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 Abstract 

Injection of dendritic cell (DC) vaccines into lymph nodes (LN) is a promising strategy for 

eliciting immune responses against cancer, but these injections in mouse cancer models are 

challenging due to the small target scale (~ 1 mm × 2 mm). Direct manual intranodal injection is 

difficult and can cause architectural damage to the LN, potentially disrupting crucial interactions 

between DC and T cells. Therefore, a second-generation ultrasound-guided mechatronic device 

has been developed to perform this intervention. A targeting accuracy of < 500 μm will enable 

targeted delivery of the DCs specifically to a LN subcapsular space. The device was redesigned 

from its original CT-guided edition, which used a remote centre of motion architecture, to be easily 

integrated onto a commercially available VisualSonics imaging rail system. Subtle modifications 

were made to ensure simple workflow that allows for live-animal interventions that fall within the 

knockout periods stated in study protocols. Several calibration and registration techniques were 

developed in order to achieve an overall targeting accuracy appropriate for the intended 

application. A variety of methods to quantify the positioning accuracy of the device were 

investigated. The method chosen involved validating a guided injection into a tissue-mimicking 

phantom using ultrasound imaging post-operatively to localize the end-point position of the needle 

tip in the track left behind by the needle. Ultrasound-guided injections into a tissue-mimicking 

phantom revealed a targeting accuracy of 285 ± 94 μm for the developed robot compared to 508 ± 

166 μm for a commercial-available manually-actuated injection device from VisuailSonics. The 

utility of the robot was also demonstrated by performing in vivo injections in mice. 

Keywords 

medical robotics, image-guided interventions, small animal imaging, high-frequency ultrasound, 

imaging phantom design and construction 
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1 Introduction 

In this thesis, a general-purpose CT-guided injection robot, collaboratively developed by 

the Lacefield and Fenster labs at Robarts Research Institute, was adapted to perform high-

frequency ultrasound-guided injections with a specific application in mind. The end-user, an 

immunology collaborator, required a device suitable for image-guided, minimally-invasive 

injections of dendritic-cell cancer vaccines into the lymph nodes of mouse models. Several 

hardware design modifications were made to accommodate preclinical-intervention constraints. 

Calibration, registration, and validation techniques were also developed to meet the end-user 

workflow demands. 

1.1 Motivation 

Preclinical studies of new therapies and pharmaceuticals are performed to determine their 

safety and effectiveness. These studies are often taken for granted but are necessary to justify 

translation of new treatments to the clinical setting [1]. Preclinical research often involves the 

injection of substances, such as cancer cells, stem cells, or contrast agents [2] [3] into small-animal 

disease models. The current gold standard for microinjections involves surgically exposing the 

target of interest; however, minimally invasive procedures are preferable since they are believed 

to better preserve physiologic and immune functions. 

Image-guided approaches exist, such as in the use of ultrasound imaging, but they are 

normally done freehand [4] or through the use of a manually actuated manipulator [5]–[7]. Manual 

injections are susceptible to poor accuracy and high variability, which can damage internal organs 

and confound results. Alternatively, accurate use of stereotactic devices, while relatively precise, 

typically relies on anatomical knowledge to accurately place a needle within a target [8]. 

Ultimately, percutaneous injections are highly dependent on operator skill and training, which 

differs wildly from person to person.  

Medical robotics is a well-established field that has successfully combined the accuracy 

and repeatability of robotics with a variety of imaging modalities for guided procedures – many of 

which have been adopted in the clinical setting. While workflow requirements are comparable, if 
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not more lenient when dealing with small animals, image-guided preclinical robotics provides a 

unique challenge in that it requires a positioning accuracy and image resolution an order of 

magnitude better than is necessary in the clinical setting (30 -100 μm is required to obtain images 

of rodents equivalent to a 1 mm voxel size in humans [9]) due to the small scale of common targets 

of interest (Table 1). While developments in the imaging field have met this standard, there is 

much room for improvement in terms of robotic designs. 

Table 1: Representative intervention targets and dimensions in mice, adapted from [4]. Ø 

denotes target diameter. Cardiac dimensions are thicknesses measured in the long axis view. 

Target Dimension (mm) 

Tumours (initial detected diameter) Ø 0.22 – Ø2.4  

Mesenteric veins Ø 0.2 

Embryonic Cavity (E7.5) Ø 0.3 

Ascending Aorta (systole) Ø 1.5 

Common carotid artery Ø 0.5 

Left ventricle end-diastole (LV-ED) Ø 3.8 

Left ventricle end-systole (LV-ES) Ø 2.5 

Anterior wall (LV-ED) 0.86 

Posterior wall (LV-ED) 0.74 

Anterior wall (LV-ES) 1.36 

1.2 Preclinical Image Guidance Modalities 

1.2.1 MRI Guidance 

Magnetic resonance imaging (MRI) is an imaging technique that utilizes strong magnetic 

fields and radio-frequency pulses to acquire anatomical and functional information from a patient 

without exposure to harmful radiation. The three-dimensional (3D) imaging capability of MRI 
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allows for an advantage over typical two-dimensional (2D) techniques, such as most ultrasound 

systems and X-ray fluoroscopy, during pre-operative planning for minimally invasive procedures. 

MRI relies on the water content and local magnetic properties of a body region of interest [10], 

making it an ideal tool for viewing soft tissue. 

The large scaling difference between human patients and small animals introduces several 

challenges to using MRI guidance for preclinical interventions. In order to achieve the necessary 

spatial resolution, the voxel size must be reconstructed to be much smaller, resulting in a lower 

signal-to-noise ratio (SNR). High-field MRI scanners have been developed to compensate for this 

SNR loss by operating at fields of 11 T. However, the necessarily small bore size limits workspace 

and makes robotic design prohibitive [11]. It is also possible to adapt clinical scanners for 

preclinical application through the use of specialized gradient coils. 

Complementary to MRI are hybrid imaging systems such as single-photon emission 

computed tomography (SPECT) and positron emission tomography (PET) imaging. SPECT and 

PET both require the injection of radiotracers to produce 3D images with contrast dependent on 

the concentration of the radiotracer in target areas of the body. The major difference between the 

modalities is that SPECT, in comparison to PET, can be performed using radiotracers that are more 

readily available to most research groups due to lower cost. However, SPECT imaging is at much 

lower resolution than PET (~10 mm compared to ~1 mm, respectively). Studies are often 

performed using MRI with either SPECT or PET. The reason is to combine MRI’s high resolution, 

soft-tissue contrast (but low sensitivity to metabolic activity) and SPECT or PET’s high sensitivity 

(despite low resolution). The popularity of such image fusion methods has led to hybrid systems 

that perform PET and MR imaging in the same machine. Work is currently being done to achieve 

the same fusion of SPECT with MRI [12]. Huang et al. [13] developed a device that uses combined 

MR and PET images for guidance in small animal biopsies. The device was found to have a 

positioning error of 1.20 ± 0.39 mm in a tissue mimicking phantom and the authors concluded the 

current system was not suitable for animal interventions [13]. Robotic devices using hybrid MR-

guidance are not in routine use for small animal interventions. 
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1.2.2 Micro-CT Guidance 

The development of CT imaging revolutionized clinical medical imaging and its inventors 

were awarded the Nobel Prize in 1979. However, the approximately 1 mm spatial resolution of 

clinical CT scanners limits their effectiveness in preclinical small animal imaging. For instance, 

an order of magnitude smaller voxel size of 30 - 100 μm is required to obtain images of rodents 

equivalent to a 1 mm voxel size in humans [9]. To address the shortcomings of CT in small animal 

imaging, the first micro-CT system with μm-scale spatial resolution was developed in 1982 [14]. 

Since then, there has been an exponential growth in the yearly publications on the topic and 

commercial availability of micro-CT scanners from at least one dozen manufacturers [15]. Typical 

scanners are available with voxel sizes ranging from 5 μm to 450 μm. Decreasing the voxel size 

of images also decreases the trans-axial scanner field of view. Typical trans-axial fields of view 

range from 1 to 20 cm [16]. 

Micro-CT scanners measure the attenuation of X-ray beams by a specimen at hundreds of 

angular views and use a reconstruction algorithm to produce a 3D image [9]. As a result, micro-

CT scanners possess a number of unique strengths and weaknesses. Micro-CT images can be 

acquired at a high spatial resolution, which is valuable in localizing targets for interventions. 

Micro-CT is well suited for image-guided interventions requiring differentiation between tissues 

with large differences in X-ray attenuation. At X-ray intensities suitable for living tissue, micro-

CT is well suited for differentiation between air (i.e. lungs), fatty tissue, non-fatty tissue (i.e. 

muscle), and bone. However, micro-CT provides limited contrast within these groups and is 

therefore not ideal for many abdominal interventions. The use of contrast agents with high X-ray 

attenuation such as iodine and barium have proved useful in visualizing soft tissues such as 

vasculature and the gut [14]. The use of micro-CT exposes animals to ionizing radiation which can 

result in physiological effects that confound the results of experiments [17]. The small bore size 

of micro-CT makes the development of an interventional device difficult.  Finally, micro-CT 

cannot acquire images in real time which prevents real time monitoring and correction during 

interventions. The strengths and weaknesses of micro-CT must be carefully considered when 

determining its suitability for guidance during an intervention. 
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1.2.3 Ultrasound Guidance 

Micro-ultrasound operates using the same principles as traditional clinical ultrasound 

imaging. However, micro-ultrasound imaging for small animals uses specialized transducers with 

higher frequencies than clinical systems (20-60 MHz) to increase the spatial resolution and allow 

clear identification of structures of interest [18]. The higher lateral resolution of 65 μm (for 50 

MHz) to 140 μm (for 20 Mhz) provided by the higher frequencies makes this a useful tool for 

small animal imaging and needle guidance. However, these higher frequencies also have an 

associated lower penetration depth of < 20 mm. Ultrasound imaging creates tissue contrast based 

on differences in density and compressibility (and, hence, acoustic impedance) of adjacent tissue 

structures and is commonly used to visualize muscles, tumors, and many internal organs. A micro-

ultrasound system is safe, portable, and is cost-effective compared to other micro-imaging systems 

such as CT or MRI. Ultrasound is strongly reflected by high changes in acoustic impedance making 

it not suitable for bone specific imaging such as transcranial imaging and imaging of bony 

interfaces. Furthermore, imaging of gas filled organs such as the lungs and intestines also suffer 

from poor image quality and high attenuation. 

Ultrasound offers several imaging techniques including: one-dimensional imaging (M-

mode) to provide high temporal resolution needed in cardiovascular research, 2D imaging (B-

mode) to visualize anatomical structures, 3D static and real-time imaging to capture their size and 

structure, and 4-D color Doppler imaging to provide information about blood flow through vessels. 

To image capillaries, the sensitivity and specificity of ultrasound can be further increased with the 

injection of gas-filled microbubble contrast agents [19]. This is commonly referred to as contrast-

enhanced ultrasound and it relies on specific pulsing sequences to increase the contrast-to-tissue 

ratio. In addition, microbubbles can be conjugated to markers for site specific targeting of imaging 

to provide molecular visualization or delivery of therapeutic agents [20]. 

Micro-ultrasound is used to guide freehand percutaneous micro-injections of drugs [6], [7], 

[21], stem cells, or contrast agents into animals without the need for surgical intervention [12], 

[22]. Micro-ultrasound is exceptional among imaging modalities for its routine use in needle 

guidance due to its real-time imaging capabilities. Despite the advantages of micro-ultrasound, its 

use as a guidance modality for preclinical robotic systems is not evident in the literature. Potential 
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reasons include: smaller margins of error make clinical tool-tracking techniques (optical tracking, 

electromagnetic tracking) insufficient for the accuracy requirements [23], disproportionate effects 

of needle artifacts and shadowing on image quality, and limited workspace due to the smaller 

imaging field of view. 

The Vevo 2100 ultrasound system (VisualSonics Inc., Toronto, ON) used in this thesis 

utilizes a linear array transducer to acquire high-frequency, high-resolution, ultrasound images. 

While the typical clinical scanner operates at frequencies ranging from 1 MHz to 15 MHz, yielding 

an optimal resolution of around 200 μm [24], it cannot be used to resolve various preclinical 

structures of interest (see Table 1). The Vevo 2100 is custom designed for preclinical imaging and 

uses a modular transducer design optimised to the imaging application. The MS-550D transducer 

used in this thesis is a 256 element linear array transmitting at a 40 MHz centre frequency to 

achieve a nominal resolution of 40  80  180 μm3 in the axial, lateral, and elevational axes, 

respectively. The maximum imaging depth is 15 mm; however, image quality degrades after 10 

mm. This is due to the geometric focus being at 7mm, and that the SNR worsens as the limit of the 

penetrative depth is approached for a given frequency. The system can produce multiple transmit 

foci, and achieves a near-uniform lateral resolution through dynamic receive focusing [24]. 

Focusing in the elevational direction is achieved with a fixed focus lens. 

 The VisualSonics system has the potential to serve as an excellent tool for interventional 

needle guidance as it is capable of acquiring a rapid series of B-mode slices as it is stepped along 

the elevational axis by a step motor, allowing for the reconstruction of a three-dimensional image. 

This is optimal when used for the guidance of a robotic device as it provides the preferable three-

dimensional fiducial pattern for registration, which is discussed later. VisualSonics provides a 

variety of analysis toolkits that may be used for interventional planning, giving the user the ability 

to view the internal anatomy and select targets within the mouse. B-mode imaging can also be 

used in real-time (300 Hz maximum frame rate); this rapid acquisition allows for continual 

imaging of the target region while the intervention is being performed which may be used as 

feedback to control needle position or velocity. 
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1.3 Review of Current Preclinical Technologies 

A need for small-animal image-guided robotic systems exists, and as a result designs for 

this application have emerged in the literature. Below is a review of the systems that differ in the 

imaging modality used, which influences the design of the robot itself due to inherent constraints. 

With exception of the device by Rodriguez et al. [22], needle insertions under ultrasound 

guidance are typically performed using a dedicated system where the ultrasound transducer and 

needle guide are supported by a manually actuated positioning device [6], [7], [25], [26]. The 

ultrasound-guided device by Rodriguez et al. is only used to support the ultrasound probe while 

the needle is inserted free-hand. None of these designs are robotic, and require manual 

manipulation of the needle and ultrasound transducer. 

A few dedicated systems for CT-guided interventions exist, but their routine use has not 

yet been adopted by preclinical researchers. However, dedicated systems do exist to perform 

radiation therapy in small animals. The robots in this category support both the X-ray tube, which 

is used for imaging and radiation therapy, and the detector [27]. By combining imaging and therapy 

in the design of the robot, errors due to image registration and repositioning the animal bed are 

eliminated. This concept would be useful for image-guided robotic needle interventions in small 

animals. Matinfar et al. [27] developed a system where the animal is positioned using a rotary 

table attached to a (x, y, z) commercial platform. In this design, the X-ray gantry is manipulated 

about a fixed point in the animal using a custom made 2 degree of rotation pinned structure. One 

degree of rotation about the isocentre is used for imaging and two degrees of rotation were used 

for therapy. By measuring the focal point of the X-ray tube for each gantry position and calculating 

positioning correction factors, the authors were able to position the animal to the focal point with 

a positioning accuracy of ~ 0.2 mm.  

