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Abstract 

Superantigens (SAgs) are potent toxins produced by bacteria such as Staphylococcus aureus 

that function to overactivate T cells resulting in massive cytokine production and immune 

activation. Despite decades of research on the structure and function of these proteins, as well 

as their role in severe diseases such as toxic shock syndrome, the question as to why strains 

of S. aureus produce SAgs and the role that they play in the life cycle of these bacteria 

remains unanswered. The contribution of SAgs towards pathogenicity and bacterial survival 

in vivo were assessed using isogenic SAg deletion knockouts in conjunction with SAg-

sensitive humanized transgenic HLA-DR4 mice. Since S. aureus are able to successfully 

colonize human nares in addition to causing infections, the bacterial strains were assessed in 

a model of nasal colonization as well as a model of bacteremia. Compared to wild-type S. 

aureus COL and Newman, the SAg-deletion mutants COL Δseb and Newman Δsea were 

able to establish higher bacterial loads in the nose, suggesting that SAgs are involved in 

regulating bacterial densities during colonization. Thus, SAgs may act as ‘checkpoints’ of 

dissemination from the nose. In contrast, Newman Δsea had reduced counts during 

bacteremia compared to the wild-type strain in a liver-specific phenotype. Staphylococcal 

enterotoxin A (SEA)-expressing S. aureus Newman induced IFN-γ, IL-12 and chemokine 

responses which resulted in increased trafficking of CD11b+Ly6G+ neutrophils into the liver. 

Additionally, wild-type infection resulted in higher numbers of hepatic abscesses containing 

viable bacteria compared to Newman Δsea representing a specialized in vivo niche for S. 

aureus. Thus, the mechanism of pathogenicity was due to increased neutrophil infiltration 

and abscess formation in the liver, as a result of SEA-mediated cytokine and chemokine 

release. Although staphylococcal SAgs appear to play opposing roles in the different models, 

the overall function of these toxins appears to be manipulation of the immune system to 

maintain a niche environment in order to persist and survive. 

Keywords 

Superantigen, Staphylococcus aureus, nasal colonization, bacteremia, infection, neutrophil, T 
cell, abscess, transgenic mouse, enterotoxin, toxic shock, infection 
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1.1 Superantigen overview 

The term ‘superantigen’ (SAg) was originally coined by Marrack and Kappler to describe 

a group of molecules that target T cell receptors (TCR), resulting in massive immune 

activation (1). This mechanism differs from non-specific T cell mitogens (such as 

Concanavalin A), as SAgs are dependent on interactions with the TCR β-chain variable 

domain (Vβ) on T cells, and major histocompatibility complex (MHC) class II molecules 

on antigen presenting cells (APCs) (1-3). The family of SAgs originally included the 

endogenous mouse Minor lymphocyte stimulating antigens and was later expanded to 

include pyrogenic bacterial factors such as staphylococcal enterotoxin B (SEB) (1, 4). 

Microbial genome sequencing projects over the last decade have led to the 

characterization of a large and expanding family of exotoxins that includes many 

genetically and antigenically distinct proteins that possess similar function. SAgs are 

found primarily in the Gram positive bacteria Staphylococcus aureus and Streptococcus 

pyogenes, but are also found in a few other species of β-hemolytic streptococci, 

coagulase negative staphylococci, Mycoplasma arthritidis, Yersinia pseudotuberculosis, 

and Pseudomonas fluorescens. 

1.2 Bacterial superantigens 

1.2.1 Staphylococcus aureus superantigens 

The staphylococcal SAgs include the staphylococcal enterotoxins (SEs), the 

staphylococcal enterotoxin-like (SEls) proteins, and toxic shock syndrome toxin-1 

(TSST-1) (5). Before the discovery of their superantigenic function, the SEs were 

originally defined by their ability to cause staphylococcal food poisoning (SFP) including 

emesis (vomiting), and currently include the SEs A, B, C, D, E, G, H, I, R, and T. The 

SEl toxins, although both homologous and structurally similar to the SEs, either do not 

induce emesis, or have not been formally demonstrated to induce emesis, and include the 

SEls J, K, L, M, N, O, P, Q, S, U, V, and X. It is important to note that although 

designated as a “SEl” toxin, some of these may possess undemonstrated emetic activity 

and be reclassified in the future as bona fide enterotoxins.  
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All staphylococcal SAgs are encoded on mobile genetic elements such as pathogenicity 

islands (PAIs), plasmids or phage with the exception of the newly discovered sel-x, 

which is genome-encoded (6, 7). This novel SAg has been found in all strains except for 

those in clonal complex 30, which is thought to be a result of deletion event in an 

ancestral strain (6). Previous epidemiological studies suggest that approximately 80% of 

S. aureus strains harbour SAg genes, with an average of 5-6 per strain (8-10).  

1.2.1.1 Enterotoxin gene cluster 

An operon of SAgs known as the enterotoxin gene cluster (egc) is comprised of the SAgs 

seg, sel-i, sel-m, sel-n, sel-o and sometimes sel-u (11, 12). This cluster is commonly 

found in clinical S. aureus strains and it has been proposed that this ‘nursery’ of SAgs 

may not be linked to toxemia, but colonization (9, 11). Supporting this notion is the 

finding that egc-encoded SAgs do not induce neutralizing antibodies despite high 

prevalence and superantigenic activity in vitro (13, 14). Conversely, non-egc SAgs are 

highly immunogenic and the majority of the population has neutralizing antibodies 

against one or more of these SAgs. It is thought that differential expression patterns may 

explain some of these divergent findings, as egc SAgs are produced during early 

exponential growth whereas most classic SAgs are produced during late-exponential and 

stationary phase (9). 

1.2.1.2 Staphylococcal superantigen-like proteins  

Originally named the staphylococcal exotoxin-like proteins (SETs) (15), this group of 

toxins has been renamed the staphylococcal superantigen-like proteins (SSLs) although 

these toxins do not possess SAg activity (5). This family of proteins are structurally 

similar to the staphylococcal SAgs, hence the name, and appear to be primarily involved 

in immune evasion including prevention of bacterial clearance by neutrophils (16). To 

date, all sequenced staphylococcal strains carry ssl genes and humans have developed 

neutralizing antibodies against SSLs, implying a role in bacterial fitness (16). 
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1.2.2 Streptococcal superantigens 

Historically known as scarlet fever toxins, SAgs encoded by Streptococcus pyogenes 

[group A Streptococcus (GAS)] are now known as streptococcal pyrogenic exotoxins 

(Spes). The characteristic clinical rash of scarlet fever is caused by Spes, also formerly 

known as the erythrogenic toxins (17). A similar rash also develops during streptococcal 

toxic shock syndrome (TSS), for which the causative agents are also streptococcal SAgs. 

Streptococcal TSS, which occurs typically during invasive GAS infections, differs from 

staphylococcal TSS (discussed below), and is accompanied by bacteremia in more than 

60% of cases and results in high mortality rates (18). In addition to severe streptococcal 

infections, streptococcal SAgs have recently been shown by our group to be critical for 

GAS nasopharyngeal colonization (19). 

To date, fourteen streptococcal SAgs have been identified: SpeA, SpeC, SpeG-P, 

streptococcal superantigen (SSA), and streptococcal mitogenic exotoxin Z (SMEZ). The 

streptococcal SAgs are primarily found in GAS, but have also been identified in group C 

and G streptococci (20). Like their staphylococcal counterparts, streptococcal SAgs are 

commonly found on mobile genetic elements. Together, this suggests that these SAgs 

either shared a common ancestor or resulted from interspecies horizontal gene transfer 

(18). 

1.2.3 Coagulase-negative staphylococcal superantigens 

Coagulase-negative staphylococci (CoNS) are generally considered to be commensals, 

especially in comparison to the highly pathogenic coagulase-positive S. aureus, which 

often colonize common mucosal surfaces of humans and animals. However, there is an 

increased prevalence of CoNS strains in human disease, particularly bacteremia 

associated with indwelling medical devices such as catheters (21). Staphylococcal SAgs 

have been found in CoNS species from both humans and livestock (22, 23). Recently, a 

PAI encoding sec and sel-l was discovered in a clinical strain of S. epidermidis, most 

likely a result of horizontal gene transfer from S. aureus since PAIs have never been 

identified in S. epidermis previously (24). 
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1.2.4 Gram negative SAgs 

Yersinia pseudotuberculosis is an enteric pathogen that induces a scarlet fever-like rash, 

and produces a SAg known as Yersinia pseudotuberculosis-derived mitogen (YPM) (25). 

YPM has been shown to induce shock in experimental models (26) and exacerbates 

mortality during systemic infections (27). Additionally, there is evidence of Vβ-skewing 

and anti-YPM antibodies in patients with Y. pseudotuberculosis infections (28).  

Lacking a cell wall, the bacterium Mycoplasma arthritidis causes acute arthritis in 

rodents and was found to be mitogenic for T cells (29). The factor responsible was 

determined to be Mycoplasma arthritidis T cell mitogen (MAM), and was classified as a 

SAg since it specifically stimulated Vβ6 and Vβ8 mouse T cells (30). Although MAM 

can result in shock, MAM does not appear to play a role in the induction of arthritis in 

mice (31). 

A Crohn’s disease (CD)-associated bacterial protein, known as I2, has also been 

identified as a structurally-distinct SAg (32) encoded by pilT from Pseudomonas 

fluorescens (33, 34). It is thought that the ability to affect T cells contributes to the 

development of inflammatory bowel diseases and that P. fluorescens could be an 

important bacterial pathogen involved in the pathogenesis of CD (32, 34). 

1.3 Superantigen genetics and classification 

A phylogenetic classification scheme of the SAg exotoxins based on amino acid 

alignments is shown in Fig. 1.1, where SAgs from staphylococci and streptococci are 

placed into five evolutionary groups (18). Within this classification, TSST-1 sits as an 

evolutionarily distinct SAg that does not induce emesis (35) and is the only member of 

the Group I SAgs. TSST-1 is believed to be the major, if not sole cause of the menstrual 

form of TSS (36, 37). The Group II SAgs contain both staphylococcal and streptococcal 

SAgs including SEB, SEC, and SpeA. After TSST-1, SEB has been historically most 

commonly linked with non-menstrual-associated cases of staphylococcal TSS (48), while 

SpeA has been historically most commonly linked with streptococcal TSS (49). The 

Group III SAgs include only staphylococcal SAgs, and in general terms, this group 

contains SAgs most commonly associated with SFP such as SEA, SED, and SEE,  
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Figure 1.1. Phylogenetic tree of known bacterial SAgs.  

The unrooted tree was based on the alignment of amino acid sequences constructed with 

the unweighted pair group method using arithmetic averages (UPGMA) in MacVector 

7.2.3. The SAg abbreviations are indicated followed by the relevant accession number. 

As previously proposed (18), the five main groups of SAgs belonging to the pyrogenic 

toxin class are indicated. MAM, YPM, and non-Group A streptococcal SAgs are also 

included in the analysis. The number of times each branch was supported from 1000 

bootstraps is shown as a percentage. 
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although the Group II SAgs SEB and SEC are often implicated as well (50). Both Group 

II and III SAgs contain a unique “cysteine-loop structure” that is thought to be important 

for emetic activity (51). The Group IV SAgs are only populated by streptococcal SAgs 

and have both low and high-affinity binding sites for MHC II but do not induce emesis 

(52). The Group V SAgs, contain mostly staphylococcal SAgs (except SpeI and related 

orthologues), and other than SEI which has weak emetic activity, consists of only SEl 

toxins. In fact, SEI is the only SAg outside of the Group II and III SAgs demonstrated to 

have emetic activity, although this only occurred in one of four animals tested (53). SEl-

X does not align well within the current classification system, but is encoded within the 

core chromosome of most S. aureus strains (6). 

1.4 Superantigen structure 

SAg pro-toxins include a secretion signal that is cleaved from the N-terminus upon 

export via the general Sec-dependent secretion pathway. SAgs are released as non-

enzymatic, relatively small proteins, with the final toxin product ranging in size from ∼22 

to 29kDa. All SAgs are made of two structurally similar domains, linked through a 

central α-helix. The larger N-terminal domain contains a β-barrel motif similar to an OB-

fold, while the smaller C-terminal domain contains the β-grasp motif, which is similar to 

immunoglobulin-binding domains (54). 

Pioneering crystallographic studies with SEB in complex with human leukocyte antigen 

(HLA)-DR1 (42), and SEC3 in complex with the mouse TCR Vβ8.2-chain (41), 

established a molecular framework of how SAgs can activate so many T cells (55). These 

studies demonstrated that SAgs bind to lateral surfaces of both TCRs and processed 

peptide antigen presented within self-major histocompatibility (pMHC) complexes to 

“distort” the normal TCR-pMHC II interaction, such that the CDR3 loops of both TCR α- 

and β-chains (which are key for antigen recognition) are wedged away from the antigenic 

peptide (Fig. 1.2B–E). Through this mechanism, activation of the T cell is no longer 

antigen specific but dependent upon which Vβs can be bound by that particular SAg, 

explaining how SAgs are Vβ-specific (55). Large numbers of SAg-activated T cells can 

then release a multitude of pro-inflammatory cytokines which in severe cases may lead to  
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Figure 1.2 Structural overview of the SAg-mediated T cell activation complexes 

Ribbon diagram models show (A) conventional T cell activation (38), and SAg-mediated 

T cell activation complexes for (B) Group I (e.g., TSST-1) (C) Group II (e.g., SEB) (D) 

Group III (e.g., SEH) and (E) Group V (e.g., SEl-K). Colors for TCR and MHC class II 

chains are labeled in Panel (A). The SAg activation complex models were generated by 

superposition of the TSST-Vβ (39) and TSST-MHC class II (40) structures, the SEC-Vβ 

(41) and SEB-MHC class II (42) structures, the SEH-VαVβ (43), SEH-MHC class II β-

chain (44), and the SEA-MHC class II α-chain (45) structures, and the SEK-Vβ (46) and 

SEI-MHC II (47) structures. The TCR α-chain was modeled for clarity in each case from 

the conventional complex (38). The “?” in Panel (E) indicates that there is no current 

information regarding the presence, or absence, of the generic low-affinity MHC class II 

binding domain for Group V SAgs. 
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the “cytokine storm” phenomenon characteristic of TSS (18). Stimulation of APCs by 

SAgs also contributes to cytokine release due to the involvement of MyD88, which 

activates NF-κB, leading to production of pro-inflammatory molecules (56). 

1.4.1 Structural and molecular mapping of superantigen targets 

Recent years have seen a number of further advances in the structural characterization of 

the staphylococcal SAgs, and there is now a broader picture as to how SAgs from the 

different evolutionary groups (Fig. 1.1) function to distort the normal process of T cell 

activation (Fig. 1.2). For example, the Group I SAg TSST-1 (Fig. 1.2B), which is 

extremely specific for the human Vβ2+ T cells (2), forms a unique T cell activation 

complex by binding the MHC II α-chain through a relatively low-affinity interface that is 

highly influenced by different antigenic peptides within MHC II (40, 57). Also, TSST-1 

recognizes unique amino acid insertions from Vβ2 within both CDR2 and framework 

region (FR) 3, explaining the extreme Vβ-specificity of this SAg (39, 58, 59). There are 

no direct TCR-MHC II contacts in this T cell activation complex. Group II SAgs (Fig. 

1.2C) such as SEB, SEC3, and SpeA, are more “promiscuous” in their Vβ-targets, and 

engage TCR Vβ through “conformation-dependent” mechanisms that are thought to be 

less dependent on specific Vβ amino acid side-chains (41, 60, 61). These SAgs bind the 

MHC II α-chain through an N-terminal, low-affinity binding domain, yet in contrast to 

TSST-1, this binding is antigenic peptide-independent (42). Group III SAgs (Fig. 1.2D) 

consist of only staphylococcal SAgs, and these toxins are thought to be able to cross-link 

MHC II molecules (62, 63) through both a low-affinity site similar to Group II, (45) as 

well as a high-affinity, zinc-dependent MHC II β-chain interface located within the β-

grasp domain of the SAg (44). The only structural information for how Group III SAgs 

engage TCR is for SEH (43), which represents somewhat of an outlier within Group III, 

and is the only known Vα-specific SAg (64, 65). Group IV SAgs are restricted to only 

streptococcal members, and these toxins bind Vβ similar to the Group II SAgs, although 

with a larger footprint (61), and contain a high-affinity MHC II β-chain binding domain 

similar to Group III (66). Considerable evidence indicates the presence of a low-affinity 

MHC II α-chain interaction, likely similar to Group II (67-69), although this interaction 

has not been characterized structurally. The Group V SAgs contain a high-affinity MHC 
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II β-chain binding domain (70) similar to Group III, and bind the TCR Vβ with a more 

“lateral” position extending into FR4 (Fig. 1.2E) (46). There is currently no information 

relating to the presence, or absence, of the generic low-affinity MHC II interface with 

Group V SAgs. 

Within the SAg family of toxins, each member is able to efficiently activate large 

numbers of T cells, regardless of subtle or dramatic differences within the different SAg-

mediated T cell activation complexes. However, the one common structural feature of all 

characterized SAgs, with the exception of the Vα-specific SEH, is the engagement of the 

Vβ CDR2 loop, and this loop appears to be the critical determinant for Vβ-specificity 

(59). 

1.5 Superantigen-host receptor interactions  

1.5.1 T cell activation 

Normal T cell-mediated immunity is initiated through the interaction of an αβ TCR and 

pMHC complexes (Fig. 1.2A) (71, 72). If the TCR specifically recognizes the antigen as 

foreign, these interactions will activate the tyrosine kinase Lck (associated with co-

receptors CD4 and CD8), which in turn will activate downstream cell signaling resulting 

in activation of transcription factors to induce T cell proliferation and differentiation (73). 

