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ABSTRACT 

 Lead is a toxic heavy metal and nominal exposure can have serious health impacts. The 

dissolution of lead from corrosion scales within lead service lines and lead bearing plumbing 

materials in water distribution systems is a major concern for municipalities around the world. 

Water utility operators have two options to protect public health, stabilization of the corrosion 

scale, or lead service line replacement. As replacement programs are slow and costly, corrosion 

control through scale stabilization by adjusting water chemistry parameters is generally the most 

accessible option for utility operators. Effective corrosion control requires critical understanding 

the composition of the corrosion scale and how components of the scale behave under different 

water conditions. Lead (II) carbonates are present and often in corrosion scales and may control 

total dissolved lead concentrations within typical drinking water systems under flowing water 

conditions and short stagnation periods. While the thermodynamic solubility of hydrocerussite 

has been investigated previously, very little is known about the dissolution rates of 

hydrocerussite. 

This work examines the kinetic dissolution of the lead (II) carbonate hydrocerussite 

(Pb3(CO3)2(OH)2) under four pH conditions (7.5, 8, 9, 10), three dissolved inorganic carbon 

concentrations (DIC; 10, 20, 50 mg C/L), and three initial hydrocerussite concentrations (10, 20, 

50 mg/L) in batch experiments. Experiments were performed to determine total dissolved lead 

dissolution curves at short time scales (<2 hr). Equilibrium dissolved lead concentrations were 

achieved in less than 40 minutes, and were consistent with findings from previous studies – 

equilibrium total dissolved lead concentrations were highest for pH 7.5 and pH 10 and lowest for 

pH 9. The formation of cerussite may have interfered with the dissolution process at a pH 7.5. 

The equilibrium total dissolved lead concentrations decreased with increasing DIC. All 
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experimental equilibrium values were within the range of expected equilibrium concentrations 

simulated with the geochemical modelling program PHREEQC using combinations of solubility 

constants from literature for cerussite and hydrocerussite. These rate constants represent the 

largest source of error with respect to calculating equilibrium total dissolved lead. PHREEQC 

was used to speciate total dissolved lead equilibrium concentrations under experimental 

conditions to determine an approximate solubility product for hydrocerussite of -15.98 ± 0.53. 

 The kinetic dissolution data of total dissolved lead was evaluated by an integral approach. 

In general it was found that the dissolution rate constant increased with increasing pH, DIC and 

initial solid loading. The expressions describing how the kinetic rate constant determined under 

varying pH, DIC, and initial hydrocerussite conditions were combined into a rate expression. 

This kinetic dissolution expression matched the experimental data well and can be used to 

approximate total dissolved lead levels. These results provide a basis for further development of 

a kinetic-based lead corrosion scale dissolution model that utility operators may use to estimate 

how operational changes will affect dissolved lead concentrations in water distribution systems.  
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1 CHAPTER ONE: INTRODUCTION 

 Elevated lead levels in drinking water are a serious public health concern for many 

municipalities worldwide. Lead in drinking water is colorless, tasteless, and odorless with no 

indication of regulatory excess [1]. Drinking water contaminated with lead can cause acute toxic 

effects in anyone; however pregnant women and children under 6 years old are at the highest 

risk [1]. Exposure to lead through drinking water occurs due to the presence of lead-bearing 

plumbing materials in water distribution systems [2]. Programs targeted at removing lead service 

lines from distribution systems are progressing in many municipalities, but these programs are 

extremely expensive and very slow. Despite ongoing replacement programs, approximately 3.3 

million lead service lines and 6.4 million lead service connections are still remaining in the mid-

west and north-east of the United States alone [3].  

 Over time, an internal corrosion scale develops on the inside of lead service lines and by 

changing water chemistry parameters this corrosion scale can dissolve into drinking water [4]. 

Corrosion control strategies can be implemented by utility operators by changing the water 

chemistry to promote conditions within the service lines to prevent or reduce the dissolution of 

the internal corrosion scale.  Destabilization of the corrosion scale and entrainment of lead in 

drinking water depends numerous factors including the length and diameter of lead service line, 

water chemistry, scale composition, water use patterns, and hydraulic flow regimes [5]. Control 

over many of these variables is impossible; however the most accessible one for utility operators 

to adjust is water chemistry. Water chemistry interacts with the corrosion scale solid phases to 

either stabilize or alternatively promote dissolution of the scale. A clear understanding of the 

corrosion scale composition and the influence of water chemistry parameters on the stability of 

the scale is required for utility operators to implement effective corrosion control strategies. The 
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corrosion scales on the interior of lead service lines are complex and are comprised primarily of 

lead (II) carbonates and lead (IV) oxides [6]. Lead (II) carbonates found within the scales are 

typically cerussite (PbCO3) and hydrocerussite (Pb3(CO3)2(OH)2) [6]. These are more soluble 

than lead (IV) oxides and often control total dissolved lead levels under short stagnation times or 

flowing conditions [7]. The two key chemical parameters that often control the dissolution of the 

lead corrosion scale are pH and dissolved inorganic carbon (DIC) [4]. Additional chemical 

parameters which have been shown to affect the dissolution of various lead compounds are 

disinfectant type (e.g., chlorine, chloramines), manganese, phosphate, iodine, and natural organic 

matter (NOM) [8-13]. Over the last decade, research has focused on evaluating the equilibrium 

and kinetic behavior of lead (IV) oxides under various water chemistry conditions, and the 

subsequent impact on total dissolved lead in drinking water [11-30]. While the importance of 

lead (II) carbonates in controlling dissolved lead levels has been widely acknowledged, few 

studies have focused specifically on quantifying the equilibrium behavior or kinetic dissolution 

of these phases under different chemical conditions [23-27]. Since the lead (IV) carbonates may 

play a greater role in the dissolution of lead corrosion scales in water distribution systems, 

research is needed to quantify the behavior of these solid phases including their rate of 

dissolution under varying water chemistry conditions [31].   

 The objective of this work is to evaluate the kinetic dissolution of the lead (II) carbonate 

hydrocerussite under a range of pH and DIC conditions. Understanding how these key 

parameters influence the dissolution of hydrocerussite and developing a kinetic dissolution rate 

expression is essential to enable utility operators to approximate dissolved lead levels at the tap 

and to develop and implement effective corrosion control strategies.   
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2 CHAPTER TWO: LITERATURE REVIEW 

2.1 EXPOSURE TO LEAD 

 Lead is a toxic heavy metal found in the earth's crust. Due it its malleable nature, slight 

corrosion resistance, and low cost it has historically been used in almost every facet of society. It 

has been used in many consumer items (televisions, plastics, metal sheeting, automobiles etc.), 

acid batteries, gasoline, paint, pipes and solder [1].  Lead is ubiquitous, with exposure pathways 

ranging from air, soil, dust, paint, drinking water, and various consumer products.  

 Lead service lines in drinking water distribution systems, in addition to lead-bearing 

plumbing materials (e.g., leaded solder, brass fixtures), provide an important exposure pathway 

through drinking water [1].  Homes built before the mid-1980s are more likely to have lead 

service lines and lead-leaching plumbing materials within their water distribution network [1,2].  

Many cities have implemented programs to replace the lead service lines running between 

municipal water mains and individual buildings in older districts. These replacement programs 

are extremely costly and progress very slowly. Drinking water service lines often cross between 

municipal land (sidewalks, roads etc.) and private land and so co-ordination with homeowners is 

required to facilitate a complete lead service line removal. If the homeowner does not replace the 

private portion of the service line, a combined service line containing lead will remain – this 

presents a continued lead exposure pathway for residents within their drinking water [3-6]. Even 

plumbing within new homes may still contain up to 8% lead due to the use of brass fixtures, 

chrome plated facets, and galvanized iron [7]. In the United States (U.S.) the maximum lead 

content in new plumbing was reduced to 0.25% in an amendment to the Safe Water Drinking Act 

in early 2011 [8]. Despite these new regulations and service line replacement programs, 

dissolved lead in drinking water distribution systems remains a serious concern. It is estimated 
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that currently over 50% of infant lead exposure comes from drinking water [9].  It is estimated 

that 50-75% of total lead at the tap is due to the presence of old lead service lines [10].  Despite 

widespread lead pipe replacement programs, there remains at least approximately 3.3 million 

lead service lines and 6.4 million lead service connections remaining in the mid-west and north-

east of the United States alone [11].  

2.2 CURRENT REGULATORY GUIDELINES 

2.2.1  CANADA 

 The discovery of health concerns due to lead exposure brought about the introduction of 

several regulatory and non-regulatory initiatives to protect Canadian's safety.  Many consumer 

items are now regulated by a combination of the Lead Risk Reduction Strategy for Consumer 

Products, Hazardous Products Act, Environmental Protection Act, or the Food and Drug Act 

[1,12]. Unfortunately the Canadian federal regulation for lead pipes and lead solder and drinking 

water exposure is more complex. The National Plumbing Code outlines the acceptable use of 

plumbing materials containing lead. This includes the highest allowable lead concentration 

within plumbing materials (i.e. in brass or chrome plating) as well as a ban on the use of lead 

solder [1].  

 The Health Canada Guidelines for Canadian Drinking Water Quality and Standards sets 

the limit for lead in drinking water for utilities at 10 µg/L. Health Canada (2009) provides two 

avenues for sampling protocol options (Table 2.1). Option 1 is a two tiered approach while 

option 2 has been presented for utilities that cannot meet the 6 hour stagnation time required by 

option 1 [13]. In the tiered approach, additional samples are only required (tier 2) if more than 

10% of the samples taken in tier 1 are above the recommended action limit provided by Health 

Canada [13].  These guidelines, however, are not a federal regulation but a collaborative 
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suggestion from Health Canada and the Federal-Provincial-Territorial Committee [1]. The 

control of drinking water quality is a responsibility shared by both federal and 

provincial/territorial levels of government, however each jurisdiction is free to enact individual 

guidelines, objectives, and legislation (often based on the guideline).   

TABLE 2.1: HEALTH CANADA (2009) RECOMMENDED SAMPLING PROCEDURES [13]. 

 
Option 1 

Option 2 

 
Tier 1 Tier 2 

Stagnation Time 6 hr. 6 hr. 30 min. 

Sample Type 1st Draw 1L Consecutive 1L Consecutive 

No. samples/target 1 4 4 

No. targets 
population  
dependent 

%10 of Tier 1 locations 
(minimum 2) 

population  
dependent 

Target Distribution 
50% lead service  

line houses 
--- 

50% lead service  
line houses 

Escalate to Tier 2 
If >10% samples  

are >15 ug/L 
--- --- 

 

The Ontario Ministry of the Environment (MOE) has set a maximum acceptable concentration 

(MAC) of 10 µg/L for total dissolved lead standard [14]. The guidance document requires at 

least 2 samples per target location, and at least 1 target location per sampling event [15]. The 

MOE specifies a minimum 2 sampling events; one in the summer and one in the winter [15]. 