The use of micro-CT for image guidance during interventions is also limited. Nicolau et 

al. [28] developed a mechatronic system using a commercial robotic manipulator and a 

stereoscopic system to complete interventions using micro-CT guidance. The overall targeting 

accuracy of the system was never quantified; but, the accuracy of tracking the needle tip was 0.7 

mm. The system was also never demonstrated to complete an intervention. Waspe et al. [29] 
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developed a custom 6 degree of freedom (DOF) mechatronic system for use with micro-CT to 

complete interventions. The device had a needle positioning error of 154 ± 113 μm using micro-

CT guidance in tissue mimicking phantoms. The system was demonstrated by inserting 200 μm 

beads into rat brains. A second-generation device was developed by Bax et al. [30] to improve the 

accuracy and clinical workflow of micro-CT guided needle placement while reducing the 

positioning variability and reducing the size of the device to enable it to be used with a 25 cm 

diameter micro-CT bore. They achieved targeting error of 149 ± 41 μm (quantified in tissue 

mimicking experiments) and performed a pilot in vivo experiment in a xenograft mouse model in 

which projection views obtained from sequential CT scans were used for visual confirmation of 

contact between the needle tip and a target bead surgically implanted within the specimen. Beyond 

the experimental development of these systems, the routine use of micro-CT to complete 

interventions in small animals is not evident within literature. 

Compared to those utilizing ultrasound and CT, there have been relatively few devices 

developed for small-animal image-guided procedures using MRI. It is speculated that this is due 

to the amount of technical challenges associated with developing such a system. However, using 

MRI for guidance is becoming more popular due to its high tissue contrast, multiplanar capability, 

and ability to provide spectral information. There are no dedicated systems for preclinical MRI-

guided robotic needle interventions. However, a dedicated MRI-guided system created by Waspe 

et al. [31] does exist for delivering focused ultrasound to small animals. MRI-guided high-intensity 

focused ultrasound (HIFU) is a rapidly growing technology that is showing enormous potential to 

treat a wide range of conditions. As a noninvasive technique for tissue ablation, HIFU has many 

advantages over traditional surgery without the repeated sessions and ionizing radiation needed 

for radiotherapy. The system developed consists of a three-axis positioning system for positioning 

the ultrasound transducer and a custom RF receive coil for high-resolution imaging in the vicinity 

of the target tissue. The positioning system is MR-compatible, actuated by piezoelectric ultrasonic 

actuators, and encoded using nonmagnetic linear optical encoders. The device fits inside the bore 

of a clinical MR scanner and the procedure is performed in the scanner with imaging 

simultaneously. This concept is useful for MR-guided needle interventions. Ultrasound to MRI 

registration is performed through the sonication of a phantom that is temperature-sensitive. The 

device was tested by performing sonications on the brains of five mice. To evaluate the accuracy 
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of the procedure, the distance between two sonications was measured. The desired separation 

between sonications was 4 mm and the measured separation was 3.8 ± 0.4 mm. 

MR-guided devices are typically designed for the clinical setting, and small-animal models 

may only be used for validation. Hempel et al. [32] developed an MR-guided surgical robot for 

radiological interventions. The positioning accuracy was reported to be ~ 1mm when tested in 

tissue-mimicking phantoms; however, no preclinical experiments were performed. Huang et al. 

[13] developed a device that uses combined MR and PET images for guidance in small animal 

biopsies. The device was found to have a positioning error of 1.20 ± 0.39 mm in a tissue mimicking 

phantom and the authors concluded the current system was not suitable for animal interventions. 

Robotic devices using MR-guidance are not in routine use for small-animal needle interventions.    

To resolve the issue of lack of accessibility in a closed bore scanner, a number of multi-

modality designs have been proposed where imaging and the intervention are performed in 

separate workspaces. These systems require the animal to be scanned in a fixture that is later 

reattached to the robot. These designs utilize industrial robots [13], [28], a built up system 

composed of commercially available linear and rotary stages [33], or special purpose machines 

[34]–[38]. 

Of particular interest are the special purpose machines that were designed according to the 

specifications outlined by Taylor et al. [39] where the tasks of needle placement, orientation and, 

insertion are mechanically decoupled using a remote centre of motion (RCM). By decoupling the 

motion of the needle about the RCM, it is no longer necessary to control multiple DOFs to control 

the needle insertion, which is the most delicate part of the procedure. By aligning the needle axis 

to the RCM of the machine, the needle can be pivoted about a fixed point and inserted through a 

predetermined entry point without the need to adjust the XYZ placement of the machine. 

Waspe et al. [37] developed a 6 DOF robotic needle positioning system consisting of two 

parallel four-bar linkages. With the needle placed at the RCM, the needle tip remains stationary 

while the needle orientation is adjusted. The RCM allows the needle tip to be placed at the skin 

surface and its orientation adjusted without puncturing the animal’s skin. The robot is registered 

to the micro-CT by using the robot to position a needle at five different positions in ultrasound 
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standoff pad. The needle is retracted from the pad while injecting barium. The pad and barium 

filled needle tracks are imaged using the micro-CT scanner. The barium tracks are segmented slice-

by-slice in the images. The barium track centroids are registered to the known robot trajectory 

using a rigid-body and iterative closest point registration. The accuracy of the robotic system is 

next determined through targeting experiments in a tissue mimicking phantom. The phantom 

consists of gelatin which contains a grid of 250 µm air tubes that intersect to form targets. The 

phantom was imaged using micro-CT and the air tube intersections localized. The robotic system 

was used to position a needle at a total of 70 targets in 14 phantoms. Once in position, the needle 

was withdrawn while again injecting barium into the needle track. The phantom was re-imaged 

using micro-CT and the targeting error (154 ± 113 µm) of the system determined by measuring 

the distance from the air tube intersection to the segmented barium track. 

The device developed by Ramrath et al. [36] uses an arc based design commonly used in 

neurosurgery to create an RCM. Two degrees of rotational motion are created by mounting the 

needle driver on a ring which is connected by a pivot at one end to the base of the machine. 

However, since the tool tip (electrode) does not align to the theoretical pivot point of the machine, 

4 different offset parameters were used to account for both the needle misalignment and deflection 

of the robot. The parameters used correspond to the x-y position of the needle as seen from 2 

orthogonal directions. Since the system was designed to implant an electrode into an animal brain, 

the issue of tool deflection was not considered here as the geometry of the tool tip was symmetrical 

about its long (insertion) axis. In addition, the potential issue of target movement during the 

insertion of the electrode is also addressed. They proposed to vibrate the needle at a high frequency 

along the insertion axis as a potential compensation strategy. To measure the system performance, 

the following two scenarios were analyzed using stereoscopic camera images of the device 

supporting an electrode: repeatability which is defined as the ability of the robot to return to the 

same point in space (mean: 0.011mm), and the ability of the device to position the tool tip at a 

fixed point in space regardless of the orientation (mean: 0.032mm, maximum 0.11mm). 

A device by Bebek et al. [34], [35] supports the needle by means of a pair of spherical 

couplings connected to parallelogram linkages. The RCM of each spherical coupling and attached 

needle is permitted to telescope between the front and rear parallelogram linkages giving the needle 

4 degrees of freedom (2 degrees of rotation about each RCM). They calibrated the device using an 
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optical tracking system with a root mean square error of 0.25 mm. After calibration of the device, 

they tested its accuracy by using the robot to draw a line on a piece of paper [40]. They compared 

the length of the line on the paper to what it should be based on the robot kinematics, and found 

the average error to be 2 mm, with no stated standard deviation. Later methods to quantify the 

positioning error of the device by Bebek et al. include using optical trackers mounted on the end-

effector to determine the actual position of the needle tip and compare it to the position given by 

the encoders; a root-mean-squared needle positioning accuracy of 419 ± 166 μm was found [35]. 

Table 2: Summary of current preclinical robots. (Adapted from [41]). 

Authors 

(et al.) 

Mechanical 

design 

Degrees of 

Freedom 

RCM 

? 

Imaging 

Modality 

Application Mean Free-Space 

Positioning 

Accuracy (μm) 

Image-

Guidance 

Positioning 

Accuracy (μm) 

Ref 

Matinfar 

(2008) 

Custom stage 3 Translational  

1 Rotational 

No CT Radiotherapy N/A < 200 [27] 

Nicolau 

(2007) 

Industrial 

articulated 
arm robot 

6 Rotational No CT Needle 

placement 

N/A N/A [28] 

Waspe 

(2007) 

Custom 

parallel four-

bar linkage 

4 Translational  

2 Rotational 

Yes CT/ 

Ultrasound 

Needle 

placement 

54 ± 12  

(Pitch axis plane)  

91 ± 21  

(Roll axis plane) 

154 ± 114   

(CT) 

550 ± 112  

(Ultrasound) 

[37] 

Bax 

(2013) 
Custom 

spherical 

linkage 

4 Translational 
2 Rotational 

Yes CT Needle 
placement 

71  
(Pitch axis plane) 

75  

(Roll axis plane) 

149 ± 41  [30], 
[42] 

Hempel 

(2003) 
C-bow and 
swivel arm 

3 Translational 
3 Rotational 

No MRI/CT Radiotherapy N/A ~ 1000  [32] 

Waspe 

(2010) 

Custom stage 3 Translational No MRI Focused 

Ultrasound 

N/A 3800 ± 400  [31] 

Huang 

(2006) 
Commercial 

desktop robot 
4 Translational 

1 Rotational 
No MRI-PET Needle 

placement 

(biopsies) 

50 ± 12 1200 ± 390  [13] 

Ramrath 

(2008) 
Custom 

stereotactic 

frame/ 

goniometric 
arc 

3 Translational 
2 Rotational 

Yes N/A Arbitrary 
probe 

placement 

32 ± 11 N/A [36] 

Bebek 

(2013) 

Custom 

parallel 

gimbal joints 

5 Rotational No N/A Needle 

placement 

(biopsies) 

419  

± 166 

  N/A [35] 

1.4 Registration 

Registration is the process by which the correspondence between two imaging workspaces 

is determined (Figure 1). It is a highly researched topic in the field of medical imaging, as well as 

image-guided interventions, due to its widespread utility. Registration may be used to enable 

physicians to accurately compare longitudinal medical images of a patient undergoing treatment 

for a particular disease, technicians to calibrate the coordinate systems of two scanners to enable 
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dual-imaging capability, and engineers to correlate the position of robot-mounted surgical tools to 

an imaging modality for computer-aided medical interventions.  

   

Figure 1: (a) Two 3D volumes differ in translation and rotation. Selecting fiducial landmarks  

using easily detected features (red and blue dots), it is possible to perform a rigid registration for 

alignment (b). 

Landmark-based rigid registration is the simplest form of registration commonly used to 

integrate a robotic device with an isotropic imaging modality. Rigid registration assumes only six 

degrees of freedom which include three translational XYZ components and 3 rotations. Landmark-

based rigid registration involves collecting a point-set of fiducials that are common to both image 

volumes, or workspaces, being registered. A fiducial is a point of reference that can be easily and 

repeatedly localized with minimal operator variance. Using these common point-sets, the 

rotational and translational components of a transformation can be calculated using a least-squares 

fitting technique [43]. 

Previously in our lab, Waspe et al. developed a technique to register high-frequency 

ultrasound to a first-generation robotic device intended for small-animal injections [29]. It 

involved designing a registration phantom containing a prescribed pattern of 12 fiducial beads that 

attached onto the end of the intervention needle (Figure 2). This assembly was then scanned to 

aquire a 20 µm voxel 3D image under micro-CT requiring several hours to yield an image 

depicting the fiducials as well as the needle tip. The needle was then detached from the phantom 

and attached to the robot for RCM calibration, in which a CCD camera was used to precisely 

(a)                                                                                             (b) 
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position the needle tip at a point within the device’s kinematics at which it is fixed in space 

regardless of its orientation. The phantom was then reattached to the robot-mounted needle and 

the device’s stages were used to move the needle tip to seven fiducial positions within the field of 

view of the 3D ultrasound image acquired by a Vevo 770 transducer, an earlier generation of 

VisualSonics micro-ultrasound system. This procedure was cumbersome: in addition to moving 

the robotic stage several times, a 3D ultrasound image had to be acquired for every robot pose and, 

for each of the seven poses, 12 beads had to be manually localized in ultrasound coordinates for a 

total of 96 bead localizations (12 in micro-CT, 84 in ultrasound) for a single intervention. 

Furthermore, this procedure prevented the use of different needles for one experiment, making a 

series of experiments with multiple mice impractical.  

 

Figure 2: Ultrasound registration phantom by Waspe et al. [29]. Phantom was scanned in micro-

CT pre-operatively to determine the spatial relationship between the needle tip and fiducial beads. 

Bax et al. developed the second-generation device and validated its accuracy under micro-

CT guidance [30]. For their registration procedure, a single borosilicate 6 mm bead was placed at 

the RCM of the robot; the XYZ stages then moved the robot to four fiducial positions within the 

bore of the micro-CT scanner that were used to calculate a one-step rigid registration between the 

micro-CT scanner and the mechatronic system. Since the scanner was not dedicated to robotic 

interventions, which is usually the case, additional fiducial beads were placed at the base of the 

device so that any error resulting from the removal and reattachment of the robot onto the scanner 

could be accounted for.  
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Although other types exist, point-based rigid-body registration techniques are most 

prevalent in preclinical robotics. Waspe et al. used points of ablation in a tissue mimicking 

phantom to register their high-intensity focused ultrasound device to MR for guidance [31]. A 

variety of plastics and contrast-filled phantoms have also been used to create easily identifiable 

fiducial markers in MRI [13], [44]. While six degree-of-freedom rigid registrations are routinely 

used, affine registrations also exist that assume 12 degrees of freedom: 3 translation, 3 rotation, 3 

scaling, and 3 shearing components. Scaling would most likely be considered in an image-guided 

intervention where the guidance procedure relies on preoperative scans using a modality other than 

that used for guidance, especially in the case of voxel anisotropy. While most bore-scanners 

typically do not have this issue, shearing may be a factor in ultrasound if the 3D volume is acquired 

by stepping a linear array on a motor. In this case, shearing could arise if the device is handheld, 

or the assembly for attaching the transducer onto the motor is not robust. 

