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Abstract 

Electric field induced flows, or electrohydrodynamics (EHD), have been promising in 

many fast-growing technologies, where droplet movement and deformation can be 

controlled to enhance heat transfer and mass transport. Several complex EHD problems 

existing in many applications were investigated in this thesis. 

Firstly, this thesis presents the results of numerical simulations of the deformation, 

oscillation and breakup of a weakly conducting droplet suspended in an ambient medium 

with higher conductivity. It is the first time that the deformation of such a droplet was 

investigated numerically in a 3D configuration. We have determined three types of 

behavior for the droplets, which are less conducting than ambient fluid: 1) oblate 

deformation (which can be predicted from the small perturbation theory), 2) oscillatory 

oblate-prolate deformation and 3) breakup of the droplet. 

Secondly, a numerical study of droplet oscillation placed on different hydrophobic 

surfaces under the effect of applied AC voltage including the effect of ambient gas was 

investigated. The presented algorithm could reproduce droplet oscillations on a surface 

considering different contact angles. It has been found that the resonance frequency of the 

water droplet depends on the surface property of the hydrophobic materials and the 

electrostatic force.  

Thirdly, a new design of an electrowetting mixer using the rotating electric field was 

proposed which offers a new method to effectively mix two droplets over a different 

range of AC frequencies. Two regimes were observed for droplet coalescence: 1) 

coalescence due to the high droplet deformation, 2) coalescence due to the interaction of 

electrically induced dipoles.  

Fourthly, the spreading and retraction control of millimetric water droplets impacting on 

dry surfaces have been investigated to examine the effect of the surface charge density 

and electric field intensity. The effect of the surface charge on the spreading of droplets 

placed gently on surfaces was investigated in the first part. It was found that the 

maximum spreading diameter increases with an increasing charge. In the second part, the 
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impact of a droplet on a ground electrode was considered. It was also found that in order 

to keep the maximum diameter after the impact, less charge is needed for surfaces with 

lower contact angle. 

Finally, the interaction between two identical charged droplets was investigated 

numerically. The effects of the impact velocity, drop size ratio and electric charge on the 

behavior of the combined droplet were investigated. It was shown that two conducting 

droplets carrying charges of the same polarity under some conditions may be electrically 

attracted. The formation of charged daughter droplets has been investigated and it was 

found that the number of the satellite droplets after collision appears to increase with an 

increase in the droplet charge. 
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Chapter 1  

1 « Introduction and objectives» 

 

1.1  Introduction 

Electrohydrodynamics (EHD) is the study of the fluid flow caused by electric forces. The 

earliest record of an EHD experiment is in William Gilbert’s seventeenth century treatise 

“De Magnete”, which describes the formation of a conical shape upon bringing a charged 

rod above a sessile drop [1].  Later, Lord Rayleigh (1882) studied the deformation and 

the bursting of charged drops in an electric field [2]. In 1834, Faraday [3] demonstrated 

the electric wind using a particle stream between two electrodes. Later, Maxwell [4] 

proposed the analysis of the wind mechanism, which is still valid even today.  The first to 

suggest the possibility of designing a functional electrostatic blower (i.e., an EHD pump) 

were Robinson [5] and Stuetzer [6], during their research on the ionic wind. The effects 

of EHD flow on the boundary layer and heat transfer were being considered at the same 

time as there were studies on EHD thrust engines [7]. Another application of EHD flow is 

an EHD micropump, which was fabricated and experimentally tested by Richter and 

Sandmaier [8]. 

EHD flows are a form of a multi-physics problem in which the electric forces are used to 

drive the fluid [9, 10]. The Maxwell stress tensor plays the crucial role of coupling the 

electrostatics and hydrodynamics, and the electric forces can be calculated using this 

tensor. Electrohydrodynamic transport phenomena are fundamental to a variety of 

engineering applications such as electrospray ionization, electro-coalescence, mixing of 

droplets, Lab on a Chip (LOC) devices and electrostatic printing.  

Over the last decade, EHD flow has received much attention in the research community 

because of its widespread industrial applications. In what follows, the various 

applications of EHD that have emerged in different fields of engineering and science, 

specifically the electrohydrodynamics of droplets and their behavior under the effect of 

the electric field, will be briefly reviewed. The possibility of the existence of reversed 
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dipoles in droplets and different scenarios of droplet deformation based on the physical 

properties of the fluids are reviewed. The interaction of droplets with solid walls and 

droplets oscillations were investigated in terms of the surface properties, such as contact 

angle. The role of the surface contact angle on droplet oscillation and resonant frequency 

due to the electric field will be explained. 

Another group of investigations has been devoted to the impacting of droplets on solid 

surfaces. Here the spreading and retraction of droplets and their manipulation using 

electric forces are considered. Finally, the droplet collision phenomena in electrospray 

atomization, turbine blade cooling and fuel injection as one of the EHD promising 

applications are also reviewed.  

1.2 Thesis objectives 

The overall objective of this thesis is to develop and implement a numerical method to 

tackle the complex EHD problems existing in many applications. Of particular interest 

was to model the droplet behavior under the effect of the electric forces in various 

circumstances in terms of the fluid mechanics. In each case, attempts were made to tune 

the numerical algorithm with the physical parameters involved. In most cases, the 

numerical algorithm has been confirmed with the available experimental data and the 

electric forces extension was added after getting the positive confirmation. The main 

contribution of the thesis is making the commercial software, COMSOL 

MULTIPHYSICS™, capable of handling different EHD phenomena.  The following 

sections describe the background for each of the areas investigated. 

1.2.1 Droplet deformation under the effect of electric field 

An electric field can be used as one of the non-invasive and active methods to control the 

behaviour of droplets. A fluid droplet suspended in another immiscible fluid deforms, 

oscillates or breaks under the effect of a sufficiently strong electric field. The deformation 

can be either oblate or prolate depending on the physical properties of the droplet and 

ambient fluids (surface tension and viscosity) [11-13]. The electrical stress applied to the 

droplet surface may also cause the fluid tangential motion at the surface, resulting in a 

strong circulating flow and fluid mixing. 
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Taylor [14] introduced a small deformation theory based on the leaky dielectric model of 

the fluid to theoretically describe the deformation of the droplets in weak electric fields.  

This model does not fully capture all phenomena that have been observed in experiments. 

In strong fields a nonaxisymmetric rotational flow may appear. Recent experimental 

studies have discovered non-axisymmetric shapes for the droplets [15-18]. It was found 

that the symmetry breaking happens due to a reverse dipole created inside the droplet. In 

the case of a rigid sphere, this results in physical rotation of a particle known as Quincke 

rotation [19]. This configuration becomes unstable above some critical strength of the 

electric field. It is clear that the rotation of the droplet with an axis oblique to the applied 

electric field will destroy the axisymmetric conditions. In order to have a comprehensive 

understanding of the problem, a full 3D simulation is needed. Recently a rare example of 

chaos under creeping flow conditions was found [20], which could find applications in 

small-scale fluid mixing and electromanipulation of particle motion in microfluidic 

technologies. 

1.2.2 Electrowetting and oscillations of droplets on insulating 
surfaces 

Electrowetting is the process of modification of the surface wetting properties caused by 

an applied electric field. More than one century ago, Lippmann [21] discovered that 

wetting can be effectively controlled by an electric field and also observed that the 

surface tension of the interface between acidic water and mercury is a function of the 

potential difference at this interface.  Since Lippmann's findings, electrocapillary 

phenomenon, or electrowetting, has developed into a series of tools for manipulating 

microdroplets on solid surfaces. Many chemical or physical methods have been 

developed to control the wettability of surfaces [22-24], but in these cases the wettability 

cannot be controlled after being manufactured. 

When a liquid droplet is slowly placed on a solid, flat substrate, it spreads to its 

equilibrium configuration with the contact angle specified by Young’s equation [25]. 

Electrowetting is one of the best methods to control the wetting behavior of liquid 

droplets on partially wetting surfaces by reducing the apparent contact angle of sessile 

droplets [26, 27]. Applications of electrowetting include reprogrammable lab-on-a-chip 
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systems [28], autofocus cell phone lenses [29], colored oil pixels for laptops and video-

speed smart paper [30, 31]. 

In principle, electrowetting can be applied in two different scenarios: 1) droplets sitting 

on a metal electrode, or 2) on a thin dielectric layer on top of an electrode. However, 

most of the recent electrowetting studies and applications have been carried out on a 

dielectric surface; electrowetting-on-dielectric (EWOD) has been the subject of the 

majority of the studies in this field. 

Tiny droplets can be used as a medium for biochemical reactions as well as containers of 

biological particles. Using a patterned electrode array, droplets can be transported, mixed 

and split by controlling the contact angle in electrowetting [32-35].  

Using AC electric fields, the droplets undergo an oscillatory force which results in the 

oscillation of the droplets placed on solid surfaces. The importance of this kind of 

oscillation can be found in studies related to high voltage outdoor insulators [36-39]. The 

flow field generated during droplet oscillation at low AC frequencies can also be used to 

enhance the mixing in a droplet [40, 41]. 

 

1.2.3 Droplets impacting on solid surfaces 

The impacting and spreading of liquid drops on solid surfaces are important processes in 

many applications, such as spray coating, delivery of agricultural chemicals, ink jet 

printing and rapid spray cooling of heated targets [42, 44]. In recent years, inkjet 

technology has been employed to deposit functional materials, which are mixed with 

liquid, directly on a solid substrate. Example applications of inkjet printing include 

manufacturing of light-emitting diode (LED) display panel [45, 46] and DNA micro-

arrays [47, 48]. 

The impact of liquid droplets on solid surfaces can be categorized into spreading, recoil, 

rebound and splashing. One of the most important parameters relevant to the applications 

mentioned earlier is the maximum spreading diameter      which is often normalized to 

the original diameter of the droplet prior to impact. Several experimental and theoretical 

studies can be found in the literature on passive retraction control of aqueous droplets on 

hydrophobic surfaces [49, 52].  
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Electric forces can be utilized to control the droplet behavior after its impact onto the 

surface.  The effect of corona discharge on the spreading and retraction control of 

dielectric drops has been also experimentally investigated by Mahmoudi et al. [53, 54]. 

Thermal management is also a critical issue in integrated circuit design. Droplets can be 

used to target different sections on circuits to cool down the device [55, 56]. Different 

correlations for the time evolution of the spread diameter can be found in the literature 

[57, 60].  

1.2.4 Droplet collisions 

Droplet collision is an important part of many applications from understanding cloud 

formation in climate theory [61, 62] to engineering applications such as electrospray 

atomization, turbine blade cooling and fuel injection [63-68]. In engines, droplet collision 

is one of the key factors in determining the spray characteristics, which largely affects the 

mixture formation and combustion process. Therefore, understanding the mechanism of 

droplet collision is of great interest and significance. A detailed summary of relevant 

experimental investigations can be found in [69]. 

The collision of Newtonian fluid droplets has been investigated both experimentally and 

numerically for decades. In general, the outcome of the droplet collisions can be 

categorized into four different types: bouncing, coalescence, separation, and shattering 

collisions. At higher Weber number for head-on or near head-on cases, reflexive 

separation may happen resulting in formation of satellites. Ashgriz and Poo [70] 

developed models for predicting the boundary between the coalescence and separation 

regimes. 

Although experimental studies can monitor the time evolution of the droplets in collision 

phenomena using high speed cameras, the details of what happens inside the drops can 

hardly be accessed. Numerical investigations can produce more details of the pressure 

and velocity field inside the droplets before and after impact. 

Over the years, the collision of charged droplets has always been an interesting subject. 

The feasibility of coalescence of two perfectly conducting, electrically charged droplets 

was studied from a thermodynamic point of view by Gallily et al. [71]. An analytical 

expression was developed for the electrical energy of the two droplets, which make the 
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initial contact. Recently, some interesting features during collision of charged droplets 

and particles have been presented in different research papers. For example it was even 

proven by Lekner [72] that under certain conditions two charged conducting spheres can 

attract each other at close approach.  

Faeth [73] and O’Rouke and Bracco [74] emphasized the importance of droplet collision 

phenomena occurring within dense sprays and recognized the significance of the 

rheological properties of the droplets (i.e. hydrocarbons vs. water). 

1.3 Thesis outline 

The main subject of Chapter 2 is to introduce the numerical approach used in this thesis. 

Chapter 3 focuses on the deformation of suspended droplets considering different 

mechanical and electrical characteristics of the fluids. The behavior of droplets placed on 

solid surfaces is investigated in Chapters 4 and 5. The effect of the surface properties, 

such as the contact angle, has been investigated in these two chapters and the numerical 

scheme is improved accordingly. Chapter 6 covers the recent technique for spreading and 

retraction control of droplets using electrostatic forces. Chapter 7 proves the feasibility of 

applying the Level-Set method as a numerical technique to investigate the collision 

dynamics of electrically charged droplets. It is demonstrated that the presented numerical 

method is able to capture the droplet collision in the presence of the electric charges on 

the surface of the droplets. The complete dissertation comprises the following major 

sections: 

Chapter 2 

This chapter provides a brief review of various two-phase modeling methods available in 

the literature. Also, the specific method used in the current project is described in detail. 

This chapter covers the numerical technique implemented in COMSOL, a finite-element 

software, to simulate the complicated physical processes in the next chapters. 

Chapter 3 

There has been relatively little work previously reported on the breakup of a less 

conducting droplet via the oblate-type deformation. In this chapter, the 3-D deformation, 

oscillation and breakup of an initially uncharged and spherical droplet suspended in 



7 

 

 

 

another immiscible fluid with higher conductivity, under DC uniform electric field is 

numerically investigated.  It is the first time that the deformation of such droplet is 

investigated numerically in a 3D configuration.  

Chapter 4 

The 3-D oscillations of a water droplet on a solid surface under the effect of external 

fields, such as gravity and a sinusoidal electric field, were investigated numerically. The 

electric field introduces additional interfacial stresses at the droplet interface and 

extensive computations were performed to assess the combined effects of electric fields, 

surface tension and inertia. It was found that the resonance frequency and the magnitude 

of the deformation strongly depend on the surface properties and the value of contact 

angle. A comparison of the numerical results with the known experimental data shows 

satisfactory agreement with respect to the shape of the droplet and the resonant 

frequencies.  

Chapter 5 

This chapter reports the 3-D oscillations and coalescence of water droplets deposited on a 

dielectric substrate under the effect of a rotating electric field, taking into account the 

effect of frequency of the applied AC voltage and the value of the contact angle. The time 

variation of the shape of a perfectly conducting droplet placed between two orthogonal 

pairs of parallel electrodes with two-phase voltage excitation was investigated. This 

chapter also presents a new design of an electrowetting mixer using the rotating electric 

field and offers a new method to effectively mix two droplets over a different range of 

AC frequencies. 

Chapter 6 

The dynamics of spreading and impact of a dielectric droplet onto a dry conductive 

substrate in the presence of an external vertical electric field was investigated 

numerically. The effects of electric field strength, surface charge, droplet properties and 

surface wettability were taken into account. In the first part, the spreading of a charged 

dielectric droplet placed on a ground electrode was simulated. In the second part, the 

suppression of the droplet receding phase, after it has been impacted onto a surface with 
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some velocity, was investigated assuming that the droplet is electrically charged and 

exposed to an electric field parallel to the impact axis. 

Chapter 7 

The interaction between two identical charged droplets was investigated numerically. 

Numerical simulation shows that two conducting droplets carrying charges of the same 

polarity under some conditions may be electrically attracted confirming the recent 

theoretical predictions. The effects of the impact velocity, drop size ratio and electric 

charge on the behavior of the combined droplet were investigated. 

Chapter 8  

This chapter summarizes the major findings of this work and proposes possible future 

research directions. 
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Chapter 2  

2 «Numerical models in simulating electrohydrodynamics 
of droplets» 

As discussed in Chapter 1, liquid/gas interfaces occur in a wide variety of natural 

phenomena and technical processes such as inkjets, evaporators and boilers. Two-phase 

flow modeling faces a number of challenges, such as having an extremely thin phase 

interface, large density change across the interface and topology changes. It is imperative 

to develop a numerical simulation method that provides an optimal solution to such a 

complex problem. The challenge is to resolve the interface features accurately without 

any artifacts. The bulk of the phases can be simulated using well-known methods, such as 

finite volumes, finite elements and finite differences. However, the interface requires a 

special numerical treatment due to problems in determining the location of the 

discontinuity and computation of surface stresses [1]. An under-resolved interface might 

imbalance the surface-stress conditions, which leads to spurious parasitic currents [2]. In 

contrast, trying to resolve features accurately could pose numerical stability issues and 

high computational cost. Hence, for problems involving interfaces, there is a trade-off 

between accuracy and computational cost. Modeling of two phase flow is still under 

development.  

Existing numerical methods used to solve two-phase flow problems include the Front-

Tracking method [3-5], Boundary Integral Method [6, 7], Finite Element Method [8, 9], 

Volume of Fluid Method [10-13], Phase Field Method [14, 15], Lattice Boltzmann 

Method  [16] and Level-Set method [19-26]. 

Only a limited number of the multiphase EHD flow problems within an idealized setting 

can be solved analytically, for example, predicting a small deformation of a single droplet 

in a uniform electric field  [27]. Numerical simulations are required to obtain solutions for 

the flow systems involving two fluids with different properties and studying the 

multiphase EHD flow. This chapter provides a brief review of various two-phase 

modeling methods available in the literature. Also, the specific method used in the 
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present study is described in detail. The electrohydrodynamics equations in two-phase 

flows and coupling of the hydrodynamic and electrostatic phenomena have also been 

reviewed. 

2.1 Modeling methods for two-phase flow 

The two-phase flow modeling methods can be broadly classified into three categories 

based on how the interface is tracked  [28]: 

1. Eulerian methods, 

2. Lagrangian methods, and 

3. Combined Lagrangian-Eulerian methods 

Eulerian methods are based on a fixed grid which is not moving with the interface. 

Methods using moving grid to track the interface explicitly are called Lagrangian. The 

interface is a representation of the boundary between two different phases. In Lagrangian 

modeling, the computational grid is fitted to the interface and equations are solved in this 

grid to track the interface. A large interface deformation and topology change can both 

lead to numerical instability and high computational time due to the need of the 

remeshing at each stage.  

The combined Lagrangian-Eulerian methods use some aspects of the both. The 

computations are carried out on a fixed grid while the interface is being tracked 

explicitly. The combined version is suitable for tracking moving rigid bodies as there is 

no sharp deformation on the interface. There are also some other methods in which no 

grid is used, like particle methods. The key idea of these meshless methods is to seek 

accurate and stable numerical solutions for integral equations or partial differential 

equations (PDEs) through using a set of nodes (or particles) rather than any grid. 

Eulerian methods are more preferred because of lower computational cost and their easy 

implementations. They can be classified into front tracking and front capturing methods. 

In front tracking methods, the interface is tracked explicitly using supplementary 

Lagrangian surface grids. On the other hand, front capturing methods use the field 
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variables like volume fraction and distance-functions to reconstruct the interface from the 

fixed grid at each time step. Although front tracking methods are more accurate, not 

being able to handle the topology changes like breaking or coalescence of droplets is their 

significant drawback and will not be considered in this thesis. Volume-of-Fluid (VOF) 

and Level-Set methods are among the most popular front capturing methods which will 

be discussed here. 

2.1.1 Volume-of-Fluid (VOF) method 

In this method, which was originally developed by Hirt and Nichols  [29], a volume-

fraction function is defined and advected through the fixed grid. This function has a value 

of one on one side, zero on the other side of the interface and a fractional value on the 

interface. An example of its implementation is shown in Figure 2.1. The interface is 

reconstructed using the updated mass fractions. 

 

Figure  2.1 The exact volume-of-fluid function over a square grid 

 

The volume fraction function is governed by 

  

  
        

(2.1) 

where   is the fluid velocity. The physical property changes smoothly from the value on 

one side of the interface to the value on the other side in the interfacial transitional zone 

following the relations 

              (2.2) 
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              (2.3) 

 

where   ,    and   ,    are densities and viscosities of the reference phase and the 

secondary phase, respectively. 

Some of the advantages of the VOF methods are: 

1. The mass can be conserved. 

2. The topology changes can be handled. 

3. It can be easily extended to 3-D formulation. 

The challenges are in making the initial approximation of the interface and interface 

reconstruction in order to determine the weighted value of density and viscosity in each 

cell. Different reconstruction methods can impose large errors in computed variables.  