As TCRs are extraordinarily diverse molecules, only ∼0.01% of naïve T cells will 

recognize a given antigen (74). 

SAg-mediated T cell activation is both quantitatively and qualitatively distinct from 

conventional T cell activation (75). As the defining feature of the SAg toxin is the ability 

to activate T lymphocytes in a Vβ-dependent manner (3), very large numbers of T cells 

can be activated upon SAg exposure. TCR diversity is concentrated within the CDR3 

loops due to V(D)J (somatic) recombination during T cell development. However, there 

are a relatively limited number of possible TCR Vβ regions (∼50 are functionally 

expressed in humans), and thus SAgs can activate T cells in orders of magnitude above 

conventional processes. SAgs also do this in an extremely potent manner, and in general, 

most SAgs can induce measurable activation of T cells in the picogram (10-12 g) 
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concentration range (18). T cell secretion of cytokines is APC-dependent and studies 

show that SAg stimulation results in the release of cytokines including interleukin (IL)-1, 

IL-2, IL-6, TNF-α, and interferon (IFN)-γ (76-78).  

Experiments conducted with human peripheral blood mononuclear cells (PBMCs) 

exposed to SAgs resulted in a dose-dependent, Vβ specific increase in CD25+ FoxP3+ 

cells, indicative of a regulatory T cell (Treg) phenotype. The immunosuppressive 

qualities of these SAg-induced Tregs have been attributed to the expression of IL-10 and 

may have a role in prolonging commensalism (79). 

1.5.1.1 T cell signaling 

It is often assumed that SAg-mediated T cell activation follows the normal signaling rules 

for conventional pMHC-mediated T cell activation and indeed this is the case with at 

least one major distinction. As predicted, TCR ligation by SAg will induce signals 

through Lck (80), although Lck signaling is not actually required (81, 82). However, 

signaling can proceed in the absence of Lck through a Gα11/PLCβ-dependent pathway 

that converges with the canonical Lck-dependent pathway at the level of ERK1/2 (82). 

Since one function of the CD4/CD8 co-receptors is the recruitment of Lck, the ability of 

SAgs to bypass Lck is also likely related to the capability of SAgs to activate both CD4+ 

and CD8+ T cells, despite cross-linking with MHC class II molecules (83, 84). These 

signaling pathways ultimately activate transcription factors NF-κB, NFAT and AP-1 

leading to cytokine production (85). Studies using rapamycin, which specifically inhibits 

mammalian target of rapamycin (mTOR) complex 1, to target SEB-induced shock has led 

to the phosphoinositide 3 kinase (PI3K)-mTOR pathway being recognized as an alternate 

signaling cascade (85). 

1.5.1.2 T cell anergy 

T cell anergy, a phenomenon where T cells become unresponsive to stimulation, has long 

been proposed to be an immune subversion tactic of S. aureus. Several studies have 

shown this occurs ex vivo following in vivo stimulation (86-89). However, SAg-induced 

anergy produced ex vivo does not necessarily translate into in vivo anergy (90). In 
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addition, high levels of purified toxin are often used in experimental mouse models that 

may not reflect physiological conditions. Also, there is no evidence to suggest that T cells 

are exhausted in nasal carriers of toxigenic S. aureus strains. Recently, a case study of 

TSS (likely induced by TSST-1) showed deletion followed by an expansion in the Vβ2+ 

subset that normalized 70 days post-convalescence. In this important study, re-

stimulation of PBMCs taken during the acute phase of disease with exogenous SAg 

resulted in proliferation of Vβ2+ cells suggesting that T cells were not rendered anergic 

(91). Recurrent cases of TSS occur, usually as a combined result of insufficient 

eradication of S. aureus and the inability to form anti-SAg antibodies. The proliferative 

response of T cells was assessed from a patient with recurrent TSS and there was no 

reduction in the ability of the patients T cells to respond in vitro (92). Thus, at least in 

some patients, true anergy of Vβ specific T cell subsets may not occur and suggests that 

this activity is not the purpose of SAg activity for S. aureus. Clinically, recurrent TSS 

also implies that T cells are not rendered anergic as they are able to react to SAg 

stimulation during multiple episodes. 

1.5.2 Major histocompatibility complex molecules 

The HLA locus, which encodes the MHC molecules, is highly polymorphic and plays a 

significant role in determining the susceptibility of an individual to SAgs. Although SAgs 

bypass MHC restriction to activate T cells, different SAgs vary in their binding abilities 

to MHC molecules. For example, SEA, SEB, and TSST-1, show a preference for binding 

HLA-DR molecules while SEC1 prefers HLA-DQ over -DR (93). Polymorphic alleles 

also dictate the degree to which a certain SAg is presented to T cells, as well as the T cell 

response (94, 95). In vivo data in mice supports the notion that MHC polymorphisms 

dictate sensitivity or resistance to SAgs. In particular, transgenic mice expressing human 

MHC class II molecules (‘humanized transgenic mice’) have enhanced the sensitivity of 

mice to SAgs and improved the model for studying the effects of SAg toxicity (19, 96-

98). 

Activation of APCs by SAgs also contributes to cytokine release due to the involvement 

of MyD88, which upregulates NF-κB, leading to production of pro-inflammatory 
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molecules (56). Monocytes stimulated by SAgs are potent producers of IL-1 and TNF-α 

(99). SAgs have also been shown to upregulate the expression of toll-like receptor (TLR) 

4 on monocytes which may explain the synergistic effect of LPS and SAg (100). 

1.5.3 Costimulatory molecules 

Recently, it was demonstrated that SEB can bind to the costimulatory molecule CD28, 

which is constitutively expressed on naïve T cells and binds B7 ligands on APCs. The 

CD28 binding site is divergent from both the TCR and MHC II binding domains of SEB, 

and is relatively conserved amongst the SAg family. Disruption of CD28 binding by 

peptide antagonists reduced mortality rates in mice administered with D-galactosamine 

and SEB by downregulating Th1, but not Th2 cytokines (101). These lines of evidence 

support the proposal that CD28 binding by SAgs is important to the function of SAgs. 

Further research elucidating downstream mechanisms will clarify the exact role of CD28 

during T cell activation by SAgs.  

Additionally, this same binding region on TSST-1 mediates interactions with CD40 on 

human vaginal epithelial cells in the absence of MHC II (102, 103). This novel binding 

site for epithelial cells may be important in the initiation process of disease in 

overcoming skin and mucosal barriers, especially in TSS. 

1.6 Staphylococcal superantigen diseases 

1.6.1 Food poisoning 

The first disease linked to the staphylococcal SAgs was SFP, and evidence that a 

staphylococcal toxin caused the illness dates back to 1930, where filterable supernatants 

from a “yellow staphylococcus” was able to induce SFP in human volunteers (104, 105). 

The symptoms of SFP include nausea, emesis, and abdominal cramps with or without 

diarrhea. This common food-borne illness has rapid onset but is generally self-limiting 

and resolves within 24-48 hours. As SAgs are highly stable and resistant to heat, acid and 

proteolytic enzymes that would kill S. aureus, SFP is caused by pre-formed toxins in 

contaminated food that retain biological activity after ingestion (50, 106). Unlike the 

mechanisms of T cell activation, SAg emesis is poorly understood and divergent from its 
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immune-stimulating activities. It is thought that the cysteine-loop structure is responsible 

for emesis, although it is likely to be involved in stabilizing conformations required for 

activity rather than an absolute requirement (50).  

1.6.2 Toxic shock syndrome 

The other human disease clearly caused by the staphylococcal SAgs is TSS. This disease 

was described in 1927 by Franklin Stevens as staphylococcal scarlet fever (107), and was 

named “toxic shock syndrome” by Todd and colleagues in 1978 to describe a systemic 

illness in seven children caused by non-invasive S. aureus infections (108). The 

pathogenesis of TSS is due to a SAg-induced cytokine storm owing to the massive 

activation of T cells in individuals lacking neutralizing antibodies to the particular SAg. 

The disease is a capillary leak syndrome where patients develop fever, rash, hypotension, 

multi-organ involvement and convalescent desquamation (18). S. aureus can cause the 

menstrual form of TSS, which historically occurred in young women in association with 

high absorbency tampons, and non-menstrual TSS, which can occur from virtually any S. 

aureus infection, although infrequently from bacteremia (18). While most staphylococcal 

SAgs are functionally capable of inducing TSS in experimental animals, only a few select 

SAgs have historically been associated with the disease. This is somewhat surprising 

given the large “collection” of these extremely potent toxins. The TSST-1 SAg was 

linked to the menstrual form of TSS in 1981 (36, 37), although it is also clear that other 

SAgs, primarily TSST-1, SEB and SEC, are capable of causing the non-menstrual form 

(17, 18). 

During the early 1980s, there were a high number of menstrual TSS cases in young 

women associated with the use of high absorbency tampons (109) and the estimated 

incidence of all forms of TSS at this time was 13.7/100,000 (110). By the mid-1980s, 

following the removal of these products from the market, and public awareness 

campaigns as well as product labeling, the overall incidence dropped to 0.53/100,000 

with a case-fatality rate of ∼4% (111). A recent population based surveillance for TSS in 

Minnesota between 2000 and 2006 demonstrates that this rate has been relatively stable 

and that TSST-1 was still the major cause in most cases. Of note, although the 
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community acquired methicillin-resistant S. aureus (CA-MRSA) clonal strain USA300 

has dramatically increased in prevalence in the U.S., this strain does not appear to cause 

many cases of TSS (112). Although the overall incidence of TSS appears low, it has been 

suggested that severe SAg-mediated disease remains under-reported, due to both the strict 

CDC case definition (113) as well as prompt and appropriate medical attention that 

would prevent the most severe forms of SAg intoxication (112). Indeed, TSS is still a 

major problem, and cases of non-menstrual TSS pediatric burn patients can be extremely 

dangerous if not recognized early (114). 

Apart from the more overt forms of SAg-mediated diseases, there is significant evidence 

that SAgs also can play a role in a number of other diseases and these will be discussed 

below. 

1.6.3 Kawasaki disease 

Kawasaki Disease (KD) was first described by Tomisaku Kawasaki in 1967 and is now 

the leading cause of acquired heart disease in children from developed nations (115). KD 

is an acute, self-limiting vasculitis, typically affecting the coronary arteries, and thought 

to be triggered by an infectious agent in genetically susceptible individuals (116). 

Although the etiology of KD is not known, there is compelling evidence that bacterial 

SAgs are involved, and could be causal in association with host genetic factors (117). 

First, the clinical presentation of KD has features reminiscent of TSS, including fever, a 

desquamating rash and erythema of the mucous membranes. SAg-producing S. aureus 

and S. pyogenes have been isolated from KD patients, and seroconversion with anti-SAg 

antibodies has also been demonstrated. Perhaps the strongest evidence of SAg 

involvement however, is the demonstration of Vβ skewing in KD patients (118). A 

number of studies have found primarily Vβ2 expansion (119) providing a link to either 

TSST-1 or SpeC which are both Vβ2-specific (59). Others, however, have found 

expansion of various Vβ families (120, 121), potentially implicating other SAgs with 

different Vβ profiles. Treatment of KD involves the use of intravenous immunoglobulin 

(IVIG) (122), and IVIG is well known to contain SAg neutralizing antibodies (123, 124). 

Although there is no direct evidence to suggest SAg involvement, there also exists the 
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Kawasaki-like syndrome, which in contrast to KD occurs primarily in adults with severe 

immunosuppression including HIV/AIDS (125). 

1.6.4 Atopic dermatitis  

Atopic dermatitis (AD) represents a chronic and relapsing T cell-mediated inflammatory 

skin disorder with immunoglobulin (Ig) E-mediated sensitization to allergens. AD most 

often affects infants and young children, but may persist into adulthood, or may first 

develop in adults as late-onset AD. AD has both genetic and environmental contributions 

but nearly all AD patients are colonized by S. aureus. This is likely due to both the 

damaged skin barrier and impaired host immune responses. The ability of staphylococcal 

δ-toxin to degranulate mast cells has recently been suggested as a link between 

staphylococcal colonization and the development of AD lesions (126). A variety of 

immune mechanisms have been proposed for how staphylococcal SAgs may be 

exacerbating the disease (103, 127). SAgs have long been known to induce the skin 

homing receptor cutaneous lymphocyte-associated antigen (CLA) on T cells to recruit 

these cells to the skin (128). Very recent evidence indicates that skin homing, 

phenotypically Treg (CD4+FoxP3+) cells from AD patients may actually display a Th2 

phenotype in response to SEB stimulation (129). AD patients may also develop anti-SAg 

IgE antibodies that can further worsen the condition (130-132). AD is often treated with 

glucocorticoids and SAgs have been shown to induce glucocorticoid resistance in 

PBMCs (133). A recent study that examined essentially the entire staphylococcal SAg 

family found that isolates from steroid resistant AD patients contained significantly more 

SAgs genes than isolates from non-steroid resistant patients or menstrual isolates 

provoking the idea that steroid treatment may actually select for SAgs in these strains 

(134). 

1.6.5 Chronic rhinosinusitis 

Chronic rhinosinusitis (CRS) is a group of disorders characterized by inflammation of the 

nose and paranasal sinuses for at least 3 months duration (135). CRS can occur with or 

without nasal polyps, and accumulated evidence is now convincing that S. aureus SAgs 

can contribute to, in some cases, CRS with nasal polyposis (136). In this disease, SAgs 
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are thought to skew the cytokine response towards a Th2 phenotype inducing both 

eosinophilia and the production of polyclonal IgE, which in turn could be further linked 

to asthma (137). There is no single SAg associated specifically to this disease (136, 138), 

and as noted (135), a causal relationship with S. aureus has not been established. 

1.6.6 Guttate Psoriasis 

Guttate psoriasis is an acute form of psoriasis mediated by autoreactive T cells that 

typically develops in young adults and children. This inflammatory skin disease is 

typically preceded by streptococcal pharyngitis, and the streptococcal SAgs, in particular 

SpeC, and Vβ2+ T cells have been implicated (139). Some associations have also been 

made with S. aureus and chronic plaque psoriasis (140, 141). 

1.7 Staphylococcus aureus overview 

S. aureus is a Gram positive bacterium that is a frequent human commensal organism but 

also a highly versatile pathogen capable of causing a variety of infections in their hosts, 

resulting in high levels of morbidity and mortality. S. aureus is the most common cause 

of skin and soft tissue infections (SSTIs) worldwide (142), but can also cause life-

threatening severe invasive infections such as endocarditis, osteomyelitis, bacteremia 

(which can progress to sepsis) and TSS (143). S. aureus infections are further 

complicated by an alarmingly high rate of antibiotic resistance acquisition and MRSA 

strains are of great concern, especially in hospital settings where nosocomial 

staphylococcal infections are common. S. aureus has now become a global epidemic, 

particularly MRSA clones (144, 145). Although MRSA was originally restricted to 

healthcare settings, outbreaks of CA-MRSA strains which target healthy young people 

are now becoming more common (146-150).  

The ability to cause infections in virtually every tissue in the body is due to the vast 

arsenal of virulence factors possessed by S. aureus, many of which have evolved to 

specifically target the human immune system, including SAgs (151, 152). It is 

remarkable how an asymptomatic colonizing bacteria is capable of so many opportunistic 

infections and the different lifestyles of S. aureus in vivo – colonization versus invasive 

infections – will be discussed below. 
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1.8 Staphylococcus aureus nasal colonization 

Staphylococcal colonization can be defined by the presence and multiplication of S. 

aureus in the absence of infection or disease. In humans, the most common area 

colonized by S. aureus is the anterior nares (143, 153). Prevalence of nasal colonization 

is high within the general population, and people have typically been classified into 3 

groups based on their nasal carriage status: persistent, intermediate and non-carriers. 

While rates vary among studies, approximately 20% of the general population are 

persistent carriers of S. aureus, ∼30% are intermittent carriers, and ∼50% are non-carriers 

(154). In the event of an infection, carriers have a better prognosis than non-carriers (155, 

156); however, nasal colonization increases the risk of infection by four-fold (157). 

Furthermore, it is believed that ∼80% of S. aureus bloodstream infections come from an 

endogenous source (155), and this can be particularly dangerous in a hospital setting if a 

nasal carrier is immunocompromised and the colonizing strain is resistant to antibiotics. 

1.8.1 Establishing nasal colonization 

Successful establishment of nasal colonization is a result of bacterial, host, and 

environmental interactions. Hand-to-hand and hand-to-nose transmissions allow S. 

aureus to disseminate between people and within the individual host, eventually reaching 

the nose. Epidemiological studies have shown that household units, pets, and hospital 

workers positively influence carriage rates (154). In addition, transmission of nasal 

carriage has also been shown in mice (158). Behaviors, such as nose picking, have also 

been positively correlated with nasal carriage (159).  