The three error metrics commonly looked at to determine the accuracy of point-based rigid 

registration are: fiducial localization error (FLE), fiducial registration error (FRE), and target 

registration error (TRE). FLE gives an idea of the variability of an operator when selecting, or 

localizing, fiducial markers for a registration. It is defined as the root mean squared (RMS) distance 

between the localized points in a set from their true (unknown) positions [45]. It is worth 

comparing to the registration error metrics, FRE and TRE, since it may indicate how much of their 

errors are attributed to the inconsistency of the operator during fiducial localization. FRE is a 

registration error metric that is defined as the RMS distance between the landmarks in a ‘fixed’ 

image/workspace and the transformed landmark positions from a ‘moving’ image/workspace. 

These landmarks used to calculate a registration will here on be referred to as fiducials. Similarly, 

TRE is also the RMS distance between the landmarks in a ‘fixed’ image and the transformed 

landmark positions from a ‘moving’ image; however, these landmarks are specifically not used to 

calculate the transformation and will be referred to as targets. 

In image-guided interventions, FRE has incorrectly been used in the past as the metric that 

represents whether a procedure would be accurate or not [46]. FRE merely informs the operator 

how well the fiducials used to calculate the registration line up afterwards, while TRE reveals how 

well the registration will serve for actual targets not used in the registration calculation. 

Furthermore, while it may seem intuitive that a large FRE result will lead to a large TRE, this is 
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not necessarily the case. For a normal distribution of FLE across all fiducials, it was found by 

Fitzpatrick et al. that FRE and TRE are uncorrelated [46]. Furthermore, fiducial placement, as well 

the number of fiducials used, plays an indirect role in the resulting TRE. TRE can be minimized 

by 1) maximizing the number of fiducials used and 2) arranging the fiducials in a widespread, non-

collinear pattern such that the centroid of the arrangement is located at the intended target 

position[47].  

1.5 Image Artifacts in Ultrasound 

Ultrasound may serve as a useul guidance tool for minimally invasive procedures such as 

injections and laparoscopic surgeries; however, it is beset by a variety of artifacts introduced by 

the intervention tools themselves. For the purpose of this thesis, it is important to understand the 

different types of ultrasound artifacts not only found when analysing images depicting the internal 

anatomy of small animals, but also when localizing metal needles (for registration) and plastic 

phantoms (for targeting experiments) and so forth. In this section, we will discuss the different 

types of artifacts as well as some techniques used to minimize their effect on procedure accuracy.  

Ultrasound imaging relies on the reflection of the transmitted beam from a surface. While 

rough surfaces cause the beam to be scattered, smooth surfaces, such as metal or plastic 

interventional tools, act like a mirror [48] and reflect the beam in a straight line. This interferes 

with the scanner’s receive signal processing since echoes from interventional tools do not match 

the spherical wavefronts expected for scattering from soft tissue. Metal needles act as smooth 

reflectors and seem to reflect at an angle approximately equal to the angle of incidence [49]. 

Orienting a needle such that it is parallel to the transducer face is ideal for the reduction of artifacts 

(Figure 3); the ability to localize the needle degrades as the reflection angle is increased due to 

the presence heavier artifacts. In the case where neither the needle nor transducer can be adjusted 

such that they are parallel to each other, it is possible to redirect the ultrasound beams. This is 

known as beam steering, and can be done by electronically altering the timing of excitation of the 

piezoelectric elements [48]. “Echogenic” needles may also be used to overcome this insertion-

angle issue using either an echogenic coating on the exterior of the needle, or small grooves to 

create mimicking mini-reflectors (Figure 3 (d)) directing ultrasound back to the transducer. 

Another custom-design approach involves placing a piezoelectric sensor at the needle tip location. 
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Once activated by the ultrasound beam, it emits an electrical signal detected by the machine [48]. 

This technique would not suitable for preclinical applications due to the small needle gauges 

commonly used.  

          

      

Figure 3: (a) Orienting a needle parallel to the ultrasound transducer provides for optimum 

visualization. (b) However, accurate visualization becomes more difficult as the angle of incidence 

increases. (c) Beam steering can be used to compensate for this angular offset. (d) There has also 

been promising progress in the development of ‘echogenic’ needles. In the case depicted above, 

small grooves act as miniature reflectors overcoming the needle insertion angle to reflect the 

ultrasound back to the transducer (Adapted from Reusz et al. [48]). 

A ring-down artifact (Figure 4) is commonly seen when imaging using a coupling gel 

rather than water. Sound waves trapped within an air bubble being imaged create reverberant 

vibrations which, when transmitted back to the transducer face, leads to region below the bubbles 

which have a higher than expected signal [50].  
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a)                                                                    b) 

c)                                                                    d) 
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Figure 4: (a) Tissue mimicking phantom containing two plastic cones. (b) The occurrence of an 

air bubble near the transducer face results in a ring-down artifact, hiding underlying features. 

Acoustic shadowing is another important artifact that describes the reduction in the echo 

strength of the signals arising behind a strong reflector or attenuating structure. Examples of these 

structures commonly seen in clinical practice include calcified tissues, bone, or gas. When an 

ultrasound beam is incident upon an object that is a strong reflector, such as the ribs or steel needle 

(acoustic impedance of 7.8 and 45.7 MRayl, respectively [48]), very little of the sound energy will 

be transmitted distal to the object. This will cast a very strong anechoic shadow yielding a signal 

intensity within this shadow that is very close to zero (Figure 5).  

 

Figure 5: Chicken embryo vertebrae imaged in ultrasound using a VisualSonics MS-250 

transducer. Acoustic shadowing appears distal to each vertebra. 
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In practice, however, artifacts below the needle are dominated by reverberations rather than 

shadowing; this will be discussed shortly. These artifacts make localizing the needle difficult and 

are detrimental to ultrasound-guided injection procedures where the needle must be kept in-plane 

and slightly above a region of interest. Reverberation is an intuitive phenomenon that is associated 

with sound and that involves the bouncing back-and-forth around a central object. It is analogous 

to multiple reflections in optics. In the case of ultrasound, repetitive reflections of waves occur 

between two or more highly reflective layers resulting in equally spaced hyperechoic signal that 

become diminishingly less in amplitude distal from the object of interest. In short, it is a reflection 

phenomenon, but can conceivably be used as a useful tool in ultrasound, such as in the 

identification of bullets in a gunshot victim or radioactive pellets in a patient undergoing 

brachytherapy treatment for prostate cancer. Ultrasound waves emanated from a transducer face 

in the form of pulses towards a highly-reflective interface will be reflected back towards the 

transducer. This reflective echo provides the information to form the image of the object at its 

correct distance from the face based on its propagation time. The transducer face in turn suffers 

another reflection [51]; therefore, you have a second round trip of the ultrasound wave at a smaller 

amplitude that travels to the object of interest and is reflected back to the transducer again. This is 

repeated until the amplitude of the signal is diminished. Each round trip the wave results in an 

equally spaced reverberation artifact (Figure 6). 

 

Figure 6: (a) Graphic depicting physical theory behind reverberations. Back-and-forth reflections 

between a highly reflective surface and the transducer face causes equally-spaced reverberation 
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artifacts that diminish in amplitude with each occurrence. (b) The surface of a tissue-mimicking 

phantom causes a reverberation artifact beneath. 

In the case of metal needles, the back-and-forth reflections of the ultrasound waves 

between the interior and anterior walls of the needle are the cause of the proximate reverberation 

artifacts seen as in Figure 7 [48]. Comparable to reverberations, we can see in Figure 8 what is 

called a comet tail artifact. Both reverberations and comet tails are based on the same physical 

mechanism; however, a comet tail is the common term used to describe such effects caused by a 

small object, such as a fiducial bead or needle cross-section. 

 

Figure 7: (a) Graphic depicting physical theory behind needle reverberations. Subsequent 

reflections between the interior and exterior walls of the needle result in echoed signal that 

diminishes with each round trip. (b) Micro-ultrasound image of 30 gauge conical needle imaged 

near-parallel to the transducer. (Adapted from Reusz et al. [48]). 

Side lobes describe sound energy reflections that are generated at improper off-axis 

locations alongside the main beam (Figure 8 (a)). They are added to, or assigned as, part of the 

main beam and occur in both single and array transducers. Side lobes appear as hyperechoic 

densities within a hypoechoic/anechoic background. As the depth of the object increases, the extent 

of the side-lobe artifact increases due to the effect of side lobes from multiple scan lines 
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overlapping. In Figure 8 (b), a needle cross-section is imaged within an agar phantom, resulting 

in prominent side-lobe artifacts. These side lobes would not be so obvious in a background of 

scattering from tissue; however, they would reduce the contrast of features lateral to the needle. 

One of the basic assumptions of an ultrasound scanner is that the velocity of sound through 

all soft tissues is 1540 m/s. However, if the beam passes through a structure consisting mainly of 

fat, the actual velocity of 1450 m/s causes the object to appear further away from the transducer 

face. On the other hand, if the reflector of interest has a velocity higher than 1540 m/s, it will 

appear closer to the face than its true position. This can cause a discontinuous representation of an 

interventional tool when being guided by ultrasound imaging through inhomogeneous tissue, 

making in vivo needle-guidance procedures confusing to the unprepared operator. The smaller the 

object the larger the increase in velocity necessary for this to take effect [52]. 

  

Figure 8: Cross-sectional view of needle imaged using high-frequency ultrasound. (a) Illustrates 

how the needle can still be detected by transducer subapertures it is not directly distal to via side 

lobes (red) even though it is missed by their main lobe (blue). This leads to the side lobe artifacts 

shown in (b). (Adapted from Reusz et al. [48]). 
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1.6 Dendritic-Cell Cancer Vaccine Immunotherapy 

Research 

There are many potential applications to preclinical image-guided robotic systems which 

favour the high accuracy and precision of said devices over the moderate accuracy and relatively 

large variability of human operators performing the small-scale intervention manually. One such 

application focused on in this thesis is the injection of dendritic-cell (DC) cancer vaccines into the 

lymph nodes of mouse cancer models to determine the efficacy of this minimally-invasive 

approach. 

Surveillance cells exist in the immune systems of our bodies whose main function are to 

recognize foreign microorganisms, such as viruses and bacteria; process the information presented 

by their antigens, and relay the obtained information by migrating back from tissues in contact 

with the external environment (i.e., skin and the inner lining of the stomach, nose, and lungs) to 

lymph nodes packed with white blood cells (WBCs) and other immune cells. Therefore, the 

surveillance cells act as messenger cells with the purpose of activating a group of WBCs, known 

as lymphocytes, which are involved in forming adaptive immune responses. T-cells, a type of 

lymphocyte, govern cell mediated immune responses. Once they are activated by DCs, the T-cells 

take on a search-and-destroy role [53]. 

In the case of cancer, DCs are unable to identify the malignant cells as foreign. This is due 

to the secretion of immunosuppressant molecules by the tumour itself [53]. The theory behind 

cancer-immunotherapy is that DCs can be isolated from the blood sample of an infected patient in 

a laboratory; similarly, the distinct antigens presented by the cancer cells may also be isolated from 

the tumour sample. Through similar techniques, the DCs may be loaded with the tumour antigens 

and left to mature. The hypothesis behind these treatments is that, after re-injection, the loaded 

DCs are expected to stimulate an immune response against the tumour [54]. 

One question this process poses is where the mature DCs should be injected. Some 

practices have been: intravenously (into a vein), and subcutaneously (into the layer of skin directly 

below the dermis and epidermis). Previous studies have shown that when using either of these two 

methods, few of the DCs actually make it to the lymph nodes of the body. This means that few 
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lymphocytes are activated and begin an immune response [53], [55], [56]. One way of working 

around this problem is to inject the loaded DCs into the lymph nodes themselves, in which case, a 

high percentage of the DCs would make it into the lymph node to potentially activate an immune 

response. However, previous studies using this method have yielded mixed results [57]. It is 

believed to be due to the fact that 1) these injections have been done manually (by hand) and blind 

(through palpation without image guidance), and that 2) the risks of injecting manually and blind 

may cause damage to the lymph nodes. 

It is speculated that a more careful injection harnessing the accuracy and precision of an 

ultrasound guided mechanical device to better control the velocity, force, and trajectory of the 

needle will minimize damage to the lymph nodes, and ultimately increase the effectiveness of the 

treatment. 

1.7 Thesis Objectives 

The objectives of this thesis were to (1)  redesign certain mechanical features of our 

existing micro-CT guided injection robot to adapt it for high-frequency ultrasound guidance, 

specifically for the injection of dendritic-cell cancer vaccines into the lymph nodes of small-animal 

cancer models. A targeting accuracy requirement of < 500 μm meant that the inherent error from 

calibration, robot-ultrasound registration, and other various maneuvers necessary to maintain the 

workflow of such a procedure must be sufficiently low as well. (2) Determine the fiducial and 

target registration errors of the proposed registration technique in tissue-mimicking phantoms. 

Finally, (3) demonstrate that the targeting accuracy of the robot for ultrasound-guided injections 

into tissue-mimicking phantoms exceeds the 500 μm design goal and demonstrate that the robot 

produces smaller targeting errors than a commercial manually operated injection device. 

1.8 Thesis Outline 

Chapter 2 

Chapter 2 describes the mechanical adaptation of a micro-CT guided robot for ultrasound 

guidance. Other design changes involved the consideration of the end-user immunology 

application of intranodal injections in live mice. Integration of the robot to the commercially 
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available VisualSonics Inc. interventional platform/railing system was justified by determining the 

inherent error caused by moving components along the railing. Two registration techniques were 

designed to link the coordinate system of the robotic device to the image volume acquired by the 

ultrasound transducer.  The one-step method was preferred over the two-step registration technique 

due to the considerably lower execution time while yielding comparable error metric results. 

Chapter 3 

 Chapter 3 covers the numerous validation techniques investigated to determine the 

ultrasound-guided needle-positioning robot’s accuracy in tissue-mimicking phantoms. These 

range from the use of contrast agents to depositing physical markers for micro-CT validation. The 

technique chosen involved localization of a needle-track tip within an agar phantom using micro-

ultrasound as the visualization modality. This needle track was used to estimate the targeting 

accuracy of the robotic and manual injections in order for a comparison. Injections were performed 

in live mice using both the robot and competing VisualSonics micro-manipulator to demonstrate 

the feasibility of minimally invasive intranodal injections in mice under ultrasound guidance.  

Chapter 4 

Chapter 4 includes a summary of the main thesis topics. The Future Work section discusses 

some recommended modifications to the system to address some of the weaknesses of the robotic 

system: platform rigidity, tissue deformation, and a lack of real-time image feedback capability. 

The clinical translation of this work is also discussed.   
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2 Adaptation of Robot for Ultrasound Guidance 

2.1 Mechanical Hardware 

 

Figure 9: (a) Solidworks model of original 2nd generation image-guided injection robot designed 

for micro-CT. (b) Solidworks model of original needle driver mechanism. Needle is inserted to 

RCM position. 