 

2.1.2 Level-Set method 

The Level-Set method (LSM) is one of the most powerful techniques for fixed grid 

systems. It was developed by Osher and Sethian [19, 30] to track the interface on an 

Eulerian grid. LSMs are particularly useful for problems in which the topology of the 

evolving interface changes during the course of events and for problems in which sharp 

corners and cusps are present. This method is also excellent in accurately computing 

problems with surface tension. 

It employs the concept of a signed distance function   which has a value of zero on the 

interface, which is called zero level-set. It has positive values on one side and negative 

values on the other to distinguish between the two different phases as conceptually shown 

in Figure 2.2. 
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Figure  2.2 Representation of the level set function 

 

The level set function is governed by  

  

  
          

(2.4) 

and if the flow is incompressible (     ), it can be rewritten as 

  

  
        

(2.5) 

To keep the level set function a distance function, a reinitialization process is needed. 

Ideally, the interface should not change its position during this reinitialization procedure. 

However in many applications the zero level set function can become distorted by 

parasitic numerical inaccuracies, if the gradients in the neighborhood of the interface are 

either very large or very small. For this reason, an improved reinitialization method was 

used [31, 32]. It was observed that the level set approach can treat even highly distorted 

interface and topology changes are automatically incorporated.  

One of the disadvantages of this method is the mass conservation problem. Olsson et al. 

[33, 34] reduced the mass conservation errors by replacing the usual signed distance 

function with a hyperbolic tangent function. Some other researchers reduced the mass 

loss of the Level-Set method by coupling another method with a good mass conservation 

property, such as the volume of fluid method [35-40], front-tracking method [41, 42] or 

marker particles method  [43]. 
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The research is ongoing in this topic, and improvements and alternatives are much 

needed. Another approach is using the conservative LSM, which is how this technique is 

implemented in the commercial finite element software, COMSOL. 

 

2.1.3 Conservative Level-Set method 

The original LSM can be modified to improve the mass conservation by introducing a 

smeared out Heaviside step function. The level set function based on this has a value of 

one on one side and zero on other fluid. Across the interface, there is a smooth transition 

from zero to one. The interface is defined by the 0.5 isocontour, or level set, of  . The 

results of Olsson and Kreiss  [33] show a significant improvement in the mass 

conservation properties of this method.  

The laminar two-phase flow system studied in this thesis is coupled with the applied 

electric field and electric charges on the interface. Additional body forces are added to 

the Navier-Stokes equations for considering the surface tension (Fst) and electric stress 

(Fes).    

 
  

  
                                     

      

 

(2.6) 

where u denotes fluid velocity,   is the identity matrix, ρ is the fluid density, µ is the 

dynamic viscosity and P is the pressure. 

The interface between the fluids is treated as a free boundary that evolves in time. The 

density and dynamic viscosity are represented as a function of the level set function   

[32] as follows: 

              
 

              

(2.7) 

where      ,      are the density and dynamic viscosity of fluid 1 and 2 respectively. 
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In COMSOL, the motion of the interface is governed by a single combined advection-

reinitialisation equation: 

  

  
                    

  

    
  

(2.8) 

In most LSMs the right-hand side of Eq. (2-8) is zero, while in the method proposed by 

Olsson and her colleagues  [34], the right-hand side is necessary for keeping the thickness 

of interface finite and for numerical stability. 

Thus the terms on the left-hand side give the correct motion of the interface, while those 

on the right-hand side are necessary for numerical stability. The parameter   determines 

the thickness of the region where   varies smoothly from zero to one and is typically of 

the same order as the size of the elements of the mesh. By default,   is constant within 

each domain and equals the largest value of the mesh size, h, within the domain. The 

parameter γ determines the amount of reinitialization or stabilization of the level set 

function. It needs to be tuned for each specific problem. If γ is too small, the thickness of 

the interface might not remain constant and oscillations in   can appear because of 

numerical instabilities. On the other hand, if γ is too large the interface moves incorrectly. 

A suitable value for γ is the maximum magnitude of the velocity field u. 

In COMSOL, if the study type “Transient with Initialization” is used in the model, the 

level set variable is first initialized so that it varies smoothly between zero and one over 

the interface. It is equal to one inside the droplet, and zero outside the droplet and 

smoothly transformed within the diffuse interface with a certain thickness. For that 

condition, two study steps are created, “Phase Initialization” and “Time Dependent”. The 

Phase Initialization step solves for the distance to the initial interface, Dwi. The Time 

Dependent step then uses the initial condition for the level set function according to the 

following expression: 

   
 

         
 

(2.9) 

in domains initially outside the interface and 
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(2.10) 

in domains initially inside the interface. Here, inside refers to domains where       

and outside refers to domains where      . 

The level set function can be chosen to be the signed distance function from the interface. 

That means the smallest distance between a given point in the domain and the interface. 

 

                       (2.11) 

 

The level set function is positive on one side of the interface,       , and negative on 

the other,       . To represent the density and the viscosity in the two phases one has 

to use a Heaviside function 

 

      
     
     

  
(2.12) 

 

In numerical simulations, the abrupt jump in the fields due to Eq. (2.12) will cause 

instabilities in the Finite Element Method. Therefore a smeared out Heaviside function is 

used instead, e.g. 

 
 

        

    
 

 
 

 

  
 

 

  
    

  

 
       

    

  (2.13) 

 
 

where   corresponds to half the thickness of the interface. The interface thickness shall 

depend on the grid size in the mesh, such that it is sufficiently resolved. One can now 

define a new level set function 

 

                (2.14) 
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The level set function in Eq. (2.14) has the advantage that it is straightforward to 

represent the density and viscosity in the two different phases. One simply defines scalar 

fields that use the level set function to distinguish between the phases. 

In addition to the flow field variables, the level set variable   is also solved by the model. 

An additional step is required to initialize   to ensure smooth initial distribution of the 

level set variable before the time-dependent computation is started.  

The level set variable should have a smooth transition across a finite thickness from one 

limit to another. For this purpose, an additional study step called “Transient 

Initialization” predefined in COMSOL is required, during which a steady state solution 

for the combined level set advection-reinitialization equation (2.8) is obtained with no 

advection, i.e. for the following equation: 

  

  
               

  

    
  

(2.15) 

2.1.4 Modeling of the surface tension force 

In order to model the surface tension, we need two important geometrical parameters, 

namely, the local interface normal   and the curvature  . The unit normal to the interface 

is given by 

     

    
 
     

 
(2.16) 

The curvature is defined as 

              (2.17) 

The surface tension force can be computed as the divergence of the capillary pressure 

tensor T 

        

                

(2.18) 
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where   is the interface normal,   is a smoothed dirac delta function centered at the 0.5 

contour of   and   is the surface tension coefficient. 

                (2.19) 

 

It is vital to keep the interface as thin as possible, and its thickness constant for a better 

approximation. On the other hand, the interface must be wide enough to avoid sharp 

transitions. 

The “Two-phase Flow Level Set Interface” algorithm in COMSOL solves the level set 

advection-reinitialization equation simultaneously with the governing equations of flow. 

This allows time-dependant computation of laminar flow involving two phases which are 

immiscible, with a clear definition of both phases and the interface between them. 

 

2.2 Electrostatic force calculation 

The electric stress can be calculated by taking the divergence of the Maxwell stress tensor 

   which couples electrostatic and hydrodynamic phenomena, while assuming that the 

fluid is incompressible. Neglecting the effect of magnetic field, the Maxwell stress tensor 

can be defined as follows: 

              
 

 
      

      (2.20) 

 

The final results in terms of the force per unit volume is given as  

 

          
 

 
             

 

 
   

  

  
   (2.21) 

 

 

where   is electric field strength,   is the permittivity of fluid and    is the volume 

charge density near the interface. The first term on the right-hand side of Eq. (2.21) is due 

to the polarization stress and it acts along the normal direction of the interface. The 

second term is due to the interaction of the electric charges with the electric field, acting 
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along the direction of the electric field. The last term results from the changes in material 

density, usually called the electrostriction force density. This term is neglected in this 

study as the fluid is assumed to be incompressible. As the electric charges are located on 

the interface, both the polarization electric stress and the charge field interaction electric 

stress would thus be exerted on the interface. In order to calculate the electric force, the 

electric field strength   and volume charge density    in Eq. (2.21) are estimated using 

the various electric field models discussed in the following section. 

In electrohydrodynamics, the dynamic currents are small, and hence the magnetic 

induction effects can be ignored. Therefore, the electric field intensity is irrotational 

(     ).  

The Gauss law in a dielectric material with permittivity   can be written in terms of the 

electric displacement 

        

                 
(2.22) 

 

and the charge conservation can be expressed as follows, 

 
   

  
 

   

  
               (2.23) 

 

 

where 
 

  
 is the material derivative,   denotes the electrical conductivity, and   

represents the velocity of the fluid.    is the permittivity of vacuum, and    is the relative 

permittivity (ratio of the permittivity of a substance to that of vacuum). 

Charge relaxation time can be defined by          . The viscous time scale of the fluid 

motion is given by            , where   and µ are the density and viscosity of the fluid, 

and L is the characteristic length scale.  

If the fluid is electrically conductive and satisfies the relation      , the charge may 

accumulate at the interface almost instantaneously as compared to the time scale of fluid 

motion. On the other hand, for the weakly conducting fluid, it may behave as a perfect 

dielectric material when      . There is no free electric charge in the perfect dielectric 

fluid system. 
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2.2.1 Leaky dielectric model 

When both liquids in a two-fluid system are electrically conductive and satisfy the 

condition      , the charge conservation in the bulk of an inhomogeneous continuous 

medium can reach steady state much faster than the time scale of the fluid motion. The 

charge conservation equation (Eq. (2.23)) can be simplified with an quasi-static 

assumption, and expressed by the divergence of the current density due to the electrical 

conduction 

         (2.24) 

 

In the absence of any time-varying magnetic field, the curl of the electric field is zero 

(     ). The electric field can be re-expressed in terms of electric potential ( ) by 

      (2.25) 

 

This would then mean that the charge conservation equation in the liquid can be written 

as 

          (2.26) 

 

In a two-fluid system, the electrical conductivity is constant within each fluid, and Eq. 

(2.26) for electric potential ( ) can be reduced to Laplace equation (     ) in each 

medium. 

At the interface between the two fluid media, the electric potential and electric current are 

continuous  

                    (2.27) 

where     represents a jump across the interface. The above boundary conditions at the 

interface between two fluids can be embedded in the governing equation Eq. (2.26) for 

electric potential with variable electric conductivity    in the different fluid regions of the 

system. 

Based on Eq. (2.23), we can obtain the distribution of volume charge density,  

              (2.28) 
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With the calculated distributions of electric charge density and electric field strength, the 

electric stress within the bulk of incompressible fluid in the vicinity of interface can then 

be determined from 

 

          
 

 
           (2.29) 

 

2.2.2 Perfect dielectric model 

When both liquids in a two-fluid system have low electrical conductivities and satisfy the 

condition       , they can be considered as dielectric materials. An externally applied 

electric field polarizes the molecules of the dielectric material. The formed molecular 

dipoles will also modify the electric field, which again change the polarization field. The 

results of this infinite regress can be obtained directly by solving for the electric 

displacement from the free-charge configuration using Eq. (2.22). As a perfect dielectric 

medium has inhomogeneous isotropic polarizability and no free charge is present in the 

medium (    ), the governing equation for the electric field can be written as 

         (2.30) 

 

In the absence of any time-varying magnetic field, the curl of the electric field is zero 

(     ). The electric field can be expressed as the gradient of electric potential, 

     . Hence, equation (2.30) can be re-written in terms of electric potential   as 

 

          (2.31) 

Since there is no free charge at the interface between the two fluids with different 

permittivities,  the normal component of electric displacement and the electric potential 

are continuous  across the interface, 

 

                    (2.32) 
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The electric stress on the interface between two dielectric fluids can be determined from 

Eq. (2-21) as 

     
 

 
       

(2.33) 

 
The direction of the electric force for a perfect dielectric drop is in the normal direction of 

the interface, since this direction is determined by the gradient of the electrical 

permittivity   , pointing from the medium with a higher permittivity to the one with a 

lower permittivity. Furthermore, the electric stress acts only on the interface since the 

electrical permittivity gradient exists only across the interface. 

Since the conductivity and relative permittivity are constant, but different, for each fluid, 

the volume fraction changes from zero in one fluid to one in the other. In order to 

represent all the physical properties at the interface, the two phase relative permittivity 

(    and conductivity (     can be defined based on the volume fraction of the phases: 

                   

                   

(2.34) 

     and      are the volume fractions of the droplet and the continuous phase, 

respectively. Using Eq. (2.34), the physical properties change smoothly from the value on 

one side to the value on the other side. The solution of the Navier-Stokes equations with 

an interface is not an easy task. This is complicated further when electrostatic effects are 

coupled to the fluid dynamics. Commercial codes have to be extended and adapted for 

multidisciplinary subjects such as EHD problems. The governing equations for two-phase 

flow and electric field have been solved with the software COMSOL using the Finite 

Element Method (FEM). 

 

2.3 Finite Element Method 

In the FEM, an indirect approach of seeking a solution satisfying some conditions which 

simultaneously satisfy the original problem is taken. The solution obtained in this way is 

known as the “weak” solution (but despite its name it is by no means less correct).  
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The basic concept of FEM is the subdivision of the computational domain into elements 

of arbitrary shape and size. The calculation domain composed of the continuous phase 

        and the drop phase       is discretized using proper elements. The shapes of 

       and        change with time, following the deformation of the interface.  

FEM is a technique for obtaining a numerical approximation to some unknown function 

u(x). The exact function is approximated by forming the expansion: 

                   

 

   

 (2.35) 

where       are known basis functions (e.g. sinusoidals or polynomials) and   are scalar 

coefficients. Polynomials are popular because they are simple functions to manipulate 

mathematically. The task of trying to find the exact function      in an infinite 

dimensional search space is then reduced to calculating n discrete values that produce the 

best approximation of the solution. 

The accuracy of the approximation depends on the form of the chosen basis functions 

     , and the number of terms used in the expansion. In general, as 

               (2.36) 

 

In general, there are two ways to derive integral formulations for continuum problems: 

the Variational principle and the Method of Weighted Residual (MWR). A variational 

principle means that the physical problem can be expressed by the extremum of a 

functional. Although many physical problems can be described by variational equations 

(e.g. potential flow), there is no guarantee to find a corresponding variational principle 

for all problems (e.g. for flow governed by the Navier-Stokes equations). On the other 

hand, construction of an equivalent integral formulation, i.e. a weak formulation of the 

governing differential equations, based on MWR is always possible. 

In some cases the natural boundary condition is adequate and no action is required. 

Natural boundary conditions are those that automatically will be satisfied after solution of 
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the problem. If the natural boundary condition is not adequate, it is often possible to 

modify the functional (variational form) to change this. 

Finite Element bases are constructed implicitly in an element by element manner in terms 

of shape functions. Higher order shape functions provide a more rapid convergence of the 

solution, but introduce other difficulties: First of all, the programming of the finite 

element implementation is more complex, especially when mesh adaptation is used. 

Secondly, the resulting matrix bandwidth is increased due to the higher number of 

interconnected nodes, making the matrix solution process slower. Thirdly, the matrix 

assembly time is greatly increased due to the larger number of Gaussian quadrature 

points needed for the exact evaluation of the integrals. 

The only restriction for the subdivision of the computational domain into elements is that 

the elements may not overlap and that they have to cover the complete computational 

domain. Which type of element is most appropriate for a particular problem depends on 

several factors, such as domain geometry, required accuracy, computational costs, etc. 

The mesh and solver steps are usually carried out automatically using default settings, 

which are tuned for each specific fluid flow interface.  

The mesh generator discretizes the domains into triangular or quadrilateral mesh 

elements in 2D geometries. If the boundary is curved, these elements represent only an 

approximation of the original geometry. In 3D geometries, the domain can be discretized 

into tetrahedral, hexahedral (brick), prism, or pyramid mesh elements in 3D geometries 

as shown in Figure 2.3. These four elements can be used, in various combinations, to 

mesh any 3D model. Tetrahedral and triangular elements are in general better suited than 

quadrilaterals for the meshing of complex geometries. 

 

 

Figure  2.3 Different 3D element types 
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Tetrahedral elements are the default element type for most problems within COMSOL. 

These elements are also known as a simplex, which simply means that any 3D volume, 

regardless of shape or topology, can be meshed with these elements. The primary 

motivation for using brick and prism elements is that they can significantly reduce the 

number of elements in the mesh. These elements can have very high aspect ratios (the 

ratio of longest to shortest edge) whereas the algorithm used to create a tetrahedral mesh 

will try to keep the aspect ratio close to unity. It is reasonable to use high aspect ratio 

brick and prism elements when the solution varies gradually in certain directions, or if 

accurate results in those regions are not of the highest importance. 

Note that there is no direct relationship between the number of degrees of freedom and 

memory used to solve the problem. This is because the different element types have 

different computational requirements. A second-order tetrahedral has 10 nodes per 

element, while a second-order brick has 27 nodes. This means that the individual element 

matrices are larger, and the corresponding system matrices will be denser, when using a 

brick mesh. The memory (and time) needed to compute a solution depends upon the 

number of degrees of freedom solved for, as well as the average connectivity of the 

nodes, and other factors. 

The incompressible fluid flow module in COMSOL is somewhat more general than this 

and is able to account for arbitrary variations in viscosity and small variations in density. 

This section provides a summary of the participating equations and boundary condition 

approximations. Different boundary conditions are defined in Table 2.1. 

Table  2.1 Summary of the boundary conditions 

 

Boundary Type Equations 

Inlet-Pressure, No Viscous 

Stress 

           

               

Wall-No Slip     

Wall- Wetted       

     
 

 
  

Outlet- Pressure, No Viscous 

Stress 

    

               

Initial Interface        
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A wetted wall is utilized at locations where the fluid interface is expected to move along 

the wall. Two parameters define this condition: slip length, which is coupled to mesh 

size, and contact angle  . 

A pressure-based outlet boundary condition is used at two sides of the continuous phase 

domain to prevent boundary layer effects on the droplet motion. The Level-Set method 

requires specification of the initial distribution of the two fluids in the domain along with 

the initial location of the interface separating them. 

COMSOL is employed to perform the numerical simulations. Second order quadratic 

basic functions are used for the level set variable to provide smoother solutions than 

piece-wised linear basic functions.  

For convenience, prebuilt physics interfaces in the modules of AC/DC and computational 

fluid dynamics by COMSOL are used. More specifically, the leaky dielectric model 

consists of the “Electric Current” and “Two Phase Laminar Flow, Level Set” interfaces, 

and the perfect dielectric model consists of the “Electrostatic” and “Two-Phase Laminar 

Flow, Level Set” interfaces, respectively. The coupling terms between electric governing 

equation, Navier–Stokes equations and level set equation need to be implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

 

 

References 

[1] S. Ruben and Z. Stéphane, “Direct numerical simulation of free-surface and 

interfacial flow”, Annu. Rev. Fluid Mech., vol. 31, no. 1, pp. 567-603, 1999. 

[2] D. Jamet, D. Torres and J. Brackbill, “On the theory and computation of surface 

tension: The elimination of parasitic currents through energy conservation in the second-

gradient method”, Journal of Computational Physics, vol. 182, no. 1, pp. 262-276, 2002. 

[3] S. O. Unverdi and G. A Tryggvason, “Front-tracking method for viscous, 

incompressible, multi fluid flows”, J. Comput. Phys., vol. 100, pp. 25-37, 1992. 

[4] J. Hua and J. Lou, “Numerical simulation of bubble rising in viscous liquid”, J. 

Comput. Phys., vol. 222, no. 2, pp. 769-795, 2007. 

[5] J. Hua, B. Zhang and J. Lou, “Numerical simulation of microdroplet formation in 

coflowing immiscible liquids”, AIChE J., vol. 53, no. 10, pp. 2534-2548, 2007. 

[6] L. Y. Yeo, O. K. Matar, E. S. P. de Ortiz and G. E. Hewitt, “Film drainage 

between two surfactant-coated drops colliding at constant approach velocity”, J. Colloid 

Interface Sci., vol. 257, no. 1, pp. 93-107, 2003. 

[7] C. Pozrikidis, “Expansion of a two-dimensional foam”, Eng. Anal. Boundary 

Elem., vol. 26, no. 6, 495-504, 2002. 

[8] P. K. Notz, A. U. Chen and O. A. Basaran, “Satellite drops: Unexpected dynamics 

and change of scaling during pinch-off”, Phys. Fluids, vol. 13, no. 3, pp. 549-552, 2001. 

