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Abstract 

The crop pest Drosophila suzukii, native to Southeast Asia, has been found in Ontario 

since 2010. This raises concern with respect to it establishing permanent populations, 

however, little is known about its cold tolerance. I investigated the low-temperature 

tolerance, including phenotypic plasticity, of D. suzukii. While acclimation increased cold 

tolerance, there was no evidence of short-term cold-hardening. Chill coma occurs at -1.2 

°C, which will limit winter activity. Cold shock decreased the reproductive output of 

females, but this negative effect may be mitigated by re-mating. Drosophila suzukii is 

chill-susceptible and 80 % of the flies die after exposure to -7.5 °C (females) and -7 °C 

(males). Even acclimated flies could not survive at 0 °C for more than seven days, or in 

overwintering field cages. These results suggest that D. suzukii might not be able to 

survive winter conditions in the field in Ontario.  
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1 Introduction 

Low temperatures impair development and performance, and may cause mortality of 

insects and thus can be a major determinant of drive population dynamics and geographic 

ranges, particularly in temperate regions (Sinclair et al., 2003a). Invasive species have 

been introduced to a new habitat out of their normal geographic range and therefore may 

encounter new climates. Thus understanding overwintering biology is important to 

predict if an invasive species can establish in an area that experiences low temperatures 

(Bale and Hayward, 2010; Williams et al., in press a). Drosophila suzukii Matsumura 

(Diptera: Drosophilidae) is native to Southeast Asia and has been found in Ontario, 

Canada since 2010 (Fraser et al., 2011). This pest species has the potential to cause 

severe economic damage to fruit crops, because it has a wide host range and fast 

generation time  (Kanzawa, 1939). However as its potential to overwinter in Ontario’s 

cold winter climate remains unclear, I assessed the tolerance of D. suzukii to low 

temperature stress. 

1.1 Low temperatures limit northern range distribution 

Abiotic factors, such as temperature, are thought to limit the poleward distributions of 

species (Gaston, 2009). As insects are small ectotherms and their body temperature is 

mainly determined by the environmental temperature, low temperatures not only 

determine survival but also population growth (Boggs and Inouye, 2012). Thus, winter 

influences individual fitness and range distribution (Addo-Bediako et al., 2000), so 

species living at higher latitudes generally show increased physiological tolerance to low 

temperatures, than those closer to the equator. For example the swallowtails, Papilio 

canadensis (Rotschild & Jordan) and P. glaucus L. (Lepidoptera: Papilionidae), (Kukal et 

al., 1991; Williams et al., in press b) and southern pine beetle, Dendroctonus frontalis 

Zimmermann (Coleoptera: Scolytidae), are limited in their northern range distribution by 

poor survival at low temperature (Ungerer et al., 1999). Winter temperatures also 

determine the ability of invasive pest species to establish (Bale, 2002). The emerald ash 

borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is invasive to Canada and 

was able to establish as a pest species due to its cold tolerance (Crosthwaite et al., 2011).  
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1.2 Insects at low temperatures 

An insect’s body temperature declines with the environmental temperature, and after 

passing a lower thermal threshold, insects might enter chill coma, a state of paralysis 

(Hazell and Bale, 2011; MacMillan and Sinclair, 2011). The critical thermal minimum 

(CTmin) describes the chill coma onset temperature and depending on the duration of cold 

exposure, chill coma is a reversible state (MacMillan & Sinclair 2011). Chill coma 

recovery time (CCR) quantifies recovery as the time it takes for an insect to recover from 

standardized chill coma inducing conditions (David et al., 1998). Both CTmin and CCR 

are commonly used measures to determine low-temperature performance (Andersen et 

al., 2014; David et al. 1998; Gibert et al. 2001; Hoffmann et al., 2003 b). The CTmin and 

CRR are lower in temperate Drosophila species than in tropical ones (Gibert and Huey, 

2001; Gibert et al., 2001). 

1.2.1 Cold tolerance strategy 

Insects show different abilities to survive sub-zero temperatures and their cold tolerance 

strategies are divided into freeze tolerance and freeze avoidance, depending on the ability 

to survive internal ice-formation. The temperature at which internal ice formation occurs 

is called the supercooling point (SCP) (Lee and Denlinger, 1991). However most insects 

are chill-susceptible and die of  injuries unrelated to freezing (Lee and Denlinger, 1991) 

Freeze-tolerant species, such as the woolly bear caterpillar, Pyrrharctia isabella 

(Smith) (Lepidoptera: Arctiidae), (Marshall and Sinclair, 2012a), survive freezing by 

inducing ice-nucleation in the extracellular spaces (Lee, 2010; Sinclair, 1999). Freeze-

avoiding insects, such as the emerald ash borer, survive low temperatures by maintaining 

their body fluids in a liquid state, but die upon freezing (Lee and Denlinger, 1991). Most 

insect species are chill-susceptible and die of chilling injuries (Bale, 1996). For example, 

adults of Drosophila melanogaster Meigen (Diptera: Drosophilidae) are chill-susceptible, 

because only 50 %  survive an exposure to -5 °C for two hours, even though they remain 

unfrozen until -20 °C (Czajka and Lee, 1990). The temperature at which Drosophila die 

varies between species depending on their geographical range. While 50 % of D. 

montana die after exposure to -13. 2 °C for 2 h, 50 % of D. birchii die at -3.3 °C 

(Andersen et al. 2014). 
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The majority of insect species switch strategies between seasons and display the 

same strategy every winter (Zachariassen, 1985); however there are species that switch 

strategies between years like Dendroides canadensis Latreille (Coleoptera: Pyrochrodiae) 

(Horwath and Duman, 1984).  

It is likely that chill susceptibility is the ancestral state for insects, and that freeze 

avoidance and freeze tolerance are derived state, which have evolved within various 

insect taxa multiple times (Sinclair et al., 2003b; Strachan et al., 2011). Freeze-tolerant 

and freeze-avoiding species may overwinter in the same habitat and share biochemical 

components; thus it remains unclear why one strategy seems favourable over the other in 

temperate regions. There are several different hypotheses that address the question of 

why a particular species exhibits a certain cold tolerance strategy. According to an 

overwintering energetics model, freeze avoidance is advantageous when pre-winter 

energy stores are high and supercooling costs are low, whereas freeze tolerance is 

favourable when energy stores and the costs of freeze-thaw cycles are low (Voituron et 

al., 2002). The temperature in the Southern Hemisphere is less predictable than the 

Northern Hemisphere and shows a high variance in temperature around 0 °C, which 

results in repeated freeze-thaw cycles and could explain the higher abundance of freeze-

tolerant species in the Southern Hemisphere (Sinclair and Chown, 2005). Freeze 

tolerance is also an advantage in microhabitats where external ice nucleation precludes 

freeze avoidance (Sinclair et al., 2003b). 

1.2.2 Injuries related to low temperature exposure 

Chill-susceptible insects can accumulate chilling injuries, which can result in malfunction 

of development, reduced fitness and mortality (Shreve and Lee, 2004; Turnock, 1993; 

Turnock et al., 1983). Chilling injuries can be divided into acute chilling injuries, which 

occur on a short time scale (< 6 h, acute cold exposure) and chronic chilling injuries that 

accumulate over a longer period of time (> 6 h, chronic cold exposure) (Lee, 2010; 

Nedvěd et al., 1998; Rajamohan and Sinclair, 2008). The intensity of chilling injury 

increases with longer exposure time and/or lower temperatures (Nedvěd et al., 1998). 

Chilling injuries can result in mortality (Turnock et al., 1983), as well as reduce courtship 

and mating activity (Shreve and Lee, 2004) and fecundity (Marshall and Sinclair, 2010). 
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Heat shock proteins are upregulated after chilling in Pyrrhocoris apterus L. (Hemiptera: 

Pyrrhocoridae), suggesting that protein damage during or after chilling (Koštál and 

Tollarová-Borovanská, 2009). However studies with D. melanogaster only reveal small 

changes in heat shock protein expression (Burton et al., 1988; Sinclair et al., 2007; Zhang 

et al., 2011), indicating protein damage after low temperature exposure does not occur in 

all species. Direct chilling injuries are thought to be associated with apoptosis in the 

flight muscles of D. melanogaster (Yi et al., 2007) and apoptosis in the gut, Malpighian 

tubules and the fat body in the flesh fly Sarcophaga crassipalpis Macquart (Diptera: 

Sarcophagidae) (Yi and Lee, 2004). Membrane phase-transitions (Ramløv, 2000), 

oxidative stress (Rojas and Leopold, 1996), and loss of ion and water balance all cause 

chronic chilling injuries (Koštál et al., 2006). Chilling injuries can decrease 

neuromuscular function which negatively affects coordination in S. crassipalpis, causing 

a failure of eclosion (Yocum et al., 1994). Thus, chilling injuries are problematic at many 

different levels of the organism, which can affect the individual and may drive population 

dynamics. 

The formation of ice crystals can mechanically damage membranes and proteins 

(Storey and Storey, 1988). In addition, cellular water leaves the cell due to osmotic 

dehydration and can join the growing ice lattice, causing a decrease of cell volume and an 

increase in the intra- and extracellular solute concentration (Lee, 2010). The loss of cell 

volume causes membrane damage (Lee and Denlinger, 1991), and the increase of solute 

concentration denatures proteins resulting in an impairment of the metabolism in both 

freeze-avoiding and freeze-tolerant insects (Lee, 2010). In addition, freezing can damage 

the brain, muscle and Malpighian tubules (Collins et al., 1997) as well as cause hypoxia 

(Joanisse and Storey, 1996). During thawing, reactive oxygen species can damage tissues 

(Zachariassen, 1985). Additionally, the lack of reestablishment of ion homeostasis can be 

lethal during thawing (Boardman et al. 2011). 

1.2.3 Phenotypic plasticity of cold hardiness 

Insects have the ability to increase their cold hardiness to adjust to seasonal temperature 

changes. These plastic responses occur on different time scales: Rapid cold-hardening is 
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a response to short-term cold exposure, and acclimation is a response to longer-term low-

temperature and short day length exposure (Lee and Denlinger, 1991). 

In temperate regions, air temperature can fluctuate by more than 20 °C daily 

(Irwin and Lee, 2003). To contend with rapid and severe decreases in temperature, some 

insects are able to induce physiological changes on short time scales (30 min - 2 h) that 

increase cold-hardiness (Lee et al., 1987; Ransberry et al., 2011). This phenomenon, 

known as rapid cold-hardening (RCH), was first described in S. crassipalpis (Lee et al., 

1987) and has since been described in a wide range of chill-susceptible, freeze-avoiding 

and freeze-tolerant species (Teets and Denlinger, 2013). Rapid cold-hardening can 

increase survival at low temperatures (Czajka and Lee, 1990; Lee et al., 1987) and 

decrease CTmin and CCR (Ransberry et al. 2011). Rapid cold-hardening also improves 

courtship and mating behaviour at low temperatures (Shreve and Lee, 2004), and 

increases reproductive output after cold shock (Overgaard et al., 2007). 

Seasonal changes in photoperiod and/or temperature can induce acclimatization 

(in the field), which is mimicked by acclimation in the lab (Teets and Denlinger, 2013). 

While many studies use constant conditions for acclimation, others use ecologically-

based thermoperiods to simulate natural conditions (Colinet et al., in press; Kelty and 

Lee, 2001). Cold acclimation increases survival after cold exposure (Sinclair and Roberts, 

2005) and decreases CTmin and CCR (Ransberry et al., 2011) allowing insects to remain 

active at lower temperatures. Insects might also suppress their metabolic rate when 

overwintering to conserve energy reserves (Williams et al., 2012b). Changes in the lipid 

membrane composition increase fluidity of the membrane at low temperatures (Pruitt and 

Lu, 2014). Many insects accumulate biochemicals to increase cold tolerance; e.g. freeze-

avoiding species accumulate anti-freeze proteins, polyols and sugars to lower the SCP 

(Han and Bauce, 1995; Zachariassen, 1985). However the accumulation of these 

cryoprotectants can be energetically-costly (Storey, 1997).  