1.8.1.1 Bacterial factors that influence colonization 

Once the bacteria reach the nose, S. aureus preferentially binds to keratinocytes and 

desquamated nasal epithelial cells in the anterior nares (160, 161). Histological sections 

of human cadavers have revealed S. aureus colonizing the cornified squamous 

epithelium, keratinized and mucous debris surfaces, as well as the hair follicles of the 

nose (162). Nasal colonization is a multifactorial process and depends on a number of 

adherence and immune-evasion factors. Interactions between microbial surface 
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components recognizing adhesive matrix molecules (MSCRAMMs) have been shown to 

promote binding to epithelial cells and colonization. Clumping factor B (ClfB) binds to 

cytokeratin 10 (K10), expressed on differentiated epithelial cells and has been shown to 

be important for nasal colonization in both rats and humans (163-165). K8 has been 

shown to be another possible target for ClfB (166), although it is not expressed on the 

stratified squamous epithelia. K10 is also a ligand for the adhesion iron-regulated surface 

determinant A (IsdA) (167). Loricrin, the major protein on keratinized epithelial cells, is 

a target for both IsdA and ClfB (167, 168). Although their host receptors have not been as 

well characterized, the MSCRAMMs serine-aspartic acid repeat protein (Sdr) C, SdrD, 

and surface protein SasG have been shown to mediate adherence to human nasal 

epithelial cells (161, 169). Wall teichoic acids (WTA) have also been identified as 

playing an important role in binding (170) to the host receptor SREC-1 on nasal epithelial 

cells (171). Both WTA and sortase A were found to be important for nasal colonization in 

a rodent model, although sortase A is necessary for persistence and not the initial stages 

of nasal colonization (172). A capsule-deficient strain of S. aureus also showed decreased 

colonization at later time points in a mouse colonization model (158). There are clear 

host differences involved in binding as S. aureus exhibits greater adherence to squamous 

cells from persistently colonized individuals than non-carriers (173, 174), which is likely 

influenced by both variances in MSCRAMMs between S. aureus strains, as well as host 

polymorphisms (175).  

The two-component system WalKR has been shown to be upregulated in a cotton rat 

nasal model and is also important in human nasal carriage (176, 177). This global 

regulator is involved in cell wall metabolism and the positively regulated autolysins sceD 

and atlA have both been shown to be expressed in human carriers (177); moreover, SceD 

is essential in a rodent nasal colonization model (178).  

Other than adhesion, bacterial factors that confer resistance to oxidative stress are 

instrumental for S. aureus nasal colonization in mice (179). In healthy human carriers, 

transcription of a number of immune evasion genes could be detected, including spa 

which encodes protein A and is involved in a number of pathogenic processes. 

Expression of staphylokinase (SAK) and chemotaxis inhibitory protein of Staphylococcus 
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(CHIPS) was high compared to in vitro growth and both are involved in immune evasion 

of the innate immune system (177). Expression of cytolytic toxins such as α-hemolysin 

and phenol-soluble modulins (PSMs) was generally repressed in healthy persistent 

carriers (177), while SAg toxin expression has been detected (180). It is likely that these 

factors are important during colonization to combat the host immune system (discussed 

below), but there has been no direct experimental evidence thus far.  

1.8.1.2 Host immunity of the nasal cavity 

Other than providing a physical barrier, the epidermis contains an abundance of 

antimicrobial defenses produced by epithelial cells and immune cells. Resident cells in 

the epidermis include Langerhans cells, melanocytes, Merkel cells and T cells (175). The 

anterior nares are primarily a keratinized environment protected by nasal secretions 

which contain antimicrobial peptides (AMPs) such as defensins and cathelicidins, 

lysozyme, lactoferrin, IgG and IgA amongst other antimicrobial components (154, 181). 

AMPs are produced by many resident skin cells, and play an integral role maintaining 

skin immunity by directly killing microbes and modulating both innate and adaptive 

immune responses (182). It is thought that differences in host immunity may be a 

determinant of nasal colonization but the mechanisms are not well understood. S. aureus 

nasal colonization can induce a subclinical immune response with elevated levels of the 

cathelicidin LL37, α defensins [human neutrophil peptides (HNP)]1-3 and human β 

defensin (HBD) 2 in some carriers, but not HBD-3 (183-186). It has also been suggested 

that colonization is due to carriers producing nasal secretions with poor antimicrobial 

activity as opposed to bacterial resistance (187), despite mechanisms of resistance against 

AMPs (188-190). HBD-3 has potent bactericidal activity (191), and keratinocytes are 

capable of killing S. aureus very quickly by directly depositing HBD-3 on the bacteria 

(192). Since the bactericidal effect relies on direct bacterial contact and was not observed 

with secretions into media, this may reconcile the fact that levels of HBD-3 are not 

different between carriers and non-carriers. In vitro studies have shown that HNP 1-3 and 

HBD-2 have poor bactericidal activity against S. aureus (184); however, planktonic S. 

aureus became susceptible to HBD-2 once biofilm formation was disrupted through 

interference by S. epidermidis (193). This suggests that in vivo conditions may have 
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different outcomes regarding susceptibility to AMPs and may be responsible for 

conflicting reports regarding the bactericidal activity of AMPs.  

Although levels and presence of antibodies against S. aureus exhibit high inter-individual 

variability (194), it is clear that an anti-staphylococcal humoral response alone is not 

protective against colonization. Artificial nasal colonization in humans does not influence 

the anti-staphylococcal humoral response (195), and maternal IgG does not prevent 

infants from staphylococcal colonization – S. aureus colonization is actually higher in 

children than adults (154) with rates of approximately 50% S. aureus nasal carriage in 

neonates (196, 197). Thus, it is likely that the high levels of anti-staphylococcal 

antibodies in the population is due to transient breaches of the mucosa rather than 

colonization (195, 198). Carriers that do develop anti-staphylococcal antibodies are not 

protected from further colonization (199), although it is thought that these antibodies may 

protect against severe infection (200).  

Clearance of nasally-colonized bacteria has been shown to be mediated by IL-17 and 

recruited neutrophils in mice (201). However, S. aureus colonizing strains have been 

shown to be able to dysregulate neutrophil-related IL-1 immunity (202), which is 

essential for host protection during staphylococcal cutaneous infections (203). 

Additionally, S. aureus has evolved many mechanisms to evade neutrophils which are 

essential for bacterial clearance (204). 

1.8.1.3 Nasal microbiota and bacterial interference  

In the 1960’s, it was observed that colonization by one strain of S. aureus prevented 

colonization by a second strain. Thus, an avirulent strain was used to colonize newborns 

in hopes that it would protect against colonization by more virulent strains (205-208) but 

this practice was discontinued when the previously avirulent strain demonstrated 

pathogenic manifestations (209). The environmental presence of other bacterial species 

such as Streptococcus pneumoniae, Staphylococcus epidermidis, and Corynebacterium 

spp. has experimentally been found to interfere with S. aureus nasal colonization (193, 

210-212). Interestingly, there is a negative correlation between S. aureus and S. 

pneumoniae rates in infants where S. aureus carriage is initially high but decreases while 
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S. penumoniae increases. Since the introduction of a pneumococcal vaccine, the pattern 

has shifted towards S. aureus carriage (213). Bacterial interference using non-pathogenic 

normal nasal microflora or avirulent strains of S. aureus as a method of treating 

staphylococcal colonization is still under consideration, largely due to antibiotic resistant 

strains of S. aureus (214, 215). 

1.8.1.4 Persistence 

Once S. aureus overcomes the barriers in the nares and colonization is established, the 

bacteria either persist, are cleared by the immune system, or invade the mucosal layer and 

cause infections. It has been experimentally shown that after artificial nasal inoculation 

by S. aureus, subjects had a tendency to revert to their original carrier state and carriers 

were re-colonized by their original strain (216). Further studies also showed that 

persistent carriers are preferentially colonized by the same strain of S. aureus whereas 

intermittent carriers tend to be colonized by different strains at different time points 

(217). This may be a result of the host adapting to long-term commensalism, perhaps in a 

way similar to commensal gut microbiota (218). Regardless, it appears that persistent 

carriers have attributes that allow a long-term commensal relationship to develop with the 

colonizing strain, and this remains an active area of research.  

1.8.2 From colonization to infection 

The particular molecular switch of how colonized bacteria become pathogenic has yet to 

be determined. It is likely a mixture of host-pathogen and environmental factors that 

causes a breach in the mucosal layer and subsequent infection or clearance. Although it 

has been observed that it is the elements of the virulon that determines the occurrence and 

extent of invasive infection (219), epidemiological studies have failed to assign a 

particular strain with either nasal or blood isolates (8). Furthermore, it has been shown 

that under the right circumstances, all strains of S. aureus have the ability to become 

invasive (10, 220). Controlling nasal colonization is a priority for health-care facilities 

since it predisposes the carrier to more severe staphylococcal infections. The increase in 

MRSA strains and emerging antibiotic resistance to mupirocin, commonly used to 

eradiate nasal S. aureus, is particularly alarming (221). Numerous studies which have 
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evaluated the efficacy of preventing staphylococcal infections by eradicating nasal 

carriage have thus far yielded mixed results, and does not always appear to be effective in 

preventing infections (222). The commercial vaccine StaphVax (capsular polysaccharide 

conjugates 5 and 8) failed to reduce levels of nasal colonization in humans (223) and 

many new targets and strategies are continuously being studied (194, 224). 

The role of the two-component regulatory system, the accessory gene regulator (agr), has 

been classically associated with dissemination, release of secretory proteins, and down-

regulation of surface associated proteins (225). Burian et al. showed that in persistent 

nasal carriers, both agr and agr-regulated toxins are generally not expressed (177). The 

presence of hemoglobin has been found to inhibit agr expression and promote nasal 

colonization in rats, while constitutive expression of RNAIII, the effector molecule of the 

agr system, reduced colonization (226). This may also partially explain why people who 

suffer from epitaxis (nosebleeds) are more prone to colonization by S. aureus (227). It is 

probable that agr is downregulated during nasal colonization to promote adhesion to the 

nasal epithelium. Environmental cues, after colonization has been established, may then 

result in the induction of RNAIII and secreted cytolysins, leading to breaches in the 

mucosal barrier and subsequent infection.  

1.8.3 Nasal colonization and superantigens 

Although a myriad of bacterial factors play a role in determining nasal colonization, it 

has not yet been established whether or not SAgs are involved. Epidemiological studies 

evaluating S. aureus SAg gene distribution in nasal swabs compared with blood isolates 

concluded that there were no differences between blood and nasal isolates in the number 

of toxins and there was no correlation to a particular toxin; toxin gene distribution was 

widespread and highly varied (8). Also, S. aureus strains encoding the same SAg genes 

can produce different amounts of toxin (228) and this can make correlations difficult in 

epidemiological studies, which often rely on genomic typing instead of protein 

quantification. 

Many SAgs such as TSST-1 are regulated by agr (225), which appears to be dampened 

during colonization (177), suggesting that agr-controlled SAgs may not be involved in 



26 

 

colonization. Since it is likely that agr is downregulated during colonization as discussed 

previously, it has been suggested that certain SAgs such as SEA, which is not regulated 

by agr, may play a role early on in colonization (229). Despite the fact that many 

persistent carriers contain the bacteriophage that carries SEA, this genetic element does 

not appear to play a role early on during colonization (230). Furthermore, the sea gene 

has been correlated with sepsis, although the presence of SEA has yet to be confirmed in 

blood during sepsis (9). This work also demonstrated a correlation between the egc 

operon of SAgs and colonization. A follow-up study using recombinant SAgs found that 

both types of SAgs (egc and non-egc) induced similar proliferative activity on PBMCs 

(14). However, the proliferative potential of supernatants taken from patients with strains 

containing egc genes demonstrated that strains encoding egc SAgs do not have as high 

proliferative activity as strains encoding non-egc SAgs, suggesting that egc toxins are not 

made in quantities as high as non-egc ones. A lack of neutralizing antibodies against egc-

encoded SAgs was also found in serum from healthy humans (13), although both egc and 

non-egc SAgs have been shown to be expressed in nasal carriers suggesting an inability 

to form antibodies against egc toxins (180). It is interesting that only non-egc encoded 

SAgs have been implicated in toxin-mediated diseases. Thus, the role of egc-encoded 

SAgs in colonization requires further investigation. 

It is difficult to directly ascertain whether or not SAgs are produced in vivo during 

colonization mainly due to the presence of S. aureus protein A, which binds the Fc 

portion of antibodies, thereby causing background levels of antibody-mediated detection 

assays to be quite high. However, analysis of the immunological response can provide 

important information. In particular, both Vβ-specific T cell activation and SAg-

neutralizing antibodies are indirect ways of determining if the immune system has 

encountered SAgs. While Vβ-skewing has been studied in the context of severe disease 

(231), it has long been known that the general population develops anti-SAg antibodies 

capable of neutralizing these toxins (232). Also, persistent nasal carriers of S. aureus 

have been found to have neutralizing antibodies against the SAgs produced by the 

colonizing strain (198, 200). Levels of neutralizing antibodies against TSST-1 and SEA 

were significantly higher in persistent nasal carriers than non-carriers (233), again 

suggesting that these SAgs may be actively produced during nasal colonization. 



27 

 

The extent to which, if any, SAgs play during colonization has not yet been 

experimentally addressed. Intranasal vaccination in rodents with deactivated TSST-1 was 

able to decrease mortality rates from TSST-1 producing S. aureus septic challenge and 

significantly decreased the bacterial load in organs (234). This was a TSST-1-specific 

response, as challenge with non-TSST-1 producing S. aureus did not result in a 

significant reduction in bacterial load when compared to non-vaccinated mice. The same 

vaccination strategy protected against nasal challenge only during the initial colonization 

phase (days 1 and 3). Since the model only evaluated colonization up to day 7, it is 

difficult to assess whether or not this is able to have a lasting effect against S. aureus 

nasal persistence, since there were not significant effects at day 5 (234). 

Staphylococcal peptidoglycan-embedded molecules have been found to downregulate the 

immune response stimulated by SAgs (98). This effect was most notable at high cell 

densities suggesting that it is important in biofilms or established colonizers, as opposed 

to free-living planktonic cells. Thus, if a colonized population of S. aureus is producing 

SAgs, any invading “rogue” cells that are not a part of the main colony may be killed by 

an activated immune system, while the dense colony is able to downregulate this 

response in the local area to prevent clearance. This suggests a role for SAgs as 

checkpoints of dissemination. Evidence suggests that when SAgs are systemic as in the 

case of TSS (231), S. aureus is able to prevent dissemination, which may be partly why 

bacteremia is rarely associated with staphylococcal TSS. This is also supported by the 

observation that sepsis patients lack SAg-specific Vβ-skewing unlike TSS patients (235), 

suggesting that bacterial dissemination could prevent toxin production. 

1.9 Staphylococcus aureus severe infections 

1.9.1 Bacteremia 

Bacteremia, or bloodstream infection, is defined by the presence of viable bacteria in 

blood (236). Bacteremia can be transient and induced by activities such as tooth-brushing 

or biopsy, where bacteria are normally cleared without signs of inflammation (237, 238). 

However in a clinical setting, even a single positive blood culture should be treated as 

significant since associated complications of S. aureus bacteremia (SAB) are damaging 
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and severe (239, 240). Up to one third of SAB cases are complicated by endocarditis, 

metastatic infections, or progress to sepsis (143, 241, 242). Bacteremia incidence is on 

the rise and S. aureus is among one of the highest etiological agents of Gram positive 

blood infection among inpatients in hospitals (243, 244), and the second highest among 

outpatients (245). In Western countries SAB is associated with mortality rates of 20-30% 

(246-248), increased hospital stays and economic burdens (244, 249).  

The most common causes of SAB are unknown primary sources, intravascular catheters, 

and infections from secondary sources such as genitourinary, gastrointestinal, respiratory, 

and biliary tracts, abdominal or cutaneous infections (237). Hematogenous seeding from 

abscesses or another distal site can cause intermittent and recurring episodes of SAB 

(237). Expert opinion on successful treatment of SAB includes not only antimicrobial 

therapy but removal or drainage of the foci, thus making it important to distinguish 

between primary and secondary infections (240, 250).  

1.9.2 Infectious endocarditis 

Endocarditis is specifically an infection of the heart endothelium and can develop as 

vegetations or intracardiac abscesses on heart valves (251, 252). Vegetative lesions are 

most commonly found on the aortic and mitral valves (253), and are aggregates of fibrin, 

platelets, bacteria and recruited immune cells which can embolize and establish infections 

elsewhere (252, 254).  

S. aureus is the most common cause worldwide of infectious endocarditis (IE) and a 

major risk factor for the development of IE is SAB. IE is typically associated with 

intravenous (IV) drug use and intravascular medical devices such as catheters, 

pacemakers and prosthetic heart valves (143, 251, 253). IE in IV drug users typically are 

right-sided while non-drug related cases of IE tend to be left-sided and occur in older 

patients (143, 255). Patients with S. aureus IE also have worse outcomes than non-S. 

aureus IE with a mortality rate of up to 30% (253).  
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1.9.3 Sepsis 

Sepsis is a severe clinical condition that results from systemic inflammation in response 

to infection. Since shock can occur in the absence of infection, the term systemic 

inflammatory response syndrome (SIRS) has been created to describe the syndrome of 

systemic host response in general, which can arise as a result of infection, among other 

reasons. If SIRS is a result of an infectious insult either by the pathogen itself, toxins or 

microbial mediators, then the term sepsis is applied (238, 256). During sepsis, microbial 

components interact with endothelial and immune cells which lead to dysregulation of the 

coagulation cascade, formation of fibrin clots and activation of various inflammatory 

mediators. This leads to vascular instability, impaired tissue perfusion, capillary leak, 

vasodilation and can ultimately result in organ failure (257). 

