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is given by ( ) ( )ci ref ciT T T Tθ = − − , where ( )ref ri ciT T T 2= + . Using the above 

mentioned scales, the dimensionless Cattaneo equation (1.3) becomes 

2 2

2 2C 0
tt x

∂ θ ∂θ ∂ θ
+ − =
∂∂ ∂

.         (1.5) 

Similarly, the set of dimensionless initial and boundary conditions are obtained as 

( ) ( ) ( )
( ) ( ) ( )
( )
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2
t t

x 0.5, t 0 2cos x , x 0.5, t 0 0,

x 0.5, t 0 2 cos x , x 0.5, t 0 0,

x 0, t 2,

x 1, t 0.

θ < = = π θ > = =

θ < = = − π π θ > = =

θ = =

θ = =

    (1.6) 

Note that the non-dimensional number, C, appearing in (1.5) is the Cattaneo number and 

is given by 2C D= τκ . The initial temperature profile (as a function of x) is illustrated in 

Figure 1.3. There is a difference between the initial experimental and analytical 

temperature profiles in the hot sample. The initial experimental temperature profile 

makes the mathematical solution more complex, whereas the physics behind the 

experiment can be explained by the initial analytical temperature profile as well. This 

problem will provide us with a good insight into the hyperbolic heat conduction and the 

finite speed of heat propagation. 
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Figure  1.3: Initial temperature distribution vs. x for the experiment of Figure 1.1. 

Using the method of separation of variables, the heat equation (1.5) for the given initial 

conditions and boundary conditions (1.6) can be solved. To recover the experimental 

results of Figure 1.2, the wave velocity is obtained by dividing the experimental values of 

xp (= 26.6 mm) and tp (≈ 67 secs). Then, the value of C in (1.5) is increased gradually 

from zero until the same tp is obtained in the temperature profile as in Figure 1.2 for the 

same position (x = 26.6 mm). The matches C value with the experimental results of 

Figure (1.2) is approximately 0.0014. The relaxation time can be obtained from  

2CDτ = κ  as 16 seconds (approximately), which can be confirmed from [3]. The 

analytical results are shown in Figure 1.4, where the variation of non-dimensional 

temperature vs. time is illustrated at two points (xp = 26.3 mm and 26.6 mm). The 

prediction of Fourier equation of heat conduction (equation (1.5) with C = 0) is also 

included in this figure. Based on the Fourier’s law of heat conduction (C = 0), the 

temperature pulse propagates with an infinite speed through the entire sample. In other 

Cold sample initial temp. 

(Experimental and analytical) 

Tci = 8.2 °C 

Analytical initial hot temp. 

T(x=0) = 23.1 °C 

Experimental initial hot temp. 

Tri = 23.1 °C 
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words, the pulse is felt instantly everywhere, though with exponentially small amplitudes 

at distant points. As C increases, the finite speed of the temperature propagation results in 

a time lag (although very small for small C) between the time the initial disturbance is 

applied (t = 0) and the time the disturbance is felt at distant points. The time lag reflects 

the presence of non-Fourier effects. From Figure (1.4), it can be seen that the time lag 

increases with the distance (x) from the heat source (initial temperature pulse), which can 

be confirmed from the experiment [3], as explained before. Interestingly, after the steady 

state condition is established, the Cattaneo equation (1.5) and the Fourier equation (1.5 

with C = 0) predict the same temperature (large time limit in the figure). Consequently, 

regarding solids and based on the Cattaneo equation (1.5), non-Fourier effects are only 

important in the transient time, and once the steady state condition is established, non-

Fourier effects vanish. In contrast, as will be shown in this thesis, non-Fourier effects 

could become important in fluids even for the base flow solution (the steady state 

condition). 

 

 
Figure  1.4: Analytical results of non-dimensional temperature vs. time for the 

experiment of Figure 1.1, at x = 26.3  mm  and 26.6 mm (C = 0.0014). 
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The similarity of the experimental results in Figure 1.2 and the theoretical results based 

on the Cattaneo equation as shown in Figure 1.4 suggests that the Cattaneo equation of 

heat conduction enables us to capture the transient behaviour of heat conduction in a 

sample with non-homogenous inner structure (for instance processed meat) more 

accurately (compared to the Fourier equation). The obtained relaxation time for the 

processed meat is of the order of 16 s. Hence, this example suggests that the finite speed 

of heat propagation could be observed for a material with non-homogeneous inner 

structure even at room temperature conditions [14]. However, the mechanisms of heat 

conduction in materials with non-homogeneous inner structures are not clearly 

understood to date [14]. 