[9] C. Zhou, P. Yue and J. J. Feng, “Formation of simple and compound drops in 

microfluidic devices”, Phys. Fluids, vol. 18, no. 9, pp. 092105-14, 2006. 

[10] M. W. Weber and R. Shandas, “Computational fluid dynamics analysis of 

microbubble formation in microfluidic flow-focusing devices”, Microfluid. Nanofluid., 

vol. 3, no. 2, pp. 195-206, 2007. 

[11] M. R. Davidson, D. J. E. Harvie and J. J. Cooper-White, “Flow focusing in 

microchannels”, ANZIAM J., 46(E), pp. C47-C58, 2005. 

[12] A. J. Abrahamse, A. van der Padt, R. M. Boom and W. B.C. de Heij, “Process 

fundamentals of membrane emulsification: Simulation with CFD”, AIChE J., vol. 47, pp. 

1285-1291, 2001. 



34 

 

 

 

[13] M. Ohta, M. Yamamoto and M. Suzuki, “Numerical-analysis of a single drop 

formation process under pressure pulse condition”, Chem. Eng. Sci., vol. 50, no. 18, pp. 

2923-2931, 1995. 

[14] M. De Menech, “Modeling of droplet breakup in a microfluidic T-shaped junction 

with a phase-field model”, Phys. Rev. E, vol. 73, 031505, 2006. 

[15] O. Kuksenok, D. Jasnow, J. Yeomans and A. C.  Balazs, “Periodic droplet 

formation in chemically patterned microchannels”, Phys. Rev.Lett. , vol. 91, 108303, 

2003. 

[16] M. M. Dupin, I. Halliday and C. M. Care, “Simulation of a microfluidic flow-

focusing device”, Phys. Rev. E, vol. 73, 055701(R), 2006. 

[17] S. Van der Graaf, T. Nisisako, C. G. P. H Schroen, R. G. M. van der Sman and R. 

M. Boom, “Lattice Boltzmann simulations of droplet formation in a T-shaped 

microchannel”,  Langmuir, vol. 22, no. 9, pp. 4144-4152, 2006. 

[18] Z. Yu, O. Heraminger and L. S. Fan, “Experiment and lattice Boltzmann 

simulation of two-phase gas-liquid flows in microchannels”, Chem. Eng. Sci., vol. 62, no. 

24, pp. 7172-7183, 2007. 

[19] S. Osher, J. A. Sethian, “Fronts propagating with curvature-dependent speed: 

Algorithms based on Hamilton-Jacobi formulations”, J. Comput. Phys., vol. 79, no. 1, pp. 

12-49, 1988. 

[20] M. Sussman, P. Smereka and S. A Osher, “level set approach for computing 

solutions to incompressible two-phase flow”, J. Comput. Phys., vol. 114, pp. 146-159, 

1994. 

[21] Y. C. Chang, T. Y. Hou, B. Merriman and S. Osher, “A level set formulation of 

Eulerian interface capturing methods for incompres-sible fluid flows”, J. Comput. Phys., 

vol. 124, pp. 449-464, 1996. 

[22] R. P. Fedkiw, T. Aslam, B. Merriman and S. Osher, “A non- oscillatory Eulerian 

approach to interfaces in multimaterial flows (the ghost fluid method)”, J. Comput. Phys., 

vol. 152, no. 2, pp. 457-492, 1999. 

[23] M. Kang, R. P. Fedkiw and X. D. Liu, “A boundary condition capturing method 

for multiphase incompressible flow”, J. Sci. Comput., vol. 15, no. 3, pp. 323-360, 2000. 



35 

 

 

 

[24] M. Sussman and E. G. Puckett, “A coupled level set and volume-of-fluid method 

for computing 3D and axisymmetric incompressible two-phase flows”, J. Comput. Phys., 

vol. 162, no. 2, pp. 301-337, 2000. 

[25] M. Tatineni and X. L Zhong, “Numerical simulation of unsteady low-Reynolds-

number separated flows over airfoils”, AIAA J., vol. 38, no. 7, pp. 1295-1298, 2000. 

[26] T. Cubaud, M. Tatineni, X. L. Zhong and C. M. Ho, “Bubble dispenser in 

microfluidic devices”, Phys. Rev. E, vol. 72, 037302, 2005. 

[27] G. I. Taylor, “Studies in electrohydrodynamics. I. Circulation produced in a drop 

by an electric field,” Proc. R. Soc. London, Ser. A vol. 291, no. 1425, pp. 159-166, 1966. 

[28] W. Shyy, M. Francois, H. Udaykumar, N. N’dri and R. Tran-Son-Tay, “Moving 

boundaries in micro-scale biofluid dynamics,” Applied Mechanics Reviews, vol. 54, no. 

5, pp. 405–454, 2001. 

[29] C. Hirt and B. Nichols, “Volume of fluid (VOF) method for the dynamics of free 

boundaries,” Journal of Computational Physics, vol. 39, no. 1, pp. 201-225, 1981. 

[30] J. A. Sethian and S. Peter, “Level set methods for fluid interfaces,” Annu. Rev. 

Fluid Mech, vol. 35, no. 1, pp. 341–372, 2003. 

[31] S. R. Hysing and S. Turek, “The eikonal equation: Numerical efficiency vs. 

Algorithmic complexity on quadrilateral grids,” Algoritmy, pp. 22–31, 2005. 

[32] J. A. Sethian, “Level Set Methods and Fast Marching Methods: Evolving 

Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials 

Science”, Cambridge University Press, 1999. 

[33] E. Olsson and G. Kreiss, “A conservative level set method for two phase flow”, J. 

Comput. Phys., vol. 210, no. 1, pp. 225-246, 2005. 

[34] E. Olsson, G. Kreiss and S. Zahedi, “A conservative level set method for two 

phase flow II”, J. Comput. Phys., vol. 225, no. 1, pp. 785-807, 2007. 

[35] M. Sussman and E. G. Puckett, “A coupled level set and volume-of-fluid method 

for computing 3D and axisymmetric incompressible two-phase flows”, J. Comput. Phys., 

vol. 162, no. 2, pp. 301-337, 2000. 

[36] M. Sussman, K. M. Smith, M. Y. Hussaini, M. Ohta and R. Zhi-Wei, “A sharp 

interface method for incompressible two-phase flows”, J.Comput. Phys., vol. 221, no. 2, 

pp. 469-505, 2007. 



36 

 

 

 

[37] M. Sussman, “A second order coupled level set and volume-of- fluid method for 

computing growth and collapse of vapor bubbles”, J.Comput. Phys., vol. 187, no. 1, pp. 

110-136, 2003. 

[38] S. P. Van Der Pijl, A. Segal, C. Vuik and P. VuikWesseling, “A mass-conserving 

level set method for modeling of multi-phase flows”, Int. J.Numer. Methods Fluids, vol. 

47, no. 4, pp. 339-361, 2005. 

[39] D. L. Sun and W. Q. Tao, “A coupled volume-of-fluid and level set (VOSET) 

method for computing incompressible two-phase flows”, Int.J. Heat Mass Transfer, vol. 

53, no. 4, pp. 645-655, 2010. 

[40] T. Wang, H. Li, Y. Feng and D. Shi, “A coupled volume-of-fluid and level set 

(VOSET) method on dynamically adaptive quadtree grids”, Int. J. Heat Mass Transfer, 

vol. 67, pp. 70-73, 2013. 

[41] S. Shin, I. Yoon and D. Juric, “The local front reconstruction method for direct 

simulation of two and three dimensional multiphase flows”, J. Comput. Phys., vol. 230, 

no. 17, pp. 6605-6646, 2011. 

[42] S. Basting and M. Weismann, “A hybrid level set−front tracking finite element 

approach for fluid structure interaction and two-phase flow applications”, J. Comput. 

Phys., vol. 255, pp. 228-244, 2013. 

[43] D. Enright, R. Fedkiw, J. Ferziger and I. Mitchell, “A hybrid particle level set 

method for improved interface capturing”, J. Comput. Phys., vol. 183, no. 1, pp. 83-116, 

2002. 

  

 

 



37 

 

 

 

Chapter 3  

3 « Numerical simulation of electrically deformed droplets 
less conductive than the ambient fluid» 

 

3.1 Introduction  

Drop deformation under the influence of an electric field has attracted a lot of attention in 

the recent past due to its applications in several electrohydrodynamics based processes, 

such as electro-spraying, electro-emulsification, electro-coalescence and others. If the 

fluids are perfect dielectrics, the electric stress discontinuity just has a normal component 

that can be balanced by the interfacial tension at steady state and the droplet always 

deforms into the prolate shape. Assuming slightly conducting materials creates a 

tangential electric stress at the interface due to the mobile charges; the effect of electric 

field on these surface charges will drag the fluid into motion. The direction of the flow 

depends on the charge distribution on the surface and under certain conditions the droplet 

can deform into the oblate shape. Taylor  [1] proposed a small deformation theory, based 

on the leaky dielectric model, to theoretically analyze the deformation of the droplets in 

weak electric fields.  In order to characterize the droplet deformation, the degree of 

deformation is conventionally defined by: 

 

  
     
     

 (3.1) 

 

where    and    are the axes of the droplet in the direction parallel and perpendicular to 

the electric field, respectively. A positive D represents a deformation of the droplet that 

has an increased length along the direction of the electric field (prolate), while a negative 

D represents a deformation of the droplet, which deforms perpendicularly to the direction 

of the electric field (oblate). Taylor’s analysis predicted a relationship between droplet 

deformation D and electric field strength as 
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(3.2) 

 

where a is the radius of the undeformed droplet and   is the surface tension. The 

subscripts “in” and “ex” denote the values of parameters for the droplet and the ambient 

fluid, respectively. The ratios of physical properties are defined as: 

 

  
   

   
   

   
   

   
   

   
  (3.3) 

 

where   is electrical conductivity, ε is permittivity, and µ is viscosity. 

According to Taylor’s model, the conduction response of the fluids can be characterized 

by the product of the R and S 

 

   
     

     
         where           

   

   
             

   

   
 

 

If     , the interface charge distribution is dominated by the droplet and the fluid 

motion is from the equator to the pole, while if     , the charge distribution is 

dominated by the exterior fluid and the fluid motion is from the poles to the equator [2, 

3]. Various breakup modes and steady state shapes were investigated using numerical 

simulations. In most cases, the numerical simulations of droplet deformation have been 

limited to axisymmetric cases [4-7]. Lac and Homsy [3] considered a naturally buoyant 

and uncharged droplet suspended in another liquid subjected to a uniform electric field 

assuming creeping flow conditions and axial symmetry of the problem. They presented a 

review for various modes of droplet deformation, assuming a wide range of conductivity 

and permittivity ratios. Various breakup modes and steady state shapes were investigated. 

A comparison of the drop deformations from the simulation and the theoretical 

predictions was also proposed by Hua et al. [6] considering three different electric field 

models: a leaky dielectric model for droplets with finite electrical conductivity, a perfect 

dielectric model for electrically insulating droplets and a simplified constant surface 

charge model for charged droplets. 
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In the studies mentioned above, the oblate deformation simulations should be valid only 

for small electric capillary numbers to avoid the electrorotation and symmetry breaking 

of the problem. The Taylor model does not fully capture all phenomena that have been 

observed in experiments. The deformation and bursting of liquid droplets suspended in 

liquid dielectrics and exposed to an electric field were measured experimentally by 

several authors [8-11]. The bursting mode was found to show considerable variation with 

the electrical properties of the systems [8]. They also found that when the permittivity of 

the droplet is smaller than that of the ambient fluid, the droplets were flattened into a 

sheet, which then turned over until it was no longer parallel to the electrodes. Vizika and 

Saville [10] experimentally investigated the deformation of droplets in AC and DC fields. 

They observed that silicone oil droplets in castor oil change their shape from oblate to 

prolate under sufficient DC electric field, but they did not explain this behaviour. Ha and 

Yang [12] did a comprehensive study for droplets more conductive than the ambient 

fluid, experimentally investigating the deformation and breakup of Newtonian and non-

Newtonian droplets. Three different cases of highly conducting droplets, conducting 

droplets and slightly conducting droplets were examined. They found that the 

electrohydrostatic theory is satisfactory when the ratio of resistivities for the droplet and 

continuous-phase is less than    .  

Recent experimental studies have discovered non-axisymmetric shapes for the droplets 

[13-16]. It was found that the symmetry breaking happens only for droplets with      

due to the reverse dipole created inside the droplet. The rotational flow is created and the 

major axis of the droplet makes an oblique angle with respect to the electric field. The 

effect of AC and DC fields on continuous electrorotation of droplets with the rotation of 

the symmetric axis of each droplet was investigated by Krause and Chandratreya [13]. It 

was found that the rotation velocities in the DC field were in agreement with a theoretical 

treatment for electrorotation of solid spheres in DC fields (See the Introduction of Ref. 

17). Ha and Yang [14] experimentally investigated the electrorotation of a less 

conducting droplet suspended in a more conducting liquid and its effect on deformation 

and burst behaviour of the droplet. It was stated that in the case of highly viscous 

droplets, the deviation from the rigid body theory is small. They also found the threshold 

electric field strength beyond which the droplet breaks up. The deformation and break up 
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of a droplet in a steady and uniform electric field was investigated experimentally by Sato 

et al. [15]. Three different modes were reported for silicone oil suspended in more 

conducting castor oil. A peculiar oscillatory motion of the droplets accompanied by 

cyclic oblate-to-prolate and prolate-to-oblate variations in shape was found. Salipante and 

Vlahovska [16] presented a systematic experimental study of the non-axisymmetric 

rotational flow in strong electric fields. The critical electric field, droplet inclination angle 

and the rate of rotation were measured for small and high viscosity droplets. It was found 

that the droplet inclination angle increases with an increase in field. 

It is difficult to measure the conductivities of the oily fluids used in these experiments 

with conventional methods due to their extremely low conductivities. It can be concluded 

that some of the discrepancies noted between experiments can result from inaccurate 

measurement of conductivities. On the other hand, it is clear that the rotation of the 

droplet with an oblique axis to the applied electric field will destroy the problem 

symmetry. In order to have a comprehensive understanding of the problem, a full 3D 

simulation is needed. 

In the present study, we numerically investigate the deformation, oscillation and breakup 

of a weakly conducting droplet suspended in an ambient medium with a higher 

conductivity. It is the first time that the deformation of such droplet is investigated 

numerically in a 3D configuration. There has been also relatively little work on the 

breakup of a less conducting droplet via the oblate-type deformation. 

 

3.2 Problem statement 

Figure 3.1 illustrates the 3D model considered in this study. A small liquid droplet is 

suspended in another immiscible fluid and is exposed to a uniform electric field parallel 

to the Y-axis.  This field is generated by applying different electric potentials to the 

parallel plates in the X-Z planes.  

The center of the droplet is placed in the middle of the rectangular cube. The liquids are 

assumed to be incompressible Newtonian with the same density, ρ, so that the drop is 

under neutrally buoyant condition. The interface separating the two fluids is assumed to 

have a constant interfacial tension coefficient. The size of the computational domain is 10 
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times the droplet radius in the direction of the electric field and 8 times the droplet radius 

in the directions normal to the electric field. At the initial stage, the shape of the droplet is 

assumed to be spherical, the center of droplet is located at the centre of the parallel-plate 

capacitor and both fluids are motionless. 

 

 

 

Figure  3.1 Model of a suspended droplet in an electric field 

 

In order to investigate the dynamics of droplet deformation in an electric field it is 

necessary to solve the Navier-Stokes equations, describing the fluid motion, as well as 

track the interfaces between both fluids. The laminar two-phase flow system studied here 

is coupled with the applied electric field and the electric charge conservation law. 

Additional body forces are added to the Navier-Stokes equations for considering the 

surface tension (Fst) and electric stress (Fes).    

 
  

  
                                     

      

 

(3.4) 

where u denotes fluid velocity,   is the identity matrix, ρ is the fluid density, µ is the 

dynamic viscosity and P is the pressure. In the current simulation, no-slip boundary 
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conditions are applied for the electrodes and pressure outlet conditions are applied for 

other boundaries.  

To describe the evolution of the droplet shape, the Level-Set method [18], suitable for 

free boundary problems, is applied. In the Level-Set method, the interface is considered 

to have a finite thickness of the same order as the mesh size instead of zero thickness. 

The physical property changes smoothly from the value on one side of the interface to the 

value on the other side in the interfacial transitional zone. The method describes the 

evolution of the interface between the two fluids tracing an iso-potential curve of the 

level set function    . In general, in droplet     and in ambient fluid    .  The 

interface is represented by the 0.5 contour of the level set function (     ). The 

movement of the interface is governed by a differential equation for this function. To 

keep the level set function a distance function, a reinitialization process is needed. 

Ideally, the interface should not change its position during this reinitialization procedure, 

but in many applications the zero level set can become distorted by parasitic numerical 

inaccuracies, if the gradients in the neighborhood of the interface are either very large or 

very small. For this reason, an improved reinitialization method is used.  

Level-Set methods automatically deal with topological changes and it is in general easy 

to obtain high order of accuracy. The time evolution of the interface is modeled via 

transport of the level set function   due to the underlying physical velocity field. The 

function   is governed by the equation 

  

  
                      

  

    
  (3.5) 

where     is the parameter controlling the interface thickness and    is the reinitialization 

parameter. A suitable value for   is the maximum velocity magnitude occurring in the 

model. The density and viscosity, which are different for oil and water, are automatically 

calculated from the level set variable  , as well as the surface tension force. 

The surface tension force is given by 

        (3.6) 
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where   is the interface normal and   is the Dirac-delta function that is nonzero only at 

the fluid interface. The interface normal is calculated from 

  
  

    
 (3.7) 

The use of a Dirac-delta function will ideally create a sharp interface in the mathematical 

formulation. However, to implement this in the numerical simulation, the Dirac-delta 

function should be approximated by  

                (3.8) 

The electric force causes the deformation and it can be calculated from the electric field 

distribution, which depends on the position and shape of the droplet. In the absence of 

any time-varying magnetic field, the curl of the electric field is zero         and the 

electric field can be expressed in terms of the electric potential V. 

      (3.9) 

The charge conservation in each medium can be expressed as follows 

          (3.10) 

where   is the electric conductivity of the medium. 

Assuming that the electric relaxation time is less than the time scale of the fluid motion, 

in a two-fluid system the electrical conductivity is constant within each fluid and Eq. 

(3.10) for electric potential (V) can be reduced to Laplace equation in each medium 

 

       (3.11) 

It is assumed that there is no space charge in the fluids except the surface charge on the 

interface, created by the difference between permittivities and conductivities of both 
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fluids. At the interface between the two fluid media, the electric potential and normal 

component of electric current density are continuous.  

                    (3.12) 

where     represents a jump across the interface. The above boundary conditions at the 

interface between two fluids can be embedded in the governing equation Eq. (3.10) for 

electric potential with variable electric conductivity    in the different fluid regions of the 

system. 

After solving Eq. (3.10), the electric potential can be obtained and then the electric field 

strength can be calculated using Eq. (3.9). The current density (   and the electric 

displacement (D) can also be found from 

     
  

  
 

        

(3.13) 

where    is the permittivity of vacuum and    is the relative permittivity of medium (ratio 

of the absolute permittivity and that of vacuum). Assuming that the fluids are 

incompressible, the electric stress can be calculated by taking the divergence of the 

Maxwell stress tensor, which couples electrostatic and hydrodynamic phenomena. 

Neglecting the effect of magnetic field, the Maxwell stress tensor can be defined as 

follows: 

              
 

 
      

      (3.14) 

The momentum equation is modified by inserting the electric force,    ,  which can be 

determined by calculating the divergence of the Maxwell stress tensor (   : 

         (3.15) 

The conductivities and relative permittivities for each fluid are constant, but different. 

The volume fraction changes from zero in one fluid to one in the other one. In order to 
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have all the physical properties in the interface, the two phase relative permittivity (    

and conductivity (     can be defined based on the volume fraction of the phases: 

                   

                   

(3.16) 

where      and      are the volume fractions of the droplet and the continuous phase, 

respectively. Using Eq. (3.16), the physical properties change smoothly from the value on 

one side to the value on the other side. The governing equations for two-phase flow and 

electric field have been solved with the commercial software COMSOL based on the 

Finite Element Method (FEM) [19]. 