Rapid cold-hardening and acclimation both increase cold tolerance; however 

these two phenomena appear to be driven by different mechanisms, as the combination of 

RCH and acclimation can further increase cold tolerance (Rajamohan and Sinclair, 2008; 

Shintani and Ishikawa, 2007). Furthermore, RCH enhanced cold tolerance in some 
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Drosophilidae, while acclimation did not (Strachan et al., 2011). RCH does not appear to 

carry ecological costs in terms of development, longevity or fecundity (Powell and Bale, 

2004).  

1.2.4 Diapause 

Diapause and cold-hardening are both important to winter survival, but it is 

unclear whether they are independent mechanisms or whether acclimation is part of 

diapause (Denlinger, 1991). Diapause is a state of arrested development that is induced in 

a specific life stage by stimuli that signal the onset of unfavourable conditions (e.g. short 

day length and low temperatures prior to winter), and allows survival of stressful seasons 

(see Danks, 2006; Hahn and Denlinger, 2011 for reviews). After induction of diapause, 

insects may accumulate energy stores for overwintering and increase their stress 

tolerance (Hahn and Denlinger, 2011), and after initiation of diapause insects stop their 

development (Koštál, 2006). 

Univoltine insect species have one generation per year, and therefore a particular 

developmental stage is always associated with overwintering. Some univoltine species 

overwinter in an obligatory diapause, like the spruce budworm, Choristoneura 

fumiferana Clemens (Lepidoptera: Tortricidae), which overwinters as a second-instar 

larva (Han and Bauce, 1998). Bivoltine and multivoltine species have more than one 

generation per year, and therefore environmental cues like photoperiod are important for 

inducing diapause only in overwintering generations (Bradshaw et al., 2004). The 

overwintering life stage is usually species-specific (Sinclair et al., 2003a) and thus post-

winter life history may vary greatly among species. Insects that overwinter as eggs or 

larvae can replace consumed energy reserves in the spring, while species that overwinter 

as pupae or adults may depend on the energy reserves that they consume as larvae to 

overwinter and reproduce, if the adults do not feed (Sinclair, in press). 

Some insect species do not display a full diapause with a decrease in metabolic 

rate, but only reproductive diapause as adults (Tatar and Yin, 2001). Females show 

ovarian arrest, which is advantageous for these species, because it increases survival 

under unfavourable conditions and females only oviposit eggs in periods of favourable 

conditions that allow survival and development of progeny (Pener, 1992). While males of 

http://en.wikipedia.org/wiki/Tortricidae
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some species inseminate females prior to overwintering and die before the winter, like 

Culex pipiens L. (Diptera: Culicidae), other males do not show a reproductive diapause, 

but are able to overwinter like Anacridium aegyptium L. (Caelifera: Acrididae) 

(Denlinger and Armbruster, 2014; Norris and Richards, 1965; Pener, 1992). In the 

monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), both sexes migrate 

in reproductive diapause (Herman, 1981). 

Some Drosophila species are thought to overwinter in reproductive diapause with 

an arrest of ovarian development triggered by photoperiod and/or temperature (Kimura, 

1988a). In D. melanogaster reproductive diapause is indicated by an absence of yolk 

deposition in the ovarian follicles (Saunders et al., 1989). Warm-temperate Drosophila 

species (D. lutescens and D. rufa) and cool-temperate Drosophila species (auraria 

complex) show reproductive diapause while tropical and subtropical relatives (D. 

melanogaster and D. takahashii) do not. Cool-temperate species enter reproductive 

diapause earlier than warm-temperate species (Kimura, 1988b). The ability to enter 

reproductive diapause is not only dependent on the species, but also on latitude. With an 

increase in latitude and therefore a decrease in temperature and photoperiod, the 

proportion of diapausing D. melanogaster increased in North America (Schmidt et al., 

2005; Williams and Sokolowski, 1993). Drosophila melanogaster in reproductive 

diapause have higher energy reserves than non-diapausing individuals (Ohtsu et al., 1992; 

Ohtsu et al., 1993) and cool-temperate species in reproductive diapause have improved 

low temperature tolerance compared to warm-temperate species (Kimura, 1988b). Thus, 

Drosophila in reproductive diapause might be better prepared to overwinter in colder 

regions than non-diapausing Drosophila.  

1.2.5 Overwintering microclimate and microhabitat 

Insects are not only able to undergo physiological changes in the season but also 

behavioural changes, as they migrate to warmer habitats or select an overwintering 

microhabitat. Insects overwintering in Ontario use a wide variety of different 

overwintering habitats: for example the prepupae of the emerald ash borer overwinters 

beneath tree bark (Wang et al., 2010), the acorn weevil, Curculio glandium Marsham 

(Coleoptera: Curculionidae), borrows 5 cm deep into the soil (Udaka and Sinclair, 2014) 
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and the woolly bear caterpillar, overwinters beneath the snow cover (Marshall and 

Sinclair, 2012a). 

A good overwintering habitat must allow for easy access in the fall, suitable 

overwintering conditions and be easy to leave in the spring. While well-buffered 

microhabitats provide less fluctuation in temperature and warmer temperatures, they 

might be harder to find and access. In addition, insects overwintering in well-buffered 

environments (such as beneath snow cover) experience a difference in season length, 

because the snow has to melt before they can be active (reviewed in Danks, 1991). The 

well-buffered microhabitat prevents exposure to lethal air temperatures, but the exposure 

temperature in this overwintering microhabitat not only affects survival, but also fitness, 

because warm winter temperatures can increase metabolic rate. Increased metabolic rates 

may then lead to a more rapid decrease of energy stores during the winter and an reduced 

fecundity in the spring (Irwin and Lee, 2003; Marshall and Sinclair, 2012a). As well, 

microhabitats not only affect the temperature but also humidity. At sub-zero temperatures 

a moist habitat might induce freezing, but a protected microhabitat might also limit water 

loss (Danks, 2000).  

Some insects lack the ability to survive outdoor conditions in winter and 

overwinter in human-made structures. Several invasive pest species in Ontario overwinter 

in association with houses, like the brown marmorated stink bug, Halyomorpha halys Stål 

(Hemiptera: Pentatomidae) (Lee et al., 2014), and the Eastern subterranean termite, 

Reticulitermes flavipes Kollar (Isoptera: Rhinotermitidae) (Clarke et al., 2013). Other 

insects overwinter in buildings associated with agriculture like the house fly, Musca 

domestica L. (Hanec, 1956). In these cases, reducing access to these refuges would allow 

for successful pest management. 

1.3 Drosophila suzukii  

Drosophila suzukii is commonly known as spotted wing drosophila (Fraser et al., 2011; 

Kanzawa, 1939). While most of the drosphilids are economically unimportant, D. suzukii 

is a pest, because the female has a serrated ovipositor allowing it to lay eggs in healthy 

thin-skinned fruits such as blueberries, raspberries, strawberries, peaches, grapes and 

tomatoes (Atallah et al., 2014; Kanzawa, 1939). The fruit is damaged as the three larval 
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instars develop inside the fruit (Kanzawa, 1939), and the oviposition scar allows entrance 

by secondary pests, fungal and bacterial pathogens leading to decay of unripe fruits 

(Hamby et al., 2012; Walsh et al., 2010).  

Drosophila suzukii originates from Southeast Asia. It is unclear if D. suzukii is 

native to Japan; but populations have likely been established there since at least 1916, 

and are best-studied in Japan (Kanzawa, 1939; Mitsui et al., 2010). Therefore, Japan can 

be considered as the natural environment and observations can be used to predict 

behaviour in similar regions. Drosophila suzukii is mainly found in warm-temperate 

regions of Japan (Kondo & Kimura 2006). In the subtropical Yamanashi region (in Japan 

(35°35'N, 138°51'E), adults overwinter beneath leaf litter and leave the overwintering 

habitat in March (first findings during the year) (Kanzawa, 1939). Drosophila suzukii has 

not been found overwintering at high altitudes (Mitsui et al., 2010), which might indicate 

that this species is not very cold-hardy. In the Yamanashi region, the number of adults 

decreased with a decline in temperatures and food sources in October (Kanzawa, 1939), 

which suggests that adults seek shelter as winter approaches. 

In the last few decades, D. suzukii has been recorded outside of Southeast Asia, 

including Hawaii since 1980 (Kaneshiro, 1983), Spain (Cinci et al., 2012) and California 

since 2008 (Walsh et al., 2010). Drosophila suzukii was reported in Oregon, Washington 

and British Columbia in 2009 (Hauser, 2011). In 2010 D. suzukii was first found in 

Ontario, in the Niagara region (Fraser et al., 2011), and in Alberta, Manitoba and Quebec 

(Hauser, 2011). While the total monetary loss of fruits caused by D. suzukii in Canada is 

unknown, this pest caused a loss of approximately 20-30 % of strawberries, blueberries, 

raspberries, blackberries and cherries in the United States resulting in USD $511 million 

in damage in 2008 (Bolda et al., 2010). Drosophila suzukii is potentially a threat to crops 

in Canada, where blueberries, strawberries and cherries were worth CAD $27.5 million in 

2011 (Statistics Canada, 2012). 

In Ontario, the phenology of D. suzukii differs from that in Japan. Since 2010 there 

has been regular summer trapping of D. suzukii in Ontario, where the first flies of the 

year were captured in June (2012, 2013, 2014) and August (2011) (OMAFRA, 2014). 

These captures are relatively late in comparison to captures in Japan, where the first flies 
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were captured in March (Kanzawa, 1939). The number of trapped D. suzukii decreases in 

Ontario in October (OMAFRA, 2014). Although D. suzukii has been found during the 

summer in multiple years, its ability to overwinter in Ontario has not been examined.  

The potential of D. suzukii to establish permanent populations in Ontario depends 

on its ability to withstand low temperature exposure, because winters in Ontario are 

longer and colder than winters in Yamanashi, Japan (World Weather Online, 2014). 

However little is known about the overwintering biology of D. suzukii anywhere. 

Laboratory experiments suggest that that D. suzukii is relatively cold-intolerant, because 

75 % of flies die after a 24h-exposure to -1.8 °C (females) or -0.7 °C (males) (Kimura, 

2004). Adults survived exposure to temperatures ranging from 1 to 10 ° C longer than 

pupae, but did not survive longer than 17 days at 1°C (Dalton et al., 2011). However 

these few studies did not determine increases in low-temperature tolerance due to 

phenotypic plasticity and did not cover all potential metrics of low-temperature tolerance. 

In addition the few existing studies on D. suzukii cold tolerance only used flies from 

Japan (Kimura, 2004) or Oregon (Dalton et al., 2011). Because cold tolerance can vary 

geographically, and newly-introduced populations can undergo severe genetic 

bottlenecks and selection events, it is necessary to explore the cold tolerance limits of D. 

suzukii caught in Ontario.  

1.4 Objectives 

The potential of D. suzukii to establish permanent populations in Ontario might be limited 

by low temperatures. However little is known about the ability of D. suzukii to withstand 

low temperature stress. In this thesis, I examine the low temperature tolerance of adult D. 

suzukii, because they are thought to be the overwintering life stage (Kanzawa, 1939). I 

assessed the phenotypic plasticity of low temperature tolerance of males and females by 

manipulating conditions in the laboratory to produce summer- and winter-like adult D. 

suzukii. 

My main objective was to determine the low temperature tolerance of D. suzukii, 

including the phenotypic plasticity of its cold hardiness. I measured chill coma onset to 

learn about activity boundaries in fall and spring. I assessed cold tolerance strategy and 

survival after acute, chronic, and semi-field cold exposure to determine lethal 
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temperature limits. In addition, I explored the effect of cold exposure on reproduction to 

learn how cold can affect reproduction of overwintering flies.  



