=1

q∑
k2=1

O(h2
nh−1

li+k1
h−1

l j+k2
)


1/2

=
qr
n

O(1) ·


r−1∑
i, j=0
i< j

q∑
k1=1

q∑
k2=1

ρ2(l j + k2 − li − k1)


1/2

.

Note that the difference of indices l j + k2 − li − k1 is at least p such that

r−1∑
i, j=0
i< j

q∑
k1=1

q∑
k2=1

ρ2(l j + k2 − li − k1) ≤
n−p∑
i=1

n∑
j=i+p

ρ2( j − i) =
n−1∑
k=p

kρ2(k) ≤
∞∑

k=p

kρ2(k).
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As p→ ∞, it can be seen that
∑∞

k=p kρ2(k)→ 0. So we have

1
n

r−1∑
i, j=0
i< j

|Cov(ξi, ξ j)| = o(1). (4.25)

Through (4.24) and (4.25) it follows that n−1E[S
′′
n ]2 → 0. �

Proposition 4.3.23. Under A1-A6, then

1
n

r−1∑
j=0

Var(η j)→ ι2(x)

where ι2(x) is defined in (4.21).

Proof. Note that

1
n

E[S
′

n]2 =
1
n

Var(S
′

n) =
1
n

Var

 r−1∑
j=0

η j

 = 1
n

r−1∑
j=0

Var(η j) +
2
n

r−1∑
i, j=0
i< j

Cov(ηi, η j)

We have∣∣∣∣∣1n
r−1∑
i, j=0
i< j

Cov(ηi, η j)
∣∣∣∣∣ ≤ 1

n

r−1∑
i, j=0
i< j

|Cov(ηi, η j)| ≤
1
n

r−1∑
i, j=0
i< j

∑
k1∈Ξ

′
i,n

∑
k2∈Ξ

′
j,n

|Cov(Uk1 ,Uk2)|

=
1
n

r−1∑
i, j=0
i< j

i(p+q)+p∑
k1=i(p+q)+1

j(p+q)+p∑
k2= j(p+q)+1

|Cov(Uk1 ,Uk2)|

=
1
n

r−1∑
i, j=0
i< j

i(p+q)+p∑
k1=i(p+q)+1

j(p+q)+p∑
k2= j(p+q)+1

|ρ(k2 − k1)|
√

Var(Uk1)
√

Var(Uk2)

≤ 1
n


r−1∑
i, j=0
i< j

i(p+q)+p∑
k1=i(p+q)+1

j(p+q)+p∑
k2= j(p+q)+1

ρ2(k2 − k1)


1/2 

r−1∑
i, j=0
i< j

i(p+q)+p∑
k1=i(p+q)+1

j(p+q)+p∑
k2= j(p+q)+1

Var(Uk1)Var(Uk2)


1/2

=
1
n


r−1∑
i, j=0
i< j

i(p+q)+p∑
k1=i(p+q)+1

j(p+q)+p∑
k2= j(p+q)+1

ρ2(k2 − k1)


1/2 

r−1∑
i, j=0
i< j

i(p+q)+p∑
k1=i(p+q)+1

j(p+q)+p∑
k2= j(p+q)+1

O(h2
nh−1

k2
h−1

k1
)


1/2

=
pr
n

O(1) ·


r−1∑
i, j=0
i< j

i(p+q)+p∑
k1=i(p+q)+1

j(p+q)+p∑
k2= j(p+q)+1

ρ2(k2 − k1)


1/2

≤ pr
n

O(1) ·
 n−q∑

i=1

n∑
j=i+q

ρ2( j − i)


1/2

=
pr
n

O(1) ·
 n−1∑

k=q

kρ2(k)


1/2

≤ pr
n

O(1) ·
 ∞∑

k=q

kρ2(k)


1/2
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Because pr/n→ 1 and
∑∞

k=q kρ2(k)→ 0, we have

1
n

r−1∑
i, j=0
i< j

Cov(ηi, η j)→ 0 (4.26)

thus n−1 ∑r−1
j=0 Var(η j) has the same limit as n−1E[S

′
n]2. From the definition of S n,

n−1ES 2
n = n−1Var(S n) = nhn△{λ2

1Var[ĝn(x)] + 2λ1λ2Cov[ĝn(x), f̂n(x)] + λ2
2Var[ f̂n(x)]}

The proof of Proposition 4.3.8 indicates that nhn△ · Var[ĝn(x)] → α1b2(x) f (x)
∫

R
K2(u)du and

nhn△ · Cov[ĝn(x), f̂n(x)] = O(△1/2) and nhn△ · Var[ f̂n(x)] = O(△). Hence as △ → 0 and
nhn△ → ∞ in A5 and A6, we have

n−1ES 2
n → λ2

1α1b2(x) f (x)
∫

R
K2(u)du = ι2(x)

In addition, through Proposition 4.3.21 and 4.3.22 as well as the relationship S n = S
′
n+S

′′
n+S

′′′
n ,

it can be found that

n−1
∣∣∣Cov(S

′

n, S
′′

n )
∣∣∣ ≤ √

n−1Var(S ′n)
√

n−1Var(S ′′n )→ 0

n−1
∣∣∣Cov(S

′

n, S
′′′

n )
∣∣∣ ≤ |

√
n−1Var(S ′n)

√
n−1Var(S ′′′n )→ 0

n−1
∣∣∣Cov(S

′′

n , S
′′′

n )
∣∣∣ ≤ √

n−1Var(S ′′n )
√

n−1Var(S ′′′n )→ 0

so n−1E[S
′
n]2 has the same limit as n−1ES 2

n, thus n−1 ∑r−1
j=0 Var(η j)→ ι2(x). �

Before proving asymptotic normality of S n, the following lemma from Volkonskii and
Rozanov (1959) is useful where α(c) is the α-mixing coefficient as defined and described in
Appendix C:

Lemma 4.3.24 (Volkonskii and Rozanov). Let random variables Z1,Z2, . . . , Zr be measurable

with respect to F l1
k1
,F l2

k2
, · · · ,F lm

km
respectively for 1 ≤ k1 < l1 < k2 < l2 < . . . < kr < lr ≤ n,

ki+1 − li ≥ c ≥ 1 and |Zi| ≤ 1, i = 1, 2, . . . , r. Then we have∣∣∣∣∣E r∏
i=1

Zi −
r∏

i=1

EZi

∣∣∣∣∣ ≤ 16(r − 1)α(c)

Proposition 4.3.25. Under A1-A6, it can be obtained that

n−1/2S n → N(0, ι2(x))
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where ι2(x) is defined in (4.21).

Proof. By the above propositions, it has been shown that n−1E[S
′′
n ]2 → 0 and n−1E[S

′′′
n ]2 → 0.

Thus in order to prove asymptotic normality of S n, we only need to show that n−1/2S
′
n →

N(0, ι2(x)). As pointed by Bradley (1983a), we can always find the independent random vari-
ables η

′

j for j = 0, 1, . . . , r−1 such that η
′

j and n−1/2η j have the same distribution, thus Eη
′

j = 0.
Let Φ j(t) be the characteristic function of η j, then

∏r−1
j=0Φ j(n−1/2t) is the characteristic function

of
∑r−1

j=0 η
′

j. By Lemma 4.3.24,

∣∣∣∣∣Eeitn−1/2S
′
n −

r−1∏
j=0

Eeitn−1/2η j

∣∣∣∣∣ = ∣∣∣∣∣E r−1∏
j=0

eitn−1/2η j −
r−1∏
j=0

Eeitn−1/2η j

∣∣∣∣∣
≤ 16(r − 1)α(q) ≤ 4(r − 1)ρ(q)→ 0

So it suffices to show that
∏r−1

j=0 Eeitn−1/2η j =
∏r−1

j=0Φ j(n−1/2t) converges to the characteristic
function of N(0, ι2(x)). To this end, set η

′′

j = η
′

j/sn where by Proposition 4.3.23

s2
n =

r−1∑
j=0

Var(η
′

j) =
1
n

r−1∑
j=0

Var(η j)→ ι2(x)

thus it is easy to see that for the independent random variables η
′′

j , we have Eη
′′

j = 0 and∑r−1
j=0 Var(η

′′

j ) = 1. Then we check the Lindeberg-Feller condition for η
′′

j , that is, for all ε > 0,

r−1∑
j=0

E
[
(η
′′

j )
2I(|η′′j | > ε)

]
→ 0

By the Hölder inequality, we can find that

r−1∑
j=0

E
[
(η
′′

j )
2I(|η′′j | > ε)

]
=

r−1∑
j=0

E

 (η
′

j)
2

s2
n

I(|η′j| > εsn)

 ≤ ∥η′j∥2∞s2
n

r−1∑
j=0

P(|η′j| > εsn)

Note that

∥η′j∥2∞ = ∥n−1/2η j∥2∞ = n−1∥η j∥2∞ = n−1
∥∥∥∥∥ j(p+q)+p∑

i= j(p+q)+1

Ui

∥∥∥∥∥2

∞

= n−1
∥∥∥∥∥√

hn△
j(p+q)+p∑

i= j(p+q)+1

{λ1[YiKhi(x − Xi) − EYiKhi(x − Xi)]

+λ2[Khi(x − Xi) − EKhi(x − Xi)]}
∥∥∥∥∥2

∞

= n−1hn△
∥∥∥∥∥ j(p+q)+p∑

i= j(p+q)+1

O
(

1
hi△

) ∥∥∥∥∥2

∞
= O

(
p2

nhn△

)
= o(1)
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so by the Markov inequality

r−1∑
j=0

E
[
(η
′′

j )
2I(|η′′j | > ε)

]
≤ 1

s2
n

r−1∑
j=0

E(η
′

j)
2

ε2s2
n

o(1) =
1
ε2s2

n
o(1) = o(1)

This completes the proof of n−1/2S n → N(0, ι2(x)). �

Now we proceed with the following theorem to characterize asymptotic normality of ân(x)
by using the above propositions

Theorem 4.3.26. Under A1-A6 and A8, we have

√
nhn△[ân(x) − a(x)]

d→ N
(
0, b2(x) f −1(x)

∫
R

K2(u)du
)

Proof. By above propositions, we have proved that√
nhn△{λ1[ĝn(x) − g(x)] + λ2[ f̂n(x) − f (x)]} → N(0, ι2(x))

therefore, by Wold’s device and A8, we can obtain

√
nhn△[ân(x) − a(x)]

d→ N
(
0, b2(x) f −1(x)

∫
R

K2(u)du
)

�

Similarly we present the sketch of the proof of asymptotic normality of b̂2(x). In fact we
can prove that

Lemma 4.3.27. Under A1-A6, it can be calculated that

(1) For any i and j,

(i) |Cov[ZiKhi(x − Xi),Z jKh j(x − X j)]| = O
[
(hih j)−1/2

]
(i) |Cov[ZiKhi(x − Xi),Kh j(x − X j)]| = O

[
(hih j)−1/2

]
(i) Var(Ui) = O(hnh−1

i )

(1) Let Ui =
√

hn{λ1[ZiKhi(x − Xi) − EZiKhi(x − Xi)] + λ2[Khi(x − Xi) − EKhi(x − Xi)]} and

S n , S
′
n + S

′′
n + S

′′′
n on the partition of Ξn = {1, 2, . . . , n} =

∪n−1
i=0 Ξ

′

i,n +
∪n−1

i=0 Ξ
′′

i,n + Ξ
′′′

i,n

respectively, then

(i) n−1E[S
′′′
n ]2 → 0

(i) n−1E[S
′′
n ]2 → 0
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(i) n−1E[S
′
n]2 → N

(
0,

[
3λ2

1b4(x) + 2λ1λ2b2(x) + λ2
2

]
α1 f (x)

∫
R

K2(u)du
)

Proof. For (1), we have

|Cov[ZiKhi(x − Xi),Z jKh j(x − X j)]|
≤ |EZiZ jKhi(x − Xi)Kh j(x − X j)| + |EZiKhi(x − Xi)| · |EZ jKh j(x − X j)|

≤
[
EZ2

i K2
hi

(x − Xi) · EZ2
j K

2
h j

(x − X j)
]1/2
+ |EYiKhi(x − Xi)| · |EY jKh j(x − X j)|

= O
[
(hih j)−1/2

]
similarly it follows that |Cov[ZiKhi(x − Xi),Kh j(x − X j)]| = O

[
(hih j)−1/2

]
. We can also obtain

that

Var(Ui) = hn{λ2
1Var[ZiKhi(x − Xi)] + λ2

2Var[Khi(x − Xi)]

+2λ1λ2Cov[ZiKhi(x − Xi),Khi(x − Xi)]} = O(hnh−1
i )

For (2), note that the proofs of Proposition 4.3.21 and 4.3.22 use the properties of Var(Ui) =
O(hnh−1

i ) and the mixing coefficients, and Var(Ui) = O(hnh−1
i ) is applied to cases of both ân(x)

and b̂2
n(x). So we can use the same arguments to prove (i) and (ii). Thus here it suffices to show

(iii). From Lemma 4.3.10, it can be seen that

n−1ES 2
n = nhn{λ2

1Var[d̂n(x)] + 2λ1λ2Cov[d̂n(x), f̂n(x)] + λ2
2Var[ f̂n(x)]}

where

nhnVar[d̂n(x)] → 3α1b4(x) f (x)
∫

R
K2(u)du

nhnCov[d̂n(x), f̂n(x)] → α1b2(x) f (x)
∫

R
K2(u)du

nhnVar[ f̂n(x)] → α1 f (x)
∫

R
K2(u)du

so
n−1ES 2

n →
[
3λ2

1b4(x) + 2λ1λ2b2(x) + λ2
2

]
α1 f (x)

∫
R

K2(u)du

implying

n−1E[S
′

n]2 →
[
3λ2

1b4(x) + 2λ1λ2b2(x) + λ2
2

]
α1 f (x)

∫
R

K2(u)du.