The variation of non-dimensional temperature against time at different distances is shown 

in Figure 1.5. For points with x < 0.5, which are initially affected by the temperature 

pulse, the temperature profile does not display a monotonic behaviour with respect to 

time. More precisely, the temperature decreases at the beginning (small time) to find a 

minimum, which is followed by an increasing trend until the steady state condition is 

reached. For points with x > 0.5, which are not initially affected by the temperature pulse, 

a time lag (delay) is observed initially. The longer the distance from the heat source, the 

more time is needed for the temperature pulse to be felt. During the time lag, the 

temperature is zero, and once the pulse is felt at a given point (with x > 0.5), the 

temperature increases monotonically until the steady state condition is obtained. In Figure 

1.6, the temperature profile through the entire thickness of the sample is illustrated (at 

different times). The initial temperature profile is kept here for reference. Note that how 

the temperature evolves from the initial distribution to the final steady state condition. 

Recall that the steady state temperature profile is the same as that obtained from the 

Fourier equation, where a linear temperature distribution is predicted between the two 

boundaries. 
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Figure  1.5: Variation of temperature against time at different positions (C=0.0014).

 
Figure  1.6: Variation of temperature against position at different times (C=0.0014). 
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Up to this point, the Cattaneo equation for processed meat of thickness 40 mm (totally) is 

found to be 0.0014, which is confirmed by the experimental results [3]. Although the 

time lag is observed in the results for C = 0.0014, the wavy response of temperature 

profiles is not very apparent. To illustrate the wave nature of heat propagation, C is 

increased to 0.14. Recall that 2C D= τκ , where τ and κ are the material properties and 

cannot be changed (at a given temperature). However, if the thickness of the processed 

meat sample is decreased from 40 mm to 4 mm, then C = 0.14 can be obtained. As 

expected, a wavy temperature profile is obtained with respect to time at different 

positions (Figure 1.7). Note that the steady state condition is established at a time much 

larger compared to that of Figure 1.5 (for C = 0.0014). Moreover, the oscillations in the 

temperature distribution profiles through the entire sample are apparent in Figure 1.8. 

Again, note that the evolution time from the initial temperature distribution to the steady 

state condition increases significantly compared to that of Figure 1.6 (C= 0.0014). The 

appeared fluctuations in the temperature profiles suggest the propagation of heat as a 

wave. However, because of the thermal diffusion effect, these oscillations are damped, 

and after some time (which depends on the Cattaneo number), the steady state condition 

is reached. Based on the Fourier’s law of heat conduction, unless a periodic heat flux (or 

temperature) is applied on the boundary(s) of the sample (Figure 1.1), no fluctuations can 

be observed in the temperature profiles (inset of Figure 1.8). 

It might be of importance to see what would happen if heat propagates as a wave without 

any diffusion. In this case the diffusion term in (1.5) is zero 

2 2

2 2
T 1 T

Ct x
∂ ∂

=
∂ ∂

,          (1.7a) 

and the heat wave equation (without diffusion term) is obtained. Heat wave equation 

(1.7a) is analogous to the well-known wave equation, and as a result, the dimensionless 

heat wave velocity, CT, can be found as 

T
1C
C

= .          (1.7b) 
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If the initial conditions are given as 

TT(x, t 0) F(x), (x, t 0) G(x)
t

∂
= = = =

∂
,      (1.8a) 

where F and G are arbitrarily functions, then the solution of the heat wave equation (1.7a) 

subjected to the initial conditions (1.8a) is 

1x t
C
1x t
C

1 1 1 1T(x, t) F(x t) F(x t) G(s)ds
2 C C 12

C

+

−

⎡ ⎤
= − + + +⎢ ⎥

⎣ ⎦
∫ ,   (1.8b) 

which clearly shows the wavy shape of the temperature variation with time and position. 