Similar to the Health Canada guidelines, the exact number of samples to be taken is population 

dependent and must include a mix of public and private buildings. The MOE recommended (but 

not required) stagnation time is 30 minutes followed by two 1 L samples [15].  

Despite the outline of a recommended stagnation time and minimum sample requirements, the 

exact sampling procedure outlined by the document is vague [14]. Other information not 

specified by regulations are flush time, container type, analysis type, acid digestion time etc. A 

study that examined how stagnation times may affect dissolved lead concentrations in water 

samples collected at the tap found that a 5 minute flowing sample returned an average lead 
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concentration of 2.7 µg/L whereas a 6 hour stagnation yielded an average lead concentration of 

3.5 µg/L [16]. Many utilities now use a combination of stagnation/first draw and multiple 

consecutive flowing sampling protocols to obtain total dissolved lead results. Strong evidence 

exists to support each sampling protocol under the basis of different research or sampling 

objectives [17].   

2.2.2  UNITED STATES 

 Similarly to Canada, the U.S. has a collection of regulations protecting American's from 

lead exposure.  The first initiative by the U.S. to control the use of lead in plumbing occurred as 

part of the 1986 'Federal Lead Ban' which amended the U.S. Safe Drinking Water Act [9]. This 

banned the use of solders and joins containing more than 0.2% lead which was a drastic 

reduction, as common older plumbing materials could have contained up to 50% lead [9].  

 To reduce lead service line corrosion the United States Environmental Protection Agency 

(U.S. EPA) issued the Lead and Copper Rule (LCR) under the Safe Drinking Water Act in 1991. 

This rule states that immediate action must be taken by the water utility to implement corrosion 

control strategies if 10% or more of the homes tested in the required yearly sampling meet or 

exceed a dissolved lead concentration of 15 µg/L. Currently, the LCR calls for a stagnation time 

of 6 hours and a first draw sample of 1L of cold water [18]. Recently, doubt has arisen to the 

effectiveness of the first draw sampling protocol mandated by the U.S. EPA [19]. Schock et al. 

(2014) discovered that dissolved lead rather than particulate lead was the primary cause for 

regulatory exceedances in distribution systems with lead corrosion control strategies in place 

[19]. In distribution systems where no corrosion control strategies had been employed, 

particulate lead was generally higher than dissolved lead. First draw samples do not necessarily 

represent both particulate and dissolved lead exposure [19]. To correct for this, Shock et al. 
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(2014) proposed a sampling protocol of a total of 30 1L samples across three flow rates to ensure 

samples are representative of concentrations in drinking water systems [19].   

2.3 HEALTH EFFECTS OF LEAD IN DRINKING WATER 

 Lead is a toxic heavy metal and adversely affects human health with effects ranging from 

stomach distress to brain damage [20].  Until 2012, the Center for Disease Control (CDC) had set 

a 'blood level of concern' of 1 µg/L. Mounting evidence, however, has led to the CDC recently 

removing this limit and asserting that there is no safe blood level for children [21]. Above lead 

blood levels of 10 µg/L death and coma are a certainty; above 4 µg/L lead interferes with the 

production of red blood cells; above 2 µg/L lead is associated with nerve damage; above 1 µg/L 

lead has been associated with vitamin deficiencies and bone brittleness; and above 0.5 µg/L has 

been linked to an increased risk of miscarriage, early death from heart attacks or strokes, and 

high blood pressure [12].  Lead blood levels as low as 0.1 µg/L have been associated with many 

developmental deficiencies [12].  An examination of the Canadian census indicated that 2009 

lead blood levels of Canadians ranged between 0.071 and 0.231 µg/L [22]. Since 2009, the 

known lead blood level of Canadians has not changed. There has been no studies done on the 

effects of lead in the bloodstream at such low levels, but there may be very subtle health effects 

[23]. Recent work has directly tied drinking water to elevated blood lead levels in children in the 

United States [24]. Children aged 6 and younger and pregnant women are especially at risk from 

exposure due to their ability to absorb lead because of the developing brain and body [9].   

 Children and adults absorb and react to lead very differently. It has been estimated that 

adults absorb approximately 3-15% of ingested lead while children can absorb as much as 

50% [1]. This is due to children having a higher metabolic rate and an increased capacity to 

absorb any and all nutrients, including lead. Although immediate and acute effects of lead in the 
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body are most dangerous to pregnant women and children, anyone who has been exposed to lead 

can suffer lead toxicity. Absorbed lead can be stored in the bloodstream, soft tissues, and bones. 

However, when soft tissues or bones are stressed or damaged (due to age or acute trauma), up to 

70% of the lead stored can be released back into the bloodstream and so acute toxicity can occur 

long after initial nominal ingestion [12]. Therefore lead represents a life-long risk to anyone, 

adult or child, who has been exposed to lead.  

2.4 HISTORICAL EXCEEDANCES 

 In 2004 the Washington Post ran a story titled “Water in D.C. Exceeds EPA Lead Limit”. 

This article revealed that over 4,000 homes throughout the city had elevated lead levels [25]. 

Analysis revealed that a switch in disinfectants from free chlorine to chloramines destabilized 

corrosion scale in lead pipes in the Washington DC water distribution system. The corrosion 

scale was predominately composed of lead (IV) oxides which had formed when free chlorine 

was used as the disinfectant prior to 2000. These lead (IV) oxides have a low solubility and so 

did not dissolve into the drinking water. In 2000, Washington D.C. switched disinfectant 

regimes; the switch from free chlorine to chloramines was intended to reduce disinfection by 

products (DBPs) that can occur when free chlorine and various organics interact [26]. Instead the 

change had the unintended consequence of lowering the oxidation reduction potential (ORP) of 

the distribution system. This led directly to the destabilization of lead (IV) oxides in the 

corrosion scale in the distribution system with higher lead dissolution rates resulting in high lead 

concentrations at the tap and lead toxicity within the population.   

 In light of the occurrence in Washington D.C., many municipalities around the world 

were forced to examine lead levels in their own drinking water systems. Currently, many major 

municipalities in Canada (e.g., Toronto, Ottawa, London, Montreal, Quebec City, and Vancouver 
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etc.) have reported elevated lead levels in drinking water and are in the process of implementing 

lead corrosion control strategies in addition to lead pipe replacement programs. Destabilization 

of the corrosion scale is complex and depends on numerous factors including pipe size and 

configuration, scale composition, water use patterns (stagnation times), and water chemistry 

[10]. Of these parameters, the only one that water utility operators can adjust to reduce lead 

levels at the point-of-use is water chemistry.  

2.5 SCALE CHARACTERIZATION 

 Characterization of the solid phases present in the corrosion scale on the pipe interior is 

critical for developing effective corrosion control strategies. The composition of the corrosion 

scale depends strongly on the historical water chemistry that has flowed through the distribution 

system.  There are many different types of lead compounds which can be present within the scale 

(Table 2.2). The most common lead (II) compounds found within drinking water systems are 

hydrocerussite, cerussite, and massicot/litharge, while the most common lead (IV) compounds 

are plattnerite/scrutinyite.  Minium, a lead (II/IV) compound has also been observed [27]. High 

free chlorine concentrations (high ORP) generally results in the formation of lead (IV) oxides. A 

water composition of low ORP with moderate to high dissolved inorganic carbon (DIC) will 

often result in the formation of lead (II) carbonates as the main phase in the corrosion scale in 

lead service lines [28,29].  
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TABLE 2.2: LIST OF SOLID LEAD COMPOUNDS THAT MAY BE PRESENT IN LEAD CORROSION SCALES. 

 
Carbonate Oxides Other 

Lead (II) 

 

 PbCO3 - Cerussite, 

 Pb3(CO3)2(OH)2 -Hydrocerussite, 

 Pb2OCO3,  

 Pb3O2CO3,  

 Pb10(OH)6O(CO3)6 

 

 PbO - Massicot or Litharge,  

 Pb(OH)2,  

 Pb2O(OH)2 

 PbS - Galena, 
 PbCl2 - Cotunnite, 
 PbCl2:PbCO3 - Phosgenite, 
 PbClF - Matlockite, 
 PbOHCl - Laurionite, 
 PbI2,  
 PbSO4,  
 Pb(NO3)2,  
 etc. 

Lead (IV)  Pb(CO3)2  PbO2 - Plattnerite or Scrutinyite  

Lead (II/IV) 
  Pb3O4 - Minium, 

 Pb2O3 

 

         

2.6 LEAD (IV) OXIDES 

 The primary lead (IV) oxide found in lead pipe corrosion scale is PbO2. This lead (IV) 

oxide can be present as a polymorph of either plattnerite or scrutinyite. Plattnerite has a lower 

solubility than scrutinyite. If the conditions are favorable for the formation of PbO2, plattnerite 

will develop first [30].  If lead (IV) oxides are the dominant phases in the scale, they will control 

the dissolved lead concentration over extremely long stagnation times (weeks to months) or if a 

reductant such as natural organic matter (NOM) is introduced into the distribution system. PbO2 

is very sensitive to changes in ORP of the bulk water within lead pipes, and so a switch between 

free chlorine and chloramines (lowering ORP) will dissolve PbO2 into aqueous lead (II) 

carbonates or lead (II) ions. In turn, the lead (II) carbonates can also dissolve into the drinking 

water. In general, if a system has been exposed to free chlorine then it is likely safe to assume 

that some lead (IV) oxides exist within the distribution system [30].  

 A study of pipes across over 30 distribution systems operating with a range of chemistry 

conditions found that 26% of the systems had PbO2 present within the scale [31]. Within these 

samples, very few were uniform PbO2; most were a blend with lead (II) carbonates. This blended 
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scale of lead (IV) oxides and lead (II) carbonates was also found during a laboratory pipe loop 

study performed with very high chlorine concentrations (3.5 mg/L Cl2) and high pHs (>9.5) [32]. 

The final scale within these laboratory pipes was  a blend of lead (IV) oxides and lead (II) 

carbonates [32]. Both studies found that lead (II) carbonates played a significant role during the 

formation of the lead (IV) oxides and corrosion scales. Many studies have investigated the 

behavior of lead oxides under various drinking water conditions [30,32-51]. These include 

formation and dissolution studies, as well as the effects of NOM, ORP and disinfectant types, 

phosphates, iron, manganese, carbonate, and pH. Some of these studies also include lead (II) 

carbonates as they pertain to either the formation or dissolution of lead (IV) compounds [44-51]. 