Our lab’s second-generation image-guided needle-placement robot [41] (Figure 9) was 

designed based upon spherical linkage mechanisms used in a clinical breast-biopsy device 

developed by Smith et al. [58]. The rotational axes of the spherical linkages intersect to form an 

RCM. They are designed to eliminate the positioning error from deflection of the four-bar 

mechanism, implemented in our first-generation device [29], while also miniaturizing the device 

to fit within the bore of a micro-CT scanner [30]. A mirrored spherical linkage counterbalanced 

the weight of the needle positioning linkage. The total range of the device was set to be ± 22.5º in 

the pitch directions and ±90º in the roll direction.  The needle position could be adjusted manually 

using a joystick or stepper motors. A motorized 3D micrometer stage was used to adjust the 

position of the RCM relative to the animal to reach specific targets. The RCM was positioned such 

that it was at the target location within the animal rather than at the surface of the skin to simplify 

the needle driver design; this allowed for the RCM positioning of the robot to rely, solely, on the 

high accuracy of the XYZ motors. The needle driver was designed to place the needle tip at one 
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of two positions: retracted or inserted to the RCM (~14 mm travel distance). A miniature stepper 

motor and lead screw were used to drive a needle mounting block to a hard stop equipped with a 

limit switch. Set screws were used to adjust the position of the hard stop to ensure the needle tip 

was positioned at the RCM after insertion. Overall, the positioning accuracy of the device was 

dependent on the accuracy of the motorized stages, calibration of the hard stop, and the ability of 

the device to maintain a consistent RCM position throughout its full range of motion (~12.5 μm 

deviation). 

 

Figure 10: VisualSonics provides a railing system equipped with an adjustable transducer arm and 

manual needle manipulator. A specialized mouse stage allows for easy anaesthesia and ECG 

monitoring. The VisualSonics motor allows for 3D image acquisition by stepping the MS-550D 

transducer at small increments. This transducer is generally used for mouse abdominal, 

reproduction, tumour, and vascular imaging as well as some similar rat applications. 

VisualSonics has developed an integrated railing system for ultrasound imaging and 

ultrasound-guided interventions (Figure 10). The railing system serves as a heavy base on which 

interchangeable components can be fixed. These components include an adjustable arm on which 

a transducer can be held, a basic mouse stage, and, in the case of guided injections, a manual 

injection system which a needle can be fixed to and finely manipulated (4 DOF: 1 insertion, 1 
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rotation, 2 translation) during an intervention. In place of the VisualSonics micro-manipulator 

injection system, the ultrasound-guided robot was installed onto the railing system for image-

guided interventions.  A 3D stepper motor may be installed onto the ultrasound-transducer arm to 

enable 3D image acquisition. VisualSonics also offers a specialized physiological monitoring 

system that is fixed to the mouse stage via a magnetic lock. It allows for electrocardiography 

(ECG), heart rate, and temperature monitoring, and serves as a tool for easy manipulation of the 

mouse, or rat, using its ball-and-socket joint; an optional clamp also exists as an anaesthetic-hose 

fixture for imaging animals knocked out using isoflurane gas. 

Adapting our mechatronic device to ultrasound relieves us from some of the design 

constraints previously placed for CT-guidance (Figure 11). The robot no longer must fit in a 

micro-CT bore, and its material choice has no effect on ultrasound imaging. Therefore, minor 

changes were made to the original device designs in order to maintain the performance accuracy 

achieved by Bax et al. [30]. For example, the robot was fixed onto a base plate which slides on to 

the VisualSonics rail system. Overriding manual locks were installed to fix the roll and pitch of 

the robot if necessary, and considerable height (~15 cm) was added to enable the robot to reach 

the imaging workspace and in order to allow for a ± 180º range in robot’s roll necessary for our 

registration procedure (discussed later). Significant effort was put into fine-tuning designs, 

monitoring fabrication, and adapting to manufacturer resources and abilities to recreate the high-

precision image-guided device. 

 A potential end-user application of intranodal injections of a dendritic cell (DC) cancer 

vaccine into mice has led to necessary redesigns of the robot’s needle driver. Previous needle 

driver designs by Bax et al. [30] assumed the use of a cannula and medical tubing would be 

appropriate for the delivery of substances in most preclinical studies. Our immunology 

collaborator, Dr. Greg Dekaban, deems this technique inefficient for the delivery of human DCs 

as only a relatively small volume (10 μL) is needed per intervention, while unacceptable amounts 

of the vaccine would be lost in tubing as waste. Instead, a low dead-volume Hamilton syringe (25 

μL, series 802) was recommended. Not only does its use minimize the DCs wasted, but a single 

syringe can be used for multiple procedures as the cannula can be replaced. The syringe is ‘front-

loaded’: meaning that a separate ‘dummy’ syringe is used to fill the Hamilton with the DC solution 

while its cannula and securing twist cap are temporarily removed.  This is convenient for a few 
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reasons. For the intended application of direct lymph node injections in mice, a small needle gauge 

of 30G (~ 160 μm interior and 315 μm exterior diameter) must be used. A bevel angle of 12º is the 

sharpest option available to obtain the best skin-piercing ability and therefore minimize tissue 

deformation and mouse movement during an injection. Due to the small outer diameter and sharp 

tip of the custom cannula specifications, a user is likely to destroy DCs due to shearing if a regular 

solution-withdrawal technique is used to load the Hamilton. Therefore, the dummy syringe used 

to front-load the temporarily disassembled Hamilton syringe using a much larger needle gauge 

(e.g. 22 G). The 30G cannula is secured onto the Hamilton syringe using the twist cap after loading 

is complete.  

 

Figure 11: (a) Solidworks model of new ultrasound-guided needle positioning robot. (b) 

Solidworks model of modified needle driver mechanism mounted external to the robot’s spherical 

linkages. A linkage joint was hollowed to allow the zero dead-space Hamilton syringe to pass 

though. 

The needle driver designed by Bax et al. [30] was located at the front end of the spherical 

linkages, near the RCM point, and was designed to only support a cannula connected to tubing. 

The zero dead-space Hamilton syringe is much too large (23 cm in length) to fit on to the robot’s 

end-effector region. Instead, one of the steel cylinders connecting two linkages at a joint was 
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hollowed out to allow room for the Hamilton syringe to pass through. Design specifications from 

our collaborators did not permit the syringe to be clamped to the robot’s driver at the front end 

since it is made of glass and contains necessary-to-read volumetric markings. Therefore, the entire 

driver assembly was shifted beyond the linkages in order to firmly clamp the steel base of the 

syringe. Optical switches were used to control the depth of the injection to the RCM position, 

while the hard stop technique used by Bax et al. was not implemented. This was partly an 

oversight; however, using the optical switch alone should be enough to repeatedly stop the needle 

tip at the same RCM position, and it ensures that the non-encoded stepper motor used for syringe 

driving was not accidentally burned-out by a hard stop before tripping the optical switch during 

the testing phase. 

2.2 Remote Centre of Motion Needle Calibration 

2.2.1 Earlier Generation Techniques: Camera Calibrations and Fixture-Based 

A needle was calibrated at the RCM point of the micro-CT guided version of the device 

using one of two methods: a cumbersome camera calibration technique or a fast fixture-based 

calibration. In the camera based calibration, each rotational axis of the robot was validated 

separately. A charge-coupled device (CCD) camera equipped with a macro lens was placed 

orthogonal to the plane of each rotational axis of the robot. Each axis was moved to points along 

its full length of motion, capturing an image each time of the conical needle tip. The needle position 

was adjusted accordingly until all images indicated minimal deviation of the needle tip when 

manipulating its orientation. A 12.5 μm deviation was reported, and the procedure could take over 

one hour to complete [30]. The fast fixture-based technique involved attaching a flat delrin block 

onto the robot such that its top surface was at the RCM position (based on precision assembly 

techniques – through use height and pressure gauges) and advancing a robot-mounted needle until 

its tip was just barely at the surface of the block as determined by sliding a thin (25.4 μm) steel 

shim across the calibration block’s flat surface until it caught the sharp needle tip.  This calibration 

block technique was validated using the camera calibrations technique and was found to yield an 

error of 75 μm and 12 μm in the robot’s roll and pitch, respectively [41]. For our ultrasound guided 

robot, a fixture-based RCM calibration approach was used; however, there was one minor 

alteration.  
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2.2.2 Electrical-Contact Calibration 

    

 

Figure 12: Overview of RCM needle calibration technique developed for the ultrasound-guided 

device. The top surface of the conductive plate meets the RCM point. Contact between the needle 

tip and plate is detected by a multimeter. The closed circuit path is such: multimeter  brass 

bushing  steel needle  aluminum plate  multimeter. 

Near the RCM, both CT and ultrasound versions of our robot utilized a tight-fit bushing 

through which an interventional needle would pass for support, and to ensure it is aligned correctly 

with the linkage axis approaching the theoretical RCM point. Unique to the newer ultrasound-

guided device, we connected this bushing to a multimeter such that when the needle tip would 

come into contact with a metal surface also connected, a continuity alarm would set off indicating 

contact (Figure 12). Therefore, the calibration-block technique Bax et al. used was modified to 

have a top surface made of electrically conductive steel. Rather than relying on human haptic 

perception, a connectivity test indicated that the needle tip has reached the RCM point. This is 

believed to have marginally improved workflow, and comparable calibration error is to be 

expected although validation of said error could not be determined for lack of CCD camera and 

macro-lens of equivalent specifications. 

2.2.3 Compensation for Needle Bevel 

While the robotic device was originally designed to position a conical needle, bevelled 

needles are typically used in research for general applications. Due to the bevel angle chosen for 

the application of intranodal injections, it was found there is a considerable offset between the 
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bevelled needle’s tip and the centre of its lumen where substances, such as microbubbles or DCs, 

exit. Having chosen a 30G needle with an outer diameter of 292 μm and a bevel angle of 12º, there 

would be an estimated offset between needle tip and lumen centroid of 687 μm. A set of newly 

ordered 30G needles were scanned in micro-CT for 2.75 hours at 80 kV and 450 μA, and 

reconstructed yielding an isotropic image with a voxel size of 20 μm (Figure 13). The offset 

between the needle tip and its lumen centroid was manually determined in Microview 3D Image 

Viewer and Analysis Tool. The average offset measurement was 666 ± 32 μm; this mean was 

chosen as the offset value. The localization error associated with determining this offset was found 

to be 22 μm.  

 

Figure 13: Micro-CT image of 30G needles with 12º bevel angle. Offset was determined by 

calculating the axial distance between the centre of the lumen and the needle tip. 

Two techniques were developed to RCM calibrate a bevelled needle while accounting for 

the offset between its tip and lumen centroid. The first approach involved two steps. First, a conical 

needle was RCM calibrated using the fixture-based technique involving electrical contact detection 

by a multimeter (Figure 12). A delrin fixture was then attached to the robot’s end-effector. A brass 

block was placed in a tight-fitting slot in the fixture and slowly advanced towards the needle until 

contact was made with the needle tip as determined by the multimeter. This depth was then marked 

using an adjustable dowel pin by locating a precisely placed pin hole in the brass block. The block 

was then flipped to use the opposite face and set inside the slot of the delrin fixture using the now-

fixed dowel pin as a locating point of reference. The distance between each dowel hole and its 
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corresponding face differed by the lumen-tip offset previously measured in CT (666 μm). After 

this procedure is completed, it is possible to use this delrin-fixture/brass-block assembly as a tool 

to set a bevelled needle’s lumen centroid at the RCM (Figure 14). At the time of design, machining 

resources were not available to fabricate this assembly. 3D printed versions were also designed; 

however, the quality of the surface finish and tolerances of the rapid-prototype part were 

inadequate for this application. This two-step procedure was cumbersome and impractical.  

 

Figure 14: (a) Solidworks model of calibration tool designed to shift the RCM calibration of a 

bevelled needle mounted on the robot from its tip to the centre of its lumen. (b) Conductive brass 

block with two precisely placed locating pinholes on either side. The distance between each 

pinhole and its corresponding side face differed by the lumen-tip offset (666 μm) previously 

measured in micro-CT. 

A one-step technique was also designed to set a lumen centroid at the robot’s RCM. This 

simply involved reducing the height of the conductive plate in the electrical-contact RCM 

calibration technique for conical needles (Figure 12) by a small amount (650 μm), allowing the 

theoretical RCM point to be located at the centre of a bevelled needle’s lumen. This approach was 

not initially considered since the robot’s pitch axis cannot orient the needle normal to the ground 

(deviation of ~ 8º ), and a 30G bevelled needle’s tip is laterally offset from its centre axis by 145 

μm. However, these potential sources of error were estimated through basic geometric 

calculations. More importantly, error in positioning a bevelled needle’s lumen on the order of tens 
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of micrometers is negligible as the lumen, or opening of the cannula, has a considerable length of 

~ 1200 μm. 

2.3 VisualSonics Rail System Error 

The VisualSonics railing system serves as a convenient rigid-body structure on which the 

ultrasound-guided robot and ultrasound transducer can be fixed. This allows for a registration 

between the two to be maintained during an injection procedure. Target localization in a mouse 

intervention must be done separately from the injection (i.e. injections are targeted using 

ultrasound but not monitored in real time). Therefore, after the robot is registered to the ultrasound 

transducer, it is slid away on the VisualSonics rail. After a target of interest is identified in a mouse 

using ultrasound, the transducer is slid away from the workspace and the robot is brought back. A 

hard stop is used as point of reference to return both the robot and ultrasound transducer to the 

workspace when necessary. This was a potential source of positioning error that needed to be 

investigated in order to justify not redesigning a custom high-precision rail system. 

 

Figure 15: Boxplot comparing the localization error found from consecutive 3D scans of a bead-

phantom with the localization error found when removing and repositioning the transducer over 

the phantom by gliding it along its railing system. 

 A water-based ultrasound phantom was designed to determine the error attributed to using 

the VisualSonics railing system. The phantom contained a pattern of 8 fiducial tungsten beads (400 

μm diamter). A series of 6 consecutive 3D images were taken of the phantom without moving 

either the phantom or transducer in between each scan. A second series of 6 images were taken 
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after moving the transducer away from the workspace by a distance of ~ 8 cm then repositioning 

at the workspace by relying on a hard stop fixed along the railing. The localization error found 

from the series of consecutive images was 44 ± 19 μm, while the cumulative error found by 

localizing beads in images taken after repositioning the transducer was 64 ± 26 μm. Using a 

nonparametric Mann-Whitney rank-sum test these two values were found to be significantly 

different (p < 0.0001) (Figure 15). Subtracting them in quadrature, the estimated error of using 

the hard stop to reposition the transducer was found to be 20 ± 18 μm. This error is deemed to be 

marginal in context to our overall targeting injection accuracy of 500 μm. It was decided that 

developing a more robust railing system for the purpose of image-guided robot injections was not 

justified. Furthermore, relying on the railing system provided by VisualSonics reduces the cost for 

an end-user to operate to purchase and operate the robotic device for research purposes. 