 

12 

 

 

2 Methods 

2.1 Study animals  

The D. suzukii population was established from approximately 200 individual flies 

originally collected in the Halton Hills region, Ontario, Canada (43°37 N 79°57 W). Flies 

were fed on a banana medium (containing 1 L water, 112.5 g banana, 47. 5 g corn syrup, 

30 g barley malt, 27.5 g active yeast, 6.5 g agar, 3 ml propionic acid, 2 g methylparaben) 

(Markow and O’Grady, 2006) and reared in a walk-in temperature-controlled growth 

chamber (M-25, Environmental Growth Chambers, Chagrin Falls, Ohio, USA),  at 21.5 ± 

1 °C and 60 ± 5 % relative humidity under 13:11 L:D. Population cages were built out of 

a 3.8 L PET plastic jar (23 cm × 15 cm × 13 cm) with a piece of medical stockinette 

closed with a clip to allow access to the cage. A Petri dish containing 35 mL of banana 

food, topped with active yeast paste (to stimulate oviposition) was placed into the 

population cage. After approximately 16 h, the food plate was removed and cut in pieces 

containing approximately 75 eggs, which were then transferred into 35 mL vials 

containing approximately 10 mL banana food. On the day of eclosion, adult flies were 

transferred into new food vials using a funnel. Flies were left to mate for approximately 

24 h, then were anaesthetized using CO2 for less than 10 min and sorted by sex. For 

experiments where virgin females were needed, flies were collected six hours after 

eclosion and separated by sex using CO2 for less than 10 min.  

2.2 Treatment groups 

Seasonal changes and rapid responses to low temperature can induce phenotypic 

plasticity in insect cold tolerance (Lee and Denlinger, 1991). To test for phenotypic 

plasticity, D. suzukii adults were divided into four different treatment groups. The control 

group represents flies during the summer, while rapid cold-hardening (RCH), constant 

acclimation (CA) and fluctuating acclimation (FA) prepared the flies for winter (Figure 

2.1). The control group contained adult flies held at the rearing conditions (21.5 °C, 

13:11 L:D).  For the RCH pre-treatment, adult flies were held at 21.5 °C for 14 days and 

were then transferred into empty 35 mL fly vials with a moist cotton stopper (to prevent 

desiccation) on the day of the experiment. These vials were placed in ice-water slurry (0 

°C) for one hour and flies were subsequently returned to 21.5 °C for 1 h in new fly vials 
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containing approximately 10 mL fly food. Flies of the CA group were held at 21.5 °C for 

9 d and  then exposed to 6 °C and a light regime of 8:16 L:D for 5 d in an incubator 

(MIR153, Sanyo, Bensenville, Illinois, USA). Fluctuating fall conditions for the FA 

group were simulated by exposing the flies to two weeks with average weekly minimum 

and maximum temperatures of late September in London, Ontario (data from 2012), with 

the corresponding light conditions. In the first week, FA flies were exposed to 9 °C for 12 

hours (darkness) and 21 °C for 12 hours (light). In the second week, 5.5 °C for 12.5 hours 

(darkness) and 19 °C for 11.5 hours (light) were used. 
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Rearing 

21.5 °C      13:11 L:D  

              

              eggs             larvae        pupae                       adults 

 

 

Control 
Rapid cold-hardening 

(RCH) 
Constant acclimation (CA) Fluctuating acclimation (FA) 

      13:11 L:D      13:11 L:D            13:11 L:D      8:16 L:D  12:12 L:D  11.5:12.5 L:D 

    

Figure 2.1 Temperature and light conditions for fly rearing and treatments.  

21.5 °C for 14 days 21.5 °C for 14 days 

1 h at 0 °C 

+ 1 h recovery  

    at 21.5 °C 

21.5 °C for 9 days 

6 °C for 5 days 
1. week:   
12 h at 9 °C 
12 h at 21°C 

2. week:   
12.5 h at 5.5 °C 
11.5 h at 19°C 
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2.3 Effect of low temperatures on survival 

2.3.1 Supercooling points (SCP) 

Individual adult flies from each treatment group were transferred into 1.7 mL 

microcentrifuge tubes. A 36-AWG type-T copper-constantan thermocouple (Omega, 

Laval, Quebec, Canada) was inserted through the lid and the tip of the thermocouple was 

held against the fly’s body using cotton wool. The tubes were placed into holes in an 

aluminium block, which was connected to a methanol (50-100 %) circulator (Lauda 

Proline 3530, Würzburg, Germany) allowing the flies inside the tubes to be cooled from 0 

°C to -30 °C at 0.1 °C/min. The thermocouples were connected to PicotechTC-08 

interfaces with connection to the computer program Picolog v5.20.1 (Pico Technology, 

Cambridge, UK). The SCP was defined as the lowest temperature before exothermic 

reaction indicated by a sudden temperature increase. The SCPs of the different treatment 

groups were compared using a one-way ANOVA in R version 3.0.1 (R Development 

Core Team, 2013). 

2.3.2 Cold tolerance strategy 

The cold tolerance strategy (freeze tolerance, freeze avoidance or chill susceptibility) of 

an insect can be determined by assessing survival after cold exposure and ice formation 

(Crosthwaite et al., 2011). To determine the cold tolerance strategy of female and male D. 

suzukii of treatment groups, ten individuals of each group and sex were placed separately 

into microcentrifuge tubes with a thermocouple attached to the body and cooled, as 

described for the SCPs. After half the flies had frozen (indicated by the exotherm), all 

individuals were removed quickly to room temperature and placed individually into 6-

well plates with a ca. 1 cm
3
 piece of banana food. Survival was assessed after 24 h. 

Insects that died due to chilling injuries unrelated to freezing (both unfrozen and frozen 

flies died) are considered chill-susceptible, those dying upon freezing (only unfrozen flies 

survived) are considered freeze-avoiding and those surviving freezing are freeze-tolerant 

(Table 2.1). 
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Table 2.1 Determining cold tolerance pattern in insects. Freeze-tolerant species 

survive freezing, while freeze-avoiding species die upon freezing and chill-susceptible 

species die at temperatures above the freezing point of their bodies. 

Frozen Unfrozen Cold tolerance pattern 

survival survival freeze tolerance 

no survival survival freeze avoidance 

no survival no survival chill susceptibility 
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2.3.3 Survival after acute low-temperature exposure 

The lower temperature (LT) of control male and female D. suzukii was estimated using 

an acute exposure (1 h). To do so, groups of ten females or males were placed into a 1.7 

mL microcentrifuge tube and were held at separate test temperatures ranging from -13 °C 

to 0 ° C (resulting in mortality from 0 to 100 %) for 1 h using a methanol circulator 

(Lauda Proline 3530, Würzburg, Germany). Temperatures were recorded using 

thermocouples. Flies from each tube were placed into one well of a 6-well cell culture 

plate containing ca. 1 cm
3
 banana food and survival was assessed after 24 h. A 

generalized linear model with a binary error distributions and logit link function was used 

to calculate the LT80-1h (lower temperature at which 80 % die after 1 h exposure) for both 

females and males and the fit was tested with Wald’s statistics using the package MASS 

in R version 3.0.1 (R Development Core Team, 2013). 

In a subsequent experiment, survival among the different treatment groups was 

compared after a 1 h exposure to the LT80-1h. Female and male flies of the different 

treatment groups were exposed to -7.2 °C (females) and -7 °C (males) for 1 hand then 

placed in 6-well plates as described above. Survival was assessed after 24 h and 

compared among the treatment groups using a one-way ANOVA in R. 

2.3.4 Survival after chronic low temperature exposure 

To determine the effect of chronic cold exposure on D. suzukii, female or male flies of 

the control and FA group were exposed to 0 °C for 10 days, during which survival was 

assessed every 12 h.  

Ten female or male flies were placed into 1.7 mL microcentrifuge tubes. Three tubes 

of each sex and treatment were placed into a 16.5 × 14.9 cm sealed plastic bag. Four of 

these small bags were placed into a 26.8 × 27.3 cm sealed plastic bag with an iButton 

(Model 1920 L, Maxim Integrated, San Jose, CA, USA). These bags were then placed 

into a 30 × 40 × 30 cm insulated container filled with ice water slurry (0 °C). One 16.5 × 

14.9 cm sealed plastic bag containing three tubes of each sex and treatment was sampled 

every 12 h. Flies from each tube were placed into one well from a 6-well plate, which 

contained about 1 cm
3
 banana food containing. Survival was assessed after 24 h. The Lt80 
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(lethal time at which 80 % die) was calculated for both females and males using a 

generalized linear model with a binary error distributions and logit link function and the 

fit was tested with Wald’s statistics using the package MASS in R (Venables and Ripley, 

2002). 

2.4 Effect of low temperatures on activity 

2.4.1 Critical thermal minimum (CTmin) 

The critical thermal minimum (CTmin) is the measure of chill coma onset and was 

determined for all treatment groups using a 150 × 25 cm glass knock-down column 

(Figure 2.2). A refrigerated circulator (model 1157P, VWR International, Radnor, PA, 

USA) circulated a mixture of ethylene glycol and water (1:1) through the outer layer of 

the column, allowing for temperature control (Ransberry et al., 2011). Aluminium baffles 

in the column provided surfaces on which flies could rest. Temperature was monitored by 

three thermocouples at the top of the column and three at the bottom of the column. 

Approximately 500-800 flies were transferred into the column and after 15 min at 21 °C 

the temperature was decreased to -15 °C at 0.1 °C/min. As each fly reached its CTmin, it 

could not cling onto the surface and fell into a 50 mL plastic vial containing soapy water. 

This vial was changed every 1°C and flies were filtered out of the water and stored frozen 

until sex of the collected flies was determined.  

The accelerated-failure-time (AFT) model included in the survival package in R 

(Therneau and Grambsch, 2000) was used to compare the effects of sex and treatment on 

the CTmin. The temperature at which 80% of the flies enter chill coma (CTmin80) was 

calculated using the AFT models in R (Ransberry et al., 2011). CTmin of the different 

treatment groups was compared using a one-way ANOVA in R. 
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Figure 2.2 Knock-down column used to measure the critical thermal minimum. 
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2.4.2 Chill-coma recovery time (CCR) 

Chill coma recovery time is the time it takes an insect to recover movement after a 

standardized cold exposure causing chill coma (Ransberry et al., 2011). With an increase 

in exposure time to the chill-coma-inducing temperature, CCR increases and reaches a 

plateau phase, after which insects may accumulate chilling injuries (MacMillan and 

Sinclair, 2011). To minimize variation in CCR an exposure time within the plateau phase 

has to be determined. To do so groups of 10 female or male adult flies of the control 

group were transferred into 1.7 ml microcentrifuge tubes. Six tubes containing either 

females or males were placed into sealed plastic bags, which were immersed into ice-

water slurry (0 °C).  After 1, 2, 3, 4, 5, 6, 7, 8 and 10 h, flies were transferred into empty 

6-well plates. All flies were in chill coma and the time until flies were able to stand on 

their legs was measured as chill coma recovery time.  

For subsequent experiments, an exposure time of 8 h was chosen, because it lies 

at a point where the recovery time and exposure time relationship reached a plateau (see 

section 3.2). To compare CCR among the different treatment groups, six microcentrifuge 

tubes containing either ten males or females of each treatment group were placed in a 

sealed plastic bag, which was immersed in ice-water slurry for 8 h. Recovery time for 

each fly was assessed as described above. 

The effect of sex and treatment on the CCR was compared using an accelerated-

failure-time (AFT) model. The time at which 80 % of the flies recovered from chill coma 

was calculated using the AFT models (CCR80) and CCR was compared among treatments 

using a one-way ANOVA in R. 

2.5 The effect of low temperature exposure on reproduction 

Long-term low temperature exposure can induce reproductive diapause through 

acclimation (Saunders et al., 1990), whereas acute low temperature exposure can 

decrease reproductive output due to cold shock (Marshall and Sinclair, 2010; Shreve and 

Lee, 2004). To test whether adults showed an adaptive response regarding low 

temperature exposure, ovaries of females were dissected to assess the potential of ovarian 

diapause. To examine the passive response to low temperatures regarding reproduction, 
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female and male flies were exposed to a non-lethal temperature and reproductive output 

was assessed. 