2.7 LEAD CARBONATES 

 Lead (II) carbonates may control lead solubility in water distribution systems under 

flowing and short stagnation times. Specifically, cerussite and hydrocerussite are significantly 

more soluble than lead (IV) oxides. Extremely limited information exists about cerussite. The 

literature reported stability range of cerussite can vary widely [50,52]. In general it is thought 

that the stability of cerussite is within the range of a pH of 6 and 8; the exact limits of this range 

are uncertain [50,52-54].   Hydrocerussite is the stable form of lead (II) carbonates in a basic pH 

range (approximately 7 or 7.5 and higher) based on solubility and thermodynamic constraints 

[50]. If hydrocerussite reaches equilibrium in 1 hour (or less) and compliance monitoring 

requires stagnant time for up to 6 hours, then the lead concentrations in systems with lead (II) 

carbonates operating at pHs near or above neutral will most likely be controlled by solubility of 

hydrocerussite [49].  
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2.7.1  SCALE CHARACTERISTICS 

 Lead (II) carbonates can form in the presence of a high concentration of DIC and 

reducing conditions. Even under high oxidizing conditions (high ORP), lead (II) carbonates can 

still form in conjunction with lead (IV) oxides [32]. A study performed on corrosion scale 

samples harvested from the water distribution system in London Ontario found that 

hydrocerussite was the primary lead phase in 8 samples and cerussite was the primary scale in 

the remaining 3 samples [27]. Lead (IV) oxides were present, but were not the dominant phase.  

These results tend to be in agreement with corrosion scale characterization from other 

municipalities.  

2.7.2  EQUILIBRIUM CONSTANTS FOR LEAD (II) CARBONATES 

The dissolution of the lead (II) carbonates cerussite and hydrocerussite is represented by: 

Pb�(CO�)�(OH)� + 2H� = 3Pb�� + 2CO�
�� + 2H�O    (Eq. 2.1) 

PbCO� = Pb�� + CO�
��       (Eq. 2.2) 

Equations 2.1 and 2.2 represent the equilibrium dissolution reactions of the most common lead 

(II) carbonates hydrocerussite and cerussite, respectively. Other chemical species within drinking 

water will also dictate total dissolved lead levels. A summary of these and their disassociation 

constants are presented in Table A.1 (Appendix 1, Supplementary Material). The reported 

equilibrium constants for lead solid phases are variable. A literature review found a large range 

in lead (II) carbonate experimentally derived equilibrium constants. The log solubility constants 

for hydrocerussite ranged from -18.861 to -14.322 and for cerussite ranged from -13.4 to -11.699 

[52,55-60]. The literature sources are not mutually independent with some sources using similar 

base equilibrium constants (i.e. for water), and others injecting original work or calculations. All 

found equilibrium constants were standardized into the equation presented for hydrocerussite or 
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cerussite dissolution (Eq. 2.1 and 2.2) using reactions and known constants from Stumm et al. 

[57,60].  A pipe loop study performed by Edwards et al. estimated the equilibrium constants of 

both cerussite and hydrocerussite based on actual drinking water data to be -14.5 and -21.60, 

respectively [61]. This study also indicated that equilibrium models can over predict the actual 

dissolved drinking water concentrations by up to 10 times due to inaccurate or uncertain 

equilibrium constants. Future work was recommended on kinetics and temperature response of 

lead scales under realistic drinking water conditions rather than pursuing more accurate solubility 

products. 

2.7.3   PREVIOUS MODELS ON LEAD COMPOUNDS  

 There are many models that have been developed to describe lead-aqueous interactions 

and contaminant intrusion into pipes, some of which date back to the 1980s [50,52,53,62-72].  

These models can be divided into, computational diffusion models of lead pipes [62-64], 

statistical models based on field data analysis or pipe loops [65-67] and thermodynamic 

equilibrium models [50,52,53,71,72].  These models can provide valuable insight into the 

relationship between water chemistry, corrosion scale composition, and total dissolved lead 

levels. They can also be useful tools for assessing long term effectiveness of corrosion control 

strategies. Significant error can occur due to lack of information, poor initial model parameters, 

inaccurate equilibrium constants, or omitted kinetic data for dissolution models.  Including 

hydrocerussite in a model can significantly complicate the system and can result in problems 

predicting total dissolved lead, pH, and DIC [50]. Little information exists on the reaction rates 

of hydrocerussite, but they are crucial for an accurate model calculations [50].  In addition to 

determining which scale composition to include for modelling, there is a question of equilibrium 

constants for each solid phase (and for each aqueous complex).  This complicates the modelling 
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process further, as there is a wide variation in reported solubility and stability constants for lead 

compounds. The formation range of cerussite is of some doubt.  Due to the uncertainty of 

solubility constants, it is estimated that cerussite is stable somewhere between a pH of 6 and 8 

[50].  Some literature exists on the transformation of hydrocerussite to cerussite.  This has been 

seen during chlorinated experiments, pipe loops, and batch experiments however these 

experiments were run at a pH of approximately 7.5 [46].    

COMPUTATIONAL DIFFUSION MODELS 

 Models based on the collection of data, and solving for a potential computational or 

analytical solution may work as long as values are within the range of the collected data. 

Statistical models in particular require a large dataset in order to function accurately.  

 The model developed by Kuch et al. (1982) was a combination of computational 

diffusion and mass transfer equations and expanded on the statistical work of others in the mid-

1980s to enable estimates of dissolved lead at the tap with regards to stagnant or flowing water 

regimes [65].  The computational diffusion model of Leer et al. (2001) found difficulty finding 

an analytical solution to calculate total dissolved lead under some conditions [66]. A simple lead 

loop computational diffusion model was set up to investigate the kinetics and equilibrium of lead 

precipitation was created by Tan et al. (2008) [69]. Another computational model focuses on 

contaminants other than lead, and was extended by the author to work for lead dissolution in 

drinking waters [67].    

STATISTICAL MODELS 

 Clement et al. (2000) developed a statistical model based on field data to estimate  public 

exposure to lead in drinking water based on the pH and alkalinities of the water. Based on the 

findings of their statistical analysis, a future model should be developed comprised of 3 classes 
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of water composition, characteristics of local plumbing systems, and consumer consumption 

behavior [62]. Eisnor et al. (2004) developed a model to investigate how residence time of a pipe 

and the presence of chlorine or chloramines affect lead compound dissolution [63]. More 

recently Hayes et al. (2009) developed a statistical model to evaluate the area and time based 

effect of lead sampling methodology on total dissolved lead levels [64].  

THERMODYNAMIC MODELS 

 Thermodynamic and kinetic models can be used to simulate the chemical reactions 

controlling dissolved lead concentrations in a drinking water distribution system. Several 

thermodynamic equilibrium models to describe lead solubility were developed in the 1980s 

[50,52,71,72]. While these models were able to provide insight in the aqueous-solid phase 

interactions governing lead solubility, the equilibrium models developed were generally not able 

to predict experimental total dissolved lead concentrations. Hem and Durum (1973) evaluated 

the solubility of lead in surface waters with a pH range of 7.5 to 8.5, and in the presence of lead 

(II) carbonate phases and Pb(OH)2. This study concluded that hydrocerussite, in particular, had a 

negligible effect on dissolved lead levels due to its limited solubility within this range of pHs 

[52]. Another similar study performed by Patterson et al. (1977) presented an equilibrium model 

which included only Pb(OH)2 and cerussite. They compared model estimates to laboratory 

experiments conducted at various DICs and used an updated solubility constant value for 

Pb(OH)2, however inconsistencies were still observed between simulated and experimental lead 

concentrations. These inconsistencies led Patterson et al. to conclude that hydrocerussite was 

important, and should be included in future models. Schock (1980) updated the Patterson model 

and showed that the theoretical solubility of the lead solid phases (cerussite, hydrocerussite, 

Pb(OH)2) was strongly dependent on DIC and pH. The model developed by Schock was 
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compared to experiments performed at pH 7, 8 and DIC (3-30 mg C/L) and it was found that the 

model still significantly under predicted experimental lead concentrations [72]. This was 

attributed to model limitations (atmospheric CO2) and high uncertainty of the equilibrium 

constants for hydrocerussite, cerussite, and Pb(OH)2. More recently, Marani et al. (1995) 

simulated lead solubility for the application of the treatment of battery acid wastewater [53]. 

Lead precipitation experiments were conducted a wide range of pHs (3.9-11.3) and DICs (0-150 

mg C/L) [53]. In basic conditions (pH>8) the model consistently over predicted the experimental 

results by 2-3 times [53]. At these conditions hydrocerussite was experimentally observed to be 

the dominant phase but their model predicted a different dominant lead solid phase. Their 

expectations were for the presence of Pb(OH)2(s) whereas the actual aged suspension was 

primarily hydrocerussite [53].  This was attributed to interference from atmosphere and 

uncertainty with regards to thermodynamic solubility constants [53]. A common theme among 

these thermodynamic equilibrium models is the pervading uncertainty in the equilibrium 

solubility constants and an understanding that hydrocerussite is an important dominant phase 

within drinking water systems. These models, however, are all based on equilibrium conditions. 

It is the goal of this work to expand upon previous research and allow for the inclusion of time 

based kinetic calculations of the dissolution of hydrocerussite.  

2.7.4  PREVIOUS LEAD (II) CARBONATE DISSOLUTION STUDIES 

 All carbonate solids are considered to be among the most rapidly soluble minerals [73]. 

Dissolution rates for carbonates tend to increase with decreasing pH, under acidic conditions 

[30]. A study performed by Pokrovsky et al. (2005) investigated the dissolution of other, non-

lead, carbonate compounds in a batch reactor [73]. Dissolution rates were found to be on the 
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order of 10-4 mol/m2h at acidic pHs [73]. Although not hydrocerussite, dissolution rates of other 

carbonate compounds can provide a good comparison for the studied lead (II) carbonate.  

 Despite the prevalence of lead (II) carbonates in the corrosion scale of water distribution 

systems, to our knowledge only three prior studies have evaluated the dissolution of 

hydrocerussite under varying water chemistry conditions. The first two studies investigated the 

dissolution rates of hydrocerussite within small (84 mL) continuously stirred tank reactors 

(CSTRs) loaded with 1 g/L hydrocerussite under varying water chemistry parameters with 

residence times of either 30 or 60 minutes [48,49]. The first study by Noel et al. (2008) found 

dissolution rates on the order of 10-8 mol/m2min and showed variation in dissolution rates with 

respect to pH and DIC [48]. The follow up study by Noel  et al. (2014) found a dissolution rate 

on the order of 10-9 mol/m2min and showed the inhibition of this rate by orthophosphate [49]. 

Neither study provided a kinetic dissolution rate expression for hydrocerussite [48,49]. Although 

these studies provide valuable insight into hydrocerussite dissolution under varying conditions, it 

is not possible to capture the kinetic dissolution behavior with 30 min residence times.  

 A third study by Xie et al. (2011) focused on how the influence of flowing and stagnant 

conditions on lead dissolution from the interior of pipes under varying water chemistry 

parameters. The scales within the conditioned pipes unintentionally had hydrocerussite as a 

dominant solid species [32]. In general, the study found that under high DIC conditions 

(50 mg C/L), total dissolved lead concentrations could reach up to 0.04 mg/L under stagnation 

and 0.035 mg/L under flowing conditions [32]. Similarly, at high pHs (pH>10), stagnant and 

flowing dissolved lead concentrations reached 0.02 mg/L and 0.025 mg/L, respectively [32]. It 

should be noted, however, that at least 0.03 mg/L of the condition with flowing high pH was due 

to particulate lead and that equilibrium with the hydrocerussite dominant scales was not reached 
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during the experiment. Other conditions examined during this study including the influence of 

chlorine, chloramines, and phosphates [32].  