However, the steady heat conduction can never be established if the heat wave equation 

(1.7a) is used, which is not realistic. Moreover, in the derivation of the heat wave 

equation, it was assumed that wave pulses are propagated without attenuation (diffusion 

term is neglected), which is physically impossible. Therefore, the diffusion always 

persists though it is very small (at low temperature applications).  Consequently, Cattaneo 

equation of heat conduction (1.5a) has several desirable properties. In contrast to the 

Fourier equation of heat conduction, Cattaneo equation of heat conduction transmits 

waves of heat with a finite speed of 1 C . Moreover, the heat waves are attenuated as a 

result of diffusion, and unlike the pure heat wave equation (1.7a), steady heat condition 

can be obtained.  
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Figure  1.7: Variation of temperature against time at different positions (C=0.14). 

  

Figure  1.8: Variation of temperature against position at different times for C = 0.14, and 

the inset is for C = 0. 
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1.2.1 Other experimental observations of non-Fourier effects in solids 

In another experimental study, using the pico-second and femto-second laser techniques, 

very fast physical processes are investigated [15]. Since the electron relaxation time in 

metals is O(10−14 s), the pump-probe technique is the only possible way to achieve a high 

time resolution at femtoseconds. As shown in Figure 1 in [15], a femto-second laser is 

split into a pump beam (to heat the sample) and a probe beam (to monitor the change of 

thermoreflectance). It is known that the change of thermo-reflectance is proportional to 

the change in temperature. Figure 2 in [15] shows the back-probe data for Au films of 

500, 1000, 2000, and 3000 Å thick. As the sample thickness increases, the delay time of 

the rise of the reflectivity change increases. Similar to the experimental results of Figure 

1.7, the increase in time lag occurs as a result of the finite time, or equivalently the finite 

speed, needed for heat to propagate through the sample. Note, however, that the 

measured delay is very short (it takes only ≈ 100 fs for heat to travel 1000 Å).  

The applications of Micro-Electro-Mechanical Systems (MEMS) increased sharply over 

the last decade including industrial and medical fields [16]. In many microelectronic and 

photoelectronic devices, nano-scale dielectric films are important components [17]. In the 

design process of these small-scale devices, better understanding of the governing 

physical laws is crucial. Consequently, the study of thermal conduction in nano-scale 

dielectric films is an important step. As the definition of Cattaneo number ( 2C D= τκ ) 

implies, non-Fourier effects could become noticeable for the small-scale applications 

(small D). In other words, the deviation of transient heat conduction from Fourier’s law 

could become significant when the Cattaneo number increases (as a result of decrease in 

D). Classical molecular dynamics (MD) simulations method has been extensively used to 

study the thermal conduction related problems such as nano-scale thermal conduction. By 

solving Newton equation of motion for all particles, the positions trajectories of a system 

of particles are predicted. Using MD method, it is shown [18] that for the heat conduction 

in carbon nanotubes, a distinct amount of heat is transported in a wave-like form, which 

implies that non-Fourier effects are noticeable. In a recent study [17], by using the 

classical MD method, unsteady thermal conduction in argon thin films is analyzed, where 

the thin film is subjected to a temperature increase at one surface. Similarly to what was 
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observed in Figure 1.2, the thermal conduction is found to have a wave nature with 

temperature oscillations at a given point and time. Moreover, it is shown [17] that the 

time needed for the film temperature distribution to reach steady state condition is much 

larger than that predicted by Fourier’s law. For instance, for a film thickness of 15 nm, 

the time needed to reach steady state condition based on the Fourier’s law is 19 ps, 

whereas the prediction from MD method is 170 ps. The results in [17] shows that as the 

relaxation time (or equivalently C) increases, the time needed to reach steady state 

temperature profile increases. Therefore, MD method shows that non-Fourier effects 

become important in nano-scale argon films. 