We can use the proof of Proposition 4.3.25 to prove that

n−1/2S
′

n → N
(
0,

[
3λ2

1b4(x) + 2λ1λ2b2(x) + λ2
2

]
α1 f (x)

∫
R

K2(u)du
)
.

�
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Therefore by Wold’s device, it results in asymptotic normality of b̂2(x) given as below

Theorem 4.3.28. Under A1-A6 and A8, we have

√
nhn

[
b̂2

n(x)
b2(x)

− 1
]

d→ N
(
0, 4 f −1(x)

∫
R

K2(u)du
)
.

4.4 Concluding Remark

In this chapter, we propose the online kernel estimators of the drift and diffusion for the
time-homogeneous stationary diffusion model. Quadratic convergence, strong consistency and
asymptotic normality are also established. These results can be used for further inference, e.g.
constructing confidence intervals through asymptotic normality.

In fact, by using the method from (Stanton, 1997), we can propose the online estimators
with other orders. For example, second-order estimators of a(x) and b2(x) in (Stanton, 1997)
are given by

â(x) =
1

2△ {4E[Xt+△ − Xt|Xt = x] − E[Xt+2△ − Xt|Xt = x]} + O(△2)

b̂2(x) =
1

2△
{
4E[(Xt+△ − Xt)2|Xt = x] − E[(Xt+2△ − Xt)2|Xt = x]

}
+ O(△2)

So let

Yn =
4(Xn−1 − Xn−2) − (Xn − Xn−2)

2△

Zn =
4(Xn−1 − Xn−2)2 − (Xn − Xn−2)2

2△

We can propose the estimators as the form in (4.4) and (4.6), then higher-order estimators are
obtained. However in this case there is a tradeoff between the temporal and spatial complexity.
In other words, to achieve faster convergence, two-step observations Xn−2, Xn−1 and Xn must be
used.

Additionally, we use the offline estimator with a small number of observations to provide
the initial value for the online method. Note that the offline method can provide a reliable
estimate because all historical data are used. For example, given the current observations
X0, X1, . . . , Xn, suppose now we are concerned with the drift and diffusion at x, then we will
use the offline method to derive ân(x) and b̂2

n(x) and put them into (4.4) and (4.6) to update
the estimates when there are new data. Also note that we do not need to consider the starting
value for the offline nonparametric method. Recall that the offline method uses all the past
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observations and is not computed iteratively, so knowing yesterday’s offline estimate does not
speed the process of determining today’s offline estimate. The effect of the initial value on the
performance of the online estimator will be discussed in the next chapter.



Chapter 5

Simulation and Case Study of Online
Estimators

In this chapter, numerical simulation and a case study are used to evaluate the performance of
the online estimators developed in Chapter 4 for the time-homogeneous stationary diffusion
models. For numerical examples, the comparison with the offline method and sensitivity to
parameters are investigated. For the case study, we give the estimates of the drift and diffusion
for US 3-month treasury bill yields and then apply these estimates to calculate Value-at-Risk
and Expected Shortfall for market risk management.

5.1 Simulation

Numerical simulation can help us evaluate effectiveness and efficiency of the procedure. We
choose the following Vasicek model by Aı̈t-Sahalia (1999) and the CIR model by Nicolau
(2003) using monthly Federal funds data from January 1963 to December 1998:

dXt = 0.261(0.0717 − Xt)dt + 0.02237dWt (5.1)

dXt = 0.219(0.0721 − Xt)dt + 0.06665
√

XtdWt (5.2)

For simplicity, the Euler scheme as described in Appendix A is used to sample the paths of
(5.1) and (5.2). Note that the Euler scheme could simulate a negative value for (5.2), which
results in the failure of taking the square root of the value. In this case, we re-simulate the value
until the positive one is obtained. For example, Figure 5.1 demonstrates a sample path of (5.1)
and (5.2) where the parameters X0 = 0.07,△ = 1/260 and T = 20. That is, 260 trading days
are assumed per year and the period of 20 years is considered in total1. In this case, it means
there are n = T/△ = 5200 observations in the sample path. From Figure 5.1, we find that both

1The actual / 260 day count convention is used in this thesis. There are 52 weekends in one year, namely
52 × 2 = 104 days plus January 1, so 105 days are excluded in total.
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Figure 5.1: The sample path of (5.1) and (5.2) with the same random seed where △ = 1/260
and T = 20.

models have similar sampling paths, but the difference is that the Vasicek model allows for the
possibility of negative Xt.

We use the mean integrated squared error (MISE) as a measure of the quality of the esti-
mators. Given sequential observations x1, x2, . . . , xi, suppose that the points for consideration
a = z1 < z2 < . . . < zN = b are chosen uniformly and evenly spaced, and there are M repli-
cations of sample paths where the estimator θ̂i(x), i.e. âi(x) or b̂2

i (x) in this thesis, for each
replication is denoted by θ̂i j(x), then the MISE is defined as

MIS Ei = MIS E(θ̂i) =
△

MN

M∑
j=1

N∑
k=1

[θ̂i j(zk) − θ(zk)]2 (5.3)

Additionally, given x1, x2, . . . , xn of each replication, in order to initialize online estimators, we
use offline estimators for x1, x2, . . . , xm where m < n to trigger the online procedure.

5.1.1 Comparison with offline estimators

We compare the offline and online methods for effectiveness and efficiency, where the goodness
of fit is evaluated for effectiveness and the running time is considered for efficiency.

Suppose xi is observed at this moment, let âi,off(x), b̂2
i,off(x) and âi,on(x), b̂2

i,on(x) denote the
corresponding offline and online estimators of a(x) and b2(x) respectively, where in this thesis
the Nadaraya-Watson estimator is taken as the offline method for comparison. This means
that âi,off(x) and b̂2

i,off(x) are obtained by using x1, x2, . . . , xi, while âi−1,on(x) and b̂2
i−1,on(x) are

updated to âi,on(x) and b̂2
i,on(x) by using xi. Additionally, in this thesis, the standard Gaussian
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kernel is selected and the empirical bandwidth is chosen such that the fitting curve is smooth,
i.e. hi = σ̂i × i−0.02 for the drift and hi = σ̂i × i−0.01 for the diffusion where σ̂i is the sample
standard deviation of x1, x2, . . . , xi. The common parameters can be seen in Table 5.1 and 1000
replications are generated for comparison.

X0 T △ m
0.07 20 1 / 260 1040

Table 5.1: Common parameters in simulation.

Goodness of Fit

First of all, we demonstrate how MISE changes as observations are available sequentially. Note
that as mentioned above, the offline method is used to initialize the online version for the first m

observations so that they have the same values of MISE, thus we only show the x-axis starting
from m + 1, namely 1041 in this case.
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Figure 5.2: Demonstration of MISE for sequential observations, parameters as in Table 5.1.

From Figure 5.2, we can find that as more observations are available, both online and offine
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methods can better estimate the drift and diffusion in the Vasicek model and CIR model based
on MISE. Comparatively, the online method has slightly worse MISE than the offline coun-
terpart. This is because on average, online estimators use a bigger bandwidth which depends
on the number of samples. This indicates that online estimators have a larger bias. Thus the
offline method is better than the online method. However note that when the sample size is
large enough, the difference of their performances tends to diminish. In addition, it seems that
the drift and diffusion in the Vasicek model are easier to be estimated than in the CIR model by
both offline and online estimators. This might be due to the simpler form of the Vasicek model.
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Figure 5.3: Fitting values by offline and online estimators which are averaged on 1000 replica-
tions, and the 95% confidence band of the online estimators, parameters as in Table 5.1.

We also check fitting values by offline and online estimators (Figure 5.3). We can find that
both offline and online methods can roughly describe the general trend of the true drift and
diffusion. Especially we note that we have better fit for the diffusion than for the drift. But
the 95% confidence band of the online estimators shows that there is estimation bias on the
boundary, namely boundary effect of the fitting lines. One reason is owing to lack of data at the
boundary, as a result extrapolation to the boundary is not reliable. Another reason is that locally
constant smoothing is used in both the offline and online methods, and as we have mentioned



5.1. Simulation 65

in Chapter 2, locally constant smoothing cannot correct the boundary effect. In addition, it is
interesting to note that the estimators of the drift and diffusion present surprising nonlinearity
even though true drift and diffusion are linear functions.
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Figure 5.4: MISE for both offline and online estimators when △ = 1/12 and 1/52 given n =
1000 and m = 0.2n.
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Figure 5.5: MISE for both offline and online estimators when T = 10 and 50 given △ = 1/260
and m = 0.2n.

In addition, we compare the MISE of offline and online estimators for different values of △
and T . From Figure 5.4 and Figure 5.5, it is sure that the offline method is slightly better but
this advantage tends to diminish as more observations are available, i.e. △ increases for fixed
n or T increases as well. In addition, it is interesting to note that the online estimator of the
diffusion has smaller MISE for the CIR model when T = 50 than when T = 10.
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Running Time

As shown above, the online method has larger MISE than the offline counterpart. However
this disadvantage in estimation can be offset by the running time. In this part, we run a series
of simulations to compare the running time of the online and offline methods, where different
values of △, T and m are considered2.

unit (seconds) drift diffusion
△ = 1/12 offline / online ratio offline / online ratio

Vasicek model 7.96 / 0.46 17.30 7.90 / 0.44 17.95
CIR model 8.18 / 0.46 17.78 8.18 / 0.44 18.59
△ = 1/52 offline / online ratio offline / online ratio

Vasicek model 8.46 / 0.46 18.39 8.44 / 0.46 18.35
CIR model 8.74 / 0.42 20.81 8.74 / 0.48 18.21
△ = 1/260 offline / online ratio offline / online ratio

Vasicek model 7.80 / 0.44 17.73 7.80 / 0.44 17.73
CIR model 8.22 / 0.48 17.13 8.24 / 0.46 17.91

Table 5.2: Running time for △ = 1/12, 1/52 and 1/260 where n = 1000 and m = 0.2n. That is,
the time period T = n△ = 1000/12, 1000/52 and 1000/260 for each case.

From Table 5.2, we see that for fixed n, both methods are irrelevant to △ and the online
method runs around 17 times faster. This is because when the sample size is fixed, △ mainly
determines the error rate of the estimators. This is illustrated by the theoretical results in
Chapter 4.

unit (seconds) drift diffusion
T = 10 offline / online ratio offline / online ratio

Vasicek model 47.70 / 1.14 41.84 48.76 / 1.16 42.03
CIR model 50.98 / 1.18 43.20 51.80 / 1.16 44.66

T = 20 offline / online ratio offline / online ratio
Vasicek model 164.28 / 2.42 67.88 168.00 / 2.34 71.79

CIR model 181.08 / 2.40 75.45 184.96 / 2.40 77.07
T = 30 offline / online ratio offline / online ratio

Vasicek model 346.32 / 4.54 76.28 443.20 / 4.54 97.62
CIR model 447.08 / 3.60 124.19 401.00 / 3.58 112.01

Table 5.3: Running time for T = 10, 20 and 30 given △ = 1/260 and m = 0.2n.

Furthermore, we can find in Table 5.3 that as T increases (i.e. n increases for fixed △),
the difference in running time is more obvious and matters in real application. It can be seen
that when T = 30, the online estimator can be more than 100 times faster. One can imagine

2The current computational environment is: (1) OS: Windows 7; (2) CPU: Intel Core i5-3317U 1.7GHz; (3)
RAM: 8GB; (4) Programming Language: R 3.1.1.
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that for large financial institutions, one or two hours could be taken by the online estimator for
thousands of portfolios, but at this moment the offline estimator could take up 5 days or more
to generate desirable results. Running for several days is inappropriate for practical purposes,
for example calculating daily VaR limits. Thus in real applications our online method is more
suitable for the demand of real-time computation such as managing risks. This is also a tradeoff
between effectiveness and efficiency.

unit (seconds) drift diffusion
m = 0.1n offline / online ratio offline / online ratio

Vasicek model 213.78 / 3.38 63.25 227.92 / 3.36 67.83
CIR model 235.64 / 2.68 87.93 221.16 / 2.66 83.14
m = 0.3n offline / online ratio offline / online ratio

Vasicek model 195.72 / 2.52 77.67 205.36 / 2.62 78.38
CIR model 213.10 / 2.38 89.54 208.76 / 2.50 83.50
m = 0.5n offline / online ratio offline / online ratio

Vasicek odel 158.44 / 1.92 82.52 164.02 / 1.88 87.24
CIR model 175.58 / 1.76 99.76 173.44 / 1.84 94.26
m = 0.7n offline / online ratio offline / online ratio

Vasicek odel 101.42 / 1.20 84.52 104.38 / 1.26 82.84
CIR model 114.72 / 1.2 95.60 117.72 / 1.22 96.49

Table 5.4: Running time for m = 0.1n, 0.3n, 0.5n and 0.7n where △ = 1/260 and n = 5200.