3.3 Simulation validation 

In order to validate the numerical algorithm, two different breakup modes of the prolate 

type deformation are compared with the available experimental data of Ha and Yang 

[12]. There is a large set of parameters to consider and in the results that follow we 

assume that the drop phase and the suspending fluid have the same parameters as 

measured in [12].Two different systems (denoted NN6 and NN21) were chosen from 

their experimental system. According to their measurements, the relevant parameters are 

as follows: 

Table  3.1 List of experimental parameters 

System   
   

   
   

   

   
      

   

   
        

NN6      0.05 0.043 0.0054 

NN21     0.73 0.874 0.0033 

  

For a highly conducting droplet (NN6), the droplet first deforms into an elongated 

ellipsoid. After reaching the critical deformation, the drop begins to stretch rapidly and 

the blobs at each ends move away leaving two daughter droplets at the ends and a main 

body in the middle (Figure 3.2).  
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For a slightly conducting drop (NN21), having the viscosity comparable to the ambient 

phase, the droplet elongates into the thin thread with sharply pointed ends rather than 

relaxes into an ellipsoid like the highly conducting drop (Figure 3.3). Although the drop 

ends become pointed, they did not refer this mode to tip streaming. 

 

 
 

      s 
      s 

Figure  3.2 Droplet breakup in NN6 configuration [13]: experimental data (left) and 

numerical results (right). The applied electric field strength is 4.5 kV/cm 

 

 

 

     s      s 

Figure  3.3 Droplet breakup in NN21 configuration [13]: experimental data (left) and 

numerical results (right). The applied electric field strength is 3.2 kV/cm 
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In the range of electric capillary numbers covered in the experiments, the measured 

deformations and break-up match very well the numerical results. For a highly 

conducting droplet (NN6), according to the details of the experiments, the droplet begins 

to stretch rapidly on frame 140 (the frame rate is 15 frames/s) which seems to agree 

perfectly with our numerical results (      s). For the NN21 system, experimental 

figures illustrate the forming of the pinching necks on frame 210 (     s) which is also 

in good agreement with our numerical results (     s).  

To check the sensitivity of the numerical simulations on the size of the computational 

domain, the electrodes distance has been checked for three different values of 8a, 10a and 

12a (where a is the radius of an undeformed droplet). The drop shapes for the 10a and 

12a are almost identical, but differences are evident when compared to the 8a solution. 

Since time-dependent highly accurate solutions are computationally expensive we 

employ the 10a distance for all the computations reported in what follows. 

 

3.4 Results and discussion 

The simulations were done for different conductivity and viscosity ratios. The degree of 

droplet deformation can be plotted as a function of the electric capillary       number 

for given ratios of the viscosities, permittivities, and conductivities of the droplet and 

continuous phases. The electric capillary number describes the relative strength of the 

electric force with respect to the capillary interfacial force. 

 

    
     

 

 
 

(3.17) 

The problem depends on a single dynamic parameter,    , and three material property 

ratios: R, S and   [4]. Three different modes of the droplet distortion can be 

distinguished:  

(A) At very low electric fields the droplet deforms into a symmetric oblate shape.  

(B) Increasing electric field causes the oscillatory oblate-prolate motion.  
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(C) The droplet turns into the torus shape, which leads to a breakup, when the electric 

field intensity is further increased.  

3.4.1 Small deformation 

In order to verify the accuracy of the numerical model, the deformations of a droplet with 

      mm at low electric field calculated numerically have been compared with the 

analytical results of the small deformation theory [1]. In this case the droplet deforms into 

an oblate shape with the axis of symmetry parallel to the direction of the electric field. 

Figure 3.4 compares the numerical results for droplet deformation with those obtained 

from the asymptotic Taylor theory for         ,          and         . The 

numerical results show good agreement with Taylor’s theory up to D ≈ - 0.05. This is 

because Taylor’s theoretical analysis is based on the assumption of small droplet 

deformation. When the droplet deformation is small, the deformation increases almost 

linearly with the electrical capillary number, which agrees well with the prediction by 

Taylor’s theory. For stronger electric fields (   >0.27), the droplet starts to oscillate and 

the numerical results deviate from the Taylor’s theory. 

 

 

Figure  3.4 Droplet deformation versus electric capillary number for R=0.15, S=1.38 and 

λ=1.31  
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3.4.2 Oscillatory oblate-prolate motion  

 

This phenomenon is very interesting from a mechanical point of view, because using a 

DC electric field with a constant strength causes elongation and contraction of droplets 

and the droplet experiences highly nonlinear oscillatory motion when the magnitude of 

the electric field is increased. Figure 3.5 shows the image sequence from two directions, 

illustrating the oscillatory motion of a droplet for        mm droplet exposed to the 

electric field     kV/cm (        . The physical properties of the droplet and the 

surrounding fluid are: 

 

                                    . 

 

Sufficiently strong electric field causes the droplet to oscillate between the oblate and 

prolate shapes. The major axis of the droplet makes an oblique angle comparing to the 

first regime and this angle varies during the oscillation between the oblate and prolate 

deformation. The droplet shape changes from an oblate shape with tilted symmetric axis 

into the prolate shape with horizontal axis and then from prolate shape to oblate shape. 

While the field is constant in this regime, the droplet maintained a cyclic motion without 

breaking up. If the electric field strength is kept constant, this is a steady-state oscillation 

with a constant amplitude.  

 

 

Normal View 

 

 

Parrallel view 
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(a) (b) 

Figure  3.5 Sequence of images showing the oscillation of the 1.3 mm droplet for E=4 

kV/cm. (a) Observation normal to the applied electric field. (b) Observation parallel to 

the applied electric field. 

 

 

It is obvious that the major axis of the droplet tilts, if it is observed from the direction 

parallel to the electric field. The droplet elongates in the direction which is normal to the 

electric field until       s, then it starts coming back to its original position. At       

s the major axis of the droplet makes a tilt angle, then at       s the major axis of the 

droplet loses the tilt angle and a new cycle is again repeated. Increasing the electric field 
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in this mode causes a decrease of the amplitude of oscillation in the direction parallel to 

the electric field.  

The nature of oblate–prolate droplet oscillation is different from the ordinary resonant 

oscillation of the droplets. In Figure 3.6, the frequency of the oscillation is plotted versus 

    for       ,        and       . By increasing the electric field, the frequency 

of the oscillation will increase while the amplitude of the oscillation along the electric 

field (prolate deformation) will decrease.  

 

 

Figure  3.6 Frequency of droplet oscillation versus electric capillary number (CaE) for 

R=0.15, S=1.38 and λ=1.31 

 

The frequencies were calculated based on the time interval between two maximum 

prolate deformations. For a sufficiently high electric field (   ≥2.5), no oscillations are 

observed and the break up will happen in a symmetric manner. 

3.4.3 Break up 

Further increasing of the electric field causes the droplet break up, which occurs in a 

symmetric manner. The droplet will first deform into a torus shape and this happens very 

fast comparing with the oscillation mode. This is the first time that this kind of break up 

has been captured numerically. Figure 3.7 illustrates the electrohydrodynamic burst of the 



52 

 

 

 

droplet with the radius of        mm in     kV/cm electric field and with the same 

physical properties as in the previous sections. The breakup starts with creation of the 

hole in the middle of the droplet. This hole grows and changes the droplet shape to the 

torus. The hole inside the droplet continues to grow and eventually leads to the droplet 

breakup. 

 

 

 

 

      

 

 

         

 

 

         

 

 

         

 

 

        

 

 

         

 

 

         

 

         

Figure  3.7 Sequence of images showing the breakup of the 1.3 mm droplet for E=7 

kV/cm  

 

Charges carried by conduction accumulate at the interface. The electric field acting on 

these surface charges creates a tangential stress which drags the fluid into motion and 

forces the fluid away from the center. If     , the conduction in the ambient fluid is 

faster than that in the droplet, so charges at the droplet poles are repelled from the 

electrodes, pushing the droplet into an oblate shape caused by a hydrodynamic shear 

force acting on the interface. If the electric field strength exceeds some critical value, the 

droplet becomes flatter under the action of high electric field and the torus like shape is 
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formed. The torus expands in time to form a fluid ring, which subsequently disintegrates 

due to the capillary instabilities. 

 

3.4.4 Effect of viscosity and conductivity ratios on droplet breakup 

It was observed by Ha and Yang [20, 21] that for the prolate-type deformation of a more 

conducting droplet, the critical electric capillary number weakly depends on the viscosity 

ratio. This is due to the fact that for a more conducting droplet the flow that results from 

the electrical stress is too weak to induce hydrodynamic effect on the droplet deformation 

and breakup. On the other hand the viscosity ratio can have significant effect on the 

breakup in this case. Figure 3.8 illustrates the effect of viscosity on the critical electric 

capillary number of this kind of breakup for two different conductivity ratios (R).  It is 

obvious that for highly viscous droplets, a stronger electric field is required for the 

droplet breakup. For a less viscous droplet, however, the electric energy will be 

transformed to viscous dissipation associated with the strong internal fluid motions. As a 

result, the higher electric energy is required to break up a less viscous droplet. It can be 

understood from Figure 3.6 that even though there is no variation in the electric field 

strength, the behaviour of the droplet may be controlled by changing the ratio of viscosity 

of the fluids in the system.  

It is also clear that the conductivity ratio (R) has a significant effect on the critical electric 

capillary number of the breakup and may change the behavior of the droplet. By 

decreasing the conductivity ratio (      ) and keeping the same viscosity ratio 

(      ) and permittivity ratio (      ), the breakup starts at lower electric capillary 

numbers (   =1.9). For       , the numerical results have also been compared with 

the available experimental data of Ha and Yang [14]. As mentioned before, the difference 

between numerical and experimental results can be attributed to the difference in 

measuring the conductivities of the oily fluids. The electrical conductivity of insulating 

oils is a material parameter which strongly depends on temperature and electric field 

strength and can also vary with ageing. These differences can reach easily one or even 

several orders of magnitude in different experimental conditions.  
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Figure  3.8 Critical electric capillary number as a function of the viscosity ratio for S=1.38  

Increasing the conductivity of the continuous phase will speed up the breakup and the 

rate of growing of the hole inside the droplet, so that the breakup will happen at a lower 

electric capillary number. Decreasing the conductivity ratio (R) causes the induced 

electrical flow to become more powerful, resulting in faster breakup. Figure 3.9 shows 

the growing rate of the hole development inside the droplet at        s for different 

values of R.  

 

    

                           

Figure  3.9 Droplet shape for different conductivity ratios (R) at t=0.05 s  

 

It is obvious that for       and      , there is no hole at        s, but for   

     the hole has already been formed inside the droplet. Generally, a larger difference in 

the electrical conductivities will result in larger electric charge accumulation on the 

droplet surface, which induces larger deformation. 



55 

 

 

 

Figure 3.10 illustrates schematically an X-Y view of the flow patterns inside and outside 

the droplet. When a droplet reaches a steady prolate or oblate shape under the influence 

of an external electric field, circulating flow patterns of fluid can be formed both inside 

and outside of the droplet. The Taylor circulations are visible at     and the fluid 

motion is from pole to equator. As time proceeds, the developed circulating flow patterns 

diminish, the flow pattern will change and the droplet will not keep a steady circulating 

flow as was predicted by Taylor’s theory.  

Because the fluid interface cannot support tangential stresses, the high tangential electric 

stress at the droplet interface accelerates the fluid in the breakup mode very quickly and 

the droplet will be squeezed into a plane under the effect of the high electric field 

intensities. This changing of the flow pattern will cause the droplet to be stretched in a 

plane parallel to the electrodes which finally lead to the axisymmetric breakup of the 

droplet. 

 

 

 

 

 

             

Figure  3.10 Flow patterns of the droplet for E=7 kV/cm (XY view) 
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3.5 Conclusions 

We have studied numerically the deformation of a droplet suspended in a uniform DC 

electric field. We observed that droplets experienced an oblate-prolate oscillatory motion 

with the tilted major axis. We have determined three types of behaviour for the droplets, 

which are less conducting than ambient fluid:  

- Small deformation perpendicular to the electric field in accordance with Taylor theory, 

which happens at small electric capillary numbers.  

- Oscillatory motion between the oblate and prolate deformation observed for moderate 

capillary numbers. The frequency of the oscillation was also investigated.  

- Further increasing of the electric field causes the droplet to break up passing through a 

torus shape. The investigation of the effect of viscosity ratio on the droplet break up 

shows that there exists a minimum of the critical electric capillary number, at which 

breakup occurs. It was also observed that the onset of breakup will move to lower electric 

capillary numbers when the conductivity ratio (R) decreases. We also characterized a 

specific kind of deformation (torus shape) which leads to the breakup and for the first 

time the effect of conductivity ratio (R) on the breakup of less conducting droplet was 

investigated.  

It was also revealed that the differences in experimental conditions such as measuring the 

conductivity ratio may change the value of critical electric capillary number and the 

droplet behaviour. 
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Chapter 4  

4 « Electric-field-induced oscillations of water droplets 
deposited on insulating surfaces» 

 

4.1 Introduction 

Electric field is widely used as a tool to control the shape, the motion and the generation 

of small droplets of conductive liquids [1-4]. Electrowetting is one of the best methods to 

control the wetting behavior of liquid droplets on partially wetting surfaces by reducing 

the apparent contact angle of sessile droplets [5-7]. A water droplet located on a 

hydrophobic insulating surface deforms by the action of electric field and its motion 

depends on the material property of the droplet and the surface. 

Under a DC electric field, a droplet located on an insulated surface elongates along the 

direction of the electric field and can form a water filament to bridge the electrodes [8]. 

On the other hand, the shape of the water droplet varies with time under an AC electric 

field, depending on the frequency of the electric field. High voltage AC outdoor 

insulators are conventionally classified into two categories: the ceramic insulators (glass 

or porcelain) and composite insulators (polymeric insulators). Physical robustness and 

low weight of composite insulators have made them become dominant over ceramic 

insulators over the last years [9, 10]. As a result of a higher degree of hydrophobicity, the 

water tends to remain in droplets on these materials, which have led to study the 

behaviour of individual droplets on polymeric surfaces. The vibration and distortion of 

the droplets in an AC field has been investigated experimentally [11-15]. The interaction 

of droplets on a surface of composite insulator and generation of conductive regions and 

filaments was studied experimentally in [16-18]. Krivda and Birtwhistle [19] showed that 

natural vibrations of a water droplet change its shape during the AC cycle and so can 

effectively increase the risk of flashover by reducing the insulation path.  

Tiny droplets can be used as a medium for biochemical reactions as well as containers of 

biological particles. Using a patterned electrode array, droplets can be transported, mixed 

and split by controlling the contact angle in electrowetting [20-23].  
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When a liquid droplet is slowly placed on a solid, flat substrate, it spreads to its 

equilibrium configuration with the contact angle specified by Young’s equation (see 

Figure 4.1): 

 

Figure  4.1 Force balance at the contact line 

 

      
       

   
 (4.1) 

 

The surface energy (tension) between the two phases indicated by subscripts is denoted 

by σ. Thus, according to Young’s equation, the contact angle θ is a material parameter 

dependent only on the involved surface energies.  

Electrowetting is well understood as long as the applied voltage is low. Sufficiently far 

away from the contact line, the voltage dependence of the contact angle is given by the 

Lippmann-Young equation [5],  

                (4.2) 

 

where    is the Lippmann contact angle,    is Young’s contact angle,      
     

 

    
 is a 

dimensionless number representing the ratio of electrostatic and capillary forces,   is the 

applied electric potential,   is the surface tension of the liquid,    and d are the dielectric 

constant and the thickness of the insulating layer, respectively,    is the electric 

susceptibility of vacuum. 

It was found that the contact angle approaches Young’s angle in the vicinity of the 

substrate, when the Lippmann angle is small [24]. The principles underlying common 

techniques for actuation of droplets and films have been recently reviewed by Darhuber 
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and Troian [25]. Applications of electrowetting include reprogrammable lab-on-a-chip 

systems [26], autofocus cell phone lenses [27], colored oil pixels for laptops and video-

speed smart paper [28, 29]. 

The work presented here deals with a numerical study of droplet oscillation placed on 

different hydrophobic surfaces under the effect of applied AC voltage, including the 

effect of ambient gas. All of the previous numerical studies assumed conventional 

electrowetting configuration which can be modeled using axi-symmetric system [30-32]. 

There are no previous works on three dimensional numerical simulations of droplet 

oscillation in the tangential electric field. The simulation results demonstrate that the 

current numerical method may provide an effective approach to quantitatively analyze 

complex electrohydrodynamic problems. According to the available experimental data, 

three different kinds of hydrophobic surfaces with different static contact angles were 

investigated to clarify the resonance phenomenon mentioned in [11]. The electric field 

introduces additional interfacial stresses at the droplet interface and extensive 

computations were performed to assess the combined effects of electric fields, surface 

tension and inertia. 

 

4.2 Problem statement 

Figure 4.2 illustrates the 3-D model considered in this study. A small liquid droplet is 

deposited on a solid surface, surrounded by another immiscible fluid and exposed to an 

AC electric field, which is parallel to the solid surface.  This field is generated by 

applying a sinusoidal electric potential difference to the parallel electrodes in the X-Z 

planes.  
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Figure  4.2 Model of a droplet deposited on a dielectric substrate and exposed to an 

electric field 

 

The center of the droplet is placed in the middle of the rectangular cube. The interface 

separating the two fluids is assumed to have a constant interfacial tension coefficient. The 

size of the computational domain is 10 times the droplet radius in the direction of the 

electric field and 8 times the droplet radius in the directions normal to the electric field. 

At the initial stage, the shape of the droplet is assumed to be spherical and both fluids are 

motionless.  

In order to investigate the dynamics of droplet deformation in an electric field it is 

necessary to solve the Navier-Stokes equations, describing the fluid motion, as well as to 

track the interface between both fluids. The two-phase flow system studied here is 

coupled with the applied electric field generated by the external voltage and electric 

charges accumulated on the droplet surface. Additional body forces are added to the 

Navier-Stokes equations for considering the surface tension (Fst) and electric stress (Fes).    

 
  

  
                                        

      

 

 

(4.3) 

where u denotes fluid velocity, ρ is the fluid density,   is the gravitational acceleration, µ 

is the dynamic viscosity,    is the 3×3 identity matrix and p is the pressure. No-slip 

boundary conditions are applied for the electrodes. To describe the evolution of the 
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droplet shape, the Level-Set method [33], suitable for free boundary problems, is used. 

The method describes the evolution of the interface between the two fluids tracing an iso-

potential curve of the level set function    . In general, inside the droplet   equals to one 

(   ) and in ambient fluid   equals to zero (   ).  The interface is represented by 

the 0.5 contour of the level set function (     ). The function   is governed by  

  

  
                      

  

    
  (4.4) 

where     is the parameter controlling the interface thickness and    is the reinitialization 

parameter. The density and viscosity, which are different for oil and water, are 

automatically calculated from the level set variable  , as well as the surface tension 

force. 

The electric forces cause the droplet deformation and they can be calculated from the 

electric field distribution, which depends on the position and shape of the droplet. In the 

absence of any time-varying magnetic field, the curl of the electric field is zero      

   and the electric field can be expressed in terms of the electric potential V. 

      (4.5) 

In a two-fluid system, assuming that the electric relaxation time is shorter than the time 

scale of the fluid motion,  the electrical conductivity is constant within each fluid and the 

governing equation for the potential can be expressed in each medium as follows: 

       (4.6) 

D is the electric displacement, 

        (4.7) 

where    is the permittivity of vacuum and    is the relative permittivity. It is assumed 

that there is no space charge in the fluids except the surface charge on the interface, 

created by the difference between permittivities and conductivities of both fluids. 

Assuming that the fluids are incompressible, the electric stress can be calculated by 

taking the divergence of the Maxwell stress tensor, which couples electrostatic and 
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hydrodynamic phenomena. Neglecting the effect of magnetic field, the Maxwell stress 

tensor can be defined as: 

              
 

 
      

      (4.8) 

The momentum equation is modified by inserting the electric force,   , which can be 

determined by calculating the divergence of the Maxwell stress tensor (   : 

         (4.9) 

The relative permittivity for each fluid is constant, but different. The volume fraction 

changes from zero in one fluid to one in the other one. In order to have all the physical 

properties at the interface, the two-phase relative permittivity (    can be defined based 

on the volume fraction of both phases: permittivity of the droplet       and permittivity 

of the surrounding medium       : 

                   (4.10) 

where      and      are the volume fractions of the droplet and the continuous phase 

(fluid surrounding the droplet), respectively. Based on Eq. 4.10, inside the droplet, 

       and        and                     . As the      changes from one 

(inside the droplet) to zero (outside the droplet), the relative permittivity changes 

smoothly from the value on one side to the value on the other side by Eq. (4.10). 

