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Abstract 

The metal-halide complexes bearing monodentate N-heterocyclic carbenes [PdI2(
iPr2-

bimy)2], [NiI2(
iPr2-bimy)2], [PdI2(

nBu2-bimy)2] (trans-1) and [NiBr2(
nBu2-bimy)2] (trans-2); 

bimy = benzimidazole-2-ylidene, react under mild conditions with Li[P(SiMe3)2], in a 1:1 

ratio, to provide metal-halido-silylphosphido complexes [PdI(iPr2-bimy)2{P(SiMe3)2}] (trans-

3), [NiI(iPr2-bimy)2{P(SiMe3)2}] (trans-4), [PdI(nBu2-bimy)2{P(SiMe3)2}] (trans-5) and 

[NiBr(nBu2-bimy)2{P(SiMe3)2}] (trans-6). The reaction of a dimeric gold(I) complex with a 

bidentate N-heterocyclic carbene, [Au2Cl2(
nBu4-benzo(imy)2)]; benzo(imy)2 =  

benzobis(imidazole-2-ylidene), with Li[P(SiMe3)2], in a 1:2 ratio, results in the formation of 

the metal-bis(trimethylsilyl)phosphido complex [Au2(
nBu4-benzo(imy)2){P(SiMe3)2}2] (7).  

The carbonyl addition reactions with the metal-halido-silylphosphido complexes 

trans-3 and trans-4, with benzoyl chloride is also studied wherein, they lead to the formation 

of two new metal-halido-dibenzoylphosphido complexes, [PdI(iPr2-bimy)2P{C(O)Ph}2] 

(trans-8) and [NiI(iPr2-bimy)2P{C(O)Ph}2] (trans-9). NMR spectroscopy, X-ray 

crystallography, mass spectrometry  and elemental analysis are used to analyze these 

coordination complexes.  

Keywords: N-heterocyclic carbenes, benzimidazole-2-ylidene, benzobis(imidazole-

2-ylidene), silylphosphido, carbonyl addition, benzoyl chloride, NMR spectroscopy, X-ray 

crystallography, mass spectrometry, elemental analysis. 
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1. INTRODUCTION 

Tris(trialkylsilyl)phosphines and their substituted lithium phosphidos are valuable 

synthons which are widely used for the formation of multiple bonds between metal and a 

phosphorus atom [1-8].  The lithiation of tris(trialkylsilyl)phosphine with n-butyllithium 

leads to the formation of lithium-bis(trialkylsilyl)phosphido, Li[P(SiMe3)2], which is 

commonly used in phosphorus chemistry as a strong, sterically hindered base [9]. Although 

using the highly reactive tris(trialkylsilyl)phosphines causes some handling difficulties, their 

unique electron donating and steric bulk properties make them excellent reagents in metal-

silylphosphido chemistry [1].  

1.1 Metal-Bis(trimethylsilyl)phosphido Complexes 

The bis(trimethylsilyl)phosphido group can be transferred to many metals and 

nonmetals by the reaction of Li[P(SiMe3)2] with various metal/non-metal halides. Several 

reports are available in this area of research [1-8].  

A review on the development of metal-phosphorus chemistry which relies on the use 

of Li[P(SiMe3)2] reagent is presented here. It has been shown that nucleophilic addition of 

Li[P(SiMe3)2] to the complex of [(η5-C5H5)(CO)2FeX]; X = Br, Cl, resulted in the formation 

of the first iron complex containing a terminal silylphosphido group [(η5-

C5H5)(CO)2Fe{P(SiMe3)2}] [7]. This complex was reacted with Ni(CO)4 and Fe2(CO)9 to 
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obtain the P(SiMe3)2-bridged complexes [(η5-C5H5)(CO)2Fe{μ-P(SiMe3)2}Ni(CO)3] and [(η5-

C5H5)(CO)2Fe{μ-P(SiMe3)2}Fe(CO)4], respectively. A CO-bridged complex [(η5-

C5H5)(CO)Fe{μ-CO, μ-P(SiMe3)2}Ni(CO)3] was formed upon UV-irradiation of the [(η5-

C5H5)(CO)2Fe{μ-P(SiMe3)2}Ni(CO)3]. Moreover, the study of P─Si bond cleavage by 

reaction with methanol resulted in the formation of PH2-bridged complexes, [(η5-

C5H5)(CO)2Fe{μ-PH2}Ni(CO)3]  and [(η5-C5H5)(CO)2Fe{μ-PH2}Fe(CO)4] (see Scheme  1.1). 

 

Scheme  1.1: Iron complexes terminally bonded or bridged to P(SiMe3)2 [7].  

The bis(trimethylsilyl)phosphido complex, [(η5-C5H4Me)2Zr{P(SiMe3)2}2], was 

prepared by the reaction of two equivalents of Li[P(SiMe3)2] with [(η5-C5H4Me)2ZrCl2] [3] 
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(see Scheme  1.2). The presence of two equivalent P atoms was confirmed by variable 

temperature 31P NMR studies (-100 to 25 °C). Their resonances were exhibited at -75.3 ppm 

(25 °C) and -86.2 ppm (-100 °C) which significantly shifted downfield (from -297 ppm in 

Li[P(SiMe3)2]) due to the partial multiple bond character of Zr─P bonds (see Figure  1.1). X-

ray crystallography data showed that [(η5-C5H4Me)2Zr{P(SiMe3)2}2] had two almost 

identical Zr─P bonds and each phosphido group indicated a nearly planar arrangement. 

 

Scheme  1.2: Synthesis of  [(η5-C5H4Me)2Zr{P(SiMe3)2}2] complex [3].  

 

Figure  1.1: Multiple bond character of Zr-P bond in [(η5-C5H4Me)2Zr{P(SiMe3)2}2]  [3].  

The reaction of [{(tBu-DAB)GaI}2]; 
tBu-DAB = {(tBu)NC(H)}2, with the alkali metal 

pnictides M[E(SiMe3)2]; M = Li or Na; E = N, P, or As, was performed under a range of 

stoichiometries [10]. The 1:2 and 1:4 reactions led to the gallium(II) [(tBu-

DAB)GaI{E(SiMe3)2}] and [(tBu-DAB)Ga{E(SiMe3)2}2]; E = N, P, or As, respectively [10] 

(see Scheme  1.3).  
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Scheme  1.3: Synthesis of  [(tBu-DAB)Ga{P(SiMe3)2}2] [10].  

Two square planar platinum(II)-bis(trimethylsilyl)phosphido complexes trans-

[PtCl(Et3P)2{P(SiMe3)2}]  and trans-[Pt(Et3P)2{P(SiMe3)2}2] were reported as the first 

platinum complexes bearing silylphosphido ligands [11].  The substitution products were 

initially formed in the reactions of [PtCl2(Et3P)2] with Li[P(SiMe3)2] at low temperatures. 

Note that trans-[Pt(Et3P)2{P(SiMe3)2}2] was not stable in solution and immediately 

decomposed at ambient temperature. Elimination of P(SiMe3)3 and PEt3 from the complex 

resulted in a mixture of the diphosphene complex [Pt(Et3P)2{η2-(PSiMe3)2}] and the 

phosphido-bridged platinum(I) complex [(Pt—Pt){Et3PPtP(SiMe3)2}2]. Heating trans-

[PtCl(Et3P)2{P(SiMe3)2}] to 80 ºC in solution yielded the P2-complex [(Et3P)2Pt]2P2],  which 

was also unstable at higher temperatures (see Figure  1.2). Similar results were reported for 

trans-[NiCl(Et3P)2{P(SiMe3)2}] and trans-[Ni(Et3P)2{P(SiMe3)2}2] [12].  

Analogous reactions of trans-[PtCl2(PPh3)2] with Li[P(SiMe3)2], [(Me3Si)2P]2 and 

[Me3Si(Me3C)P]2 were much more difficult to survey [11]. The complexes (Ph3P)2Pt[η2-

(PSiMe3)2], [{Ph3P)Pt]2P2 and (Ph3P)Pt[η2-(PCMe3)2] were detectable via NMR 

spectroscopy; however, they could not be isolated as pure compounds [11]. This was due to 

the steric and electronic properties of the triphenylphosphine ligand which made the complex 

formation more difficult than that of the triethylphosphine complexes [11].  
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Figure  1.2: Reactivity patterns for Pt-P(SiMe3)2 complexes [11]. 

1.2 Electronic and Steric Properties of Phosphines and NHCs 

The behavior of the free tertiary phosphines and their transition metal complexes 

could be remarkably changed by altering substituents on the phosphorus ligands [13]. A 

review on the steric effects of phosphorus ligands in organometallic chemistry was published 

in 1977 by Tolman [13]. Tolman proposed an experimental measure of electronic parameter 

(ν) by using the fundamental CO stretching frequency A1 in [Ni(CO)3L] complexes in 

dichloromethane, where L denoted a PR3 ligand. Tolman’s electronic parameter (TEP) was 

consistent with the net donor properties of L, thereby allowing estimation of  electron-

richness of the nickel atom in [Ni(CO)3L] complexes. For example, [Ni(CO)3(PEt3)] with 

TEP = 2061.7 (Xi = 1.8) was more electron-rich species than [Ni(CO)3(PPh3)] with TEP = 
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2068.9 cm-1 (Xi = 4.3) in the [Ni(CO)3L] series. The electronic parameter (ν) of phosphines 

was decreased by increasing the repulsion in substituents on phosphorus ligands. The TEP of 

various tertiary phosphines (PR3) was estimated through Equation ( 1.1), where Xi was the 

identity of substituents contributions [13].  

 TEP	= 2056.1 + ෍Ri

3

i =1

( 1.1) 

Tertiary phosphines could be ranked in the steric series as well as the electronic ones. 

The size of substituents on the phosphorus ligand had a significant effect on the bonding 

properties of phosphines. The size of phosphine ligands was measured by the cone angle (θ) 

[13]. According to Tolman’s definition, the cone angle (θ) is the apex angle of a cylindrical 

cone, centered 2.28 Å (the standard Ni─P bond distance in [Ni(CO)3L] complexes) from the 

center of the P atom, where the outermost atoms touched the perimeter of the cone 

(Figure  1.3). For instance, the calculated cone angles of PEt3 and PPh3 ligands were 132° and 

145°, respectively [13]. Tertiary phosphine ligands are classified using TEP and cone angle 

parameters, however, the method can be applied in theory to any ligand.    

 

Figure  1.3: Tolman’s method of measuring cone angle (θ) of phosphine ligands [13] 
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The steric parameter calculations using the Tolman model have proven difficult and 

for more sterically elaborate ligands such as  phosphines containing biphenylene and related 

groups, bidentate ligands and N-heterocyclic carbenes (NHCs) [14]. Nolan and Cavallo [15] 

introduced an alternate phosphine-like model (percent buried volume % Vbur) to estimate the 

steric bulk of NHC ligands. Percent buried volume (% Vbur) was the percent of the total 

volume of a sphere occupied by NHC (Figure  1.4). In Nolan’s model, a metal atom was 

placed in the core of a sphere with a defined radius. Although the original metal-carbene 

bond length was 2.105 Å,  2.00 Å was considered as the average of metal-carbene bond 

distance in this model. The % Vbur of several saturated and unsaturated NHCs was calculated 

using crystallography data [15]. 

 

Figure  1.4: Nolan’s method of measuring percent buried volume (% Vbur) [15] 

On the other hand, Gusev [16] used DFT calculations to determine the steric and 

electronic properties of 76 NHCs in [(NHC)Ni(CO)3] complexes. Different descriptor 

repulsiveness (r) was applied and an increase in r between NHC and CO ligands was 

observed in [(NHC)Ni(CO)3] complexes with bulky substituents on NHCs. For example, 

TEP (cm-1) and r values were calculated for iPr2-bimy (2054.0, 2.3), Me2-bimy (2057.0, 1.6) 

and Et2-bimy (2055.2, 1.6) ligands, respectively. Gusev showed that the donor properties of 
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NHCs was decreased as the size of substituents on N-heterocycles was increased [16]. The 

steric bulk of NHCs was also estimated by Nolan’s % Vbur [15]. For instance, the percent 

buried volumes (% Vbur) of [(iPr2-bimy)AuCl] (27.9 and 23.9), [(Et2-bimy)AuCl] (27.9 and 

24.0) and [(Me2-bimy)AuCl] (26.3 and 22.7) were smaller than that of [(Et3P)AuCl] (31.7 

and 27.1) and [(Ph3P)AuCl] (34.8 and 29.9), where M─NHC and  M─P were 2.00 Å and 

2.28 Å, respectively [15]. 

1.3 Metal-NHC-Halido Complexes 

N-heterocyclic carbenes (NHC) were intensively investigated as strongly bonded 

ligands in organometallic chemistry and homogeneous catalysts [17-21]. In comparison to 

traditional carbenes, NHCs are much more electron rich nucleophilic compounds which can 

easily donate their lone pair of electrons. In addition, introducing different substituents on the 

heterocycles can modify the steric and electronic properties of NHCs. Transition-metal 

carbene complexes are widely used as highly active precatalysts for organic reactions such as 

CO-olefin co-polymerization [22-24], amination [25], dehalogenation of aryl halides [26], 

Suzuki-Miyaura C-C and C-N coupling reactions [18, 19, 21, 27]. In particular, 

palladium(II)-NHC-halido complexes trans-[Pd(iPr2-bimy)2Br2] and trans-[Pd(iPr2-bimy)2I2] 

were successfully developed for different applications such as Mizoroki-Heck coupling of 

aryl bromides or chlorides (Scheme  1.4) [19]. The catalytic study revealed that the 

complexes were highly active in coupling of aryl bromides and chlorides. However, the steric 

bulk of isopropyl groups on NHC prevented the reductive formation of Pd(0) species. As a 

result, a slower conversion of these catalysts were observed compared to catalysts with less 

bulky substituents [19].  
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Scheme  1.4: Mizoroki-Heck reactions catalyzed by [Pd(iPr2-bimy)2X2] (X = Br, I) [19] 

A series of square planar luminescent complexes trans-[(iPr2-bimy)2Pd(C≡C-R)2] (R 

= C6H5, C6H4F, C6H4OMe, SiMe3, C4H3S, C5H4N, C6H4C≡CC6H5 and 1-pyrene) were 

prepared by the addition of the corresponding lithium acetylides to the starting trans-[(iPr2-

bimy)2PdBr2]  complex [28]. Single-crystal diffraction data of these complexes were found to 

be closely related to the luminescent palladium(II) bis-acetylide complexes bearing 

phosphine ligands [29].  

Although the replacement of palladium with nickel in [M(NHC)2X2] complexes 

would represent significant cost saving, nickel-NHC-halido complexes have been less 

studied. Only recently, N-heterocyclic carbenes complexes of nickel attracted increasing 

attention as highly active organocatalysts [30, 31] for reactions such as olefin dimerization 

[32], polymerization [33] and C-C bond activation of unsaturated hydrocarbons [34].  

Despite the wide variety of transition metal complexes bearing mono(NHC) ligands, 

multitopic carbenes, which can bind to multiple transition metals, have not been studied to a 

great extent [35-37]. Boydston et al. [38] synthesized a discrete bis(NHC) composed of two 

linearly opposed imidazole-ylidenes annulated to a common arene backbone. The linear rigid 

framework of bidentate bis(NHC) prevented chelation and suggested the potential for use in 
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linear complex and polymer formation [38]. The small-molecule bimetallic complexes of Rh 

and Au were synthesized as models for monomeric repeat units and provided information on 

the physical and chemical properties of their corresponding polymers [38]. Bimetallic 

homonuclear Fe(II) and Ru(II) bis(NHC) complexes [(η5-C5H5)FeI(CO)(nBu4-benzo(imy)2)] 

and [(η5-(Me-,iPr-C6H4))FeCl2(
nBu4-benzo(imy)2)] were synthesized and characterized by 

electrochemical and spectroelectrochemical analysis as well as X-ray crystallography [39].  

The potential of bis(NHC) as spacer for interconnecting redox-active metal centers was 

probed. The electrochemical and spectroelectrochemical studies showed that the metal-metal 

interactions in ruthenium complex were very weak, while the evidence of modest coupling 

was found in the di-iron complex [39]. These results showed that bis(NHCs) combined with 

suitable metal centers and ancillary ligands have the potential to be used in molecular 

electronics [39]. 

1.4 Metal-Diacylphosphido Complexes 

The different electronegativities of silicon and phosphorous atoms can be exploited 

for cleavage of Si─P bonds upon the reaction of silylphosphines with suitable polar 

compounds [1]. The Si─P bond cleavage was considered as an entrance to a sequence of 

stabilization reactions by Becker [1, 40]. A spectacular improvement in the preparation of 

isolable, acyclic compounds with localized phosphorus-carbon double bond started with a 

Si─P bond cleavage in RP-(SiMe3)2 through tBuC(O)Cl [40]. The first phosphaalkene with a 

localized C═P bond was discovered by Becker in 1976 [40]. Conceptually, phosphaalkenes 

are organophosphorus compounds which are isolated by replacing a methylene group (R2C) 

of an alkene with the isolobal phosphinidene (PR) group (i.e., R2C=PR). Becker’s route for 
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preparing phosphaalkenes attracted increasing attention since it was high yielding, 

convenient and can sustain different substituents [40-44]. The condensation reaction of an 

acid chloride with a bis(trimethylsilyl)phosphine results in the formation of transient 

acylphosphine that rapidly tautomerizes to the phosphaalkene, as shown in Scheme  1.5. The 

side product (Me3SiCl) is easily removed from the reaction solution.  