2.8 CONCLUSION 

 Elevated lead levels in drinking water poses serious public health concerns. As of 2012, 

the CDC stated that there is no safe lead exposure level for children, rendering the problem of 

lead in drinking water a major issue for municipalities with lead bearing plumbing materials in 

the water distribution networks. Lead corrosion scales in distribution systems are often 

comprised of lead (II) carbonate and lead (IV) oxide solid phases. At short time scales and under 

flowing regimes, the lead (II) carbonate phases generally control the dissolved lead 

concentrations at the tap. Specifically within drinking water systems run at basic conditions and 

high DICs, the dominant solid phase is typically hydrocerussite [50]. Modeling of lead corrosion 

scale-aqueous phase interactions is complex. Thermodynamic models rely on inaccurate 

equilibrium solubility constants and these constants are often associated with a high degree of 

uncertainty. Additionally, the kinetics of dissolution of lead (II) carbonates at relevant time 

intervals in drinking water systems is virtually unknown.  The objective of this thesis is to 

evaluate the rate of dissolution of hydrocerussite under varying pH and DIC conditions, and to 

develop a rate expression that can be incorporated into future kinetic based water chemistry 

models to calculate lead dissolution.  
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3 CHAPTER THREE: INFLUENCE OF KEY WATER CHEMISTRY 

PARAMETERS ON THE KINETICS OF PURE 

HYDROCERUSSITE (PB3(CO3)2(OH)2) DISSOLUTION 

3.1 INTRODUCTION 

Lead is a toxic heavy metal, and exposure can result in serious health effects. Many 

municipalities around the world still have lead service lines in their drinking water distribution 

systems. These lead service lines are often old and corrosion scales have formed on the interior 

of the pipe. Lead can be released from these corrosion scales in two forms: particulate and 

dissolved compounds. Service line replacements have been implemented in many affected 

municipalities, but replacement programs are costly and progress slowly and so municipalities 

must implement corrosion control strategies to reduce lead levels in drinking water at consumer 

point-of-use. Destabilization of the corrosion scale is complex and depends on numerous factors 

including length and diameter of pipe, water chemistry, scale composition, water use patterns, 

and hydraulic flow regimes [1]. Water chemistry is the most accessible parameter for water 

utility operators to control to reduce lead levels. For instance, parameters such as pH, alkalinity 

(or dissolved inorganic carbon; DIC), disinfectant type (i.e., free chlorine, chloramines), and 

additives (i.e. orthophosphate) can be adjusted to reduce or eliminate destabilization of corrosion 

scales in water service lines [2-10].  

A comprehensive understanding of the composition of the corrosion scale within lead 

service pipes is required to predict dissolved lead concentrations at point-of-use and to develop 

effective corrosion control strategies. The two major groups of lead solid phases present in the 

scale in lead service lines are lead (IV) and lead (II) compounds. The primary lead (IV) 
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compounds are plattnerite (PbO2), scrutinyite (PbO2), and minium (Pb3O4); the most significant 

lead (II) carbonates include hydrocerussite (Pb3(CO3)2(OH)2) and cerussite (PbCO3). Factors that 

dictate the composition of the corrosion scale are water use patterns, pipe network configuration, 

and water chemistry [1].  

 The key water chemistry parameters that affect the composition of corrosion scales and 

the potential destabilization of the scale in distribution systems include pH, DIC, and disinfectant 

type. Lead (II) carbonates are considerably more soluble than lead (IV) oxides and their 

dissolution kinetics are substantially faster. As a result, destabilization of lead (II) carbonate 

phases typically dictates dissolved lead levels at the tap. The dissolution of hydrocerussite and 

cerussite are given by:  

Pb�(CO�)�(OH)� + 2H� = 3Pb�� + 2CO�
�� + 2H�O    (Eq. 3.1) 

PbCO3 = Pb+2 + CO3
-2        (Eq. 3.2) 

From these reactions it is clear that dissolution and formation of these solid phases will be a 

function of DIC and pH as well as a speciation of the dissolved lead within the solution. 

Additionally, the concentration of CO3
-2 will also change with respect to pH, resulting in 

complex relationships between the DIC, pH and solid phase solubility.  Current United States 

Environmental Protection Agency (U.S. EPA) and Ontario Ministry of the Environment (MOE) 

guidelines recommend that water distribution systems maintain a pH between 6.5 and 8.5 and an 

alkalinity between 30 and 500 [11,12]. At a pH of 8, this corresponds to an approximate DIC 

range from 7.5 to 122 mg C/L. Experiments run within these limits will represent drinking water 

conditions. Based on thermodynamic constraints, hydrocerussite is generally the most stable 

form of lead (II) carbonates above a pH of 7 or 7.5 whereas cerussite is stable under more acidic 

conditions [13]. Previous studies have shown that lead (II) carbonates are generally the dominant 
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solid phase in distribution systems with excess DIC [14]. The dissolution of these phases is 

strongly influenced by alkalinity - or a combination of DIC and pH [9].  An increase of DIC 

concentrations generally stabilize the lead carbonate phases thereby reducing dissolved lead 

levels. In some cases the observed benefits of DIC addition can be limited, and there may be a 

maximum addition of DIC for optimal reduction of dissolved lead [15,16].  The type of 

disinfectant used by the water utility can also impact the composition of the corrosion scale as 

disinfectants directly affect the oxidation-reduction potential (ORP). Lead (II) carbonate phases 

can be transformed into less soluble lead (IV) phases under the highly oxidizing conditions 

caused by the use of free chlorine [9,14]. Alternatively, lead (IV) oxides can become destabilized 

when ORP is decreased by switching disinfectants (i.e., from free chlorine to chloramines). 

Destabilization due to lowered ORP has also been seen with the addition or increased 

concentration of other reducing species (i.e. dissolved natural organic matter (NOM), iodide, 

manganese, etc.) [17-23]. It is possible for lead (IV) oxides, as part of their dissolution process, 

to transform directly into lead (II) carbonates [9].  

Several studies have conducted batch equilibrium experiments or developed 

thermodynamic equilibrium models to investigate the dissolution of lead solid phases present in 

corrosion scales [5,13,24-26]. These studies provide important insights into the influence of 

water chemistry parameters on corrosion scale dissolution and solid phase transformations. 

Equilibrium studies however do not accurately reflect dissolved lead levels within water 

distribution systems because the contact time between water and corrosion scale is typically not 

long enough for equilibrium conditions to be achieved. There is a need to investigate the kinetics 

of the dissolution processes under different water chemistry conditions to better approximate 

corrosion scale dissolution and soluble lead levels in water distribution systems.  
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 Currently, the U.S. EPA lead and copper rule (LCR) testing protocol requires a 

pre-sample stagnation time of up to 6 hours for the first draw sample and any subsequent 

samples taken during flowing conditions [27]. The MOE legislation recommends a 30 minute 

stagnation time, with two consecutive 1L samples [28]. Previous work investigating 

hydrocerussite dissolution achieved stable equilibrium dissolved lead concentrations between 1 

and 2 hours [29].  If hydrocerussite is the dominant phase in the corrosion scale, a combination 

of thermodynamic and kinetic dissolution rate will dictate dissolved lead at the point-of-use 

under U.S. EPA sampling protocols. Previous research on hydrocerussite dissolution kinetics is 

limited. Recent studies by Noel et al. [15,29] were the first to quantify hydrocerussite dissolution 

rates under typical conditions in water distribution systems. The experimental study used 

continuously stirred tank reactors (CSTRs) with residence times of 30 to 60 min. Since the 

dissolution of hydrocerussite may occur faster than 30 minutes, these residence times may be 

insufficient for kinetic rates determination. Additionally, a CSTR may not be the ideal 

experimental set up for the examination of fast dissolution reactions. Noel et al. reported an 

initial dissolution rate on the order of 10-8 to 10-9 mol/m2min at pH values between 7 and 10 and 

DIC concentrations between 0 and 50 mg C/L [15,29]. In the absence of orthophosphate, the 

dissolution was strongly affected by pH and DIC [15,29]. Experimental steady state 

concentrations were reached in 1 hour or less. A rate expression to describe dissolved lead 

concentrations with respect to time was not derived [15,29]. They observed 2 stages in the 

hydrocerussite dissolution profiles: an initial stage with high variability with a potential peak in 

dissolved lead concentrations and a second stage of stable constant dissolution [15,29]. The 

potential peak identified in the first stage of dissolution may have been caused by an overloading 
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of the system with a high initial concentration of 1g/L. The work by Noel et al. has set the 

framework for the design of experiments within this study.  

 The objective of this work is to quantify the effects of pH and DIC on hydrocerussite 

dissolution kinetics and develop a rate expression to describe the dissolution rate and calculate 

dissolved lead under variable key water chemistry conditions. This was achieved by conducting 

batch dissolution experiments combined with numerical geochemical modeling in 

PHREEQC v.3.1.4 44  

3.2 MATERIALS AND METHODS 

3.2.1  MATERIALS 

 Hydrocerussite (Pb3(CO3)2(OH)2; Sigma-Aldrich) was used for all experiments without 

purification or modification. Sodium bicarbonate (NaHCO3; Sigma-Aldrich, >99.5%) and 

sodium nitrate (NaNO3; Sigma-Aldrich, >99.0%) were used to prepare a stock solution at the 

target DIC and at 0.01M ionic strength, respectively. Specific organic buffers were used 

depending on the target pH: EPPS (Alfa Aesar, 0.2 M, pH 8), CHES (Alfa Aesar, 0.5 M, pH 9), 

CAPSO (Alfa Aesar, 0.2 M, pH 9.5), and MOPSO (Alfa Aesar, 0.2 M, pH 7). For experiments 

conducted with chlorine, sodium hypochlorite (NaOCl; Fisher Scientific, 5.65-6% w/w, 

laboratory grade) was used as the free chlorine source to achieve a target concentration of 1 

mg/L. Sodium hydroxide pellets (NaOH; Sigma-Aldrich) and concentrated nitric acid (HNO3; 

EMD Milipore, Omnitrace, 67-70% v/v condensed) were used to prepare 0.1 M solutions. These 

solutions were then used to adjust the stock solution to the target pH (±0.05 pH units) 

immediately before each experiment started. 
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3.2.2  HYDROCERUSSITE DISSOLUTION EXPERIMENTS 

Batch experiments were performed to quantify the dissolution of hydrocerussite. Batch 

experiments are recommended whenever possible to obtain homogeneous kinetic data [31]. 

Previous experiments performed by Noel et al. [15,29] used a CSTR. Often CSTR experiments 

are required to replicate conditions in distribution systems, in particular to maintain constant free 

chlorine levels. This was not required for our experiments as preliminary investigations found 

that chlorine does not impact short term (< 2 hours) hydrocerussite dissolution kinetics and so 

our batch experiments were performed in the absence of chlorine (Figure 3.6).  