Regardless of the contact angle value, there is no solution to the Navier–Stokes equations 

that would simultaneously satisfy all classical boundary conditions on the free surface 

and the solid boundary [34-37].  

The wetted wall boundary condition is suitable for solid walls in contact with a fluid-fluid 

interface. For the Level-Set method, this boundary condition enforces the slip condition 

          and adds a frictional force of the form 

     
 

 
  (4.11) 

where β is the slip length.  
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It was found that the local contact angle in electrowetting is equal to Young’s angle 

independently of the applied voltage [38, 39]. COMSOL [40], a commercial software 

implementing the finite element method, was used for solving the above equations. The 

components of the electric field are calculated by the Electrostatics interface. Their 

predefined variable names, along with the variable names of the permittivities can be 

used directly to set up expressions calculating the components of the Maxwell stress 

tensor. The Laminar Two-Phase Flow and Level-Set interface sets up the equations for 

the fluid motion according to the Navier-Stokes equations. 

 For simplicity, we assume that the droplet has initially a constant semi-spherical cap 

shape. To quantify the degree of the deformation of the water droplet, an aspect ratio 

which corresponds to the width on the height ratio of the water droplet is shown in Figure 

4.3. 

  
 

 
 (4.12) 

The aspect ratios of water droplet at the moment of the elongation and shrinking are, 

respectively, defined as   and   . 

   

(a) Without electric 

field 

(b) At elongation (c) At shrinking 

Figure  4.3 Definition of the aspect ratio 

We consider here a single spherical sessile droplet under applied external fields (such as 

gravity and electric potentials). According to Figure 4.4, if θ increases, R must decrease 

to keep the volume constant. The droplet volume, v, is given by 

           
 

 
 

     

 
 

     

  
  

(4.13) 
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Figure  4.4 Spherical drop geometry defined by radius R and contact angle θ 

 

4.3 Results and discussion 

3-D simulations of droplet oscillation under the effect of electric field on different 

hydrophobic surfaces were performed for the following parameters: the densities 

            
  

               
  

       viscosities                         

              , surface tension                , relative permittivities        

             gravity      
      As a validation, the numerical result will be compared 

with the experimental ones [11], in which a water droplet oscillates on a hydrophobic 

substrate. 

To study the importance of using appropriate contact angles, the numerical simulations 

were conducted using three different equilibrium contact angles. Based on the available 

experimental data, the values of the contact angles are shown in Table 4.1; each value 

given is an average of three measurements [11]. Unfortunately, the dynamic contact angle 

was not measured in the experiment.  

Table  4.1 Contact angles of a water droplet on different materials 

Material SR PTFE PGF 

Static contact angle (°) 110 100 90 

 

A single water droplet with a volume of       has been assumed in all cases. In order to 

keep the volume of the droplet constant (4.13), the radius of the droplet has to decrease 

with the increasing contact angle. First, the effect of the AC frequency for a water droplet 
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placed on a specific hydrophobic surface has been studied in order to identify the 

frequency that causes the maximum deformation. Subsequently, different hydrophobic 

surfaces were considered and the effect of contact angle on the droplet deformation was 

simulated. It was assumed that the droplet phase and the suspending fluid are the perfect 

conductor and perfect insulator, respectively.  

The simulations were initialized by suddenly applying a sinusoidal electric potential to 

the right electrode. When an initially circular liquid droplet is exposed to an external 

time-varying electric field it deforms with a time-dependent shape and orientation. 

Depending on the hydrophobic insulating sheet, a water droplet was significantly 

deformed only at a particular frequency range of the AC electric field. It was found that 

for a surface with the contact angle of 110°, the water droplet oscillates distinctively 

around 34 Hz electric field. Figure 4.5 shows snapshots of the numerical results for 

θ=110°,      Hz and       . The droplet first elongates in the direction of the 

electric field to a maximum value (       ), which doesn’t coincide with the instant 

of maximum of applied voltage, and it deforms into a flat shape. As it was observed 

experimentally, the motion of the water droplet was always delayed with respect of the 

time variation of the applied voltage. It should also be noted that the droplet deforms 

twice in one complete cycle of the electric field. 
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Figure  4.5 Snapshots of numerical result for θ=110°, f =34 Hz and V=5 kV 

The numerical results show good agreement with the experimental study of Yamada et al. 

[11] for the SR surface with the static contact angle of around 110°. The static contact 

angle of a water droplet on the SR sheet was the largest among all the materials used in 

their study. The ratio of  
  

  
 for a 10    water droplet as a function of the frequency of the 

applied voltage for 5 kV is shown in Figure 4.6. The droplet vibrates strongly between 30 

and 40 Hz. This phenomenon could be regarded as resonance of the water droplet. 
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Figure  4.6 Aspect ratio Ae /As as a function of the frequency of the applied AC electric 

field for θ=110° 

It can also be observed that the experimental ratio Ae /As is practically equal to one, while 

the numerical simulation overestimates this number. This is because not only the electric 

field, but also some other surface factors in experiments, such as roughness and changing 

in wetting conditions, may affect the droplet behavior.  

It was also observed experimentally [11] that there is a noticeable difference between the 

contact angles during elongation and shrinking phases for a water droplet placed on the 

SR sheet at the resonant frequency comparing to PTFE and PGF sheets. In practice, the 

surface of the SR sheet is stickier than the PTFE and PGF surfaces. Changing the surface 

properties Eq. (4.1) during the elongation and shrinking phases changes the surface 

energies and consecutively the contact angle, which would affect the behavior of a water 

droplet on each sheet. 

To study the effect of the surface contact angle on the droplet deformation the numerical 

simulation was also conducted for different surface contact angles. Figure 4.7 shows the 

time variation of the deformation of a 10μL water droplet deposited on the surface with 

the contact angle of 90° (PGF). In this case, the numerical results also show good 

agreement with the experimental study of Yamada et al. [11] 
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Figure  4.7 Snapshots of numerical result for θ=90°, f =40 Hz and V=5 kV  

The resonance frequency not only depends on the volume of the water droplet, but also 

on the surface properties of the hydrophobic insulating sheet. It is clear from Figure 4.8 

that the water droplet located on the surface with the contact angle of 90° significantly 

deforms in the frequency of 40 Hz, which is higher than that for       .  

  

Figure  4.8 Aspect ratio Ae /As as a function of the frequency of the applied AC electric 

field for θ=90° 
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We believe that the contact angle is a key factor affecting the droplet resonance: the 

resonance frequency of the water droplet deposited on a hydrophobic surface increases 

with a decreasing contact angle. This means that a droplet with a smaller contact angle 

will require an electrostatic force with a shorter duration (higher frequency) in order to 

become dominant over the inertia. It can be deduced that the natural oscillation frequency 

of a droplet maintained at constant volume increases by decreasing the contact angle. 

Figure 4.9 shows the snapshots of the droplet deformation assuming the contact angle of 

100° for         (resonance frequency) and         (commercial frequency) of the 

applied voltage of 5 kV. The snapshots were taken at the moment of maximum 

elongation and maximum shrinking for each of those frequencies. Comparing the 

maximum elongation snapshots (2, 4, 6 and 8), it is clear that the droplet deforms more 

strongly for        . 
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Figure  4.9 Snapshots of a 10 μl water droplet located on a surface with θ=100° in (a) 

resonant frequency of 35 Hz and (b) commercial frequency of 50 Hz 

 

Figure 4.10 shows the effect of the volume of the droplet on the resonant frequency for 

the SR sheet. The resonance frequency of the water droplet on the SR sheet decreased 

with increasing droplet volume. The resonant frequencies are in good agreement with the 

experimental data of Yamada et al. [11] for the range of 5 to 30 μL. The differences 
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between the experimental data and numerical results could be the result of the contact 

angle changing due to the stickiness of the surface. Considering the dynamic contact 

angle is a promising way to consider the effect of the surface parameters. 

 

Figure  4.10 Resonant frequencies as a function of the volume of the water droplet 

 

4.4 Conclusions 

The effect of an electric field on a periodic deformation of viscous droplets placed on 

hydrophobic surfaces has been studied in this article. The numerical approach is based on 

the classical Navier–Stokes equations for the fluid motion and the level set technique for 

the evolution of the fluid–fluid interface. Moreover, the Maxwell stress tensor is 

employed to incorporate the interfacial stresses generated by the electric field into the 

momentum equations as volumetric source terms. 

The presented algorithm can reproduce droplet oscillations on a surface considering 

different contact angles. It has been found that the resonance frequency of the water 

droplet depends on the surface property of the hydrophobic materials and the electrostatic 

force. The numerical results show that even by using the static contact angle, the 

dependence of the resonance frequency on the contact angle is in good agreement with 

the available experimental data and the resonant phenomenon can be observed. 
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Chapter 5  

5 « Oscillation, pseudo-rotation and coalescence of 
sessile droplets in a rotating electric field» 

5.1 Introduction 

Using an electric field as a tool to control the shape, the motion, and the generation of 

small droplets has recently received significant attention because of its lack of moving 

parts and low power consumption [1-4]. Electrowetting is one of the best methods to 

control the wetting behavior of liquid droplets on partially wetting surfaces by reducing 

the apparent contact angle of sessile droplets [5-7]. A water droplet located on a 

hydrophobic insulating surface deforms by the action of electric field and its motion 

depends on the material properties of the droplet and the surface. Under a DC electric 

field, a droplet elongates in the direction of the electric field and can form a water 

filament to bridge the electrodes [8]. 

Electrowetting using AC actuation voltages has also drawn attention [9-13]. The main 

advantage of using AC voltages over DC includes a decrease in the contact angle 

hysteresis. The shape of the water droplet varies with time under an AC electric field, 

depending on the frequency of the electric field. The interaction of droplets deposited on 

a surface of a composite insulator and generation of conductive regions and filaments 

was studied experimentally in [14-16]. Krivda and Birtwhistle [17] showed that the 

natural vibrations of a water droplet result in a change of its shape during the AC cycle 

and so can effectively increase the risk of flashover by reducing the length of the 

insulation path. Oscillations of sessile droplets in electrowetting on a dielectric with a 

coplanar-electrode configuration under the actuation of AC voltage with different 

frequencies were studied experimentally by Hong et al. [18]. It was found that the 

experimental resonance frequencies and the number of lobes at different resonance 

modes agree reasonably well with the previous linear analysis. The transient response of 

a millimeter-sized sessile droplet to an electrical actuation was experimentally 

investigated by Dash et al. [19]. Systematic experiments were conducted over a 

frequency range of 5-200 Hz and actuation voltages of 40-80 Vrms to determine the 
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dependence of droplet oscillation on these parameters. The dependence of the contact 

angle and contact radius on the applied frequency and voltage of a periodic sinusoidal 

signal was revealed. The experimentally determined resonance frequencies were shown 

to be well estimated by Lamb’s expression [20] for the natural frequency of a droplet. 

Amplitude and phase spectra and the beat phenomenon of water droplet oscillation driven 

by AC electrowetting have been studied using a frequency scanning method by Lai et al. 

[21]. It was found that at resonant frequencies of water droplets phase differences 

between the driving voltage and the droplet motion are     . 

When a liquid droplet is slowly placed on a solid, flat substrate, it spreads to its 

equilibrium configuration with the contact angle specified by Young’s equation: 

      
       

   
 (5.1) 

 

where the surface energy (tension) between the various phases indicated by subscripts (S 

– solid, V – vapour, L – liquid) is denoted by  . Thus, according to Young’s equation, the 

contact angle   is a material parameter dependent only on the involved surface energies.  

Electrowetting is well understood as long as the applied voltage is low. Sufficiently far 

away from the contact line, the voltage dependence of the contact angle is given by the 

Lippmann equation [5]  

                (5.2) 

 

where    is the Lippmann contact angle,    is Young’s contact angle,     
     

 

      
 is a 

dimensionless number representing the ratio of electrostatic and capillary forces,   is the 

applied electric potential,    and d are the dielectric constant and the thickness of the 

insulating layer, respectively, and    is the dielectric permittivity of vacuum. It was found 

that the contact angle approaches Young’s angle in the vicinity of the substrate, when the 

Lippmann angle is small [22, 23].  

The rotation of particles in an electric field has also been considered in the literature to 

investigate the rotation of living cells and human peripheral blood lymphocytes [24, 25]. 
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The rotation and stability of a weakly conducting droplet around its axis of symmetry 

under the action of the external electric field was investigated by Dolinsky and Elperin
 

[26, 27]. It was shown that depending upon the ratios of the particle electric conductivity 

and permittivity to the corresponding parameters of the host medium the direction of 

rotation of the particle can be in the same or opposite to the direction of rotation of the 

external electric field. 

The flow field generated during droplet oscillation at low AC frequencies can be used to 

enhance the mixing in a droplet [28, 29]. Mugele et al. [30] studied the frequency 

dependence of the internal flow field on a droplet using tracer particle tracking. Paik et al. 

[31] studied the mixing caused by droplet motion between parallel plates. The effect of 

shape oscillation on the internal mixing pattern of a droplet has been studied by 

Miraghaie et al. [32]. 

The first part of this paper is devoted to the numerical study of droplet oscillation placed 

on different hydrophobic surfaces under the effect of applied rotating AC electric field 

including the effect of the ambient gas. The first set of simulations investigated the effect 

of the rotating AC frequency and identified the resonant frequency. Subsequently, 

different hydrophobic surfaces were considered. 

In the second part of this study, the coalescence and merging of two droplets are reported. 

This is the first time that the electro-coalescence of droplets placed on a hydrophobic 

surface has been numerically investigated considering the effect of the frequency of the 

applied AC field.  

 

5.2 Problem statement 

Fig. 1 illustrates the top view and the 3-D model of the configuration considered in our 

study for a droplet behaviour in the rotating electric field. A small liquid droplet is 

deposited on a solid surface, surrounded by another immiscible fluid and exposed to a 

rotating AC electric field, which is parallel to the solid surface.  This field is generated by 

applying a sinusoidal electric potential difference to the orthogonal electrodes having 90° 

phase shift relative to each other. 
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The center of the droplet is placed in the middle of the square. The interface separating 

the two fluids is assumed to have a constant interfacial tension coefficient. The electrodes 

distance is 10 times the droplet radius and the size of the computational domain in the 

vertical direction is 5 times the droplet radius. At the initial stage, the shape of the droplet 

is assumed to be a spherical cap and both fluids are motionless. In order to check the 

effect of domain size on the numerical results, three different distances between 

electrodes have been tested:  8, 10, and 12 times the initial droplet radius. It was found 

that the calculated aspect ratios did not vary significantly, if the electrode distance is 10 

times the radius or higher. Therefore, all further simulations were performed using this 

domain size. The wetting boundary condition is applied to the bottom wall and pressure-

outlet with no viscous stress is applied to the other boundaries. 

 

 

 

(a) (b) 

Figure  5.1 Model of a sessile droplet in a rotating field (a) Top view, (b) 3-D model. 

The details of the numerical algorithm have already been described in Chapter 2. In order 

to investigate the dynamics of droplet deformation in an electric field it is necessary to 

solve the Navier-Stokes equations, governing the fluid motion, as well as track the 

interface between both fluids. The laminar two-phase flow studied here is coupled with 

the applied electric. Additional body forces are added to the Navier-Stokes equations for 

considering the surface tension and electric stress.   

To describe the evolution of the droplet shape, the Level Set Method [35], suitable for 

free boundary problems, is applied. In this method, the interface is considered to have a 

finite thickness of the same order as the mesh size instead of zero thickness. The physical 
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properties of both media change smoothly from the value on one side of the interface to 

the value on the other side in the interfacial transitional zone.   

The electric forces cause the droplet deformation and they can be calculated from the 

electric field distribution, which depends on the position and shape of the droplet. 

Assuming that the fluids are incompressible, the electric stress can be calculated by 

taking the divergence of the Maxwell stress tensor, which couples electrostatic and 

hydrodynamic phenomena. COMSOL [36], commercial software implementing the Finite 

Element Method, was used for solving the above equations.  

As the droplet oscillation is more prominent in the width rather than the height of the 

droplet, in order to quantify the degree of the deformation of the water droplet, the width 

of the droplet ( ) in a Z-X plane passing through the center of the computational domain 

has been considered (Figure 5.2). 

 

Figure  5.2 Definition of the droplet width (W) 

 

The aspect ratio (A) of the droplet can be defined using the initial width of the spherical 

cap     : 

  
 

  
 

Without any external effects the droplet shape is controlled by the surface tension and is a 

section of a sphere. The volume of such a droplet depends on the radius and contact 

angle, and is given by 
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  (5.3) 

5.3 Numerical results and discussion 

A series  of 3-D simulations of droplet oscillation under the effect of the rotating electric 

field on different hydrophobic surfaces with different contact angles were performed for 

the following parameters: the densities             
  

          

     
  

       viscosities                                       , surface tension 

               , relative permittivity of air         gravity      
     A single water 

droplet with a volume of       was assumed in all cases. In order to keep the volume of 

the droplet constant (Eq. (5.3)), the radius of the droplet has to decrease with the 

increasing contact angle.  

The first set of simulations calculates the transient response of a sessile droplet in order to 

investigate the effect of the rotating AC frequency and also to identify the frequency that 

causes the maximum deformation. Subsequently, different hydrophobic surfaces were 

considered and the effect of contact angle on the droplet deformation was simulated. It 

was assumed that the droplet phase is a perfect conductor and the ambient fluid is a 

perfect insulator. The droplet initial shape is perfectly matched with the assigned 

boundary condition on the bottom surface to exclude any unwanted transient oscillations 

- without electric forces the droplet would remain stationary. 

The simulations were initialized by suddenly applying two phase of sinusoidal electric 

potentials to the electrodes. When an initially spherical liquid droplet is exposed to an 

external time-varying electric field it deforms with a time-dependent shape and 

orientation. As the electrical forces are proportional to the square of the applied voltage, 

one cycle of the applied signal produces two cycles of droplet oscillation. The speed and 

the direction of the oscillation are consistent with the rotating field. Systematic 

simulations were conducted over a frequency range of 10–90 Hz. Depending on the 

contact angle, a water droplet is significantly deformed only at a particular frequency 

range of the rotating AC electric field. It was found that for a surface with the contact 

angle of 100°, the water droplet deformation is very pronounced for the frequencies of 
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the electric field close to 35-Hz. Figure 5.3 shows the top view snapshots of the 

numerical results for              Hz and actuation voltage of           . It is 

clear that the droplet apparently rotates clockwise, while it has been elongated. 

 

    

        ms      ms      ms 

 
 

 
 

     ms      ms      ms      ms 

Figure  5.3 Top view snapshots of the numerical results for a rotating droplet for θ=100° 

and f =35 Hz 

 

5.3.1 Droplet oscillation 

The numerically determined response of the droplet to different actuation frequencies for 

a 10    water droplet and for the frequency intervals of 5 Hz is shown in Figure 5.4. The 

droplet vibrates strongly at      Hz. This phenomenon could be regarded as resonance 

of the water droplet and happens when the frequency of the driving electric force matches 

with the natural frequency of the oscillating droplet. We note that, for the case of the 

rotating electric field, excitation frequencies are equal to twice the frequency of the AC 

voltage applied between the electrodes because of the quadratic dependence of the 

droplet deformation on the field strength. 
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Figure  5.4 Droplet aspect ratio (A) as a function of the time for different frequencies of 

electric field and contact angle θ=100° 

To study the effect of the surface contact angle on the frequency-dependent oscillations, 

the numerical simulation was also conducted for different surface contact angles. Figure 

5.5 illustrates the time deformation of a 10 μL water droplet deposited on the surface with 

the contact angle of 130°. 

 

Figure  5.5 Droplet aspect ratio (A) as a function of the time for different frequencies of 

electric field and contact angle θ=130° 

It may be observed that by increasing the contact angle, the resonance frequency is 

decreasing. This was also reported previously in our recent paper [33] that the resonance 

frequency of the water droplet deposited on a hydrophobic surface increases with a 

decreasing contact angle for a droplet placed in an AC voltage. Although the change in 

resonance frequency is not large, it agrees with predictions from Noblin’s expression 

[39]. 



86 

 

 

 

The presence of the solid boundary could introduce additional frictional interactions with 

a sessile drop that are not experienced by levitated droplets [37, 38]. A recent model 

proposed by Noblin et al. [39] offers a more intuitive interpretation of the origin of the 

vibrational modes of sessile droplets. The contact angle dependence of the frequency of 

the n
th

 vibrational mode of a sessile droplet can be expressed as: 

   
  

 
 
   

   

               

  
     (5.4) 

where   is the mass of the droplet and   is a constant in the order of unity, which 

accounts for the simplifying assumptions made in the application of the above formula to 

droplets of a finite size and to the fact that the theory of the droplets considered here uses 

a simplified one- dimensional approach.  