Ten females of each treatment group (all at least 15 days old) were dissected to 

assess ovarian development and therefore the incidence of ovarian diapause. Females of 

the different treatment groups were anaesthetized using brief exposure to CO2. Flies were 

transferred into a 1:1 mixture of distilled water and PBS (phosphate buffered saline). 

Under the microscope the head was removed using dissecting pins. The abdomen was 

held with one dissection pin while the other pin was used to remove the last two 

abdominal segments. While pulling away the last two abdominal segments the gut and 

the ovaries were removed from the body. Photographs of the ovaries were taken using a 

camera (Nikon digital sight DS-Fi1, Tokyo, Japan) installed on a stereomicroscope 

(Nikon SMZ 1500, Tokyo, Japan) and edited in NIS-Elements (D3.22.14, Nikon, Tokyo, 

Japan). To count the number of chorionated eggs per pair of ovaries, the ovaries were 

placed in 5% Tween20 and the eggs teased out using dissecting pins. The number of eggs 

per pair of ovaries was compared among the treatment groups using a one-way ANOVA 

in R. 

To determine the effect of low temperature on female reproduction, females from 

each treatment were placed individually into 1.7 mL microcentrifuge tubes. These flies 

were exposed to -3.5°C for 1 h (showed no lethal injuries after acute cold exposure) using 

a Lauda refrigerated circulator or held at 21.5 °C. After exposure, female flies were 

placed separately into food vials with one male (remated) or without a male (not 

remated), that was held at control conditions. Flies were transferred to new food vials 

every two days for 18 days in total. Eggs were reared to adults and sex and dry mass was 

determined to assess offspring quality.  

The sum of all offspring produced within 20 days was compared among 

treatments, exposure types (cold-exposed vs. not cold-exposed), mating types (remated 

vs. not remated) and their interaction using a three-way ANOVA for the different 

treatment groups separately. To determine if there is any trade-off between reproductive 

output and investment in the offspring the dry mass of the total number of offspring was 

compared among the treatment groups using a three-way ANOVA in R. 
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To determine the effect of low temperatures on male reproductive output, males 

of the different treatment groups were exposed to -3.5°C for 1 h or held at 21.5 °C as 

described above. Males were placed individually into food vials with a single virgin 

female. Food vials were changed every second day for 18 days in total. The total number 

of female and male offspring per vial was determined after eclosion of all offspring.  

The cumulative number of offspring per male (exposed or unexposed) was plotted 

over time with a loess smoothing curve using the R packages ggplot2 (Wickham, 2009) 

and MASS. An overlap of the loess smoothing curve indicated no significant difference 

between the groups. The sex ratio of the total offspring was compared among the 

different treatment groups and exposure types using a two-way ANOVA in R. 

2.6 Reproductive output in a semi-field environment in late 

fall 

The effect of natural fall conditions (decreased temperature and photoperiod) on 

reproduction of D. suzukii was determined by comparing flies that were held in field 

cages to flies that were held under control conditions in the lab.  

Five female and five male flies per vial were acclimated on banana food to 

October conditions (10 h at 10.5 °C and light, 14 h at 6.5 °C and darkness) in an 

incubator (MIR153, Sanyo, Bensenville, Illinois, USA). Flies were then transferred into 

field cage vials (Figure 2.3), which contained banana food medium (described above) that 

was modified using 36 g agar (per 1 L of food) to create a more solid food medium. Each 

35 mL vial contained approximately 10 mL of the modified banana food. A piece of 

artificial vegetation and a piece of paper towel was used to prevent flies from sticking in 

the food. Ten vials were placed inside a walk-in growth chamber at 21.5 °C (laboratory 

control), while ten vials were placed into wire fly racks in a 47.5 × 38.9 × 27.7 cm plastic 

container (field cage). An iButton data logger (Model 1920 L, Maxim Integrated, San 

Jose, California, USA) was placed into an empty vial with a foam stopper to monitor 

temperature in a vial and placed into the field cage. The cage was placed in a garden in 

London, Ontario (43°00′N 81°15′W) on 1 October, 2013. Additional sets of ten vials with 

flies were placed outdoors in the same location on 15 October and 29 November to 

account for any effect of senescence on the reproductive output. Flies from vials from the 
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field cages and in the incubator were transferred to new vials on a weekly basis. Old fly 

vials were placed in an incubator at 21.5 °C and 13:11 L:D to rear eggs into adults. The 

number of offspring per fly was compared between laboratory and field cage with a one-

way ANOVA in R. 
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Figure 2.3 Design of a field cage fly vial. 
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2.7 Survival at different overwintering microhabitats in a 

semi-field environment 

To test whether Drosophila suzukii can overwinter outside, field cages were buried 

beneath leaf litter, placed in a garden shed, or directly exposed to outdoor conditions 

starting on 26 November 2013 in the same garden as the reproduction field cage (above). 

The overwintering habitat buried beneath leaf litter was chosen as it is the overwintering 

site of D. suzukii in Japan (Kanzawa, 1939). Overwintering in a shed is representative for 

overwintering in an unheated structure associated with an orchard. Flies directly exposed 

to air temperature experience the most severe temperature. Two hundred field cage vials 

each with ten October-acclimated females or males were placed in each condition with 

100 vials in each plastic container, resulting in two containers with 100 vials for each sex 

in every condition (total of 600 vials and 6000 flies). Temperature was recorded in each 

field cage every 30 min using Hobo data loggers (Onset, Bourne, Massachusetts, USA). 

On 18 December 2013 20 vials of each location and sex where placed into an incubator at 

21.5 °C and 13:11 L:D and survival was assessed after 24 h. 
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3 Results 

3.1 Effect of low temperatures on survival 

In adults of D. suzukii, the SCPs ranged from -16.1 °C in FA females to -23.3 °C in FA 

males (Table 3.1), and had a unimodel distribution. Neither treatment nor sex had an 

effect on the supercooling point (F1,112 = 2.823, p= 0.096). Flies of all treatment groups 

and sexes were unable to survive internal ice formation, which indicates that they are not 

freeze-tolerant. Individuals that were exposed to temperatures slightly above the SCP did 

not survive either, which shows that flies were not freeze-avoiding, but chill-susceptible 

(Table 3.2). 

To assess lower lethal temperature limits of adults of D. suzukii, flies of the 

control group were exposed to a range of temperatures (-13 °C to 0°C) for 1 h (acute low 

temperature exposure). An exposure between -4 °C and 0 °C did not kill control flies; 

however there was a sharp decline in survival between -8 and -5 °C. All flies died when 

exposed to temperatures below -10 °C (Figure 3.1). The LT80-1h (temperature at which 80 

% die after 1 h exposure) was -7.5 ± 0.1 °C for control females (Wald’s statistic = 14.51, 

p < 0.001) and -7.2 ± 0.1 °C for control males (Wald’s statistic = 15.16, p < 0.001, Figure 

3.1). 

Survival was assessed after an acute exposure to temperatures close to the LT80-1h 

for females (-7.2 °C) and males (-7 °C), in each of the treatment groups, to test for 

phenotypic plasticity. The CA and FA treatments increased survival by around 80 % after 

a one hour exposure to -7.2 °C in female (F3,20 = 215.7, p < 0.001, Figure 3.2 A) and to  

-7 °C in male adult D. suzukii (F3,20 = 138.5, p < 0.001, Figure 3.2 B); however, the RCH 

treatment did not improve survival (females: F3,20 = 215.7, p = 0.2, Figure 3.2 A; males: 

F3,20 = 138.5, p = 0.99, Figure 3.2 B). 

Flies of the control and FA group were exposed to 0 °C for several days (chronic 

cold exposure), survival of subsamples of the treatment groups was assessed every 12 

hours (Figure 3.3.). The Lt80 (lethal time at which 80 % die) ranged from 70 h in control 

males to 165 h in FA females (Table 3.3) and increased by around three days in FA 

females (χ
2
= 11.54, p<0.001) and two days in FA males in comparison to the control 

group (χ
2
= 8.9, p<0.001). 
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Table 3.1. Supercooling points of male and female adult Drosophila suzukii. Mean (± 

SEM) supercooling point (°C) of the different treatment groups (control, rapid cold-

hardening = RCH, constant acclimation = CA and fluctuating acclimation = FA). 

Treatment 
Supercooling point (°C) 

Females Males 

Control -20.4 ± 0.6 -20.0 ± 0.4 

RCH -21.3 ± 0.3 -20.8 ± 0.4 

CA -19.7 ± 0.3 -21.0 ± 0.3 

FA -18.8 ± 2.1 -22.1 ± 0.2 

 

Table 3.2 Cold tolerance pattern of female and male adults of Drosophila suzukii in 

different treatment groups. Adult flies of four different treatment groups (control, rapid 

cold-hardening = RCH, constant acclimation = CA and fluctuating acclimation = FA) 

were cooled at 0.1 °C/min to -19.5 °C, the temperature when half of the flies were frozen 

(indicated by SCP) and the other half remained unfrozen. 

Treatment 

group 

Females Males 

Number of flies 

dead 
Cold tolerance 

pattern 

Number of flies 

dead 
Cold tolerance 

pattern 
Unfrozen Frozen Unfrozen Frozen 

Control 5/5  5/5  chill-susceptible 5/5  5/5  chill-susceptible 

RCH 5/5  5/5  chill-susceptible 5/5  5/5  chill-susceptible 

CA 5/5  5/5  chill-susceptible 5/5  5/5  chill-susceptible 

FA 5/5  5/5  chill-susceptible 5/5  5/5  chill-susceptible 
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Figure 3.1 Survival of Drosophila suzukii after acute low temperature exposure. 

Female (A) and male (B) adult Drosophila suzukii of the control group were exposed to a 

single temperature ranging from -13 °C to 0 °C for a one hour. The different symbols 

indicate different experimental dates. Each point represents the proportion of flies that 

survived in a group of seven to ten flies. The solid line represents the survival curve 

calculated with a generalized linear model (binary error distributions, logit link function) 

(Wald’s statistic: female = 14.51, p < 0.001; male = 15.16, p < 0.001), the dotted line 

shows 80 % mortality (LT80-1h ). 
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Figure 3.2 Survival of Drosophila suzukii after acute low-temperature exposure 

following different pre-treatments. Mean survival ± SEM ( %) after one hour exposure 

to -7.2 °C in female (A) and to -7 °C in male (B) adult D. suzukii of the treatment groups 

control, rapid cold-hardening (RCH), constant acclimation (CA) and fluctating 

acclimation (FA).Treatments with the same letter are not significantly different (p> 0.05) 

according to Tukey’s test (one-way ANOVA). 
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Figure 3.3 Survival of Drosophila suzukii during chronic cold exposure. Female (A) 

and male (B) adult D. suzukii of the control (open symbols, dashed line) and fluctuating 

acclimation (FA; closed symbols, solid line) group were exposed to 0 °C, sampled every 

12 hours and survival was assessed. Each point represents the proportion of flies that 

survived in a group of ten flies. Survival curves were calculated by a generalized linear 

model (binarry error distribution and logit link function); statistics shown in Table 3.3. 

The dotted line shows 80 % mortality (Lt80). 
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Table 3.3 Lethal time after chronic cold exposure to 0 °C of Drosophila suzukii. 

Female and male adult Drosophila suzukii of the control and fluctuating acclimation (FA) 

group were exposed to 0 °C, sampled every 12 hours and survival was assessed. Time at 

which 80% were dead (Lt80 ± SE) was calculated with a generalized linear model (binary 

error distribution and logit link function) and tested with Wald’s statistics.  