2.4  Registration Approach 

2.4.1  Two-Step Registration Phantom 

        
Figure 16: (a) Micro-CT slice of first-generation two-step registration phantom at 49.6 μm 

isotropic voxel size. (b) Solidworks representation of registration phantom. Each electronic pad is 

connected to multimeter set to Continuity Test. 

As part of the author’s ECE 4416 design project, the first technique developed for 

registering a VisualSonics ultrasound scanner to the robotic device employed printed circuit boards 

containing a prescribed pattern of nine 317.5-µm diameter conductive pads serving as fiducial 

markers (6 pads) and targets (3 pads) arranged in a coplanar pattern (Figure 16). A three-

dimensional stage, controlled by three high-precision (~2.5 µm) actuators with encoders, was used 
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to advance the needle to each fiducial pad. Electrical contact between the needle’s tip and each 

pad was used to determine the pad positions in robot coordinates. Within the registration phantom 

were 9 small (400 µm diameter) tungsten carbide/cobalt spheres mounted on plastic dowels near 

each pad. The spatial relationship between each pad and its paired bead was determined beforehand 

by analyzing a micro-CT scan (with 49.6 µm isotropic voxels) of the phantom. A single 40 MHz 

3D ultrasound scan was sufficient to localize all beads. A point-based rigid-body transformation 

was performed between the ultrasound and micro-CT volumes using the beads as fiducials. A 

second transformation, between the micro-CT volume and the robot’s coordinate system, was 

performed using the pads as fiducials thereby registering the robot’s needle tip location in 

ultrasound coordinates in two steps (Figure 17).  

     
Figure 17: Ultrasound and CT scans of the phantom are linked by a rotation (R1) and translation 

(T1), while the CT scan of the phantom and the robotic workspace are linked by a rotation (R2) 

and translation (T2). (a-i) Rendering of 3D ultrasound scan of phantom. (a-ii) Multiplane view of 

micro-CT scan of phantom. (a-iii) Prototype registration setup. (b) The two-step rigid registration 

process produced an overall FRE and TRE of 146.2 3 ± 73.86 µm and 135.38 ± 47.83 µm, 

respectively. 

 The main disadvantage to this initial registration phantom design was that it was water- 

based. Electrical detection of the fiducial pads by the robot would be performed prior to ultrasound 

imaging, which used water as coupling agent. This meant that a registration procedure could only 
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be performed once per day as there was no protocol in place to dry the phantom should it be 

necessary to repeat. Natural-air drying was relied on. Furthermore, the phantom was vulnerable to 

damage as the fiducial beads were exposed and easily accessible. The spatial relationship between 

the fiducial pads and beads, determined from a pre-operative micro-CT scan, was essential to a 

successful registration. If these beads we displaced by even a single millimeter, it could affect the 

overall registration accuracy. Therefore, a new design was made. 

 

Figure 18: Cross-sectional view of second-generation registration phantom containing 8 outer 

fiducial beads and 4 inner target beads (observable in ultrasound and micro-CT). Six 2 mm ⌀ steel 

rods were sharpened at each end to create 8 fiducial, and 4 target, ~50 µm ⌀ point-like pads 

(observable in micro-CT and detectable by the robot’s end-effector). 

A second-generation two-step registration phantom was designed. Shaped as a cubed box 

with an open top, the phantom contained 12 (400 µm diameter) tungsten carbide/cobalt spheres 

strategically placed in a non-coplanar pattern (Figure 18). The inside of the phantom was then 

filled with tissue-mimicking material to allow for ultrasound scanning. On the outside of the cube 

phantom, 12 robot fiducial pads were placed at heights that roughly corresponded to that of their 

paired beads located on the inside of the phantom. The same procedure was to be used as in the 

first-generation two-step registration phantom: a micro-CT scan of the phantom would be taken 

prior to a procedure to determine the spatial relationship between each bead-pad pair, the robot 

end-effector would be advanced to each pad until contact was detected by a connected multimeter, 
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and the fiducial beads would be manually localized from a 3D ultrasound scan of the inner contents 

of the phantom. However, after construction of the phantom, it was realized that the procedure was 

too cumbersome. Advancing a needle tip using the robot’s 3D stage to multiple pad-like landmarks 

was a technique that would take several hours to complete. Given that the ultrasound scanner in 

use for image guidance was not a system solely dedicated to robotic interventions, the registration 

procedure designed must be completed within a reasonable time frame. Although sufficiently 

accurate for the small scale of our intended application, this registration technique is not suitable 

when taking into account several considerations of preclinical workflow. During a targeted 

injection, a mouse is typically anesthetised using isoflurane; this requires constant monitoring of 

dosage, body temperature, and heart rate to maintain sufficient anesthesia without overdosing. 

While the two-step registration allows for good image-to-robot registration, it can take over one 

hour to complete – close to the maximum knock-out time specified by many animal protocols. 

Unless done pre-operatively, without an accidental break in registration during a procedure, this 

registration method is not feasible, and a technique yielding similar accuracy is required. 

2.4.2 One-Step Registration 

 A direct ultrasound-to-robotic workspace registration technique has been developed by 

visually localizing the lumen of the needle in ultrasound while moving the robot to a number of 

predefined positions (fiducials) within the ultrasound FOV (Figure 20). Some criticisms of direct 

needle localization in ultrasound versus in CT, as in our first registration technique, include: 1) CT 

has a higher resolution than ultrasound when radiation dose is not a consideration. 2) Ultrasound 

images are anisotropic while CT’s are isotropic. 3) In ultrasound imaging of needles, there are a 

variety of artifacts, such as reflection, reverberation, and side-lobe artifacts, which may act as a 

source of error when localizing the needle lumen. 

 An experiment was designed to determine the average error introduced by using a 

registration technique which relies on the ability to accurately and repeatedly localize a needle’s 

lumen in ultrasound. A phantom was constructed to contain a pattern of 8 fiducial beads in the 

inner corners of a small box, and 3 target beads at the centre of the fiducial arrangement. A needle 

tip was also placed as the 4th target. The phantom was scanned once in micro-CT (isotropic 20 µm 

voxel size), and ten times in micro-ultrasound. Registration was performed using the fiducial beads 

as the common point-set between each image. It was found, using a Mann-Whitney rank-sum test, 
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that the TRE calculated using target beads was significantly lower (p < 0.001) than the TRE of the 

needle lumen (Figure 19). The mean difference in TRE between the target beads and the needle 

lumen was ~ 75 µm. This can be interpreted as saying that localization of the needle lumen in high-

frequency ultrasound (the intended image-guidance modality) introduces an additional ~ 75 µm 

error compared to micro-CT (our gold standard for fiducial localization). This additional error was 

deemed acceptable and justified a change in registration technique from a cumbersome two-step 

registration to a faster one-step direct ultrasound-to-robotic-workspace registration.  

         

Figure 19: Cross-sectional view of 27 gauge needle, N, and 400 µm tungsten bead, B, scanned in 

(a) high-frequency ultrasound and (b) micro-CT. A phantom was constructed to determine the 

error introduced by ultrasound artifacts in localizing a needle lumen in ultrasound versus CT. Ten 

ultrasound images of the phantom were registered to its micro-CT scan and a Mann-Whitney rank-

sum test (c) showed that there is a significant increase (p < 0.001) in error when localizing a lumen 

in ultrasound versus fiducial beads (by ~ 75 µm). 

The one-step technique was chosen to register the robot to a 40 MHz linear array ultrasound 

transducer. Using its 3D stages, the robot would move its needle tip to 4 predefined fiducial 

positions within the field of view of the ultrasound image (Figure 20). This was done while the 

needle was oriented parallel to the transducer and immersed in ultrasound coupling gel within a 

plastic box. 4 fiducial positons were chosen out of simplicity, although adding more would likely 

decrease the registration error [45]. Over ten rigid-body registration trials, an FRE and TRE of 113 

± 105 μm and 121 ± 52 μm were found, respectively. Target positions were chosen at the centre 
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of the fiducial arrangement, which was also the focus of the ultrasound image where a target of 

interest would likely be positioned during a procedure. The small difference between FRE and 

TRE was likely attributed to the landmark arrangement. This procedure took 25 minutes on 

average and yielded results comparable to that of the much more tedious two-step registration. At 

this stage, a registration technique appropriate for the workflow requirements of the intended 

application had been developed, and a method to validate the targeting accuracy of ultrasound-

guided robotic injections needed to be designed.   

 

Figure 20: The robot stages are used to move the needle tip to multiple positions in the 3D 

ultrasound field of view. At each point, the needle tip’s lumen centre is localized to collect a 

fiducial point in ultrasound, while also recording the stage coordinates. Eventually, a common 

point set is obtained to perform a rigid-body point-based registration. 
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3 Targeting Accuracy Experiments 

 Various procedures to quantify the ultrasound-guided needle-positioning robot’s accuracy 

were designed. Six of these procedures are reviewed in the following sections. The most practical 

validation technique (Section 3.4) was chosen to give end-users the ability to easily assure the 

quality of the device intermittently throughout their research studies. The chosen approach was 

also deemed the least likely to introduce intrinsic error to the device’s positioning accuracy 

measurement. 

3.1 Air-Track Intersection Targeting Phantom 

   

Figure 21: (a) Solidworks model of air-track intersection targeting phantom. (b) Micro-CT slice 

of targeting phantom with pixel intensities negated. Faint white lines indicate grid pattern of 100 

µm ⌀ air channels. (c) Single side-view slice of targeting phantom in micro-CT (negated). Poor 
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contrast between the air channels and surrounding agar mixture prevented from accurate 

localization of an intersection target.  (d) Single ultrasound frame depicting a typical intersection 

of air-channels for targeting experiments. (e) Rendering of 3D ultrasound image of targeting 

phantom. Compared to micro-CT, ultrasound volumes of the phantom contain enough contrast to 

localize a target accurately and repeatedly. 

A targeting phantom was designed and fabricated to contain physical targets to be 

visualized in ultrasound and validated in micro-CT. This design was based on the first-generation 

ultrasound-guided robotic device developed by Waspe et al. [29]. The phantom was constructed to 

have a grid pattern of intersecting air channels. Before pouring the agar tissue-mimicking material 

in this phantom container, a set of six 100 µm diameter microfilament tubes were intertwined to 

create 9 intersections (Figure 21 (a)). Once the poured agar had cooled, the tubes were removed 

to reveal the air tracks. Each intersection was regarded as a 100 x 200 µm oval target that could be 

used as a target of interest in an ultrasound-guided injection. In ultrasound, these tracks are easily 

detected (Figure 21 (d) and (e)); however, when scanned in CT, there is not enough contrast 

between the tracks and the surrounding tissue-mimicking material to reliably localize the targets 

(Figure 21 (b) and (c)). The experiment protocol involved localizing the intersection target in 

ultrasound, instructing the robot to position its RCM at the point of interest, driving the needle tip 

to the RCM point within the phantom, and injecting a barium contrast agent as the robot retracts 

the needle from the phantom. The contrast-enhanced needle track would be segmented from a 

micro-CT image of the phantom, and the perpendicular distance would be calculated between the 

target’s centroid and the track’s line of best fit (Figure 22). This protocol was adapted from Waspe 

et al. [38].  

There are some limitations to this approach. First off, this technique provided no sense of 

depth as the injected contrast agent would leak into air channels and diffuse slightly into the 

surrounding agar itself. Secondly, the procedure was time dependent as the contrast agent would 

slowly diffuse into the surrounding agar, making it difficult to segment the needle track. There is 

also no reliable method to inject the barium contrast agent during needle withdrawal at a constant 

rate unless medical tubing and a syringe pump are used, which are not compatible with the 

Hamilton syringe used in the intended application. 
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Figure 22: Micro-CT image acquired after injection of barium into air-track intersection targets 

showing estimation of needle targeting errors. (Adapted from Waspe et al. [38]). 

3.2 Physical Micro-CT Validation Markers 

Rather than relying on the injection of a contrast agent for micro-CT validation of a 

targeting experiment, the use of physical markers was investigated. In the simplest case, a bead 

could be deposited as a marker to indicate the exact position of needle tip post-injection. This 

technique could not be used due to the small needle gauge being used (30 G, 160 μm interior and 

315 μm exterior diameter). Miniature certified spherical beads of appropriate CT-compatible 

material choice could not be found at a size below 200 μm. Instead, two types of markers were 

used: zirconium oxide beads (2411107, Pacific Star, Houston, TX) and tungsten powder (10402, 

Alfa Aesar, Ward Hill, MA). Zirconium oxide is a ceramic biomaterial that is being researched as 

a replacement for titanium dental implants [59]. It has a high Hounsfield unit (HU) of 17,000, 

while tissue is typically between 100-300 HU. Injecting these small particles into a targeting 

experiment phantom would leave a small cluster behind. A region of interest would be specified 

by a user and a threshold-based segmentation could then be performed in MicroView. The 

segmented volume’s centroid would be determined in MATLAB to estimate the correct position 

the inserted needle reached, and then that coordinate is compared to the intended target of interest.  

Similarly, tungsten powder of 12 μm ø was tested as a physical marker. Incorporated into an agar 

mixture, this powder can be used in conjunction with 3D printing to create a casting of a biological 

structure, such as a liver or kidney, that is imaged in CT as a phantom [60]. In both cases, the CT-

contrast physical markers were difficult to use in phantom injections. Despite their small size, the 
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flow of the markers through a 30G needle could not be controlled. The zirconium oxide markers 

and tungsten powder would rarely fit through the 160 μm inner diameter of a cannula because they 

tended to clump up in the syringe itself. 

 Due to the small needle gauge being used for the intended preclinical application, an 

approach similar to that of brachytherapy, where pellets are loaded into a large needle and 

deposited after injection, was not feasible. However, a similar technique was investigated. An 

adapter and larger needle bushing were designed to attach to the Hamilton syringe. Several 2mm 

Ø steel posts were sharpened to create pellets that may be loaded into the syringe (Figure 23). The 

guided injection would be performed by driving the needle into a phantom as usual. Upon 

retraction, the Hamilton syringe’s plunger would be physically fixed such that as the syringe is 

retracted by the step motor, the plunger pushes the stack of needle pellets forwards, allowing the 

outermost pellet to be deposited at its driven position. In micro-CT these pellet could easily be 

segmented due to the high contrast between steel and air in the image; the pellet tip would then be 

localized manually. Unfortunately, this approach was not taken as 3D printing did not produce an 

adapter and bushing rigid enough for this application. Machining resources were also necessary to 

create the fine-point conical pellets. Due to the complexity of the design, manufacturing cost, and 

several potential sources of error associated with using physical markers for targeting validation 

(discussed shortly), this approach was not used. 

 

Figure 23: Solidworks model of Hamilton syringe adapted to deposit concentrically sharpened 

steel pellets. Design was based on ‘stacking pencil’. 
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Figure 24: (a) Solidworks model of plastic sheath and silver crimp marker fitted onto a needle. 