A summary of experiments conducted is presented in Table 3.1. To investigate the effect 

of pH on hydrocerussite dissolution, four experiments were run at different pH conditions where 

hydrocerussite is expected to be the dominant solid phase in the corrosion scale (pH 7.5, 8, 9, 

and 10; 20 mg C/L; Exp. 1-4). Competition and interference due to possible cerussite formation 

can occur at pHs lower than approximately 7.5 [13]. The effect of DIC was evaluated by 

conducting three experiments at DICs within the range of typical in drinking water distribution 

systems (10, 20, and 50 mg C/L; Exp. 1, 5-6) at a pH of 8. The influence of the initial 

hydrocerussite concentration was determined by conducting experiments with varying solid 

loading concentrations (10, 20, 50, and 1000 mg/L; Exp. 1, 7-9) at pH of 8 and a DIC of 

20 mg C/L. Additional experiments were performed to quantify the effects of chlorine and 

organic buffers on the dissolution of hydrocerussite (Exp. 10-11). All experiments were run at an 

ionic strength of 0.01 M.  

For the batch experiments, powder samples of solid hydrocerussite was weighed into 

150 mL polypropylene bottles with the quantity based on the target solid loading. A pre-prepared 

stock solution was then added to each bottle. Stock solutions were prepared using NaHCO3 
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powder and NaNO3 powder measured into mega-pure water. If required, organic buffers (EPPS, 

CHES, CAPSO, or MOPSO) were used to buffer experiments at target pH values (Exp.1-9). 

These buffers have little to no known metal complexation and have been used in previous 

hydrocerussite dissolution studies [15,29,32]. Buffers were used to maintain the experimental pH 

at a known value to elucidate and isolate the effects of pH on hydrocerussite dissolution kinetics. 

An experiment performed without buffer showed that the addition of a buffer did not affect the 

dissolution results during the time frame of the experiment (Exp 10; Figure A.1; Appendix One, 

Supplementary Materials).  At the start of the experiment, each bottle was half filled with stock 

solution and vigorously agitated to ensure the hydrocerussite powder was dispersed evenly. This 

ensured the hydrocerussite powder was not clumped together for the experiment, which would 

affect the results. The bottles were then filled completely (no headspace) and placed on a shaker 

table. This ensured that the batch experiments were run under closed conditions. The stock 

solution was not prepared under closed conditions, but alkalinity measurements were obtained to 

verify target DIC values.  With the experimental procedure outlined, interference from 

atmospheric CO2 is not expected [13].  

Samples were obtained at set elapsed times after the stock solution was added. Each 

sample was taken from an individual bottle which was sacrificed after the sample was obtained. 

This ensured that experimental errors were not introduced due to changing mixing volumes, solid 

concentrations, preferential aqueous dispersion, or allowing the solution to be in contact with the 

atmosphere. Each sample was filtered through a 0.2 µm polyethersulfone filter using a 60 mL 

syringe – this prevented the dissolution reaction from progressing. Samples analyzed for total 

dissolved lead were acidified immediately using 2% HNO3 and let rest in a cold room for at least 

24 hours to ensure complete sample acid digestion. Samples for alkalinity were stored in 40 mL 
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polypropylene bottles with no headspace. Alkalinity, free chlorine, and pH measurements were 

obtained after filtering. All experiments were run in at least duplicate, with some individual 

points re-run at later dates to confirm that measurements were repeatable and to ensure the 

accuracy of sample and stock solution preparation procedures. As a result, some points have up 

to six sample results. Samples were taken at 2, 5, 10, 15, 20, 30, 45, 60, 90, and 120 minutes to 

capture hydrocerussite dissolution kinetics. Experimental times for equilibrium conditions to be 

reached depend on the water chemistry and initial hydrocerussite loading. The chosen sampling 

intervals were based on prior studies which had demonstrated that in basic conditions 

hydrocerussite typically reaches equilibrium in approximately 60 min [9,29]. Preliminary 

experiments performed indicated that appropriate kinetic data was obtained with these sampling 

intervals and all experiments reached equilibrium. 

3.2.3  ANALYSIS METHODS 

All samples were measured for total dissolved lead and alkalinity with some samples also 

tested for pH and total free chlorine. Dissolved lead measurements were determined by 

inductively coupled plasma optical emission spectroscopy (ICP-OES) using an average of the 

wavelengths 168.215 and 220.353. Experimental error associated with these wavelengths ranges 

from 0.03 to 0.06 mg/L [33]. Alkalinity measurements were taken on a metrohm auto titrator 

(±0.01 pH units). Measurements of pH were obtained using a Hanna Instruments HI 3222-01 

benchtop meter with a sensitivity of ±0.002. For the experiment conducted with chlorine 

(Exp. 11), free chlorine measurements were obtained by Hatch UV spectroscopy (UV-Vis) using 

method 8167 and powder pillows. This method has a sensitivity of ±0.02 mg/L.   

BET-N2 analysis was performed in duplicate to characterize the specific surface area 

(SSA) of hydrocerussite used in the experiments. Specific surface area was determined to be 
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1.16 ± 0.02 m2/g. Care was taken not to raise the temperatures above 120C in this analysis, as 

this is known to cause degradation of hydrocerussite [34-38].  The specific surface area of the 

hydrocerussite used in this study was found to be lower than the value determined by Noel et al. 

[15,29] which was 4.8 m2/g. 

TABLE 3.1: SUMMARY OF EXPERIMENTAL CONDITIONS AND EXPERIMENTAL EQUILIBRIUM CONCENTRATIONS. 

Experiment  
Initial Hydrocerussite pH DIC Chlorine Buffer Experimental Equilibrium 

(mg/L) (---) (mg C/L) (mg Cl2/L) (Y/N) (total dissolved lead, mg/L) 

1 10 8 20 0 Y 0.130 ± 0.0040 

2 10 7.5 20 0 Y 0.202 ± 0.0059 

3 10 9 20 0 Y 0.095 ± 0.0028 

4 10 10 20 0 Y 0.163 ± 0.0048 

5 10 8 10 0 Y 0.200 ± 0.0051 

6 10 8 50 0 Y 0.094 ± 0.0040 

7 20 8 20 0 Y 0.131 ± 0.0054 

8 50 8 20 0 Y 0.125 ± 0.0041 

9 1000 8 20 0 Y --- 

10 10 8 20 0 N --- 

11 10 8 20 1.2 N --- 

 

3.2.4  EQUILIBRIUM MODEL 

 The geochemical modelling platform PHREEQC v.3.1.4 was used to simulate and 

interpret the experimental results [30]. PHREEQC is a commonly used program for calculation 

of a wide variety of aqueous systems. It relies on two ion association models, a Pitzer specific 

ion interaction model and the specific ion interaction theory aqueous model. PHREEQC can be 

used for speciation and saturation index calculations as well as batch reaction and one 

dimensional transport calculations. The model can include reversible or irreversible reactions 

including aqueous, mineral, gas, solid-solution, surface complexation, ion exchange equilibria, 

kinetic reactions, and pressure and temperature changes. In this work, PHREEQC was used to 

simulate the dissolution of hydrocerussite under various logKs for cerussite and hydrocerussite, 
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and to speciate a solution with a known total dissolved lead concentration.  Reactions and 

associated equilibrium constants used in the model are presented in Table A.1 (Appendix One, 

Supplementary Materials). 

 To simulate the experiments the model was set up so that only hydrocerussite could 

dissolve, but both hydrocerussite and cerussite could precipitate. Lead (IV) oxides were not 

included in the model as only free chlorine present in Exp. 11 is capable of oxidizing lead (II) 

carbonates or aqueous lead (II) into lead (IV) oxides. Although several studies have reported 

equilibrium constants for hydrocerussite and cerussite, there is still considerable uncertainty 

associated with these values. Maximum and minimum values reported in literature are shown in 

Table 3.2 [24,30,39-43]. In some cases equilibrium constants were modified to be consistent 

with form of the hydrocerussite or cerussite dissolution reaction provided in Eqs.3.1 and 3.2 [41].   

 A study by Edwards et al. [16] investigated lead service line corrosion in actual drinking 

water systems. The majority of the scale present within the studied systems was comprised of 

hydrocerussite. This study found that models can over estimate dissolved lead levels in actual 

drinking water systems by up to 10 times due to the uncertainty in equilibrium constants [16]. 

Additionally, the study estimated the solubility products of hydrocerussite and cerussite using 

dissolved lead concentrations from drinking water systems and found both estimates were 

outside known literature values (Table 3.2) [16]. These values were obtained directly from 

literature, with the significant figures shown in Table 3.2 consistent with those presented in the 

original publications. 

TABLE 3.2: RANGE OF LITERATURE REPORTED LOGK CONSTANTS FOR HYDROCERUSSITE AND CERUSSITE. 

 
Literature Values 

Edwards (1999) [16] 
PHREEQC Default 

Values [30] 
 

Minimum Maximum 

Hydrocerussite -18.861 -14.322 -21.60 -18.7705 

Cerussite -13.4 -11.699 -14.5 -13.45 
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3.3 EXPERIMENTAL RESULTS AND EQUILIBRIUM MODEL PREDICTIONS 

3.3.1  INFLUENCE OF PH  

Figure 3.1 shows the dissolved lead concentrations as a function of time for the four 

experiments conducted at different pH values (Exps. 1-4). The results are consistent with prior 

studies that have shown that pH strongly controls the dissolution of lead (II) carbonates [13,44-

47]. It can be seen that all experiments reached equilibrium between 40 and 60 minutes. The 

equilibrium for each pH experiment was determined as the average of the final stable end points 

(60 – 120 minutes), and is presented in Table 3.1. Equilibrium total dissolved lead concentrations 

were low for pH 8 and pH 9 (Exp. 1,3; Figure 3.1) while the two experiments run at pHs closer 

to the edges of hydrocerussite’s stability range (pH 7.5 and pH 10; Exp. 2,4) had higher 

equilibrium total dissolved lead concentrations.   

 

FIGURE 3.1: INFLUENCE OF PH ON TOTAL DISSOLVED LEAD FOR HYDROCERUSSITE DISSOLUTION EXPERIMENTS 

(EXP. 1-4; SOLID LOADING 10 MG/L, DIC 20 MG C/L, IS 0.01 M). ERROR BARS REPRESENT 1 STANDARD 

DEVIATION. 

 The equilibrium concentrations for the experiments run at different pH values were 

compared with model equilibrium estimates. The model was run using combinations of all the 

equilibrium constants previously reported for hydrocerussite and cerussite (Table 3.2) to provide 
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a maximum and minimum predicted equilibrium dissolved lead concentrations (Figure 3.2). It 

can be seen that the experimental results fall within the maximum and minimum limits of 

simulated total dissolved lead concentrations. Small changes in the hydrocerussite or cerussite 

equilibrium constants significantly affect the predicted dissolved lead level. The solubility 

product of cerussite significantly affected the upper limit of predicted dissolved lead, especially 

at pHs of 8 and lower.  From the simulations it was found that the pH threshold, above which 

hydrocerussite is stable and below which cerussite is stable, varies between 7.5 and 8.5 

depending on the specific equilibrium constants adopted. Therefore the results for the experiment 

performed at a pH of 7.5 (Exp. 2) may have been influenced by the formation of cerussite.  