Treatment 
Females  Males 

Lt80 (h) Wald’s statistics  Lt80 (h) Wald’s statistics 

control 
92.7 ± 2.9 df=43, χ

2
=-9.75, 

p<0.001 

 70 ± 2.2 df=68, χ
 2

=-7.37, 

p<0.001 

FA 
165 ± 3.3 df=49,  χ

 2
=-10.8, 

p<0.001 

 111.5 ± 2.3 df=56, χ 
2
=-7.77, 

p<0.001 
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3.2  Effect of low temperatures on activity 

The temperature at which 80% of the flies enter chill coma is the CTmin80. FA flies 

had the lowest CTmin80 of -1.7 ± 0.1 °C, followed by control (-1.2 ± 0.1 °C) and RCH 

flies (0.1 ± 0.1 °C;χ
2
 = 849.47, df= 3, p < 0.001; 

 

Figure 3.4). Acclimated flies had the highest CTmin80 of 1.5 ± 0.1 °C, which was driven by 

the positively skewed distribution, found only in the CA group (Figure 3.5). There was 

no effect of sex on CTmin80 of D. suzukii. 

To test for phenotypic plasticity in chill coma recovery time, flies were exposed to 

0 °C for eight hours, because this exposure time lies within the plateau phase of the 

recovery time-exposure time relationship (Figure 3.6).  CCR80 ranged from 8.5 minutes 

in CA flies to 40.5 min in control flies. Males took as long to recover from chill coma as 

females of the same treatment group; however treatment had a significant effect on CCR 

(χ
2
 = 1.8x10

-59
, df= 3, p < 0.001, logistic error distribution). FA and CA flies had a CCR80 

approximately 30 minutes shorter than control and RCH flies (F3,139 = 216.83, p<0.001) 

(Figure 3.7).    
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Figure 3.4 Critical thermal minimum of Drosophila suzukii following different pre-

treatments. CTmin80 (temperature at which 80% of the flies entered chill coma) ± SEM 

(°C) of flies of different treatment groups (control, rapid cold-hardening = RCH, constant 

acclimation = CA and fluctuating acclimation = FA) was calculated using an accelerated 

failure time model (logistic error distribution)); the calculated CTmin80 was the same for 

females and males. Treatment had a significant effect on CTmin80 (χ
2
 = 1.8x10

-59
, df= 3, p 

< 0.001, logistic error distribution). Treatments with the same letter are not significantly 

different (one-way ANOVA F3,2793=267.1, p < 0.001). 
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 Females Males 

Control 

 

RCH 

CA 

 

FA 

Figure 3.5. Distribution of the critical thermal minimum of Drosophila suzukii 

following different pre-treatments. Critical thermal minimum (CTmin) for control, rapid 

cold-hardened (RCH), constant acclimated (CA) and fluctuation acclimated (FA) female 

(left) and male (right) adults in Drosophila suzukii. The solid grey line represents the 

CTmin80 (temperature at which 80% of the flies entered chill coma) of control flies (shown 

on every panel) and the dashed line the CTmin80 of the treatment group in the panel. 

CTmin80 was calculated using the AFT model, which showed no significant effect of sex 

and a significant effect of Treatment on CTmin80 (χ
2
 = 849.47, df= 3, p < 0.001, logistic 

error distribution). 
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Figure 3.6 Chill coma recovery time of control Drosophila suzukii. Chill coma 

recovery time (CCR) was determined for control females and males after an exposure to 

0 °C for 1 to 10 h with ten flies at each time point.  

 

Figure 3.7 Plasticity of chill coma recovery time in Drosophila suzukii. CCR values ± 

SEM for control, rapid cold-hardened (RCH), constant acclimated (CA) and fluctuating 

acclimated (FA) flies display the chill coma recovery time at which 80 % of the flies 

recovered from an 8 h exposure to 0 °C, according to an AFT model (logistic error 

distribution). There was no significant difference between female and male flies 

according to the AFT. Treatments with the same letter are not significantly different (one-

way ANOVA F3,143=207.1, p < 0.001).  
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3.3 Effect of low temperature exposure on reproduction  

The ovaries of D. suzukii females of all treatment groups were dissected to see whether 

any of the treatments induced reproductive diapause. Females of the control, RCH and 

CA group had fully developed ovaries of the same size, while FA females had smaller 

ovaries (Figure 3.8). The ovaries of FA females contained significantly fewer chorionated 

eggs (14.9 ± 2.8) than ovaries of control (28.8 ± 2.2), RCH (28.3 ± 1.2) and CA (29.1 ± 

1.5) females (F
3,36

 = 11.86  p < 0.001).  

Acute low temperature exposure can affect the number of offspring of mated 

females by cold shock. Low temperatures (-3.5 °C) impaired the reproductive output 

(measured as total number of female offspring) in D. suzukii females of the control, CA 

and FA, but not the RCH flies. Remating significantly increased the reproductive output 

by approximately 70% in control and FA, but not in RCH and CA flies (Figure 3.9 & 

Table 3.4). Dry mass of the female offspring was used as a measure of investment of each 

female in her offspring, but was not affected by cold exposure; however treatment and 

remating had an effect (Figure 3.10. & Table 3.5). Offspring from control flies weighed 

less than offspring from CA and FA flies and remating increased weight by 3-11 %. 

Cold-exposed males of the control and CA group had the same number of 

offspring as non-exposed males; however RCH and FA males that were cold exposed had 

25 - 50 % fewer offspring than males that were not cold exposed (Figure 3.11.). 

The sex ratio of the offspring of cold-exposed vs non-cold-exposed and remated 

vs not-remated females and males from the different treatment groups was compared to 

see if cold exposure or treatment had an effect on the sex of their offspring. Neither 

treatment nor cold-exposure of males had an effect on the sex ratio of the offspring 

(Table 3.6). 
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Figure 3.8 Ovaries of female Drosophila suzukii following different pre-treatments. 

Ovaries of females of the treatment groups control (A), rapid cold-hardening (B), 

constant acclimation (C) and fluctuating acclimation (D) were dissected at the age of 15 

days.  The scale bar indicates 500 µm.  

 

  

A: Control B: RCH 

D: FA C: CA 
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Figure 3.9 Effect of low temperature exposure and remating on the reproductive 

output of female Drosophila suzukii. The total number of offspring per female is the 

sum of all offspring after 18 days for females of the control (A), rapid cold-hardening = 

RCH (B), constant acclimation = CA (C) and fluctuating acclimation = FA (D) group. 

Mated female flies were unexposed or exposed to -3.5 °C for an hour and then either not 

remated or remated with a single male at 21.5 °C and 13:11 L:D. Error bars represent the 

SEM. Significant effects of exposure type, remating, or their interaction are indicated at 

the top of the figure; NS = no significant effect (see Table 3.4 for statistics). 

 



 

39 

 

Table 3.4. ANOVA statistics describing the effect of low temperature exposure on 

the female reproductive output of Drosophila suzukii. Mated females of the different 

treatment groups (control, rapid cold-hardening = RCH, constant acclimation = CA, 

fluctuating acclimation = FA) were unexposed or exposed to -3.5 °C for an hour 

(exposure) and then not remated or remated (remating) with a single male. Retained 

terms with significant p-values (p < 0.05) are bolded. 

Treatment Term df F P 

Control Exposure 1 7.542 0.015 

 Remating 1 4.7 0.0494 

 Exposure × remating 1 0.004 0.95 

 Error 15   

     

RCH Exposure 1 3.37 0.083 

 Remating 1 1.95 0.18 

 Exposure × remating 1 0.54 0.48 

 Error 15   

     

CA Exposure 1 13.766 0.0014 

 Remating 1 0.49 0.5 

 Exposure × remating 1 0.828 0.37 

 Error 20   

     

FA Exposure 1 4.68 0.0471 

 Remating 1 14.649 0.0017 

 Exposure × remating 1 0.127 0.726 

 Error 15   
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Figure 3.10 Effect of low temperature exposure of Drosophila suzukii females on 

mass of female offspring. Dry mass (± SEM) of female offspring of D. suzukii females 

of the control (A) rapid cold-hardening = RCH (B), constant acclimation = CA (C) and 

fluctuating acclimation = FA group was determined after rearing eggs that were laid 

within the first two days into adults at 21.5 °C. Mated females (mothers) of the different 

treatment groups were unexposed or exposed to -3.5 °C for an hour (exposure) and then 

not remated or remated (remating) with a single male.  
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Table 3.5 ANOVA statistics describing the effect of low-temperature exposure of 

Drosophila suzukii females on the mass of female offspring. Mated females of the 

different treatment groups (control, rapid cold-hardening = RCH, constant acclimation = 

CA, fluctuating acclimation = FA) were unexposed or exposed to -3.5 °C for an hour 

(exposure) and then not remated or remated (remating) with a single male. Retained 

terms with significant p-values (p < 0.05) are bolded. 

Term Df F P 

Treatment 3 3.977 0.009 

Exposure 1 0.644 0.424 

Remating 1 5.745 0.018 

Treatment × exposure 3 2.362 0.074 

Treatment × remating 3 0.131 0.942 

Exposure × remating 1 0.064 0.801 

Treatment × exposure × remating 3 0.775 0.510 

Error 141 
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Figure 3.11 Effect of low temperature exposure on reproductive output of 

Drosophila suzukii males.  Males of the treatment groups control (A), rapid cold-

hardening = RCH (B), constant acclimation = CA (C) and fluctuating acclimation = FA 

(D) were unexposed or exposed to -3.5 °C for an hour and mated with one virgin female 

afterwards. The reproductive output as cumulative number of offspring was monitored 

over 20 days after the exposure. The dots indicate the cumulative number of 

offspring/male at each time point. The shaded area shows the 95 % confidence interval of 

the loess smoothed fit curve. 
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Table 3.6 ANOVA statistics describing the effect of low-temperature exposure of 

Drosophila suzukii on the sex ratio of offspring. Males or mated females of the 

different treatment groups (control, rapid cold-hardening = RCH, constant acclimation = 

CA, fluctuating acclimation = FA) were unexposed or exposed to -3.5 °C for an hour 

(exposure). Females were not remated or remated (remating) with a single male. Retained 

terms with significant p-values (p < 0.05) are bolded. 

Sex Term df F P 

Female Treatment 3 2.569 0.061 

 Exposure 1 0.051 0.821 

 Remating 1 1.187 0.279 

 Treatment × exposure 3 1.418 0.244 

 Treatment × remating 3 1.383 0.254 

 Exposure × remating 1 0.037 0.847 

 Treatment × exposure ×remating 3 0.877 0.457 

 Error 76   

     

Male Treatment 3 2.244 0.0832 

 Exposure 1 0.467 0.4947 

 Treatment × exposure 3 1.35 0.2583 

 Error 299   
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3.4 Reproductive output in a semi-field environment in late 

fall 

The effect of the semi-field environment in the fall (temperature and photoperiod) on the 

number of offspring produced by five females and males during one week was 

determined and compared to the reproductive output of flies held in an incubator at 21.5 

°C. In the semi-field environment in fall, D. suzukii produced fewer offspring than under 

controlled, indoor conditions (21.5 °C and 13 L: 11 D) (Figure 3.12). In the semi-field 

environment D. suzukii produced very few offspring after 22 October and completely 

ceased egg laying after 12 November (date F5,242 = 7.025, p< 0.001; treatment F1,242 = 

453.687, p< 0.001;date×treatment F5,242 = 2.555, p < 0.05). All flies were dead on 19 

November. Temperature and day length decreased over time (Table 3.7). After 15 

October, the temperature dropped below 0 °C. In the weeks before 29 October and 5 

November the minimum temperature was -4.4 °C and -3.4 °C, respectively.  
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 A: 1 Oct B: 8 Oct C: 15 Oct 

   

Figure 3.12 Effect of semi-field cage conditions on the reproductive output of Drosophila suzukii. Ten vials of five females and 

males were acclimated to October conditions and either placed outside in London, Ontario  (43°00′N 81°15′W) or into an incubator at 

21.5 °C and 13:11 L:D (control) on 1 October (A), 15 October (B) and 29 October (C). Flies were able to lay eggs for one week until 

vials were replaced (dates on x-axis). Eggs were reared into adults 21.5 °C and 13:11 L:D.  
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Table 3.7 Temperature and hours of light Drosophila suzukii was exposed to in the reproduction field cage. Weekly average 

temperatures ± (SE), weekly minimum temperature (both measured in cages) and median day length (Lammi, 2008) flies experienced 

in a cages placed outside in London, Ontario (43°00′N 81°15′W). 