(b) Micro-CT isosurface of silver crimp segmented in MicroView. (c) Transparent Solidworks 

view of sheath and crimp marker on a needle. The sheath is 3D printed such that the needle tip is 

placed roughly at the centroid of the surrounding silver crimp. 

Another physical validation CT marker designed involved a 3D printed barbed plastic 

sheath covering the robot-mounted needle (Figure 24).  The sheath was tightly fitted over the tip 

of a conical 30G needle. A 1.35 mm long silver crimp, commonly used in jewelry making, was 

fixed onto the shaft of the sheath such that its centroid was located at the needle tip’s position. 

During a targeting phantom experiment, the sheath would be inserted into the tissue-mimicking 

material using the robot’s driver. During withdrawal, the barbs of the sheath should allow for the 

ejection of the sheath at its driven position. In micro-CT, the crimp fixed onto the shaft of the 

sheath should indicate where the RCM-calibrated needle tip was located during the ultrasound-

guided robotic injection. A simple threshold-based segmentation was used in order to determine 

the crimp centroid.  

Overall, this validation technique was simple and straightforward, although the fabrication 

proved otherwise. The durability of the 3D-printed sheaths at such a small size was low because 

they were sometimes brittle. Furthermore, the support material inherently bound to a freshly 
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printed part was difficult to completely clean off due to the small size of the part. Stratasys claims 

the resolution of their Objet 30 Pro printer to be 30 x 30 x 40 μm in the XYZ [61]; the Z resolution 

was heavily relied upon for accurate placement of the needle tip and crimp centroid at the same 

position. However, there are several potential sources of error when using a physical marker for a 

validation experiment. In construction of the barbed sheath, the crimp may have been placed out 

of position when fixing it manually using adhesives (on the order of tens or hundreds of microns). 

When transferring a targeting phantom from a procedure to a micro-CT bore, it is possible to knock 

a marker accidentally. Also, over ~ 2 hours of being exposed to dry air, the tissue mimicking 

phantom begins to shrink due to the evaporation of the water it contains. While not troublesome 

for clinical testing, in the pre-clinical setting, when validating the accuracy of a device specified 

to perform within 500 μm error, the shifting of a physical target due to shrinking of the agar 

material over several hours during a scan may lead to insufficiently accurate results in defence of 

the device’s accuracy. 

3.3 Use of Contrast Agents for Micro-CT Validation 

 
 

Figure 25: (a) Micro-CT image of agar phantom enhanced with iodine contrast agent. A 30 G 

needle was used to pierce its surface. (b) Micro-CT image of iodine-enhanced phantom pierced 

with 18 G needle. This technique could be used to localize needle-track tips in micro-CT for 

clinical applications, but not preclinical. (c) Anechoic iodine-agar phantom in ultrasound. (d) 

Tungsten-agar phantom in high-frequency ultrasound. 
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CT contrast-enhanced phantoms were also developed to view injection tracks in targeting 

experiments. An organically-bound iodine radiopaque contrast medium (DIN 01904914, 

Omnipaque 300, Markham, ON) was mixed with agar, glucose, and water to create a contrast-

enhanced phantom. The addition of this contrast agent to the agar mixture did not affect ultrasound 

imaging (Figure 25 (c)). The needle gauges used for the intended preclinical application, however, 

produced tracks that were still not easily detectable in micro-CT (Figure 25 (a)) in comparison to 

clinical-gauge needles (Figure 25 (b)). The FLE found when localizing the track tips observed in 

micro-CT were compared to those found using high-frequency ultrasound as the visualization tool 

(discussed in Section 3.4). The FLE for the tip of a preclinical needle track was significantly lower 

(p < 0.0001) using ultrasound than micro-CT (Figure 26). 

              

Figure 26: Mean needle-track endpoint FLE in ultrasound and CT for different needle gauges. 

(Nonparametric one-way ANOVA, Krustal-Wallis, multiple comparisons, *: p < 0.05, ****: p < 

0.0001, error bars denote standard deviation of 10 trials). 

A similar approach was taken by mixing tungsten powder (10402, Alfa Aesar, Ward Hill, 

MA) into phantoms instead. It was found that at the high imaging resolution of preclinical CT and 

ultrasound scanners, the 12 μm tungsten particles caused highly granular texture of the tissue-

mimcking material (Figure 25 (d)) that could easily confuse an operator when localizing targets 

in such a phantom. 
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The development of contrast-enhanced phantoms was abandoned; however, the idea of 

observing the actual track left behind from an injection was much more appealing than depositing 

a physical marker which may not accurately represent the position of needle tip resulting from an 

ultrasound-guided injection. The injection of barium, as a contrast agent, into the void generated 

by the needle track within the phantom brought on diffusion issues of the agent into the 

surrounding tissue due to its water-solubility. A Microfil® silicone-rubber compound containing 

lead (MV-122, Flow Tech, Carver, MA) was also tested in phantoms (Figure 27). This compound 

is typically used in non-surviving animals to observe their vascular network structure. It is prepares 

as a liquid and slowly solidifies with time over several hours post-injection. This agent did not 

suffer from diffusion issues, however, like other liquid contrast agents, there was a consistent 

failure to completely fill a needle track over several trials. This was likely due to 1) the tendency 

of the track void to collapse as the needle is retracted, squeezing out the contrast agent, and 2) the 

surface tension of the liquid agent injected into the track to that pooled on the top of the phantom. 

          

Figure 27: Micro-CT image of Microfil ® contrast agent used in tissue-mimicking phantoms to 

reveal needle tracks. 

3.4 High-Frequency Ultrasound for Validation of Needle 

Tracks in Tissue-Mimicking Phantoms 

A 3D ultrasound image with 40 x 80 x 180 μm3 resolution acquired using the Vevo 2100 

scanner provided acceptable visualization of a needle track in a tissue-mimicking phantom. The 

localization of needle tracks could be used to validate the targeting accuracy of an injection into 

phantoms. To investigate the validity of this technique in adequately representing the needle 

position within an agar phantom, ten injections were performed in a featureless tissue-mimicking 

phantom. In these experiments, the needles were set in-plane and parallel to the transducer. Fully 

inserted into the phantom, the needle tip position (Figure 28 (a)) would be localized, yielding an 
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FLE of 37 ± 14 μm (mean ± standard deviation). Once removed from the fixed phantom, another 

3D ultrasound image would be acquired and the track tip positions (Figure 28 (b)) were localized 

(FLE = 57 ± 35 μm). For each FLE calculation, a single feature (needle or track tip) was localized 

ten times within one image. To remove operator bias, the image was closed and reloaded in 

between localizations. The error between the localized needle tips and track tips was 251 ± 76 μm. 

The magnitude of impact this track-needle error had on the final targeting accuracy results of the 

manual and robotic injections is discussed in Section 3.5. 

     
 

Figure 28: (a) Ultrasound frames of 30G needle inserted into a tissue-mimicking phantom. (b) 

Needle being removed from phantom, leaving a distinct track that may be localized to estimate 

where the needle tip was positioned. The Euclidean distance between the needle tip localization 

and the track tip is the ‘Track-Needle Error’. Ultrasound cine loop of this procedure indicated no 

deformation of the tracks or surrounding phantom material. 

     

Figure 29: Steel (a) and 3D-printed plastic (b) needles inserted into an agar phantom. Plastic 

needles appear to result in slightly less artifacts; however, this did not improve needle-tip 

localization.  
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Ultrasound visualization of metal needles is plagued by various artifacts; namely 

reflections and reverberations (Section 1.5). The high amplitude reflections tend to overcome 

apodization leading to apparent side lobe artifacts (see Figure 8 for example of side lobes). These 

artifacts make it difficult for an operator to determine where the correct position of a needle tip is 

within a 3D volume. It was believed that the needle tracks themselves were a better representation 

of the true injection position than when localizing a metal needle. In an effort to examine the degree 

of influence metal artifacts had in the offset between needle and track tip localization, 3D-printed 

replicas of the 30G needles were made (Figure 30). They were designed to have a 317 μm diameter 

with a conical tip, and were connected to an adapter hub to fix onto the Hamilton syringe used for 

all injection experiments in this thesis. Qualitatively, the ultrasound images of the plastic needles 

appear to have only slightly less artifacts than images of the stainless needles (Figure 29). A 

nonparametric one-way ANOVA (Kruskal-Wallis) was used to compare the FLE of needle tracks, 

metal needles, and plastic needles within an otherwise anechoic agar phantom. No significant 

difference (p = 0.3241) was found between each FLE (Figure 31 (a)). When comparing the error 

associated with needle tip localizations, there was no significant difference (p = 0.9873) between 

plastic and metal needles (Figure 31 (b)). So the slight reduction in reverberation artifacts using a 

plastic needle is not sufficient to improve localization of the needle tip. Therefore, the constraint 

of using standard stainless steel needles imposed by the end user does not appear to have 

substantially affected the validity of the robot-versus-manual-injector experiment (Section 3.5). 

Use of the methods reviewed in the thesis introduction to mitigate needle artifacts, such as beam 

steering or echogenic needles (Figure 3 (c) and (d)), probably would not have altered the 

conclusions of this project. 

            

Figure 30: (a) Image of 3D printed plastic needle (left) next to 30G steel needle (right). (b) 

Solidworks wireframe schematic of plastic needle. 
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Figure 31: (a) Boxplot depicting the FLE estimate from localizing metal needles, plastic needles, 

and needle tracks in ultrasound. A nonparametric one-way ANOVA (Kruskal-Wallis) found no 

significant difference (p = 0.3241) between each FLE. (b) Boxplot depicting the track-needle 

errors found when using both metal and 3D-printed plastic needles. A nonparametric Mann-

Whitney test found no significant difference (p = 0.9873) between the track-metal needle and 

track-plastic needle errors. 

3.5 Targeting Accuracy of Ultrasound-Guided Robot 

Versus VisualSonics Micromanipulator 

A targeting phantom was designed as a 3D printed box containing an agar material. An 

array of cones lay 4 mm beneath the top surface of the agar. The vertices of these cones were 

localized in ultrasound and the midpoint between two adjacent points was considered as the virtual 

target (Figure 32) at which the robot was commanded to place its needle tip. The position that the 

robot guided the needle toward was estimated using the needle track left behind from each 

injection. 

An ultrasound-guided robot injection trial consisted of localizing ten of these virtual targets 

in a phantom. An FLE of 39 ± 16 μm was determined by localizing a single virtual target 120 times 

while ensuring independent trials by reloading the image within the Vevo 2100 software each time. 

Over ten ultrasound-guided robot-injection trials, a mean ± standard deviation targeting accuracy 

Track-Needle Errors 
  
  
  
  
E

rr
o
r 

(m
m

) 
Track vs Metal and Plastic Needle 

FLE 

  
  
  
  
E

rr
o
r 

(m
m

) 

(a)                (b) 



50 
 

of 285 ± 94 μm was found. This result was comparable to the accuracy of the micro-CT guided 

device which achieved 149 ± 41 μm [30]. 

 
 

Figure 32: Solidwoks model (a) and ultrasound image (b) of targeting phantom. The vertex of 

each cone is localized to determine the midpoint virtual target for needle placement. 

 

Figure 33: Ultrasound image of a lymph node located within the mammary fat pad of a mouse. 

The cross-sectional inner-diameter measurements of 0.885 mm × 1.714 mm indicate the size and 

position of the lymph nodes. A 30 gauge needle on the left-hand side of the image has been 

localized within the VisualSonics software, generating an estimated path when driven forward into 

the lymph node. In this example image, this was the maximum advancement of the needle just 

prior to the manual manipulator contacting the transducer’s side.  

The accuracy of the ultrasound-guided robot and manual needle manipulator (Figure 10) 

provided by VisualSonics were compared. When performing image-guided injections using the 
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manipulator, the needle must be delicately adjusted in position such that it is in-plane with the 

image, parallel to the transducer. For such an intervention, there is not much space within the field 

of view to contain both the needle and an object of interest (Figure 33). The manipulator contains 

four degrees of freedom: XYZ translation and a rotation to adjust a needle’s angle of approach. 

Since the Hamilton syringe is clamped at its base when using the manipulator, there is a 

considerable distance ( > 15 cm) between the needle tip and the pivot point about which a rotational 

adjustment is made during initial setup for an intervention. For this reason, when adjusting the 

needle’s angle of approach, the height and depth of the needle tip must also be adjusted. This 

procedure can be tedious and tiring as the operator must perform this fine-tuning in several small 

steps, due to the limited ultrasound-image field of view within which the needle must remain, 

while monitoring the ultrasound scanner’s screen located at least 90º away from the two-handed 

calibration task located within a biosafety cabinet to permit experiments with immunodeficient 

mice.  

                               

Figure 34: A Mann-Whitney test yielded a significant difference (p = 0.0029) between the 

targeting accuracy of robot and manual injections into tissue-mimicking phantoms. Their means 

(bars) and standard deviations (error bars) are 285 ± 94 μm and 508 ± 166 μm, respectively. Dotted 

line denotes design goal of 0.5 mm maximum targeting error.  
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Once an appropriate needle orientation is found, a line is drawn using the Vevo 2100 

software by selecting two points along the length of the needle observed in the ultrasound image. 

The software then extends this line past the length of the needle to give the user an estimated needle 

trajectory.  Once the tedious task of further adjusting the needle is completed, such that its 

trajectory intersects with the target position within the phantom, the needle is manually driven 

using the manipulator. The driving depth suffers from a lot of operator dependence as the 

interpretation of the real-time image feedback during the injection may vary. Over ten trials, using 

the same needle track localization technique as with the robotic injections, a targeting accuracy of 

508 ± 166 μm was found when using the VisualSonics needle manipulator for injections into 

tissue-mimicking phantoms. A nonparametric Mann-Whitney test was performed comparing the 

targeting accuracy of the robotic and manual injections and a significant difference (p = 0.00290) 

was found between the two (Figure 34). 

         

Figure 35: Boxplot depicting the error found when comparing the localization coordinate of a 

needle tip in ultrasound during an injection into a phantom with the localization of the tip of the 

track left behind after removal of the needle from the phantom; the manual injection accuracy; and 

the robotic-aided injection accuracy. A nonparametric one-way ANOVA (Kruskal-Wallis) showed 

a significant difference between the track-needle error and manual injections, but not with robotic 

injections. (*: p < 0.05 **: p < 0.01, error bars denote standard deviation of 10 trials). 

In a nonparametric one-way ANOVA (Kruskal-Wallis), the error between the localization 

of a metal needle and the track it leaves behind (Figure 28) in an agar phantom was compared to 
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the estimated robot and manual injection targeting accuracies, which relied on needle track 

localization in ultrasound. A significant difference (p < 0.01) was found between this track 

localization error and the manual injection accuracy, but not between the track error and robotic 

injection accuracy (p > 0.05) (Figure 35). This suggests that the error in the validation technique 

of track localization represented a substantial portion of the estimated robotic and manual needle-

targeting errors found.     