In addition, we compare the running time for different values of m (see in Table 5.4). It can
be also found that the online estimator is consistently faster than the offline estimator.

5.1.2 Sensitivity to parameters

In the sequel we focus on the online estimator and consider the sensitivity to different settings
of parameters. In the online estimator, parameters include the discretization step size △, the
span of period T and the initial steps for estimators m. The study of sensitivity is helpful to
determine the pros and cons of the estimator.

Discretization step size △

In the proof of quadratic convergence and asymptotic normality of the estimator, it is assumed
that △ → 0 and n△ → ∞. For demonstration, we fix n = 1000 and let △ take 1 / 12 (for monthly
data), 1 / 52 (for weekly data) and 1 / 260 (for daily data). The pointwise 95% confidence band
is reported in order to check the quality of estimation.

Figure 5.6 shows the sensitivity of the online estimator to different values of △. From the
figure, we can find that when the sample size n is fixed, the 95% confidence band becomes
thinner as △ increases, which means the performance of the estimator can be improved in this
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Figure 5.6: Sensitivity to △ = 1/12, 1/52 and 1/260 where n = 1000 and m = 0.2n. The solid
line represents the true value and the shadow area is the 95% confidence band.

case. Recall that in our proof, we assume that △ → 0 and n△ → ∞, that is, to consider the
case of high-frequency data over a growing time window. The simulation is complementary
to our theoretical analysis in that accurate estimates can be obtained even for low-frequency
data. We also observe that the 95% confidence band becomes narrower in the middle part and
gets wider toward two ends of the boundary. This is caused by two reasons, one of which is
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Figure 5.7: Sensitivity to T = 10, 15 and 20 where △ = 1/260 and m = 0.2n. The solid line
represents the true value and the shadow area is the 95% confidence band.

the boundary effect of the kernel method and the other is the relative scarcity of observations
at the boundary. In addition, it is interesting to note that in the CIR model, the confidence band
of the estimator cannot cover the lower bound of true values. Thus it seems not reliable to use
the online estimator to extrapolate the values to the lower bound for the CIR model.
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Figure 5.8: Sensitivity to m = 0.1n, 0.3n and 0.5n given △ = 1/260 and n = 5200, where the
solid line represents the true value and the shadow area is the 95% confidence band.

Span of periods T

According to the statements in Chapter 4, it is known that n → ∞ and T = n△ → ∞ are
sufficient to prove the asymptotic properties of the estimator. In simulation, similarly when △
is fixed to be 1 / 260, we study the performance of the estimator as T varies. In Figure 5.7,
we can find that as T increases, the 95% confidence band becomes consistently narrower for
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the estimators of the drift and diffusion of the Vasicek model and CIR model. This indicates
that more accurate estimates can be obtained if there are more sequential observations, which
verifies our theoretical analysis.

The number of initial steps m

We also consider how the number of initial steps m affects the performance of the estimator
(see in Figure 5.8). It is of interest to find that when n is fixed, m is not related to the behaviors
of the estimator. This implies that even though only 10 percent of observations are used to
initialize the online estimator, we can still have good estimates of the drift and diffusion. So
the online estimator provides flexibilities to use and is able to achieve desirable performances.
In this way, when the data are not big, we can use the offline estimator first and then switch to
the online estimator if the computational time becomes a big issue.

5.2 Case Study: US 3-Month Treasury Bill Rates

One application of stochastic differential equations is to model the short-term interest rate for
managing risks of portfolios. In this section, we apply our online method in a case study by
using the daily annualized US 3-month treasury bill rates from the Federal Reserve Bank of St.
Louis. The data cover the period from May 8, 1978 to November 14, 2014. For the research
purpose, when observations are missing, the corresponding time stamps are also removed from
the dataset so that no extra errors are introduced. So the current data set contain 9121 ob-
servations. The interest rate time series and its shocks are plotted in Figure 5.9 and Figure
5.10.
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Figure 5.9: The daily US 3-month treasury bill rates from May 8, 1978 to November 14, 2014.

Before estimation, we provide summary statistics of the data. Table 5.5 presents the mean,
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Figure 5.10: The absolute shocks of the daily US 3-month treasury bill rates.

Summary of Statistics
Statistics Mean Median SD Kurtosis Skewness

Xt 4.902% 4.960% 3.614% 3.224 0.625
Statistics ρ1 ρ5 ρ10 ρ15 ρ20

Xt 0.999 0.997 0.994 0.990 0.986

Table 5.5: Summary statistics of US 3-month treasury bill rates between May 8, 1978 and
November 14, 2014.

median, standard deviation, kurtosis3, skewness4, and the first 20 lags of autocorrelation of the
data. Table 5.5 shows the distribution of Xt is slightly leptokurtic and right-skewed, and the
autocorrelation of Xt decays slowly. The statistical properties are also reported in Figure 5.11.
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Figure 5.11: Histogram and QQ-plot of the US 3-month treasury bill rates between May 8,
1978 and November 14, 2014.

3Kurtosis is a measure of the weight of the tails of a distribution. The normal distribution has a kurtosis of 3,
and distributions with higher values (heavier tails) are leptokurtic, while those with lower values are platykurtic.

4Skewness is a measure of the asymmetry of a distribution function. If the skewness is negative, the distribution
is left-skewed, whereas if the skewness is positive, the distribution is right-skewed.
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Furthermore, several hypotheses are tested to characterize different aspects of the data.
Table 5.6 shows the results of the Augmented Dickey-Fuller stationarity test (Said and Dickey,
1984), Ljung-Box independence test (Ljung and Box, 1978) and Jarque-Bera normality test
(Jarque and Bera, 1980). The null hypotheses of non-stationarity, independence and normality
are rejected at the 5% significance level.

Augmented Dickey-Fuller stationarity test
H0 Test statistic p value

Non-stationarity -4.1653 0.01
Ljung-Box independence test

H0 Test statistic p value
Independence 9114.838 < 2.2 × 10−16

Jarque-Bera normality test
H0 Test statistic p value

Normality 612.2911 < 2.2 × 10−16

Table 5.6: Hypothesis tests of the data for the stationarity, independence and normality.
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Figure 5.12: Nonparametric marginal density of the data, where the solid line represents true
values and the shadow area is the 95% confidence band.

The marginal density of the observations by nonparametric density estimators as mentioned
in Chapter 2, with the 95% confidence band by the sample quantiles can be seen in Figure 5.12.
The Gaussian kernel is used and the empirical bandwidth ĥn = σ̂n × n−0.2 is chosen. From the
figure, it is validated that the density appears non-normal, asymmetric and right-skewed. Also
the noticeable features of the density are the upper fat tail and several modes. The largest
modes are centered on 0.05% and 5%, where the mode of 0.05% happened after 2008 and the
mode of 5% occurred between 1996 and 1998 and between 2006 and 2007. Most of the low
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interest rates could be due to the resulting financial crisis observed in the few years beginning
in 2007. The high interest rates are recorded between 1979 and 1982, which was caused by the
monetary policy by the US Federal Reserve to curtail rising price inflation (Friedman, 1984).

5.2.1 Estimation Results

In this section, we apply the online method developed in the last chapter to estimate the drift
and diffusion of US 3-month treasury bill rates by assuming the observations are available
sequentially. As a reference, the parameters in the Vasicek model and the CIR model are
calibrated first. Here we use linear regression to calibrate the parameters. For the Vasicek
model, the following discrete autoregressive process approximates the true model dXt = a(b −
Xt)dt + cdWt as the discretization step size △ → 0

Xi = Xi−1e−a△ + b
(
1 − e−a△) + c

√
1 − e−2a△

2a
εi

where εi ∼ N(0, 1). Note that the above equation can be written as the linear regression model

Yi = β0 + β1Xi + ε
′

i (5.4)

where Yi = Xi+1 and

β0 = b
(
1 − e−a△) β1 = e−a△ ε

′

i ∼ N
(
0, c2 1 − e−2a△

2a

)
Thus the parameters in the Vasicek model are given by

â = − ln β̂1

△ b̂ =
β̂0

1 − β̂1
ĉ = σ̂ε

′
i

√
−2 ln β̂1

△(1 − β̂1
2
)

where β̂0 and β̂1 are estimated from (5.4), and σ̂ε
′ is the squared root of mean squared errors.

For the CIR model, the Euler scheme gives the discretized form of the true model dXt =

a(b − Xt)dt + c
√

XtdWt as Xi − Xi−1 = a(b − Xi−1)△ + c
√

Xi−1△εi, that is,

Xi − Xi−1√
Xi−1

=
ab△
√

Xi−1
− a

√
Xi−1△ + c

√
△εi

The related linear regression of the above equation is expressed as

Yi = β0
1
√

Xi
+ β1

√
Xi + ε

′

i
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where Yi =
Xi+1−Xi√

Xi
and

β0 = ab△ β1 = −a△ ε
′

i ∼ N(0, c2△)

so the parameters in the CIR model are given by

â = − β̂1

△ b̂ = − β̂0

β̂1
ĉ =

σε
′
i√
△

For the case of US 3-month treasury bill rates, if the data are assumed to follow the Vasicek
or CIR model, then by letting △ = 1/260, the calibrated parameters are reported in Table 5.7.
From the table, it can be seen that the mean levels to which the Vasicek or CIR processes revert
are 0.026 and 0.036 respectively, and the speeds of reversion are 0.078 and 0.141 respectively.

Estimate Vasicek model CIR model
â 0.078 0.141
b̂ 0.026 0.036
ĉ 0.016 0.080

Table 5.7: Calibration of parameters in the Vasicek and CIR model.

0.00 0.05 0.10 0.15

0
5

10
15

20

Interest rates

D
en

si
ty

Nonparametric
Vasicek
CIR

Figure 5.13: Comparison between nonparametric marginal density function and those of the
Vasicek and CIR model.

Based on the parameters calibrated above, we also plot the density of the Vasicek and CIR
model5 and compare them with the nonparametric marginal density given by Figure 5.12. The

5It is known that the Vasicek model has the stationary density N(b, c2/2a), but the interest rates are positive,
thus the truncated normal distribution is used here. For the CIR model, Xt converges in distribution to c2/4a times
the stationary density χ2

d where d = 4ab/c2 (Glasserman, 2003). In other words, let Y ∼ χ2
d and its density function

fY (y), then based on univariate Jacobian transformation, the density of Xt should be fXt (x) = 4a fY (4ax/c2)/c2.
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result is reported in Figure 5.13. It is obvious that all density functions are centered on lower
observations and have longer tails on higher observations.
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Figure 5.14: Estimation of the drift and diffusion by the calibrated Vasicek and CIR model,
and the online method with different bandwidths hi = σ̂i × i−0.2 (the top) and hi = σ̂i × i−0.02

(the bottom).

Figure 5.14 shows the estimated drift and diffusion functions by the calibrated Vasicek
and CIR model as well as the online method with different bandwidths. The online method
uses 20% of the observations for initialization and the discretization step size △ = 1/260.
There are three noticeable features. First, the three methods have similar drift functions for
the low interest rates, but for the high observations, the drift by the online method is more
negative. One reason is due to the boundary bias of the online method, and the other reason
could be misspecification of the Vasicek and CIR model. But it is hard to identify which reason
is dominant. Second, the online method presents the nonlinear drift and diffusion function,
which is different from the Vasicek and CIR model. Although it is observed that the drift is
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more likely to be nonlinear, which is also claimed by some authors (Jiang and Knight, 1997;
Aı̈t-Sahalia, 1996), we must admit that whether the drift has such form is still unknown. A
similar statement could be applied to the diffusion. But both the online method and CIR model
show that the diffusion is higher as the interest rate increases. This follows our intuition that the
added volatility is associated with high interest rates for compensating the risk. Third, given
different bandwidths, the online estimator presents a similar trend for the drift and diffusion.
The difference is that when the bandwidth is bigger (hi = σ̂i × i−0.02), the fitted curve looks
smoother, i.e. smaller variance. Thus the drift and diffusion revealed by the online method
seem reasonable. Therefore, if the parametric form should be specified for US 3-month treasury
bill yields, the CIR model could be alternative with more possibilities than the Vasicek model.
In addition to the advantage of the running speed, our online estimator is complementary to the
parametric method.
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Figure 5.15: Estimation of the drift and diffusion as well as 90% pointwise confidence band by
the online method for the bandwidths hi = σ̂i × i−0.2 (the top) and hi = σ̂i × i−0.02 (the bottom).
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Figure 5.15 presents a pointwise 90% confidence band by the online method for different
bandwidths, where the confidence band is constructed based on Theorem 4.3.26 and Theorem
4.3.28. We can find that the 90% confidence band tends to widen as the interest rate increases
for the lack of enough observations around high interest rates, which can be seen through the
nonparametric marginal density in Figure 5.12 as well.
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Figure 5.16: Comparison of the drift and diffusion specification by the offline and online meth-
ods for the bandwidths hi = σ̂i × i−0.2 (the top) and hi = σ̂i × i−0.02 (the bottom).

In addition, we compare the performance of the offline and online methods for the case
study. The offline method is used for all historical data since its running time for sequential data
is unbearable. Figure 5.16 shows estimation of the drift and diffusion by the offline and online
methods with different bandwidths. It can seen that when the bandwidth takes a smaller value,
there is no difference between the two methods. As the bandwidth increases, both methods
can give more smooth estimates, but the drift and diffusion by the offline method have smaller
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absolute values for the high interest rates.