Week 1 to 08 Oct 9 to 15-Oct 16 to 22 Oct 23 to 29 Oct 30 Oct to 05 Nov 06 to 12 Nov 

Average 

temperature (°C) 
13.0 ± 0.3 11.3 ± 0.2 5.1 ± 0.1 6.6 ±0.2 5.7 ± 0.2 5.3 ± 0.3 

Minimum 

temperature (°C) 
7.2 3.1 -0.9 -0.9 -4.4 -3.4 

Median day length 11 h 36 min 11 h 15 min 10 h 55 min 10 h 36 min 10 h 17 min 9 h 58 min 
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3.5 Survival at different overwintering microhabitats in a 

semi-field environment 

The overwintering survival of female and male adult D. suzukii was determined in field 

cages at overwintering sites buried beneath leaf litter, in a shed, and directly exposed 

outside, starting on 26 November 2013. All female and male flies of all locations sampled 

on 18 December 2013 were dead after a cold snap on 12 December. The flies that were 

directly exposed outside experienced the lowest temperatures (Tmin= -14 °C), followed by 

the ones in the shed (Tmin= -7.4 °C) and the ones that were buried beneath leaf litter 

(Tmin= -5.6 °C) (Figure 3.13). On 12 December the flies directly exposed outside 

experienced more than 22 h below -8 °C and the flies in the shed experienced -6 °C for 

more than four hours.  
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Temperatures between 27 Nov and 18 Dec 2014 Temperatures on 12 Dec 2014 

              A: Buried beneath leaf litter  

  

             B: Directly exposed outside  

  

             C: In shed  

  

Figure 3.13 Temperatures (°C) reported in the Drosophila suzukii overwintering 

field cages. Field cages were buried beneath leaf litter (A), directly exposed outside (B) 

and in a shed (C) within three weeks (left) and one day (right). The cages were placed 

outside in London, Ontario (43°00′N 81°15′W) on 27 November 2013.  A one hour 

exposure to temperatures between -6 °C (dashed line) and -8 °C (dotted line) caused high 

mortality in control flies under lab conditions (see section 3.1). The grey box marks 12 

December.  
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4 Discussion 

The overall goal of my project was to delimit the tolerance of adult D. suzukii to the 

overwintering stress of low temperatures in Ontario, Canada. Evaluating whether D. 

suzukii can or cannot survive winter conditions in Ontario and establish permanently is 

important for planning successful pest management.  

4.1 Acute effects of low temperatures on D. suzukii activity 

and survival 

Low temperatures set a threshold for activity, including mating and feeding, in fall and 

spring, due to the onset of chill coma at the critical thermal minimum. The CTmin80 ranged 

between +1.5 and -1.7 °C indicating that D. suzukii will not be active in winter (World 

Weather Online, 2014). Flies should be active and therefore found in traps at 

temperatures above the CTmin. However D. suzukii is only recorded in traps in Ontario 

between June and November (OMAFRA, 2014). The lack of D. suzukii in traps from 

March until June might be caused by mortality in the field and absence of repopulation 

from new sources. 

CTmin is used as a predictor for cold tolerance (Andersen et al., 2014) and is 

usually negatively-correlated with latitude (Gibert and Huey, 2001). The CTmin80 of D. 

suzukii is in the range of known chill coma onset temperatures of Drosophila, which can 

range between -2.9 °C in D. borealis, a species found in cold regions (MacMillan, 2013; 

Markow and O’Grady, 2006), and 8.2 °C in D. immigrans, which are able to overwinter 

in cold-temperate regions (Kimura and Beppu, 1993; MacMillan, 2013). Drosophila 

suzukii has a similar CTmin80 to D. kanekoi (-1.4 °C), which was originally collected in 

Hokkaido (Japan) (MacMillan, 2013), where the winter temperatures drop below -12 °C 

(World Weather Online, 2014); this could lead to the conclusion that the population of D. 

suzukii is from a cold-temperate region. However, D. auraria was also collected in same 

region as D. kanekoi and had a CTmin80 of +2.5 °C (MacMillan, 2013) and thus CTmin 

might not be a good predictor for cold tolerance, because it is an estimate of activity and 

not survival. 

Low-temperature survival depends on the ability to withstand freezing and 

chilling injury. Male and female adults of D. suzukii could not survive internal ice 
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formation or temperatures slightly above the SCP, which ranged between -17 °C and  

-23 °C. Thus, they are considered chill-susceptible (die of chilling injuries unrelated to 

freezing). Chill susceptibility and SCPs around -20 °C are common in Drosophila 

(Andersen et al., 2014; Czajka and Lee, 1990; Kimura, 1988b). The majority of insects 

are chill-susceptible and might therefore not be very cold hardy (Bale, 1996). However 

chill-susceptible species can survive winter conditions by overwintering in well buffered 

microhabitats, therefore minimizing low-temperature exposure (Danks, 1991). In the 

Yamanashi region in Japan D. suzukii overwinters beneath leaf litter (Kanzawa, 1939), 

yet winters in the Yamanashi region are warmer than winters in Ontario (World Weather 

Online, 2014). Drosophila suzukii might experience lower temperatures overwintering 

beneath leaf litter in Ontario, which causes mortality like that observed in the field cages.  

Because Drosophila suzukii is chill-susceptible, low-temperature exposure can 

induce lethal chilling injuries. In control flies a one-hour exposure to around -5 °C led to 

lethal chilling injuries. Females and males had a LT80-1h of -7.5 °C and -7.2 °C 

respectively. The LT90-2h (lower temperature at which 90 % die after 2 h exposure) for 

various Drosophila species was between -3 °C in D. ananassae and -13 °C in D. borealis 

(Nyamukondiwa et al., 2011). Because D. suzukii would have to overwinter in habitats 

that are comparable to the native range of D. borealis, it would be expected that D. 

suzukii would need to have similar LT90-2h to D. borealis. It is difficult to compare the 

lower lethal temperatures among studies due to differences in rearing conditions and 

exposure time. However, extending the acute low-temperature exposure to two hours 

would be expected to increase the lethal temperature.  This suggests that D. suzukii it is 

not as cold-hardy as D. borealis and not particularly cold-hardy relative to other 

Drosophila species. 

Survival after acute cold exposure of control flies showed a sudden decline 

between -5 and -8 °C, which indicates that the mortality occurs over a relatively broad 

range. The high variation around the LT80 in D. suzukii could have been caused by subtle 

differences in exposure or rearing conditions like differences in food quality (Colinet et 

al., 2012). However, I assessed survival after acute low-temperature exposure on several 

dates and there was no relation in survival to differences in rearing apparent in any trial, 
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indicating that subtle differences in exposure or rearing conditions did not affect LT80-1h. 

Therefore, rearing or exposure conditions might not cause the variation I observed. 

Further variation in lethal temperature could be caused by genetic differences in the 

tested flies (Ayrinhac et al., 2004; Bubliy et al., 2002). A high genetic variation can be 

expected in this experiment, because I used an outbred population with (presumably) 

high genetic variation. 

Neither females nor males of D. suzukii survived winter conditions in field cages 

which were directly exposed outside, stored in a shed or buried beneath leaf litter. Flies in 

the field cages in all locations experienced temperatures below -5 °C. The mortality under 

these conditions is not surprising, because mortality begins after 1 h exposure to -5 °C. 

Chilling injuries not only depend on the severity of low-temperature exposure, but also 

time period of exposure. While a one-hour exposure to 0 °C is non-lethal, a chronic cold 

exposure to 0 °C led to an Lt80 of 93 h (control) and 165 h (FA) in females and 70 h 

(control) and 112 h (FA) in males. As 0 °C is the temperature in a well-buffered 

overwintering habitat in the cold temperate regions, it indicates that D. suzukii is highly 

susceptible to accumulating lethal chilling injuries within a week of being outside, which 

explains the mortality of D. suzukii in the field cages along with the extreme cold snap.  

4.1.1 Plasticity of low-temperature tolerance in D. suzukii 

Insects can change their cold hardiness in response to seasonal changes in fall. 

Rapid cold-hardening (RCH) increases cold tolerance after short term cold exposure and 

acclimation/acclimatization enhances cold hardiness on a longer term scale related to 

seasonal changes in temperature and photoperiod (Lee and Denlinger, 1991). Adult D. 

suzukii experienced a RCH treatment, constant acclimation (CA) and fluctuating 

acclimation (FA) to test for phenotypic plasticity of this species. Depending on the pre-

treatment, D. suzukii adults displayed differences in the modification of low-temperature 

tolerance. 

The RCH treatment did not change the cold tolerance strategy (chill-susceptible) 

or affect the SCP of D. suzukii adults. RCH increased CTmin in D. suzukii, although RCH 

decreased CTmin in D. melanogaster (Ransberry et al., 2011). The RCH group did not 

display an increase in acute low-temperature survival compared to the control group. This 
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lack in RCH response has been reported in a few drosophilids, that are not closely related 

to D. suzukii; however RCH increased survival by 14 to 90 % in a variety of other 

Drosophila species that are closely related to D. suzukii (Mitchell et al., 2013; 

Nyamukondiwa et al., 2011). Drosophila suzukii might not display an RCH response, 

because the right triggers for a RCH response were not provided in the experiment or D. 

suzukii does not have a RCH response. Rapid cold-hardening might only be induced in 

younger flies (Czajka and Lee, 1990), after pre-exposure to a lower temperature (Sinclair 

and Chown, 2006) or through ramping during the pre-treatment (Kelty and Lee, 1999). In 

a microclimate where the temperature drops below 0 °C often, an induction of RCH at  

0 °C could be costly due to upregulation of heat shock proteins and selection may have 

acted against an RCH response at 0 °C (Sinclair and Chown, 2006). While D. suzukii did 

not exhibit an RCH response, acclimation did modify their cold tolerance, which shows 

that plasticity is not impossible. 

Acclimation modified low-temperature performance in D. suzukii. Adults of the 

CA and FA groups were chill-susceptible and their SCP did not differ from the other 

treatment groups, but both CA and FA decreased chill coma recovery and mortality after 

acute cold exposure. This increase in low-temperature performance is common in 

Drosophila species (Rako and Hoffmann, 2006; Ransberry et al., 2011). Flies of the FA 

group survived an exposure to 0 °C three days longer than control flies.  However, flies 

only survived for approximately a week at 0 °C. Surprisingly, flies of the CA group 

showed an increase in CTmin, whereas flies of the FA group showed a decrease in CTmin 

(as is expected for cold acclimation in Drosophila; Ransberry et al., 2011). While CA is 

beneficial for the flies, because it increases survival after acute cold exposure and 

decreases CCR, it could still be costly due to the physiological changes that increase cold 

tolerance (MacMillan and Sinclair, 2011; Storey, 1997). FA increases low-temperature 

performance in comparison to CA, which is not surprising, because ecologically-based 

thermoperiods are known to decrease mortality after acute cold exposure and CTmin in D. 

melanogaster (Kelty and Lee, 2001). Fluctuating conditions simulate natural variation in 

photoperiod and temperature, which give cues, that are more likely to induce phenotypic 

plasticity (Colinet et al., 2014). In addition, the warm periods allow physiological 
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changes that insects cannot undergo during low-temperature periods (Colinet et al., 

2014).  