1.3 Thermal convection in fluids with non-Fourier effects  

In this thesis, thermal convection is studied in two different configurations: the Rayleigh-

Benard convection and convection in the vertical slot. Rayleigh-Benard convection 

involves a fluid layer confined between two horizontal plates. The plates are perfect heat 

conductors, which enables one to assume that the temperature can be kept constant along 

the plate. The plates are also infinite in extent and the temperature of the lower plate is 

more than that of the upper. The fluid remains motionless when the temperature 

difference between two plates is less than a critical value. This state is called conduction 

where the fluid is at rest and a linear temperature profile is obtained interpolating the 

temperatures of upper and lower plates.  However, because of thermal expansion, the 

fluid near the hot plate (lower) is lighter and tends to move up, which makes the situation 

intrinsically instable. As the temperature difference increases, the buoyancy force 

increases to the point that it can overcome the dissipative effects of viscous force and 

thermal diffusion (Figure 1.9a). Clearly, because of mass conservation, the fluid layer 

close to the hot plate cannot rise entirely, since there is no place for the fluid layer above 

it to go. Therefore, instability at a finite wavelength is encountered and convection rolls 

emerge (Figure 1.9b).    
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(a) 

 
(b) 

Figure  1.9: Convective motion in a layer of fluid heated from below (from [19]) (a) and 

Convective rolls (from [19]) (b). 

For typical fluids (such as water), when the convection starts and the fluid begins to 

move, rolls, which are stationary and aligned parallel to the shorter horizontal side [20], 

[21], emerge. However, higher temperature difference results in an unstable stationary 

roll pattern and a time-dependent flow emerges [22]. From linear stability theory, it is 

expected that overstability (transient oscillatory flow) occurs at the onset, if two opposing 

effects exist [23]. For instance, a destabilizing temperature gradient in conjunction with 

rotation [24], or a stabilizing solute gradient [25-28], and thermo-solutal convection to 

overcome the principle of the exchange of stabilities [23]. In all mentioned cases, 

convection occurs at the onset in the form of oscillatory rolls (not stationary), which 

means that the roll speed varies with time.  

For a viscoelastic fluid with sufficiently large elasticity and large Prandtl number (Pr = 

ν/κ and ν denotes the kinematic viscosity), overstability is expected to occur [29]. In this 

case, there is a competition between the processes of viscous (stress) relaxation and 

thermal diffusion, which are the two opposing factors acting on an element of fluid. In 

addition, the critical Rayleigh number for the onset of oscillatory convection is found to 

decrease as a function of increasing elasticity number (E = τν/D2), which has the similar 

role as the Cattaneo number in the current study. Similarly, it is reported [30] that the 

oscillatory threshold (for Pr =10) is less than the threshold for the onset of stationary 

Rayleigh-Benard convection for large elasticity numbers. Consequently, it is expected 

T0+δT 

T0 

g 
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that sufficiently viscoelastic fluids exhibit oscillatory convection at the onset. As it will 

be shown in Chapter 2, there is a parallel between fluids with non-Fourier effects and the 

viscoelastic fluids. For non-Fourier fluids, thermal relaxation process is important, which 

is analogous to viscous relaxation process in viscoelastic fluids. Consequently, it is 

anticipated to observe oscillatory convection (overstability) at the onset for a fluid with 

high non-Fourier character. Moreover, the oscillatory threshold is expected to be less than 

the threshold for the onset of stationary Rayleigh-Benard convection for sufficiently large 

Cattaneo numbers (C). 

Non-Fourier effects can be significant in liquids. In this case, non-Fourier effects 

(second-sound waves) were studied both experimentally [7,31] and numerically [32] in 

liquid helium at low temperatures (T < 2.17 K). As mentioned previously, the second-

sound is a heat transfer mechanism describing the propagation of heat as a wave. In 

addition, nanofluids also exhibit non-Fourier effects [33].  

1.3.1 Liquid Helium 

Helium has two common isotopes: 4He with mass number 4, which is the most abundant 

isotope and from now it will be denoted as He, and 3He with mass number 3. The boiling 

point of Liquid He (LHe) is 4.22 K (at atmospheric pressure), and when LHe is cooled 

below 2.17 K, it has a very intricate behaviour. For simplicity, the liquid Helium above 

2.17 K is denoted as LHe I and the liquid Helium below 2.17 K is denoted as LHe II. The 

thermal conductivity of LHe II is orders of magnitudes larger than that of LHe I. 