Historically, sepsis was typically associated with Gram negative infections due to the key 

role that the cell wall factor lipopolysaccharide (LPS) plays in inducing a potent 

inflammatory response (258). LPS is recognized by the acute phase protein LPS-binding 

protein, which then binds to the CD14 receptor on the surface of immune cells such as 

monocytes and macrophages. Cell signaling is induced by TLR4, an integral part of the 

innate immune system, which is able to mount an immediate response to the presence of 

LPS (257). However, Gram positive sepsis has risen in prominence over the past 20 years 

(258, 259), with the most common culprits being S. aureus, CoNS, pneumococci and 

streptococci (258, 260). While Gram positive organisms lack LPS, other cell wall factors 

such as lipoteichoic acid (LTA) and peptidoglycan have been found to elicit 

inflammation which can synergize and contribute to the induction of sepsis (261-263). 

Lipoproteins also induce inflammation via TLR2 (264). Additionally, Gram positive 

pathogens secrete inflammatory exotoxins, such as SAgs which can cause shock in 

animal models as well as TSS in humans; and it is thought that SAgs can also contribute 

to the development of septic shock (260, 265), although the extent of superantigenic 

activity to the development of sepsis is not clear (257). Staphylococcal sepsis is 

associated with worse outcomes than SAB with mortality rates as high as 86% being 

reported, although the severity of SAB is a good predictor of 30-day mortality rates of 

sepsis (242).  
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1.10 Mechanisms of S. aureus pathogenicity 

1.10.1 Adhesion and coagulation 

Adhesion to cells is the first step not only in colonization, but pathogenesis as well. S. 

aureus have cell surface factors that facilitate binding to host ligands and colonization. 

MSCRAMMs bind extracellular matrix molecules (ECM) such as fibrinogen, fibronectin 

and collagen (266), as well as other cell host receptors such as cytokeratin and loricrin. 

Adhesion to damaged endothelial cells or heart valves begins the infection process of IE 

(254); coagulase (Coa) and ClfA are important mediators of adhesion to fibrin and 

fibrinogen, leading to the development of IE in a rat model (267).  

Coagulation is an important host process that limits the spread of infection and also helps 

to trap bacteria within clots in the bloodstream. However, pathogen interference with the 

coagulation cascade further contributes to the development of sepsis. Coa and von 

Willebrand factor binding protein (vWbp) cause fibrinogen cleavage while ClfA mediates 

binding to fibrin, creating thrombotic lesions (268). In contrast, SAK interacts with 

plasminogen and acts as a thrombolytic agent that digests fibrin clots, allowing 

dissemination of bacteria (269). It is clear that S. aureus has evolved many mechanisms 

to interfere with host processes that are designed to protect against pathogens.  

1.10.2 Invasion factors 

In order to invade, S. aureus has many factors that allow it to penetrate epithelial and 

endothelial layers. Fibronectin-binding proteins (FnBP) not only mediate adhesion but 

bacterial uptake by endothelial cells, and has been shown enhance virulence and lethality 

during sepsis (270). A variety of enzymes such as proteases, nucleases, lipases, 

collagenases and hyaluronidase are thought to be involved in disruption of the epithelial 

layer, but these mechanisms are not well-defined (143, 271). Exfoliative toxins target 

desmosomes, creating loss of cell-to-cell adherence (272). α-hemolysin binds not only 

erythrocytes but epithelial cells via a disintegrin and metalloprotease 10 (ADAM-10), and 

causes cytolytic pores to form in a variety of cell types (273). ADAM-17 has been shown 

to be upregulated in vaginal epithelial cells in response to TSST-1 and it is thought that 

the inflammatory response is essential in the initial stages of disease (274). 
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1.10.3 Immune evasion factors 

Survival in blood and tissues involves evasion of the host’s immune system. Our immune 

system has evolved powerful ways of eliminating pathogens such as S. aureus, but these 

bacteria have in turn, evolved ways to counteract our defenses. S. aureus uses multiple 

factors to neutralize both the innate and adaptive components of our immune system.  

Phagocytes are crucial for bacterial clearance and neutrophils and macrophages are the 

main antagonists of S. aureus. Not surprisingly, there are many anti-phagocytic 

mechanisms that target these immune cells. SSL5 and extracellular adherence protein 

(Eap) prevent neutrophil recruitment and extravasation to the site of inflammation via 

receptor blockage. Interference with chemokine signaling via receptor blocking is 

mediated by SSL3 and SSL5, as well as formyl peptide receptor (FPR) antagonists: 

CHIPS and FPR-like inhibitory proteins (FLIPr and FLIPr-like). Proteases such as 

Staphopain A and aureolysin are also involved in degrading components of the immune 

system and inhibit neutrophil recruitment (204). Protein A binds the Fc portion of 

antibodies, preventing opsonization and phagocytosis killing (275). Additionally, protein 

A can also interact with the B cell receptor (BCR) and induce apoptosis of B cells (276). 

Staphylococcal complement inhibitor (SCIN) prevents deposition of complement proteins 

on bacterial surfaces and appears to work cooperatively with CHIPS to evade early 

immune responses (277). Extracellular fibrinogen binding protein (Efb) has been shown 

to bind both fibrinogen and proteins from the complement cascade that protects the 

bacterium from being phagocytosed, similar to the function of bacterial capsule (278).  

S. aureus is also highly resistant to neutrophil killing as it also has the ability to survive 

within neutrophils. Staphyloxanthin, the golden pigment that gives S. aureus its name, 

permits resistance to reactive oxygen species among other such factors including catalase 

(151, 204). Cells of the leukocyte lineage are directly targeted and lysed by pore-forming 

toxins which include α-hemolysin, Panton-Valentine leukocidin (PVL), γ-hemolysin, 

leukotoxin ED and leukotoxin AB/GH, as well as small cytolytic peptides known as 

PSMs (279, 280). PSMs mediate lysis of neutrophils during intracellular growth and 

facilitate bacterial escape (204). Many of these virulence factors play multiple roles 
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during infections, and highlight the dynamic and versatile nature of S. aureus interactions 

with the immune system. 

1.10.4 Superantigen contribution to infections 

Other than SFP and TSS, there is no definitive disease that is caused by SAgs. However, 

there are substantial experimental data supporting a contribution of SAgs towards overall 

staphylococcal pathogenesis. In animal models, SAgs have been shown to be critical for 

the development of infectious endocarditis, dermatitis and arthritis (252, 281, 282). SAg-

deletion strains also lower mortality rates in models of necrotizing pneumonia and 

sepsis/IE (6, 252). Vaccination with SAg or SAg toxoids, or monoclonal antibodies 

(mAbs) against SAgs have shown efficacy in reducing lethality and virulence in various 

models of invasive staphylococcal infections (234, 283, 284). The mechanisms of 

pathogenesis are likely due to a positive feedback loop from tissue and endothelial 

damage as a result of inflammatory mediators released by SAg activation. Due to the 

synergistic effects of LPS and SAg-induced shock in experimental models, it has been 

suggested that SAgs play a biological role during polymicrobial infections, enhancing 

Gram negative shock (260); whether this is the case during human staphylococcal 

infections has yet to be determined.  

Although the patient sample size was small, a clinical study comparing the Vβ profiles of 

patients with either S. aureus sepsis or TSS revealed that most of the sepsis patients’ Vβ 

profiles showed no skewing which is normally indicative of SAg activation. Of the sepsis 

samples that showed Vβ-skewing, they did not match the corresponding SAg-induced Vβ 

profiles of the isolated strain. In contrast, all the TSS patients’ Vβ profiles did show 

skewing which corresponded with specific SAg Vβ signatures of the isolated strain. This 

is suggestive that SAgs may not be produced in significant quantities during ‘typical’ 

sepsis, or that their effects are masked by lymphopenia (in this study, found in all sepsis 

patients) as a result of sepsis (231). This report suggests that SAgs may not be actively 

involved during sepsis as previously thought, despite the similarities between TSS and 

septic shock.  
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1.11 Rationale and hypothesis 

The human immune system has evolved to be able to recognize and eliminate pathogens 

and their antigens. However, SAgs represent the only known microbial virulence factor 

whose primary role is to deliberately force the activation of the adaptive immune system. 

This is counter-intuitive given the numerous staphylococcal virulence factors apparently 

designed for immune subversion and evasion (151). Since SAgs are primarily encoded on 

mobile genetic elements, it is likely that these genes would be lost if they did not 

contribute to the overall fitness of S. aureus. It is clear that SAgs enhance the lethality 

and virulence of staphylococcal infections; however, this still does not explain why S. 

aureus produce SAgs. Enhancing mortality is not evolutionarily prudent for survival and 

transmission to new organisms, and obviously death of the host would deprive S. aureus 

of a viable niche. With such widespread distribution and variability of SAg genes, the 

question arises as to what purpose SAgs serve for S. aureus – one that has remained 

largely unanswered. Given the adaptive nature of S. aureus to asymptomatically colonize 

as a commensal as well as causing a variety of pathogenic infections, it is likely that 

SAgs may have different contributions to these opposing lifestyles, or may play a role in 

the molecular switch from one lifestyle to another. Although traditionally viewed as 

disease-causing virulence factors that encourages the pathogenicity of S. aureus, I 

propose a different function of SAgs in the context of colonization versus dissemination 

and hypothesize that SAgs maintain S. aureus colonization by acting as ‘checkpoints’ to 

prevent bacterial dissemination within the host. Furthermore, with the numerous array of 

virulence factors designed to evade phagocytosis, I hypothesize that during invasive S. 

aureus infections, SAgs function to increase bacterial fitness by preventing bacterial 

clearance. 

1.12 Specific aims 

The specific aims of this thesis were to evaluate isogenic SAg-negative strains of S. 

aureus against their wild-type counterparts in i) a SAg-sensitive murine model of nasal 

colonization and ii) a bacteremia model, in order to elucidate the role that SAgs play 

during these opposing lifestyles. 
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2.1 Introduction 

Staphylococcus aureus is a commensal bacterium that is also one of the most common 

sources of nosocomial infections. These infections can range in severity from superficial 

skin infections to invasive deep tissue infections, infective endocarditis and sepsis (1) and 

the increasing prevalence of methicillin-resistant S. aureus strains (MRSA) has resulted 

in an increase of morbidity and mortality (1-4). S. aureus carriage is ubiquitous in the 

population, being found most typically on the skin and nasal cavities. Nasal carriers have 

been defined as persistent, intermittent, or non-carriers, although the definitions for each 

group can vary between studies. In general, persistent and intermittent carriers account 

for least 50% of the population, with some studies showing even higher levels of 

colonization (4, 5). S. aureus typically resides in the vestibulum nasi of the anterior nares 

and has been found colonizing the cornified layer of stratified squamous epithelium, 

keratinized surfaces and mucous debris, as well as hair follicles of human noses (6). 

Given these anatomical findings, it is not surprising that S. aureus are able to bind to 

keratinized cells and desquamated nasal epithelial cells as key host cells upon which to 

initiate colonization (7, 8). Bacterial components contributing to staphylococcal 

colonization are multifactorial and include host genetic factors that influence carrier 

status (9), as well as a variety of bacterial adhesins and cell-wall associated factors such 

as clumping factor B (ClfB) (10), wall teichoic acids (11), surface protein SasG (12), and 

iron-regulated surface determinant A (IsdA) (13).  

Nasal carriers of S. aureus are generally asymptomatic and healthy, forming a commensal 

relationship with the bacteria. However, colonization status increases the risk of a severe 

infection from the carrier strain, although nasal carriers tend to have a better prognosis in 

the event of a staphylococcal infection (14). This is thought to be due to specific 

immunity built up against the colonizing strain which is usually dominant in a persistent 

carrier (15). The humoral response of persistent carriers show a robust response against 

the adhesins ClfA and ClfB, as well as the superantigens (SAgs) toxic shock syndrome 

toxin-1 (TSST-1), and staphylococcal enterotoxin A (SEA) (16).  

SAgs are a group of toxins produced by bacteria including S. aureus that mediate 

interactions between peptide-MHC class II and the CDR2 loop of the variable chain of 
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the T cell receptor that bypasses antigen-specificity (17). This can result in activation of 

up to ~20% of the exposed T cell population and the subsequent release of excessive 

amounts of cytokines, known as a ‘cytokine storm’. These toxins are the causative agents 

of toxic shock syndrome (TSS), and have been implicated in many other diseases 

including infectious endocarditis, Kawasaki disease, atopic dermatitis, and various 

autoimmune diseases (17, 18). To date, more than twenty S. aureus SAgs have been 

identified including an operon of SAgs, the enterotoxin gene cluster (egc), encoding 

staphylococcal enterotoxins (SE) G, I and SE-like (SEl) M, N, O and U (17, 19). 

Epidemiological studies of clinical isolates reveal the high prevalence of egc SAgs (20), 

as well as a negative correlation of these toxins with severe septic shock (21). 

Assessment of the humoral response from persistently colonized individuals have shown 

that these carriers produce high titres of neutralizing antibodies with high specificity for 

the SAgs produced by the carrier strain (15, 22). Nasal swabs from persistent carriers 

revealed that sea, sec and sel-o were actively transcribed; however, neutralizing 

antibodies against SEA and SEC but not SEl-O were detected in this cohort (23). It was 

concluded that the robust antibody response against the non-egc SAgs was due to minor 

infections rather than colonization, although this was not tested. Vaccination of mice with 

SAg toxoids seems to protect only against the early phase of colonization (days 1 and 3) 

(24). This study suggests that SAgs may be involved in initial colonization, but further 

implications are difficult to extrapolate. Collectively, these studies have shed light on the 

highly complex nature of nasal colonization and hinted at a role for SAgs in humans and 

mouse infection models. However, the role of SAgs during nasal colonization, either for 

establishing initial colonization, or involvement in dissemination, has not been 

experimentally addressed.  

Human studies reveal low levels of bacteria in the nose, with 101-104 colony forming 

units (CFU) of S. aureus being isolated from nasal swabs (25). We hypothesize that 

secreted SAgs act as ‘checkpoints’ of colonization in order to maintain this state of 

commensalism and to prevent high bacterial densities through activation of the immune 

system and subsequent elimination of invasive organisms. In order to test our hypothesis, 

we created isogenic SAg deletions of two well-characterized strains of S. aureus, and 

tested these strains against their wild-type counterparts in a SAg-sensitized murine model 
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of staphylococcal nasal colonization. We discovered that the deletion of SEA from S. 

aureus Newman transiently increased nasal colonization compared to wild-type Newman 

colonization, while expression of SEB lowered the ability of S. aureus COL to nasally 

colonize mice compared to its seb-negative counterpart. These experiments demonstrate 

that SAgs play a role in modulating bacterial numbers in the nasal cavity during 

colonization.  
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2.2 Materials and Methods 

2.2.1 Mice  

Six-to-twelve week old male and female HLA-DR4-IE (DRB1*0401) humanized 

transgenic mice lacking endogenous mouse MHC-II on a C57BL/6 (B6) background 

(herein referred to as DR4-B6 mice) were used for all in vivo infection experiments (26). 

B6 mice were purchased from Charles River. All animal experiments were performed 

according to protocols approved by the Animal Use Subcommittee at Western University 

and in accordance with the Canadian Council on Animal Care Guide to the Care and Use 

of Experimental Animals.  

2.2.2 Bacterial strains, media and growth conditions 

Escherichia coli DH5α was used as a cloning host, grown in Luria Bertani (LB) broth 

(Difco; Mississauga, ON, Canada) supplemented with 150 µg/mL ampicillin where 

necessary, at 37°C with shaking at 250rpm. Strains of S. aureus are listed in Table 2.1 

and were grown in tryptic soy broth or agar (TSB/TSA) (Difco) at either 30°C or 37°C 

with shaking, and supplemented with appropriate antibiotics (Sigma Aldrich; Oakville, 

ON, Canada). Endogenous microbiota strains were isolated from mice on either TSA or 

mannitol salt agar (MSA) plates grown at 37oC. Growth curves were performed using a 

Bioscreen C MBR system (Thermo Labsystems; Milford, MA, USA).  

2.2.3 Selection of a streptomycin-resistant S. aureus strain 

Staphylococcus aureus strain Newman is an early methicillin-sensitive clinical isolate 

from the 1950’s that is commonly used in experimental studies of staphylococcal 

pathogenesis (27). Initial attempts to colonize mice resulted in competition with 

endogenous bacterial species and poor S. aureus colonization. This phenomenon has been 

documented previously in the literature (28) and represents an additional challenge for S. 

aureus to colonize in nature. However, for the purposes of testing our hypothesis, an 

antibiotic dosing regime was instated with streptomycin sulfate (Sm) in order to reduce 

the endogenous murine microbiota, as previously described (28). Since S. aureus 

Newman is not naturally resistant to Sm, a mutated strain was engineered by plating  
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Table 2.1 Strains and plasmids used in this study 

Strain or plasmid Description Source 

Strains   

S. aureus Newman  Early methicillin sensitive isolate from secondary 
infection in a patient with tubercular osteomyelitis 
(Sm sensitive) 

(27)  

S. aureus Newman (SmR)  S. aureus Newman resistant to Sm This study 

S. aureus Newman Δsea (SmR) sea-null S. aureus Newman (with resistance to Sm) This study 

S. aureus RN4220 Restriction-deficient derivation of NCTC8325-4 (51) 

S. aureus COL Early methicillin-resistant strain of S. aureus isolated 
in the 1960s 

(33) 

S. aureus COL Δseb seb deletion strain of S. aureus COL This study 

E. coli DH5α Cloning strain Invitrogen 

E. coli BL21 (DE3) Protein expression strain New England 
Biolabs 

Plasmids   

pET28 Protein expression vector Novagen 

pET28::sea Recombinant SEA expression vector This study 

pDG1513 Source of tetR gene (32) 

pMAD Integration plasmid (31) 
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S. aureus Newman on Sm gradient TSA plates and selecting for bacteria that gained 

increased resistance until an isolated strain, S. aureus Newman SmR, was able to be 

grown in TSB + 500 µg/mL Sm. No loss of resistance was observed after daily 1% 

subcultures in TSB without Sm for up to 6 days. Since the growth rate was reduced with 

the inclusion of Sm (data not shown), preparations of bacteria for inoculation into mice 

were cultured without Sm. spa genotyping (29) showed that S. aureus Newman SmR had 

the same genetic background as Sm-sensitive Newman and qRT-PCR showed normal 

levels of sea expression (data not shown). Isogenicity was retained during construction of 

the sea deletion strain Newman Δsea as described below, by using the Sm resistant strain 

of S. aureus Newman as wild-type host so that the Sm resistance marker was identical in 

both strains. Thus for the remainder of the experiments, Newman SmR will be referred to 

as Newman and the isogenic sea deletion strain as Newman Δsea. 