5.2.2 Application in Risk Management

As is shown in Figure 5.9, the spot short-term interest rate is changing over time, as a result
financial institutions have to manage their risks of a financial product depending on the inter-
est rate. In this part, we apply our online method to market risk management of US 3-month
treasury bill rates and also compare the performance of the online method with historical sim-
ulation and the parametric Monte Carlo method (i.e. the Vasicek model and the CIR mod-
el). From the perspective of calculating VaR and ES, our online technique can be considered
as a semiparametric method, compared to historical simulation and parametric Monte Carlo
method. This is because a diffusion model is assumed to describe the process of the risk factor,
but calibration of the drift and diffusion is nonparametric. In the application, we focus on cal-
culation of daily 99% VaR and daily 97.5% ES. For historical simulation and parametric Monte
Carlo method, one-year time horizon is considered. For parametric Monte Carlo method and
the online method, 100,000 PnL scenarios are simulated for each time step. In addition, the
Gaussian kernel function is chosen and the bandwidth is hi = σ̂i × i−0.02 for the online method.

Calculation of VaR and ES

First of all, Table 5.8 gives the results of calculating VaR and ES by historical simulation, the
Monte Carlo method by the Vasicek and CIR model, and the online method. The values in
the table are reported over the whole period. It can be found that the online method has the
fewest breaches of VaR and ES, which is followed by historical simulation. The Monte Carlo
method by the CIR model has the most breaches. This can be shown by the basic statistics in
the table. Note that the minimum and maximum of VaR and ES by the online method are larger
but having smaller standard deviation, so more conservative prediction of shocks is given by
the online method. We can also find that the number of 97.5% ES breaches is smaller than that
of 99% VaR breaches by all methods.

In order to evaluate these methods in detail, Figure 5.17 and Figure 5.18 report the time
series of VaR and ES. From the figures, we observe that the online method has two red zones.
One of them happens during the period of monetary policy by the US Federal Reserve, and
the other is during the recent financial crisis. Both periods have severe fluctuation of shocks.
Comparatively, historical simulation is more responsive to the recent changes and has fewer
breaches in both stressed periods. The difference of the performance in stressed periods is
that historical simulation has a one year time horizon, however essentially the online method
is based on all previous observations although the most recent observation is used to update
estimates. So the online method is less responsive to the recent changes.
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VaR
Breaches Percentage Min Max Mean S.D.

HS* 110 1.24% 0.0002 0.0081 0.0021 0.0020
VAS** 168 1.90% 0.0001 0.0078 0.0017 0.0017
CIR*** 203 2.29% -0.0008 0.0082 0.0016 0.0016
Online 93 1.05% 0.0010 0.0094 0.0022 0.0015

ES
Breaches Percentage Min Max Mean S.D.

HS* 103 1.16% 0.0002 0.0084 0.0021 0.0020
VAS** 166 1.87% 0.00015 0.0078 0.0017 0.0017
CIR*** 199 2.25% -0.0008 0.0082 0.0016 0.0016
Online 92 1.03% 0.0010 0.0094 0.0023 0.0015

Table 5.8: Comparison of VaR and ES
* HS stands for historical simulation
** VAS stands for Monte Carlo method by the Vasicek model
*** CIR stands for Monte Carlo method by the CIR model

Confidence Interval of VaR and ES

It is noted from the definition of VaR and ES (2.1) and (2.2) that both VaR and ES are random
variables, thus given scenarios, we can quantify the performance of the method by considering
the confidence interval of VaR and ES. However according to the original definition (2.1) and
(2.2), we need the distribution function of the risk factor to construct the confidence interval of
VaR and ES but it is usually unknown in real applications. On the other hand, not much research
work considers the construction of their confidence intervals. So in this part, the confidence
interval of VaR and ES is derived first which is based on the practical definition (2.3) and (2.4),
then we evaluate the performance of the method based on the derived confidence interval.

Given a distribution function F(x) for the i.i.d. shocks, according to the asymptotic results
for order statistics by Mosteller (1946), there is the asymptotic normality result

√
n
(
X(⌈np⌉) − F−1(p)

) d→ N
(
0,

p(1 − p)
[ f (F−1(p))]2

)
In other words, we can construct the following asymptotic confidence interval with 1 − τ level
for VaRα based on the definition (2.3)

−F̂−1(1 − α) ± Z1− τ2

√
α(1 − α)

n[ f̂ (F̂−1(1 − α))]2
(5.5)

where F̂(x) and f̂ (x) are the empirical distribution function and density function respectively
because the true functions F(x) and f (x) are usually unknown. Furthermore given the realiza-
tion of ordered shocks x(1), x(2), . . . , x(n), we approximate F̂−1(1 − α) by x⌈n(1−α)⌉. For f̂ (x), the
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Figure 5.17: Calculation of -VaR by historical simulation, Monte Carlo method by the Vasicek
and CIR model, and online method, where the dashed line is shocks and the solid line is -VaR.
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Figure 5.18: Calculation of -ES by historical simulation, Monte Carlo method by the Vasicek
and CIR model, and online method, where the dashed line is shocks and the solid line is -ES.
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kernel density estimator is chosen. Then (5.5) is rewritten as

−x⌈n(1−α)⌉ ± Z1− τ2

√
α(1 − α)

n f̂ 2(x⌈n(1−α)⌉)
(5.6)

To derive the asymptotic confidence interval of ES, note that (2.4) is the special case of the
trimmed mean which is given by

S n =
1

⌈βn⌉ − ⌈αn⌉

⌈βn⌉∑
i=⌈αn⌉+1

X(i)

where X(i) is the i-th order statistics of X1, X2, . . . , Xn with the distribution function F(x). By
letting p1 = F−1(α) − F−1(α−) and p2 = F−1(β) − F−1(β−) and defining

G(x) =
F(x) − α
β − α I[F−1(α) ≤ x < F−1(β−)] + I[x ≥ F−1(β−)]

and also letting

µG =

∫ ∞

−∞
xdG(x) σ2

G =

∫ ∞

−∞
x2dG(x) − µ2

G

Stigler (1973) derived the following theorem

Theorem 5.2.1. As n→ ∞, then
√

n(S n − µG)
d→ W where W can be expressed as

W =
1

β − α
{
Y +

[
F−1(α) − µG

]
Y1 +

[
F−1(β) − µG

]
Y2 − p1 max(0,Y1) + p2 max(0,Y2)

}
where Y ∼ N(0, (β − α)σ2

G) which is independent of the random vector (Y1,Y2) ∼ N(0,C)
where

C =

 α(1 − α) −α(1 − β)
−α(1 − β) β(1 − β)



For our calculation, we can simply set α = 0 and β = 0.025 for 97.5% ES. In addition, we
assume that X1, X2, . . . , Xn are continuous random variables, so p1 = 0 and p2 = 0. Further-
more, we have

G(x) =
F(x)
β

I[x < F−1(β)] + I[x ≥ F−1(β)]

so that
√

n(−ES − µG)
d→ W where

W =
1
β

{
Y +

[
F−1(β) − µG

]
Y2

}
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where Y ∼ N(0, βσ2
G) and Y2 ∼ N(0, β(1 − β)). Therefore we have

√
n(ES + µG)

d→ N
(
0,

1
β

{
σ2

G + [F−1(β) − µG]2(1 − β)
})

In other words, the β-level ES has the asymptotic distribution

√
n(ES β + µG)

d→ N
(
0,

1
1 − β

{
σ2

G + [F−1(1 − β) − µG]2β
})

Thus the confidence interval with 1 − τ level is

−µG ±
Z1− τ2√

n(1 − β)

√
σ2

G + [F−1(1 − β) − µG]2β (5.7)

For example, if we need to calculate a 95% confidence interval of 97.5% ES for 259 shocks,
then the above expression is written as

−µG ± 0.77
√
σ2

G + 0.975[F−1(0.025) − µG]2

But for (5.7), it is still required to calculate µG, σ
2
G and F−1(1 − β). Given the realization of

ordered shocks x(1), x(2), . . . , x(n), we can use x⌈n(1−β)⌉ to approximate F−1(1 − β). Moreover,

µG =
1

1 − β

∫ x⌈n(1−β)⌉

−∞
xdF̂(x) =

1
⌈n(1 − β)⌉

⌈n(1−β)⌉∑
i=1

x(i)

σ2
G =

1
1 − β

∫ x⌈n(1−β)⌉

−∞
x2dF̂(x) − µ2

G =
1

⌈n(1 − β)⌉

⌈n(1−β)⌉∑
i=1

x2
(i) − µ2

G

Hence for the above example, if we need to construct the 95% confidence interval of 97.5% ES
for 259 shocks, then we have F̂−1(0.025) = x(7) and

µG =

7∑
i=1

x(i)/7

σ2
G =

7∑
i=1

x2
(i)/7 − µ2

G

so the confidence interval is

−µG ± 0.77
√
σ2

G + 0.975(x(7) − µG)2

Now we use (5.5) and (5.7) to derive the 95% confidence band of daily 99% VaR and daily
97.5% ES by historical simulation and the online method for the case of US 3-month treasury
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Figure 5.19: 95% Confidence band for daily 99% VaR and 97.5% ES by historical simulation
and the online method.

bill yields. From Figure 5.19, note that there is a wide confidence band in the stressed period
(that is, 1979-1982 and 2007-2009) by historical simulation but a narrow confidence band can
be seen in the regular time. The online method consistently gives a narrow confidence band by
(5.5) and (5.7).

5.3 Concluding Remark

In this chapter, we evaluate the performance of the online method by numerical examples
and a case study. For numerical examples, we compare the online method with the offline
counterpart for the Vasicek model and the CIR model, and it can be found that the online
method runs much faster. Sensitivity to parameters in the method is studied as well. For the
case study, we compare the online method with historical simulation and the parametric Monte
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Carlo method by the Vasicek model and the CIR model, and we find that the online technique
has the fewest breaches in all methods but is less responsive to the most recent changes of
shocks. Additionally, we also derive the asymptotic confidence band for VaR and ES.

There are two things worth mentioning about comparison of the online method with its
offline counterpart. The first one is a tradeoff between effectiveness and efficiency. As is shown
above, the offline method has slightly better MISE but with much longer running time. In real
application, the error rate with more than one decimal could not be reliable, however the big
difference of the computational cost between the offline and online methods makes us believe
that our online technique is more applicable. In addition, we do not need to store all past
observations like in the offline method now that our online estimators have good performance
in effectiveness and efficiency. Sometimes storage limitations of the data are another restriction
on using the offline method.

In the case study, we calculate daily VaR and ES as market risk measures. In fact, in
addition to the recommendation of using ES, the consultative document “Fundamental review
of the trading book” by the Basel Committee also suggests different liquidity horizons for
different risk factors. This is because it is realized that the liquidity risk partly contributed
to the financial crisis since 2007. For example, the interest rate has 20-day liquidity horizon,
the high yield credit spread has 120-day liquidity horizon, and the energy price has 20-day
liquidity horizon (more details can be seen in the document). We have to mention that the 20-
day VaR and ES by historical simulation have more red zones and breaches than the daily VaR
and ES (see in Figure 5.20). Therefore in order to remedy the breaches and get the regulator’s
approval, one practical way is to multiply a factor to the shocks, however it means that more
reserve capital are charged for financial institutions.
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Figure 5.20: 20-day 99% VaR and 97.5% ES by historical simulation.

Note that in theoretical analysis and simulation studies, we use the same bandwidth for
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the numerator and denominator of (4.4) and (4.6) for convenience. However in order to ob-
tain more flexibility, we could choose different bandwidths for them. In addition, the optimal
empirical bandwidth for the drift and diffusion will be investigated in the further work.



Chapter 6

Online Kernel Estimators for
Second-Order Diffusion Models

We proposed the online kernel estimator for the stationary time-homogeneous diffusion model
in Chapter 4 and studied its applications to the interest rate data in Chapter 5. However, some
risk factors are not best described by a stationary model, e.g. the stock index, exchange rate and
commodity price, so it is necessary to put forward the online estimator for the non-stationary
time-homogeneous process.

In this chapter, we follow Nicolau (2007)’s idea that a non-stationary process {Yt} can be
modelled by a second-order diffusion equation given by dYt = Xtdt

dXt = a(Xt)dt + b(Xt)dWt

(6.1)

where {Xt} is a latent stationary process. Note that the above equations can be written as
d (d f (Yt)/dt) = a(Xt)dt + b(Xt)dWt, so this is called a second-order equation.

This chapter is organized as follows. In Section 6.1, the online estimator is proposed,
then Section 6.2 proves its weak consistency. Section 6.3 evaluates the methods by numerical
simulation and real applications. A concluding remark is given in Section 6.4.

6.1 Method

Given discrete-time sequential observations {Yi}i≥0 at time points ti in (6.1), the Euler scheme
to approximate Xi is given by

X̃i =
Yi − Yi−1

△i

where △ = △i = ti − ti−1 and X̃i is the proxy of Xi because Xi is usually non-observable in
practice. For example, the stock prices or indices are often available but their returns cannot

88
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be observed directly. So we need to use these proxies to estimate the drift and diffusion in the
second equation of (6.1).