The lack of variation in SCP among treatment groups is not surprising, because a 

decrease in SCP would only be advantageous for freeze-avoiding insects that suppress the 

SCP to survive at lower temperatures (Lee and Denlinger, 1991). However some chill-

susceptible insects depress the SCP due to physiological changes, like the increased 

glucose content in the chill-susceptible blow fly larvae Calliphora vicina Robineau-

Desvoidy (Diptera: Calliphoridae) (Coleman et al., 2014). In the case of D. suzukii, 

because chilling injuries induce mortality at temperatures much higher than the SCP, 

modifying the SCP would be unlikely to alter cold tolerance. 

The increased low-temperature performance observed in acclimated D. suzukii 

adults but not RCH adults likely occurred because long-term acclimation is based on 

different mechanisms than RCH (Teets and Denlinger, 2013). Acclimation induces 

accumulation of cryoprotectants (Lee and Denlinger, 1991), such as low molecular 

weight sugar alcohols like glycerol and sorbitol in E. solidaginis (Storey and Storey, 

1983) and myo-inositol in D. montana (Vesala et al., 2012b). In addition, amino acids 

like proline increased cold tolerance in D. melanogaster larvae (Koštál et al., 2012), and 

several Drosophila species showed an increase in trehalose late fall (Kimura et al., 1992). 

RCH and acclimation both led to modifications of lipid membranes to increase membrane 

fluidity at low temperatures (Michaud and Denlinger, 2006; Overgaard et al., 2006; Pruitt 

and Lu, 2014). However modifications in the lipid membrane of D. melanogaster after 

RCH was not confirmed in all studies (MacMillan et al., 2009). Heat shock genes are 

only upregulated in acclimated, but not RCH-treated Drosophila (Vesala et al., 2012a). 

Cryoprotectants should be measured to investigate the mechanisms related to RCH and 

acclimation response in D. suzukii. If D. suzukii is able to accumulate cryoprotectants, it 

would suggest a mechanism by which low temperature tolerance is modified in these 

animals. 

Cold-acclimated individuals not only perform better at low temperatures in the 

laboratory than non-acclimated individual, but also in the field at low temperatures 

(Kristensen et al., 2008; Terblanche, 2014). It was therefore expected that low 

http://en.wikipedia.org/wiki/Jean-Baptiste_Robineau-Desvoidy
http://en.wikipedia.org/wiki/Jean-Baptiste_Robineau-Desvoidy
http://en.wikipedia.org/wiki/Calliphoridae
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temperature acclimated D. suzukii would perform better under low-temperature 

conditions in the field. Although FA flies showed the highest cold tolerance of the tested 

flies, they could not survive a chronic cold exposure to 0 °C for more than a week. This 

indicated that acclimated adult D. suzukii have little potential to overwinter beneath leaf 

litter in Ontario, because the temperature beneath leaf litter is around 0 °C. The lack of 

overwintering potential in acclimated adult D. suzukii is supported by the mortality of 

flies that were held overwintering field cages beneath leaf litter. 

While laboratory and semi-field experiments suggest D. suzukii is not sufficiently 

cold-hardy to overwinter in Ontario, a number of other factors may alter low-temperature 

performance. Drosophila suzukii is a multivoltine species, and therefore seasonal changes 

would not only affect adults, but also pre-adult stages. For example, cross-generation and 

developmental acclimation increased low-temperature performance in D. melanogaster 

(Bubliy et al., 2002; Ransberry et al., 2011; Watson and Hoffmann, 1995). To test the 

effect of cross-generation and developmental acclimation on low-temperature tolerance 

of D. suzukii, adults should be allowed lay eggs that are reared into adults (cross-

generation and developmental acclimation; Watson and Hoffmann, 1995) or pre-adult 

stages should be reared into adults (developmental acclimation) under short day length 

and low temperatures (Ransberry et al., 2011). If cross-generation and developmental 

acclimation exists in D. suzukii, this should increase low-temperature performance of the 

offspring. 

Food sources change with the season which could lead to changes in nutrient 

availability. Because food ingredients like yeast and sugars can affect cold tolerance 

(Colinet and Renault, 2014; Colinet et al., 2012), food ingredients could influence the 

thermal performance of D. suzukii. Also, D. suzukii is reared on artificial banana-based 

food, while D. suzukii is feeding on thin-skinned fruits such as blueberries in the field 

(Kanzawa, 1939), which could affect the low-temperature performance. Therefore the 

plasticity of low-temperature performance due to different food sources should be tested. 

4.2 Effect of low-temperature exposure on reproduction 

Low temperatures not only affect survival and activity boundaries, but also reproduction 

(Hoffmann, 2010). Low-temperature exposure can decrease reproductive output as an 
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adaptive response through reproductive diapause (Kimura, 1988a) or a passive response 

due to low-temperature exposure, perhaps mediated by the direct effects of cold exposure 

on the reproductive system (Marshall and Sinclair, 2010). The effect of seasonal changes 

on ovarian development was determined by dissecting the ovaries of flies from the 

control, RCH, CA and FA group. To test the effect of low temperatures on reproduction 

of D. suzukii, flies were exposed to a non-lethal cold shock (-3.5 °C) and the reproductive 

output was determined. 

Brief low-temperature exposure (2 h) can reduce the number of offspring in D. 

melanogaster (Marshall and Sinclair, 2010). In females of all treatment groups of D. 

suzukii, an exposure to -3.5 °C for 1 h decreased the number of offspring in comparison 

to non-cold exposed flies. Even though phenotypic plasticity increased low-temperature 

performance regarding survival and chill coma of D. suzukii from the FA and CA groups, 

none of the females of the different treatment groups showed an increase in low-

temperature performance regarding reproductive output after cold exposure. The RCH 

treatment compounded the negative effect of low temperature on reproduction. The 

decrease in reproductive output due to acute low-temperature exposure could be caused 

by direct damage and effects on behaviour due to chilling injuries. Cold-exposed flies 

might allocate their resources to repairing the cold damage instead of reproduction 

(Marshall and Sinclair, 2010), and could display differences in courtship and mating 

behaviour (Shreve and Lee, 2004). Genes that control egg production are upregulated 

after cold exposure (Zhang et al., 2011) which could indicate that immature eggs are 

damaged during the cold exposure. In addition, low-temperature exposure led to damage 

or disposal of sperm stores of females in D. melanogaster (Ashburner et al. 2005). After 

cold exposure, remating increased the number of offspring, which might suggest a 

negative effect of cold on sperm stores. Thus, it appears that males would have to survive 

winter conditions to increase reproductive output and for D. suzukii to successfully 

establish in Ontario. However an increase in offspring can also be caused by the transfer 

of sex peptides in the seminal fluid, which increase the egg laying rate (reviewed by 

Kubli 2003). 
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While cold-exposed control and CA males had the same number of offspring as 

non-cold-exposed males after 18 days, RCH and FA males did not. Low temperatures 

could have a negative effect on sperm quality as shown in D. melanogaster (Watson and 

Hoffmann, 1995), as well as on courtship and mating activity of male D. suzukii. During 

courtship, Drosophila males flick, vibrate, and wave their wings (Spieth, 1974). Because 

cold exposure can damage the flight muscles (Yi et al., 2007) it might decrease courtship 

performance, although RCH decreased damage to flight muscles in D. melanogaster (Yi 

et al., 2007) and therefore might improve courtship and mating behaviour (Shreve and 

Lee, 2004). Because sperm production is not very energetically-costly compared to egg 

production, the effect of low-temperature exposure on the reproductive output of males is 

not as severe as on female reproductive output. All males were able to reproduce after 

low-temperature exposure, which shows protection or recovery of the gonads. 

Cold-exposed females had fewer offspring than non-cold exposed females, but 

there were no differences in dry mass of the offspring from cold exposed and non-cold 

exposed females, suggesting that there is no trade-off between quantity and quality of 

offspring. Measuring the dry weight of offspring of adults might not be a sufficient 

measure to indicate a trade-off as eggs were laid and reared into adults at 21.5 °C. These 

rearing conditions might not lead to a difference between the offspring from cold exposed 

and non-cold exposed females regarding weight. In D. melanogaster rearing flies at lower 

temperatures increased body size and wing area (Frazier et al., 2008; Partridge et al., 

1994). Additional measures of performance of these offspring could include measuring 

effect of parental acclimation on cold performance of the offspring, because in D. 

simulans the exposure of acclimated females to non-lethal cold shock leads to an increase 

in low-temperature performance of their offspring (Watson and Hoffmann, 1995).  

Low-temperature exposure of females or males did not affect the sex ratio of the 

offspring, which indicated that there is no effect on sperm regarding sex determination. 

Long and Pischedda (2005) hypothesize that females can bias sex ratio, because females 

of D. melanogaster seem to be able to bias sex ratio towards females, when they are 

mated with old males, because sons of older males performed worse in mating assays 

than sons of younger males. This could indicate that cold-exposed males are not less 
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attractive than non-cold-exposed males. However, a mating choice experiment needs to 

be performed to verify this. In D. melanogaster repeated cold exposure leads to a male-

biased sex ratio, which could be adaptive, or could be because females are more costly to 

produce than males (Marshall and Sinclair, 2010). A single cold exposure, however, did 

not affect the sex ratio in D. melanogaster (Marshall and Sinclair, 2010). Thus, a single 

cold exposure might not affect sex ratio in D. suzukii, and the effect of repeated cold 

exposures on the sex ratio should be tested. 

Long-term low-temperature exposure may induce diapause (state of arrested 

development) and thus energy might be allocated to storage and not reproduction (Hahn 

and Denlinger, 2007). In some Drosophila species, females can enter an ovarian or 

reproductive diapause that is induced by low temperatures and short photoperiod 

(Saunders et al., 1989; Williams and Sokolowski, 1993). In D. suzukii, none of the 

treatments led to reproductive diapause, but FA females had significantly smaller ovaries 

with fewer eggs than the other treatment groups. All flies still produced viable offspring. 

Flies of the FA treatment might undergo a trade-off between reproduction and 

accumulation of energy reserves to prepare for winter (Hahn and Denlinger, 2011). An 

increase in energy stores might help D. suzukii to cope with the winters in Ontario - 

particularly in mild microhabitats such as beneath snow or in buildings, and make them 

more likely to establish, which could be tested in future. 

Reproductive diapause might not have been induced in my experiments due to a 

lack of capacity for diapause, or because the environmental cues inducing reproductive 

diapause were absent. Populations of Drosophila species and populations from higher 

latitudes entered reproductive diapause at longer days (earlier in the year) than 

populations from lower latitudes (Ichijo, 1986; Kimura et al., 1993). Thus, the cues to 

induce diapause are highly variable among species and populations, and the RCH, FA 

and CA treatments might not be sufficient to induce reproductive diapause in D. suzukii. 

In addition, reproductive diapause in D. melanogaster was induced during pre-adult 

stages (Williams and Sokolowski, 1993) or in newly-eclosed (< 8h) adults (Saunders et 

al., 1989). Because I only used females that were at least one day old, it is most likely 

that the flies had developed past the critical period for diapause determination.  
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Determining if developmental acclimation or acclimation of virgin females might trigger 

reproductive diapause would be necessary to determine overwintering survival because 

low-temperature tolerance was affected by ovarian diapause in cold-temperate species but 

not in warm-temperate species (Kimura, 1988b). In D. melanogaster the proportion of 

diapausing flies increased with latitude, which might indicate selection pressure under 

low-temperature stress towards diapause (Williams and Sokolowski, 1993). Drosophilids 

that are not able to enter reproductive diapause might have low overwintering potential 

under natural conditions and might only be able to overwinter in human-made structures 

(Kimura, 2004). If D. suzukii has no reproductive diapause, it could indicate that D. 

suzukii has low overwintering potential in cold regions.  

There were no offspring from adults in field cages in late fall, which is most likely a 

passive cold effect rather than reproductive diapause, since the temperatures in the field 

cage dropped below -3.5 °C. It seems unlikely that the cessation of reproduction is 

caused by D. suzukii in the field entering reproductive diapause, because I only put adults 

into the field cages and adults in the laboratory did not enter reproductive diapause; 

however, ovaries of the flies in the semi-field cages were not dissected.  