 

Scheme  1.5: Becker route to phosphaalkenes: condensation followed by the [1,3]-silatropic 

rearrangement of an acylphosphine to a phosphaalkene [41]. 

There are different synthetic routes to prepare phosphaalkenes such as elimination 

reactions, condensation reactions and 1,3-trimethylsilyl migration. A C─P double bond can 

be formed by the 1,2-elimination reaction at organophosphine having a functional group X at 

phosphorus and Y at the α-C atom. Elimination of molecule XY creates the phosphorous-

carbon double bond (see Scheme  1.6) [45].  

 

Scheme  1.6: Elimination reaction to form phosphorus-carbon double bond 

The addition of a silylphosphine or a phosphine with P─H bond to a carbonyl group, 

followed by an elimination step can create a P─C-bond via a condensation reaction, as 

shown in Scheme  1.7 [45]. 
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Scheme  1.7: Condensation reaction to synthesize carbon-phosphorus double bond 

The migration of a P-silyl group to an element such as nitrogen, oxygen or sulfur 

which is in the α-position forms a phosphorus-carbon double bond, as depicted in 

Scheme  1.8. The formation of very stable N─Si, O─Si or S─Si is the driving force of 1,3-

trimethylsilyl migration [45]. 

 

Scheme  1.8: Silotropic migration of organophosphines resulted in P=C double bond. 

In an extension of Becker’s route, the first phosphaalkenyl complex of iron was 

obtained by Weber et al. [46, 47]. The complexes with covalent metal-phosphorus bonds 

were synthesized from [(η5-C5H5)(CO)2FeP(SiMe3)2] and acid chlorides RC(O)Cl (R = Ph, 

2,4,6-Me3C6H2, 
tBu). In these complexes, the lone pair of electrons on the phosphorus were 

not required for electronic saturation of the iron-phosphaalkene, as depicted in Scheme  1.9 

[47, 48]. Therefore, the iron complex can be considered as a transition metal-substituted 

phosphaalkene. 
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Scheme  1.9: The first iron phosphaalkene complexes prepared by Weber et al.  [47] 

Furthermore, Weber et al. [49] synthesized a rhenium complex of a phosphaalkene by 

nucleophilic addition of silylated lithium silylphosphido to a carbonyl ligand of a rhenium 

complex cation. As a result of a silatropic rearrangement, a rhenium phosphaalkene complex 

[(η5-C5Me5)(CO)(NO)Re-(OSiMe3)═PR] formed, as outlined in Scheme  1.10. 

 

Scheme  1.10: Phosphaalkenylrhenium complexes synthesized by Weber et al. [49]. 

Moreover, Weber et al. [50] succeeded in preparing diacylphosphido complexes. 

Reaction of the compound (η5-C5Me5)(CO)2FeP(SiMe3)2] with 2,4,6-trimethylbenzoyl 
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chloride  yielded a phosphaalkenyl complex of [(η5-C5Me5)(CO)2FeP═C(OSiMe3)(Mes)] as 

the only detectable product. It can be seen in Scheme  1.11 that the treatment of [(η5-

C5Me5)(CO)2FeP(SiMe3)2] with benzoyl chloride affords the phosphaalkenyl complexes, 

[(η5-C5Me5)(CO)2FeP═C(OSiMe3)Ph] and the dibenzoylphosphido complex, [(η5-

C5Me5)(CO)2FeP{C(O)Ph}2] whereas the complex of [(η5-C5Me5)(CO)2FeP{C(O)tBu}2] is 

formed as the unique product with pivaloyl chloride. 

 

Scheme  1.11: Mono and diacylphosphido iron complexes reported by Weber et al. [50] 

A new series of π-conjugated polymers and molecules composed of phosphaalkene 

have been recently described by Gates et al. [51]. Poly(p-phenylenephosphaalkene)s (PPP)s 

were synthesized by utilizing the Becker reaction of a bifunctional silylphosphine, 1,4-
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C6R4[P(SiMe3)2]2, and the diacid dichloride 1,4-C6R'4[COCl]2  (R = H, Me; R' = H, Me). 

Mono(phosphaalkene), R─P═C(OSiMe3)─R', (R = Ph, Mes; R' = Ph, Mes) and 

bis(phosphaalkene) were formed in the reaction of a monofunctional silylphosphine with 

mono or diacid dichlorides, as illustrated in Scheme  1.12. 

Scheme  1.12: Mono-, bis- and poly(phosphaalkene) prepared by Gates et al. [51] 

1.5 Project Objectives 

Although metal-bis(trimethylsilyl) phosphido complexes have been well studied [7, 8, 

10, 11], the preparation of complexes with two terminal P(SiMe3)2 groups is still a fertile area 

of research [3, 8, 11]. As discussed in subsection  1.1, trans-[Pt(PEt3)2{P(SiMe3)2}2] [11] and 

analogues trans-[NiCl(PEt3)2{P(SiMe3)2}] [8] complexes were not stable at room 

temperature as P(SiMe3)3 and PEt3 were eliminated from the complexes.  
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The dissociation of the aforementioned platinum(II) and nickel(II) complexes might 

be caused by the donor and/or steric properties of the PEt3 ligand. Accordingly, ligands with 

smaller size and/or stronger bonding properties may help to stabilize trans-metal-

silylphosphido complexes. Due to the unique physical and chemical properties of N-

heterocyclic carbenes (NHCs), they may be a valuable alternatives to phosphine ligands to 

increase the stability of square planar M─{P(SiMe3)2}2 complexes. Our research interest lies 

in the synthesis of room temperature-stable trans-metal-silylphosphido complexes. Herein, 

the synthesis of four monosilylphosphido complexes of palladium(II) and nickel(II) bearing 

two N-heterocyclic carbene ligands are reported. This research continues to introduce a 

dimetal-bis(trimethylsilyl)phosphido complex of gold(I) with a linear rigid bidentate-NHC in 

its framework. Furthermore, the cleavage of silicon-phosphorus bonds of two silylphosphido 

complexes of palladium(II) and nickel(II) with benzoyl chloride provides Pd(II) and Ni(II) 

dibenzoylphosphido complexes. The characterization of these complexes is completed using 

NMR spectroscopy, X-ray analysis and mass spectrometry and elemental analysis. 
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2. METAL-SILYLPHOSPHIDO COMPLEXES 

2.1. INTRODUCTION 

The cleavage of the Si─P bond by means of nBuLi in tris(trimethylsilyl)phosphine  

opened the way to lithium-bis(trimethylsilyl)phosphido [9]. Li[P(SiMe3)2] was an excellent 

choice to transfer a P(SiMe3)2 group to metals through the reaction with various metal halides 

[3, 7, 8, 10-12]. Reaction of the dihalide complexes of [(R3P)2MCl2]; M = Pd, Ni, R = PEt3, 

PPh3, with Li[P(SiMe3)2] resulted via the mono- or disubstituted intermediates 

[MCl(R3P)2{P(SiMe3)2}] and [M(Et3P)2{P(SiMe3)2}2] in phosphine complexes [M(R3P)2{η2-

(PSiMe3)2}] [11, 12] as well as in the phosphido bridged metal(I) complexes [(M—

M){R3PPtP(SiMe3)2}2] [11]. The mono- and disubstituted intermediates with 

triphenylphosphine as ligands were dissociated faster than those of triethylphosphines. The 

choice of the substituents R (triethylphosphine or triphenylphosphine) as well as the 

temperature had an important influence on the dissociation of  mono- or disilylphosphido 

complexes, [MCl(R3P)2{P(SiMe3)2}] or [M(Et3P)2{P(SiMe3)2}2].  

With these aspects in mind we targeted the synthesis of square planar silylphosphido 

complexes by means of Li[P(SiMe3)2]. The size and bonding properties of coordinated 

ligands to a metal center have an important role in synthesizing temperature-stable metal-

silylphosphido complexes. Ligands with stronger bonding properties such as N-heterocyclic 
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carbenes (NHCs) can bond to the transition metals and donate their lone pair of electrons. In 

comparison with trialkylphosphines [11, 12], the presence of NHCs in metal-silylphosphido 

complexes may increase the stability of silylated phosphido complexes. The steric crowding 

of NHCs can be easily controlled by introducing different substituents on N-heterocycles. 

This chapter presents the preparation and characterization of five silylphosphido complexes 

with different NHCs as ancillary ligands. NMR spectroscopy and X-ray crystallography of 

these complexes are also described. 

2.2. EXPERIMENTAL 

2.2.1. General Synthetic Techniques and Starting Materials 

All reactions have been performed using standard Schlenk techniques under a dry 

nitrogen atmosphere unless otherwise stated. Non-chlorinated solvents (toluene, 

tetrahydrofuran (THF), hexane, heptane, diethyl ether and pentane) were dried by passage 

through packed columns of activated alumina using a commercially available MBraun MB-

SP Series solvent purification system. Chlorinated solvents (CHCl3 and CH2Cl2), dimethoxy 

ethane (DME) were distilled and dried over Na. Chemicals were used as received from 

Aldrich and/or VWR. Chloroform-d was purchased from Aldrich and distilled over P2O5. 

Benzene-d6 was dried and distilled over Na/K. DMSO-d6 was purchased from Cambridge 

Isotope Laboratory (CIL) and used as received. Benzoyl chloride was purchased from 

Aldrich and dried over CaH2.  

Tris(trimethylsilyl)phosphine (P(SiMe3)3) [52], lithium bis(trimethylsilyl)phosphine 

[Li(PSiMe3)2] [9], 1,3-diisopropyl(benz)imidazolium iodide [18], 1,3-dinbutyl(benz)-
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imidazolium iodide [18], 1,3-dinbutyl(benz)imidazolium bromide [53], trans-[PdI2(
iPr2-

bimy)2] [19], trans-[NiI2(
iPr2-bimy)2] [25], tetrakis(nbutyl)benzobis(imidazolium)bromide 

[38] and [Au2Cl2(
nBu4-benzo(imy)2)] [54] were prepared following literature procedures. 1H, 

13C{1H} and 31P{1H} NMR spectra were recorded on Varian Mercury 400 MHz, Inova 400 

and 600 MHz spectrometers and the chemical shifts (δ) were internally referenced by the 

residual solvents signals (benzene-d6 and chloroform-d) relative to tetramethylsilane (SiMe4) 

(1H and 13C) or 85% H3PO4 (31P). The crystals of 1-4 and 9 were mounted on a Mitegen 

polyimide micromount with a small amount of Paratone N oil. All X-ray measurements were 

made on a Bruker APEX-II CCD diffractometer at a temperature of 110(2) K. The data 

collection strategies were a number of  and  scans. The frame integrations were performed 

using SAINT software (Bruker AXS Inc., Madison, Wisconsin, USA, 2007). The resulting 

raw data was scaled and absorption corrected using a multi-scan averaging of symmetry 

equivalent data using SADABS (Bruker-AXS, SADABS version 2012.1, 2012, Bruker-AXS, 

Madison, WI53711, USA). The structures were solved by using a dual space methodology 

using the SHELXT program or by direct methods using the SHELXS-97 [23]. All non-

hydrogen atoms were obtained from the initial solutions. The hydrogen atoms were 

introduced at idealized positions and were allowed to ride on the parent atom. The structural 

models were fit to the data using full matrix least-squares based on F2. The calculated 

structure factors included corrections for anomalous dispersion from the usual tabulation. 

The structures were refined using the SHELXL-97, SHELXL-2013 or SHELXL-2014 

programs from the SHELXTL program package [23]. Graphic plots were produced using the 

Mercury program suite. Crystal of 3 was non-merohedrally twinned by 179.7 degrees about 
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reciprocal axis 0.002  0.000  1.000  and real axis  0.453  0.000  1.000. The twin fraction 

parameter refined to a value of 0.37957(53). The resulting raw data was scaled and 

absorption corrected using a multi-scan averaging of symmetry equivalent data using 

TWINABS for this sample. The structures of trans 1-4 and 9 were solved and refined by 

Bahareh Khalili Najafabadi and Mahmood Azizpoor Fard. Mass spectra and exact mass 

determinations were performed on a Bruker micrOTOF II instrument or Finningan MAT 

8400. Elemental analysis was performed by Laboratoire d’Analyse Élémentaire de 

l’Université de Montréal, Montréal, Canada.  

All reactions have been performed using standard Schlenk techniques under a dry 

nitrogen atmosphere unless otherwise stated.  Non-chlorinated solvents (toluene, 

tetrahydrofuran (THF), hexane, heptane, diethyl ether and pentane were dried by passage 

through packed columns of activated alumina using a commercially available MBraun MB-

SP Series solvent purification system. Chemicals were purchased from Aldrich and/or VWR. 

Benzene-d6 and benzoyl chloride were dried and distilled over Na/K and CaH2, respectively.  

1H, 13C{1H} and 31P{1H}NMR spectra were recorded on Varian Mercury 400 MHz, 

Inova 400 and 600 MHz spectrometer and the chemical shifts are (δ) were internally 

referenced by the residual solvents signals (benzene-d6
 and chloroform-d) relative to 

tetramethylsilane (SiMe4) (
1H and 13C) or 85% H3PO4 (

31P). Single crystal X-ray diffraction 

measurements were performed on a Bruker APEXII diffractometer, with the molecular 

structures determined via direct methods using the SHELX suite of crystallographic 

programs [55]. All samples were mounted on a Mitegen polyimide micromount with a small 
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amount of Paratone N oil. Mass spectrometry and exact mass determinations were performed 

on a Bruker micrOTOF II instrument or Finningan MAT 8400.  

2.2.2. [PdI2(
nBu2-bimy)2] (trans-1) 

A mixture of N,N´-dinbutyl(benz)imidazolium iodide [36] (0.716 g, 2.00 mmol) and 

Pd(OAc)2 (0.220 g, 1.00 mmol) was dissolved in wet DMSO (20 mL) and stirred at 120 °C 

for 3h and then at 100 °C overnight. The yellow crystalline solid came out by cooling the 

reaction mixture to room temperature. The obtained solid was filtered off and washed with 

50 mL of Et2O and dried under vacuum; yield 0.580 g (70%). Slow evaporation at ambient 

temperature of a concentrated CHCl3 solution afforded single crystals of 1 suitable for X-ray 

crystallography. 1H NMR (400 MHz, CDCl3, 23 °C) δ = 7.39 (dd, 4H, Ar-H), 7.27 (dd, 4H, 

Ar-H), 4.71 (t, 8H, 3JH,H = 7.9 Hz, NCH2), 2.21(m, 8H, CH2), 1.53 (m, 8H, CH2), 1.05 (t, 

12H, 3JH,H = 7.5 Hz, CH3). 
13C{1H} NMR (600 MHz, CDCl3, 23 °C) δ = 180.0 (s, NCN), 

134.9, 122.2, 110.2 (s, Ar-C), 48.6 (s, NCH), 31.1 (s, CH2), 20.5 (s, CH2(CH3)), 13.8 (s, 

CH3). Anal. Calc for C30H44I2N4Pd (820.92): C 43.89, H 5.40, N 6.82. Found: C 43.95, H 

6.52, N 6.82. m.p. > 260 ° C. HRMS (EI): m/z calcd for C45H33N[104Pd]: 691.16534 [M]+; 

found: 691.16519. Crystal data for [trans-1]: M = 820.89, T = 113(2) K, λ = 0.71073 Å, 

μ(Mo Kα) = 2.513 cm-1, monoclinic, a = 10.790(3), b = 20.017(6), c = 15.036(4) Å, β = 

96.577(6)°, V = 3226.1(16) Å3, space group P 21, Z = 4, 113233 measured reflections, 34320 

unique reflections, R1 = 0.0314, wR2 = 0.0501 (I ≥ 2σ(I)), wR2 (all data) = 0.0532, GOF = 

1.014, F(000) = 1616, refined as a 2-component inversion twin, Flack (x) = 0.335(10).   

2.2.3. [NiBr2(
nBu2-bimy)2] (trans-2) 
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A mixture of N,N´-dinbutyl(benz)imidazolium bromide [35] (2.00 g, 6.42 mmol), 

Ni(OAc)2 (0.560 g, 3.21mmol) and about 50 % of the combined weight of the two reagents 

of [Bu4N]Br (1.28 g, excess) were dried under vacuum at 60 °C for 1h. The temperature was 

gradually increased to 150 °C and kept at this temperature in vacuo for 12h.  After cooling, 

methanol was added and the mixture was filtered, washed with water and dried under 

vacuum. The color of the product was red-orange; yield 1.60 g (73%). Slow evaporation at 

ambient temperature of a concentrated CH3Cl solution afforded the product as red crystals of 

2 suitable for X-ray crystallography. 1H NMR (400 MHz, CDCl3, 23 °C) δ = 7.34 (dd, 4H, 

Ar-H), 7.19 (dd, 4H, Ar-H), 5.29 (t, 8H, 3JH,H = 8.21 Hz, NCH2), 2.40 (m, 8H, CH2), 1.73 (m, 

8H, CH2), 1.12 (t, 12H, 3JH,H = 7.4 Hz, CH3). 
13C{1H} NMR (600 MHz, CDCl3, 23 °C) δ = 

183.5 (s, NCN), 134.9, 121.8, 109.8 (s, Ar-C), 48.3 (s, NCH), 31.6 (s, CH2), 20.8 (s, 

CH2(CH3)), 13.9 (s, CH3). Anal. Calc for C30H44Br2N4Ni (679.20): C 53.05, H 6.53, N 8.25. 