Similar to (4.4) and (4.6), the online kernel estimator of the drift a(x) is given by

ĝn(x) = ĝn−1(x) +
1
n

[UnKhn(x − X̃n) − ĝn−1(x)] (6.2)

f̂n(x) = f̂n−1(x) +
1
n

[Khn(x − X̃n) − f̂n−1(x)] (6.3)

ân(x) =
ĝn(x)

f̂n(x)
(6.4)

where Un =
X̃n+1−X̃n
△ and the online kernel estimator of the diffusion b2(x) is given by

d̂n(x) = d̂n−1(x) +
1
n

[VnKhn(x − X̃n) − d̂n−1(x)] (6.5)

b̂2
n(x) =

d̂n(x)

f̂n(x)
(6.6)

where Vn =
3
2 (X̃n+1−X̃n)2

△ .

From the above methods, it can be seen that instead of modeling the non-stationary process
{Yt}, we could assume {Yt} is built on a stationary process {Xt}. Then by differentiating {Yt}, the
proxy of {Xt} is used to estimate the drift and diffusion by the methods that are applicable to
the stationary process as is described in previous chapters. Thus this way helps us circumvent
the problem of modeling the non-stationary process directly. From the practical perspective, it
means that we can model the returns of a risk factor by a stationary diffusion model first and
then integrate these returns as the estimate of the risk factor.

6.2 Theoretical Analysis

As mentioned above, the latent stationary process {Xt} is non-observable in practice, so the
proof given in Chapter 4 cannot simply be used here without any change. It is fortunate that
we can apply the similar steps to prove weak consistency of the estimators by the proxy {X̃t}.
Here we give a sketch of the proof.

6.2.1 Assumptions and a Preliminary Lemma

In addition to A1-A6 and the lemmas given in Chapter 4, we still need the following assump-
tions:

A7 For the kernel function K(·), E[|K′(ψi)|α/h] is bounded for all i’s where α = 2 or 4 and
ψi = λ[(x − Xi)/h] + (1 − λ)[(x − X̃i)/h] for λ ∈ [0, 1]
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A8 The discretization step size △ and the bandwidth hn satisfy △/h5
n → 0 as n→ ∞

A9 The following relationship is required:

αl = lim
n→∞

1
n

n∑
i=1

(
hn

hi

)l

< ∞ for l = 7/2

In fact, as pointed by Nicolau (2007), the stationarity of {Xi} implies that {X̃i} is stationary.
Both {Xi} and {X̃i} are mixing with the same value of mixing coefficients (see Appendix C).
So according to assumption 3, {X̃i} is also ρ-mixing with exponential decay. In addition, we
assume that the item in the expression O(△k) or o(△k) is uniform in its domain for any k ≥ 0.

Next, the following lemma is useful:

Lemma 6.2.1 (Nicolau, 2007). For (6.1), one can have

E[(X̃t+△ − X̃t)|Xt] = a(Xt)△ + O(△2)

E[(X̃t+△ − X̃t)2|Xt] =
2
3

b2(Xt)△ + O(△2)

E[(X̃t − Xt)4|Xt] =
1
3

b4(Xt)△2 + O(△3)

6.2.2 Weak Consistency

We have established quadratic convergence of the estimators for the stationary process {Xi},
and quadratic convergence implies weak consistency. Now we will show that the statement we
have obtained for {Xi} is also applicable to the proxy {X̃i}.

Similarly we can write (6.3) as f̂n(x) =
∑n

i=1 Khi(x − X̃i)/n, then we have the following
proposition:

Proposition 6.2.2. Under A1-A8, we have the following statement

f̂n(x)
p→ f (x)

Proof. Let f̃n(x) =
∑n

i=1 Khi(x − Xi)/n, and in Proposition 4.3.5, we have proved that E| f̃n(x) −
f (x)| → 0 and the triangular inequality implies that

E| f̂n(x) − f (x)| ≤ E| f̃n(x) − f (x)| + E| f̂n(x) − f̃n(x)|

Now it suffices to show E| f̂n(x) − f̃n(x)| → 0. Note that

E| f̂n(x) − f̃n(x)| = E
∣∣∣∣∣1n

n∑
i=1

[
Khi

(
x − X̃i

hi

)
− Khi

(
x − Xi

hi

)] ∣∣∣∣∣ ≤ 1
n

n∑
i=1

E
∣∣∣∣∣Khi

(
x − X̃i

hi

)
− Khi

(
x − Xi

hi

) ∣∣∣∣∣
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The mean value theorem implies that

K
(

x − X̃i

hi

)
= K

(
x − Xi

hi

)
+ K′(ψi)

Xi − X̃i

hi

so from the Hölder inequality,

E| f̂n(x) − f̃n(x)| ≤ 1
n

n∑
i=1

E
∣∣∣∣∣K′(ψi)(Xi − X̃i)

h2
i

∣∣∣∣∣ ≤ 1
n

n∑
i=1

1

h3/2
i

E1/2[|K′(ψi)|2/hi]E1/2(Xi − X̃i)2

By the Lyapunov inequality, note that E1/2(Xi − X̃i)2 ≤ E1/4(Xi − X̃i)4, then by A7 and A8

E| f̂n(x) − f̃n(x)| ≤ 1
n

n∑
i=1

1

h1/3
i

E1/2[|K′(ψi)|2/hi] · E1/4(Xi − X̃i)4

≤ C

1
n

n∑
i=1

h3/2
n

h3/2
i


[

1
3△2E[b4(X0)] + O(△3)

]1/4

h3/2
n

→ 0

Therefore it is obtained that E| f̂n(x) − f (x)| → 0. Then from the Markov inequality,

P[| f̂n(x) − f (x)| > ε] ≤ E| f̂n(x) − f (x)|
ε

→ 0

that is,
f̂n(x)

p→ f (x)

�

Proposition 6.2.3. Under A1-A9, it can be obtained that

ĝn(x)
p→ a(x) f (x)

Proof. For ĝn(x) =
∑n

i=1
X̃i+1−X̃i
△ Khi(x − X̃i)/n, denote g̃n(x) =

∑n
i=1

Xi+1−Xi
△ Khi(x − Xi)/n, then it

suffices to show
ĝn(x) − g̃n(x)

p→ 0

To this end, let

δ1,n =
1
n

n∑
i=1

X̃i+1 − X̃i

△
[
Khi(x − X̃i) − Khi(x − Xi)

]
δ2,n =

1
n

n∑
i=1

Khi(x − Xi)
[
X̃i+1 − X̃i

△ − Xi+1 − Xi

△

]
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so it is sufficient to prove that δ1,n
p→ 0 and δ2,n

p→ 0.

First, by the mean value theorem

δ1,n =
1
n

n∑
i=1

X̃i+1 − X̃i

△
1
hi

K′(ψi)
Xi − X̃i

hi

Then

Eδ1,n =
1
n

n∑
i=1

E
[
X̃i+1 − X̃i

△
1
hi

K′(ψi)
Xi − X̃i

hi

]
=

1
n

n∑
i=1

E
{

1
hi

K′(ψi)
Xi − X̃i

hi
E

[
X̃i+1 − X̃i

△

∣∣∣∣∣Xi

]}
=

1
n

n∑
i=1

E
{

1
hi

K′(ψi)
Xi − X̃i

hi
[a(Xi) + O(△)]

}

By the Hölder inequality, Lyapunov inequality and stationarity

|Eδ1,n| ≤
1
n

n∑
i=1

h3/2
n

h3/2
i

E1/2[|K′(ψi)|2/hi]

[
1
3△2E[b4(X0)] + O(△3)

]1/4

h3/2
n

E1/4 [a(X0) + O(△)]4 → 0

Furthermore, we have

Var[δ1,n] =
1

n△Var

 1
√

n

n∑
i=1

√
△ X̃i+1 − X̃i

△
1
hi

K′(ψi)
Xi − X̃i

hi

 , 1
n△Var

 1
√

n

n∑
i=1

ri


where

ri =
√
△ X̃i+1 − X̃i

△
1
hi

K′(ψi)
Xi − X̃i

hi

Also denote Var
[

1√
n

∑n
i=1 ri

]
, In + Rn where

In =
1
n

n∑
i=1

Var[ri]

Rn =
2
n

n−1∑
i=1

n∑
j=i+1

Cov[ri, r j]

Similar to the proof in Chapter 4, we have

E[r2
i ] = E

{
1
h2

i

|K′(ψi)|2
(Xi − X̃i)2

h2
i

E
[
(X̃i+1 − X̃i)2

△

∣∣∣∣∣Xi

]}
= E

{
1
h2

i

|K′(ψi)|2
(Xi − X̃i)2

h2
i

[
2
3

b2(X0) + O(△)
]}
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then by the Hölder inequality and Lyapunov inequality

E[r2
i ] ≤ 1

h3/2
i

E1/2[|K′(ψi)|4/hi]

[
1
3△2E[b4(X0)] + O(△3)

]1/4

h2
i

E1/4
[
2
3

b2(X0) + O(△)
]4

thus under A8 and A9

In ≤
1
n

n∑
i=1

E[r2
i ] = O

1
n

n∑
i=1

h7/2
n

h7/2
i

△1/2

h5/2
n

1
hn

 = o(1/hn)

On the other hand,

Rn ≤
2
n

n−1∑
i=1

n∑
j=i+1

ρ( j − i)E1/2[r2
i ]E1/2[r2

j ] =
2
n

n−1∑
i=1

n∑
j=i+1

ρ( j − i)O

△1/4

h7/4
j

△1/4

h7/4
i


=

2
n

n−1∑
i=1

n∑
j=i+1

ρ( j − i)O

△1/2

h7/2
n

h7/2
n

h7/4
i h7/4

j

 = O
(
△1/2

h7/2
n

)
= o(1/hn)

Therefore
Var[δ1,n] =

1
n△ (In + Rn) = o

(
1

nhn△

)
= o(1)

So by the Chebyshev inequality we can obtain that δ1,n
p→ 0.

Similarly, we can prove that

Eδ2,n =
1
n

n∑
i=1

E
{

Khi(x − Xi)E
[(

X̃i+1 − X̃i

△ − Xi+1 − Xi

△

) ∣∣∣∣∣Xi

]}
= 0

furthermore,

Var[δ2,n] =
1

n△Var

 1
√

n

n∑
i=1

Khi(x − Xi)
√
△

(
X̃i+1 − X̃i

△ − Xi+1 − Xi

△

) , 1
n△Var

 1
√

n

n∑
i=1

si


where

si = Khi(x − Xi)
√
△

(
X̃i+1 − X̃i

△ − Xi+1 − Xi

△

)
We have

E[s2
i ] = E

K2
hi

(x − Xi)△
(

X̃i+1 − X̃i

△ − Xi+1 − Xi

△

)2
= E

K2
hi

(x − Xi)E

△ (
X̃i+1 − X̃i

△ − Xi+1 − Xi

△

)2 ∣∣∣∣∣Xi






94 Chapter 6. Online Kernel Estimators for Second-Order DiffusionModels

By the inequality (a − b)2 ≤ 2(a2 + b2), we have

E[s2
i ] ≤ 2E

{
K2

hi
(x − Xi)

[
E

(
(X̃i+1 − X̃i)2

△

∣∣∣∣∣Xi

)
+ E

(
(Xi+1 − Xi)2

△

∣∣∣∣∣Xi

)]}
=

10
3

E
{
K2

hi
(x − Xi)[b2(Xi) + O(△)]

}
=

10
3hi

∫
R

1
hi

K2
(

x − z
hi

)
[b2(z) + O(△)] f (z)dz

= O(1/hi)

so

I′n =
1
n

n∑
i=1

Var[si] ≤
1
n

n∑
i=1

E[s2
i ] ≤ 1

n

n∑
i=1

O(1/hi) = O(1/hn)

and

R′n ≤
2
n

n−1∑
i=1

n∑
j=i+1

ρ( j − i)E1/2[s2
i ]E1/2[s2

j] ≤
2
n

n−1∑
i=1

n∑
j=i+1

ρ( j − i)O

 1
hn

hn

h1/2
i h1/2

j

 = O(1/hn)

therefore
Var[δ2,n] =

1
n△ (I′n + R′n) ≤ O

(
1

nhn△

)
= o(1)

implying that δ2,n
p→ 0 by the Chebyshev inequality.

Finally, from the statement δ1,n
p→ 0 and δ2,n

p→ 0, we can obtain that

P(|ĝn(x) − g̃n(x)| > ε) = P(|δ1,n + δ2,n| > ε) ≤ P(|δ1,n| > ε/2) + P(|δ2,n| > ε/2)→ 0

so ĝn(x) − g̃n(x)
p→ 0. And in Proposition 4.3.4 we have proved that Eg̃n(x) → a(x) f (x)

implying g̃n(x)
p→ a(x) f (x), therefore we can conclude that

ĝn(x)
p→ a(x) f (x)

�

By combining Proposition 6.2.2 and Proposition 6.2.3, the following theorem holds true

Theorem 6.2.4. Under A1-A9, it can be obtained that

ân(x)
p→ a(x)

Proof. Because ĝn(x)
p→ a(x) f (x) and f̂n(x)

p→ f (x) in the above propositions, we have

ân(x) =
ĝn(x)

f̂n(x)

p→ a(x) f (x)
f (x)

= a(x)

�
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Similarly, we can prove that

Theorem 6.2.5. Under A1-A9, it can be obtained that

b̂2
n(x)

p→ b2(x)

6.3 Examples

This part will evaluate the performance of online kernel estimators (6.4) and (6.6) by numerical
examples and real data of the stock indices, FX rates and commodity prices.