4.3 Ecological relevance 

Laboratory studies reveal limits for stress resistance, and the results can be extrapolated 

to field conditions (Terblanche, 2014). The critical thermal minimum may be a good 

predictor for activity in early fall and spring, and determining the cold tolerance strategy 

allows making predictions about the overwintering microhabitat. In addition, determining 

the effect of acute low-temperature exposure on reproduction and survival allows us to 

delimit the effects of low-temperature exposure on fitness. In the lab, chronic exposure to 

0 °C led to an Lt80 of 165 h and 112 h in females and males of the FA group respectively. 

Chronic exposure to 0 °C simulates low-temperature exposure in a well-buffered 

overwintering habitat like beneath leaf litter and snow cover (Danks, 1991). Because D. 

suzukii died after eight days in the chronic cold experiment, it is not surprising D. suzukii 

beneath leaf litter in the semi-field cage died. 

However, laboratory experiments cannot fully replicate natural conditions. In my 

experiment I used a single one-hour cold exposure to test the effect of low temperature on 
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survival. Under natural conditions flies would experience multiple cold exposures, which 

has resulted in less mortality in D. melanogaster than flies exposed to low temperatures 

for the same time period (Marshall & Sinclair, 2010). Low-temperature tolerance of D. 

suzukii might also increase under multiple cold exposures, therefore simulating this 

would allow for better prediction of survival of D. suzukii under natural conditions. 

Fluctuating temperatures that result in multiple cold exposures can have both negative 

and positive effects on low-temperature performance (Colinet et al. in press). Warm 

periods can be especially energetically costly, because they lead to an increase in 

metabolic rate (Williams et al., 2012a), and consumption of ATP to re-establish ion 

homeostasis to recovery from chill coma (MacMillan et al., 2012). Nonetheless, 

temperature fluctuations that result in low enough temperatures can induce RCH and 

increase survival at low temperatures (Colinet et al., in press). However D. suzukii might 

lack an RCH response, and therefore might not show an increase in low-temperature 

tolerance after repeated cold exposure. Because the responses to fluctuating temperatures 

and repeated cold can be idiosyncratic (Colinet et al., 2014; Marshall and Sinclair, 

2012b), the effects of repeated cold on D. suzukii need to be explicitly explored in the 

laboratory.  

In the field, insects experience multiple abiotic and biotic stressors that interact 

and vary on spatial and temporal scales, which can result in lower survival in the field 

than in the lab (Koštál et al., 2014). Overwintering insects experience desiccation stress, 

because they cannot acquire water when much of the environmental water is frozen, and 

dormant insects may lack the ability to adjust water balance (Danks, 2000). In addition, 

sub-zero temperatures create a desiccating environment, because the vapor pressure of 

the frozen environment is lower than the one in the insect’s body (Danks, 2000). 

Desiccation stress not only affects survival but also reproduction, as shown in C. pipiens, 

where desiccation stress decreased energy stores and egg-laying capacity (Benoit et al., 

2010).  Overwintering insects also risk starvation as food resources are unavailable and 

insects might not feed during winter. The temperature in the overwintering habitat 

directly influences energy consumption, and therefore not only affects survival but also 

reproduction (Irwin and Lee, 2003; Williams et al., 2012a). Because overwintering 

insects experience these stressors simultaneously, it is not surprising that the protective 
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mechanisms (“cross-tolerance”) and signaling pathways (“cross-talk”) may overlap 

(Sinclair et al., 2013). However, there are few studies on the interaction of multiple 

stressors in Drosophila. To fully understand the effect of the interaction of multiple 

stressors during winter on survival of D. suzukii, flies should be exposed to related 

stressors such as desiccation or starvation at various temperatures and humidities. 

Low-temperature performance can vary among populations (Sinclair et al., 2012). 

Depending on the origin, flies could display differences in cold tolerance as there is a 

latitudinal cline in cold tolerance for a wide variety of drosophilids (Hoffmann et al., 

2001). For example, the cosmopolitan D. melanogaster recovers slightly faster from chill 

coma if the individual originated from a population in temperate, compared to tropical 

regions (Gibert et al., 2001). In D. suzukii, low-temperature tolerance measurements were 

only performed with adult flies originating from a population created by flies caught in 

the Halton Hills region. In other regions, populations of D. suzukii could originate from 

warmer or colder regions, and might therefore display differences in thermal 

performance. While it is unclear if the populations in Ontario differ in their origin, 

genetic differences between populations in the United States and Europe indicate 

different introduction events (Adrion et al., 2014). Populations in Ontario will likely 

undergo high selective pressure for low-temperature tolerance and might evolve higher 

tolerance over time if any survive and reproduce (Gibert et al., 2001; Hoffmann et al., 

2001). Because D. suzukii shows genetic variation and phenotypic plasticity in low 

temperature performance, there could be selection towards an increased low-temperature 

tolerance leading to local adaptation in Ontario (Gibert and Huey, 2001; Hoffmann et al., 

2003). Lab adaptations (Gilchrist et al., 2014) and inbreeding (Bechsgaard et al., 2013) 

could have changed the cold tolerance in the tested flies; however multiple studies 

indicate that among-species variation remains under laboratory conditions (Ayrinhac et 

al., 2004; Kellermann et al., 2009), and that cold tolerance is not affected (Strachan et al., 

2011). 

In this project only adults were used for experiments, as adults were the 

overwintering life stage in Japan (Kanzawa, 1939) and many drosophilids overwinter as 

adults (Kimura, 1988b). Low-temperature performance might be different for eggs, 
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larvae or pupae. Most of the Drosophila larvae are chill-susceptible; however larvae of 

some species are freeze-avoiding (Strachan et al., 2011), which might indicate that larvae 

of some species can survive low-temperature exposure and overwinter. Only five out of 

the 22 tested larvae species showed an increase in survival after RCH (Strachan et al., 

2011), while the majority of  adults showed a RCH response (Nyamukondiwa et al., 

2011), which implies that adults are more likely to show a RCH response (Mitchell et al., 

2013). Although it seems most likely that adults are the overwintering life stage, the low-

temperature performance of pre-adult stages should be assessed to further delimit 

overwintering potential. 

4.4 Does D. suzukii have the potential to successfully 

overwinter in Ontario? 

Chill coma, and therefore activity boundaries, depend on the intensity and time 

period of low-temperature exposure (MacMillan and Sinclair, 2011). Drosophila suzukii 

entered chill coma after an exposure to 0 °C for approximately one hour, and thus it is 

expected to be in chill coma when temperatures drop below 0 °C for a longer period. In 

Ontario, the average air temperature can drop below 0 °C from November until March 

(World Weather Online, 2014), which limits D. suzukii’s activity during these months if 

the temperatures or time periods of low-temperature exposure sufficient. However the 

Ontario Ministry of Agriculture, Food and Rural Affairs has reported D. suzukii in traps 

from June until late November (OMAFRA, 2014), suggesting that the absence of D. 

suzukii is not only limited by activity. 

Drosophila suzukii is chill-susceptible, not very cold tolerant, and cannot survive 

direct exposure to low air temperatures in winters regularly recorded in Ontario. As a 

consequence, they likely utilize microhabitats that do not expose them to extremely low 

temperatures. Such microhabitats could be beneath leaf litter as found in Japan 

(Kanzawa, 1939), or in human-made structures. Nonetheless, neither females nor males 

of D. suzukii survive winter conditions in field cages which were stored in a shed or 

buried beneath leaf litter.  

In the Yamanashi region in Japan adults were found to be overwintering beneath 

leaf litter (Kanzawa, 1939), but the temperatures that D. suzukii might be experiencing in 
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that microhabitat might be higher as the average low temperature in the Yamanashi 

region is higher than in Ontario. In Ontario the temperatures in winter 2013/2014 were 

lower on average with more extreme minima, and temperatures remained lower for a 

longer period than in the years 2011/2012 and 2012/2013 in Ontario (Climate Cananda, 

2014), which probably led to mortality of D. suzukii in the field. In warmer years the 

survival might be higher. 

In Ontario, the first captures of D. suzukii in the year are usually in June or July 

(OMAFRA, 2014). This relatively late capture in the season supports the claim that D. 

suzukii cannot survive in the winter conditions in Ontario, and suggests that D. suzukii re-

invades Ontario from warmer regions, where they can overwinter. Drosophila suzukii 

could re-invade Ontario through passive migration in imported infested fruits. Therefore, 

limiting fruit transport from regions where D. suzukii might be overwintering could be 

important in limiting the economic impact of this pest in Ontario.  

 Low-temperature exposure has a negative impact on the reproductive output of 

females, which impedes their ability to establish a population in cold temperate climates. 

However remating increased the number of offspring after cold exposure, which indicates 

that if males survive winter and then reproduce, the population could recover following 

cold conditions. Males were able to reproduce after cold exposure, which might be to be 

caused by low costs of sperm production. While there was no evidence for reproductive 

diapause after acclimation of adults, it might be necessary to acclimate pre-adult stages to 

cease ovarian development (Saunders et al., 1989). 

In Ontario, overwintering in human-made structures has been reported for various 

invasive pest species like the western conifer seed bug, Leptoglossus occidentalis 

Heidemann (Hemiptera: Coreidae), (Blatt, 1991), the Eastern subterranean termite 

(Clarke et al., 2013) and the brown marmorated stink bug (Lee et al., 2014). If D. suzukii 

overwinters in heated man-made structures, food and water sources might be limited, 

which thus may cause starvation and desiccation stress. Insects may tolerate desiccation 

through a higher initial water content, lower water loss rate and/or a lower lethal water 

limit (Danks, 2000). Therefore, determining survival, water content, lower water loss 

rate, and lower lethal water limit under desiccating conditions would be necessary to 
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delimit desiccation tolerance of D. suzukii and test its likelihood to survive in human-

made structures. In order to survive starvation stress, insects accumulate energy store 

prior to overwintering. This energy supply must be sufficient to last through winter, as 

well as for metamorphosis and reproduction after winter (Hahn & Denlinger, 2011). As 

flies are ectotherms, their body temperature depends on the environmental temperature, 

which directly influences the metabolism and therefore energy utilization. Insects 

decrease their metabolic rates through ecological and physiological changes in order to 

conserve their energy stores. To delimit starvation resistance it is necessary to measure 

initial energy stores, the use of energy under starvation conditions, and lower lethal 

energy stores. 

4.5 Conclusions and recommendations 

Low winter temperatures in Ontario set boundaries for reproduction, activity and survival 

in D. suzukii. Cold shock reduces reproductive output of females; however, remating 

after cold shock increased the number of offspring, which indicates that both females and 

males have to survive winter conditions to successfully establish. The critical thermal 

minimum indicates that D. suzukii will not be active below 0 °C, which will restrict its 

activity from November until April in Ontario. This chill-susceptible species did not 

show a RCH response, and although acclimation of adults increased low-temperature 

performance, flies could not survive chronic cold exposure to 0 °C for more than eight 

days. Thus, it is not surprising that flies placed outside in field cages beneath leaf litter 

during winter 2013/2014 did not survive. Although developmental acclimation might 

induce reproductive diapause and could increase cold tolerance, we know that acclimated 

adult flies are unable to survive winter field conditions in Ontario. One consideration is 

that the winter of 2013/2014 was an extremely cold winter, and warmer winters might not 

kill D. suzukii. This could lead to a stochastic invasion of D. suzukii, due to successful 

overwintering in warm winters and mortality in cold winters.  

Drosophila suzukii seems to be unable to survive winter conditions in Ontario. 

However these flies might be able to overwinter in heated, human-made structures. 

Additionally, or alternatively, they may be imported with infested fruits each spring. 

While future research investigating desiccation and starvation stress of D. suzukii is 
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needed to delimit their overwintering potential in human-made structures, it may be 

proactive to limit potential overwintering habitats. In addition, measures need to be 

adopted to reduce or manage the rate of importation of potentially infested fruits. 
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