2.2.4 Construction of S. aureus Newman Δsea 

Restriction enzymes were purchased from New England Biolabs (Whitby, ON, Canada) 

and primers were designed using Primer3 software (30) and supplied by Sigma Aldrich. 

Standard techniques were used for the following molecular cloning procedures. The gene 

encoding for staphylococcal enterotoxin A (SEA) in S. aureus strain Newman was 

insertionally inactivated with a tetracycline-resistant cassette using an established 

protocol and as depicted in Figure 2.1 (31). Wild-type sea along with its corresponding 

upstream (Up) and downstream fragments (Down) were PCR amplified from the genome 

of Newman using seaFP 5'-AACGGGATCCCATGTGCTTGAACTTAGAGAGGAA-3' 

and seaRP 5'-TTCGGTCGACCCCAATAGCTTTTGCGATGT-3' and directionally 

cloned into pMAD via BamHI and SalI sites. A 261 bp fragment was excised from the 

middle of sea using ClaI and EcoRI, and replaced with a tetracycline resistance marker 

(tetR) excised from pDG1513 (32). This construct was then transformed into S. aureus 

Newman after undergoing methylation in S. aureus RN4220. Allelic replacement of the 

wild-type sea with tetR via homologous recombination was conducted as described (31). 

The resulting sea-null S. aureus strain Newman Δsea was confirmed to be tetracycline 

resistant and erythromycin sensitive, with the tetR insertion verified by PCR with primers 

flanking the genomic region outside of the original amplicon and DNA sequencing.  
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Figure 2.1 Deletion of sea from S. aureus Newman. Schematic and protocol of sea 

deletion from S. aureus Newman using double homologous recombination. Up and Down 

designates the region upstream and downstream respectively of sea from the genome of 

S. aureus Newman and tetR denotes the tetracycline resistance cassette. This schematic 

represents one of two possible scenarios for homologous recombination (upstream vs. 

downstream) and excision  

tetR Down Up 

pMAD::Δsea 

sea Down Up NWM genome 

Plasmid 
integration 

into genome 
at 42oC 

tetR Down Up pMAD:Δsea 
 

Excision from genome 

sea Down Up 

tetR Down Up 

Plasmid replication at 30oC 

Screen for deletion mutants via 
tetracytline resistance, loss of 

erythromycin resistance (plasmid 
cured) and tetracycline resistance 

ΔSEA genome 



67 

 

2.2.5 Construction of S. aureus COL Δseb  

S. aureus COL is one of the earliest MRSA strains to be isolated in the 1960’s and data 

mining of the sequenced COL genome (33) revealed three SAgs: SEB, SEl-K and SEl-I 

(formerly SEQ (34)). COL was found to be inherently resistant to Sm and thus did not 

require a new Sm-resistant strain to be generated. A markerless deletion was created in 

seb based on previously described methods as depicted in Figure 2.2 (31). Briefly, a 524 

bp fragment upstream of seb was amplified using the primers 5’-

TAGGGATCCAGCTCGTGATATGTTGGGTAAA-3’ and 5’-GGGCGGGTCGACTGA 

AATAAATAATCTCTTATACA-3’ along with a 505 bp region downstream of seb 

amplified by the primers 5’-CGATGTCGACTATCTTACGACAAAGAAAAA 

GTGAAA-3’ and 5’-TCAGGAATTCGAGATGCTTTGAAAGAAGCAAA-3’. These 

products were directionally cloned into pMAD, creating pMAD::seb which only includes 

54 bp of the original 801 bp encoding seb. This knockout construct was methylated by S. 

aureus RN4220 and electroporated into S. aureus COL. To create the seb knockout, a 

single-integration event was first isolated, followed by subcultures in TSB without 

antibiotics grown at 30oC. Since pMAD contains β-galactosidase, patching of white 

colonies detected colonies that had lost resistance to erythromycin, evident of plasmid 

curing and screened by PCR to verify successful deletion of seb. 

2.2.6 Construction and purification of recombinant SAgs.  

Wild-type sea lacking the signal peptide was PCR-amplified from the genome of S. 

aureus Newman using the primers 5’- GGGCCATGGGCAGCCATCATCATCATCATC 

ACAGCAGCGGCGAAAACTTGTATTTCCAAAGCGAGAAAAGCGAAGAAAT-3’ 

and 5’-GGGGGATCCTTAACTTGTATATAAATATATATC-3’, introducing nucleotide 

sequences encoding a His6-tag and tobacco etch virus (TEV) protease cleavage site 

(ENLYFQ↓G) onto the N-terminus of sea. This PCR product was inserted into pET28a 

(Novagen) via BamHI and NcoI sites to create pET28a::sea and transformed into E. coli 

BL21 (DE3) for protein purification. Cells were induced with 200 µM isopropyl β-D-1-

thiogalactopyranoside (Sigma Aldrich) to express His6-tagged SEA and purified using 

nickel column chromatography as previously described (35). The His6-tag was removed 

with TEV protease and dialyzed in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
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Figure 2.2 Deletion of seb from S. aureus COL. Schematic and protocol of markerless 

seb deletion from S. aureus COL using a two-step double homologous recombination 

method. Up and Down designates the region upstream and downstream respectively of 

seb from the genome of S. aureus COL. 
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(HEPES) or phosphate buffered saline (PBS) before use. Proteins were quantified using a 

bicinchoninic acid (BCA) commercial kit (Pierce Biotechnology; Rockford, IL, USA) 

according to manufacturer’s instructions. Recombinant SEB was generated as previously 

described (36).  

2.2.7 Detection of SAgs in cultural supernatants in vitro 

Bacterial cultures were grown overnight in TSB, cells were pelleted, and cell-free 

supernatants equivalent to 5.0 OD600 units of culture were collected. Proteins were 

precipitated with 10% trichloroacetic acid (TCA) overnight on ice, washed twice with 

ice-cold 70% ethanol and resuspended in Laemmli buffer as previously described (37). 

Samples were analyzed on 12% polyacrylamide gels stained with Coomassie Brilliant 

Blue R-250. For Western blot analysis of SEB expression, samples were transferred to 

polyvinylidene difluoride (PVDF) membranes (Millipore; Etobicoke, ON, Canada) at 

100V for 1 hour. The membrane was blocked at roomed temperature for 1 hour with PBS 

supplemented with 10% skim milk and 5% horse serum (Gibco; Burlington, ON, 

Canada). Following removal of the blocking buffer, the membrane was incubated with 

rabbit polyclonal anti-SEB antibodies (kindly provided by Dr. Patrick Schlievert) diluted 

1:100 in PBS supplemented with 5% skim milk and 2.5% horse serum. The membrane 

was washed three times with PBS supplemented with 0.02% Tween-20 (Fischer 

Scientific; Ottawa, ON, Canada) (PBST), followed by incubation with IRDye-conjugated 

goat anti-rabbit secondary antibody (LI-COR Biosciences; Lincoln, NB, USA) diluted 

1:10 000 in PBST supplemented with 5% skim milk and 2.5% horse serum for 1 hour in 

the dark. The membrane was imaged using an Odyssey imager (LI-COR Biosciences). 

2.2.8 Anti-SEA antibody production in rabbits 

Twenty-five µg of recombinant SEA suspended in PBS was emulsified in incomplete 

Freund’s adjuvant in a total volume of 1mL and injected subcutaneously into a New 

Zealand rabbit by Animal Care and Veterinary Service at the University of Western 

Ontario. Two and four weeks after the initial vaccination, booster injections at the same 

SEA concentration were administered. A sample of baseline blood was taken prior to 

vaccination and further blood samples taken two and five weeks after the initial 
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vaccination. Sera from the bleeds were collected and frozen at -80°C and anti-SEA 

antibodies were detected by enzyme-linked immunosorbent assay (ELISA), as previously 

described (38). 96-well certified high-bind plates (Costar; Oakville, ON, Canada) were 

coated with 10 µg/mL of recombinant SEA in coating buffer (eBioscience) overnight.  

Plates were washed twice with distilled water and blocked with PBST supplemented with 

1% bovine serum albumin (BSA) (Sigma Aldrich) for 2 hours. Plates were washed three 

times with PBST, followed by three washes with distilled water and serially-diluted 

serum samples were added in the plate and incubated for 2 hours. Plates were washed as 

before with PBST followed by addition of 1:10 000 dilution of horseradish peroxidase 

(HRP)-conjugated goat anti-rabbit IgG (Rockland; Gilbertsville, PA, USA) for 2 hours. 

Plates were washed five times as before and developed for 15 minutes with 3,3’,5,5’-

Tetramethylbenzidine (TMB) substrate (BD). The reaction was stopped by addition of 1 

N H2SO4 and the absorbance was determined at 450 nm with subtraction of 570 nm 

wavelength background. All steps were carried out at room temperature.   

2.2.9 Cellular proliferation quantification.  

The ability of B6 and DR4-B6 mice to respond to SEA was assessed using the 

incorporation of [
3
H]thymidine as described (39). Mouse spleens were collected and 

broken into a single cell suspension, followed by erythrocyte lysis in ammonium-

chloride-potassium (ACK) buffer. The remaining cells were suspended in RPMI 

(Invitrogen Life Technologies) supplemented with 10% FBS (Sigma Aldrich), 100 

µg/mL streptomycin and 100 U/mL penicillin (Gibco), 2 mM L-glutamine (Gibco), 1 

mM MEM sodium pyruvate (Gibco), 100 µM nonessential amino acid (Gibco), and 25 

mM HEPES (pH 7.2) (Gibco), and seeded into 96-well plates at a density of 1 × 106 

cells/mL.  Various concentrations of recombinant SEA were added to cells and incubated 

for 72 hours at 37°C. Cells were then pulsed with 1 µCi/well of [
3
H]thymidine for an 

additional 18 hours prior to harvesting on fiberglass filters. Counts were measured using 

a 1450 Microbeta liquid scintillation counter (Wallac; Woodbridge, ON, Canada). 
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2.2.10 Assessment of superantigenic activity of S. aureus SAg 
deletion strains in vitro 

Supernatants from S. aureus strains were tested for SAg activity using DR4-B6 

splenocytes seeded into 96-well plates as described above. Titrations of recombinant SEA 

or SEB, and supernatants from overnight cultures of S. aureus Newman, Newman Δsea, 

COL and COL Δseb diluted 1:10 were added to splenocytes for 18 hours at 37°C, and 

supernatants were assayed for IL-2 by ELISA according to manufacturer’s instructions 

(eBioscience; San Diego, CA, USA).  

2.2.11 Staphylococcus aureus nasal colonization model  

Twenty-four hours prior to inoculation, mice were administered drinking water 

supplemented with 2.0 mg/mL of Sm ad libitum, which was changed every 3-4 days for 

the duration of the experiment. Bacteria picked from a TSA plate were grown in 5 mL 

TSB overnight (16-18 hours), OD600 was adjusted to 1.0, subcultured 2% into 50 mL 

TSB and grown to exponential phase (OD600 ~ 3.0-3.5). The bacterial pellet was washed 

3 times with Hank’s Buffered Salt Solution (HBSS) (Hyclone; Logan, UT, USA) and 

suspended at a concentration of 1 × 1010 CFU/mL in HBSS. Isofluorane-anesthetized 

mice were nasally inoculated by slowly pipetting 5 µL into each nare and allowing the 

animal to breathe in the suspension naturally, resulting in a total inoculum of 1 × 108 

CFU S. aureus per mouse. Mice were weighed and monitored daily according to animal 

ethics use protocol and sacrificed at days 3, 7, 10, and 14. To enumerate the amount of 

bacteria in the nose, euthanized mice were decapitated and the lower jaws removed. The 

entire snout was excised using the back of the mouth opening as an anatomical marker in 

order to include any bacteria in the nasal passage. The whiskers and surrounding skin 

were removed without touching the nose and the remaining tissue was collected in HBSS. 

The kidneys, hearts, lungs, livers and spleens were also collected and all organs were 

homogenized, serially diluted and plated on MSA (Difco) to differentiate between S. 

aureus and endogenous bacteria. Counts were not different between plates containing Sm 

and without Sm (data not shown), thus Sm was not included in plates. Plates were 

enumerated after being incubated at 37°C for 24 hours. Counts less than 3 CFU/10 µL 

were considered below the detectable limit.  
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2.2.12 Determination of SAg function in vivo 

Lymph nodes (cervical, axillary, brachial, inguinal, and popliteal) were isolated in toto 

from mice and pushed through a cell strainer to create a single cell suspension in PBS. 

Cells were stained with APC-conjugated anti-CD3 (clone 145-2C11) (eBioscience) and 

FITC-conjugated anti-Vβ3 (clone KJ25) (BD Pharmingen; Missisauga, ON, Canada) or 

FITC-conjugated anti-Vβ8 (clone KJ16) (eBioscience) and assayed using a FACSCanto 

II (BD). Data were analyzed using FlowJo v.8.7. (Treestar; Ashland, OR, USA).  

2.2.13 Detection of serum anti-SAg antibodies  

Sera from mice were collected at time of sacrifice and stored at -20oC. Anti-SAg serum 

immunoglobulin G (IgG) were determined by ELISA as described above for rabbit anti-

SEA IgG. Detection of IgG positive antibody titres were determined as greater than four 

times the average of control serum. HRP-conjugated goat anti-mouse IgG (Sigma 

Aldrich) was used as the secondary antibody.  

2.2.14 Statistical analyses 

Data were analyzed using unpaired student’s t-tests. All statistical analyses were 

performed using Prism v5.0 (GraphPad; La Jolla, CA, USA) with p < 0.05 being 

considered significant.  
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2.3 Results 

2.3.1 DR4-B6 mice are sensitized to superantigens 

A general feature of most bacterial SAgs is that these toxins do not efficiently bind 

mouse MHC-II molecules (40, 41). S. aureus Newman encodes the SEA SAg (42) so we 

first tested the ability of recombinant SEA protein to activate splenocytes isolated from 

both B6 and DR4-B6 transgenic mice. SEA resulted in a dose-dependent proliferative 

response as low as 1 pg for splenocytes from DR4-B6 mice, while proliferation of B6 

splenocytes was not detected above background levels (Fig. 2.3). Thus, remaining 

experiments were conducted in DR4-B6 mice. 

2.3.2 SAg deletion strains have reduced superantigen production 
and activity in vitro.  

A sea deletion mutant was generated in S. aureus Newman as described in the materials 

and methods. The exoprotein profile of S. aureus Newman Δsea lacked detectable SEA 

by Western blot (Fig. 2.4A), confirming the deletion. Additionally, the supernatants from 

S. aureus Newman and Newman Δsea strains were tested for SAg activity on DR4-B6 

splenocytes using IL-2 production as a measure of T cell activation. Ten-fold diluted 

supernatants from wild-type S. aureus Newman induced ~50 pg/mL IL-2 from DR4-B6 

splenocytes which extrapolated to secreted SEA concentrations of ~100 ng/mL. In 

contrast, we did not detect IL-2 production from Newman Δsea supernatants confirming 

both the genetic deletion and that other functional DR4-B6 reactive SAgs, such as the 

genome-encoded SEl-X (which is the only other known SAg encoded by Newman) (43), 

do not display superantigenic activity for DR4-B6 splenocytes in these growth conditions 

(Fig. 2.4B). Similarly, a seb deletion mutant created in S. aureus COL, described in the 

materials and methods, did not produce SEB as detected by Western blot in the 

exoprotein profile of S. aureus COL Δseb (Fig. 2.5A). IL-2 production was barely 

detected above background when DR4-B6 splenocytes were treated with cultural 

supernatants from COL Δseb compared to wild-type COL (Fig. 2.5B). The minute levels 

of IL-2 induced by COL Δseb can be attributed to the remaining two SAgs, SEI and SEK, 

although it appears that SEB is the main SAg produced by S. aureus COL in vitro. 

Growth curve analysis of SAg deletion strains compared to their wild-type counterparts  
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Figure 2.3 DR4-B6 transgenic mouse splenocytes proliferate more in response to 

SEA than B6 mouse splenocytes. Splenocytes from DR4-B6 (black circles) and B6 

(black squares) mice were treated with increasing concentrations of recombinant SEA for 

72 hours, followed by the addition of tritiated thymidine. Proliferation was recorded by a 

scintillation counter as radioactive counts per minute. Results show a representative data 

set. 
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Figure 2.4 S. aureus Newman Δsea does not produce SEA and has greatly reduced 

superantigenic activity. A) TCA-precipitated supernatants (5 OD units) showing the 

exoprotein and SAg profiles of S. aureus Newman and Newman Δsea and detection of 

SEA production by anti-SEA antibodies using Western blot. B) IL-2 production from 

DR4-B6 splenocytes activated with increasing concentrations of recombinant SEA (white 

bars) and bacterial supernatants diluted 1:10 from S. aureus Newman and Newman Δsea 

(black bars). Results shown as the mean ± SEM from a representative data set. 
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Figure 2.5 S. aureus COL Δseb does not produce SEB and has greatly reduced 

superantigenic activity. A) TCA-precipitated supernatants (5 OD units) showing the 

exoprotein and SAg profiles of S. aureus COL and COL Δseb and detection of SEB 

production by anti-SEB antibodies using Western blot. B) IL-2 production from DR4-B6 

splenocytes activated with increasing concentrations of recombinant SEB (white bars) 

and bacterial supernatants diluted 1:10 from S. aureus COL and COL Δseb (black bars). 