Found: C 53.00, H 6.52, N 8.20. m.p. > 260 ° C. HRMS (EI): m/z calcd for C42H35[
58Ni]: 

597.20922 [M]+; found: 597.20995. Crystal data for [trans-2]: M = 679.22, T = 110(2) K, λ = 

0.71073 Å, μ(Mo Kα) = 1.286 cm-1, monoclinic, a = 13.854(9), b = 8.690(7), c = 14.383(8) 

Å, β = 117.652(17)°, V = 1533.9(18) Å3, space group P 21/c, Z = 2, 26784 measured 

reflections, 4691 unique reflections, R1 = 0.0436, wR2 = 0.0795 (I ≥ 2σ(I)), wR2 (all data) = 

0.0952, GOF = 0.995, F(000) = 700.   

2.2.4. [PdI(iPr2-bimy)2{P(SiMe3)2}] (trans-3) 

Complex trans-[PdI2(
iPr2-bimy)2] [19] (0.23 g, 0.30 mmol) was suspended in 10 mL 

of toluene and cooled to -40 °C. Freshly prepared Li[P(SiMe3)2] . 1.8 (thf) (0.10 g, 0.30 

mmol) in toluene (5mL) was cooled to -40 °C and then added dropwise to the suspension at -
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40 °C. The reaction was stirred until it reached room temperature, then warmed up to 60 °C 

and stirred for 1h.  The cooled reaction mixture was concentrated under vacuum and the 

residue was dissolved in 20 mL of pentane.  A white-creamy precipitate LiI was filtered over 

Celite and the orange filtrate concentrated under vacuum giving a yellow oily product (3); 

yield 0.15 g (61%). Recrystallization from a minimal amount of pentane at -25 °C afforded 

yellow crystals of trans-3 suitable for X-ray crystallography. 1H NMR (400 MHz, C6D6, 23 

°C) δ = 7.22 (dd, 4H, Ar-H), 6.90 (dd, 4H, Ar-H), 6.29 (m, 4H, NCH(CH3)2), 1.84 (d, 12H, 

3JH,H = 7.0 Hz, CH3), 1.67 (d, 12H, 3JH,H = 7.0 Hz, CH3), 0.14 (d, 18H, 3JH,P = 3.5 Hz, 

P(Si(CH3)2). 
13C{1H} NMR (600 MHz, C6D6, 23 °C) δ = 186.3 (s, NCN), 128.9, 121.2, 111.3 

(s, Ar-C), 53.8 (s, NCH(CH3)2), 18.9 (s, CH3), 5.1 (d, 2JC,P = 11.4 Hz, P(Si(CH3)2). 

31P{1H} NMR (C6D6, 23 °C) δ = -181.8. m.p. = 117-120 °C. Crystal data for [trans-3].C5H12 : 

M = 887.38, T = 110(2) K, λ = 0.71073 Å, μ(Mo Kα) = 1.286 cm-1, monoclinic, a = 

21.223(4), b = 10.532(2), c = 21.304(5) Å, β = 116.819(7)°, V = 4249.9(16) Å3, space group 

P 21/c , Z = 4, 20403 measured reflections, 15254 unique reflections, R1 = 0.0493, wR2 = 

0.0913 (I ≥ 2σ(I)), wR2 (all data) = 0.1012, GOF = 1.017, F(000) = 1832, refined as a 2-

component inversion twin, Flack (x) = 0.37957(53).   

2.2.5. [NiI(iPr2-bimy)2{P(SiMe3)2}] (trans-4) 

Complex 4 was prepared in an analogous manner  to 3 from trans-[NiI2(
iPr2-bimy)2] 

[26] (0.14 g, 0.20 mmol) and Li[P(SiMe3)2] . 1.8 (thf) (0.06 g, 0.20 mmol) in toluene 

(15mL). Yield: 0.15 g (61%). 1H NMR (400 MHz, C6D6, 23 °C) δ = 7.15 (dd, 4H, Ar-H), 

6.97 (m, 4H, NCH), 6.87 (dd, 4H, Ar-H), 1.89 (d, 12H, 3JH,H = 7.0 Hz, CH3), 1.73 (d, 12H, 

3JH,H = 7.0 Hz, CH3), 0.04 (d, 18H, 3JH,P = 3.5 Hz, P(Si(CH3)2). 
13C{1H} NMR (600 MHz, 
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C6D6, 23 °C) ẟ = 187.2 (s, NCN), 129.5, 122.2, 113.0 (s, Ar-C), 54.3 (s, NCH(CH3)2), 21.1 (s, 

CH3), 4.3 (d, 2JC,P = 11.4 Hz, P(Si(CH3)2). 
31P{1H} NMR (C6D6, 23 °C) δ = -178.6. m.p. = 

105-107 °C.  

2.2.6. [PdI(nBu2-bimy)2{P(SiMe3)2}] (trans-5) 

Complex I (0.15 g, 0.18 mmol) was suspended in 10 mL of THF at room 

temperature. Freshly prepared Li[P(SiMe3)2] . 1.8 (thf) (0.06 g, 0.18 mmol) was dissolved in 

THF (5mL) and then added dropwise to the stirred reaction mixture. The reaction was stirred 

for 1 h at room temperature during which time the color of the reaction solution changed 

from green to yellow. The reaction solvent was removed under vacuum and the residue taken 

up in 10 mL of pentane.  A creamy- white precipitate (LiI) was filtered over Celite and the 

clear yellow filtrate concentrated under vacuum giving a yellow oily product (5); yield 0.10 g 

(46%). Recrystallization from a minimal amount of pentane at -5 °C afforded yellow needle 

crystals of 5 suitable for X-ray crystallography. 1H NMR (600 MHz, C6D6, 23 °C) δ = 7.05 

(dd, 4H, Ar-H), 6.99 (dd, 4H, Ar-H), 5.41 (m, 4H, NCH2), 4.22 (m, 4H, NCH2), 2.56 (m, 4H, 

CH2), 2.15 (m, 4H, CH2), 1.50 (m, 8H, CH2), 1.00 (t, 12H, 3JH,H = 7.6 Hz, CH3), 0.11(d, 

18H, 3JH,P = 3.5 Hz, P(Si(CH3)2). 
13C{1H} NMR (600 MHz, C6D6, 23 °C) δ = 188.8 (s, 

NCN), 135.6, 122.6, 110.8 (s, Ar-C), 50.1 (s, NCH), 31.0 (s, CH2), 21.1 (s, CH2), 14.1 (s, 

CH3), 5.8 (d, 2JC,P = 11.4 Hz, P(Si(CH3)2). 
31P{1H} NMR (C6D6, 23 °C) δ = -192.7. m.p. = 

109-111 °C. Crystal data for [trans-5].[LiI(THF)3] : M = 1221.50, T = 110(2) K, λ = 0.71073 

Å, μ(Mo Kα) = 1.532 cm-1, monoclinic, a = 23.826(9), b = 10.960(4), c = 21.942(9) Å, β = 

99.762(11)°, V = 5647(4) Å3, space group P 21/c , Z = 4, 55222 measured reflections, 9108 
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unique reflections, R1 = 0.0367, wR2 = 0.0975 (I ≥ 2σ(I)), wR2 (all data) = 0.1407, GOF = 

1.056, F(000) = 2496.   

2.2.7.  [NiBr(nBu2-bimy)2{P(SiMe3)2}] (trans-6) 

Complex 6 was prepared in an analogues manner to 5 from 2 (0.14 g, 0.20 mmol) and 

Li[P(SiMe3)2] . 1.8 (thf) (0.06 g, 0.20 mmol) in toluene (10 mL). Yield: 0.12 g (80%). 1H 

NMR (400 MHz, C6D6, 23 °C) 6.97-7.10 (m, 8H, Ar-H), 5.92 (m, 4H, NCH2), 4.43 (m, 4H, 

NCH2), 2.60 (m, 4H, CH2), 2.25 (m, 4H, CH2), 1.62 (m, 4H, CH2), 1.54 (m, 4H, CH2), 1.01 

(t, 12H, 3JH,H = 7.3 Hz, CH3), 0.04 (d, 18H, 3JH,P = 3.3 Hz, P(Si(CH3)2). 
13C{1H} NMR (600 

MHz, C6D6, 23 °C) ẟ = 187.6 (s, NCN), 134.6, 122.4, 111.2 (s, Ar-C), 52.6 (s, NCH), 30.7 (s, 

CH2), 21.3 (s, CH2), 13.8 (s, CH3), 5.1 (d, 2JC,P = 11.4 Hz, P(Si(CH3)2). 
31P{1H} NMR 

(C6D6, 23 °C) δ = -197.3. m.p. = 110-112 °C. 

2.2.8. [Au2(
nBu4-benzo(imy)2){P(SiMe3)2}2] (7) 

The reaction of [Au2Cl2(
nBu4-benzo(imy)2)] [54] (0.17 g, 0.21 mmol) with 

Li[P(SiMe3)2] . 1.8 thf (0. 14 g, 0.42 mmol) was done in 1:2 ratio in THF (30 mL). The 

reaction was stirred at -40 °C for 1h and then warmed to room temperature and stirred for 2h. 

The color of the reaction turned from colorless to yellow. The reaction mixture was 

concentrated under vacuum and pentane was added to precipitate side product of LiCl. The 

reaction mixture was filtered over Celite and filtrate was concentrated under vacuum to 

obtain a yellow oily product of 7. Yield: 0.10 g (50%). 1H NMR (400 MHz, C6D6, 23 °C) 

6.76 (s, 2H, Ar-H), 4.10 (t, 8H, 3JH,H = 7.0 Hz, NCH2), 1.71 (m, 8H, CH2), 1.24 (m, 8H, 
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CH2), 0.82 (t, 12H, 3JH,H = 7.4, CH3), 0.76 (d, 3JH,P = 4.3 Hz, 36H, P(Si(CH3)2). 
31P{1H} 

NMR (C6D6, 23 °C) δ = -230.4. m.p. = 120-121 °C. 

2.3. RESULTS AND DISCUSSION 

2.3.1. [MX2(
nBu2-bimy)2] Complexes; M = Pd, Ni; X = Br, I.  

In general, a convenient route to synthesize Pd(II) bis(carbene) complexes involves in 

situ acid-base deprotonation reaction of Pd(OAc)2 with two equivalent of azolium salts. The 

reaction solvents and conditions are changed based on the size, shape and steric bulk of 

azolium salts. Azolium salts with larger alkyl groups on N-heterocycles need more drastic 

reaction conditions due to the +I-effect and the steric bulk of N-substituents than those for 

azolium salts bearing N-methyl or methylene groups [19]. For instance, the trans-

[PdBr2(
iPr2-bimy)2] complex needs a high temperature range from 100 °C to 120°C to be 

synthesized. Instead, at lower temperature range (30-90 °C) the dimeric monocarbene 

complex of trans-[PdBr2(
iPr2-bimy)]2 is formed [19].  

The complex [PdI2(
nBu2-bimy)2] (trans-1) was prepared by the in situ deprotonation 

of the N,N’-dinbutylbenzimidazolium iodide  salt with Pd(OAc)2, in a 2:1 ratio, in DMSO at 

120 °C. After aqueous work-up, a yellow crystalline solid was isolated from the reaction 

solution and washed with diethyl ether to obtain 70% yield of pure trans-1. Complex trans-1 

is highly soluble in common organic solvents. 

The formation of trans-1 was confirmed by 1H NMR spectroscopy, which is shown in 

Figure  2. Its 1H NMR spectrum is avoid of the characteristic NCHN proton resonance which 

is observed at 11 ppm in the 1H NMR spectrum of 1,3-dinbutyl(benz)imidazolium iodide. In 
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addition, the nbutyl NCH2 proton resonance slightly shifted downfield from 4.63 ppm in the 

precursor (1,3-dinbutyl(benz)imidazolium iodide) to 4.71 ppm in trans-1. In contrast, the 

isopropyl NCH proton resonance in trans-[PdI2(
iPr2-bimy)2] [19], shifted significantly 

downfield upon coordination from 5.21 ppm in 1,3-diisopropyl(benz)imidazolium iodide (I) 

to 6.25 ppm in  trans-[PdI2(
iPr2-bimy)2]. The large chemical shift difference (∆ẟH = 1.04 

ppm) of these protons in trans-[PdI2(
iPr2-bimy)2] is probably due to the Pd···H─C preagostic 

interactions [19]. Metal-hydrogen interactions (M···H─X, X = C, N) are well described in 

the literature and include agostic [56] and preagostic [57] interactions as well as hydrogen 

bonding [58] (see Figure  2.1). Each of these interactions has specific spectroscopic and 

geometric properties, which make them distinctive from each other. In general, an agostic 

interaction involves a coordinatively-unsaturated transition metal that interacts with a C─H 

bond [56]. In this interaction the two electrons involved in the C─H bond is donated to the 

empty d-orbital of the metal center, and consequently a 3-center-2-electron bonding 

interaction is created. As a result of the agostic interaction, the C─H bond distance is 

increased and M···H─C angle decreased. An agostic M···H─C interaction typically causes 

some characteristic changes in NMR spectroscopy such as an upfield shift of the 

corresponding C─H proton resonances, a M─H coupling for NMR-active metal atoms and a 

diminution in the coupling constant value (1JCH) for the carbon in the C─H bond [59]. In 

comparison, preagostic interactions are identified by elongated M···H distance and larger 

M···H─C angle to those of agostic interactions [56]; however, none of these were observed 

for trans-1. The 13C NMR of trans-1 indicates NCN carbene carbon resonance at 180.0 ppm, 

similar to that reported for trans-[PdI2(
iPr2-bimy)2].  
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Figure  2.1: Metal-hydrogen bond interactions 

 

Figure  2.2: 1H NMR spectrum of complex [PdI2(
nBu2-bimy)2] (trans-1) 

Single crystals of trans-1 suitable for X-ray diffraction studies were obtained by slow 

evaporation of a CHCl3 solution at ambient temperature. The air stable trans-1 crystallized in 

the monoclinic space group P21 with a Z of 4. The molecular structure of trans-1 is 

illustrated in Figure  2.3 and selected bond length and angles are summarized in the caption.  
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Figure  2.3: Molecular structure of complex [PdI2(
nBu2-bimy)2] (trans-1) (50% probability). 

All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°) of 

complex 1: Pd1-I1 (2.6088(6)), Pd1-I2 (2.6057(6)), Pd1-C1 (2.023(3)), Pd1-C16 (2.021(3)), 

I1-Pd1-I2 (179.472(14)), I1-Pd1-C1 (91.60(9)),  I2-Pd1-C1 (88.92(8)), I1-Pd-C16 (89.11(9)), 

I2-Pd1-C16 (90.37(9)), C1-Pd1-C16 (179.24(14). 

The palladium(II) center is coordinated by two 1,3-dinbutyl(benz)imidazol and two 

iodo ligands in a square-planar fashion. The 2-fold screw axis is the only symmetry element 

in the unit cell of this molecule. Based on the 13C NMR spectroscopy in solution, the two 

carbene and halide ligands are arranged trans to each other with an angle of 180º owing to 

the symmetry. Both carbene ring planes are orientated to the PdC2Br2 plane with a torsion 

angle (carbene dihedral angle) of 80.4º. The bond angles of C(1)-Pd(1)-C(16) (179.240(14)°) 



 

 

30 

 

and I(1)-Pd(1)-I(2) (179.472(14)°) confirm the planar geometry around palladium center. The 

bond distances for Pd(1)-C(1) and Pd(1)-C(16) are 2.023(3) Å and 2.021(3) Å, respectively, 

which are identical to that of trans-[PdI2(
iPr2-bimy)2] (2.017(2) Å). The palladium-iodo bond 

lengths, Pd(1)-I(1) (2.6088(6)) and Pd(1)-I(2) (2.6057(6)) Å, were rather longer than that of 

trans-[PdI2(
iPr2-bimy)2] (2.5906(3)) Å. 

[NiBr2(
nBu2-bimy)2] (trans-2) is prepared by reacting the 1,3-dinbutyl(benz)-

imidazolium bromide at high temperature with Ni(OAc)2 under vacuum. As melting point of 

the 1,3-dinbutyl(benz)imidazolium bromide itself is too high for a reaction to occur, an ionic 

salt with lower-melting point, tetrabutylammonium bromide, is added as a solvent according 

to the original procedure reported by Huynh et al. [25]. After aqueous work-up and 

purification complex trans-2 was obtained as a stable orange powder (73% yield). Complex 

trans-2 is highly soluble in common solvents. 

The formation of trans-2 was confirmed by 1H NMR spectroscopy, which shows the 

absence of the NCHN proton, as depicted in Figure  2.4. Moreover, a downfield shift was 

recorded for NCH2 resonance from 4.64 ppm in the 1,3-dinbutyl(benz)imidazolium bromide 

to 5.29 ppm in trans-2. The observed chemical shift change for NCH2 protons (∆ẟH = 0.65 

ppm) in trans-2 is less than that of trans-[NiI2(
iPr2-bimy)2] (∆ẟH = 1.72 ppm) [26], which 

shows there is no or weak Ni···H─C preagostic interactions in trans-2. The other signals 

present in the 1H NMR spectrum of the 1,3-dinbutyl(benz)imidazolium bromide are 

recognized while transferred slightly to the downfield. The NCN carbene carbon of trans-2 is 

observed at 183.5 ppm in the 13C{1H} NMR spectrum, in the usual range (169.0-188.0 ppm) 

found for trans-nickel(II)imidazolin-2-ylidenes [25, 26].  
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Figure  2.4: 1H NMR spectrum of complex [NiBr2(
nBu2-bimy)2] (trans-2) 

Single crystals of trans-2 suitable for X-ray diffraction were formed at ambient 

temperature by slow evaporation of CHCl3 solution. Complex trans-2 crystalizes as an air 

stable compound in the monoclinic space group P21/c with a Z of 2. Ni(II) resides in 

inversion center and there are the 2-fold screw axes and c-glide in the unit cell of trans-2. 