6.3.1 Numerical Simulation

We borrow an example from (Nicolau, 2007) where the first equation in (6.1) is written as the
integrated form Yt = 10 +

∫ t

0
Xsds and its differentiated process is given by

dXt = −10Xtdt +
√

0.1 + 0.1X2
t dWt (6.7)

defined in the interval t ∈ [0, 10], and the Euler scheme is used to generate the sequential path
with △ = 1/100 and x0 = 0 (see in Figure 6.1). From the figure, we can see the integrated
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Figure 6.1: The sample path of (6.7) as well as the integrated process

process (the left) is the cumulation of all past changes (the right).
Next, we apply the online kernel estimator to fit the drift a(x) and diffusion b2(x), where

20% of observations are used to initiate the procedures. Also, 1000 replicas of {Xt} and {Yt} are
generated for evaluation. MISE as mentioned in Chapter 5 is used to measure the dynamics
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of the performance. The standard Gaussian kernel function is selected and the empirical band-
width is chosen as hi = σ̂i× i−0.02 for the drift and hi = σ̂i× i−0.01 for the diffusion1 such that the
fitting curve is smooth. In addition, we use sample quantiles to calculate the confidence band
of the drift and diffusion in order to check the fitting quality of the method.
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Figure 6.2: MISE behaviors of (6.4) and (6.6) for sequential observations

From Fig 6.2, we can find that as more observations are available, MISE decays to a low
level gradually. Thus this example indicates that more information is helpful to get more accu-
rate estimation.
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Figure 6.3: The 95% confidence band of the estimators (6.4) and (6.6). The solid line is the
true value.

We also check the fitting of the online estimators of the true drift and diffusion (Figure 6.3).
It is noted that the estimator can fit the diffusion better than the drift.

1The bandwidth converges to 0.058 for the drift and 0.062 for the diffusion in this example.
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6.3.2 Real Application

In this section, we model the stock indices, FX rates and commodity prices by a second-order
SDE and then apply the online estimators to update estimation of the drift and diffusion. Similar
to (Nicolau, 2008), we assume that d log Yt = Xtdt

dXt = a(Xt)dt + b(Xt)dWt

(6.8)

where {Yt} is the integrated process for the risk factor (i.e. the stock indices, FX rates and
commodity prices), and {Xt} is the latent process for the log-returns. In other words, the risk
factor is assumed to have the logarithm form. So the proxy of the latent process is given by

X̃i =
log Yi+1 − log Yi

△ (6.9)
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Figure 6.4: The time series of the stock index GSPTSE, DJI, IXIC and SSE from Jan 2, 1991
to Jan 16, 2015.
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We apply our online method to estimate the drift and diffusion for four different stock
indices from around the world, i.e. S&P/TSX Composite Index (GSPTSE), Dow Jones In-
dustrial Average (DJI), NASDAQ Composite (IXIC) and Shanghai Composite Index (SSE),
where GSPTSE can be seen in Chapter 2. Three other stock indices are cited from Yahoo!
Finance. All stock indices cover the period from Jan 2, 1991 to Jan 16, 2015, where there are
6065 observations for GSPTSE, 6060 observations for DJI and IXIC, and 6161 observations
for SSE. The time series of four stock indices are plotted in Figure 6.4 and the proxy of the
latent process is seen in Figure 6.5.
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Figure 6.5: The proxy of the stock index GSPTSE, DJI, IXIC and SSE (daily data from Jan 2,
1991 to Jan 16, 2015).

Through the Augmented Dickey-Fuller stationarity test (Table 6.1), we see that the null
hypothesis of non-stationarity is accepted at the 5% significance level for the stock index but
is rejected for the proxy of the corresponding latent process.

In addition, if GBM is used, the parameters calibrated by (A.13) in Appendix A are given
by Table 6.2. From the table, we can see that SSE has higher volatility but with more expected
returns, whereas GSPTSE has lower volatility and fewer expected returns.

Now we will use the online kernel estimators (6.4) and (6.6) to find the drift and diffusion
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Augmented Dickey-Fuller stationarity test
Test statistic p value

GSPTSE -2.7651 0.2543
Proxy -17.7712 < 0.01
DJI -1.8889 0.6254

Proxy -18.5911 < 0.01
IXIC -1.3237 0.8648
Proxy -17.3208 < 0.01
SSE -2.8485 0.219

Proxy -16.443 < 0.01

Table 6.1: Augmented Dickey-Fuller stationarity test of stock indices GSPTSE, DJI, IXIC and
SSE as well as their proxies.

Calibrated Parameters
µ̂ σ̂

GSPTSE 0.078 0.165
DJI 0.098 0.176

IXIC 0.152 0.322
SSE 0.209 0.377

Table 6.2: The calibrated parameters if GBM is assumed to model the stock index.

in the latent process by the proxy (6.9). Similar to the numerical simulation, 20% of the
observations are used to initiate the procedure. The standard Gaussian kernel function is chosen
and the bandwidth is hi = σ̂i × i−0.02 for the drift and hi = σ̂i × i−0.01 for the diffusion, seen in
Table 6.3.

Drift Diffusion
GSPTSE 2.108 2.309

DJI 2.378 2.594
IXIC 3.894 4.249
SSE 5.101 5.566

Table 6.3: The convergent bandwidth in online estimators of the drift and diffusion.

Figure 6.6 shows online estimation of the drift and diffusion in the latent process. It can
be found that all results show the linear drift for the latent process, but different patterns for
the diffusion. Meanwhile, GSPTSE and DJI exhibit the similar patterns for the diffusion. In
addition, note that in the figure, the estimated drift is shown to be a decreasing function. This
indicates the higher daily log-returns correspond to the lower drift in the latent process.
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Figure 6.6: Online estimation of the drift and diffusion in the latent process {X̃i} for the stock
index GSPTSE, DJI, IXIC and SSE.
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FX Rate

It is also known that FX rate is non-stationary and it is often modeled by GBM. In this part,
we apply the online estimator to FX rate, where five currencies, i.e. Canadian Dollar (CAD),
US Dollar (USD), Chinese Yuan (CNY), British Pound (GBP) and Euro (EUR), and four FX
rates, i.e. CAD/CNY, CAD/USD, CAD/GBP and CAD/EUR are considered. The weekly data
are cited from OANDA, covering the period of five years from Jan 31, 2010 to Jan 16, 2015.
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Figure 6.7: The FX rate of CAD/CNY, CAD/USD, CAD/GBP and CAD/EUR from Jan 31,
2010 to Jan 16, 2015.

Figure 6.7 shows that the FX rate of CAD/CNY and CAD/USD is declining since the
middle of 2014 due to the decrease of the crude oil price. Generally speaking, CAD becomes
weaker because it is vulnerable to the commodity price. Similarly, we use (6.8) to model the
FX rate and (6.9) to obtain the proxy of the latent process, where △ = 1/52 corresponding to
the weekly data. The proxy of the latent process is seen in Figure 6.8.

The parameters calibrated by (A.13) in Appendix A are given in Table 6.4 if GBM is used
to model the FX rate. The results in the table confirm the statement that Canadian dollar has
recently weakened because of the negative drifts for all rows.
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Figure 6.8: The proxy of CAD/CNY, CAD/USD, CAD/GBP and CAD/EUR.

Calibrated Parameters
µ̂ σ̂

CAD/CNY -0.044 0.055
CAD/USD -0.022 0.057
CAD/GBP -0.010 0.057
CAD/EUR -0.010 0.068

Table 6.4: The calibrated parameters if GBM is assumed to model the FX rate.

Next the online estimator is used to estimate the drift and diffusion. The choices of the
kernel function and bandwidth are the same as those used for the stock index. From Figure 6.9,
we can find that the latent processes of different FX rates display similar patterns, i.e. the linear
drift and quadratic diffusion. Additionally, it can be seen that the drift in the latent process is
estimated to be decreasing and the diffusion reaches the minimum near the naught.
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Figure 6.9: Online estimation of the drift and diffusion in the latent process {X̃i} for the FX rate
CAD/CNY, CAD/USD, CAD/GBP and CAD/EUR.
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Commodity Price

We also consider the application of the online estimator to crude oil and gold prices. Both price
series are obtained from the Federal Reserve Bank of St. Louis, where the daily data of the
crude oil price is from Jan 12, 2005 to Jan 12, 2015 and the daily data of the gold price is from
Jan 17, 2005 to Jan 16, 2015. The unit is USD/barrel and USD/Troy Ounce, and the price and
the proxy of the latent process can be seen in Figure 6.10. From the figure, it can be found that
the decline of the crude oil price coincides with that of the FX rate CAD/CNY and CAD/USD.
And since 2012, the gold price has decreased. It is for this reason that the Canadian dollar is
often called a “commodity currency”.
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Figure 6.10: The time series of the crude oil prices and gold prices as well as their proxies.

After that, we apply the online estimator with the same settings as above to estimate the drift
and diffusion in the latent process by the proxy (6.9). Figure 6.11 shows the estimation results.
The drift is estimated to be decreasing for both the crude oil and gold price, but they have
different shapes of the diffusion coefficient. For the crude oil price, the diffusion of the latent
process is monotonically decreasing in the domain, whereas for the gold price, the diffusion
has the minimum between 0.0 and 0.5.
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Figure 6.11: Online estimation of the drift and diffusion in the latent process {X̃i} for the crude
oil prices and gold prices.

6.4 Concluding Remark

In this chapter, we use a second-order stochastic differential equation to model the non-stationary
diffusion process. By proposing the online estimators of the drift and diffusion in the latent
process, we prove weak consistency of the estimators under a series of assumptions. Then
numerical examples are used to evaluate our method. We also apply the online technique to
estimate the drift and diffusion for the stock index, FX rate and commodity price.



Chapter 7

Conclusion and Future Work

With the development of modern techniques, the need to deal with big data has become more
urgent in business and finance. In this thesis, we proposed an online procedure for a large
number of sequential observations. Because many risk factors can be described by stochastic
diffusion models, we applied our online kernel method to estimate the drift and diffusion of the
models. It was found that they outperform the traditional methods in computational speed but
also in memory requirements. Therefore, the online kernel method is applicable to financial
practices.

7.1 Contributions

There are three main contributions in this thesis as follows:

1. Online kernel method for stochastic diffusion models

Stochastic diffusion models have been widely used to model financial systems and estimation
of the drift and diffusion in models plays an important role in their applications in finance.
By the infinitesimal generator, the traditional kernel method can be used to fulfill this task.
However, the traditional method includes all past history in the procedure, which means that
if new observations are available, all past information is used in each calculation. Therefore,
we proposed the online methods to tackle this problem and used them to estimate the drift and
diffusion in stochastic diffusion models.

For the stationary case, we derived the estimators based on the infinitesimal generator di-
rectly. For the non-stationary case, we adopted Nicolau (2007)’s method to model the process
by a second-order stochastic differential equation, and used the proxy of the latent process to
obtain the estimators.

The main merit of our method over the traditional one is the computational speed. By
numerical examples, it is found that the online method is at least 17 times faster. Thus the
method is more practical for the financial use in the era of big data.

106
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2. Asymptotic properties of estimators in the stationary and non-stationary case

Previous theoretical work concentrated on asymptotic properties of either the offline estimator
or the online estimator in other application scenarios. This thesis bridged the gap by providing
large-sample properties of the online estimators of the drift and diffusion in stochastic differ-
ential equations, especially in stochastic diffusion models.

For the stationary process, we proved quadratic convergence, strong consistency and asymp-
totic normality of the estimators. In the proof, we assumed the stationary process satisfies
some mixing conditions so that we can quantify the autocovariances in the terms. By borrow-
ing Masry (1986)’s block technique, we illustrated the asymptotic properties of the terms on
“small blocks” and “big blocks” so that asymptotic normality can be proved. It is found that
with similar assumptions, the online method can reach the same convergence rate as the offline
counterpart.

For the non-stationary process, weak consistency of the estimators has been proved under
stronger assumptions. Because the latent stationary process is assumed to be non-observable,
we needed to estimate the drift and diffusion by the proxy of the latent process. Thus the proof
is not straightforward. With more efforts and the results on the stationary process we have
obtained, weak consistency of the estimators in the second-order stochastic diffusion model is
established.

3. Practical applications of the online method in market risk management

The purpose of this thesis is not only to serve as an analytic method in statistics, but also to
provide a professional tool in market risk management. To this end, we follow the most recent
document in 2013 by the Basel Committee about the suggestion of replacing VaR by ES and
adding the liquidity horizon for different risk factors.

For the stationary case, we applied our method to calculate VaR and ES for the short-term
interest rates and compare with historical simulation and the parametric Monte Carlo method.
For the non-stationary case, the online estimator was used for the stock index, exchange rate
and commodity price.

In addition, this thesis derived the confidence band of VaR and ES. In fact, to our knowl-
edge, little attention has previously been paid to construction of their confidence bands. Based
on their empirical definitions and previous results on order statistics, we obtained the confi-
dence bands of VaR and ES and applied them to characterize the quality of the estimators.

7.2 Future Work

Due to the advantages of the online estimator, the following work could be investigated in the
future:
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1. Time-Inhomogeneous Diffusion Models

The time-homogeneous model cannot characterize the time variation in the model because
it has been found that the market condition is time-related (Cheng and Wang, 2007). Many
parametric models have been proposed to include the time inhomogeneity (Ho and Lee, 1986;
Hull and White, 1990; Black et al., 1990; Black and Karasinski, 1991).