Based on the above equation, for fixed values of droplet mass and surface contact angle, 

the resonant frequencies decrease by decreasing the surface tension according to: 

   

   
  

  

  
 
   

 (5.5) 

The effect of the surface tension has been investigated for the case of        and 

          in Figure 5.6. It is obvious that by decreasing the surface tension to half of 

the actual value, not only the resonant frequency is decreasing to 25 Hz according to Eq. 

(5.5), but also the maximum deformation increases. 

 

Figure  5.6 Effect of surface tension on droplet resonant frequency for θ=100° 
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The values of       and     could be used to predict the frequencies of the lowest 

vibrational mode of sessile droplets with different contact angles. Figure 5.7 compares 

the resonance frequencies obtained from our numerical results with those predicted by 

Eq. (5.4) for different values of  .  

 

Figure  5.7 Comparison between the droplet oscillation frequency obtained from 

numerical simulation and Noblin’s expression. 

The difference may be due to the following factors: (1) the theory of the droplets 

considered here uses a simplified one-dimensional approach; (2) the three phase contact 

line is assumed to remain fixed during vibration and the resonance frequency may be 

shifted due to contact line friction. Frequencies are shown to be well estimated by 

Noblin’s expression.  

5.3.2 Droplet pseudo-rotation 

In this section the internal flow generated within the droplet due to motion of the contact 

line and droplet deformation is investigated.  

If one just follows the snapshots of the droplet shapes, it seems that the droplet is rotating 

around an axis passing through the center. By looking into the vectors of velocity (Figure 

5.8) in a plane parallel to the bottom wall, it was found that actually there is no rotation of 

fluid inside the droplet. It is the periodic deformation that looks like rotating droplet from 

the outside and the direction of the velocity depends on the direction of the deformation 

in the X-Y plane. 
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     ms      ms      ms 

Figure  5.8 Fluid velocity vectors inside the droplet for θ=100° and f =25 Hz  

The results are shown after the first cycle of the droplet oscillation to neglect transients 

during the initiation of droplet motion. 

 

5.3.3 Coalescence of two droplets 

In this section, the coalescence of two identical droplets placed on a hydrophobic surface 

under the effect of the rotating electric field is reported (Figure 5.9). The conducting 

drops are assumed to be electrically neutral. The coalescence, which in most cases would 

not occur naturally without applied electric field, is promoted by the induced attractive 

electrical force. Various coalescence regimes occur depending on the frequency of the 

electric field. Close to the droplet resonant frequency, the droplets can actually touch 

each other because of the high deformation (regime1). At other frequencies, the closest 

facing parts of the interfaces are attracted together because of the opposite polarity 

induced surface charges, that eventually lead to coalescence (regime2). 
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(a) 
(b) 

Figure  5.9 Schematic of two liquid droplets placed on a solid substrate subjected to 

rotating electric field. (a) Droplets position, (b) 3-D model. 

 

  
 

 
  is the normalized edge-to-edge droplet separation. S and r are the edge-to-edge 

droplet distance and initial radius of the droplets, respectively. The applied AC frequency 

    can also be non-dimensionalized by the natural resonant frequency      for different 

surface contact angles: 

   
 

  
 

(5.6) 

 

The electric capillary number       describes the relative strength of the electric force 

with respect to the capillary interfacial force 

 

    
     

 

 
 

(5.7) 

where   is the applied electric field intensity,     is the permittivity of the ambient fluid 

and   is the volume-averaged radius of the droplet. 
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The first coalescence regime for a 10 μL water droplet deposited on the surface with the 

contact angle of 100° is illustrated in Figure 5.10. The resonant frequency of       was 

found for this configuration (Figure 5.4). The normalized edge-to-edge droplet separation 

and frequency are       mm and     , respectively. In the frequency range of 

            , the droplets are mixed because of the high deformation that makes the 

droplets actually touch each other. 

 

Figure  5.10 Time evolution of the first coalescence regime for θ=100°,      and 

CaE=0.016  

A few randomly selected frames of the second coalescence regime for         are 

shown in Figure 5.11. By applying frequencies which are far from the resonant 

frequency                     , the mechanism causing the coalescence becomes 

different. Here, the deformation is not large enough and the droplets cannot touch each 

other. In this mode, the droplets are pulled together because of the electrically induced 

dipole force between the droplets. Charges induced on the water drops will cause them to 

attract each other. It is clear from Figure 5.11 that after        s, the distance between 
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the droplets is decreasing. At         s, sharp deformations are created on the surface 

of the droplets which leads to coalescence of the droplets. 

 

Figure  5.11 Time evolution of droplet shapes in the second coalescence regime for 

θ=100°,         and CaE=0.016  

The second coalescence regime is similar to the experimental study of Eow and Ghadiri 

[40], where a high voltage DC potential was used. The two drops were observed to 

approach each other. When the two drops became very close together, drop-drop 

coalescence occurred. 

Figure 5.12 is a diagram in the          - space showing the different coalescence 

behaviors of the droplets as predicted by our numerical simulations. In this graph, the 

dashed lines are the boundaries that separate the two mixing regimes. The space between 

the lines refers to the first coalescence regime while the outer region represents the 

second coalescence regime. By increasing the electric capillary number     , the first 

mixing regime starts at lower frequencies due to the shifting of the resonant frequency to 

a lower value. 
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Figure  5.12      CaE ) diagram for θ=100°. The dashed lines correspond to the boundaries 

between two coalescence regimes. 

It is well-known that the resonant frequency decreases by increasing the contact angle. 

The frequencies can be normalized with the new resonant frequency of       for 

        Using the same procedure, the          – space were obtained for the 

increased contact angles (Figure 5.13).  

 

Figure  5.13      CaE ) diagram for two different contact angles (θ=130° and θ=100°). The 

lines correspond to the boundaries between two coalescence regimes. 

By increasing the normalized edge-to-edge droplet separation (d), the first coalescence 

regime happens in a narrower band of frequencies. It can be deduced that the deformation 
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due to the narrower range of frequency (closer to the resonant frequency) would be 

sufficient for the close facing parts of the droplet interfaces to touch each other. 

5.4 Experimental confirmation 

The behavior of a single water droplet was also investigated experimentally to prove the 

existence of this type of pseudo-rotation. Two pairs of brass cylindrical electrodes with a 

diameter of 10 mm, 15mm high and with a hemispherical cap were placed to form an 

orthogonal electric field (Figure 5.14). The rounded electrodes were used to avoid 

unnecessary corona discharge.  

 

 

 

Figure  5.14 Experimental set up for producing the rotating electric field. 

The distance between the electrodes was set at 15 mm. The set of the electrodes and the 

sheet were fixed on a plexi-glass plate. A hydrophobic insulating silicone rubber (SR) 

sheet was placed on the plate. Initially a single de-ionized water droplet with a 

conductivity of      
  

 
 was gently placed on the SR sheet at the center between the 

parallel rod electrodes by a micropipette. 

To produce the pseudo-rotation of a water droplet, a two phase sinusoidal high voltage of 

26 Hz generated by two high voltage amplifiers (Trek Inc., 609A-3 and 20/20C) was 

applied to the electrodes.  The pseudo-rotational motion of the water droplet was captured 

with a high-speed video camera (Photoron Co, Ultima SE) with a speed of 750 frames/s. 

Figure 5.15(a) shows the appearance of a 30    water droplet under the influence of the 
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rotating electric field on the SR sheet with an applied voltage of 7.5 kV and a frequency 

of 26 Hz. This corresponds to the resonance frequency of a 30    water droplet [33].  The 

water droplet elongates in shape and undergoes pseudo-rotation clockwise. Figure 5.15(b) 

shows the time variation of the time to rotate every quarter of one revolution measured 

from the high-speed pictures. The time to rotate each quarter revolution takes 8 to 10.5 

ms.  On average, it was found that it takes approximately 38.5 ms for one full revolution 

which coincides with the length of one period of a 26 Hz sinusoidal signal. 

 

 
(a) Shape of a water droplet during pseudo-rotational motion 
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(b) Time to rotate a droplet for 90 degrees angle. 

 

Figure  5.15 Clockwise pseudo-rotational motion of a droplet for f =26 Hz 

 

5.4.1 Mixing of two droplets 

The pseudo-rotational motion of the droplet plays an important role to stir the liquid.  To 

confirm the stirring or mixing ability of small amount of liquid by the rotating field, a 

water droplet dyed with indigo carmine and another droplet of ion-exchanged water was 

mixed. Two droplets with a volume of 15    were placed at the center region separately 

and resonant frequency of 26 Hz for 30    was applied to the electrodes. 



95 

 

 

 

Figure 5.16 shows typical examples of high-speed pictures demonstrating the coalescence 

of two droplets taken with the speed of 4500 fps.  When the two-phase voltage was 

applied to the orthogonal electrode pairs, the two droplets coalesced due to deformation 

of their shape (first coalescence regime), then the coalescent droplet started to pseudo-

rotate.  During these revolutions, the dyed and clear droplets were stirred and mixed 

gradually.  After two seconds later, two droplets were completely mixed. The time to 

have uniform color of indigo carmine was defined as the mixing time. 

 

 
(a) 0 s      (b) 0.3 s      (c) 1 s     (d) 2.07 s 

 

Figure  5.16 Mixing of two droplets with ion-exchanged water and indigo carmin dyed 

water. 

To confirm the mixing performance of liquid of different viscosity by this method, the 

viscosity of a water droplet was adjusted by adding a concentration of starch syrup 

C12H22O11 in the water.  The change of concentration of starch syrup from 10 to 60% 

corresponds to viscosity ranging from 1.7 to 27.7       at 25 degree C, while that of 

ion-exchanged water is 0.86      .  It is obvious from Figure 5.17 that the mixing time 

increases with increased viscosity. The viscosity for a concentration of 70% of starch 

syrup is increased drastically to 83      .  The mixing time of the droplet with the 

viscosity of 83       was about 60 s. Although two droplets of ion-changed water and 

water dyed by indigo carmine will finally mix by diffusion sooner or later, but without 

pseudo-rotational motion, the mixing time was considerably longer. 
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Figure  5.17 Mixing time of two water droplets containing starch syrup to vary the 

viscosity. 

 

5.5 Conclusions 

The effect of an electric field on oscillations of viscous droplets placed on hydrophobic 

surfaces has been studied here. The numerical approach is based on solving the classical 

Navier–Stokes equations for the fluid motion and the level set technique for the evolution 

of the fluid–fluid interface. The Maxwell stress tensor is employed to incorporate the 

interfacial stresses generated by the electric field into the momentum equations as 

volumetric source terms. The droplet seems to rotate with a rotational speed consistent 

with the frequency of applied AC voltage, but the fluid inside droplet is not rotating.  

Two different coalescence regimes for two identical droplets placed on an insulating 

surface were found. Close to the resonant frequency, the droplet can be mixed by actually 

touching each other and far from this frequency the induced dipole attracts the droplets 

together. 

It was also confirmed experimentally that the presented algorithm can reproduce droplet 

oscillations on a surface considering different contact angles. Our numerical results 

indicate that the resonant frequency of the water droplet depends on the surface property 

of the hydrophobic materials and the electrostatic force. It was also shown that the 

frequencies are well estimated by Noblin’s expression. 
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Chapter 6  

6 « Spreading and retraction control of charged dielectric 
droplets » 

6.1 Introduction 

The impacting and spreading of liquid drops on solid surfaces are important processes in 

many applications, such as spray coating, delivery of agricultural chemicals, ink jet 

printing and rapid spray cooling of heated targets [1-3]. The impact of liquid droplets on 

solid surfaces can be categorized into spreading, recoil, rebound and splashing. At some 

time after the impact, the drop spreading diameter reaches a maximum and then recedes 

depending on the wettability of the surface. Droplet retraction starts right after the 

spreading phase. A recent overview of droplet impact can be found in [4-6]. 

In most of the existing models, the impact is controlled by contact angle  , impact 

Reynolds number    
     

 
 and Weber number    

     
 

 
, where    and    are the 

initial drop diameter and impact velocity, and  ,    and    are the liquid density, viscosity 

and surface tension, respectively. One of the most important parameters relevant to the 

applications mentioned earlier is the maximum spreading diameter     , which is often 

normalized to the original diameter of the droplet prior to impact. The non-dimensional 

maximum spreading diameter can be defined as follows: 

     
    

  
 

Numerical simulations of droplet impact onto dry surfaces have been conducted by many 

researchers [7-15]. The numerical methods used in previous work can be categorized into 

two groups. One is based on fixed grids such as a Cartesian grid. The other uses a Finite 

Element Method (FEM) with moving grid [11, 13]. The Volume of Fluid (VOF) method 

and the Level-Set method can easily handle large deformation including topology change 

in the liquid interface when a fixed grid is used. Most of the existing correlations for the 

maximum spreading diameter have been considered in the available range of the impact 

parameters (10 < Re < 40,000 and 2 < We < 8000) [6].  It has been shown that if the 
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impact Reynolds and Weber numbers are high, the value of the maximum spreading 

diameter is only slightly dependent on the wettability of the substrate: the change in      

is less than 5% [16]. 

Different correlations for the time evolution of the spread diameter     
 

  
  have also 

been proposed in literature [17-20]. The most recent and probably the most refined model 

of such type predicts the dimensionless maximum spreading diameter      of a drop 

impacted onto a dry substrate as a root of the dimensionless cubic equation [21] 

 

                  
                                (6.1) 

 

This model predicts very well the value of the maximum spreading diameter for a wide 

range of impact parameters. The models of Scheller and Bousfield [22]  

                      (6.2) 

where    
 

     
 is the Ohnesorge number and Roisman [23]  

                              (6.3) 

showed good predictive capability for the Newtonian drops [24]. However, the effect of 

wettability, defined by the contact angle  , has been neglected in these models. 

According to German and Bertola [5], maximum spreading diameter can also be found as 

the real root of the following cubic equation: 

 

 
 

 
           

      

   
       

   
  

  
          

 

 
    

                         

(6.4) 
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These models [5, 21, 23] are all based on the energy balance approach: the initial droplet 

kinetic energy and surface energy prior to an impact is compared with the final surface 

energy (when the droplet reaches its maximum diameter and is stationary) plus the 

energy dissipated in overcoming liquid viscosity that resists spreading. The rate of energy 

loss from viscous dissipation is considered the most difficult quantity to estimate 

accurately because flow velocity profiles and the degree of flow recirculation can only be 

approximated [5]. In order to predict the maximum spreading of the drops, the correlation 

of German and Bertola [5] will be used in this paper (Section 6.2).  

Several experimental and theoretical studies can be found in the literature on passive 

retraction control of aqueous droplets on hydrophobic surfaces [25-28]. In this work a 

new method is proposed and it relies on the application of electrostatic forces, which 

affect the fluid dynamics of impacting dielectric droplets especially for controlling the 

receding phase.  Recently, perpendicular corona discharge was applied to a liquid–vapour 

interface to investigate a new type of interfacial electrohydrodynamic instability, which is 

the so-called rose-window instability [29, 30].  

The effect of the electric charge on the spreading of conducting droplets impacting on 

dielectric substrates has been investigated by Ryu and Lee [31]. It was found that the 

diameter of the electrically charged droplet at the maximum spread turned out to be larger 

compared to that of neutral droplet and the difference becomes larger with increased 

electric charge. 

The effect of corona discharge on the spreading and retraction control of dielectric drops 

has been also experimentally investigated by Mahmoudi et al. [32, 33]. It was shown that 

the interaction of the surface charge density and intense electric field generates an 

electrical pressure and leads to a uniform axisymmetric spreading of the droplet in the 

radial direction. A new active method based on the same concept was proposed in [33] to 

control the deposition of an impacted dielectric droplet. It was demonstrated that the 

electrical pressure effectively suppresses the droplet retraction at voltages above the 

corona discharge threshold. 
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6.2 Problem statement 

To the best of the author’s knowledge the use of a vertical electric field to control the 

spreading and recoiling phases of dielectric liquid droplet has not been numerically 

investigated. The present work focuses on the prediction of the maximum spreading 

diameter of a drop impacting normally on flat, dry solid surfaces with different 

wettability in the presence of the external electric field and/or surface charge. The results 

have been compared with the available experimental data.  

In the first part of the paper the effect of the vertical electric field on the forced spreading 

dynamics of the millimetric sized charged drop placed gently on solid surfaces will be 

investigated. 

Subsequently, the impact of the charged droplets on solid surfaces in a wide range of 

Reynolds and Weber numbers will be discussed. 

The formulation of the problem and description of the initial conditions have already 

been described elsewhere [34, 35]. In order to investigate the dynamics of droplet 

deformation in an electric field it is necessary to solve the Navier-Stokes equations, 

governing the fluid motion, as well as track the interface between both fluids. The 

laminar two-phase flow studied here is coupled with the applied electric field and electric 

charges on the interface. Additional body forces are added to the Navier-Stokes equations 

for considering the surface tension (Fst) and electric stress (Fes).    

 
  

  
                                        

      

 

(6.5) 

where u denotes fluid velocity, ρ is the fluid density,   is the gravitational acceleration, µ 

is the dynamic viscosity,    is the 3×3 identity matrix and p is the pressure. To represent 

the free boundaries of the droplet, the Level-Set method has been incorporated into the 

simulations. In this method, instead of zero thickness the interface is considered to have a 

finite thickness of the same order as the mesh size.  The physical properties of both media 
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change smoothly from the value on one side of the interface to the value on the other side 

in the interfacial transitional zone. 

The method describes the evolution of the interface between the two fluids tracing an iso-

potential curve of the level set function    . In general, inside the droplet   equals to one 

(   ) and in ambient fluid   equals to zero (   ).  The interface is represented by 

the 0.5 contour of the level set function (     ). The function   is governed by  

  

  
                        

  

    
  (6.6) 

where     is the parameter controlling the interface thickness and    is the reinitialization 

parameter. The density and viscosity, which are different for the droplet and air, are 

automatically calculated from the level set variable  , as well as the surface tension 

force. The electric forces cause the droplet deformation; therefore, the distribution of the 

electric field, distorted by the presence of the droplet, should be calculated first. In the 

absence of any time-varying magnetic field, the curl of the electric field is zero      

   and the electric field can be expressed in terms of the electric potential V. 

      (6.7) 

In a two-fluid system, assuming that the electric relaxation time is longer than the time 

scale of the fluid motion, the governing equation for the potential can be expressed in 

each medium as follows: 

        (6.8) 

        (6.9) 

 

where D is the electric displacement,    is the permittivity of vacuum,    is the relative 

permittivity and    is the space charge density. It is assumed that there is no space charge 

in the fluids except the surface charge on the interface. Assuming that the fluids are 

incompressible, the electric stress can be calculated by taking the divergence of the 
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Maxwell stress tensor, which couples electrostatic and hydrodynamic phenomena. 

Neglecting the effect of magnetic field, the Maxwell stress tensor can be defined as: 

              
 

 
      

      (6.10) 

The momentum equation is modified by inserting the electric force,    , which can be 

determined by calculating the divergence of the Maxwell stress tensor (   : 

         (6.11) 

Regardless of the contact angle value, there is no solution to the Navier–Stokes equations 

that would simultaneously satisfy all classical boundary conditions on the free surface 

and the solid boundary [36, 37]. The wetted wall boundary condition is suitable for solid 

walls in contact with a fluid-fluid interface. For the Level-Set method, this boundary 

condition enforces the slip condition           and adds a frictional force of the form 

     
 

 
  (6.12) 

where   is the slip length. The computations are performed using COMSOL V4.3 [38], 

which is a commercial software implementing the finite element method. 

The grid is fixed in space. In order to check the effect of grid size on the numerical 

results, three grid sizes of 20, 40, and 100 cells per initial droplet diameter were 

considered. It was revealed that the calculated spreading parameters did not vary 

significantly if the element size is smaller than      . Therefore, all further simulations 

were performed using such a mesh. The total mass of the droplet is 

             

where    is the element of the volume. Because there is no production or flow of mass 

through the boundaries, the mass of the droplet should not change with time. A 

conservative form of the level set equation Eq. (6.6) has been used in this study, which 

results in exact conservation of the mass. 
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6.3 Results 

6.3.1 Spreading of charged dielectric droplet using vertical electric 
field 

In this section the effect of electric field on the forced spreading of a charged droplet will 

be considered. A schematic illustration of the computational domain and boundary 

conditions are shown in Figure 6.1. The radius and height of the cylindrical 

computational domains are     and    , respectively. A small dielectric liquid droplet is 

deposited on a solid conducting surface, is surrounded by air and exposed to a vertical 

DC electric field.  This field is generated by applying a high electric potential to the top 

electrode (H. V. electrode), while the bottom one is grounded. The zero charge boundary 

condition has been assumed for the electrical side boundary condition. The interface 

separating the two fluids is assumed to have a constant interfacial tension. At the initial 

stage, the shape of the droplet is assumed to be a spherical cap and both fluids are 

motionless. The gravity field is assumed to act in the vertical direction. 