Due to the uncertainty associated with the equilibrium constants, experiments performed 

to investigate the effects of pH and DIC were used to estimate an equilibrium constant for 

hydrocerussite. For this, the experimental equilibrium total dissolved lead concentrations were 

speciated using PHREEQC under the experimental conditions (Table A.2; Appendix One: 

Supplementary Material). This provided values for Pb+2 and CO3
-2 for entry into an equilibrium 

expression for the dissolution reaction of hydrocerussite provided in Eq. 3.1 under experimental 

conditions.  This was done using Exp. 1, and 3-8. Exp. 2 was neglected due to the possibility of 

cerussite interference. The average calculated log equilibrium constant was -15.98 ± 0.53 which 

fits within the range of literature values for hydrocerussite (Table 3.2).   
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 FIGURE 3.2: COMPARISON OF THE RANGE OF PREDICTED DISSOLVED LEAD VALUES AS A FUNCTION OF PH 

WITH EXPERIMENTAL EQUILIBRIUM CONCENTRATIONS (EXP. 1-4; DIC 20 MG C/L; IS 0.01M). 

3.3.2  INFLUENCE OF DIC  

 The results of the three experiments conducted at different DIC concentrations (Exp. 1, 5, 

and 6) can be seen in Figure 3.3. Similar to the pH experiments, all DIC experiments reached 

equilibrium between 40 and 60 minutes and equilibrium concentrations were calculated by 

averaging the final stable concentrations between 60 and 120 minutes (Table 3.1). Consistent 

with prior studies, the DIC concentration considerably affected the final total dissolved lead 

concentrations [13,15,29,44-47].  The experiment with 10 mg C/L (Exp. 5) had the highest 

equilibrium total dissolved lead concentration, while 50 mg C/L (Exp. 8) had the lowest 

dissolved lead concentration. A low DIC typically results in a higher equilibrium total dissolved 

lead concentration, whereas a high DIC normally inhibits dissolution and lowers total dissolved 

lead concentrations [13]. The uncertainties of the equilibrium constants for cerussite and 

hydrocerussite also affect any model calculations for total dissolved lead with respect to DIC. 

Figure 3.4 shows a comparison between the maximum and minimum model predicted dissolved 
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lead range and the DIC experimental equilibrium results (Exp 1, 5, 6). As can be seen, the 

experimental values fit within the maximum and minimum ranges. 

 

FIGURE 3.3: INFLUENCE OF DIC ON TOTAL DISSOLVED LEAD FOR HYDROCERUSSITE DISSOLUTION  

EXPERIMENTS (EXP. 1,5,6; SOLID LOADING 10 MG/L, PH 8, IS 0.01 M). 

 

FIGURE 3.4: COMPARISON OF RANGE OF PREDICTED DISSOLVED LEAD VALUES AS A FUNCTION OF DIC WITH 

EXPERIMENTAL EQUILIBRIUM CONCENTRATIONS (EXP. 1,5,6; PH 8; IS 0.01M). 
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equilibrium is reached too quickly for the measurement of dissolution kinetics. This was 

confirmed by a preliminary experiment that was run with a solid loading of 1000 mg/L (Exp. 9; 

Figure A.2; Appendix One, Supplementary Materials). At this initial concentration, equilibrium 

was not only achieved in less than 2 minutes, but there was an initial ‘overshoot’ in the measured 

dissolved lead concentration. Prior experimental studies have also observed this 'overshoot' 

behavior and it was generally attributed to either the dissolution reaction propagating faster than 

formation reactions or a rapid dissolution of very small particles within the initial solid 

sample [15,29,47,53].    

 An initial hydrocerussite concentration of 10 mg/L was found to be more suitable for 

obtaining kinetic data and this solid loading rate was used for all other experiments performed 

(Exp. 1-8, 10, 11). To ensure that this solid loading rate was realistic, preliminary calculations 

were performed to estimate the concentration of hydrocerussite in lead service lines. Specific 

surface areas (SSA) can differ significantly, with values in literature ranging from 

0.812 - 4.8 m2/g [9,15,29]. The hydrocerussite concentration was estimated to range from 25 and 

185 mg/L assuming a pipe has an inner diameter of 1.9 cm with the interior surface covered 

smoothly in hydrocerussite with a SSA between 0.812 -4.8 m2/g. Therefore the solid loading of 

10 mg/L adopted for examining hydrocerussite dissolution in water distribution systems is 

realistic. 

 Total dissolved lead concentrations for experiments run with varying initial 

hydrocerussite solid loading are shown in Figure 3.5.  Equilibrium concentrations were 

calculated by averaging over the final 60 to 120 minutes (Table 3.1). The experimental 

equilibrium total dissolved lead concentrations are independent of the initial hydrocerussite 

concentrations. This is expected, as hydrocerussite was available in excess for all experiments.  
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The variations between the equilibrium end points for these experiments fall within experimental 

error. It can be seen that equilibrium is achieved faster as the solid loading concentrations 

increases.  

 

FIGURE 3.5: INFLUENCE OF SOLID LOADING ON TOTAL DISSOLVED LEAD FOR HYDROCERUSSITE  

DISSOLUTION EXPERIMENTS (EXP. 1,5,6; PH 8, DIC 20 MG C/L, IS 0.01 M). 
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was normalized by Eq. 3.3. Figure 3.6B shows that the chlorine did not degrade or react in the 

presence of hydrocerussite at the time scale of the experiments.   

Normalized Chlorine =  
������������ �������� (�� ���/�)

����� �������� �������� (�� ���/�)
    (Eq. 3.3) 

       

FIGURE 3.6: (A) MEASURED EXPERIMENTAL AND STOCK SOLUTION CHLORINE OVER TIME. DOTTED LINE 

REPRESENTS 1:1, OR NO CHANGE BETWEEN EXPERIMENTAL AND STOCK SOLUTIONS. (B) MEASURED TOTAL 

DISSOLVED LEAD OVER TIME FOR EXPERIMENT WITH CHLORINE (EXP. 11) AND WITHOUT CHLORINE (EXP. 1). 
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therefore the observed transformation could be attributed to the instability of hydrocerussite at 

lower pHs. While the effects of chlorine are extremely important for long term scale 

transformations, it was determined that chlorine does not influence hydrocerussite dissolution 

kinetics at the shorter time periods examined in this study. 

3.4 DEVELOPMENT OF KINETIC EXPRESSION 

An integral method of analysis was applied to determine a rate expression to describe the 

dissolution of hydrocerussite. Total dissolved lead concentrations were used to monitor the  

progress of the dissolution reaction. All rate expressions were determined using data from the 

first 20 to 30 minutes of each experiment. During this time period it was assumed that the 

hydrocerussite dissolution is the dominant reaction and that the rate of hydrocerussite formation 

is negligible.  All dissolution curves were first normalized relative to equilibrium concentrations 

(Eq. 3.4).  

Normalized Concentrations = N =
�

�(��)
=

����

��(��)
�� =

���

���(��)
  (Eq. 3.4) 

Normalizing the data was important to compare the influence of different water chemistry 

conditions on the dissolution rates with no interference from equilibrium concentrations. It, in 

effect, translates the total dissolved lead concentrations into a measure of reaction progress 

(where the normalized concentration = 1 at equilibrium). Normalized concentrations can also be 

transformed into conversion factors which describe how far the experimental lead concentration 

is from experimental equilibrium conditions at any time.  These are calculated by:  

Conversion Factor (X�) = 1 − N =  1 −
�

�(��)
= 1 −

����

��(��)
�� = 1 −  

���

���(��)
        (Eq. 3.5) 

Speciation calculations conducted using PHREEQC found that the conversion factors were the 

same irrespective of whether they were calculated based on aqueous Pb+2 or total dissolved lead 
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(PbT). This is because the percentage of Pb+2 in solution relative to PbT remained constant over 

each experiment. To reduce speciation errors, all conversion factors were calculated using the 

measured total dissolved lead concentrations (PbT). If the dissolution of hydrocerussite follows a 

first order reaction rate, the expression describing the changing concentrations of dissolved lead 

in solution can be represented by Eq. 3.6a. Rearranging and combining Eq. 3.5 and 3.6a gives 

Eq. 3.6b which can be plotted to determine if the experimental results fit a first order expression:  

� =  �(��)(1 − ����)     (Eq. 3.6a) 

−ln (��) =  ��     (Eq. 3.6b) 

3.4.1  INFLUENCE OF PH 

 To evaluate the influence of pH on dissolution rates, the dissolution curves for Exp. 1-4 

were normalized based on their experimental equilibrium concentration (Eq. 3.4; Table 3.1). The 

original dissolution curves can be found in Figure 3.1 and normalized curves in Figure 3.7. 

Further analysis transformed these curves into straight lines when graphed using Eq. 3.6b (Figure 

3.8A).  

 

FIGURE 3.7: INFLUENCE OF PH ON NORMALIZED TOTAL DISSOLVED LEAD FOR HYDROCERUSSITE  

DISSOLUTION EXPERIMENTS (SOLID LOADING 10 MG/L, DIC 20 MG C/L, IS 0.01 M). 
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FIGURE 3.8: (A) DETERMINATION OF FIRST ORDER REACTION RATE FOR PH EXPERIMENTS (EXP. 1-4) AND 

 (B) FIRST ORDER RATE CONSTANTS AS A FUNCTION OF PH. 

 The linear relationships shown in Figure 3.8A indicate the dissolution within the first 20 

minutes fits an irreversible first order dissolution expression (Eq. 3.6b). At the start of the 

experiment the reaction is far enough away from equilibrium to assume that any reverse reaction 

(i.e., hydrocerussite formation) is negligible. The rate constant determined for each pH 

experiment (Exp. 1-4) was plotted as a function of pH (Figure 3.8B).  The rate constants 

determined for two experiments conducted at pH 7.5 and 8 (Exps. 1 and 2) were very similar, 

however  at and above a pH of 8 the rate constant increased with increasing  pH (Exp. 1, 3, and 

4). The rate constant determined for pH 10 was the highest at 0.12 min-1. It is thought that 

cerussite formation may have occurred in Exp.  2 (pH of 7.5) as the pH of this experiment is 

within the stability area of cerussite. This may have increased the rate constant. As a result the 

rate constant determined for Exp. 2 was not included in quantifying the relationship between the 

rate constants and pH. The rate expression with respect to pH was determined to be: 

− ln(��) = 0.0120 ∗ (��) ∗ (�)      (Eq. 3.7) 
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The concentrations of individual species in solution through the experiments depend on pH, DIC, 

and total dissolved lead. The percentage composition of each individual species was found to be 

constant through each experiment because both pH and DIC are effectively constant. Figure 3.9 

shows the four dominant aqueous species modelled to be present for each pH experiment – this 

speciation was determined using PHREEQC.  As can be seen in Figure 3.9, the percentage of 

Pb(CO3)2
-2 increases significantly at higher pHs. At lower pHs, PbCO3 is the dominant species. 