3.6 Ultrasound-Guided Robotic and Manual Injections 

Performed on Mice     

All animal procedures performed for this thesis conformed with Canadian Council on 

Animal Care guidelines and were approved by the Western University Animal Use Subcommittee. 

In preparation for an ultrasound-guided injection using VisualSonics’s manual manipulator 

for steady control of the needle handling, a Black-6 (C57/B6) mouse was stripped of its body hair 

in the region of interest using depilation cream (Nair®, Church & Dwight Co., Inc., Princeton, 

NJ). For induction of anaesthesia, 3% isoflurane was used with medical oxygen. 2% isoflurane 

was used for maintenance during pre-procedural preparation, and the mouse was dosed with 4% 

isoflurane during the intervention. A centerline incision was made through the dermal layer 

exposing the abdominal wall cavity. A lateral incision was made at the midline and slightly above 

the groin to create a flap. The skin flap was slowly peeled back as a scalpel was used to dissect the 

connective tissue between the dermal layer and the fat pad (Figure 36). The skin was then pinned 

to an agar pad at approximately the same height as the animal’s profile. Acoustic coupling gel 

(Aquasonic, Parker Laboratories, Fairfield, NJ) was applied at the incision area. The MS-550D 

ultrasound transducer was used to localize the lymph node. Upon aligning the needle in the 

VisualSonics manually actuated positioning device to be in-plane of the image and en route to the 

target (Figure 37), it was driven towards the lymph node manually while the operator used the 

real-time image-feedback to determine how far the bevelled tip needed to be driven to break 

through the soft-tissue wall of the node without accidentally piercing through the structure entirely 

(Figure 38). Once successfully within the target, 25 μL of a tissue marking dye (Triangle 

Biomedical Sciences Inc., Durham, NC), diluted to 5% concentration, was injected into the lymph 

node. Immediately after the injection, the animal was euthanized and the node was excised to 
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determine if the marking dye stained the organ as a supplementary form of confirmation that the 

target was hit. Close examination showed no sign of staining using the maximum dispensing 

volume of the syringe (25μL). It is postulated that using the tissue dye, at 5% concentration, yielded 

insufficient colour contrast to visualize the injection bolus. 

 

Figure 36: (a) Photograph of mouse surgical preparation prior to ultrasound-guided injection. (b) 

Illustration of manual injection setup. The solid black line section indicates the region of incision 

through the dermal layer. The dotted black line indicated where this flap of skin was pinned during 

the injection. The dotted red line indicates the placement of the ultrasound transducer. The needle 

is advanced in-plane to the ultrasound image between the transducer face and the mouse’s body 

towards the lymph node. 
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Figure 37: Photograph of ultrasound-guided manual injection in mouse. The needle is carefully 

positioned between the transducer and the mouse. 

 

Figure 38: Ultrasound frames of VisualSonics’s micro-manipulator manual injection into inguinal 

lymph node located within the mammary fat pad of a mouse (~ 0.8 x 1.3 mm internal diameter). 

When visualising such a small target, it is difficult to make adjustments such that both the target 

and the needle are within the field of view. The needle must be angled appropriately at an 

inclination that allows the syringe to avoid hitting the transducer upon being driven forwards and 

for the target to be reached. In (a), a short length of the cannula is visible to position two points 

(a)                                                                   (b)                                                                        
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(green +) along the shaft to create a projected trajectory (green dashed line). In (b), the needle has 

been driven through the mammary fat pad and the bevelled tip is buried within the lymph node. 

Considerable deformation has taken place, and the initial guess (red ‘x’) as to the required needle 

insertion depth has been overshot by 1.5-2.0 mm. 

An ultrasound-guided robotic injection was performed on a live mouse using the same 

protocol as described above (Figure 39). The one-step registration technique was used to link the 

robotic device’s coordinate system with the ultrasound transducer (see Section 2.4.2). After 

registration was completed, the robot was slid away from the workspace on the railing system. The 

mouse was then prepared and scanned in ultrasound to localize the target lymph node. Once 

localization was completed, the transducer was slid away from the workspace and the robot was 

repositioned for injection. Due to the small needle gauge being used (30G) to inject into such a 

delicate structure, the maximum length of the cannula allowed to extend past the bushing, which 

keeps it in-axis to the RCM point of the robot, was ~ 14 mm. For this reason, the needle could not 

be visualized during an injection by the ultrasound probe for image feedback. Robotic targeting 

accuracy results from phantom experiments were good enough to justifiably say that the robot 

likely placed the needle where the target was pre-operatively selected within the ultrasound image. 

But, as in the case of manual injections, the force applied by the needle tip caused a high degree 

of tissue deformation without piercing the node. Post-injection analysis using ultrasound found no 

break in the lymph node’s outer membrane. 

The mechatronic device currently outperforms the manual actuator in terms of simplifying 

the workflow of an animal injection and in needle placement accuracy, while manual injections 

outperform in efficacy due to real-time image feedback. VisualSonics’s manual manipulator has a 

cumbersome setup procedure. The needle must be aligned in-plane of the ultrasound slice and must 

always be visible in the frame. This is because the guidance ‘tool’ presented in VisualSonics’s 

software package simply involves selecting two points along the cannula visible within the 

ultrasound frame to create a line which is extended across the screen to project the assumed 

trajectory of the needle if driven forward. While it has already been shown that this technique 

yields a larger placement error when compared to that of the robot in tissue-mimicking phantom 

experiments (Section 3.5), it is also very cumbersome, requiring ~ 25 minutes of fine adjustments 

per injection. 
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The robotic lymph-node injections, although unsuccessful in terms of validation, 

demonstrated that the ultrasound-guided mechatronic device developed in this thesis is capable of 

positioning a needle in an anaesthetised, live mouse within the workflow (and protocol) 

requirements of in vivo animal injections. Performing this experiment allowed for the identification 

of design modifications necessary to improve the success of minimally-invasive, robotically-

actuated intranoal injections in mouse cancer models for the study of dendritic-cell cancer 

vaccines.  

                         

Figure 39: (a) Photograph of robotic injection into anaesthetised mouse’s lymph node targeted 

using high-frequency ultrasound as the guidance modality. (b) Close-up of robotic injection. 
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4 Summary, Conclusions, and Future Work 

4.1 Summary and Conclusions 

The purpose of this project was to adapt a micro-CT guided needle positioning robot for 

ultrasound guidance in small animal experiments involving injections into lymph nodes for 

dendritic cell cancer vaccine research. This involved designing specific mechanical adaptations, 

an image-to-robotic-workspace registration technique with reasonable accuracy and workflow, 

and an appropriate validation method. 

4.1.1 Mechanical Hardware 

 The micro-CT guided injection robot by Bax et al. [30] is an RCM design with 6 degrees 

of freedom: pitch, roll, XYZ, and needle driving. An adaptation of this device to ultrasound 

guidance allowed for fewer spatial constraints as it does not have to fit within the bore of a micro-

CT scanner. However, certain aspects of the device had to be redesigned to allow for smooth 

operation during an intranodal injection in a mouse. For example, the immunology collaborators 

strictly specified the use of a near-zero dead-space Hamilton syringe with 30G cannula for 

injections. This is to avoid the unacceptable loss of precious dendritic cells if delivered through 

medical tubing. In comparison to the original needle-and-tubing end-effector design of the CT 

robot, the Hamilton syringe was much too large. One joint of the spherical linkage design of the 

robot was hollowed out to compensate for the Hamilton syringe, and the needle driver assembly 

was mounted external to the linkage mechanism in a fashion that would not have fit the 

requirements of the CT-compatible device.  

The ultrasound-guided robot was adapted to operate on a railing system provided by 

VisualSonics. The railing system serves a rigid structure on which the robot, mouse stage, and 

transducer is fixed. During a guided intervention, the transducer and robot cannot both fit within 

the area of interest within the workspace. Therefore, the robot and transducer must take turns and 

be slid in and out of the workspace as appropriate. This approach may serve as a source of error to 

the ultrasound-device registration. In order to determine the extent of error introduced, an 

experiment was performed in which a water-based fiducial-bead phantom was 3D scanned 6 times 

with the transducer fixed in one position, and then another 6 times after sliding the transducer away 
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from, and repositioning it to, the region of interest. The localization error found from the control 

set was 44 ± 19 μm while the cumulative error found by localizing beads in images taken after 

repositioning the transducer was 64 ± 26 μm. A nonparametric Mann-Whitney test found these 

results to be statistically different, but an estimated repositioning error of 20 ± 18 μm seemed 

marginal enough to decide against the design and fabrication of a more robust railing system for 

ultrasound-guided interventions. 

4.1.2 Calibration  

Bax et al. [30] developed two techniques to RCM calibrate a needle on the robotic device. 

Camera calibrations were more accurate, yielding a 12.5 μm error on average. While using a CCD 

camera for RCM calibration is tedious and time-consuming, a faster approach was also designed 

such that a delrin block fixture, precisely fixed onto the robot base through high-tolerance 

machining and assembly techniques, would provide a physical landmark indicating the RCM 

position. Through trial and error, the needle tip is adjusted gradually towards the top surface of the 

delrin block until a thin steel shim (25.4 μm thickness), being slid on the delrin surface, is caught 

by the sharp needle tip. This method yielded an error of 75 μm and 12 μm in the robot’s roll and 

pitch, respectively. The RCM calibration on the ultrasound-guided device implemented a similar 

approach; however, rather than relying on a shim to detect correct calibration, a conductive steel 

plate was used in combination with a multimeter linking the needle and plate. Quantitative 

validation of this technique was not measured; results comparable to the second approach by Bax 

et al. are expected. 

In bevelled needles, there is an offset between the needle tip and centre of the lumen, where 

substances are ejected from the syringe. Using a 30G (292 μm outer diameter) needle specified to 

have a sharp 12° angle, there is an estimated 687 μm offset between the RCM of the robot and the 

lumen centre if uncorrected. Five bevelled needles were scanned in micro-CT. The images were 

analyzed and an offset of 666 ± 32 μm was found. Two techniques were developed to account for 

this offset when using a bevelled needle on the robotic device. The first fixture-based technique 

involved calibrating a conical needle on the robot beforehand (using previously mentioned 

techniques), then mounting a delrin fixture onto the end-effector of the robot. A brass calibration 

tool is tightly slid into a slot of the fixture until physical contact between its end face “A” and the 
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conical needle is established using a multimeter. The position of the brass piece is marked using a 

dowel pin. Flipping the brass piece over to its “B” side and inserting it into the delrin fixture until 

it reaches the dowel-pin marker allows for an offset adjustment as the difference between side A 

and B’s spatial relationship to their corresponding dowel holes is equal to the offset of 666 μm. 

Using this brass and delrin assembly, a beveled needle can now be mounted onto the robot and 

positioned such that its lumen centre is placed at the RCM. A second technique for correcting this 

offset involves using the metal-plate RCM calibration technique used for conical needle, while 

reducing the thickness of the metal plate to account for the offset. This technique relies on 

estimation because the robot’s pitch axis cannot orient the needle such that it is perfectly normal 

to the steel plate for calibration, and a bevelled needle’s tip is offset from its centre axis; however, 

it is simpler and was the preferred calibration technique for all robot injection experiments in this 

thesis. 

4.1.3 Registration 

 Initially, a two-step rigid-registration technique was designed that relied on a phantom 

containing fiducial markers that could be localized in high-frequency ultrasound, micro-CT, and 

using the robot’s positioning stages in combination with an electrical-contact probe.  The overall 

FRE and TRE of this registration were 146.23 ± 73.86 µm and 135.38 ± 47.83 µm, respectively. 

These results, in comparison to the 500 µm needle-positioning accuracy goal of the robot, were 

acceptable; although, the procedure itself contained workflow issues. A revision to the two-step 

registration phantom was developed. Electrical pad fiducials were separated from liquid ultrasound 

coupling agents, and the all fiducials were arranged in a non-coplanar pattern to reduce registration 

error [45]. Overall, this two-step technique was not feasible due to the time constraints of 

preclinical workflow. 

A one-way registration technique, directly linking an ultrasound image to the robotic 

workspace, simplifies the initial setup workflow; however, the artifacts produced by a metal needle 

in ultrasound served as a potential source of error. To investigate this error, a phantom was 

constructed containing ultrasound/CT-compatible fiducials and a single metal needle. By 

registering an ultrasound and CT volume of the phantom, it was found that the needle was localized 

in ultrasound with an estimated error of ~ 75 µm compared to its position as depicted in the gold-
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standard 20 µm isotropic voxel micro-CT scan. This additional error was deemed acceptable and 

justified a change in registration technique from a cumbersome two-step registration to a faster 

one-step direct ultrasound-to-robotic-workspace registration. By choosing 4 fiducial positions to 

move the robot-mounted needle tip within the ultrasound field of view, the 3D stages of the 

mechatronic device were rigidly registered to yield an FRE and TRE of 113 ± 105 μm and 121 

±52 μm, respectively, over ten trials. 

4.1.4 Targeting Experiments 

 Several techniques were developed in pursuit of an appropriate validation technique to 

quantify the robot’s needle-positioning accuracy. The final approach used was chosen based on 

several factors, including: fabrication feasibility, cost, and inherent error. 

A targeting phantom was designed containing agar within which 100 µm ⌀ microfilament 

tubes were intertwined to create 9 intersections (Figure 21). Each intersection could serve as a 100 

x 200 µm oval target for an ultrasound-guided robotic injection. To validate the accuracy of an 

injection in micro-CT, a barium contrast agent could be injected to enhance the track left behind 

from the piercing cannula. A line of best fit could then be used to determine the minimum 

perpendicular distance between the injection profile and the intended target, as done by Waspe et 

al [38]. This method could not provide a Euclidean distance error between the target and injected 

needle tip, and the CT contrast agent tended to diffuse throughout its agar surroundings during a 

lengthy micro-CT scan. 

 Due to the small inner diameter of a 30G needle (160 μm), depositing a CT compatible 

physical marker during a targeting experiment injection was difficult. Miniature certified spherical 

beads of appropriate CT-compatible material could not be found at a size below 200 μm; however, 

two substitutes were found. With a Hounsfield unit of 17,000 HU, zirconium oxide beads, typically 

used in dental implants, could be easily segmented in a micro-CT image of a post-injection 

targeting phantom to validate the positioning accuracy of the guided robot. Tungsten powder was 

also tested as a physical marker for these tests. Overall, these micro-bead markers could not be 

used reliably for these injections as their flow through the syringe could not be controlled and they 

tended to clump. 
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 An adapter was designed and 3D printed to modify the Hamilton syringe such that it would 

be capable of depositing conically sharpened steel rod pellets (Figure 23), similar to the approach 

taken in brachytherapy. While depositing a steel pellet into a tissue-mimicking phantom during a 

targeting experiment would allow for simple threshold-based segmentation in a micro-CT image 

to validate its position within the phantom relative to the intended target, 3D printed components 

and assemblies did not meet the tolerance requirements while machining the product was not time- 

or cost-efficient. Furthermore, using pellets as a substitute for a preclinical needle for injections 

would not accurately represent the needle profile expected during an animal procedure. 