 

Figure  6.1 Initial configuration used in numerical computations 

The volume charge was placed in the small finite interface surrounding the surface of the 

drop using the level-set variable distribution and is kept constant during the spreading 

and receding phases. The total charge (q) can be calculated by integrating the electric 

charge over this interface.  
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The spreading of the droplet, which would not occur naturally, could be produced by 

applying the electric field. The maximum electric charge that a single isolated droplet can 

theoretically carry can be evaluated from the Rayleigh limit [39]: 

                  (6.13) 

where    is the vacuum permittivity, and   and   are the surface tension and radius of the 

droplet, respectively. The simulations were performed for the following parameters: 

                ,                    ,                ,                 , 

           ,         and                .  A single dielectric droplet with a 

volume of 5 μl and relative dielectric constant of 3 has been assumed in all cases. In order 

to keep the volume of the droplet constant, the radius of the droplet has to decrease with 

the increasing contact angle. 

Successive snapshots of the drop shape for the spreading of droplets on a surface with the 

contact angle of       are shown in Figure 6.2. Interaction of the strong electric field 

and the surface charges deposited on the surface of the droplet creates an electrical 

pressure which leads to spreading of the droplet [32]. 
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Figure  6.2 Electrostatic spreading of a charged droplet placed on a surface (θ=60°). 
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The above images show that the surface charge density is the crucial parameter affecting 

the maximum spreading diameter. The droplet starts to spread depending on the amount 

of the charge it carries. After some time, the droplets reach their maximum spreading 

diameter (      s). This phenomenon has been observed experimentally and it has been 

found that the effect is suppressed for fluids with higher surface tension [32].  

Figure 6.3 also shows the dynamic spread diameter as a function of time for different 

values of the surface charge density. The initial size of the deposited droplet,   , was 

evaluated by converting the droplet volume to its equivalent spherical size. 

 

Figure  6.3 Dynamic spreading ratio of droplets with different surface charges in the 

presence of electric field E=25 kV/cm for θ=60° 

 

6.3.1.1 Effect of viscosity 

Changing the viscosity of the droplet does not have any major effect on the final 

spreading diameter but it affects the spreading rate during the initial stage. Droplets with 

low viscosities respond faster to the electric forces. Figure 6.4 presents the results for a 

droplet whose molecular viscosity is 5 times lower than the above ones, while both the 

electric field and charge are the same. For a less viscous droplet the viscous damping 

plays a smaller role and the inertial forces lead to a faster droplet spreading. This in turn 

produces a larger capillary force, which slightly retracts the droplets until a new balance 
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with electrical forces is reached. In the steady-state there is practically no effect of fluid 

viscosity.  

 

Figure  6.4 Effect of viscosity for q/qRay=0.55 and E=25 kV/cm 

It can be concluded that both the surface charge and the electric field have effects on the 

maximum spreading diameter       , but the viscosity just affects the rate of spreading. 

The droplets with low viscosity reach to their final maximum spreading diameter faster 

because of the lower resistance on adjacent fluid layers due to the shear forces.  

Using our numerical method, the maximum spreading diameter of the droplets with 

different surface charge densities can be obtained. It is suggested that this technique can 

be used in other fluid dynamics problems and in future research involving cooling 

effectiveness where the goal is to increase the area wetted by the liquid on the surfaces 

and the rate at which the droplets reach to the maximum wetting area.  

 

6.3.2 Retraction control of the charged dielectric droplets using 
vertical electric field 

In this model a liquid droplet having diameter    collides with the surface with an impact 

velocity    (Figure 6.5), which is directed normal to the wall. The simulations were 

performed for the following parameters:                 ,             ,       
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         ,                 ,            ,         and            . The 

droplet thermophysical properties have been chosen close to that of Silicone oil. 

Droplet impact simulations were performed assuming surfaces with different contact 

angles from hydrophilic (θ < 90°) to hydrophobic ones (θ > 90°). In the simulations, the 

wetting boundary condition is applied to the bottom wall and a static contact angle model 

was used. For the verification of the numerical model, numerical simulations of droplet 

impact with the conditions identical to those in the experiments of Clanet et al. [17] were 

first performed. 

 

Figure  6.5 Computational domain for simulating a droplet impinging on horizontal 

surface 

In the absence of the electric forces, the droplet hits the surface, spreads out and 

subsequently retracts. In Figure 6.6, the shape of the water droplet impacting on a super-

hydrophobic surface (the static contact angle equal to 170°) is compared with the 

experimental study of Clanet et al. [17] for            and            . Time 

interval between the pictures is 2.7 ms and     shows the droplet just at impact. 
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Figure  6.6 Experimental [17] (left) and simulated (right) shape of a water droplet 

impinging a super-hydrophobic surface 

As shown in Figure 6.6, the numerically predicted droplet shape agrees very well with the 

results of the experiment over the considered time interval. The difference can likely be 
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attributed to the effect of the surface wettability and the assumption of the constant 

contact angle. 

In Figure 6.7 the maximum diameter of the spreading droplet as a function of the Weber 

number is compared with the experimental study of Clanet et al [17]. 

 

Figure  6.7 Comparison between the experimental [17] and numerical maximum 

spreading diameter 

The numerical algorithm has been also validated by comparing with the semi-empirical 

model of German and Bertolla [5], in which a number of models to predict the maximum 

diameter were assessed and compared to experimental measurements; improved 

predictions were achieved by an empirical adjustment of one of the existing models [18]. 

Adjustments to the correlations presented by [5] were made through an iterative process 

of optimizing the empirically based powers of the Weber and Reynolds numbers and the 

empirical constant term by minimizing differences between predicted and experimental 

value of      for each Newtonian solution (prepared by dissolving glycerol in deionized 

water). As it can be seen from Figure 6.8, a reasonably good agreement has been 

achieved.  
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Figure  6.8 Comparison between the calculated spread diameter [5] and numerical results 

for the droplets impacting solid surface at different Weber numbers and the constant 

contact angle θ =100°  

After increasing the impact velocity of the droplet, the effect of surface wettability and 

contact angle becomes negligible. Figure 6.9 illustrates the maximum spreading of a 

droplet for different contact angles and impact velocities.  At lower impact velocities, the 

maximum spreading strongly depends on the contact angle. At higher Weber numbers, 

the effect of inertial force is dominant and the maximum spreading only slightly depends 

on the contact angle. 

 

Figure  6.9 Effect of surface contact angle on the maximum droplet spreading 
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After a positive validation of the computational algorithm, it has been applied to simulate 

impacting charged droplets in the presence of an external electric field.  

Figure 6.10 shows the distribution of the electric potential for a few instants of time. One 

can see that the electric potential lines have been dynamically distorted; as the droplet 

shape changes, the equipotential lines are adjusted clearly illustrating the two-way 

coupling in this multiphysics problem. The densely packed potential contours show the 

area of the high electric field. 

 

Figure  6.10 Electric potential contour lines for different instants of time after the droplet 

impact 

The first set of simulations was performed for the droplet with an initial diameter of 2 

mm and contact angle of 100°; the results are presented in Figure 6.11. The impact 

velocity was assumed to be         , corresponding to        , which was low 

enough so that droplets did not splash upon impact [40]. The droplet did not break up 

during impact since its kinetic energy was too low to overcome surface tension. In order 

to investigate the effect of charge density on the droplet spreading, the simulations have 

been performed for three different values of the total charge. The applied voltage 

difference was kept constant at the level of E=25 kV/cm. 
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Figure  6.11 Impact of the electrically charged droplet on a surface with the contact angle 

of θ=100° and exposed to an external electric field E=25 kV/cm  

In all cases the droplets spread to their maximum diameter and were then pulled back by 

surface tension. In the absence of the charge           , the spreading stage takes 

place during 3 ms after the impact and is followed by retraction of the droplet, which 

occurs in a few tens of milliseconds after the impact. However, it can be clearly observed 

that the increasing surface charge acts to maintain the maximum spreading diameter. 

Charged droplets retracted less after the maximum spreading than those uncharged. 

In the case of a high charge              , the retraction can be completely 

eliminated after reaching the maximum diameter due to the combined effect of the 

surface charge and electric field. From the practical point of view, this level of charge is 

impossible, as any instability of the droplet surface could immediately cause droplet 

fission [41, 42]. However, this case has been investigated as a theoretical exercise. 

For the lower value of charge               the electric force is not strong enough to 

maintain the maximum spreading after the impact. 

Figure 6.12 illustrates dynamics of the spread diameter,  , as function of the time for the 

same charges as presented in Figure 6.11. The results show that the final wetting diameter 

increases as surface charge increases. Obviously, this is due to the electric forces applied 

on the surface of the charged droplets, which are exposed to an external electric field. It 
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can also be observed that the spreading phase is almost identical for three cases and the 

maximum spreading diameter is achieved at         s. During the expansion stage, the 

inertial force is dominant, whereas for the retraction stage the inertial force is less 

important and the process mostly depends on capillary forces. The inertial force is larger 

than the electric force during the expansion stage and the inertia is the dominant force 

even assuming the maximum charge over the droplet interface. During the retraction 

stage, the primary force, which is the capillary force, is comparable with the electric 

force; therefore, the retraction is expected to be suppressed. 

An order of magnitude analysis based on relevant dimensionless numbers [43] can be 

helpful to understand the results. For the expansion stage, the electro-inertial number 

   
     

       
       and it can be concluded that the inertia effect in the spreading 

stage dominates over the electric force. During the retraction stage, the electric capillary 

number based on droplet maximum diameter     
         

 
   suggesting that the 

retraction can be controlled using electric forces. 

 

Figure  6.12 Dynamic spreading diameter droplets charged to different values in the 

presence of electric field E=25 kV/cm for θ=100°, We=364 and Re=80  

Two regimes can be clearly identified in this process. For moderate charges (
 

    
    ) 

the droplet reaches the maximum spreading, but later retracts. However, by increasing the 

charge, the final spreading diameter gets closer to the maximum spreading. If the charge 
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density is high enough, (          ), the droplet remains at the maximum spreading or 

continues to spread even more. 

In order to further examine the problem, the effect of the impact velocity is considered in 

Figure 6.13. Comparison of the time evolution characteristics confirms that after reaching 

the maximum spreading diameter, there is a bit of retraction for the Weber number of 

   , but in the case of        , the maximum spreading diameter has been conserved. 

 

Figure  6.13 Effect of impact velocity on the droplet spreading for θ=100° and q/qRay=0.8 

Although the maximum droplet spreading is slightly different, it can be conserved at its 

final value, if the droplet is charged to a proper level. 

 

6.3.2.1 Contact angle dependence 

To study the influences of the contact angle, the calculated shapes of the droplet with the 

same diameter and impact velocity as those in Figure 6.11, but on a surface with a 

smaller contact angle (     ), at different time instants are shown in Figure 6.14. The 

numerical results show that the maximum spreading has been increased comparing to the 

case of       . 
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Figure  6.14 Impact of the charged droplet on a surface with the contact angle of θ=60° 

and E=25 kV/cm 

 

By decreasing the wettability of the surface, the resistive force acting against the electric 

force during the receding phase decreases and a lower value of charge is sufficient to 

keep the maximum spreading diameter. The dynamic spreading diameter for        

and         for the impact velocity of          is shown in Figure 6.15. 

 

Figure  6.15 Dynamic spreading ratio of droplets with different surface charges in the 

presence of electric field E=25 kV/cm for θ=60° and We=364  

By comparing the results for        (Figure 6.12) and       (Figure 6.15), one can 

notice that for the same droplet total charge (             the final spreading 
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diameter increases with decreasing the contact angle, assuming the same droplet volume. 

In other words, in order to keep the maximum diameter after the impact, less charge is 

needed for the surfaces with a lower contact angle. The results of computations of the 

spreading diameter for different contact angles are shown in Figure 6.16. 

 

Figure  6.16 Effect of contact angle on spreading diameter for q/qRay=0.28, We=364 and 

E=25 kV/cm 

These results show that higher values of charge are required to overcome the capillary 

forces on the surface with larger contact angles. 

Also of interest is investigating the effect of electric field intensity on droplet spreading. 

In Figure 6.17, the effect of electric field intensity is shown for        and    

           It is obvious that by decreasing the magnitude of the electric field, the 

electric force suppressing the retraction decreases. This can be explained considering that 

the electrostatic force depends on both the magnitude of the surface charge and the 

electric field. In order to keep the maximum diameter, one should increase the charge in 

lower external electric field intensities.  
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Figure  6.17 Spreading of a droplet impacting on a surface θ=60° and subjected to an 

electric field E=8.3 kV/cm and We=364 

Comparing Figure 6.15 and Figure 6.18 it can be observed that the maximum spreading 

diameter has decreased with decreasing the magnitude of the applied external electric 

field, confirming the fact that the electrostatic force depends on both the magnitude of the 

surface charge and the electric field. 

 

Figure  6.18 Dynamic spreading ratio of droplets with different surface charges in the 

presence of electric field E=8.3 kV/cm for θ=60° and We=364 

For the large values of the surface tension, putting the charge even higher than the 

Rayleigh limit is not enough to keep the droplets from retracting. For instance, if the 

surface tension is strong enough (close to the surface tension of water), no inhibition is 



126 

 

 

 

observed but only the spreading of a droplet accompanied by the receding phase. 

Therefore, it can be concluded that retraction inhibition increases with increasing of the 

droplet charge or external electric field. Moreover, the maximum spreading diameter can 

be conserved using smaller value of charge on surfaces with smaller contact angles.  

6.4 Conclusions 

Spreading and retraction control of millimeter sized dielectric droplets impacting on dry 

surfaces have been investigated to examine the effect of the surface charge density and 

electric field intensity. The maximum diameter to which droplets spread can be 

controlled using the electric forces. To validate the numerical algorithm, the numerical 

results have been compared with the available theoretical and experimental studies of 

droplet impact. It was found that the correlation by German and Bertola [5] is the one that 

best predicts droplet maximum spreading diameter for the considered range of Reynolds 

and Weber numbers. The obtained numerical predictions for the shape of the droplet have 

been compared with experimental data published in the literature [17]. 

The effect of the surface charge on the spreading of droplets placed gently on surfaces 

was investigated in the first part. It was found that the maximum spreading diameter 

increases with an increasing charge. It was also found that lowering the viscosity will 

accelerate the spreading. 

In the second part, the impact of a droplet on a ground electrode was considered. It was 

found that by increasing the charge density, it may be possible to increase the spreading 

without any retraction after the droplet reaches its maximum diameter. It was also found 

that in order to keep the maximum diameter after the impact, less charge is needed for 

surfaces with lower contact angle. 
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Chapter 7  

7 « Head-on collision of electrically charged droplets » 

7.1 Introduction 

Charged droplets play a significant role in a wide range of applications, such as 

electrospray atomization [1-4], fuel injection and formation of clouds [5-6].  

The electric force can also be used to enhance the separation and coalescence of small 

droplets. The interaction between electric field and single charged droplets has already 

been extensively studied [7-10], but droplet collision is still not well understood. Park 

[11] produced collisions between streams of water droplets traveling in still air and 

showed pictorially that near head-on collision between pairs of equally sized droplets 

resulted in stable coalescence. Ashgriz and Poo [12] developed models for predicting the 

boundary between the coalescence and separation regimes. In general, the outcome of the 

drop collision can be categorized into four different types: bouncing, coalescence, 

separation, and shattering collisions. At higher Weber number for head-on or near head-

on cases, reflexive separation may happen resulting in formation of satellites. 

‘‘Shattering’’ occurs at extremely high Weber numbers, which is beyond the scope of the 

conventional application. 

As reported by Qian and Law [13], for head-on collisions of water droplets at 

atmospheric pressure bouncing is not observed; for the same conditions however, the 

collision between hydrocarbon droplets may result in bouncing. The collision behavior of 

fuel droplets were found to vary significantly from those of water droplets. The most 

noticeable difference is the bouncing phenomena. Estrade et al. [14] published 

information about the number of satellite droplets, their sizes and velocities produced by 

bouncing collisions. Brenn et al. [15] produced a nomogram for the various collision 

regimes and for the number of satellite droplets formed during droplet collision 

depending on the Weber number and impact parameter, which agreed quite well with the 

experimental results of Ashgriz and Poo [12].  
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There are a few studies on the numerical simulation of the droplet collision. Nobari et al. 

[16] used the front tracking method in axi-symmetric formulation for the central 

collision; the method was able to capture the features of bouncing, coalescence and 

reflexive separation with up to one satellite droplet formed. Mashayek et al. [17] studied 

the coalescence collision of two droplets in axi-symmetric geometry, using a Galerkin 

Finite Element Method. Recently, Pan and Suga [18] using the implicit continuous-fluid 

Eulerian method coupled with the Level-Set methodology for a single phase in a fixed 

uniform mesh system, simulated the three major regimes of binary collision (bouncing, 

coalescence and separation), both for water and hydrocarbon droplets. Their numerical 

results suggest that the mechanism of bouncing collision is governed by the macroscopic 

dynamics, while the mechanism of coalescence is related to the microscopic dynamics. 

Tanguy and Berlemont [19] performed simulation using a Level-Set method. Results of 

coalescence, reflexive separation and stretching separation were found in good agreement 

with experiments. Nikolopoulos et al. [20, 21] conducted numerical investigation of both 

head-on and off-centre droplet collision based on the volume of fluid (VOF) method. 

Their results provided a detailed picture of the collision process, the ligament formation 

and dimensions, the pinch-off mechanism, as well as the creation of the satellite droplet. 

They further investigated the effect of gas, liquid properties and droplet size ratio on the 

central collision between two unequal-size droplets in the reflexive regime [22], results of 

which show that the droplet size ratio, rather than the Reynolds number based on the gas 

properties, is an important parameter affecting the collision outcome. Chen et al. [23] 

analyzed energy and mass transfer during binary droplet collision based on the VOF 

simulation. The mass transfer process was studied in detail, whereas the energy transfer 

process was only investigated with the overall energy balance. Estrade et al. [24] for the 

first time included information about the number of the satellite droplets in separation 

collisions. 

Literature on the investigation of interactions between two charged droplets is extremely 

scarce [25]. The feasibility of coalescence of two perfectly conducting, electrically 

charged droplets was studied from a thermodynamic point of view by Gallily et al. [26]. 

A suitable expression was developed for the electrical energy of the two droplets which 

make the initial contact. It was proven by Lekner [27] that two charged conducting 
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spheres will almost always attract each other at a close distance. Surprisingly, this is true 

even when they have like charges. The one exception is when the two spheres have a 

charge ratio which would result from droplets making mechanical contact. Phase Doppler 

anemometry measurements and flow visualizations were used to measure the structures 

of electrostatically atomized hydrocarbon fuel sprays by Shrimpton and Yule [28]. 

The purpose of the present study is to investigate the electrostatic interaction of charged 

droplets considering different physical parameters and impact velocities with the aim of 

providing broader and more in depth insight into the collision of charged droplets and 

different outcome regimes. The Navier–Stokes equations with the volumetric forces due 

to surface tension and electric charges are solved numerically by the finite element 

methodology.  

There are three aspects of the present investigation. First, in order to validate the model 

the numerical results are compared in detail with the images of the simulated liquid 

droplet collision obtained by Pan and Suga [18]. Secondly, the mechanism of Coulomb 

attraction between two like charged conducting droplets is investigated. The third aspect 

of the study concerns the collision dynamics of two charged droplets and satellite droplet 

formation. 

7.2 The mathematical model 

The flow is considered as axi-symmetric, incompressible and laminar. The main 

parameters affecting the process are grouped in two dimensionless numbers: Reynolds 

   
            

     
 and Weber    

            
 

 
, where    is the initial drop diameter,    

is the impact velocity, and      ,        and    are the liquid density, viscosity and 

surface tension, respectively.  