This shift in dominant aqueous species may contribute to the pH effects on hydrocerussite 

dissolution.  

 

 FIGURE 3.9: SIMULATED PERCENT SPECIES COMPOSITION FOR HYDROCERUSSITE  

DISSOLUTION EXPERIMENTS OF VARYING PHS (EXP. 1-4). 
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was found to increase as DIC increases (Figure 3.11B). In fitting a linear relationship to Figure 

3.11B, the rate constant was not forced through the origin since at 0 mg C/L a non-zero rate 

constant is possible. Possible relationships between the rate constants and individual carbonate 

species (e.g., H2CO3, HCO3
-, and CO3

-2) were also examined, however because the 

concentrations of these species are dependent on pH a linear relationship with DIC was chosen. 

The relationship found to describe the influence of DIC on the rate constant is:  

 − ln(��) = (0.0018 ∗ [DIC] + 0.0565) ∗ (�)     (Eq. 3.8) 

 

 

FIGURE 3.10: INFLUENCE OF DIC ON NORMALIZED TOTAL DISSOLVED LEAD FOR HYDROCERUSSITE  

DISSOLUTION EXPERIMENTS (EXP. 1,5,6; SOLID LOADING 10 MG/L, PH 8, IS 0.01 M). 
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FIGURE 3.11: (A) DETERMINATION OF FIRST ORDER REACTION RATE FOR DIC EXPERIMENTS (EXP. 1,5,6) AND (B) 

FIRST ORDER RATE CONSTANTS AS A FUNCTION OF DIC. 
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FIGURE 3.12: SIMULATED PERCENT SPECIES COMPOSITION FOR HYDROCERUSSITE  

DISSOLUTION EXPERIMENTS UNDER VARYING DICS (EXP. 1,5,6). 
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FIGURE 3.13: INFLUENCE OF SOLID LOADING ON NORMALIZED TOTAL DISSOLVED LEAD FOR HYDROCERUSSITE  

DISSOLUTION EXPERIMENTS (EXP. 1,7,8; PH 8, DIC 20 MG C/L, IS 0.01 M). 

  

FIGURE 3.14: (A) DETERMINATION OF FIRST ORDER REACTION RATE FOR SOLID LOADING EXPERIMENTS 

(EXP. 1,7,8) AND (B) FIRST ORDER RATE CONSTANTS AS A FUNCTION OF SOLID LOADING. 
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characterize the hydrocerussite determined a specific surface area (SSA) of 11.6 cm2/g. The solid 

loading concentrations were converted to available surface area by:  

Available Surface Area �
���

�
� = �Hydrocerussite �

��

�
��

�
∗ SSA �

���

�
�   (Eq. 3.9) 

The variation between the fitted linear relationship and experimental rate constant at the lower 

solid loading rate (10 mg/L) in Figure 3.14B is thought to be due to clumping or incomplete 

dispersion of hydrocerussite particles at the initiation of the experiment. Using this linear 

relationship, an expression to describe the effect of solid loading on the dissolution rate was 

derived:  

−ln (X�) = 0.0005 ∗ [Hydrocerussite]� ∗ (SSA) ∗ (time���)        (Eq. 3.10) 

For the conditions used in Exp. 1 (solid loading of 10 mg/L), Eq. 3.10 results in a slightly lower 

value (0.058(t)) than either the pH or DIC rate expressions (3.9 and 3.10, respectively).  

3.4.4  COMBINED EXPRESSION 

 An overall expression was developed to describe the combined effects of pH, DIC, and 

solid loading concentration on the hydrocerussite dissolution rate. This combined kinetic 

expression for hydrocerussite is valid over the experimental conditions examined in this study. 

The individual dissolution expression with respect to pH and solid loading (Eq. 3.7, 3.8, and 

3.10) were combined to give: 

−ln (X�) =   (1.9 x 10�� ∗ [DIC] + 6.5 x 10��) ∗ [pH] ∗ [Solid] ∗ (SSA) ∗ (time���)  (Eq. 3.11) 

If Equation 3.11 is expanded, it can be seen that there are two parts to the combined equation. 

The first part incorporates the effects of changing pH, DIC, and solid loading concentrations. 

The second part only incorporates pH and solid loading, and represents the dissolution rate at a 

DIC of 0 mg C/L.  
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3.4.5  COMPARISON OF KINETIC MODEL WITH EXPERIMENTAL RESULTS 

To test the combined dissolution expression (Eq. 3.11), estimates for total dissolved lead 

for the different pH, DIC and solid loading conditions were compared to the experimental 

results. This comparison can be seen in Figure 3.15. The normalized concentrations were chosen 

for comparison due to a continued uncertainty in the equilibrium constant for hydrocerussite.  It 

can be seen that the combined rate expression provides an excellent match with the experimental 

dissolution curves the studied conditions.  

 

FIGURE 3.15: COMPARISON OF NORMALIZED EXPERIMENTAL AND ESTIMATED TOTAL DISSOLVED LEAD; (A) PH 

COMPARISON (EXP. 1-4), (B) DIC COMPARISON (EXP. 1,5,6), AND (C) SOLID LOADING COMPARISON (EXP. 1,7,8). 
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DIC decreased equilibrium total dissolved lead concentrations. As expected, the hydrocerussite 

solid loading had no effect on final equilibrium total dissolved lead concentrations. For all 

experiments, equilibrium was reached within 40 minutes, confirming that hydrocerussite 

dissolves very rapidly. A chlorine concentration of approximately 1 mg/L did not affect the 

dissolution of hydrocerussite at this time scale. This indicates that the oxidation of lead by 

chlorine occurs at longer durations than the experimental period explored in this study. While the 

dissolution rate constant was found to be inversely related to DIC values, it was found to 

increase as pH increased.  This indicates that high DIC stabilizes hydrocerussite as well as 

lowering the equilibrium total dissolved lead concentrations. It is recommended that additional 

experiments are conducted to explore a wider range of DIC values including a DIC of 0.  High 

solid loading rates and thus available solid surface area corresponded to higher hydrocerussite 

dissolution rates. This work also confirmed that concentrations of hydrocerussite of 1000 mg/L, 

are often used in lead solid phase dissolution studies, result in rapid dissolution and equilibrium 

conditions achieved in under 2 minutes. All expressions developed for pH, DIC, and solid 

loading converged within reasonable error to provide a combined rate expression that can be 

used to estimate the kinetic dissolution of lead for the water chemistry conditions considered. 

The results of this work provide a fundamental basis for further development of a kinetic based 

lead scale dissolution model.  
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4 CHAPTER FOUR: CONCLUSIONS AND RECOMMENDATIONS 

4.1 CONCLUSIONS 

Batch dissolution experiments were performed on the pure lead (II) carbonate phase 

hydrocerussite under a short time interval (<2 hr.). These experiments were conducted at four 

pHs (7.5, 8, 9, and 10), three DIC values (10, 20, and 50 mg C/L), and three solid loading 

concentrations (10, 20, and 50 mg/L). The experimental conditions examined were chosen to 

represent a broad range of drinking water conditions under which hydrocerussite could be 

exposed. Additional experimental conditions were performed to explore the impact of buffering 

the experiments, chlorinated conditions (approximately 1 mg Cl2/L), and high solid loading rates 

(1000 mg/L). These experiments revealed that the addition of buffer or chlorine to the 

experimental solution did not affect the dissolution of hydrocerussite at the time scale studied 

(<2 hr.). High solid loading rates resulted in equilibrium conditions been reached in less than two 

minutes.   

All experiments achieved equilibrium conditions within 40 minutes which confirms that 

hydrocerussite dissolution occurs rapidly. The measured equilibrium total dissolved lead was low 

for pH 8 and pH 9 while the two experiments run at pHs closer to the edges of hydrocerussite’s 

stability range (pH 7.5 and pH 10) had higher concentrations. At a pH of 7.5 the dissolution 

reaction may have been affected by cerussite formation because this pH is close to the transition 

pH between cerussite and hydrocerussite (cerussite is the dominant phase at low pHs; 

hydrocerussite at high pHs).  The exact stability ranges of these lead (II) carbonates are 

uncertain. In general, equilibrium concentrations increased with decreasing DIC, supporting the 

fact that the addition of DIC suppresses lead dissolution. As expected, the initial concentration of 
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hydrocerussite did not affect equilibrium concentrations. All experimental equilibrium 

concentrations were within the range of minimum and maximum limits predicted by the 

geochemical modelling software PHREEQC based on literature sourced solubility constants. 

Equilibrium concentrations from experiments were used to determine an approximate solubility 

product for hydrocerussite of -15.98 ± 0.53 which is within the range found in literature.  

An integral method of analysis was used to evaluate how the rate constant of the 

dissolution reaction changes under various pH, DIC, and solid loading conditions. When 

evaluated, all experimental total dissolved lead curves resulted in a straight line confirming that 

this reaction follows a first order dissolution rate. Kinetic rate expressions were first developed 

for each of the three conditions studied. In general, it was found that the rate constant increased 

with increasing pH, DIC, and solid loading rates. Additionally, experimental total dissolved lead 

values were speciated using PHREEQC to identify any trends within the aqueous lead species 

with respect to changing rate constant. The aqueous species Pb(CO3)2
-2 was found to increase 

with increasing rates. The individual rate equations for the 3 conditions converged within 

reasonable error, indicating that they are different parts of the same expression. These 

expressions were combined into one overall expression which incorporated the effects of total 

dissolved lead, DIC, pH, initial hydrocerussite concentration, and specific surface area. This 

expression matched well when compared with the original experimental dissolution curves. The 

derived rate expression for hydrocerussite can be used to estimate the kinetic dissolution of this 

lead (II) carbonate to total dissolved lead under the range of water chemistry conditions 

examined in this thesis.  The results presented in this thesis provide the basis for the development 

of kinetic-based mechanistic model that may be used by utility operators to evaluate how 
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changes to water chemistry parameters will affect the dissolution of lead scales present in a 

drinking water system.  