Results shown as the mean ± SEM from a representative data set. 
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showed no obvious growth defects in vitro (Fig. 2.6); thus, it is not likely that lack of 

SAg production is due to an inability to reach the same growth phases as wild-type 

strains. Furthermore, comparison of the exoproteins between wild-type and their 

counterpart SAg-deletion strains reveal no major differences in secreted proteins other 

than the presence or absence of SAg  (Fig. 2.4A and 2.5A), confirming the isogenicity of 

the deletion strains. 

2.3.3 Lack of SEA transiently increases S. aureus Newman Δsea 
nasal colonization.  

To investigate if SEA plays a role during murine nasal colonization, DR4-B6 mice pre-

treated with Sm were inoculated with 1 × 108 CFUs of S. aureus Newman or S. aureus 

Newman Δsea. S. aureus was detected in the nasal passages of both S. aureus Newman 

and S. aureus Newman Δsea-infected mice up to day 14 post-inoculation. Generally, 

CFU counts were higher during the first week of colonization compared to the second 

week (Fig. 2.7). Infected mice did not show overt signs of infection (lack of piloerection, 

conjunctivitis, skin rashes, and dehydration, with normal activity levels), had no weight 

loss, and were generally healthy for the duration of the experiment (data not shown). 

Despite the apparent lack of infection, the lungs and livers of both infection groups 

revealed spread of bacteria beyond the nose, although the bacterial burdens in these 

organs were lower than in the nasal passage and generally very low by day 14 (Fig. 2.7B 

and C). Bacteria were not detected in the kidneys, heart or spleen (data not shown). No 

significant differences in bacterial loads were observed between bacterial strains on days 

3 or 7 in the nose. However, by day 10, S. aureus Newman Δsea-colonized mice had 

increased counts of nasal bacteria compared to wild-type-colonized mice (Fig. 2.7A); 

although, this phenotype reverted to no differences between treatment groups by day 14. 

These data suggest that SEA does not play a major role during the initial stages of 

colonization, but may prevent higher bacterial densities from forming in the nose. While 

the lack of SEA production did allow higher bacterial densities to form, this transient 

growth did not result in better colonization at later time points, suggesting that it does not 

enhance the overall colonization capabilities of S. aureus Newman. No significant  
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Figure 2.6 SAg deletion does not affect S. aureus growth in vitro. Growth curve 

analysis of A) S. aureus Newman (open circles) and Newman Δsea (black circle) in TSB, 

and TSB only (black triangle) and B) S. aureus COL (open circles) and COL Δseb (black 

circle) in TSB, and TSB only (black triangle) grown in triplicate.   
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Figure 2.7 Nasal colonization of DR4-B6 mice with S. aureus Newman Δsea results 

in a transient increase in bacterial load compared to wild-type Newman. DR4-B6 

mice were infected nasally with 1 × 108 CFUs of S. aureus Newman (n = 6-9) or 

Newman Δsea (n = 6-7). Mice were sacrificed on days 3, 7, 10 and 14 and the A) nasal 

passage, B) lungs and C) livers were assessed for overall S. aureus burdens. Each point 

represents an individual mouse and the line in each treatment group represents the mean. 

Counts below the limit of detection are interpreted as having no counts. Data are 

representative of at least three independent experiments. Significant differences (p < 

0.05) as determined by unpaired student’s t-test are denoted with *.  
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differences were observed in the spread of infection to other organs between wild-type 

and sea-null infection indicating that SEA likely does not influence dissemination. 

2.3.4 SEA does not skew Vβ3 subsets in vivo  

We aimed to determine if SEA was produced during S. aureus colonization by examining 

the Vβ profiles of infected mice. As SEA is known to target murine Vβ3+ T cells (44), we 

analyzed the Vβ3 subset as well as levels of serum  IgG against SEA in order to assess if 

SEA had in vivo activity. Analysis of the Vβ3+CD3+ lymphocytes from lymph nodes 

revealed no significant changes in this subset between S. aureus Newman or Newman 

Δsea-inoculated mice on any of the days analyzed (Fig. 2.8), although there is a trend of 

decreased Vβ3+ T cells in wild-type Newman-colonized mice. These data suggest that 

SEA may not be produced in large amounts or is weakly active during the length of the 

experiment. Additionally, no IgG against SEA could be detected in Newman and 

Newman Δsea-inoculated mice sera. Collectively, these data suggest that SEA was not 

produced in functionally detectable quantities in vivo during colonization. This may 

explain that lack of differences seen in bacterial burdens at earlier time points (Fig. 

2.7A), since the lack of SEA production by S. aureus Newman is functionally equivalent 

to infection with Newman Δsea.  

2.3.5 SEB influences nasal colonization 

Unlike SEA, SEB is transcriptionally activated by the accessory gene regulator (agr) 

quorum-sensing system during exponential and late stages of growth (45) and may result 

in differential expression in response to environmental cues. Similar to colonization with 

S. aureus Newman, bacteria were found in the nasal passages of infected mice in both 

treatment groups; however, colonization with wild-type S. aureus COL persisted with 

higher bacterial numbers (103 –104) (Fig. 2.9A) compared to wild-type Newman (102–

103) (Fig. 2.7A) especially at later time points, suggesting that COL may be a better nasal 

colonizer than Newman. When the mice were colonized with S. aureus COL Δseb, 

bacteria recovered from the nasal passages was ~100-fold higher CFUs at all time points 

compared with wild-type COL colonization alone (Fig. 2.9A). As with nasal colonization 

by S. aureus Newman, all mice were apparently healthy for the duration of the  
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Figure 2.8 S. aureus Newman nasal colonization does not result in significant 

changes in the percentage of Vβ3+CD3+ T cells. Analysis of lymphocytes from lymph 

nodes isolated from DR4-B6 mice nasally inoculated with 1 × 108 CFU S. aureus 

Newman or Newman Δsea (n = 2-4). Cells were stained with antibodies against CD3 and 

Vβ3 and gated on CD3+ lymphocytes, followed by gating on the Vβ3+CD3+ population. 

Data are shown as the mean ± SEM and significant differences (p < 0.05) were 

determined by unpaired student’s t-test (NS = no significance). 
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Figure 2.9 Murine nasal colonization with S. aureus COL Δseb results in enhanced 

bacterial counts compared to wild-type COL. DR4-B6 mice infected nasally with 1 × 

108 CFUs of S. aureus COL (black circles, n = 6) or COL Δseb (red squares, n = 5) were 

sacrificed on days 3, 7, 10 and 14. The A) nasal passage B) lungs and C) livers were 

assessed for overall S. aureus loads. Each point represents an individual mouse and the 

line in each treatment group represents the mean. Counts below the limit of detection are 

interpreted as having no counts. Data are representative of at least three independent 

experiments. Significant differences (p < 0.05) as determined by unpaired student’s t-test 

are denoted with *, p < 0.01 is denoted by **. 
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experiment with no obvious signs of infection. Spread of the infection to the lungs and 

livers were also observed during S. aureus COL and COL Δseb colonization, although no 

significant differences were observed between the two strains (Fig. 2.9B and C). No 

bacteria were detected in the kidneys, hearts or spleens (data not shown). While a 

complete SAg-negative strain was not assessed, this data suggests that the presence of 

SEB inhibits high-density colonization of the nasal passage. 

2.3.6 SEB induces late Vβ8 skewing but not anti-SEB IgG during 
nasal colonization 

To evaluate if the phenotype observed during S. aureus COL colonization was SEB-

dependent, we assessed Vβ-skewing in mice colonized with S. aureus COL and COL 

Δseb to test for functional SEB activity. SEB targets Vβ8.1/8.2 (henceforth Vβ8) T cells 

in mice (44) and Vβ3 was used as an internal control as it is not targeted by SEB. The 

murine Vβ subsets targeted by SEl-K and SEl-I are unknown to date and thus could not 

be assessed for in vivo activity although these SAgs showed little superantigenic activity 

in vitro (Fig. 2.5B). While no differences could be detected at early time points (days 3 

and 7), by day 10 there was a trend of decreased Vβ8+ T cells which was significantly 

decreased by day 14 (Fig. 2.10). Interestingly, anti-SEB IgG antibodies were not detected 

from either COL or COL Δseb-colonized mice, except for one mouse at day 3 (data not 

shown). The demonstrated Vβ-skewing by day 14 indicates that SEB was produced and 

functional during S. aureus COL nasal colonization. Furthermore, the difference in 

bacterial loads between COL and COL Δseb (Fig.2.9A) at early time points suggests that 

SEB is functioning early on during colonization although we were not able to detect 

functional activity until the later time points.  
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Figure 2.10 SEB is produced during S. aureus COL nasal colonization and 

specifically interacts with Vβ8+CD3+ lymphocytes. Lymphocytes from lymph nodes 

isolated from DR4-B6 mice nasally inoculated with 1 × 108 CFU S. aureus COL or COL 

Δseb were analyzed using flow cytometry (COL n = 3, COL Δseb n = 2-5). Samples were 

stained with antibodies against either CD3 and Vβ3 or CD3 and Vβ8. Each mouse sample 

was stained with both Vβ3 and Vβ8, using Vβ3 as the internal control. Samples were 

gated on CD3+ lymphocytes, followed by gating on the Vβ3+CD3+ or Vβ8+CD3+ 

population and expressed as a ratio of Vβ8+ CD3+ to Vβ3+CD3+ cells per mouse. Data are 

shown as the mean ± SEM and ** denotes p < 0.01, as determined by student’s-test. 
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2.4 Discussion 

This is the first study where the role of SAgs has been directly and experimentally 

assessed during a controlled model of nasal colonization using SAg-sensitive, humanized 

transgenic mice. Our experiments revealed that different SAgs may play distinctive roles 

during colonization as SEA did not alter CFUs for S. aureus Newman nasal colonization, 

while SEB reduced S. aureus COL colonization. Although S. aureus Newman also 

encodes sel-x and COL encodes sei and sel-k, the in vitro stimulation data suggests that in 

our growth conditions, these SAgs are not made in high quantities by these strains and 

thus may not play a major role in our model. However, future studies should assess a 

complete SAg deletion strain in comparison to wild-type colonization.  

Data from previous human studies suggest that SAgs may be involved during S. aureus 

colonization from two lines of evidence: real-time PCR analysis of nasal swabs from 

persistent carriers show transcription of sea (23) and the finding that persistently-

colonized individuals have high levels of neutralizing antibodies against SEA and TSST-

1 (16). Although it has been suggested that non-agr regulated SAgs such as SEA may be 

involved during the early phases of colonization (46), this was not supported by our 

model when we inoculated DR4-B6 mice with S. aureus Newman. SEA expression 

during Newman colonization is supported by the increase in bacterial colonization at day 

10 by S. aureus Newman Δsea despite the lack of significant Vβ-skewing. These data 

suggest that SEA was expressed in small amounts and inhibited the formation of high 

bacterial densities in the nasal cavities. Conversely, the decrease in Vβ8 T cells during 

colonization with S. aureus COL compared to COL Δseb mice is indicative of SEB 

expression by COL, which is responsible for the difference in nasal bacterial burdens. 

Direct comparison of the role of SEA versus SEB is difficult because they are encoded by 

two distinct strains. However, a notable difference between SEA and SEB lies in their 

regulation and expression: SEA is generally not produced in large amounts, whereas SEB 

production can reach high concentrations in vitro, likely due to the activation of the agr 

two-component system (Fig. 2.4A and 2.5A). Thus, the high expression of SEB by S. 

aureus COL may have resulted in colonization with lower bacterial counts due to its 
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inflammatory properties at all time points while lower expression of SEA by S. aureus 

Newman did not have as dramatic differences.  

The absence of anti-SAg antibodies by day 14 is suggestive that either the SAgs were not 

processed as conventional antigens and presented to B cells, or that anti-SAg antibodies 

were not IgG isotypes and thus could not be detected by the assay employed. Human 

studies have concluded that colonization by S. aureus does not appear to induce a strong 

humoral response (23, 47). Thus, the high levels of anti-SEA antibodies in healthy 

subjects (16) may not be a result of persistent colonization, but rather breaches of the 

nasal mucosa from colonizing S. aureus, or mild skin infections. It has also been noted 

that anti-SAg antibodies are not always produced when the immune system is subjected 

to wild-type SAg, whereas SAg toxoids are much more immunogenic and are capable of 

forming robust anti-SAg antibodies (24, 48), suggesting that SAgs can dysregulate the 

antibody response. Furthermore, it has been shown that naïve T cells exposed to SAgs 

will restrict antibody production, but will not affect ‘primed’ T cells (49) which may 

likewise explain the lack of anti-SAg IgG in our colonized mice (who have not been 

previously exposed to SAgs). TSS patients that fail to seroconvert after an episode may 

lead to recurrence, which has been attributed to the mechanisms of TSST-1 that prevent 

the development of Th2 responses, and thus T-cell dependent B cell activation (50).  

Our study was extended to 14 days to observe differences in dissemination to other 

organs. agr-regulated SAgs such as SEB and TSST-1 may be involved in dissemination 

from the main bacterial colony, during which many exoproteins and virulence factors are 

produced, as opposed to cell-surface factors such as MSCRAMMs required for the initial 

colonization phase (46). Surprisingly, we found bacteria in the lungs and livers of 

colonized mice as early as 3 days even though the mice did not show any overt signs of 

infection. There were no significant differences in the bacterial loads in these extra-nasal 

locations between the wild-type strains and their SAg deletion counterparts, suggesting 

that neither SEA nor SEB were involved in dissemination from the nasal cavity.  

While SAgs are generally thought to enhance virulence, the deletion of SAgs actually 

increased bacterial CFUs in the nasal cavity indicative of greater bacterial fitness. 
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Interestingly, although colonization with S. aureus Newman Δsea resulted in higher 

bacterial counts at day 10, this did not translate into long-term fitness and actually 

decreased back to wild-type levels by day 14. This suggests that higher bacterial densities 

in the nose may not be beneficial for asymptomatic colonization. Extending the length of 

the study may further clarify this theory since COL Δseb maintained a higher bacterial 

density throughout the duration of the experiment. Although we did not observe 

differences in dissemination in our model during S. aureus COL and COL Δseb 

colonization, the highest bacterial counts in the lungs were mostly COL Δseb–inoculated 

mice, suggesting increased seeding from the higher bacterial counts in the nasal cavity. 

Given that bacteria colonizing the anterior nares are poised for both transmission between 

people and dissemination within the host, the vestibulum nasi is a desirable environment 

for S. aureus to reside in. Thus, S. aureus may utilize SAgs to prevent nasal bacteria from 

overwhelming this niche and breaching the mucosa, potentially leading to elimination by 

the immune system, thus acting as 'checkpoints' of dissemination. Since higher densities 

of bacteria may result in a greater inflammatory response, maintaining a low presence in 

the nose may be an evolutionarily prudent tactic to maintain long-term asymptomatic 

colonization. This is supported by the low bacterial burdens isolated from human nasal 

carriers during asymptomatic colonization (25). Thus, this work supports the clinical 

finding that SAgs are expressed during nasal colonization (23), and that these toxins may 

play an important role for influencing bacterial densities during this commensal lifestyle. 

This provides evidence for a novel role for SAgs, contrary to the traditional role of 

having been associated with enhancing virulence in severe invasive diseases. 
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 Superantigens subvert the neutrophil response to Chapter 3
promote abscess formation and enhance Staphylococcus 

aureus survival in vivo3 

3  
  

                                                
3
 Parts of this chapter have been previously published and are adapted from: 

Xu, S.X., Gilmore K.J., Szabo P.A., Zeppa J.J., Baroja M.L., Haeryfar S.M. and J.K. McCormick. (2014) 
Superantigens subvert the neutrophil response to promote abscess formation and enhance Staphylococcus 
aureus survival in vivo. Infection and Immunity. 82(9):3588-98. doi: 10.1128/IAI.02110-14 
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3.1 Introduction 
Staphylococcus aureus is a common human commensal equipped with numerous 

virulence factors that allow this organism to successfully colonize and infect host tissues. 

Staphylococcal diseases most frequently manifest as skin and soft tissue infections with a 

high propensity for abscess formation (1-3); however, S. aureus is also readily capable of 

disseminating into deeper tissues to cause invasive and life-threatening infections 

including endocarditis, osteomyelitis and sepsis (1-3). Moreover, S. aureus can also 

induce toxin-driven diseases such as food poisoning, staphylococcal scalded skin 

syndrome, and the toxic shock syndrome (TSS) (4). The versatility of this bacterium as a 

successful commensal and pathogen, coupled with the development of resistance to a 

wide array of antibiotics, has led to the establishment of S. aureus as a leading cause of 

both hospital- and community-associated infections (5, 6).  