Viscosity is also found to be particularly puzzling. If the capillary flow method is used to 

measure viscosity, LHe II shows no viscous behaviour and the viscosity is nearly zero, 

which explains the reason of formation of a thin film of LHe II that gradually fills a test 

tube lowered partly into a bath of LHe II (LHe II flows without friction up the tube’s 

wall). Therefore, LHe II has the capability of flowing through narrow channels without 

observable pressure drop [34]. On the other hand, if a set of oscillating discs is immersed 

in LHe II, and the viscosity is measured by the damping produced on the discs, then the 

viscosity of LHe II is found to be comparable to that of LHe I (about one-tenth that of 

air). Similarly, the oscillations of a torsion pendulum in LHe II gradually decays, which 
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proves the presence of viscous effects. This phenomenon is called the viscosity paradox 

in LHe II [34]. 

The thermo-mechanical effect (or fountain effect) is another complex phenomenon. In 

this case, as shown in Figure 1.10, two cylinders are connected at the bottom by a very 

thin tube that can block any viscous fluid (superleak). The two containers are initially 

filled with LHe II at the same temperature (the liquid levels are initially the same in both 

containers). When the temperature of one container increases, a rise in the liquid level 

(pressure rise) of that container is observed. The superfluid component of LHe II flows 

towards areas that the LHe II is heated [35] to cool that area and restores the uniform 

mixture of normal and superfluid. Therefore, the superfluid component flows into the hot 

container through the superleak, which can be made of porous materials. In contrast, 

since the normal component in the hot container is viscous, it cannot flow through the 

superleak. Consequently, the liquid level in the hot container increases. This hydrostatic 

pressure difference (or equivalently the difference between liquid levels in two 

containers) is proportional to the temperature difference (TH-TC), where TH (TL) is the 

temperature of the hot (cold) container. 

 

Figure  1.10: Thermo-mechanical effect (fountain pressure) in LHe II. 

To tackle the above mentioned issues, Tisza proposed in 1938 [36] to model LHe II as 

comprising two components (the two-fluid model) with different physical properties. The 

first component has zero viscosity, and is called the superfluid component, which is 

responsible for the flow through narrow channels without any observable pressure drop. 

The second component of LHe II has a non-zero viscosity, and is called the normal 

component, which is responsible for the damping observed in the oscillating discs 
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experiment. The densities of the superfluid and normal components are denoted by ρs and 

ρn, respectively. The total density ρ of LHe II is then given as ρ = ρs + ρn. At absolute 

zero, the ratio ρs/ρ approaches one, which implies that LHe II behaves like a pure 

superfluid. In contrast, at the transition temperature (2.17 K) ρs/ρ approaches zero, which 

means that LHe II behaves like a normal fluid. It was also suggested [36] that the 

superfluid component has no entropy and as a result, the normal component is 

responsible to carry the total entropy.  

As mentioned above, the pressure difference is proportional to the temperature difference 

(TH-TC). More precisely, it can be shown that the pressure difference is equal to ρS(TH - 

TC), where S is the entropy per unit mass [37]. Now, imagine that the superleak is 

removed. Similar to the Poiseuille's flow through a wide channel, the normal component 

flows through the connecting tube (Figure 1.10) as a result of pressure difference. Then, 

because of mass conservation, a counterflow of the superfluid takes place from the cold 

to the warm container. The counterflow of superfluid component and normal component 

of liquid helium is somewhat analogous to convection currents in a fluid. Consequently, 

the conduction process in LHe II (based on the two-fluid model) is similar to the 

convection process in ordinary fluids, which can explain the significant thermal 

conductivity of LHe II compared to ordinary liquids. The equation for the conservation of 

mass is 

s s n n 0
t

∂ρ
+ ρ ∇ ⋅ + ρ ∇ ⋅ =

∂
v v ,        (1.9a) 

where vs and vn are the velocities of superfluid and normal components, respectively. It 

should be noted that the flow of the normal component and the counterflow of the 

superfluid component occurs immediately after a temperature difference is applied 

between the two containers. However, the total mass flow rate in the connecting tube is 

zero, since the flow of the normal component is cancelled by the counterflow of the 

superfluid component ( s n 0ρ = ρ + ρ =v v v ). On the other hand, the entropy (and hence 

heat) is carried away from the warm to the cold end by the normal component. In fact, 