The molecular structure of this complex is shown in Figure  2.5. In the molecular structure of 

trans-2, the nickel(II) is coordinated by two 1,3-dinbutyl(benz)imidazol and two bromo 

ligands in a square-planar geometry, in a trans fashion. Both carbene ring planes are 

orientated with a torsion angle (carbene dihedral angle) of 76.7º to the NiC2Br2 plane. The 

Ni(1)-Br(1) (2.3143(18) Å) and Ni(1)-C(1) (1.903(3) Å) bond distances are close to those of 
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[NiI2(
iPr2-bimy)2] (2.4829(4) Å and 1.8972(15) Å, respectively). The angles of C(1)-Ni(1)-

C(1) (180.0°) and Br(1)-Ni(1)-Br(1A) (180.0°) are identical to those of [NiI2(
iPr2-bimy)2].   

Figure  2.5: Molecular structure of complex [NiBr2(
nBu2-bimy)2] (trans-2) (50% probability). 

All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°) of 

complex 2: Ni1-Br1 (2.3143(18)), Ni1-C1 (1.903(3)), Br1-Ni1-Br1A (180.0), Br1-Ni1-C1 

(88.98(8)), Br1-Ni1-C1A (91.02(8)), C1-Ni1-C1A (180.0). 

2.3.2. [MX(R2-bimy)2{P(SiMe3)2}] Complexes; M = Pd, Ni; R = iPr, 
nBu; X = Br, I.  

In general, trans-[MX(R2-bimy)2{P(SiMe3)2}] complexes, M = Pd, Ni; R = iPr, nBu; 

X = Br, I, were synthesized via the reaction of trans-[MX2(R2-bimy)2] with Li[P(SiMe3)2] in  



 

 

33 

 

a 1:1 ratio,  in a temperature range from -40 °C to 60 °C. Due to the poor solubility of trans-

[PdI2(
iPr2-bimy)2] and trans-[NiI2(

iPr2-bimy)2] in common solvents, their reaction with 

Li[P(SiMe3)2] in THF required heating to 60 °C  to obtain clear yellow (for Pd) or red (for 

Ni) solutions. The reaction of [PdI2(
nBu2-bimy)2] (trans-1) and [NiBr2(

nBu2-bimy)2] (trans-

2), however, was started at -40 °C and stopped when it reached room temperature. 

 

Scheme  2.1: Synthesis of  [MX(R2-bimy)2{P(SiMe3)2}] complexes.  

 In order to eliminate lithium iodide salts, pentane was added to concentrated THF 

mixtures and any insoluble material was removed by filtering over Celite. Removing the 

solvent from the filtrate under vacuum resulted in the precipitation of PdI(iPr2-

bimy)2{P(SiMe3)2}] (trans-3), [NiI(iPr2-bimy)2{P(SiMe3)2}] (trans-4), PdI(nBu2-

bimy)2{P(SiMe3)2}] (trans-5) and NiBr(nBu2-bimy)2{P(SiMe3)2}] (trans-6) in the form of 

oily products. The 1H NMR spectrum of the palladium-silylphosphido complexes (trans-3 

and trans-5) are illustrated in Figure  2.6 and Figure  2.7, respectively. 

ሺR2-bimyሻ2MX2+  LiPሺSiMe3ሻ2 →  ሺR2-bimyሻ2MXPሺSiMe3ሻ2 + LiX	 ( 2.1) 
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Figure  2.6: 1H NMR spectrum of complex [PdI(iPr2-bimy)2{P(SiMe3)2}] (trans-3) 

A doublet signal was observed at 0.14 ppm (3JH,P = 3.5 Hz) for trans-3 and 0.11 ppm 

(3JH,P = 3.5 Hz) for trans-5 assigned to the protons of the P(SiMe3)2 groups. These signals are 

close to those observed for other metal complexes with terminal bis(trimethylsilyl)phosphido 

ligands (ẟ = 0.27─0.76 ppm, 3JH,P = 3.4─4.9 Hz) [2, 3, 7], but slightly shifted upfield. Two 

doublets with equal intensity were observed at 1.67 and 1.84 ppm for methyl protons which 

indicate two magnetically inequivalent CH3 groups of isopropyl substituents due to the 

asymmetrical structure of the trans-3. The resonance of the NCH protons noticeably shifted 

from 6.00 ppm in trans-[PdI2(
iPr 2-bimy)2] to 6.29 ppm in trans-3. The similar trend was seen 

in the resonances of all CH2 protons in trans-5, which were split into two sets of multiplets 
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with equal intensities. The resonances of all protons in trans-5 were deshielded compared to 

those in trans-1.  

Figure  2.7: 1H NMR spectrum of complex [PdI(nBu2-bimy)2{P(SiMe3)2}] (trans-5) 

The 13C NMR spectra of trans-3 and trans-5 are in line with their 1H NMR spectra. 

The resonance of the NCN carbene carbon was recorded at 186.3 ppm in trans-3 and 188.8 

ppm in trans-5, respectively. Doublets were observed at 5.1 ppm (2JC,P = 11.4 Hz) and 5.8 

ppm (2JC,P = 11.4 Hz), correspondingly, in trans-3 and trans-5 assigned to the carbon 

resonance of the P(Si(CH3)3)2 ligand.  

 



 

 

36 

 

 

Figure  2.8: 31P{1H} NMR spectrum of [PdI(iPr2-bimy)2{P(SiMe3)2}] (trans-3) 

 

Figure  2.9: 31P{1H} NMR spectrum of complex [PdI(nBu2-bimy)2{P(SiMe3)2}] (trans-5) 
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31P NMR spectroscopy was used to monitor the formation of trans-3 and trans-4, 

respectively, from trans-[PdI2(
iPr 2-bimy)2] and trans-1 and spectra are depicted in Figure  2.8 

and Figure  2.9. An upfield shift of the bis(trimethylsilyl)phosphido group was observed in 

the 31P NMR spectra of trans-3 (-181.8 ppm) and trans-5 (-192.7 ppm) compared to that of  

[PtCl(PEt3)2{P(SiMe3)2}] (-224 ppm) [11] due to the heavy metal effects in NMR 

spectroscopy. 

 The molecular structure of both complexes (trans-3 and trans-5) was elucidated by 

single crystal X-ray diffraction studies. Single crystals of trans-3 were obtained from 

concentrated pentane solution at -75 °C. Slow evaporation of concentrated THF solutions 

afforded single crystals of trans-5 suitable for X-ray crystallography. The air sensitive yellow 

needles of trans-3 and plates of trans-5 both crystallize in the monoclinic space group P21/c 

with a Z of 4. The molecular structures and selected bond angles and distances of both 

complexes are shown in Figure  2.10 and Figure  2.11. The coordination geometry of the 

palladium center is square planar connected to one iodo, one bis(trimethylsilyl)phosphido 

and two NHCs in both trans-3 or trans-5. The bond distances (Å) of Pd(1)-C(1) (2.027(4) 

and 2.022(6)) are identical while Pd(1)-P(1) (2.3442(12) and 2.3648(17)) are different, 

respectively in trans-3 and trans-5. A distortion from linearity is more seen in the angles of 

C(1)-Pd(1)-C(1) (171.41(13)º) and I(1)-Pd(1)-P(1) (166.42(3)º) in trans-3 than those of trans-

5 (176.6(2)º and 174.55(4)º), respectively. The geometry around the P atom in trans-3 

(98.53(6)º) and trans-5 (100.68(9)º) is distorted tetrahedral. These collected data show that 

nbutyl substituents in trans-5 provide more free space and less distortion around palladium 

center than isopropyl groups in trans-3. 
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Figure  2.10: Molecular structure of complex [PdI(iPr2-bimy)2{P(SiMe3)2} ] (trans-3) (50% 

probability). All hydrogen atoms and solvent (pentane) molecules are omitted for clarity. 

Selected bond lengths (Å) and angles (°) of complex 3: Pd1-I1 (2.6998(7)), Pd1-P1 

(2.3442(12)), Pd1-C1 (2.027(4)), Pd1-C14 (2.047(4)), I1-Pd1-P1 (166.42(3)), I1-Pd1-C1 

(86.94(10)), I1-Pd1-C14 (84.48(11)), P1-Pd1-C1 (91.93(11)), P1-Pd1-C14 (96.49(11)), C1-

Pd1-C14 (171.41(13)). 
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Figure  2.11: Molecular structure of complex [PdI(nBu2-bimy)2{P(SiMe3)2}] (trans-5) (50% 

probability). All hydrogen atoms and solvent (LiI . (thf)3) molecules are omitted for clarity. 

Selected bond lengths (Å) and angles (°) of complex 5: Pd1-I1 (2.6985(10)), Pd1-P1 

(2.3648(17)), Pd1-C1 (2.022(6)), Pd1-C8 (2.049(6)), I1-Pd1-P1 (174.55(4)), I1-Pd1-C1 

(88.14(17)), I1-Pd1-C8 (88.51(16)), P1-Pd1-C1 (93.60(17)), P1-Pd1-C8 (89.77(17)), C1-

Pd1-C8 (176.6(2)). 

The ease of preparation and stability of the palladium complexes suggested that the 

analogous Ni(II) species could be prepared. The 1H NMR spectra of [NiI(iPr2-

bimy)2{P(SiMe3)2}] (trans-4) and [NiBr(nBu2-bimy)2{P(SiMe3)2}] (trans-6), are illustrated 
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in Figure  2.12 and Figure  2.13, correspondingly. As expected, a doublet at 0.04 ppm was 

recorded for both complexes assigned to the protons of P(SiMe3)2 ligand. Due to the 

asymmetrical structures of trans-4, the resonance of CH3 protons of isopropyl groups showed 

two sets of doublets with the same J coupling value at 1.73 and 1.89 ppm, similar to those 

observed for trans-3. In the case of trans-6, all CH2 protons of the nbutyl groups indicate two 

sets of multiplets with equal intensities, similar to those observed for trans-5. 

Figure  2.12: 1H NMR spectrum of complex [NiI(iPr2-bimy)2{P(SiMe3)2}] (trans-4) 
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Figure  2.13: 1H NMR spectrum of complex [NiBr(nBu2-bimy)2{P(SiMe3)2}] (trans-6) 

31P{1H} NMR spectra for trans-4 and trans-6 are depicted in Figure  2.14 and 

Figure  2.15, respectively.  A significant downfield shift of the P(SiMe3)2 group was recorded 

at -178.6 ppm for trans-4  and at -197.3 ppm for trans-6 from their original position in 

Li[P(SiMe3)2] (ẟ = -297). These phosphorus chemical shifts are different from those reported  

for [NiCl(PEt3)2{P(SiMe3)2}] and [Ni(PEt3)2{P(SiMe3)2}2] (-254 to -247 ppm) [8] due to the 

different environment of nickel centers. While they are close to the phosphorus chemical 

shits of trans-3 and trans-5 (-181.8 and -192.7  ppm).  
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Figure  2.14: 31P{1H} NMR spectrum of [NiI(iPr2-bimy)2{P(SiMe3)2}] (trans-4) 

 

Figure  2.15: 31P{1H} NMR spectrum of complex [NiBr(iPr2-bimy)2{P(SiMe3)2}] (trans-6) 
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 All synthesized palladium(II) and nickel(II) bis(trimethylsilyl)phosphido complexes 

were stable at room temperature and their melting points were in the range of 105 to 120 °C. 

In order to obtain trans-[M(R2-bimy)2{P(SiMe3)2}2], M = Ni, Pd; R = iPr, nBu, complexes, 

the additional Li[P(SiMe3)2] was added to the reaction solutions of trans-3 to trans-6 in 

toluene or THF. The reaction temperature was changed from -40 to 60 °C (in THF) or -40 to 

95 °C (in toluene). However, the 1H NMR spectrum did not show the expected integration 

for protons of M─{P(SiMe3)2}2. The additional bis(trimethylsilyl)phosphido group did not 

react with trans-3 to trans-6, in the aforementioned reaction conditions, attributed to the 

steric crowding of the carbene and bis(trimethylsilyl)phosphido ligands. 

ሺR2-bimyሻ2MX2+ 2 LiPሺSiMe3ሻ2 → ሺR2-bimyሻ2MXPሺSiMe3ሻ2 +  LiPሺSiMe3ሻ2 + 	LiX ( 2.2) 

We found that the metal-halido-NHC complexes with isopropyl or nbutyl substituents 

on N-heterocycles only could react with Li[P(SiMe3)2] in a 1:1 ratio. A bidentate NHC 

potentially can be helpful to achieve a metal-NHC complex bearing two 

bis(trimethylsilyl)phosphido ligands. The rigid framework of bis(NHCs) provides an 

opportunity to create a linear, monovalent, two coordinate dimetal complex. Toward this end, 

the digold(I) complex of [AuCl2(
nBu4-benzo(imy)2)] was synthesised by following the 

procedure reported by Boydston et al. [38]. The reaction of [AuCl2(
nBu4-benzo(imy)2)] with 

Li[P(SiMe3)2] in a 1:2 ratio yielded a digold(I)-di(bis(trimethylsilyl)phosphido complex of  

[Au(nBu4-benz(bimy)2){P(SiMe3)2}2] (7).  
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The 1H NMR spectrum of [7] displays a doublet signal at 0.76 ppm with 3JH,P = 4.3 

Hz assigned to a P(SiMe3)2 ligand, which is shifted downfield compared to the 

bis(trimethylsilyl)phosphido complexes (trans-3 to trans-6), however, perfectly matches to 

that of metal-bis(trimethylsilyl)phosphido complexes with terminal-P(SiMe3)2 (ẟ = 

0.27─0.76 ppm, 3JH,P = 3.4─4.9 Hz) [2, 3, 7]. Due to the symmetrical structure of complex 

[7], the other peaks present in the 1H NMR spectrum of the starting [Au2Cl2(
nBu4-

benzo(imy)2)] could successfully be assigned, albeit shifted upfield [54]. In the 31P NMR 

spectrum of [7] a main signal was recorded at -230.4 ppm assigned to P(SiMe3)2 group which 

again falls well within the range of reported M─P(SiMe3)2 complexes [7, 12, 60].  

Figure  2.16: 1H NMR spectrum of complex [Au(nBu4-benz(bimy){P(SiMe3)2}2] (7) 
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Figure  2.17: 31P{1H} NMR spectrum of complex [Au(nBu4-benz(bimy){P(SiMe3)2}2] (7) 

2.4. CONCLUSIONS 

The reaction of metal-NHC-halido complexes trans-[MX2(R2-bimy)2] (M = Pd, Ni, R 

= iPr, X = I), (M = Pd, R = nBu, X = I, [trans-1]), (M = Ni, R = nBu, X = Br, [trans-2])   with 

Li[P(SiMe3)2], in a 1:1 ratio, resulted in the formation of a new series of room temperature-

stable trans-metal-halido-bis(trimethylsilyl)phosphido complexes. [PdI(iPr2-

bimy)2{P(SiMe3)2}] (trans-3), [NiI(iPr2-bimy)2{P(SiMe3)2}] (trans-4), [PdI(nBu2-

bimy)2{P(SiMe3)2}] (trans-5) and NiBr(nBu2-bimy)2{P(SiMe3)2}] (trans-6) were formed in 

good yield, in a temperature range from -40 °C to 60 °C. The reaction of trans-3 to trans-6 

with additional Li[P(SiMe3)2] did not result in the formation of M-{P(SiMe3)2}2 complexes 

due to the lack of free space around the metal centers. The digold(I)-

bis(trimethylsilyl)phosphido complex, [Au2(
nBu4-benzo(imy)2){P(SiMe3)2] (7), was 
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synthesized by the reaction of [Au2Cl2(
nBu4-benzo(imy)2)] with Li[P(SiMe3)2] in a 1:2 ratio.  

NMR spectroscopy, X-ray crystallography, mass spectrometry and elemental analysis were 

used for characterization of the complexes. The aforementioned bis(trimethylsilyl)phosphido 

complexes (trans-3 to trans-7) can participate in carbonyl addition reaction of acid chlorides 

to provide metal-phosphaalkene or metal-acylphosphido complexes. 
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3. METAL-DIACYLPHOSPHIDO COMPLEXES 

3.1. INTRODUCTION 

Due to the different electronegativities of silicon and phosphorus atoms, the polar 

Si─P bond in disilylalkylsilylphosphines could be easily cleaved in the presence of suitable 

polar organic compounds [1].  The reaction of acid chlorides with disilylalkylsilylphosphines 

resulted in the formation of compounds with phosphorus-carbon double bond (P═C) in 

phosphaalkenes and/or phosphorus-carbon single bond (C─P) in diacylphosphines [1, 40]. In 

1976, Becker synthesized the first phosphaalkene compound with a localized C═P bond by 

the reaction of an organic silylphosphine compound with acid chloride [40-44]. By following 

Becker’s route and using various acid chlorides, Weber et al. succeeded in synthesizing 

metal-phosphaalkenes [(η5-C5H5)(CO)2MP═C(OSiMe3)R] and metal-diacylphosphidos [(η5-

C5H5)(CO)2MP{C(O)R}2]; (M = Fe, Ru; R = Ph, 2,4,6-Me3C6H2, 
tBu) [47, 48, 61]. In 2006, 

Gates et al. [51] introduced a new series of π-conjugated polymers and molecules composed 

of phosphaalkene by means of diacid dichlorides. The reaction of bifunctionaal 

silylphosphines, 1,4-C6R4[P(SiMe3)2]2, with 1,4-C6R'4[COCl]2  (R = H, Me; R' = H, Me) 

resulted in the formation of poly(p-phenylenephosphaalkene)s (PPP)s, while monofunctional 

silylphosphines with acid chlorides or diacid dichloride yielded mono(phosphaalkene) or 

bis(phosphaalkene) [51].  
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Herein, by following Weber’s synthetic route [50], the cleavage of Si─P bonds in 

[PdI(iPr2-bimy)2{P(SiMe3)2}] (trans-3) and [NiI(iPr2-bimy)2{P(SiMe3)2}] (trans-4) is 

demonstrated by means of benzoyl chloride (PhC(O)Cl). The structure of two new 

dibenzoylphosphido complexes are studied by NMR spectroscopy, X-ray analysis and mass 

spectrometry.    