Many of the specialized S. aureus virulence factors have evolved to target innate immune 

mechanisms, primarily neutrophils and macrophages, which are key cells involved in the 

clearance of S. aureus (7-9). In contrast, S. aureus also secretes superantigens (SAgs) that 

directly target and activate cells of the adaptive immune system (10, 11). The family of 

SAgs in S. aureus now includes over 20 genetically distinct SAg variants that comprise 

the staphylococcal enterotoxins (SEs), staphylococcal enterotoxin-like (SEls) toxins, and 

toxic shock syndrome toxin-1 (TSST-1) (12). These functionally unique exotoxins 

circumvent antigen presentation by engaging lateral surfaces of MHC class II (MHC-II) 

molecules (13-16), and complementarity determining region (CDR) 2 of the T cell 

receptor (TCR) β-chain variable region (Vβ) (17-20). Thus, SAgs alter the conventional 

TCR-peptide-MHC-II activation complex to prevent antigen recognition by the CDR 

loops (21), leading to the activation and expansion of numerous T cells in a Vβ-restricted 

manner (22). In cases of severe SAg intoxication, excessive T cell activation can result in 

a cytokine storm leading to the development of TSS (11, 23). 

In vivo mouse experiments using the injection of purified SAgs have demonstrated many 

important features of SAg biology, yet these experiments cannot recapitulate the complex 

interactions between S. aureus and the host. Although S. aureus has been intensively 

studied using live in vivo infection models, relatively few reports have examined the role 
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of SAgs using genetically controlled SAg-knockout strains. Early work by Tarkowski and 

colleagues has demonstrated a pathogenic role of TSST-1 for the onset of dermatitis, 

arthritis and septic mortality in mice (24, 25). In addition, vaccination with SAg toxoids, 

or neutralization of SAgs with monoclonal antibodies, have prevented or reduced 

mortality from experimental S. aureus sepsis (26-28). Rabbits are particularly sensitive to 

the effects of SAgs and using this animal species, deletion of the gene encoding SEl-X 

from S. aureus USA300 demonstrated reduced mortality from necrotizing pneumonia 

(29) and deletion of the gene encoding staphylococcal enterotoxin C (sec) from S. aureus 

MW2 prevented mortality in a rabbit model of sepsis/infective endocarditis (30). 

Furthermore, engineered high-affinity SAg inhibitors, or vaccination with SAg toxoids, 

can protect rabbits from S. aureus pneumonia, infective endocarditis and sepsis (31-33). 

Collectively, these studies show unequivocally that SAgs enhance the severity and 

lethality of staphylococcal infection.  

The majority of the human population has circulating antibodies against SAgs that are 

protective against TSS – which rarely develops (34, 35) – indicating that SAg exposure 

does not usually result in overt disease. Furthermore, at least 80% of clinical strains of S. 

aureus are genetically positive for at least one SAg gene (36), although this preceded the 

discovery of selx which been found in ~95% of S. aureus strains (29) suggesting that the 

prevalence of SAg genes is even higher than previously thought. Thus, the high 

prevalence and widespread distribution of SAgs in S. aureus suggests these toxins 

provide an evolutionary advantage to S. aureus. Although SAg-induced virulence has 

been attributed to the cytokine storm that results in immune cell infiltration, pyrexia, 

hypotension, endothelial damage (29, 30) and ultimately death, enhanced host mortality 

may not provide an evolutionarily prudent tactic for bacterial survival and propagation. 

We reasoned that there are other biologically relevant SAg functions that contribute to S. 

aureus fitness and given that S. aureus is one of the most common sources of bacteremia 

(37), we set out to study the role of SAgs in this context. Using an isogenic sea knockout 

strain of S. aureus, we found that SEA manipulates the immune system and recruits 

neutrophils to promote formation of hepatic abscesses, forming a protective niche for 

staphylococcal survival in vivo. 
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3.2 Materials and Methods 

3.2.1 Mice 
Six-to-twelve week old male and female HLA-DR4-IE (DRB1*0401) humanized 

transgenic mice (DR4-B6) (38) were bred and housed in specific pathogen-free facilities 

at Western University. All animal experiments were in accordance with the Canadian 

Council on Animal Care Guide to the Care and Use of Experimental Animals, and the 

animal protocol was approved by the Animal Use Subcommittee at Western University. 

3.2.2 Bacterial strains, media and growth conditions 
S. aureus strains listed in Table 3.1 were grown aerobically at 37°C in tryptic soy broth 

(TSB) (Difco) with shaking (250 rpm), or on tryptic soy agar (TSA), supplemented with 

the appropriate antibiotics (Sigma Aldrich). Escherichia coli DH5α was used as a cloning 

host and was grown in Luria Bertani broth (LB) (Difco) or LB agar supplemented with 

appropriate antibiotics at 37°C with shaking (250 rpm).  

3.2.3 in trans complementation of Newman Δsea  
The sea-null strain Newman Δsea (as described in Chapter 2) was complemented by 

amplifying the native sea promoter and complete sea gene from Newman using the 

primers seaFP and seaRP and cloned into the BamHI and SalI sites of the plasmid 

pALC2073 (39). This construct (pALC2073::sea) was electroporated into Newman Δsea, 

generating the complementation strain S. aureus Newman Δsea (pSEA).  

3.2.4 Staphylococcal bacteremia model 
Single bacterial colonies were picked from a TSA plate and grown in a 5 mL TSB 

overnight (16-18 hours) and the OD600 was adjusted to 1.0. Cells were subsequently 

subcultured (2%) into TSB and grown to exponential phase (OD600 ~3.0-3.5). The 

bacterial pellet was washed 3× with HBSS (Hyclone) and resuspended in HBSS to an 

OD600 = 0.15, corresponding to ~5 × 107 CFU/mL. Mice were injected via tail vein with 5 

× 106 CFU of S. aureus in a total volume of 100 µL. Mice were weighed and monitored 

daily. At 8 or 96 hours post-infection, mice were sacrificed and the heart, lungs, kidneys, 

and liver were aseptically harvested. All organs were homogenized and plated on 

mannitol salt agar (Difco) and incubated at 37°C overnight. S. aureus colonies were  
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Table 3.1. Strains and plasmids used in this study 

Strain or plasmid Description Source 

Strains   

S. aureus Newman  Early methicillin sensitive isolate from secondary 
infection in a patient with tubercular osteomyelitis  

(83) 

S. aureus Newman Δsea  sea-null S. aureus Newman Chapter 2 

S. aureus Newman Δsea (pSEA) sea-null S. aureus Newman complemented with wild- 
type sea 

 

This study 

Plasmids   

pALC2073 Complementation vector (39) 

pSEA sea complementation plasmid This study 
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enumerated the following day with a limit of detection determined to be 3 CFU per 10 

µL. 

3.2.5 Determination of Vβ populations targeted by SAgs using flow 
cytometry 

Lymph nodes (cervical, axillary, brachial, inguinal, and popliteal) were isolated in toto 

from mice and pushed through a cell strainer to create a single cell suspension. Cells were 

stained with APC-conjugated anti-CD3 (clone 145-2C11) (eBioscience) and FITC-

conjugated anti-Vβ3 (clone KJ25) (BD Pharmingen) or FITC-conjugated anti-Vβ8 (clone 

KJ16) (eBioscience). Events were acquired using a FACSCanto II (BD Biosciences) and 

data were analyzed using FlowJo v.8.7 (Treestar).  

3.2.6 Detection of cytokines and chemokines in vivo 
Eight hours post-infection, serum supernatants and livers were collected. Supernatants 

were obtained from whole livers by homogenization in HBSS supplemented with the 

complete protease inhibitor cocktail (Roche). Samples were analyzed using a 32-

multiplex array against mouse cytokines and chemokines (Eve Technologies; Calgary, 

AB, Canada). 

3.2.7 Liver leukocyte isolation, staining and cytofluorimetric 
analysis 

Livers were extracted from mice and pushed through a fine mesh. Leukocytes were 

isolated from livers as previously described using a 33.75% percoll gradient (GE 

Healthcare) (40). Cells were stained with FITC-conjugated anti-F4/80 (clone BM8), 

FITC-conjugated anti-Ly6G (clone RB6-8C5), PE-conjugated anti-CD11b (clone M1/70) 

or APC-conjugated anti-CD3 (eBioscience). Events were acquired and data analyzed as 

outlined above.  

3.2.8 Histological analysis 
Standard histology techniques were used. Briefly, tissues were fixed in 10% formalin, 

embedded in paraffin and thin-sectioned. Sections were stained with a combination 

Hematoxalin and Eosin/Gram stain and images were captured using a BX-61 upright 

microscope (Olympus).  
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3.2.9 Assessment of β-hemolysin activity 
Livers and liver abscesses from mice infected with 5 × 106 CFUs of either S. aureus 

Newman or Newman Δsea were homogenized 96 hours post-infection and plated on 

blood agar (sheep) and incubated at 37oC for 24 hours, followed by incubation for 24 

hours at 4oC. Dark zones of hemolysis surrounding individual colonies were measured 

after the cold-shock incubation. To compare β-hemolysis expression between in vivo and 

in vitro conditions, S. aureus Newman, Newman Δsea and COL were grown overnight at 

37oC in TSB before plating on sheep blood agar with the hot-cold incubation as described 

for in vivo samples. 

3.2.10 Statistical analyses 
Data were analyzed using unpaired student’s t-test or one-way ANOVA with Tukey’s 

post-test analysis. All statistical analyses were performed using Prism v5.0 (GraphPad) 

with p < 0.05 being considered significant.  
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3.3 Results 

3.3.1 SEA is produced in vivo during staphylococcal bacteremia 
S. aureus Newman is known to produce SEA during the exponential phase of growth in 

vitro (41); however, the exact environmental triggers in vivo are not well-defined. We 

aimed to determine if SEA was produced during S. aureus Newman infection by 

examining the Vβ profiles of infected mice, as SEA is known to target Vβ3+ T cells but 

not Vβ8+ T cells (42, 43). Vβ-specific T cell subpopulations from lymph nodes were 

measured using flow cytometry from mice inoculated with S. aureus strains Newman, 

Newman Δsea, Newman Δsea (pSEA), or vehicle-treated mice. Ninety-six hours post-

inoculation, mice infected with S. aureus Newman Δsea did not show a difference in the 

Vβ3+CD3+ lymphocyte population compared to vehicle-treated mice. Conversely, wild-

type S. aureus Newman and Newman Δsea (pSEA) infection demonstrated a significant 

decrease in Vβ3+CD3+ cells compared to vehicle-treated mice, indicating Vβ-specific 

targeting by SEA (Figure 3.1A). Concurrent analysis of Vβ8+CD3+ cells was used as an 

internal control since it is an irrelevant T cell subpopulation that is not targeted by SEA. 

Thus, the significant decrease in the ratio of Vβ3+CD3+ to Vβ8+CD3+ cells from 0.33 

(vehicle) to 0.16 (Newman) during infection with S. aureus Newman showed indirectly 

that SEA was specifically targeting the Vβ3+CD3+ population (Fig. 3.1B), thereby 

confirming the production of SEA in vivo during infection in our model.  

3.3.2 Bacterial survival is enhanced in the livers of mice infected 
with SEA-producing S. aureus 

To evaluate a role for SEA in S. aureus bacteremia, we injected 5 × 106 CFUs of S. 

aureus Newman, or S. aureus Newman Δsea, into the tail vein of DR4-B6 mice and 

assessed bacterial burden in multiple organs at 96 hours post-infection. Bacterial loads 

were highest in the kidneys and livers, but were also found in the heart and lungs (Fig. 

3.2A-D). Although bacterial load was not statistically different in the kidneys or lungs, 

we observed a ~100-fold decrease in bacterial burden in the livers of mice infected with 

S. aureus Newman Δsea compared with wild-type S. aureus Newman-infected mice. 

There was also a significant difference between the bacterial loads in the heart  
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Figure 3.1. SEA is produced during S. aureus bacteremia and interacts specifically 

with the Vβ3+ subset of T cells. Flow cytometry analysis of lymph node populations 96 

hours post-infection [vehicle n = 3, Newman n = 4, Newman Δsea n = 4, and Newman 

Δsea (pSEA) n = 5] A) Representative FACS plots from each infection group stained 

with antibodies against either CD3 and Vβ3 or CD3 and Vβ8. Vβ3 and Vβ8 staining were 

from the same mouse with Vβ8 acting as the internal control for each mouse. Each 

sample was gated for the Vβ+CD3+ population. B) Ratio of Vβ3+CD3+ to Vβ8+CD3+ cells 

per mouse for each infection group. Data shown as the mean ± SEM, significant 

differences (p < 0.05) as determined by one-way ANOVA with Tukey’s post-test are 

denoted with *. 
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Figure 3.2. Septic infection with SEA-producing S. aureus results in higher bacterial 

loads in the liver than SEA-deficient S. aureus. Bacterial counts of mice infected with 

S. aureus Newman (n = 17), Newman Δsea (n = 17) or Newman Δsea (pSEA) (n = 12) 

from A) Liver B) Kidneys C) Lungs and D) Heart 96 hours post-infection. Each point 

represents data from one mouse. Results reflect 3 independent experiments. The line in 

each treatment group represents the mean and counts below the limit of detection are 

interpreted as having no counts. Significant differences (p < 0.05) as determined by 

unpaired student’s t-test are denoted with *. NS = no significance. 
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(Figure 3.2D) between S. aureus Newman- and Newman Δsea-infected mice. In order to 

confirm this pronounced phenotype was SEA-dependent, and not due to an inadvertent 

secondary site mutation in S. aureus Newman Δsea, we restored SEA expression in trans 

using the pSEA plasmid. The complemented strain Newman Δsea (pSEA) restored the 

virulence phenotype in both the liver and heart as seen with wild-type S. aureus Newman 

(Fig. 3.2). These data indicate that expression of SEA by S. aureus Newman promotes 

infection within the liver and heart, but does not apparently alter bacterial burden in other 

organs tested. 

3.3.3 SEA induces production of IFN-γ and other inflammatory 
cytokines and chemokines both locally and systemically 
during S. aureus infection 

Since it is well known that SAgs function to induce cytokine production, we reasoned 

that the survival advantage seen during infection with S. aureus Newman was a 

downstream result of SAg-mediated immune activation. We investigated early cytokine 

production to assess both local and systemic inflammation of infected mice 8 hours post-

infection. Liver homogenate supernatants and sera from Newman- and Newman Δsea-

infected mice were analyzed for 32 cytokines and chemokines (Appendices 3 and 4). 

Systemically, IFN-γ and IL-12p70 were upregulated in wild-type-infected mice sera 

compared to Newman Δsea infection, as well as the chemokine interferon-induced 

protein 10 (IP-10) (Fig. 3.3A). Elevated levels of IFN-γ, TNF-α, IL-6 and IL-12p40 were 

detected from mouse livers infected with S. aureus Newman compared to Newman Δsea-

infected mice (Fig. 3.3B), which are known to be induced by SAgs (23, 44, 45). 

Additionally, the chemokines MIP-2 and MCP-1 were upregulated in Newman-infected 

livers (Fig. 3.3B). Bacterial burdens in the liver at 8 hours post-infection were not 

significantly different between wild-type and Newman Δsea-infected mice (Figure 3.3C), 

and no bacteria were detected in blood from any mice (data not shown), indicating that 

the differences in chemokine and cytokine production are not likely due to differences in 

bacterial load. Overall, these data demonstrate that SEA is an important driver of SAg-

induced inflammation during our model of S. aureus bacteremia in DR4-B6 mice.  
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Figure 3.3. Cytokines and chemokines induced by S. aureus Newman and Newman 

Δsea infection. Serum and liver supernatants were collected from mice 8 hours post 

infection from S. aureus Newman and Newman Δsea-infected mice. Blinded samples 

were sent for multiplex cytokine array analysis (n = 3-4 per experimental group). A) 

Serum levels of cytokines and chemokines produced significantly different in Newman- 

than Newman Δsea-infection. B) Local production of liver chemokines and cytokines 

significantly different during infection with Newman compared to Newman Δsea. C) 

Bacterial burdens in the liver at 8 hours post-infection (n = 5 per group). Data shown as 

the mean ± SEM, significant differences (p < 0.05) as determined by unpaired student’s t-

test are denoted with *; *** p < 0.001.  
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3.3.4 CD11b+Ly6G+ neutrophils are recruited to the liver during S. 
aureus infection in an SEA-dependent manner 

Given the production of the MIP-2 and MCP-1 chemokines in the liver induced by SEA 

from S. aureus Newman-infected mice, we predicted that there would also be a difference 

in the number of immune cells trafficking to the liver. Since macrophages and neutrophils 

are the primary cells responsible for the clearance of S. aureus, we examined these 

populations to evaluate if there was a defect in phagocyte recruitment during 

staphylococcal infection with SAgs. Additionally, the liver is known to contain high 

numbers of resident macrophages (Kupffer cells) so we hypothesized that SEA would 

have an effect on the macrophage population. Leukocytes were isolated from mouse 

livers 96 hours post-infection and stained for various surface markers. Analysis of F4/80+ 

macrophages showed no significant difference between mice infected with S. aureus 

Newman and Newman Δsea (Fig. 3.4A). Similarly, CD3+ T cells were also not 

significantly different (Fig. 3.4B), despite the decreased number of Vβ3+ T cells detected 

in lymph nodes (Fig. 3.1). However, mice infected with S. aureus Newman showed an 

increased frequency of CD11b+Ly6G+ neutrophils (Fig. 3.5C), suggesting that SEA-

induced chemokines (Fig. 3.3) resulted in the recruitment of neutrophils to the liver. 