4.2 RECOMMENDATIONS  

Improving understanding of lead compounds is required to better estimate and control the 

dissolution of lead corrosion scales, and thus protect the public. There are many areas associated 

with lead dissolution in drinking water systems that are still not well understood. For instance, a 

wide range of values for the equilibrium constant for hydrocerussite and cerussite have been 

reported in literature. Calculations using these equilibrium constants can result in highly variable 

estimates of equilibrium total dissolved lead and can introduce high uncertainty into model 

results. While this study estimated the log equilibrium constant of hydrocerussite to 

be -15.98 ± 0.53, additional studies are required to more accurately determine the equilibrium 

constants of these lead (II) carbonates. Within solution, many aqueous lead complexes exist and 

the accuracy of their equilibrium constants is also uncertain.  Further work developing and 

validating aqueous equilibrium constants would be benefit future thermodynamic modelling 

efforts. Additional uncertainties exist with regards to the range of stability for both cerussite and 

hydrocerussite. A review of literature provides an estimated range of stability for cerussite 

between a pH of 6 and 8; however the exact range is undefined.  Work presented in this thesis 

narrowed this range to between a pH of 7 and 8, however further work determining the precise 

stability ranges for both cerussite and hydrocerussite is recommended. Accurate knowledge of 

the boundaries of stability for these lead (II) carbonates would aid the design and analysis of 

future experimental work, and would also provide recommended operational limits on water 

chemistries to prevent the destabilization of scales where these phases are dominant.   
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The kinetics of both the formation and dissolution of cerussite and hydrocerussite are not 

well understood. The work presented in this thesis represents a step in developing a knowledge 

base for the dissolution of hydrocerussite. Despite that, experiments are still required to identify 

the full elementary reactions and mechanisms for both dissolution and formation of the important 

lead (II) carbonates. Kinetic rate expressions for these should be developed for future work for 

the calculation of total dissolved lead at consumer point-of-use. Additional work is also required 

to validate the rate expression developed within this thesis under a wider range of water 

chemistry conditions. This includes a wider range of pH values and DIC concentrations 

(including verifying the rate constant at a DIC of 0 mg C/L), and the inclusion of natural organic 

material, manganese, iodide, chloride, orthophosphate etc. Additional work is also required to 

investigate the transformation between lead (IV) oxides and lead (II) carbonates under low ORP 

conditions and varying water chemistry parameters. In this thesis, the effect of free chlorine on 

hydrocerussite dissolution was explored and a lag phase was observed before chlorine depletion 

was observed. Although there is speculation with regards to the causes of this lag phase, it is not 

well understood. Further work is required to explore the causes of this lag and to develop a 

comprehensive kinetic chlorine decay expression for inclusion in modelling drinking water 

systems which use a residual free chlorine disinfectant.  

The effects of temperature on the stability of lead (IV) oxides or lead (II) carbonates are 

uncertain. As water distribution pipes are exposed to significant seasonal temperature 

fluctuations it is recommended future studies examine incorporate temperature effects into 

equilibrium and kinetic expressions.  

To achieve the recommendations provided above, modified or more advanced 

experimental methods are required. This includes developing a faster sampling/analysis 
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technique to evaluate dissolution of formation of solid lead phases at <30 second intervals. This 

is important for quantifying dissolution rates with solid loading concentration of hydrocerussite 

above 50 mg/L, and may also be required for experiments examining the dissolution or 

formation of cerussite. An alternative methodology will also need to be developed to quantify the 

effect of temperature on the kinetic dissolution of lead (II) carbonates to determine the activation 

energies of these carbonates.  

Further knowledge gaps exist with regards to the surface morphology of lead (II) 

carbonates and lead (IV) oxides within pipes. To develop a complete water chemistry model to 

estimate the total lead observed at the point-of-use, the surface characteristics will need to be 

quantified and better understood. This will allow for more accurate calculation of dissolution 

rates with respect to the available surface area of specific lead solid phases within the pipe.  
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A. APPENDIX ONE: SUPPLEMENTARY MATERIAL 

TABLE A.1: REACTION CONSTANTS USED IN PHREEQC MODELLING [1] 

Reaction log K Name 

Aqueous Phases 

General 

H2O = OH- + H+ -13.997 - 

2 H+ + 2 e- = H2 -3.15 - 

2H2O =  O2 + 4H+ + 4e- -85.9951 - 

General - Carbonate 

2H+ + CO3
-2 = H2CO3 16.681 - 

H+ + CO3
-2 = HCO3

- 10.329 - 

Na+ + CO3
-2 = NaCO3

- 1.27 - 

Na+ + H+ + CO3
-2 = NaHCO3 10.079 - 

Lead Hydroxides 

Pb+2 + H2O = PbOH+ + H+ -7.597 - 

Pb+2 + 2H2O = Pb(OH)2 + 2H+ -17.094 - 

Pb+2 + 3H2O = Pb(OH)3
- + 3H+ -28.091 - 

2Pb+2 + H2O = Pb2OH+3 + H+ -6.397 - 

3Pb+2 + 4H2O = Pb3(OH)4
+2 + 4H+ -23.888 - 

Pb+2 + 4H2O = Pb(OH)4
-2 + 4H+ -39.699 - 

4Pb+2 + 4H2O = Pb4(OH)4
+4 + 4H+ -19.988 - 

Lead Nitrates 

Pb+2 + NO3
- = PbNO3

+ 1.17 - 

Pb+2 + 2NO3
- = Pb(NO3)2 1.4 - 

Lead Carbonates 

Pb+2 + 2CO3
-2 = Pb(CO3)2

-2 9.938 - 

Pb+2 + CO3
-2 = PbCO3 6.478 - 

Pb+2 + CO3
-2 + H+ = PbHCO3

+ 13.2 - 

Solid Phases 

Primary Lead Carbonates 

Pb3(OH)2(CO3)2 + 2H+ = 3Pb+2 + 2H2O + 2CO3
-2 -18.7705 Hydrocerussite 

PbCO3 = Pb+2 + CO3
-2 -13.13 Cerussite 

Other Lead Carbonates 

Pb2OCO3 + 2H+ = 2Pb+2 + H2O + CO3
-2 -0.5578 - 

Pb3O2CO3 + 4H+ = 3Pb+2 + CO3
-2 + 2H2O 11.02 - 

Pb10(OH)6O(CO3)6 + 8H+ = 10Pb+2 + 6CO3
-2 + 7H2O -8.76 - 

Gaseous Phases 

O2 + 4H+ + 4e- = 2H2O 83.0894 O2(g) 

CO2 + H2O = 2H+ + CO3
-2 -18.147 CO2(g) 
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TABLE A.2: SPECIATED EQUILIBRIUM CONCENTRATIONS FROM SELECT EXPERIMENTS FOR EXPERIMENTAL LOGK 

DETERMINATION FOR HYDROCERUSSITE 

pH DIC Pb+2 CO3-2 Log K 

(---) (mg C/L) (mol/L) (mol/L) (---) 

8.00 20.00 3.46E-08 1.06E-05 -16.34 

8.00 20.00 3.69E-08 1.06E-05 -16.25 

8.00 20.00 3.46E-08 1.06E-05 -16.34 

9.00 20.00 2.36E-09 1.01E-04 -15.87 

9.00 20.00 2.39E-09 1.01E-04 -15.86 

9.00 20.00 2.50E-09 1.01E-04 -15.80 

10.00 20.00 2.56E-10 6.28E-04 -15.18 

10.00 20.00 2.63E-10 6.28E-04 -15.15 

10.00 20.00 2.74E-10 6.28E-04 -15.09 

8.00 10.00 6.65E-08 2.60E-06 -16.70 

8.00 10.00 7.26E-08 2.60E-06 -16.59 

8.00 10.00 6.75E-08 2.60E-06 -16.68 

8.00 50.00 2.47E-08 2.72E-05 -15.96 

8.00 50.00 2.42E-08 2.72E-05 -15.98 

8.00 50.00 2.49E-08 2.72E-05 -15.94 

     

   
Average -15.98 

   
Std. Dev. 0.53 
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FIGURE A.1: COMPARISON OF BUFFERED (EXP. 1) VS UNBUFFERED (EXP. 10) HYDROCERUSSITE DISSOLUTION 

EXPERIMENTS (PH 8, DIC 20 MG C/L, IS 0.01 M) 

 

 

FIGURE A.2: INFLUENCE OF INITIAL SOLID LOADING CONCENTRATIONS ON TOTAL DISSOLVED LEAD FOR 

HYDROCERUSSITE DISSOLUTION EXPERIMENTS (EXP. 1,10; PH 8, DIC 20 MG C/L, IS 0.01 M). 
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B. APPENDIX TWO: CURRICULUM VITAE  

Caitlin Kushnir, B.Eng. 
 

SUMMARY 

Environmental consulting experience primarily encompasses management of contaminated 

site characterization programs for the oil and gas industry. Much of this work has included 

Phase I and II Environmental Site Assessments, comprehensive soil and groundwater quality 

monitoring and site assessment programs, soil remediation activities, and technical report 

writing. Since returning to school, focus has been on examining and modelling the behavior 

of lead corrosion scales under various conditions.  

 

WORK EXPERIENCE 

20012 – 20124  Enrolled in M.Sc. program at the University of Western Ontario 

 

2008 – 2012   Geo-Environmental Engineer, WorleyParsons, Saskatoon, SK 

Groundwater Monitoring and Reporting, AB, SK & MB 

Involved the completion of comprehensive groundwater monitoring 

programs according to recommendations or the facilities’ Environmental 

approval. Responsibilities included: 

 program organization (including scope and budget preparation); 

 various field work activities; 

 post program site clean up (including contaminated groundwater 

disposal); 

 daily management of costs; and 

 preparation of final reports for both the client and regulatory bodies. 

 

Limited Phase I and Monitoring Program 

Undertook a Phase I site assessment. Responsible for program organization 

and site reconnaissance, as well as the gathering, analysis, and interpretation 

of historical information. These responsibilities culminated in the preparation 

of a final report. 

 

Phase II Investigations, SK & MB 

Undertook Phase II site characterizations at multiple sites. Responsible for 

the: 
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• program organization (including scope and budget preparation, and pre-

site ground disturbance); 

• supervision of multiple subcontractors; 

• proper abandonment or installation of piezometers (using rotary drill 

rigs); 

• soil and groundwater sampling (and occasionally Petro FLAG analysis); 

• post program site clean up (including contaminated cuttings disposal); 

• daily management of costs and scopes; and 

• preparation of summary and final reports for the client and regulatory 

bodies. 

Western Monitoring Program 

Responsible for the set up, execution and co-ordination of a large scale 

complex monitoring program (31 sites over 5 provinces).  

 

Soil Vapor Installation and Monitoring 

Assisted in the installation and development of several soil vapor monitoring 

wells. Responsibilities included the supervision of drilling crews, public 

communication, preparation and installation of monitoring wells, 

development and construction of routine monitoring equipment, and routine 

soil vapor monitoring. 

 

Geophysical Assessment 

Collected data with regards to ERT, EM31 and EM35 surveys for the 

contaminant delineation program. 

 

Spill Assessment and Contaminated Soil Removal 

Conducted remedial activities through the removal of hydrocarbon impacted 

materials. Responsible for site characterization and on site confirmatory soil 

sampling. Analysis and interpretation of data and preparation of a summary 

report for client. 

 

2006 – 2007 Environmental Technician, Jagger Hims Ltd., Newmarket, Ont. 

Responsibilities included: acquiring and verifying supporting data for 

engineering design and decision making; preparing portions of final and 

preliminary Phase I and Phase II reports; routine flow monitoring of discharge 

pipes and streams from a large operational quarry to meet regulatory 

requirements; and confirmatory soil sampling with hand auger. 
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