3.2. EXPERIMENTAL 

3.2.1.  General Synthetic Techniques and Starting Materials 

All reactions have been performed using standard Schlenk techniques under a dry 

nitrogen atmosphere unless otherwise stated.  Non-chlorinated solvents (toluene, 

tetrahydrofuran (THF), hexane, heptane, diethyl ether and pentane were dried by passage 

through packed columns of activated alumina using a commercially available MBraun MB-

SP Series solvent purification system. Chemicals were purchased from Aldrich and/or VWR. 

Benzene-d6 and benzoyl chloride were dried and distilled over Na/K and CaH2, respectively.  

1H, 13C{1H} and 31P{1H}NMR spectra were recorded on a Varian Mercury 400 MHz, 

Inova 400 and 600 MHz spectrometer and the chemical shifts are (δ) were internally 

referenced by the residual solvents signals (benzene-d6
 and chloroform-d) relative to 

tetramethylsilane (SiMe4) (
1H and 13C) or 85% H3PO4 (

31P). Single crystal X-ray diffraction 

measurements were performed on a Bruker APEXII diffractometer, with the molecular 

structures determined via direct methods using the SHELX suite of crystallographic 

programs [55]. All samples were mounted on a Mitegen polyimide micromount with a small 
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amount of Paratone N oil. Mass spectrometry and exact mass determinations were performed 

on a Bruker micrOTOF II instrument or Finningan MAT 8400.  

3.2.2. [PdI(iPr2-bimy)2P{C(O)Ph}2] (trans-8) 

To a cooled (-25 °C) solution of [PdI(iPr2-bimy)2{P(SiMe3)2}] (trans-3) (0.20 g, 0.26 

mmol) in toluene (10 mL) was added dropwise a solution of PhC(O)Cl (0.07 mL, 0.57 mmol) 

in toluene (5 mL). After the addition was complete, the reaction was warmed up to room 

temperature and stirred for 1h. 31P NMR of an aliquot removed from the reaction mixture 

confirmed that the reaction was completed. The reaction mixture was concentrated under 

vacuum and residual was taken up in Et2O (20 mL). Insoluble material was filtered off and 

the filtrate was concentrated to obtain a pale yellow solid. Yield: 0.16 g (70%). 1H NMR 

(600 MHz, C6D6, 23 °C) δ = 7.83 (m, 4H, o-Ph), 7.24 (dd, 4H, Ar-H), 6.91 (dd, 4H, Ar-H), 

6.83 (m, 2H, p-Ph), 6.77 (m, 4H, m-Ph), 6.19 (sept, 4H, 3JH,H = 7.0 Hz, NCH(CH3)2), 1.78 (d, 

12H, 3JH,H = 7.0, CH3), 1.58 (d, 12H, 3JH,H = 7.0, CH3). 
13C{1H} NMR (600 MHz, CDCl3, 23 

°C) δ = 220.4 (d, 1JC,P = 42.1 Hz, P(CO)), 184.3 (s, CNC), 143.5 (d, 2JC,P = 27.5 Hz, Ph-C), 

134.5, 130.0 (s, Ph-C), 127.2, 120.4, 111.9 (s, Ar-C), 53.8 (s, NCH(CH3)2), 20.2 (s, CH3). 

31P{1H} NMR (C6D6, 23 °C) δ = 51.4. m.p. (decomp) = 112-115 °C. 

3.2.3. [NiI(iPr2-bimy)2{P(C(O)Ph)2}] (trans-9) 

Complex 9 was prepared as for 8 from  [NiI(iPr2-bimy)2{P(SiMe3)2}] (trans-4)  (0.14 

g, 0.18 mmol) and PhC(O)Cl (0.04 mL, 0.36 mmol) in toluene (20 mL). Yield: 0.15 g (61%). 

Slow evaporation of Et2O solution at -5 °C afforded the product as red needle crystals of 9 

suitable for X-ray crystallography. 1H NMR (600 MHz, C6D6, 23 °C) δ = 7.63 (m, 4H, o-Ph), 
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7.20 (dd, 4H, Ar-H), 6.91 (m, 4H, m-Ph, Ar-H), 6.70 (m, 10H, p-Ph, NCH(CH3)2), 1.83 (d, 

3JH,H = 7.0 Hz, 12H, CH3), 1.67 (d, 3JH,H = 7.0 Hz, 12H, CH3). 
31P{1H} NMR (C6D6, 23 °C) δ 

= 72.7. 13C{1H} NMR (600 MHz, CDCl3, 23 °C) δ = 221.5 (d, 1JC,P = 45.6 Hz, P(CO)), 185.3 

(s, CNC), 145.0 (d, 2JC,P = 25.4 Hz, Ph-C), 135.0, 130.6 (s, Ph-C), 127.5, 121.3, 112.2 (s, Ar-

C), 54.1 (s, NCH(CH3)2), 20.6 (s, CH3). m.p. (decomp) = 107-109 °C. HRMS (EI): m/z calcd 

for C40H46IN4NaO2P[58Ni]: 853.16566 [M]+; found: 853.16684. Anal. Calc for 

C40H46IN4NiO2P (923.52): C 57.79, H 5.58, N 6.74. Found: C 57.81, H 5.89, N 5.73. Crystal 

data for [trans-9].C7H8 : M = 923.52, T = 110 K, λ = 0.71073 Å, μ(Mo Kα) = 1.376 cm-1, 

monoclinic, a = 12.750(3), b = 9.244(2), c = 38.007(11) Å, β = 95.444(18)°, V = 4459(2) Å3, 

space group P 21/n , Z = 4, 73261 measured reflections, 10960 unique reflections, R1 = 

0.0391, wR1 = 0.0959 (I ≥ 2σ(I)), wR2 (all data) = 0.1140, GOF = 1.114, F(000) = 1904.   

3.3. RESULTS AND DISCUSSION 

3.3.1.  [MI(iPr2-bimy)2P{C(O)Ph}2] Complexes, M = Pd, Ni.  

In general, metal-diacylphosphido complexes are readily prepared by the reaction of 

metal-silylphosphido complexes with acid chlorides. Based on a previous study [61], a 1:1 

ratio of [(η5-C5H5)(CO)2Fe-P(SiMe3)2] to PhC(O)Cl afforded a mixture of phosphaalkene 

[(η5-C5H5)(CO)2Fe-P=C(OSiMe3)Ph] and benzoylphosphido [(η5-C5H5)(CO)2Fe-

P{C(O)Ph}2] complexes. The product ratio of phosphaalkene to benzoylphosphido complex 

was concentration dependent and the formation of phosphaalkene complex was clearly 

favoured in dilute solution. However, the analogous dipivaloylphosphido complex, [(η5-

C5H5)(CO)2Fe-P{C(O)tBu}2], was the only definable product of the reaction of [(η5-
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C5H5)(CO)2Fe-P(SiMe3)2] with tBuC(O)Cl. Equimolar amounts of [(η5-C5H5)(CO)2Fe-

P(SiMe3)2] with a 2,4,6-trimethylbenzoyl chloride (MesC(O)Cl) supplied the iron-

phosphaalkene complex, [(η5-C5H5)(CO)2Fe-P=C(OSiMe3)Mes]. 

The reaction of [PdI(iPr2-bimy)2{P(SiMe3)2}] (trans-3) with PhC(O)Cl in a 1:2 ratio 

at room temperature yielded a palladium-dibenzoylphosphido complex, [PdI(iPr2-

bimy)2P{C(O)Ph}2] (trans-8) as the only detectable product. The same reaction condition 

resulted in the formation of [NiI(iPr2-bimy)2P{C(O)Ph}2] (trans-9) from [PdI(iPr2-

bimy)2{P(SiMe3)2}] (trans-4) and benzoyl chloride. 

 

Scheme  3.1: Synthesis of  [MI(R2-bimy)2 P{C(O)Ph}2] complexes.  

The metal-dibenzoylphosphido complexes were characterized by NMR spectroscopy 

and chemical shift data were obtained at room temperature in benzene-d6. 1H NMR of the 

complexes, trans-8 and trans-9, lacked the silylphosphido ligand signal, which stands at the 

range of 0.04-0.15 ppm in the precursors, trans-3 and trans-4. In addition, new signals were 

observed in the aromatic region assigned to the resonances of ortho, para and meta protons of 

benzoylphosphido ligand which are in the range of those reported for [(η5-
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C5H5)(CO)2Fe─P{C(O)Ph}2] [61]. All of the assigned peaks for trans-8 and trans-9, are 

illustrated in the spectra in Figure  3.1 and Figure  3.2, respectively.  

Figure  3.1: 1H NMR spectrum of complex [PdI(iPr2-bimy)2P{C(O)Ph}2] (trans-8) 

31P NMR spectroscopy was used to monitor progress of all reactions. A significant 

downfield shift (~ẟ∆ = 300 ppm) is expected upon formation of metal-diacylphosphido 

complexes from M─{P(SiMe3)2} complexes [50]. As shown in Figure  3.3, a significant 

signal changes was observed upon the conversion of trans-3 (ẟ = - 181.7) to trans-8 (ẟ = + 

51.4) as a result of replacement of electron-donating trimethylsilyl groups (M-P(SiMe3)2) 

with the electron withdrawing benzoyl groups (M-P{C(O)Ph}2). This chemical shift is close 

to those reported for the iron-diacylphosphido complexes (63.1-92.6 ppm) [61]. Similar 

changes were observed for the nickel complex (trans-9) (ẟ = + 72.7, ∆ẟ = 250, Figure  3.4). 
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Figure  3.2: 1H NMR spectrum of complex [NiI(iPr2-bimy)2P{C(O)Ph}2] (trans-9) 

 

 

Figure  3.3: 31P{1H} NMR spectrum of complex [PdI(iPr2-bimy)2P{C(O)Ph}2] (trans-8) 
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Figure  3.4: 31P{1H} NMR spectrum of complex [NiI(iPr2-bimy)2P{C(O)Ph}2] (trans-9) 

In the 13C NMR spectra of the both dibenzoylphosphido complexes, all peaks of the 

NHC ligands were shifted upfield. The resonance of the carbonyl carbon atom 

(P─{C(O)Ph}2) were observed as a doublet signal at 220.3 ppm (1JC,P = 42.1 Hz) in trans-8 

and at 221.5 ppm (1JC,P = 45.6 Hz) in trans-9, consistent with the reported range for carbonyl 

carbon of diacylphosphido complexes in previous studies (ẟ = 224.4─235.9) [50, 61]. The 

characteristic doublet of the ipso-carbon atom of P{C(O)Ph}2 was emerged at 143.5 (2JC,P = 

27.5 Hz, in trans-8) and 145.0 ppm (2JC,P = 25.4 Hz, in trans-9) were also observed [50].  

The formation of trans-9 was ultimately confirmed by single crystal X-ray diffraction 

studies. Needle crystals of this complex were obtained by slow evaporation of a concentrated 

ether solution at -5 °C. Complex trans-9 crystalizes in the orthorhombic space group P21/n 

with 4 molecules in the unit cell (Z = 4). The inversion center, 2-fold screw axis and n-glide 
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present in the unit cell of trans-9. Based on the crystallographic data for trans-9, the nickel 

atom displayed nearly planar geometry, coordinated to two 1,3-diisopropyl(benz)imidazole, 

one iodo and one phosphido ligands. The bond distances for Ni(1)-C(1), Ni(1)-C(14), Ni(1)-

I(1) and Ni(1)-P(1) are 1.896(3) 1.903(3), 2.5326(6) and 2.1888(10) Å, respectively. In 

comparison with [Ni(PEt3)2{P(SiMe3)2}2] bond distances [62], the Ni(1)-P(1) bond in trans-9 

(2.1888(10) Å) is shorter than those of the nickel-di(bis(trimethylsilyl)phosphido complex 

(2.236(2) and 2.258(2) Å). The bond angles of C(1)-Ni(1)-C(14), I(1)-Ni(1)-P(1), I(1)-Ni(1)-

C(1) and C(1)-Ni(1)-P(1) are 176.50(11), 170.15(3), 87.23(9) and 92.29(9)°, 

correspondingly. The phosphorus atom in trans-9 shows a slightly distorted tetrahedral 

(103.22(14)°) geometry. Two images of the trans-9 with selected bond distances and angles 

are shown in Figure  3.5. 

The complex trans-8 is thermally stable to 112 °C and decomposes at the range of 

112-115 °C to yield a brownish solid. Similar behaviour was observed for single crystals of 

trans-9 at lower temperatures, which decomposed to a black compound at 107-109 °C. An 

ether solution of both complexes was kept for one month at room temperature and no 

changes were observed in their NMR spectroscopy. The stability of diacylphosphido 

complexes is much greater than that of phosphaalkene complexes. According to the work of 

Weber et al. [50], the iron-phosphaalkenes decomposed rapidly in air. They are extremely 

sensitive to hydrolysis in solution and traces of moisture in the presentation and processing of 

these compounds lead to contamination by transition iron-substituted acylphosphine [(η5-

C5H5)(CO)2FeP(H)-C(O)R]; R = Mes, Ph, tBu, [50].  
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Figure  3.5: Molecular structure of complex [NiI(iPr2-bimy)2P{C(O)Ph}2] (trans-9) (50% 

probability). All hydrogen atoms and solvent (toluene) molecules are omitted for clarity. 

Selected bond lengths (Å) and angles (°) of complex 9: Ni1-I1 (2.5326(6)), Ni1-P1 

(2.1888(10)) Ni1-C1 (1.896 (3)), Ni1-C14 (1.903 (3)),  I1-Ni1-P1 (170.15(3)), I1-Ni1-C1 

(87.23(9)), I1-Ni1-C14 (89.81(8)), P1-Ni1-C1 (92.29(9)), P1-Ni1-C14 (90.31(9)), C1-Ni1-

C14 (176.50(11). 

3.4. CONCLUSIONS 

The cleavage of the silicon-phosphorus polar bond in the [PdI(iPr2-

bimy)2{P(SiMe3)2}] (trans-3)  and [NiI(iPr2-bimy)2{P(SiMe3)2}] (trans-4) by means of 

benzoyl chloride resulted in formation of metal-dibenzoylphosphido complexes [PdI(iPr2-
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bimy)2P{C(O)Ph}2] (trans-8)  and [NiI(iPr2-bimy)2P{C(O)Ph}2] (trans-9), respectively. The 

progress of the reactions was monitored by NMR spectroscopy. A significant downfield shift 

of the phosphorus signal was observed upon the formation of metal-dibenzoylphosphido 

complexes (~∆ẟ = 300 ppm). X-ray diffraction study was applied for extra characterization 

of nickel-dibenzoylphosphido complex (trans-9). The molecular structure of trans-9 showed 

that nickel atom has trans-square planar configuration with two NHCs, one iodo and one 

benzoylphosphido ligands.  
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4. CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK  

4.1. CONCLUSIONS 

We have demonstrated a straightforward synthesis of a novel series of room 

temperature-stable trans-metal-bis(trimethylsilyl)phosphido complexes. The reaction of 

metal-dicarbene-dihalide complexes, trans-[MI2(
iPr2-bimy)2] (M = Pd, Ni), PdI2(

nBu2-

bimy)2] (trans-1) and [NiBr2(
nBu2-bimy)2] (trans-2) with Li[P(SiMe3)2], in a 1:1 ratio, 

resulted in delivery of the P(SiMe3)2 group to the palladium(II) and nickel(II) complexes. 

The silylated complexes PdI(iPr2-bimy)2{P(SiMe3)2}] (trans-3), [NiI(iPr2-

bimy)2{P(SiMe3)2}] (trans-4), PdI(nBu2-bimy)2{P(SiMe3)2}] (trans-5) and NiBr(nBu2-

bimy)2{P(SiMe3)2}] (trans-6)  were obtained in good yield and characterized by 1H, 13C{1H}, 

31P{1H} NMR spectroscopy and single-crystal X-ray analysis. Furthermore,  the synthesized 

trans-metal-bis(trimethylsilyl)phosphido complexes (trans-3 to trans-6) were reacted with 

additional Li[P(SiMe3)2] to form metal-{P(SiMe3)2}2 complexes. However, due to the lack of 

free space around the metal centers in trans-3 to trans-6, an additional P(SiMe3)2 could not 

be transferred to the metal-bis(trimethylsilyl)phosphido complexes. In contrast, the reaction 

of linear, monovalent, two coordinate gold(I) complex, [Au2Cl2(
nBu4-benzo(imy)2)] with 

Li[P(SiMe3)2] in a 1:2 ratio, yielded the first gold-di(bis(trimethylsilyl)phosphido complex, 

[Au2(bis-NHC){P(SiMe3)2] (7).  
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The cleavage of P-Si bond in palladium(II)- and nickel(II)-

bis(trimethylsilyl)phosphine complexes (trans-3 and trans-4) by means of benzoyl chloride, 

in a 1:2 ratio, resulted in the formation of the first square planar dibenzoylphosphido 

complexes [PdI(iPr2-bimy)2P{C(O)Ph}2] (trans-8)  and [NiI(iPr2-bimy)2P{C(O)Ph}2] (trans-

9). The progress of the reactions was monitored by NMR spectroscopy. The formation of 

trans-9 was further confirmed by single-crystal X-ray analysis and mass spectrometry.  