We can generalize our method to the time-inhomogeneous diffusion models. Fan et al.
(2003) gave a special class of time-inhomogeneous diffusion models which can include most
parametric diffusion models. Therefore we can start from this special class and then extend to
the general case.

The estimator for the time-inhomogeneous diffusion models could require a larger sample
size. This is because the time-related part of the drift and diffusion needs to be identified as
well, which is different from the time-homogeneous case. Therefore, stronger restriction could
be imposed on their applications in practice.

2. Jump-Diffusion Models

Recently many efforts have been made on the jump-diffusion models because it is believed
that unpredicted events can lead to discontinuities and jumps of the path. Such events could
include panic in the market or other sudden mass incidents, and the announcement of monetary
policies. For example, the collapse of Bretton Woods system in 1971 led to a significant impact
on the global market.

We can propose the online estimator for stochastic differential equations with the jump
component which accounts for extreme events. The similar idea can be applied to the second-
order jump-diffusion models for the non-stationary case. Additionally, online estimation for
the time-inhomogeneous jump-diffusion models could be listed in the further work.

In fact, the regime switching models in time series have been proposed to describe the
abrupt changes in the market (Lindgren, 1978; Dueker, 1997). Similar ideas could be borrowed
to model the drastic changes by the stochastic differential equations and propose the online
procedure to mine the underlying process.
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Appendix A

Stochastic differential Equations

In finance, continuous-time models are often used to describe the stochastic behaviors of under-
lying variables such as the stock price, interest rate and exchange rate. This thesis concentrates
on the Itô diffusion process {Xt}, satisfying the stochastic differential equation of the form1

dXt = a(t, Xt)dt + b(t, Xt)dWt (A.1)

with the initial value X0, the corresponding integral form is:

Xt = X0 +

∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)dWs (A.2)

Here {Wt, t ≥ 0} is a standard Brownian motion or a Wiener process, defined as:

(1) W0 = 0 almost surely;

(2) Wt is continuous almost surely;

(3) The process has independent increments, that is, for any 0 = t0 ≤ t1 < t2 < . . . < tn = T ,
the increments Wt1 ,Wt2 −Wt1 ,Wt3 −Wt2 , . . . ,Wtn −Wtn−1 are independent;

(4) Wt −Ws ∼ N(0, t − s).
The famous examples of (A.1) in finance include GBM for the stock price

dXt = µXtdt + σXtdWt

The Vasicek’s model, CIR model and CKLS model for the interest rate

(VAS) dXt = a(b − Xt)dt + cdWt

(CIR) dXt = a(b − Xt)dt + c
√

XtdWt

(CKLS) dXt = a(b − Xt)dt + cXγ
t dWt

1In this thesis, we use capital letters Xt for the random variable and the corresponding lowercase letter xt for
its realization.

118



119

As is well known, the Brownian motion {Wt, t ≥ 0} has unbounded variation and is nowhere
differentiable, so Riemann-Stieltjes integral cannot be applied to the third term of the right-
hand side in (A.2), i.e. the integral with respect to the Brownian motion. Thus Itô gave his
definition for the stochastic integral

∫ T

0
f (Xt)dWt by approximating sums of the form

n∑
i=1

f (Xti−1)[Wti −Wti−1]

where 0 = t0 < t1 < . . . < tn = T is a partition that becomes finer and finer as n → ∞.
In Riemann-Stieltjes integral, we know that the chain rule allows us to calculate the inte-
gral without referring to its original definition. For example, suppose f (t) is monotonical-
ly increasing and continuous on [a, b], then

∫ b

a
f (t)d f (t) = f 2(t)

∣∣∣ba − ∫ b

a
f (t)d f (t) implying∫ b

a
f (t)d f (t) = [ f 2(b) − f 2(a)]/2. Comparatively, the Itô lemma plays the same role in Itô

integral, which is given by

d f (t, Xt) =
(
∂ f
∂t
+ a(t, Xt)

∂ f
∂x
+

1
2

b2(t, Xt)
∂2 f
∂x2

)
dt + b(t, Xt)

∂ f
∂x

dWt (A.3)

where f (t, x) is a bivariate function such that ∂ f
∂t ,

∂ f
∂x and ∂2 f

∂x2 are continuous. For example,
consider GBM (see Figure A.1), let f (x) = ln x, then

∂ f
∂t
= 0

∂ f
∂x
=

1
x

∂2 f
∂x2 = −

1
x2

Thus based on the Itô lemma (A.3)

d f (Xt) = (µ − σ2/2)dt + σdWt

the solution to GBM is
Xt = X0 exp

(
(µ − σ2/2)t + σWt

)
(A.4)

To ensure the existence and uniqueness of the solution satisfying (A.2), in almost surely
sense the following conditions for a(t, Xt) and b(t, Xt) are always assumed, where t ∈ [0,T ]
(see (Øksendal, 2003; Jiang and Knight, 1997)):

(1) a(·, ·) and b(·, ·) are continuously differentiable and Borel measurable functions, satisfy-
ing ∫ T

0
|a(t, Xt)|dt < ∞ and

∫ T

0
|b(t, Xt)|dt < ∞

(2) a(·, ·) and b(·, ·) satisfy the linear growth condition, that is, ∃C > 0 such that

|a(t, x)| ≤ C(1 + x2)1/2 and b(t, x) ≤ C(1 + x2)1/2
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Figure A.1: Trajectories of GBM and Brownian motion, where GBM is dXt = 0.2Xtdt +
0.375XtdWt.

(3) a(·, ·) and b(·, ·) satisfy the uniform Lipschitz condition, that is, for any x, y ∈ R and
some constant D > 0 such that

|a(t, x) − a(t, y)| ≤ D|x − y| and |b(t, x) − b(t, y)| ≤ D|x − y|

If another condition is satisfied for the time homogeneous case dXt = a(Xt)dt + b(Xt)dWt, i.e.

(4) The transition probability P(Xt+h|Xt) satisfies the Chapman-Kolmogorov equation

P(Xt+h|Xt) =
∫

Xτ
P(Xt+h|Xτ)P(dXτ|Xt) t < τ < t + h

and lim
h→0

1
h P(|Xt+h − Xt| ≥ ϵ |Xt(ω) = Xt) = 0 a.s. for every ϵ > 0 and every path, then the

following Kolmogorov forward equation (A.5) and backward equation (A.6) for the transition
probability density function p(Xt = x|Xt0 = x0) hold true.

−∂p(Xt = x|Xt0 = x0)
∂t

=
∂

∂x
[a(x)p(Xt = x|Xt0 = x0)] − ∂

2[b2(x)p(Xt = x|Xt0 = x0)]
2∂x2 (A.5)

−∂p(Xt = x|Xt0 = x0)
∂t

= a(x0)
∂p(Xt = x|Xt0 = x0)

∂x
+

1
2

b2(x0)
∂2 p(Xt = x|Xt0 = x0)

∂x2 (A.6)

Usually, it is hard to find the closed form for a solution of (A.2), so numerical methods for
stochastic differential equations are essential. In practice, there are two popular methods:

(1) Euler scheme

Consider a partition of [0,T ], 0 = t0 < t1 < · · · < tn = T , and denote △i = ti+1 − ti and
△iW = Wti+1 − Wti . The idea of the Euler scheme is that Xt on t ∈ (ti−1, ti) can be obtained by
simply linear interpolation of the data (ti−1, Xti−1) and (ti, Xti). Here for convenience, denote Xi
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for Xti , then the Euler scheme to approximate the solution of (A.1) is given by

Xi+1 = Xi + a(ti, Xi)△i + b(ti, Xi)△iW (A.7)

Based on the definition of the Brownian motion, △iW = Wti+1 −Wti ∼ N(0,△i), let εi ∼ N(0, 1),
then △iW

d
=
√△iϵi where “ d

=” means equivalence in distribution, so (A.7) can also be written
as

Xi+1 = Xi + a(ti, Xi)△i + b(ti, Xi)
√
△iεi (A.8)

For example, the GBM dXt = µXtdt + σXtdWt has the discretized form given by the Euler
scheme

Xi+1 = Xi + µXi△i + σXi
√
△iεi (A.9)

and the CIR model dXt = a(b − Xt)dt + c
√

XtdWt has the form

Xi+1 = Xi + a(b − Xi)△i + c
√

Xi
√
△iεi (A.10)

(2) Milstein scheme

Following the above notation, first we can integrate both sides of (A.1) on the interval
(ti−1, ti)

Xi = Xi−1 +

∫ ti

ti−1

a(s, Xs)ds +
∫ ti

ti−1

b(s, Xs)dWs (A.11)

Let the operators L = ∂
∂t + a ∂

∂x +
1
2b2 ∂2

∂x2 andM = b ∂
∂x , and note that a(s, Xs) and b(s, Xs) are

functions of s and Xs, so we can apply the Itô lemma and integrate both sides in (A.3) to obtain

a(s, Xs) = a(ti−1, Xi−1) +
∫ s

ti−1

Ladv +
∫ s

ti−1

MadWv

b(s, Xs) = b(ti−1, Xi−1) +
∫ s

ti−1

Lbdv +
∫ s

ti−1

MbdWv

then put the above expressions into (A.11) to get the approximation formula. For the time-
homogeneous case, the Milstein scheme is given by

Xi+1 = Xi + a(Xi)△i + b(Xi)
√
△iεi +

1
2

b(Xi)b′(Xi)△i(ε2
i − 1) (A.12)

For example, the GBM has the discretized form given by the Milstein scheme

Xi+1 = Xi + µXi△i + σXi
√
△iεi +

1
2
σ2Xi△i(ε2

i − 1)

As pointed by Jacod and Protter (1998), when the sample size is n and the discretization step
size △i = 1/n, the approximation error rate incurred by the Euler scheme converges weakly
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at the rate 1/
√

n. But for Milstein scheme, the error rate is 1/n (Detemple et al., 2006). This
indicates that the error for the Milstein scheme diminishes faster than the Euler scheme, so
the Milstein scheme improves the performance of the standard Euler method. However in real
applications, the Euler scheme is more favored. This is because the Euler scheme is faster to
implement and from (A.8), it can be found that Xi has the conditionally normal distribution.
On the contrary, one has to compute the derivative when using the Milstein scheme and Xi

in (A.12) has a mixture of the normal and χ2 distribution. This will result in complexity for
further inference.

When we use SDEs in finance, the parametric method is to presume the functional relation-
ships for the drift and diffusion such that (A.1) is written as

dXt = aθ(t, Xt)dt + bθ(t, Xt)dWt

where θ is the parameter in the model, e.g. GBM has two parameters µ and σ. This is often
regarded as a kind of parametric methods as we have described in Chapter 2. Therefore given
the presumed form, people need to estimate the parameter θ based on the observations available
and then apply the estimated model into practice. There are two main methods to estimate the
parameter (Casella and Berger, 2001), the method of moments and the maximum likelihood
method. For example, suppose that the stock prices are S 0, S 1, . . . , S n for the equispaced sam-
pling interval △i = △ and let the log-return Ri = log(S i+1)− log(S i) for i = 0, 1, . . . , n− 1. Then
based on (A.4), it is clear that

Ri = (µ − σ2/2)△ + σ
√
△εi ∼ N((µ − σ2/2)△, σ2△)

Let m = n−1 ∑n−1
i=0 Ri and s2 = (n − 1)−1 ∑n−1

i=0 (Ri − m)2, then by matching moments we have

m = (µ − σ2/2)△
s2 = σ2△

so it follows that
µ̂ =

m + s2/2
△ and σ̂ =

s
√
△

(A.13)

For the example in Figure A.1, the above procedure gives the result that µ̂ = 0.22 and σ̂ = 0.38.
Similarly for the stock prices of “Big Five” in Canada, i.e. Royal Bank of Canada (RBC),
Toronto-Dominion (TD) Bank, Bank of Montreal (BMO), Scotiabank, Canadian Imperial Bank
of Commerce (CIBC) (see Figure A.2), we calculate µ̂ and σ̂ for these banks if GBM is used
to model the stock prices. From Table A.1, the estimates tell us that TD Bank has the biggest
µ̂ and smallest σ̂, which means that the stock of TD Bank has the highest expected return
with smallest volatility. In other words, if GBM is plausible to fit the data and the estimates
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µ̂ σ̂

RBC 0.125 0.370
TD Bank 0.148 0.296

BMO 0.121 0.301
Scotiabank 0.125 0.306

CIBC 0.112 0.325

Table A.1: Estimation of the drift and diffusion for the stock prices of RBC, TD Bank, BMO,
Scotiabank and CIBC from Jan 3, 2007 to Nov 6, 2014.

are sufficiently accurate, then the stock of TD Bank is the best choice, that is, having highest
return but lowest risk.
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Figure A.2: Stock prices of RBC, TD Bank, BMO, Scotiabank and CIBC where data are from
Yahoo! Finance and the time interval is from Jan 3, 2007 to Nov 6, 2014.



Appendix B

Stochastic Approximation

This thesis is partly inspired by the idea of stochastic approximation. Stochastic approximation
is a class of recursive methods to find the zero root or the optimum of a function via noisy
observations. In last decades, stochastic approximation has been widely applied in many areas,
such as signal processing (Solo and Kong, 1994), control theory (Chen and Guo, 1991) and
pattern recognition (Mendel and Fu, 1970). Chen (2002a) and Kushner and Yin (2003) provide
a detailed and systematic study of stochastic approximation.