 A 3D printed barbed sheath was designed to be fitted onto a 30G needle as a physical 

marker for targeting experiments (Figure 24 (a)). A silver crimp ring was attached to each sheath, 

and served as a CT compatible marker which could be easily segmented from a volume by 

thresholding (Figure 24 (b)). During an injection, the sheath would be mounted onto the needle 

such that the centroid of the silver crimp ring coincides with the needle tip, calibrated at the robot’s 

RCM (Figure 24 (c)). During a guided injection, the sheath is driven into a tissue-mimicking 

phantom, and left behind upon needle withdrawal. A post-injection micro-CT scan could be used 

to reveal the needle’s tip position within the agar phantom by segmenting the highly attenuating 

crimp ring and determining its centroid in Matlab. This physical marker design was abandoned 

due to concerns related to the brittleness of the sheaths being rapidly prototyped, as well as the 

resolution of the 3D printer itself since the accuracy of the CT validation technique heavily relied 

upon the positioning of the crimp ring and the mounting of the barbed sheath onto a needle. 

Adding an organically-bound iodine radiopaque contrast medium to an agar mixture can 

create tissue mimicking phantoms that reveal needle tracks with good contrast in micro-CT. This 

approach works well for clinically relevant needle gauges (Figure 25 (b)); however, in the case of 

preclinical gauges, the track, specifically its tip, does not exhibit enough contrast for reliable 

localization (Figure 25 (a)). The FLE calculated when localizing needle tracks in a micro-CT scan 

of a contrast-enhanced agar phantom was significantly lower (p < 0.05) for injections using clinical 

needles versus preclinical needles. Furthermore, preclinical micro-CT needle tracks have a 

significantly higher (p < 0.0001) FLE than that of preclinical needle tracks imaged using high 

frequency ultrasound (Figure 26).  
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The injection of a contrast agent into a plain agar phantom to better visualize the track left 

behind is an alternative to this design which faces its own set of caveats: 1) a needle track formed 

from piercing a tissue-mimicking phantom with a preclinical needle tends to collapse and squeeze 

out any contrast agent that may be deposited during the procedure; 2) pooling of contrast fluid on 

the pierced surface of the agar phantom tends to draw out fluids deposited into the track through 

surface tension. These issues were not only observed when injecting medical-grade iodine contrast 

agents into phantoms, but also when using silicone-rubber based contrast compounds which 

solidify post-injection, such as Microfil®. 

A set of 10 needles were injected into a tissue-mimicking phantom and imaged using 

micro-ultrasound (Figure 29 (a)). While both the phantom and the transducer were fixed, the 

needles were carefully removed from the phantom (Figure 29 (b)). The FLEs from localizing a 

needle and its track in ultrasound are 37 ± 14 μm and 57 ± 35 μm, respectively (no significant 

difference). The error between each needle and its corresponding track it creates upon removal 

(“track-needle error”) was found to be 251 ± 76 μm. A plastic replica of the 30G needle used in 

this project’s application was 3D printed (Figure 30) in an attempt to reduce the influence of 

ultrasound needle artifacts to more accurately determine the error associated with relying on needle 

track tip localization as an estimate of the metal needle’s true tip position at the endpoint of a 

targeted injection. The plastic track-needle error found over ten injections into a plain agar 

phantom was comparable to that of the metal needle-track error determined (Figure 31). Therefore, 

substituting a different end effector for the metal needle would not substantially change the 

estimated targeting accuracy.  

The validation technique chosen to determine the ultrasound-guided robot’s accuracy 

involved visualizing two plastic fiducial cones in a 3D printed tissue-mimicking phantom in 

ultrasound, determining the midpoint of the cone vertices, and performing an injection to that 

target (Figure 32). Post-injection, the track left behind could be visualized using ultrasound, and 

a targeting accuracies of 285 ± 94 μm and 508 ± 166 μm (Figure 34) were found for the robot and 

VisualSonics manual needle manipulator, respectively. The robot outperformed the manual 

manipulator in needle positioning accuracy as a significant difference was found between the two 

(p < 0.05). It was necessary to determine how strongly the track-needle error, introduced by using 

this validation technique, influenced the final robot and manual manipulator targeting accuracy 
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results. In a one-way ANOVA, the track-needle error was compared to the estimated robot and 

manual injection targeting accuracies which relied on needle track localization in ultrasound 

(Figure 35). This track-needle error and the manual injection accuracy were significantly different 

(p < 0.01), but the track-needle error and robotic injection accuracy were not (p > 0.05). This 

suggests that the error in the validation technique of track localization represented a substantial 

portion of both the manual and robotic needle-targeting errors. 

Injections were performed on anaesthetized Black-6 mice using both the developed 

ultrasound-guided robotic device and the VisualSonics micro-manipulator. A centerline incision 

was made through the dermal layer of each mouse to expose the abdominal wall cavity. The 

ultrasound transducer was used to visualize the target lymph node. When using the micro-

manipulator, the needle was positioned in-plane and near parallel to the transducer; while driving 

the needle forwards to pierce the lymph node, the operator monitored the real-time image feedback 

from the ultrasound scanner. Once successfully within the target, 25 μL of a tissue marking dye, 

diluted to 5% concentration, was injected into the lymph node. Immediately after the injection, the 

animal was euthanized and the node was excised to determine if the marking dye stained the organ 

as a supplementary form of confirmation that the target was hit. During robotic injections, the 

ultrasound transducer was momentarily used for target visualization, then removed from the 

workspace to introduce the robot. Using the registration between the robot and transducer, the 

robot was capable of targeting the lymph node. However, without the ability to monitor the 

injection in real time due to a maximum exposed cannula length of 14 mm for this preclinical 

application, validation was not possible. In both manual and robotic injection, no tissue staining 

was observed from the marking dye. 

4.2 Future Work 

4.2.1 Ultrasound-Guided Interventional Platform Modifications 

The VisualSonics railing system serves as a platform to attach a high-frequency ultrasound 

transducer and a needle-driving device. It is important that the system be rigid and withstand 

deflection from outside forces, either accidental or routinely applied within the typical workflow. 

Adapting the presented robotic device to the VisuaSonics railing system, rather than developing a 

custom railing, allows for a reduced cost to the end user, and increases the likelihood of future 
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researchers adopting such a tool. However, there are disadvantages to its use. The material of the 

arm on which the ultrasound probe is fixed has a relatively low stiffness, and the joints have a low 

tolerance, leading to a considerable amount of play, potentially causing an error in the robot-to-

ultrasound registration. Furthermore, the transducer arm of the railing system has no 

counterbalance. Application of the manual locks/breaks, after moving the transducer from one 

position to another, caused the transducer to sway to a degree that is visible to the naked eye. The 

transducer arm, mouse stage, and robot all ran across the railing using plastic plain bearings that 

rely on the surface rubbing contact. This made for the sliding of a component to be quite rough, 

sometimes leading to vibration. The robot itself weighed approximately 50 lbs, making its 

movement across the railing quite a strenuous step for the operator. 

 To ensure the functional accuracy of the overall robotic system, it is paramount to create a 

dedicated railing system to rigidly maintain the accuracy of a robot-to-ultrasound registration. 

High-tolerance joints and a linear ball-bearing railing system should be used to ensure smooth 

transport of the robot or transducer arm (aluminum or steel) from one point to another during a 

procedure. Magnetic hard stops may be used to repeatedly remove and reposition a component to 

a point of reference; such a system was developed by Waspe et al.[29]. This investment into the 

image-guided system to minimize the sources of error when using the robot device in practice will 

be worthy of the time and effort put into designing and fabricating the device to perform with such 

great accuracy and precision. 

4.2.2 Compensation of Tissue Deformation 

Control of needle-tissue interactions is a critical factor in the development of small-animal 

robotic needle-positioning systems. Two options exist to control needle and tissue deflections: 

minimization of the deflections and correction of the remaining deflections. The magnitude of 

needle and tissue deflection can be minimized using several techniques. Studies have suggested 

that high-speed needle insertions can reduce needle deflection and tissue deformation [62], [63]. 

In one variation, needles may be gradually driven, or tapped, towards the target in the tissue at 

high velocity to reduce deformation [64]. To achieve high velocities or tapping motions needle 

drivers may implement high-speed actuators such as spring-loaded mechanisms or pneumatics. 

Deformation can also be reduced by rotation of the needle, in a fashion similar to drilling, during 
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insertion [62], [65]. However, when rotating the needle lower insertion speeds may better reduce 

deformations. Rotation could be accomplished using either a lead screw or torsional spring 

mechanism. Several techniques can also be implemented to correct any needle or tissue 

deformation which does occur. 

Needle deflection can be predicted through simulation [66] or determined experimentally 

for the robotic system in various tissues and needle gauges. The targeting position of the robot 

could be adjusted an amount corresponding to the deflection to cause the needle tip to deflect back 

towards the target. Alternatively, Abolhassani et al. [62] demonstrated that needle deflection can 

be estimated intraoperatively by measuring forces and moments acting on the needle base. The 

needle trajectory can be corrected in real time to adjust for the estimated deflection. Using this 

technique needle deflection error was reduced by 90%. Assuming the technique can be scaled to 

the micron scale of small animal interventions it could be used to significantly reduce the effects 

of needle deflection. A number of promising methods exist that can be incorporated into future 

robotic systems for small animal interventions to reduce the effect of needle and tissue deformation 

on targeting accuracy [62], [66]. 

Pilot injections into the lymph nodes of mice were performed using both VisualSonics’s 

manual actuator and the ultrasound-guided robot developed. In both cases, it was observed that 

tissue deformation was the main issue. This means that when planning an ultrasound-guided 

injection, it is often required to overshoot past the initial planned depth to reach the target. For this 

reason, the outer dermal layer of the mice used in our pilot injections was removed. 

While the ultrasound-guided mechatronic device provides for minimal positioning needle 

placement error (285 ± 94 μm) and efficient workflow, modifications must still be made to 

compensate for tissue deformation when targeting any internal structure of a mouse. Due to the 

delicate nature of intranodal injections in mice, small needle gauges must be used (30 G - 32 G). 

For this reason, a relatively short length of cannula (~ 14 mm) may be extended past the robot’s 

RCM-aligning end-effector bushing. This current setup prevents coincident transducer imaging of 

the lymph node during a robotic injection. In order to compensate for this lack of real-time image 

feedback to monitor tissue deformation, future studies in which a manual syringe manipulator, 

operated with ultrasound image feedback and equipped with a force sensor, may be used to 
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correlate force signals from the sensor with ultrasound observations of a structure (i.e. mouse skin 

layer, lymph node outer membrane, etc.) being pierced. Using this information, force feedback 

may be used as an alternative to image feedback, which must be the case with mouse models being 

injected with small needles gauges. Controlling the depth of needle insertion is paramount to 

dealing with tissue deformation, so the needle driver of the mechatronic device will have to be 

modified accordingly. Alternatively, if a larger animal were used for the intended preclinical 

studies, such as rats, if may be possible to use larger, more rigid needle gauges (23 G – 27 G) 

which can be extended further past the robot’s bushing. Using rigid, longer needles would provide 

a greater opportunity to introduce the ultrasound transducer to the workspace during a procedure 

to provide image feedback without colliding into the robot’s end-effector itself. With support from 

VisualSonics Inc. to allow either live streaming images through an output port on the scanner or 

to modify their software to perform target tracking, it could be possible to enable closed-loop 

guidance using a Vevo 2100 transducer. Tracking the deformation of tissue during an injection 

would allow for optimized depth insertion for a selected needle trajectory.   

An immunology study will be performed on small-animal cancer models to compare the 

migration rate of dendritic cells into the lymph node between two delivery methods. 1) Freehand 

injections will be performed either subcutaneously or more invasively by surgically exposing the 

target of interest and injecting directly into it. 2) Direct intranodal injections will also be performed 

using the image-guided robotic device developed in this thesis. After examining the effectiveness 

of these two delivery methods, the biological efficacy of the cancer vaccine may be evaluated as 

well – although there are a number of biological factors outside the control of the robot that will 

affect the therapeutic efficacy. Post-procedure, the animal will be euthanized and the lymph node 

excised for quantitative histological analysis. The future hypothesis will be that ultrasound-guided 

intranodal injections improve the efficacy of dendritic-cell cancer vaccines over conventional drug 

delivery methods such as subcutaneous or intradermal injections. 

4.2.3 Clinical Translation 

The robotic device should make cancer immunotherapy experiments in mouse models 

more efficient and repeatable. Such preclinical experiments have the potential to improve 

understanding of the factors that influence the effectiveness of DC-based cancer vaccines in human 
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patients. In addition, while lymph node injections in humans may be done manually due to the 

relatively larger size of the targets, our immunology collaborators hypothesize that specific 

subcapsular regions of human lymph nodes should be targeted for cancer vaccine delivery, 

requiring an accuracy comparable to that of the presented device. Based on the current designs and 

techniques developed for animal interventions, a larger scale ultrasound-guided device could 

conceivably be made to aid in such a human application. 

4.3 Conclusion 

 A mechatronic needle positioning device has been adapted for high-frequency ultrasound 

guidance. The device was redesigned from its original CT-guided edition to be easily integrated 

onto a commercially available VisualSonics imaging rail system. Subtle modifications were made 

to ensure simple workflow that allows for live-animal interventions that fall within the maximum 

anaesthesia periods (typically < 1 hour) stated in study protocols. The robot’s remote centre of 

motion calibration technique was modified to account for the offset between a needle’s tip and the 

centre of its lumen, where substances are ejected. A fast one-step robot-to-ultrasound registration 

technique was developed in which, using its 3D stages, the robot would be moved to 4 fiducial 

positions. The needle tip would be localized in the ultrasound image at each position and related 

to the robot’s coordinate system through a rigid registration. Fiducial and target registration errors 

of 113 ± 105 μm and 121 ± 52 μm, respectively, were found for the one-step registration method. 

A validation technique was developed to determine the targeting accuracy of the needle-

positioning robot to a precision sufficient to establish the effectiveness of the system for preclinical 

interventions. Ultrasound-guided injections into a tissue-mimicking phantom revealed a targeting 

accuracy of 285 ± 94 μm for the robot compared to 508 ± 166 μm for a  commercial manually 

actuated injection device. The mean targeting accuracy of the robot therefore exceeds both the 

accuracy of the manually actuated device and the < 500 μm accuracy required for the initial 

intended application of injecting cell-based cancer vaccines into the lymph nodes of mouse cancer 

models.  Pilot injections were performed using the robotic device in live mice to demonstrate the 

feasibility and relative workflow efficiency of the robot versus the manual actuator. 
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