4.2. RECOMMENDATIONS FOR FUTURE WORK 

N-heterocyclic carbenes with smaller substituents on the N-heterocycles such as 

methyl and ethyl groups can decrease the steric bulk [15, 16] and increase free space in 

[MX2(NHC)2] complexes [63, 64]. Therefore, the reaction of these complexes with 

Li[P(SiMe3)2], in a 1:2 ratio, is suggested as a route to provide  trans-

di(bis(trimethylsilyl)phosphido complexes. 

 

It is also recommended to investigate the reaction of [Au2(
nBu4-

benzo(imy)2){P(SiMe3)2}2] (7) with RC(O)Cl (R = Ph, tBu, Mes), in a 1:2 ratio, to yield 

phosphaalkene complexes.  
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Furthermore, it is worth trying the polymerization reaction of [Au2(
nBu4-

benzo(imy)2){P(SiMe3)2}2] (7) with 1,4-[C(O)Cl]-C6H4, in a 1:1 ratio.  
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APPENDICES 

Appendix A: Crystal data and structure refinement for [PdI2(
nBu2-bimy)2] (trans-1) 

Formula C30H44I2N4Pd 
Formula Weight (g/mol) 820.89 
Crystal Dimensions (mm ) 0.293 × 0.156 × 0.045 
Crystal Color and Habit yellow Plate 
Crystal System monoclinic 
Space Group 
Flack (x) 

P 21 

0.335(10) 
Temperature, K 113(2) 
a, Å 10.790(3) 
b, Å  20.017(6) 
c, Å  15.036(4)
,° 90
,° 96.577(6)
,° 90 

V, Å3 3226.1(16) 
Number of reflections to determine final unit cell 9685 

Min and Max 2 for cell determination, ° 5.82, 74.98 

Z 4 
F(000) 1616
 (g/cm) 1.690
, Å, (MoK) 0.71073
, (cm-1) 2.513 

Diffractometer Type Bruker APEX-II CCD 
Scan Type(s)  and  scans 

Max 2 for data collection, ° 75.74 

Measured fraction of data 0.997 
Number of reflections measured 113233 
Unique reflections measured 34320 
Rmerge 0.0353 
Number of reflections included in refinement 34320 
Cut off Threshold Expression I > 2sigma(I) 
Structure refined using 
 

full matrix least-squares using F2 
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Weighting Scheme w=1/[sigma2(Fo2)+(0.0203P)2] 
where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 676 
R1 0.0314 
wR2 0.0501 
R1 (all data) 0.0427 
wR2 (all data) 0.0532 
GOF 1.014 
Maximum shift/error 0.002 

Min & Max peak heights on final F Map (e-/Å) -1.018, 1.684 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 

GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 
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Appendix B: Atomic coordinates for [PdI2(
nBu2-bimy)2] (trans-1) 

Atom x y z Uiso/equiv 

Pd1 0.37685(2) 0.20973(2) 0.62773(2) 0.01052(3) 
I1 0.42279(2) 0.11260(2) 0.52055(2) 0.01548(4) 
I2 0.32881(2) 0.30642(2) 0.73464(2) 0.01565(4) 
N1 0.6392(2) 0.21575(12) 0.72694(16) 0.0121(4) 
N2 0.6279(2) 0.27024(12) 0.60187(15) 0.0127(4) 
N3 0.1151(2) 0.20673(12) 0.52938(16) 0.0127(4) 
N4 0.1245(2) 0.15207(12) 0.65461(16) 0.0124(4) 
C1 0.5604(3) 0.23191(15) 0.6529(2) 0.0123(5) 
C2 0.7557(3) 0.24481(14) 0.72375(19) 0.0127(5) 
C3 0.8652(3) 0.24272(15) 0.7822(2) 0.0163(6) 
C4 0.9665(3) 0.27840(17) 0.7569(2) 0.0183(6) 
C5 0.9574(3) 0.31517(16) 0.6779(2) 0.0182(6) 
C6 0.8483(3) 0.31681(15) 0.6196(2) 0.0166(6) 
C7 0.7483(2) 0.28044(14) 0.64395(18) 0.0121(5) 
C8 0.6042(3) 0.17388(14) 0.79974(19) 0.0140(5) 
C9 0.6283(3) 0.09988(15) 0.7871(2) 0.0162(6) 
C10 0.5877(3) 0.06041(16) 0.8658(2) 0.0203(6) 
C11 0.6134(4) -0.01374(18) 0.8596(3) 0.0355(9) 
C12 0.5799(3) 0.30079(15) 0.51622(18) 0.0149(5) 
C13 0.5415(3) 0.37261(15) 0.5278(2) 0.0193(6) 
C14 0.5094(3) 0.40884(18) 0.4391(2) 0.0226(7) 
C15 0.6215(4) 0.4231(2) 0.3903(3) 0.0279(8) 
C16 0.1928(3) 0.18884(14) 0.6030(2) 0.0113(5) 
C17 -0.0031(3) 0.17999(14) 0.53339(19) 0.0125(5) 
C18 -0.1129(3) 0.18353(15) 0.4753(2) 0.0161(5) 
C19 -0.2142(3) 0.14994(16) 0.5004(2) 0.0187(6) 
C20 -0.2088(3) 0.11279(15) 0.5792(2) 0.0178(6) 
C21 -0.0994(3) 0.10944(15) 0.6380(2) 0.0161(5) 
C22 0.0032(3) 0.14461(14) 0.61276(19) 0.0126(5) 
C23 0.1509(3) 0.24662(14) 0.45448(19) 0.0135(5) 
C24 0.1235(3) 0.32072(14) 0.4615(2) 0.0155(5) 
C25 0.1574(3) 0.35606(15) 0.3778(2) 0.0167(5) 
C26 0.1368(4) 0.43157(18) 0.3796(3) 0.0356(9) 
C27 0.1713(3) 0.11919(14) 0.73861(17) 0.0142(5) 
C28 0.2115(3) 0.04753(15) 0.7224(2) 0.0194(6) 
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C29 0.2360(3) 0.00673(18) 0.8090(2) 0.0229(7) 
C30 0.1178(3) -0.0131(2) 0.8472(3) 0.0290(8) 
Pd2 -0.13183(2) 0.20519(2) 0.12303(2) 0.01103(4) 
I3 -0.08405(2) 0.12729(2) -0.00831(2) 0.01577(4) 
I4 -0.17763(2) 0.28316(2) 0.25419(2) 0.01691(4) 
N5 0.1355(2) 0.17405(12) 0.20333(16) 0.0124(4) 
N6 0.1186(2) 0.27425(12) 0.14746(16) 0.0127(4) 
N7 -0.3797(2) 0.13462(12) 0.09909(16) 0.0130(4) 
N8 -0.4019(2) 0.23508(12) 0.04535(16) 0.0121(4) 
C31 0.0534(3) 0.21741(14) 0.1590(2) 0.0124(5) 
C32 0.2524(2) 0.20390(15) 0.22164(18) 0.0125(5) 
C33 0.3638(3) 0.18074(16) 0.26759(19) 0.0170(6) 
C34 0.4637(3) 0.22461(17) 0.2741(2) 0.0202(6) 
C35 0.4544(3) 0.28848(17) 0.2368(2) 0.0201(6) 
C36 0.3422(3) 0.31147(16) 0.19187(19) 0.0161(5) 
C37 0.2419(3) 0.26760(14) 0.18560(19) 0.0124(5) 
C38 0.1091(3) 0.10460(14) 0.22490(19) 0.0151(5) 
C39 0.0912(3) 0.09372(15) 0.3229(2) 0.0155(5) 
C40 0.0830(3) 0.01984(16) 0.3459(2) 0.0217(6) 
C41 0.0570(4) 0.00876(18) 0.4423(2) 0.0294(8) 
C42 0.0674(3) 0.33497(14) 0.10469(19) 0.0147(5) 
C43 0.1087(3) 0.34710(16) 0.0129(2) 0.0190(6) 
C44 0.0566(3) 0.41273(18) -0.0273(2) 0.0242(7) 
C45 0.1078(4) 0.4312(2) -0.1137(2) 0.0297(8) 
C46 -0.3174(3) 0.19200(15) 0.0882(2) 0.0128(5) 
C47 -0.5043(3) 0.14015(15) 0.06359(19) 0.0142(5) 
C48 -0.6026(3) 0.09502(16) 0.0584(2) 0.0175(6) 
C49 -0.7162(3) 0.11702(18) 0.0159(2) 0.0198(6) 
C50 -0.7292(3) 0.18114(18) -0.0211(2) 0.0206(6) 
C51 -0.6314(3) 0.22605(16) -0.01635(19) 0.0164(5) 
C52 -0.5180(3) 0.20424(15) 0.02792(19) 0.0135(5) 
C53 -0.3262(3) 0.07450(14) 0.1438(2) 0.0162(5) 
C54 -0.3543(3) 0.06851(15) 0.2401(2) 0.0190(6) 
C55 -0.3047(3) 0.00347(17) 0.2818(2) 0.0242(7) 
C56 -0.3334(4) -0.00624(19) 0.3766(2) 0.0321(9) 
C57 -0.3802(3) 0.30596(15) 0.02752(18) 0.0148(5) 
C58 -0.3557(3) 0.32087(15) -0.0677(2) 0.0171(6) 
C59 -0.3506(3) 0.39590(16) -0.0852(2) 0.0241(7) 
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C60 -0.3198(4) 0.41197(19) -0.1798(2) 0.0342(9) 
H3 0.8708 0.2182 0.8367 0.020 
H4 1.0435 0.2776 0.7945 0.022 
H5 1.0278 0.3397 0.6635 0.022 
H6 0.8423 0.3417 0.5655 0.020 

H8A 0.5144 0.1805 0.8050 0.017 
H8B 0.6516 0.1887 0.8566 0.017 
H9A 0.7182 0.0924 0.7832 0.019 
H9B 0.5812 0.0843 0.7306 0.019 

H10A 0.6323 0.0780 0.9222 0.024 
H10B 0.4973 0.0673 0.8680 0.024 
H11A 0.5696 -0.0315 0.8039 0.053 
H11B 0.5840 -0.0367 0.9108 0.053 
H11C 0.7033 -0.0210 0.8601 0.053 
H12A 0.5071 0.2749 0.4889 0.018 
H12B 0.6451 0.2990 0.4750 0.018 
H13A 0.6103 0.3966 0.5636 0.023 
H13B 0.4680 0.3737 0.5617 0.023 
H14A 0.4493 0.3814 0.4000 0.027 
H14B 0.4679 0.4516 0.4504 0.027 
H15A 0.6828 0.4491 0.4291 0.042 
H15B 0.5952 0.4486 0.3358 0.042 
H15C 0.6592 0.3809 0.3743 0.042 
H18 -0.1175 0.2080 0.4209 0.019 
H19 -0.2910 0.1521 0.4627 0.022 
H20 -0.2808 0.0894 0.5930 0.021 
H21 -0.0946 0.0847 0.6921 0.019 

H23A 0.1059 0.2293 0.3981 0.016 
H23B 0.2413 0.2407 0.4511 0.016 
H24A 0.1728 0.3396 0.5153 0.019 
H24B 0.0339 0.3275 0.4674 0.019 
H25A 0.1066 0.3371 0.3248 0.020 
H25B 0.2462 0.3472 0.3713 0.020 
H26A 0.0483 0.4409 0.3832 0.053 
H26B 0.1618 0.4515 0.3249 0.053 
H26C 0.1869 0.4508 0.4318 0.053 
H27A 0.1052 0.1190 0.7792 0.017 
H27B 0.2433 0.1446 0.7682 0.017 
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H28A 0.2884 0.0484 0.6923 0.023 
H28B 0.1456 0.0252 0.6818 0.023 
H29A 0.2828 -0.0342 0.7968 0.027 
H29B 0.2888 0.0333 0.8541 0.027 
H30A 0.0742 0.0272 0.8639 0.044 
H30B 0.1388 -0.0410 0.9003 0.044 
H30C 0.0637 -0.0382 0.8022 0.044 
H33 0.3708 0.1373 0.2930 0.020 
H34 0.5411 0.2107 0.3050 0.024 
H35 0.5256 0.3168 0.2421 0.024 
H36 0.3348 0.3550 0.1668 0.019 

H38A 0.1788 0.0762 0.2098 0.018 
H38B 0.0327 0.0900 0.1871 0.018 
H39A 0.0138 0.1164 0.3359 0.019 
H39B 0.1620 0.1141 0.3612 0.019 
H40A 0.0158 -0.0011 0.3050 0.026 
H40B 0.1625 -0.0023 0.3365 0.026 
H41A 0.1248 0.0281 0.4832 0.044 
H41B 0.0515 -0.0393 0.4539 0.044 
H41C -0.0219 0.0303 0.4519 0.044 
H42A 0.0931 0.3735 0.1437 0.018 
H42B -0.0248 0.3324 0.0988 0.018 
H43A 0.0797 0.3098 -0.0274 0.023 
H43B 0.2010 0.3483 0.0179 0.023 
H44A -0.0353 0.4092 -0.0388 0.029 
H44B 0.0765 0.4490 0.0168 0.029 
H45A 0.1986 0.4357 -0.1026 0.045 
H45B 0.0711 0.4736 -0.1360 0.045 
H45C 0.0866 0.3961 -0.1583 0.045 
H48 -0.5926 0.0513 0.0828 0.021 
H49 -0.7863 0.0881 0.0119 0.024 
H50 -0.8081 0.1943 -0.0505 0.025 
H51 -0.6409 0.2694 -0.0419 0.020 

H53A -0.2347 0.0750 0.1427 0.019 
H53B -0.3596 0.0347 0.1101 0.019 
H54A -0.3157 0.1065 0.2753 0.023 
H54B -0.4456 0.0707 0.2420 0.023 
H55A -0.3411 -0.0341 0.2448 0.029 
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H55B -0.2132 0.0021 0.2809 0.029 
H56A -0.2962 0.0302 0.4141 0.048 
H56B -0.2986 -0.0490 0.3995 0.048 
H56C -0.4240 -0.0063 0.3780 0.048 
H57A -0.3079 0.3215 0.0688 0.018 
H57B -0.4541 0.3319 0.0409 0.018 
H58A -0.4225 0.3006 -0.1098 0.020 
H58B -0.2755 0.3003 -0.0789 0.020 
H59A -0.2866 0.4164 -0.0411 0.029 
H59B -0.4322 0.4160 -0.0766 0.029 
H60A -0.2387 0.3926 -0.1885 0.051 
H60B -0.3167 0.4605 -0.1876 0.051 
H60C -0.3844 0.3931 -0.2238 0.051 
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Appendix C: Crystal data and structure refinement for [NiBr2(
nBu2-bimy)2] (trans-2) 

Formula C30H44Br2N4Ni 
Formula Weight (g/mol) 679.22 
Crystal Dimensions (mm ) 0.123 × 0.062 × 0.026 
Crystal Color and Habit orange plate 
Crystal System monoclinic 
Space Group P 21/c 
Temperature, K 110(2) 
a, Å 13.854(9) 
b, Å  8.690(7) 
c, Å  14.383(8)
,° 90
,° 117.652(17)
,° 90 

V, Å3 1533.9(18) 
Number of reflections to determine final unit cell 2800 

Min and Max 2 for cell determination, ° 5.68, 50.74 

Z 2 
F(000) 700
 (g/cm) 1.471
, Å, (MoK) 0.71073
, (cm-1) 3.262 

Diffractometer Type Bruker APEX-II CCD 
Scan Type(s)  and  scans 

Max 2 for data collection, ° 61.342 

Measured fraction of data 0.998 
Number of reflections measured 26784 
Unique reflections measured 4691 
Rmerge 0.0901 
Number of reflections included in refinement 4691 
Cut off Threshold Expression I > 2sigma(I) 
Structure refined using full matrix least-squares using F2 
Weighting Scheme w=1/[sigma2(Fo2)+(0.0327P)2] 

where P=(Fo2+2Fc2)/3 
Number of parameters in least-squares 171 
R1 0.0436 
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wR2 0.0795 
R1 (all data) 0.0937 
wR2 (all data) 0.0952 
GOF 0.995 
Maximum shift/error 0.000 

Min & Max peak heights on final F Map (e-/Å) -0.911, 0.754 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 

GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 
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Appendix D: Atomic coordinates for [NiBr2(
nBu2-bimy)2] (trans-2) 