In order to investigate the dynamics of droplet deformation in an electric field it is 

necessary to solve the Navier-Stokes equations governing the fluid motion, as well as 

track the interface between both fluids. The laminar two-phase flow studied here is 

coupled with the applied electric field and electric charges on the interface. Additional 

body forces are added to the Navier-Stokes equations for considering the surface tension 

(Fst) and electric stress (Fes).  
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The computational domain is shown in Figure 7.1. In most of previous numerical and 

experimental studies, the droplets were assumed to have equal, but opposite velocities 

before collision. At the beginning of the simulation, t = 0, the centers of the droplets are 

    apart approaching each other with a relative velocity    , whilst the surrounding gas 

has zero velocity. Due to the symmetry only one droplet, shown in the figures, needs to 

be considered, because the other droplet is identical and the top edge of the domain is the 

symmetry line. 

 

Figure  7.1 Initial configuration used in numerical simulation of droplet impact 

 

In order to investigate the grid dependency of the results, three grids with 20, 40, and 100 

cells per initial droplet diameter were considered. It was found that the calculated 

parameters of droplet shapes did not vary significantly, if the element size is smaller than 

     . Therefore, all further simulations were performed using such a mesh. 

The radius and height of the cylindrical computational domains are     and    , 

respectively. The increase in size of the chosen domain has been found to have a 

negligibly small effect on the solution. The computational domain is therefore large 

enough to neglect the effects of the domain truncation. 

The behavior of the binary fluid system is governed by the level set equation. In the 

present study, the discretization and calculation procedure follow that described by 

Ghazian et al. [29-31]. The level set function moves with the fluid at velocity u as a 

passive scalar variable. The density and the viscosity are calculated throughout the 
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computational domain depending on the value of  . The fluid properties continuously 

change across the interfacial region. Note that in the experiments, the droplet diameters 

were in the range of 100-500 μm. In such cases, the gravity effects are negligible since 

the Bond number is always small. 

 

7.3 Verification of the numerical method 

Figure 7.2 shows a sequence of results from the present simulation for two uncharged 

colliding droplets compared with the simulations of Pan and Suga [18]. 

As the droplets approach each other, high pressure is built up in the gap; the droplets are 

flattened, conversion of the droplet kinetic energy into surface tension energy takes place 

and gas is squeezed out in a form of a jet sheet.  

The merged mass continues to deform into a donut shape. After coalescence, it is 

retracted into a cylindrical rod, which later stretches longer and thinner, until it eventually 

breaks into two primary droplets with one secondary drop. During most of the collision 

process, consisting of the stretching filament, its disintegration between bulbous ends, 

and the further breakup, the comparison shows very reasonable agreement. 
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Figure  7.2 Pan and Suga simulation [18] (left) and our simulated (right) snapshots of 

head-on collision of two uncharged water droplets in air. The initial droplet diameter is 

300 μm and the relative velocity of collision is 0.28 m/s 

 

7.4 Results and discussion 

In this section the model is extended to study the Coulomb attraction between two 

stationary conducting droplets. In the second part, the collision dynamics of two identical 

charged droplets is reported. Some interesting features of the charged droplet 

disintegration and satellite droplet formation are illustrated via various examples. 
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7.4.1 Two stationary conducting droplets 

The presented results of simulation illustrate how the surfaces of the two droplets are 

deformed due to the electrostatic interactions between them. In particular, modification of 

the electrostatic interactions caused by the droplet deformations will be investigated. This 

aspect has not been discussed elsewhere. 

As shown below, surprisingly Coulomb attraction may exist between two conducting 

droplets carrying the same sign charges.  

In the first example, we consider the case of two identical spherical droplets separated 

from each other by an initial distance of 2.5 radii between their centers. The maximum 

electric charge that a single isolated droplet can theoretically carry can be evaluated from 

the Rayleigh limit: 

                   

where    is the vacuum permittivity and   is the radius of the droplet. The simulations 

were performed for the following parameters:                 ,        

          ,                 ,                 ,            ,         . The 

maximum Rayleigh charge is calculated to be           . 
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Figure  7.3 Interaction between two identical spherical droplets with the same (A) and 

different charges (B) at an initial distance of 2.5 radii between centers 

As it can be expected, droplets with the same magnitude and sign of charge (Figure 7.3A) 

repel each other. However, in the case where the droplets have different charge 

magnitudes (Figure 7.3B), the droplets attracts each other, even though they carry charge 

of the same polarity. The two droplets will eventually move towards and collide with 

each other after forming conical protrusions at the contact point. It can be deduced that 

the lower part of the upper droplet carries negative charge, while the upper part of it 

carries the opposite charge.  

By keeping the same value for charge (Figure 7.3B) and increasing the distance between 

the droplets, the droplets will repel each other (Figure 7.4). This example indicates that 

the distance plays an important role in Coulomb attraction for the droplets charged with 

the same polarity. It also proves that conducting droplets will almost always attract each 

other at close proximity, even when they have like charges. 
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Figure  7.4 Two identical spherical droplets with different charges at a larger distance of 

2.7 radii between the two centers, q1/qRay=0.1 (bottom), q2/qRay=0.25 (top) 

Contrary to common sense, it seems that two conducting droplets carrying charges of the 

same polarity can attract each other in some situations. This apparent paradox can be 

easily understood by noting that the charge on a conductor is not fixed but free to move 

on the surface of the droplets under the action of an electric field. When the two 

conducting droplets move towards each other, the surface charges will redistribute and a 

net attraction force will be created between them due to the unsymmetrical charge 

distribution. In addition, the electric force will also result in deformation of the two 

droplets close to the facing sides, which in turn will enhance the charge redistribution 

since charges will move to locations of high surface curvature. Obviously, this 

destabilizing mechanism will not happen in the case of rigid spheres. 

Figure 7.5 illustrates the limit between the attraction and repulsion regimes for two 

identical droplets, where    is the initial distance between the droplet centers. It is clear 

that in order to get the attraction regime, the charge ratio should increase when the 

distance between the droplets increases. There is a maximum distance (         , 

beyond which the repulsion is always dominant. It can be concluded that the attraction 

occurs at a shorter distance when droplets have closer charges. 
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Figure  7.5 The limit between attraction and repulsion regimes for two identical droplets 

 

7.4.2 Impacting dielectric droplets 

In this section the collision of two charged dielectric droplets is considered.  The 

simulations were performed for the following parameters:                 ,      

            ,                 ,                 ,           ,          . 

Initial distance between both droplets is equal to two droplet diameters. At the beginning 

of the simulation, t=0, a uniform velocity    is imposed on each of the two liquid 

droplets in opposite but approaching directions, while the surrounding gas is stationary.  

Grid dependence tests have been already performed using different discretization 

densities and it has been confirmed that the presented results are reasonably grid 

independent.  

7.4.2.1 Effect of Weber number 

Two regimes can be clearly identified at low Weber numbers in this process. In the first 

one, the droplets initially start to move towards each other, but the kinetic energy is not 

sufficiently high to overcome the electrostatic repulsion. Since the droplet velocity is too 

small, the droplets repel each other due to the electrostatic force and do not even touch 

(Figure 7.6). To nondimensionalize time we have the choice to use the advection time 
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           of the droplets before impact. Our results are presented using the advective 

time scale. 

 

 

     

 

       

 

      

 

      

 

       

 

    

 

       

 

      

 

       

 

    

Figure  7.6 Shape evolution of the head-on collision of two equal-size droplets for 

We=6.7, Re=66.7 and q/qRay=0.5 

 

Figure 7.7 illustrates the case of the droplets with the same value of the charge, but for 

higher Weber number. It is clear that the droplets collide and form a larger one, which 

oscillates until it reaches steady-state. Simulations are continued until oscillations of the 

combined droplet completely decay. 
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Figure  7.7 Shape evolution of the head-on collision of two equal-size droplets for We=13, 

Re=94.3 and q/qRay=0.5 

The simulation was also carried out for increased droplet charge and keeping the velocity 

constant (Figure 7.8); it is clear that here the droplets are repelling each other even 

though the magnitude of the Weber number is the same as in Figure 7.7. 

This behavior can be explained by considering the fact that since the Weber number and 

the initial impact velocity are kept constant, the electrostatic force becomes dominant and 

prevents droplets from colliding. 

 

    

 

      

 

       

 

      

  

      

 

    

Figure  7.8 Shape evolution of the head-on collision of two equal-size droplets for We=13, 

Re=94.3 and q/qRay=0.7 

A map can be drawn to show the limit between the repulsion and coalescence regimes. 

The graph in Figure 7.9 shows the boundary between the repulsion and coalescence for 

the fixed initial distance of      . At higher droplet charge the coalescence occurs, but 
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higher Weber number is necessary. Theoretically, the droplet charge can be increased up 

to the Rayleigh limit, before the droplet becomes unstable. In the investigated models the 

droplet charge was increased up to 80 percent of the Rayleigh limit without observing 

any instability. 

 

Figure  7.9 The limit between coalescence and repulsion regimes for two identical 

impacting droplets with the initial distance of d0=4r  

 

7.4.2.2 Effect of the droplet charge in the break-up regime 

The effect of the droplet charge on the collision between two identical dielectric droplets 

has also been considered. The droplets have been impacted at much higher velocities and 

both droplets have been charged up to 50% of the Rayleigh limit, which is            

for the 100 micron size droplets considered in this section.  

The charge was placed in the small finite interface surrounding the surface of the drop 

using the level set variable distribution. The total charge was kept constant and calculated 

by integration over the surface of the droplet. The total surface area has been calculated 

and a uniform charge distribution was considered on the droplets in a way that the total 

charge is still kept constant. Figure 7.10 shows the head-on collision of two identical 

neutral droplets.  
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Figure  7.10 Shape evolution of the head-on collision of two neutral equal-size droplets 

for We=106.7, Re=266.67 and q/qRay=0 

The droplets first coalesce and then reach the maximum deformation in the radial 

direction forming a thin disc with a toroidal rim. This shape then contracts under the 

effects of surface tension attempting to recover the spherical shape. However, due to 

inertia a liquid cylinder is formed and it continuously stretches until it eventually breaks, 

if it has sufficient energy. It can be seen that the ligament stretches leaving a daughter 

droplet between the bulbous ends.  

A relatively small amount of gas is trapped in the coalesced mass of droplets. Such 

micro-bubble entrapment, due to the formation of curved interfaces on the approaching 

sides of the droplets, has been observed experimentally by Ashgriz and Poo [12]. 

In addition, a recent high-resolution computation of two approaching drops using the 

VOF method also showed that a small portion of ambient fluid gets trapped during 

coalescence [32]. The formation of a micro-bubble at low    reported in our paper is 

thus apparently a physical macroscopic effect and not a numerical artifact. 

If the droplets are charged up to 30% of the Rayleigh limit (Figure 7.11), there is no 

obvious change in the collision pattern, if the Weber number is kept at the same level. By 

further increasing the initial droplet charge up to 50 % (Figure 7.12), the daughter 
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droplets break into smaller ones and this continues until the radius of the droplet gets 

close to the mesh size.  

 

 

     

 

      

 

    

 

      

 

    

 

      

 

    

 

    

 

      

 

     

 

     

 

     

Figure  7.11 Shape evolution of the head-on collision of two equal-size droplets for 

We=106.7, Re=266.67 and q/qRay=0.3 

 

 

     

 

      

 

    

 

      

 

    

 

      

 

    

 

    

 

      

 

    

 

      

 

Figure  7.12 Shape evolution of the head-on collision of two equal-size droplets for 

We=106.7, Re=266.67 and q/qRay=0.5 
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Since the surface tension of the stretched droplet cannot hold the large amount of kinetic 

energy, even with the stabilization effect of viscous dissipation, the merged droplet 

eventually separates and a smaller, satellite droplets are continuously formed. It was 

found that by increasing the charge, the droplets will disintegrate into a larger number of 

daughter droplets after collisions.  

 

7.4.3 Unequal-size droplets:  

In practical atomization processes, unequal-size droplet collisions are more frequent than 

equal-size cases; however, they have been less examined both experimentally and 

numerically. Equal-size droplet collisions have minimal mixing after droplet coalescence 

due to the symmetry with respect to the collision plane. Thus, breaking the symmetry 

through the unequal droplet sizes may result in improved mixing upon coalescence. In the 

present study, simulations were carried out to investigate the dynamics of unequal-size 

droplets collision. Before the droplets collide, there is a squeezed gas between the droplet 

interfaces which produces some localized excess energy and needs to be ejected. A 

smaller repulsive force from the compressed gas flow between the droplets can be 

assumed for the smaller droplet due to the smaller frontal area which promotes 

coalescence. For the larger droplet, more energy can be dissipated by internal motion and 

the coalesced droplet can be stabilized. 

The charge ratio on droplets is equal to the surface ratio of the droplets, which assumes 

identical surface charge density. The symmetry boundary condition cannot be used in this 

part due to difference in size of the droplets. The schematic of the problem is shown in 

Figure 7.13. 



147 

 

 

 

 

Figure  7.13 Computational domain for simulating collision of droplets with different size 

The impact of droplets with radii of 100 μm and 150 μm is shown in Figure 7.14. The 

initial velocity of          is assumed for both droplets. The Weber number and 

nondimensional time are calculated based on the diameter of the larger droplet. 

 

      

                                

Figure  7.14 Snapshots of droplet motion of larger (upper) and smaller (lower) neutral 

spherical droplets with R2/R1=1.5 at We=160 and Re=400  

For unequal-size droplet collision, the droplet deformation is more complex because of 

the loss of the symmetric shape. Two droplets impinge head-on and spread outwardly in 

the radial direction to form a flying-saucer-like shape upon merging. By increasing the 

Weber number (Figure 7.15), the saucer-like shape becomes more stretched in the radial 

direction and a ring at the edge of the combined droplet becomes smaller in size leading 

to ejection of a small droplet. 
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Figure  7.15 Snapshots of droplet motions between a larger (upper) and a smaller (lower) 

neutral spherical droplets with R2/R1=1.5 at We=360 and Re=600  

 

7.5 Conclusions 

The head-on collision of two liquid drops is studied using the FEM. The effects of the 

impact velocity, drop size ratio and electric charge on the behavior of the combined 

droplet are investigated. The present study proves the feasibility of applying the Level-

Set method as a numerical technique to investigate the collision dynamics of electrically 

charged droplets. 

It is demonstrated that the presented numerical method is able to capture the droplet 

collision in the presence of the electric charges on the surface of the droplets. It was also 

shown that two conducting droplets carrying charges of the same polarity under some 

conditions may be electrically attracted. 

The formation of charged daughter droplets has been investigated and it was found that 

the number of the satellite droplets after collision appears to increase with an increase in 

the droplet charge. 
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Nomenclature 

   Initial distance of droplets    Time scale 

   Initial droplet diameter u Velocity 

  Electric field    Impact velocity 

    Electric force    Weber number 

    Surface tension force Greek symbols 

  Identity matrix   Reinitialization parameter 

  Interface normal     Relative permittivity 

  Pressure     Parameter controlling the 

interface thickness   

  Droplet charge    Permittivity of vacuum 

     Rayleigh limit   Level-set function 

r Droplet radius      Air density 

   Reynolds number       Droplet density 

  Capillary pressure tensor      Air dynamic viscosity 

   Maxwell stress tensor       Droplet viscosity 

  Nondimensional time   Surface tension 
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Chapter 8  

8 « Summary and recommendations for future study » 

8.1 Summary 

In this thesis, a numerical technique was proposed for simulating the behavior of 

droplets, neutral or charged, exposed to an external electric field. The electrical 

phenomena were responsible for generating the flow body force; a commercial Finite 

Element software package, COMSOL, was used in simulations, as it easily links electrostatic 

and hydrodynamic phenomena. To represent the distortion of free boundaries of the 

droplet, the Level-Set method has been incorporated into the simulations. The charge was 

placed on the surface of the drop using the level set variable distribution.  The effects of 

electrostatic forces on a number of problem configurations were investigated. In many 

cases, the simulation results were compared with the existing experimental data to verify 

the reliability of the numerical model. The new contributions conducted in this study 

were presented in five chapters.  

In Chapter 2, the implementation of the numerical technique, which covers both the fluid 

model and its coupling with the electrostatic forces, was described. The original thesis 

contribution starts with simulating a droplet suspended in another immiscible fluid under 

DC uniform electric field (Chapter 3). Here, a new break up pattern for droplets less 

conductive than ambient fluid was demonstrated. In Chapters 4 and 5, the role of solid 

surfaces has been considered by putting droplets on solid surfaces having different 

properties. The effect of the surface contact angle on droplet oscillations was 

demonstrated. It was shown that the contact angle affects the resonance phenomena of the 

oscillating droplets and the resonance frequency of the water droplet deposited on a 

hydrophobic surface increases with a decreasing contact angle. Chapter 6 is devoted to 

the electrostatic manipulation of the droplets impacting onto a solid surface. The effect of 

the electrostatic forces on maximum spreading diameter, an important parameter relevant 

to many applications, was investigated. It was found that by increasing the droplet 

charge, it may be possible to increase the spreading without any retraction after the 

droplet reaches its maximum diameter. The numerical technique was also applied to 
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investigate the collision of electrically charged droplets in Chapter 7. It was demonstrated 

that two conducting droplets carrying charges of the same polarity under some conditions 

may be electrically attracted. A map was drawn to show the limit between the repulsion 

and coalescence regimes. This Chapter also addressed the collision dynamics of two 

charged droplets and satellite droplet formation. It was found that the number of the 

satellite droplets after collision appears to increase with an increase in the droplet charge. 

8.2 Recommendations for future studies 

The research presented in this work aimed to apply the developed numerical technique to 

various phenomena. The other direction for future work involves extending the current 

modeling capabilities by taking into account additional physical effects such as charge 

convection and parameters and applying them to different applications. There are a 

number of such which deserve further investigations. Some are described below. 

8.2.1 Frost removal using electric field 

In recent years, the electrohydrodynamic (EHD) technique has received some attention as 

a possible effective defrosting method [1-4]. It was found that frost formation changes 

considerably under the action of an electric field: the frost morphology is affected and 

crystals solidify in different forms. Depending on electric field intensity, the electric field 

can either reduce or increase the frost mass accumulated on the cold surface. It is 

believed that using EHD methods can help removal of ice crystals because of the 

attracting force towards the electrodes. The observed crystals are thinner and more fragile 

as compared to those grown without an electric field. In addition, because the frost 

structure is relatively irregular and rather thin, it may not sustain itself from gravity force 

as it grows further. It is also expected that when the frequency of the applied force 

matches with the natural frequencies of vibrations of the ice crystals, more frost can be 

removed due to the resonance phenomenon. It seems that using a sweeping frequency 

which covers a range of frequencies could be more effective due to covering the natural 

frequencies of different ice crystals and increasing the chance of resonance. 
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8.2.2 Separation of bio-particles in microfluidic chips 

In recent years, separation of micro particles, such as biological cells and viruses, has 

become a crucial technology in the clinical laboratories. Existing technologies can be 

categorized into biological markers or “label-free” techniques, such as differential 

biomechanical and electromechanical.         

The microfluidic technology has attracted considerable attention and broadened its 

applications in biology, chemistry, medicine and engineering. Manipulation of biological 

particles (DNAs, viruses, bacteria, cells, multi cellular organisms, etc.) is highly 

important in various biomedical and biotechnological applications. 

An applied electric field introduces electrophoretic and dielectrophoretic forces (DEP) on 

the particles. DEP can potentially be used to capture cancer cells that are less likely to be 

isolated by traditional methods [5-7]. Simulating the electric force in such microfluidic 

devices plays an important role in properly designing and locating the electrodes needed 

for the isolating process. Estimation of the DEP forces acting on biological cells is much 

more challenging. Because of their complex and heterogeneous structure, they cannot be 

considered as a simple sphere, for example, human red blood cells are essentially oblate 

spheroids with indented sides, while viruses and bacteria often have elongated cigar 

shapes. The droplet-based characteristic of this device makes it convenient to use smaller 

sample portions of patients’ blood. 

8.2.3 Coating 

The developed model is capable of capturing the fluid motion inside the droplets. 

Substrate coating has been proposed as one of the potential applications of the digital 

microfluidic systems, and the quality of the coating operation depends on the internal 

fluid flow [8]. The developed model can be used to optimize such coating processes. This 

task can be performed by controlling the micro-droplet speed and the resulting internal 

flow. 

8.2.4 Hot-spot cooling 

Thermal management of microprocessors has become an increasing challenge in recent 

years. A cooling method on a “digital micro-fluidics” platform can be proposed whereby 
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discrete droplets are manipulated and moved using electric forces to certain spots to cool 

hotspots. Electrowetting was demonstrated by as a viable technique to manipulate 

droplets. This may find several applications in which temperature of the solid surface is 

of the great concern and could involve extending the modeling techniques to include 

thermal forces as an added parameter. 
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