In practice, we often come across root-seeking problems such as calculating yield to ma-
turity for fixed income securities or implied volatility for derivatives. If one desires to find
the zero root x0 of some known function f (x) such that f (x0) = 0, then the Newton-Raphson
method is an alternative given by

xn+1 = xn −
f (xn)
f ′(xn)

(B.1)

However, in some situation the form of f (x) is unknown and only noisy observations of f (x)
are available via

yn = f (xn) + εn

where ϵn’s are observational errors. Then the question is how to find the zero root of f (x)
via the observations {yn}. Robbins and Monro (1951) proposed the recursive procedure (also
known as the Robbins-Monro algorithm) to fulfill this work (see in Figure B.1)

xn+1 = xn + anyn (B.2)

where the step size an > 0 satisfies
∑∞

n=1 an = ∞ and
∑∞

n=1 a2
n < ∞. For example, one can

take an = 1/n to satisfy both conditions. Comparing (B.1) and (B.2), it is apparent that the
Robbins-Monro algorithm can be regarded as a kind of nonparametric methods which do not
leave the form of the function f (x) to be specified. Inspired by Robbins and Monro (1951)’s
work, Kiefer and Wolfowitz (1952) proposed a recursive method to find the maximum of a

124



125

+/-

Figure B.1: Demonstration of the Robbins-Monro algorithm.

function. Note that the continuous function f (x) reaches the maximum at the point x0 when
f ′(x) = 0, so the optimization problem is also equivalent to find the root of f ′(x) = 0. The
authors proposed the recursive procedure to find the maximum of f (x) in the case that there are
only observations of f ′(x) available.

Further, it can be shown that the problem of root seeking is closely related to nonparametric
estimation. In order to estimate g(x) in (2.6), let r(y) = f (x)y − f (x)g(x) where f (x) is the
density function of X, then one can estimate g(x) by finding the root y0 such that r(y0) =
0. Given a random sample (X1,Y1), (X2,Y2), . . . , (Xn, Yn), Révész (1977) proposed a recursive
method to estimate g(x) given by

gn(x) = gn−1(x) +
1
n

Khn(Xn − x)[Yn − gn−1(x)] (B.3)

where g0(x) = 0. Equation (B.3) could be called a totally recursive procedure because only
one formula is used to estimate g(x). Comparing to total recursion, a semi-recursive procedure
approximates the numerator and denominator of the Nadaraya-Watson estimator separately,
which is given by

Nn(x) = Nn−1(x) − 1
n

[
Nn−1(x) − YnKhn(Xn − x)

]
(B.4)

Dn(x) = Dn−1(x) − 1
n

[
Dn−1(x) − Khn(Xn − x)

]
(B.5)

then
gn(x) =

Nn(x)
Dn(x)

(B.6)

If X1, X2, . . . , Xn are dependent with the specific settings, then Masry (1986) proposed two
recursive procedures for density estimation

f̂n(x) =
n − 1

n
f̂n−1(x) +

1
n

Khn(x − Xn)
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and

f̃n(x) =
n − 1

n

(
hn−1

hn

)1/2

f̃n−1(x) +
1
n

Khn(x − Xn).

The author presented the quadratic convergence rate and proved asymptotic normality by the
method of “big block” and “small block”. The results of the almost sure convergence rate are
given by Masry and Gyorfi (1987) and the uniform almost sure convergence rate can be found
in (Tran, 1989). For a dependent sample (X1,Y1), (X2,Y2), . . . , (Xn,Yn), recursive procedures
have been used to estimate the regression function. Vilar and Vilar (2000) considered semi-
recursive estimation for dependent data. Let xn = [1, (Xn− x), . . . , (Xn− x)p]T , h̃n = hηn/

∑n−1
i=1 hηi

and ωn,i = hηi Khi(Xi − x)/
∑n

i=1 hηi for η ∈ [0, 1], then by the inverse of the partitioned matrix,
they obtain their recursive local polynomial estimators given by

Pn = (1 + h̃n)
(
Pn−1 −

h̃nKhn(Xn − x)Pn−1xnx
T
n Pn−1

1 + h̃nKhn(Xn − x)xT
n Pn−1xn

)
β̂n = β̂n−1 + ωn,n

(
Yn − xT

n β̂n−1

)
Pnxn

Through the results of McLeish (1975) and Masry (1987), strong consistency of the estimators
has been proven. These authors found that, although the same convergence rate is retained, the
recursive algorithm has larger MSE than the nonrecursive counterpart. Chen and Gao (2013)
considered the high-dimensional dependent data and proposed the multivariate local linear
estimator based on the existing recursive weighted least-square estimator given by

β̂n = β̂n−1 + anPn−1zn(Yn − zT
n β̂n−1)

Pn = Pn−1 − anPn−1znz
T
n Pn−1

an = [K−1
hn

(Xn − x) + zT
n Pn−1zn]−1

where zn = [1 (Xn−x)]T and β̂n is the parameter to be estimated. Under regularity conditions
for the kernel, bandwidth and regression function, they proved that the estimator has strong
consistency. Amiri et al. (2014) studied a class of semi-recursive kernel estimators for depen-
dent data with a bandwidth depending on hn. They were able to show the mean squared error
and strong consistency for these estimators, and establish their asymptotic normality. In addi-
tion to estimation of the regression function itself, Ngerng (2011) proposed a semi-recursive
kernel method similar to (B.4) and (B.5) to estimate the local partial first derivative of the re-
gression function given some regularly conditions. The author claimed that the estimator can
be used to calculate the financial “Greeks” since keeping a delta-hedged position of a portfolio
calls for frequent updating of first derivative estimates. Similarly, weak/strong consistency and
asymptotic normality are proved in the paper.

In addition, Wu (2005) introduced physical and predictive dependence measures to quantify
dependent data in a nonlinear system and supplied a method for a limit theory for stationary
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processes. Based on the measures, Huang et al. (2014) developed a recursive nonparametric
estimation method for time series. Their method is based on the Nadaraya-Watson estimator
and is made up of two formulas

fn(x) = fn−1(x) − H−1
n hn[ fn−1(x) − Khn(Xn − x)/hn]

gn(x) = gn−1(x) − γn[gn−1(x) − Yn]

where Hn =
∑n

i=1 hn and γn = ( fn(x)Hn)−1 Khn(Xn − x). Note that gn(x) is the estimator of
g(x) and depends on fn(x). They provided the proof of the laws of the iterated logarithms to
characterize strong consistency of the estimator and the corresponding central limit theorems
for the normality.



Appendix C

Mixing Processes

Mixing processes are a class of stationary stochastic processes1 which are widely used to inves-
tigate asymptotic properties of dependent data. They are an important tool for our theoretical
studies. In this section we supply intuition about of mixing processes.

Classical probability theory mainly studies a group of independent random variables and
their properties such as Kolmogorov’s strong law of large numbers and Lindeberg-Feller’s
central limit theorem (Billingsley, 1995). However in practice the assumption of independence
may not be realistic for the data. For example, financial observations exhibit temporal depen-
dence at successive time points and spatial dependence among countries. Therefore models for
correlation or dependence in data are required.

Given two events B and C in some probability space (Ω,F , P), we know that the inde-
pendence of B and C is defined to satisfy P(B ∩ C) − P(B)P(C) = 0. It is also known that a
σ-field is a collection of events which are closed under complement and countable union. So
one can define that two σ-fields2 B and C are independent if P(B ∩ C) − P(B)P(C) = 0 for
any B ∈ B and C ∈ C . One may wonder whether a similar definition can be given to measure
the dependence of B and C . Rosenblatt (1956) introduced the following α-mixing coefficient
(also called the strong mixing coefficient) for this purpose

α(B,C ) = sup
B∈B
C∈C

|P(B ∩C) − P(B)P(C)| (C.1)

From the above definition, one can immediately see that if B and C are independent, then

1Mixing is a stronger concept than ergodicity (Billingsley, 1995)
2Here B and C are sub σ-fields of F , i.e. B,C ⊂ F .
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α(B,C ) = 0. Additionally, note that

|P(B ∩C) − P(B)P(C)| = |P(B ∩C) − P(B ∩C)P(C) − P(B ∩Cc)P(C)|
= |P(B ∩C)P(Cc) − P(B ∩Cc)P(C)|
≤ max {P(B ∩C)P(Cc), P(B ∩Cc)P(C)}

≤ P(C)P(Cc) ≤ 1
4

so 0 ≤ α(B,C ) ≤ 1
4 . In addition to independence, we know that correlation is another measure

to characterize the dependence of the data. Two random variables X and Y are said to be
uncorrelated if their correlation coefficient Corr(X,Y) = 0. Thus one can define correlation of
B and C by the following ρ-mixing coefficient (Bradley, 1988)

ρ(B,C ) = sup
X∈L2(B)
Y∈L2(C )

|Corr(X,Y)| (C.2)

where X and Y are square-integrable random variables in B and C respectively3. It is easy to
verify that 0 ≤ ρ(B,C ) ≤ 1. Bradley (1986) established the inequality

α(B,C ) ≤ 4ρ(B,C ) (C.3)

Now let {Xt} be a stochastic process and the available information between time t and t + k

be denoted by F t+k
t = σ(Xs, t ≤ s ≤ t + k) ⊂ F . Then the measures for σ-fields as mentioned

above can be generalized for the stochastic process. The process is called α-mixing if, as
k → ∞,

αk = sup
t
α
(
F t
−∞,F

∞
t+k

)→ 0. (C.4)

It is noted that αk is non-increasing as k becomes larger. This is because, for k1 < k2, it can be
verified that F∞

t+k1
⊃ F∞

t+k2
. If {Xt} is strictly stationary, then the above definition of α-mixing

can be written by omitting the “sup”, i.e.

αk = α
(
F 0
−∞,F

∞
k

)
→ 0. (C.5)

Similarly the process is called ρ-mixing if, as k → ∞,

ρk = sup
t
ρ
(
F t
−∞,F

∞
t+k

)→ 0 (C.6)

3If X is a square-integrable random variable in B, it means that the σ-field generated by X is the subset of B
and

∫
Ω

X2dP < ∞.
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and if {Xt} is strictly stationary, the above definition can be written as

ρk = ρ
(
F 0
−∞,F

∞
k

)
→ 0 (C.7)

In addition, many researchers have devoted effort to developing other measures to character-
ize dependence such as β-mixing, ϕ-mixing and ψ-mixing. For example, a strictly stationary
Markov chain is ψ-mixing (Bradley, 1983b). More details can be found in the book by Doukhan
(1994).

Through the above definitions, it can be found that an α-mixing process is asymptotically
independent and a ρ-mixing process is asymptotically uncorrelated. Probability theory tells
us that independent random variables X and Y are uncorrelated, but in contrast, uncorrelated
random variables might not be independent. For example, let X ∼ N(0, σ2) and Y = X2,
thus Cov(X,Y) = EXY − EXEY = EX3 = 0 implying X and Y are uncorrelated, however
clearly they are not independent because Y has a functional relationship with X. Through the
inequality (C.3), if the process is ρ-mixing, then it is α-mixing. In other words, if the process
is asymptotically uncorrelated, then it is asymptotically independent but the opposite may not
be true.

As an example, independent processes are trivially special cases of mixing processes. If
{Xt} is a p-dependent process, that is,

Xt =

p∑
i=0

aiεt−i

where the εt’s are independent, then it can be found that αq = 0 for q > p. Thus the process is
α-mixing. In addition, Bosq (1998) gave an example of the linear process

Xt =

∞∑
i=0

aiεt−i

where a j = O(e−r j) and εt’s are independent and identically distributed (i.i.d.) satisfying
Eεt = 0 and Var(εt) < ∞. Then {Xt} is ρ-mixing. Based on the relationship αk ≤ 4ρk as men-
tioned above, Xt is also α-mixing. Certain stationary ARMA processes are α-mixing (Athreya
and Pantula, 1986), and ARCH and GARCH processes are α-mixing under some conditions
(Francq and Zakoian, 2010). However some popular processes may not be α-mixing such as
AR(1) processes (Ibragimov and Linnik, 1971; Chernick, 1981; Andrews, 1984).

In addition, many results of nonparametric estimators relied on independence assumptions,
e.g. rates of convergence and asymptotic normality, can be extended to the mixing settings.
Masry (1996) presented the uniform convergence rate and asymptotic normality of kernel esti-
mators of density functions for dependent data. Masry and Fan (1997) established asymptotic
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normality for the local polynomial estimator when the process is α-mixing or ρ-mixing. Hansen
(2008) generalized the existing literature by considering the kernel estimators of both density
functions and regression functions for α-mixing processes. The author derived the probability
convergence and uniform almost sure convergence rates, where the estimators allow for the
kernels with unbounded support. Xiao et al. (2003) studied the regression model with autocor-
related errors and proposed the local linear estimator of the regression function. They showed
the estimator has asymptotic normality by assuming that the data are α-mixing with some de-
cay rate. Peng and Yao (2004) investigated nonparametric regression under dependent errors
with infinite variance. In addition, prediction problems for dependent data by nonparametric
estimators have been considered extensively (Collomb and Härdle, 1986; Bosq, 1998; Hall
et al., 2002).
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