Atom x y z Uiso/equiv 

Ni1 0.0000 0.5000 0.0000 0.01471(13) 
Br1 0.01355(3) 0.76561(3) 0.00780(2) 0.02197(10) 
C1 -0.0959(2) 0.5118(3) 0.0609(2) 0.0162(6) 
N1 -0.0742(2) 0.4831(3) 0.16168(17) 0.0161(5) 
C2 -0.1661(2) 0.5117(3) 0.1750(2) 0.0175(6) 
C3 -0.1842(3) 0.5021(3) 0.2625(2) 0.0222(7) 
C4 -0.2878(3) 0.5372(4) 0.2473(2) 0.0245(7) 
C5 -0.3706(3) 0.5797(4) 0.1490(2) 0.0254(7) 
C6 -0.3533(3) 0.5902(4) 0.0618(2) 0.0214(7) 
C7 -0.2488(2) 0.5559(3) 0.0776(2) 0.0163(6) 
N2 -0.20173(19) 0.5565(3) 0.01000(17) 0.0160(5) 
C8 0.0301(2) 0.4300(4) 0.2452(2) 0.0169(6) 
C9 0.1038(2) 0.5606(4) 0.3110(2) 0.0181(6) 
C10 0.2018(2) 0.5000(4) 0.4082(2) 0.0213(7) 
C11 -0.2766(3) 0.1307(4) 0.0268(3) 0.0315(8) 
C12 -0.2625(2) 0.5922(4) -0.1024(2) 0.0202(7) 
C13 -0.3280(2) 0.4553(4) -0.1665(2) 0.0209(7) 
C14 -0.4025(3) 0.4989(4) -0.2806(2) 0.0276(8) 
C15 -0.4684(3) 0.3619(4) -0.3449(2) 0.0328(8) 
H3 -0.1279 0.4729 0.3295 0.027 
H4 -0.3030 0.5322 0.3051 0.029 
H5 -0.4409 0.6022 0.1417 0.030 
H6 -0.4097 0.6193 -0.0051 0.026 
H8A 0.0685 0.3708 0.2135 0.020 
H8B 0.0163 0.3595 0.2918 0.020 
H9A 0.1292 0.6203 0.2679 0.022 
H9B 0.0615 0.6309 0.3326 0.022 
H10A 0.2434 0.4285 0.3866 0.026 
H10B 0.1764 0.4419 0.4518 0.026 
H11A -0.2362 0.2002 0.0037 0.047 
H11B -0.3024 0.1879 0.0697 0.047 
H11C -0.3391 0.0878 -0.0347 0.047 
H12A -0.2106 0.6246 -0.1282 0.024 
H12B -0.3125 0.6792 -0.1126 0.024 
H13A -0.3726 0.4140 -0.1349 0.025 
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H13B -0.2774 0.3732 -0.1642 0.025 
H14A -0.4529 0.5812 -0.2829 0.033 
H14B -0.3578 0.5399 -0.3123 0.033 
H15A -0.4187 0.2799 -0.3425 0.049 
H15B -0.5136 0.3938 -0.4178 0.049 
H15C -0.5152 0.3238 -0.3156 0.049 
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Appendix E: Crystal data and structure refinement for [PdI(iPr2-bimy)2{P(SiMe3)2}].C5H12 
(trans-3) 

Formula C37H66IN4PPdSi2 
Formula Weight (g/mol) 887.38 
Crystal Dimensions (mm ) 0.184 × 0.150 × 0.089 
Crystal Color and Habit yellow needle 
Crystal System monoclinic 
Space Group P 21/c 
Temperature, K 110(2) 
a, Å 21.223(4) 
b, Å  10.532(2) 
c, Å  21.304(5)
,° 90
,° 116.819(7)
,° 90 

V, Å3 4249.9(16) 
Number of reflections to determine final unit cell 4477 

Min and Max 2 for cell determination, ° 5.44, 48.84 

Z 4 
F(000) 1832
 (g/cm) 1.387
, Å, (MoK) 0.71073
, (cm-1) 1.286 

Diffractometer Type Bruker APEX-II CCD 
Scan Type(s)  and  scans 

Max 2 for data collection, ° 61.158 

Measured fraction of data 0.998 
Number of reflections measured 20403 
Unique reflections measured 15254 
Number of reflections included in refinement 20403 
Cut off Threshold Expression I > 2sigma(I) 
Structure refined using full matrix least-squares using F2 
Weighting Scheme w=1/[sigma2(Fo2)+(0.0397P)2+3.1

123P] where P=(Fo2+2Fc2)/3 
Number of parameters in least-squares 432 
R1 0.0493 
wR2 0.0913 
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R1 (all data) 0.0793 
wR2 (all data) 0.1012 
GOF 1.017 
Maximum shift/error 0.001 

Min & Max peak heights on final F Map (e-/Å) -0.981, 0.943 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 

GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 
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Appendix F: Atomic coordinates for [PdI(iPr2-bimy)2{P(SiMe3)2}].C5H12 (trans-3) 

Atom x y z Uiso/equiv 

Pd1 0.20794(2) 0.74344(3) 0.41654(2) 0.01280(6) 
I1 0.13866(2) 0.77045(3) 0.27545(2) 0.02232(7) 
P1 0.26790(5) 0.66903(9) 0.53244(5) 0.0157(2) 
Si1 0.22509(6) 0.74572(11) 0.60432(6) 0.0183(2) 
Si2 0.38336(6) 0.71360(10) 0.59976(6) 0.0179(2) 
N1 0.33212(17) 0.8591(3) 0.40290(18) 0.0152(7) 
N2 0.32971(17) 0.6537(3) 0.39050(17) 0.0141(7) 
N3 0.06613(16) 0.6353(3) 0.39396(17) 0.0142(7) 
N4 0.06660(17) 0.8412(3) 0.40138(17) 0.0148(7) 
C1 0.29856(19) 0.7522(3) 0.40680(19) 0.0136(7) 
C2 0.3844(2) 0.8300(4) 0.3831(2) 0.0152(8) 
C3 0.4323(2) 0.9045(4) 0.3713(2) 0.0197(9) 
C4 0.4785(2) 0.8424(4) 0.3517(2) 0.0221(10) 
C5 0.4772(2) 0.7121(4) 0.3440(2) 0.0242(10) 
C6 0.4298(2) 0.6370(4) 0.3555(2) 0.0206(9) 
C7 0.3831(2) 0.6981(4) 0.3751(2) 0.0153(8) 
C8 0.3129(2) 0.9869(4) 0.4172(2) 0.0196(9) 
C9 0.3764(2) 1.0527(4) 0.4758(2) 0.0243(10) 
C10 0.2783(2) 1.0649(4) 0.3499(2) 0.0297(11) 
C11 0.3053(2) 0.5217(4) 0.3851(2) 0.0184(9) 
C12 0.3633(2) 0.4345(4) 0.4359(2) 0.0285(11) 
C13 0.2739(2) 0.4763(4) 0.3090(2) 0.0300(11) 
C14 0.10888(19) 0.7389(4) 0.4104(2) 0.0142(7) 
C15 -0.0041(2) 0.6717(4) 0.3715(2) 0.0165(9) 
C16 -0.0667(2) 0.6027(4) 0.3471(2) 0.0224(10) 
C17 -0.1284(2) 0.6708(4) 0.3292(2) 0.0275(11) 
C18 -0.1278(2) 0.8023(4) 0.3347(2) 0.0252(10) 
C19 -0.0661(2) 0.8722(4) 0.3580(2) 0.0213(9) 
C20 -0.0034(2) 0.8039(4) 0.3767(2) 0.0168(9) 
C21 0.0918(2) 0.5033(3) 0.3997(2) 0.0177(9) 
C22 0.0663(2) 0.4210(4) 0.4428(2) 0.0285(11) 
C23 0.0728(2) 0.4462(4) 0.3273(2) 0.0273(11) 
C24 0.0933(2) 0.9726(3) 0.4169(2) 0.0169(8) 
C25 0.0734(2) 1.0344(4) 0.4700(2) 0.0226(10) 
C26 0.0697(2) 1.0524(4) 0.3501(2) 0.0267(11) 
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C27 0.2762(2) 0.6772(4) 0.6950(2) 0.0249(10) 
C28 0.2276(2) 0.9232(4) 0.6145(2) 0.0264(10) 
C29 0.1319(2) 0.6929(4) 0.5764(2) 0.0273(10) 
C30 0.4040(2) 0.8661(4) 0.6514(2) 0.0243(10) 
C31 0.4182(2) 0.5768(4) 0.6633(2) 0.0244(10) 
C32 0.4424(2) 0.7152(4) 0.5557(2) 0.0254(10) 
C1S 0.6075(2) 0.7641(5) 0.2461(3) 0.0488(15) 
C2S 0.6782(2) 0.7264(4) 0.3045(3) 0.0364(12) 
C3S 0.6858(2) 0.7513(4) 0.3776(2) 0.0313(10) 
C4S 0.7571(2) 0.7152(4) 0.4365(2) 0.0300(11) 
C5S 0.7634(3) 0.7476(4) 0.5080(3) 0.0377(11) 
H3A 0.4333 0.9941 0.3765 0.024 
H4A 0.5118 0.8908 0.3435 0.027 
H5A 0.5096 0.6731 0.3305 0.029 
H6A 0.4292 0.5473 0.3502 0.025 
H8A 0.2768 0.9751 0.4348 0.023 
H9A 0.3982 0.9957 0.5163 0.036 
H9B 0.3608 1.1305 0.4899 0.036 
H9C 0.4109 1.0742 0.4587 0.036 
H10A 0.2381 1.0179 0.3146 0.045 
H10B 0.3128 1.0812 0.3320 0.045 
H10C 0.2618 1.1459 0.3598 0.045 
H11A 0.2663 0.5210 0.3992 0.022 
H12A 0.3735 0.4558 0.4843 0.043 
H12B 0.4061 0.4458 0.4298 0.043 
H12C 0.3476 0.3461 0.4261 0.043 
H13A 0.2363 0.5346 0.2790 0.045 
H13B 0.2543 0.3909 0.3056 0.045 
H13C 0.3109 0.4744 0.2935 0.045 
H16A -0.0671 0.5129 0.3428 0.027 
H17A -0.1720 0.6267 0.3130 0.033 
H18A -0.1711 0.8457 0.3220 0.030 
H19A -0.0662 0.9622 0.3611 0.026 
H21A 0.1445 0.5063 0.4258 0.021 
H22A 0.0724 0.4673 0.4851 0.043 
H22B 0.0939 0.3423 0.4565 0.043 
H22C 0.0163 0.4005 0.4145 0.043 
H23A 0.0889 0.5031 0.3011 0.041 
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H23B 0.0215 0.4356 0.3013 0.041 
H23C 0.0958 0.3634 0.3331 0.041 
H24A 0.1460 0.9680 0.4391 0.020 
H25A 0.0806 0.9737 0.5075 0.034 
H25B 0.0236 1.0599 0.4464 0.034 
H25C 0.1030 1.1094 0.4902 0.034 
H26A 0.0848 1.0111 0.3179 0.040 
H26B 0.0910 1.1370 0.3624 0.040 
H26C 0.0181 1.0602 0.3272 0.040 
H27A 0.2543 0.7036 0.7248 0.037 
H27B 0.3250 0.7079 0.7154 0.037 
H27C 0.2759 0.5843 0.6921 0.037 
H28A 0.1940 0.9492 0.6319 0.040 
H28B 0.2149 0.9633 0.5688 0.040 
H28C 0.2753 0.9497 0.6480 0.040 
H29A 0.1163 0.7221 0.6108 0.041 
H29B 0.1295 0.6001 0.5736 0.041 
H29C 0.1011 0.7290 0.5302 0.041 
H30A 0.4551 0.8808 0.6737 0.037 
H30B 0.3877 0.8601 0.6876 0.037 
H30C 0.3799 0.9368 0.6196 0.037 
H31A 0.4686 0.5893 0.6941 0.037 
H31B 0.4113 0.4974 0.6370 0.037 
H31C 0.3927 0.5725 0.6918 0.037 
H32A 0.4916 0.7249 0.5913 0.038 
H32B 0.4294 0.7863 0.5226 0.038 
H32C 0.4371 0.6352 0.5303 0.038 
H1S1 0.5700 0.7179 0.2511 0.073 
H1S2 0.6061 0.7434 0.2006 0.073 
H1S3 0.6006 0.8556 0.2485 0.073 
H2S1 0.7157 0.7734 0.2988 0.044 
H2S2 0.6858 0.6347 0.3000 0.044 
H3S1 0.6487 0.7033 0.3834 0.038 
H3S2 0.6775 0.8428 0.3817 0.038 
H4S1 0.7645 0.6228 0.4343 0.036 
H4S2 0.7946 0.7601 0.4298 0.036 
H5S1 0.7577 0.8394 0.5110 0.057 
H5S2 0.8100 0.7216 0.5443 0.057 
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H5S3 0.7266 0.7029 0.5151 0.057 

Appendix G: Crystal data and structure refinement for [PdI(nBu2-bimy)2{P(SiMe3)2}]. [Li 

(THF)3I] (trans-5) 

Formula C48H86I2LiN4O3PPdSi2 
Formula Weight (g/mol) 1221.50 
Crystal Dimensions (mm ) 0.22 × 0.19 × 0.04 
Crystal Color and Habit orange plate 
Crystal System Monoclinic 
Space Group P2(1)/c 
Temperature, K 110(2) 
a, Å 23.826(9) 
b, Å  10.960(4) 
c, Å  21.942(9) 

,° 90.00 

,° 99.762(11) 

,° 90.00 

V, Å3 5647(4) 
Number of reflections to determine final unit cell 9780 

Min and Max 2for cell determination, ° 5.3, 56.2 

Z 4 
F(000) 2496 

 (g/cm) 1.437 

, Å, (MoK) 0.71073 

, (cm-1) 1.532 

Diffractometer Type Bruker APEX-II CCD 
Scan Type(s)  and  scans 

Max 2 for data collection, ° 49.0 

Measured fraction of data 0.970 
Number of reflections measured 55222 
Unique reflections measured 9108 
Rmerge 0.0590 
Number of reflections included in refinement 9108 
Cut off Threshold Expression >2sigma(I) 
Structure refined using full matrix least-squares using F2 
Weighting Scheme w=1/[sigma2(Fo2)+(0.0865P)2+0.

0000P] where P=(Fo2+2Fc2)/3 
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Number of parameters in least-squares 559 
R1 0.0367 
wR2 0.0975 
R1 (all data) 0.0668 
wR2 (all data) 0.1407 
GOF 1.056 
Maximum shift/error 0.001 

Min & Max peak heights on final F Map (e-/Å) -1.341, 0.847 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 

GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 
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Appendix H: Atomic coordinates for [PdI(nBu2-bimy)2{P(SiMe3)2}]. [Li (THF)3I] (trans-5) 

Atom x y z Uiso/equiv 

Pd1 0.321725(18) 0.17931(4) 0.643598(19) 0.01438(14) 
I1 0.266852(17) -0.03544(4) 0.646506(19) 0.02439(14) 

N1 0.20869(19) 0.3047(4) 0.6007(2) 0.0144(11) 
N2 0.22357(19) 0.2821(4) 0.7006(2) 0.0171(11) 
N3 0.4403(2) 0.0681(4) 0.6832(2) 0.0158(11) 
N4 0.4057(2) 0.0172(4) 0.5887(2) 0.0168(11) 
P1 0.37431(7) 0.36325(14) 0.65067(7) 0.0165(4) 
Si1 0.32897(7) 0.54319(15) 0.65079(8) 0.0194(4) 
Si2 0.41198(7) 0.38120(15) 0.56413(8) 0.0200(4) 
C1 0.2475(2) 0.2643(5) 0.6493(3) 0.0177(13) 
C2 0.1603(3) 0.3495(5) 0.6208(3) 0.0187(14) 
C3 0.1101(2) 0.3999(6) 0.5890(3) 0.0244(15) 
C4 0.0702(3) 0.4329(6) 0.6244(3) 0.0247(15) 
C5 0.0791(3) 0.4179(6) 0.6882(3) 0.0245(15) 
C6 0.1294(3) 0.3673(5) 0.7198(3) 0.0232(15) 
C7 0.1693(2) 0.3339(5) 0.6853(3) 0.0197(14) 
C8 0.3945(2) 0.0837(5) 0.6374(3) 0.0166(13) 
C9 0.4806(2) -0.0063(5) 0.6634(3) 0.0167(13) 
C10 0.5336(3) -0.0469(5) 0.6927(3) 0.0225(15) 
C11 0.5643(3) -0.1163(6) 0.6571(3) 0.0251(15) 
C12 0.5425(3) -0.1461(6) 0.5961(3) 0.0262(16) 
C13 0.4897(3) -0.1072(6) 0.5674(3) 0.0247(15) 
C14 0.4591(2) -0.0377(5) 0.6026(3) 0.0167(14) 
C15 0.2134(3) 0.2879(6) 0.5355(3) 0.0212(14) 
C16 0.1792(3) 0.1768(6) 0.5080(3) 0.0212(14) 
C17 0.1911(3) 0.1471(6) 0.4433(3) 0.0300(16) 
C18 0.1547(3) 0.0401(7) 0.4146(3) 0.044(2) 
C19 0.2512(2) 0.2507(6) 0.7636(2) 0.0197(14) 
C20 0.2248(3) 0.1400(6) 0.7901(3) 0.0238(15) 
C21 0.2591(3) 0.1046(6) 0.8530(3) 0.0268(16) 
C22 0.2346(3) -0.0044(7) 0.8821(3) 0.0360(18) 
C23 0.4457(3) 0.1212(5) 0.7459(3) 0.0205(14) 
C24 0.4098(3) 0.0515(6) 0.7860(3) 0.0241(15) 
C25 0.4250(3) -0.0824(6) 0.7951(3) 0.0307(16) 
C26 0.3855(3) -0.1499(7) 0.8319(4) 0.047(2) 
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C27 0.3679(3) 0.0060(6) 0.5289(2) 0.0204(14) 
C28 0.3483(3) -0.1245(6) 0.5133(3) 0.0260(16) 
C29 0.2976(3) -0.1316(7) 0.4604(3) 0.0378(18) 
C30 0.3085(3) -0.0742(8) 0.4018(3) 0.049(2) 
C31 0.2829(3) 0.5910(6) 0.5769(3) 0.0292(16) 
C32 0.2847(3) 0.5502(6) 0.7137(3) 0.0335(17) 
C33 0.3842(3) 0.6634(5) 0.6738(3) 0.0244(15) 
C34 0.3615(3) 0.3519(6) 0.4910(3) 0.0267(16) 
C35 0.4742(2) 0.2744(6) 0.5664(3) 0.0240(15) 
C36 0.4412(3) 0.5377(6) 0.5541(3) 0.0364(18) 
I1S -0.065169(18) 0.63518(4) 0.62517(2) 0.02959(15) 
Li1 0.0341(5) 0.7491(11) 0.6192(4) 0.029(3) 
O1S 0.07325(16) 0.7069(4) 0.55170(17) 0.0240(10) 
O2S 0.08749(17) 0.7421(4) 0.69723(17) 0.0291(11) 
O3S 0.01900(18) 0.9265(4) 0.6046(2) 0.0325(11) 
C1S 0.1320(3) 0.7025(6) 0.5430(3) 0.0269(16) 
C2S 0.1308(3) 0.6753(6) 0.4747(3) 0.0308(16) 
C3S 0.0721(3) 0.7149(7) 0.4450(3) 0.0305(16) 
C4S 0.0374(3) 0.6813(6) 0.4939(3) 0.0261(15) 
C5S 0.0724(3) 0.7316(8) 0.7579(3) 0.048(2) 
C6S 0.1253(3) 0.7550(10) 0.8019(3) 0.064(3) 
C7S 0.1724(3) 0.7181(10) 0.7698(3) 0.064(3) 
C8S 0.1484(3) 0.7241(7) 0.7019(3) 0.0363(18) 
C9S 0.0037(3) 0.9915(7) 0.6561(3) 0.0393(18) 
C10S 0.0559(4) 1.0624(9) 0.6829(4) 0.070(3) 
C11S 0.0886(4) 1.0743(8) 0.6325(4) 0.062(3) 
C12S 0.0589(4) 1.0021(7) 0.5807(4) 0.051(2) 
H3A 0.1038 0.4107 0.5454 0.029 
H4A 0.0352 0.4673 0.6045 0.030 
H5A 0.0503 0.4425 0.7108 0.029 
H6A 0.1356 0.3567 0.7634 0.028 
H10A 0.5480 -0.0280 0.7347 0.027 
H11A 0.6011 -0.1444 0.6749 0.030 
H12A 0.5649 -0.1947 0.5735 0.031 
H13A 0.4751 -0.1273 0.5256 0.030 
H15A 0.2539 0.2769 0.5319 0.025 
H15B 0.1992 0.3618 0.5119 0.025 
H16A 0.1892 0.1055 0.5353 0.025 
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H16B 0.1380 0.1933 0.5057 0.025 
H17A 0.2319 0.1266 0.4459 0.036 
H17B 0.1830 0.2198 0.4165 0.036 
H18A 0.1630 0.0238 0.3731 0.066 
H18B 0.1143 0.0604 0.4117 0.066 
H18C 0.1635 -0.0326 0.4404 0.066 
H19A 0.2487 0.3217 0.7909 0.024 
H19B 0.2920 0.2342 0.7634 0.024 
H20A 0.2239 0.0705 0.7611 0.029 
H20B 0.1852 0.1590 0.7947 0.029 
H21A 0.2987 0.0856 0.8480 0.032 
H21B 0.2604 0.1751 0.8814 0.032 
H22A 0.2582 -0.0226 0.9221 0.054 
H22B 0.2340 -0.0752 0.8547 0.054 
H22C 0.1957 0.0143 0.8881 0.054 
H23A 0.4332 0.2075 0.7426 0.025 
H23B 0.4861 0.1194 0.7661 0.025 
H24A 0.4141 0.0913 0.8270 0.029 
H24B 0.3692 0.0579 0.7667 0.029 
H25A 0.4647 -0.0894 0.8171 0.037 
H25B 0.4229 -0.1217 0.7542 0.037 
H26A 0.3971 -0.2356 0.8366 0.071 
H26B 0.3462 -0.1448 0.8098 0.071 
H26C 0.3880 -0.1124 0.8728 0.071 
H27A 0.3879 0.0368 0.4960 0.024 
H27B 0.3340 0.0580 0.5293 0.024 
H28A 0.3377 -0.1630 0.5506 0.031 
H28B 0.3804 -0.1715 0.5018 0.031 
H29A 0.2875 -0.2184 0.4522 0.045 
H29B 0.2645 -0.0909 0.4734 0.045 
H30A 0.2743 -0.0814 0.3701 0.074 
H30B 0.3404 -0.1158 0.3877 0.074 
H30C 0.3179 0.0121 0.4092 0.074 
H31A 0.2656 0.6703 0.5827 0.044 
H31B 0.2529 0.5302 0.5651 0.044 
H31C 0.3062 0.5974 0.5442 0.044 
H32A 0.2656 0.6296 0.7126 0.050 
H32B 0.3093 0.5396 0.7540 0.050 
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H32C 0.2561 0.4851 0.7076 0.050 
H33A 0.3657 0.7431 0.6743 0.037 
H33B 0.4106 0.6648 0.6441 0.037 
H33C 0.4053 0.6452 0.7152 0.037 
H34A 0.3814 0.3619 0.4557 0.040 
H34B 0.3298 0.4100 0.4874 0.040 
H34C 0.3467 0.2685 0.4914 0.040 
H35A 0.4902 0.2833 0.5284 0.036 
H35B 0.4614 0.1901 0.5700 0.036 
H35C 0.5034 0.2941 0.6021 0.036 
H36A 0.4570 0.5404 0.5157 0.055 
H36B 0.4713 0.5562 0.5892 0.055 
H36C 0.4106 0.5980 0.5522 0.055 
H1SA 0.1528 0.6377 0.5690 0.032 
H1SB 0.1510 0.7816 0.5544 0.032 
H2SA 0.1604 0.7223 0.4583 0.037 
H2SB 0.1366 0.5872 0.4679 0.037 
H3SA 0.0590 0.6703 0.4060 0.037 
H3SB 0.0706 0.8038 0.4367 0.037 
H4SA 0.0021 0.7305 0.4893 0.031 
H4SB 0.0270 0.5938 0.4910 0.031 
H5SA 0.0577 0.6489 0.7642 0.058 
H5SB 0.0428 0.7922 0.7633 0.058 
H6SA 0.1260 0.7066 0.8401 0.077 
H6SB 0.1284 0.8426 0.8130 0.077 
H7SA 0.1853 0.6343 0.7818 0.077 
H7SB 0.2051 0.7744 0.7801 0.077 
H8SA 0.1656 0.7928 0.6822 0.044 
H8SB 0.1563 0.6474 0.6811 0.044 
H9SA -0.0070 0.9341 0.6870 0.047 
H9SB -0.0287 1.0471 0.6423 0.047 
H10B 0.0454 1.1437 0.6972 0.084 
H10C 0.0782 1.0183 0.7183 0.084 
H11B 0.1278 1.0435 0.6456 0.074 
H11C 0.0906 1.1609 0.6202 0.074 
H12B 0.0390 1.0564 0.5480 0.061 
H12C 0.0864 0.9514 0.5628 0.061 
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Appendix I: Crystal data and structure refinement for [NiI(iPr2-bimy)2P{C(O)Ph}2].C7H8 
(trans-9) 

Formula C47H54IN4NiO2P 
Formula Weight (g/mol) 923.52 
Crystal Dimensions (mm ) 0.476 × 0.091 × 0.032 
Crystal Color and Habit orange needle 
Crystal System monoclinic 
Space Group P 21/n 
Temperature, K 110 
a, Å 12.750(3) 
b, Å  9.244(2) 
c, Å  38.007(11) 

,° 90 

,° 95.444(18) 

,° 90 

V, Å3 4459(2) 
Number of reflections to determine final unit cell 9863 

Min and Max 2 for cell determination, ° 4.54, 52.32 

Z 4 
F(000) 1904 

 (g/cm) 1.376 

, Å, (MoK) 0.71073 

, (cm-1) 1.204 

Diffractometer Type Bruker Kappa Axis Apex2 
Scan Type(s)  and  scans 

Max 2 for data collection, ° 56.444 

Measured fraction of data 0.998 
Number of reflections measured 73261 
Unique reflections measured 10960 
Rmerge 0.0626 
Number of reflections included in refinement 10960 
Cut off Threshold Expression I > 2sigma(I) 
Structure refined using full matrix least-squares using F2 
Weighting Scheme w=1/[sigma2(Fo2)+(0.0574P)2+1.1

403P] where P=(Fo2+2Fc2)/3 
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Number of parameters in least-squares 514 
R1 0.0391 
wR2 0.0959 
R1 (all data) 0.0613 
wR2 (all data) 0.1140 
GOF 1.114 
Maximum shift/error 0.003 

Min & Max peak heights on final F Map (e-/Å) -0.921, 0.995 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

wR2 = [ ( w( Fo
2 - Fc

2 )2 ) / (w Fo
4 ) ]½ 

GOF = [ ( w( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 
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Appendix J: Atomic coordinates for [NiI(iPr2-bimy)2P{C(O)Ph}2].C7H8 (trans-9) 

Atom x y z Uiso/equiv 

I1 0.46565(2) 0.55638(3) 0.68875(2) 0.02975(8) 
Ni1 0.39303(3) 0.36763(4) 0.64466(2) 0.01663(9) 
P1 0.34127(6) 0.17756(9) 0.61334(2) 0.02192(17) 
O2 0.13356(17) 0.1567(3) 0.61752(6) 0.0332(6) 
N4 0.23765(17) 0.2860(3) 0.69223(6) 0.0174(5) 
N3 0.17971(18) 0.4611(3) 0.65746(6) 0.0167(5) 
O1 0.49345(18) 0.1817(3) 0.56823(6) 0.0388(6) 
N1 0.60854(17) 0.2806(3) 0.63935(6) 0.0189(5) 
N2 0.56343(18) 0.4542(3) 0.60212(6) 0.0191(5) 
C20 0.1377(2) 0.3210(3) 0.70177(7) 0.0189(6) 
C19 0.0783(2) 0.2653(4) 0.72768(8) 0.0274(7) 
C17 -0.0580(2) 0.4374(4) 0.70812(9) 0.0287(7) 
C6 0.7395(2) 0.4740(4) 0.57535(8) 0.0240(7) 
C18 -0.0203(3) 0.3259(4) 0.73025(8) 0.0301(7) 
C16 0.0017(2) 0.4942(4) 0.68242(8) 0.0230(6) 
C21 0.1807(2) 0.5780(3) 0.63132(7) 0.0201(6) 
C7 0.6681(2) 0.4201(3) 0.59775(7) 0.0195(6) 
C15 0.1004(2) 0.4325(3) 0.67958(7) 0.0183(6) 
C24 0.3081(2) 0.1716(3) 0.70819(8) 0.0234(6) 
C28 0.3534(2) 0.0300(4) 0.54684(8) 0.0254(7) 
C2 0.6968(2) 0.3095(3) 0.62162(7) 0.0202(6) 
C33 0.2917(2) -0.0833(4) 0.55697(9) 0.0302(7) 
C22 0.1881(3) 0.7243(3) 0.64932(9) 0.0279(7) 
C3 0.7973(2) 0.2492(4) 0.62437(8) 0.0267(7) 
C23 0.0874(2) 0.5670(4) 0.60325(8) 0.0270(7) 
C25 0.3440(3) 0.2053(4) 0.74644(8) 0.0332(8) 
C4 0.8676(2) 0.3035(4) 0.60193(9) 0.0293(7) 
C5 0.8388(2) 0.4130(4) 0.57799(8) 0.0276(7) 
C14 0.2626(2) 0.3707(3) 0.66523(7) 0.0168(6) 
C32 0.2496(3) -0.1826(4) 0.53189(11) 0.0407(9) 
C29 0.3724(3) 0.0436(4) 0.51163(9) 0.0356(8) 
C27 0.4048(2) 0.1374(4) 0.57282(8) 0.0252(7) 
C26 0.2592(3) 0.0234(4) 0.70263(10) 0.0376(8) 
C11 0.4981(2) 0.5647(4) 0.58281(8) 0.0252(7) 
C34 0.1992(2) 0.1864(4) 0.59742(8) 0.0235(6) 
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C1 0.5271(2) 0.3670(3) 0.62696(7) 0.0183(6) 
C35 0.1631(2) 0.2332(4) 0.56038(8) 0.0236(7) 
C41 -0.1123(3) 0.8606(4) 0.63704(11) 0.0444(9) 
C8 0.5993(2) 0.1721(4) 0.66745(8) 0.0273(7) 
C40 0.0734(2) 0.1688(4) 0.54364(9) 0.0306(7) 
C36 0.2128(2) 0.3425(4) 0.54352(8) 0.0283(7) 
C12 0.5405(3) 0.7157(4) 0.59170(10) 0.0374(8) 
C9 0.6771(3) 0.2022(5) 0.69951(9) 0.0409(9) 
C13 0.4849(3) 0.5347(4) 0.54330(8) 0.0355(9) 
C31 0.2683(3) -0.1667(5) 0.49701(11) 0.0463(10) 
C30 0.3295(3) -0.0540(5) 0.48654(10) 0.0458(10) 
C37 0.1719(3) 0.3905(4) 0.51037(9) 0.0379(8) 
C46 -0.1870(3) 0.7605(5) 0.64330(13) 0.0520(11) 
C10 0.6052(3) 0.0205(4) 0.65298(11) 0.0396(9) 
C39 0.0343(3) 0.2133(5) 0.50971(10) 0.0456(10) 
C38 0.0839(3) 0.3244(5) 0.49353(10) 0.0457(10) 
C45 -0.2164(4) 0.7357(7) 0.67663(19) 0.0872(18) 
C42 -0.0615(4) 0.9366(5) 0.66413(16) 0.0689(14) 
C44 -0.1698(7) 0.8132(9) 0.70431(19) 0.106(2) 
C43 -0.0917(6) 0.9122(7) 0.69825(17) 0.0941(19) 
C47 -0.0835(6) 0.8927(7) 0.60023(16) 0.108(3) 
H19 0.1043 0.1891 0.7429 0.033 
H17 -0.1260 0.4760 0.7105 0.034 
H6 0.7206 0.5495 0.5590 0.029 
H18 -0.0628 0.2902 0.7475 0.036 
H16 -0.0238 0.5714 0.6675 0.028 
H21 0.2460 0.5657 0.6190 0.024 
H24 0.3726 0.1725 0.6951 0.028 
H33 0.2781 -0.0933 0.5810 0.036 
H22A 0.1274 0.7377 0.6630 0.042 
H22B 0.1885 0.8006 0.6314 0.042 
H22C 0.2532 0.7293 0.6652 0.042 
H3 0.8169 0.1743 0.6408 0.032 
H23A 0.0835 0.4687 0.5936 0.041 
H23B 0.0964 0.6362 0.5842 0.041 
H23C 0.0222 0.5890 0.6139 0.041 
H25A 0.3767 0.3013 0.7480 0.050 
H25B 0.3955 0.1326 0.7557 0.050 



 

 

91 

 

H25C 0.2832 0.2037 0.7604 0.050 
H4 0.9369 0.2648 0.6030 0.035 
H5 0.8889 0.4470 0.5630 0.033 
H32 0.2080 -0.2610 0.5388 0.049 
H29 0.4153 0.1206 0.5046 0.043 
H26A 0.2012 0.0128 0.7176 0.056 
H26B 0.3125 -0.0509 0.7089 0.056 
H26C 0.2322 0.0122 0.6778 0.056 
H11 0.4264 0.5589 0.5914 0.030 
H8 0.5272 0.1834 0.6754 0.033 
H40 0.0385 0.0944 0.5552 0.037 
H36 0.2753 0.3849 0.5546 0.034 
H12A 0.5463 0.7298 0.6174 0.056 
H12B 0.4924 0.7881 0.5803 0.056 
H12C 0.6102 0.7265 0.5831 0.056 
H9A 0.7489 0.1834 0.6935 0.061 
H9B 0.6614 0.1390 0.7190 0.061 
H9C 0.6710 0.3035 0.7066 0.061 
H13A 0.5515 0.5545 0.5332 0.053 
H13B 0.4295 0.5971 0.5320 0.053 
H13C 0.4654 0.4331 0.5392 0.053 
H31 0.2389 -0.2340 0.4799 0.056 
H30 0.3420 -0.0436 0.4624 0.055 
H37 0.2044 0.4687 0.4993 0.045 
H46 -0.2196 0.7064 0.6240 0.062 
H10A 0.5499 0.0073 0.6335 0.059 
H10B 0.5953 -0.0495 0.6717 0.059 
H10C 0.6743 0.0053 0.6443 0.059 
H39 -0.0258 0.1675 0.4979 0.055 
H38 0.0572 0.3556 0.4706 0.055 
H45 -0.2685 0.6654 0.6803 0.105 
H42 -0.0074 1.0037 0.6602 0.083 
H44 -0.1905 0.7996 0.7274 0.127 
H43 -0.0579 0.9647 0.7176 0.113 
H47A -0.0977 0.8073 0.5852 0.161 
H47B -0.0086 0.9173 0.6012 0.161 
H47C -0.1257 0.9743 0.5904 0.161 
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