3.3.5 SEA promotes the formation of hepatic abscesses that 
contain viable bacteria in high densities 

During organ retrieval following the bacteremia model, we observed numerous white 

hepatic lesions that commonly formed on the surface of livers of S. aureus Newman-

infected mice (Fig. 3.5A). An abscess score was established whereby livers were 

examined on a lobe-by-lobe basis for visible surface lesions and enumerated. We 

observed a significant increase in the number of abscesses formed in the livers of S. 

aureus Newman-infected mice compared with mice infected with S. aureus Newman 

Δsea. The number of abscesses from S. aureus Newman Δsea complemented with pSEA 

was similar to wild-type S. aureus Newman infected mice, demonstrating that this 

phenotype was SEA-dependent (Fig. 3.5B). H&E/Gram staining of thin sections from 

both groups showed high neutrophilic infiltration into the abscess with 

polymorphonuclear cells and associated tissue damage. Abscesses contained high 

numbers of Gram positive cocci in the centre (Fig. 3.5C insets i and ii). However, the  
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Figure 3.4. Livers of mice infected with S. aureus Newman show an increase in 

CD11b+ Ly6G+ neutrophils but not F4/80+ macrophages or CD3+ T cells. Livers of 

infected mice 96 hours post-infection were broken into single cell suspension and 

leukocytes isolated by percoll gradient. Samples were stained with antibodies against 

F4/80, CD3 or CD11b and Ly6G and analyzed by flow cytometry. Samples underwent 

doublet discrimination with debris gated out. Subsequently, cells were gated on A) 

F4/80+ macrophages, B) CD3+ T cells, or C) CD11b+ Ly6G+ neutrophils. Data shown as 

the mean ± SEM from three independent experiments, with n = 12 for each group. 

Significant differences (p < 0.05) as determined by unpaired student’s t-test are denoted 

with *, NS = no significance. 

 

 

 



113 

 

Figure 3.5. Infection with S. aureus Newman results in greater abscess formation 

than infection with S. aureus Newman Δsea. A) Visible white lesions (abscesses) on a 

representative liver of a Newman-infected mouse, indicated by white arrows. B) Liver 

abscess score from Newman (n = 14), Newman Δsea (n = 13), and Newman Δsea 

(pSEA)-infected mice (n = 5). Data shown as mean ± SEM from at least three 

independent experiments. Significant differences (p < 0.05) as determined by unpaired 

student’s t-test are denoted with *. C) Representative H&E/Gram-stained histological 

sections of abscesses from Newman and Newman Δsea-infected mice. Black bar 

indicates 100µm and 10µm on the insets of i and ii. D) Representative sections of Gram-

stained liver parenchyma surrounding abscesses from sham, Newman and Newman Δsea-

infected mice. The black bar indicates 50 µm.  
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overall abscess structure appeared very similar between wild-type S. aureus Newman and 

Newman Δsea infections (Fig. 3.5C). Abscesses were also excised from the liver, 

homogenized, and compared to hepatic immune cells isolated from the surrounding liver 

tissue. Compared to non-abscessed liver tissue, abscesses contained few live host cells as 

assessed by trypan blue staining, and loss of forward and side scatter when analyzed with 

flow cytometry (data not shown). Additionally, individually excised abscesses yielded 

high counts of viable S. aureus (106 - 107 CFU/abscess) (data not shown). We did not 

detect staphylococci distant from the abscesses within the surrounding liver parenchyma 

or in sham-infected mice (Fig. 3.5D). These data indicated that the enhanced fitness 

phenotype of S. aureus Newman we observed (Fig. 3.2A) is attributed to an increase in 

abscess formation that confers greater bacterial survival and growth in the liver.  

3.3.6 β-hemolysin is not activated during S. aureus Newman 
bacteremia.  

The gene sea is encoded on a β-hemolysin (hlb)-converting phage (ϕNM3), which 

disrupts β-hemolysin function upon integration into the Newman genome. However, it 

has been shown that S. aureus strains carrying these phage can be excised and become 

hlb+, especially during in vivo infection (46, 47). In S. aureus Newman, the lack of 

excisionase (xis), prevents ϕNM3 from excising from the genome (44, 48, 49). To ensure 

that a secondary mutation did not occur during genetic manipulation of S. aureus 

Newman Δsea, we tested the strains both in vitro and following in vivo infection, to 

ensure that the sea-encoding ϕNM3 was not excised during infection. Compared to COL 

which is hlb+ (9, 50, 51), the areas of hemolysis were significantly lower in all Newman 

and Newman Δsea samples. There were no differences between Newman and Newman 

Δsea samples, in either in vivo, in vitro or abscess conditions (Fig. 3.6). Thus, we 

confirmed that β-hemolysin was not activated, and that ϕNM3 (and therefore sea) was 

not excised during infection. 
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Fig. 3.6. β-hemolysin is not activated in S. aureus Newman or Newman Δsea. The 

thatched bar represents the hlb+ COL colonies grown in vitro, the black bars represent 

wild-type Newman colonies, and the white bars represent Newman Δsea. At least 3 

colonies and their zones of hemolysis were measured per plate. *denotes p < 0.05 as 

determined by one-way ANOVA with Tukey’s post-test.  
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3.4 Discussion 
In this work, we combined SAg-sensitive humanized transgenic DR4-B6 mice with an 

isogenic sea knockout strain of S. aureus to study the role of SAgs during staphylococcal 

bacteremia. By using a live infection model, we were able to not only study the 

detrimental effects of SAg intoxication on the host, but also the advantageous effects of 

SAg expression for S. aureus. We demonstrated an SEA-specific downstream effect that 

enhanced the number of abscesses formed in the liver, although individual abscesses 

appeared similar in both morphology and bacterial counts from both strains. This in turn 

increased bacterial persistence in the liver overall since staphylococcal abscess 

communities are sustained within a fibrin pseudocapsule that is protective against 

immune cells and permits bacterial survival in vivo (44, 51). Abscess formation is an 

important host immune response during infection for limiting the spread of infection to 

other tissues.  Host immunity against S. aureus infection is dependent on abscess 

formation by neutrophils (46) and suppurative abscesses have long been recognized as a 

hallmark of S. aureus infection (44, 49). However, successful eradication of S. aureus by 

neutrophils exists in a balance, with staphylococci actively subverting neutrophil 

responses in order to persist in vivo (9, 51). The presence of abscesses during 

staphylococcal bacteremia is clinically significant since hematogenous spread from the 

abscess is well documented (44, 52, 53).  

A basal level of abscess formation could still be observed during S. aureus Newman Δsea 

infection, albeit with lower frequency than wild-type infection, since the former still 

retains essential cell-surface proteins required for abscess formation (51). The lower 

bacterial counts seen in Newman Δsea is not likely due to an inherent growth defect (Fig. 

2.7A), or an inability to survive within neutrophils since viable bacteria were observed 

within both Newman and Newman Δsea abscesses. To our knowledge, this model is the 

first to describe a liver tropism for S. aureus related to SAg expression. Although we also 

observed renal abscesses in the infected mice, no differences were detected in bacterial 

counts between SEA-expressing and sea-null infections. We speculate that given the 

paucity of residence T cells in the kidney (54), the initial infection within the kidney 

remained independent of SEA function. Additionally, high densities of staphylococcal 
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cell wall (such as the loads observed in the kidneys) have been shown to downregulate 

SAg-mediated T cell activation (55), which may nullify SAg activity locally. 

Consistent with our findings, SEC has been shown to increase renal damage during 

experimental infective endocarditis/sepsis in rabbits, including the formation of kidney 

abscesses, although this was attributed to the embolization of valve vegetations (30). 

Similarly, blocking SEC function using a high-affinity SEC binding inhibitor resulted in 

a drastic reduction of vegetation size (32). Although Newman Δsea demonstrated 

decreased counts within the hearts, we did not observe any obvious aortic valve 

vegetations from wild-type Newman, although our protocol is not an endocarditis model 

as valve damage is not actively induced. Neutralization of SEB also decreased abscess 

size using in a murine thigh infection model (28). Although it is difficult to aggregate 

these collective findings, an overall picture is now emerging that SAg-induced 

inflammation contributes to the formation and severity of S. aureus abscesses in multiple 

experimental settings.  

Compared to Newman Δsea infection, wild-type Newman infection produced 

significantly higher quantities of cytokines and chemokines that correspond to those 

induced by SAgs reported in the literature (23, 45, 56, 57). Although IL-2 is a cytokine 

typically used to measure T cell-dependent superantigenic activity in vitro, we did not 

detect differences in IL-2 production from the in vivo liver samples. This finding may be 

explained by IL-2 levels peaking at 2-4 hour in vivo in response to SAg (58), and by the 

very short half-life of IL-2 in vivo (59, 60). The SEA-driven inflammatory milieu likely 

mediates the promotion of abscesses and seems to be driven by the early production of 

both IL-12 and IFN-γ, detected in both serum and liver supernatants 8 hours post-

infection. IL-12 enhances production of IFN-γ after SAg challenge (58), productively 

boosting the cytokine and chemokine response. McLoughlin et al. have shown that IFN-γ 

is a master regulator during S. aureus infections, mediating chemokine responses that 

allow for neutrophil recruitment and trafficking (61, 62). This is consistent with our 

observations in Newman-infected mice where we observed an increase in IFN-γ and 

chemokines that are chemotactic for neutrophils and monocytes. Presumably, activated 

monocytes trafficking to the liver undergo differentiation into macrophages, although we 
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did not observe any significant differences in the macrophage population in the liver. 

Purified SAgs have been shown to recruit neutrophils (but not T cells) mediated by TNF-

α and chemokines (63). Notably, our study is the first report showing SEA increases 

trafficking of CD11b+Ly6G+ neutrophils during a live infection. Given that abscess 

formation is largely driven by neutrophils, the infiltration into the liver correlates well 

with the increased incidence of hepatic abscesses.  

It appears paradoxical that an increased influx of CD11b+Ly6G+ neutrophils had an 

inverse correlation to bacterial survival, considering the important role of neutrophils in 

staphylococcal clearance. As a successful human pathogen, S. aureus has evolved many 

mechanisms to counteract neutrophils (9). While neutrophils are absolutely necessary for 

the eradication of staphylococcal infections (64, 65), their presence during infection has 

also been described as pathogenic (61, 62). IP-10, which we showed to be upregulated 

systemically by SEA, can promote phagocytosis (66); however, MIP-2, also upregulated, 

is capable of enhancing intracellular bacterial survival within neutrophils (61, 62). The 

avoidance of neutrophil bactericidal activity likely contributed to S. aureus survival 

during early abscess formation and subsequently, the staphylococcal community in the 

mature abscess. This supports the paradigm that neutrophils can be pathogenic during 

systemic infection due to SAgs usurping the immune system to form abscesses, thereby 

conferring staphylococcal fitness and survival in vivo. The sea gene is encoded on the 

same immune evasion cluster (IEC) of β-hemolysin converting phage which includes 

staphylococcal complement inhibitor (SCIN), chemotaxis inhibitory protein of S. aureus 

(CHIPS) and staphylokinase (SAK) (67, 68). It has been proposed that CHIPS and SCIN 

‘stall’ early neutrophil recruitment to successfully establish an infection. This is due to 

their inhibitory action against complement proteins, an early innate response (68, 69). 

While this seems counterintuitive to the neutrophil recruiting activities of SEA, it has 

been also proposed that this early blockade of neutrophils allows later modulation of the 

immune system by SEA and SAK.  This theory fits with our model where we see an 

accumulation of neutrophils later on at 96 hours, in response to SEA. SCIN may work in 

tandem with SEA by inhibiting phagocytosis and bactericidal activity of recruited 

neutrophils (68), which may help form neutrophilic abscesses that S. aureus can survive 

in. SAK may be involved in dissemination from abscesses due to its ability to cleave 
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fibrin (70), which are characteristic of abscesses. However, it should be noted that the 

IEC factors, SEA included, are highly human-specific (67), and thus may not be active in 

our murine model which is sensitized to SEA only. 

SAg function has typically been attributed towards crippling the adaptive arm of the 

immune system by inducing T cell anergy and deletion of T cell-dependent B cell 

responses (71, 72). Indeed, an inability to form neutralizing antibodies has been linked to 

many cases of TSS (11, 73); however, SAgs are also highly immunogenic and the 

majority of the population is able to form both anti-SAg and anti-staphylococcal 

antibodies (74). Although purified SAgs have long been shown to induce T cell anergy 

(75-78), to our knowledge, the role of SAg-mediated T cell anergy has not been 

demonstrated during a live infection. In our model, SEA-expressing S. aureus caused a 

decrease in the detectable Vβ3+CD3+ cells, although SAg-activated T cells usually 

undergo early expansion (79). This decrease may be a result of Vβ-specific TCR 

internalization (80, 81), T cell deletion (82), or a combination thereof. Injection of mice 

with purified SEA similarly resulted in Vβ3-specific CD4+ T cell suppression mediated 

by IFN-γ and myeloid-derived suppressor cells (79) and this may represent an additional 

role for SAgs to subvert the immune response. The effect of T cell anergy during 

staphylococcal disease may inhibit numerous T cells in the context of chronic infection; 

however, SAgs do not target T cells in an antigen-specific manner so it is unclear how 

Vβ-specific anergy would contribute to staphylococcal infections. Thus, it will be 

important to dissect the role of SAg-mediated T cell suppression during live infections in 

future studies. Given that SAgs have an inherent ability to impact numerous immune 

cells, it is highly likely that these toxins are multi-functional virulence factors and thus 

are able to influence both the adaptive and the innate immune systems. Overall, this work 

shows that SAgs are used by S. aureus during infection to not only target T cells directly, 

but also neutrophils as a result of the SAg-elicited cytokines. While the recruitment of 

neutrophils appears to be counterintuitive to survival, our work demonstrates that SAg 

expression by S. aureus enables a sophisticated method of in vivo survival by subverting 

the neutrophil response into a protective niche, demonstrating a biologically relevant and 

highly novel role for SAgs during infection. 
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S. aureus has evolved with humans as a commensal organism, consistently colonizing 

~20% of the population, as well as a prominent and successful pathogen. This dualistic 

role is due to the abundance of virulence factors encoded by S. aureus, many of which 

play multiple roles in both colonization and disease. SAgs have fascinated scientists since 

Marrack and Kappler presented their discoveries almost 30 years ago. Since then, the 

structure and function of these toxins have been studied in great detail, as well as their 

causal role in provoking TSS and food poisoning. Arguably the most interesting question 

that remains in this field is why do S. aureus possess such a large, genetically and 

antigenically distinct, extremely potent, and seemingly redundant group of these toxins?  

SAgs skew immune responses toward Th1 during severe disease, but toward Th2 during 

atopic disease in genetically predisposed individuals. Th1 skewing can result in delayed 

development of neutralizing antibody (1) and perhaps this is an important in vivo strategy 

that promotes persistence. Many patients following menstrual TSS fail to develop anti-

TSST-1 antibodies (1, 2). Conversely, humans clearly develop anti-TSST-1 antibodies 

such that by age 1, ∼50% have antibody titers considered to be protective (3). An 

interesting hypothesis has been proposed where excessive T cell expansion may act as a 

'sponge' to titrate IL-2 necessary for further T cell expansion, essentially causing 

immunosuppression (4). Similarly, massive expansion of Vβ-specific T cells may induce 

a loss of overall receptor diversity filling up the “space,” providing an alternative method 

of immune escape. Continued efforts into understanding the complex biology of SAgs 

will undoubtedly answer many of these questions. It is clear that these remarkable toxins 

represent a highly unique and well adapted virulence factor, although the evolutionary 

function of these toxins in the life cycle of S. aureus still remains unclear. The body of 

work presented in this thesis aimed to answer the biological purpose of staphylococcal 

SAgs by utilizing SAg-deletion strains in SAg-sensitive humanized transgenic mice, 

studying both commensal and pathogenic lifestyles.  

4.1 Chapter 2 summary and conclusions 

In Chapter 2, I discovered that S. aureus strains encoding SAgs had reduced bacterial 

burdens in the nasal passages of mice compared to isogenic counterparts that did not 
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express SEA or SEB. Colonization with S. aureus Newman Δsea caused a transient 

increase compared to wild-type Newman at day 10 (Fig. 2.7A). Furthermore, S. aureus 

COL Δseb resulted in higher bacterial densities throughout the entire duration of the 

experiment, compared to wild-type COL (Fig. 2.9A). The phenotypic differences 

between Newman and COL strains may be due, in part, to agr-mediated regulation of 

SEB which is massively overexpressed (5) compared to SEA, which is not controlled by 

agr (6). Interestingly, agr appears to be repressed in a cotton rat model of nasal 

colonization (7); however, agr and exotoxin expression can become uncoupled in vivo 

where repression of agr did not result in a corresponding inhibition of SAg expression 

(8). In our model, the presence of Vβ-skewing and the difference in bacterial loads is 

indicative of SEB production during murine colonization. In humans, sea appears to be 

expressed even in persistently colonized individuals (9) while agr does not appear to be 

expressed (10). Real-time PCR analysis of bacteria isolated from colonized DR4-B6 mice 

may shed light on the kinetics of agr and SEB expression to reconcile our findings with 

previous studies. It is possible that SAg expression is important for the initial stages of 

establishing colonization, before agr expression is repressed. Overall, the bacterial count 

data suggest that the deletion of SAgs enhanced nasal colonization in vivo. In particular, 

colonization with S. aureus COL suggests that SAgs attenuate the ability to colonize the 

nose, which can be explained by the inflammatory properties of SAgs, leading to 

subsequent bacterial clearance due to activation of the immune system. Notably however, 

deletion of sea from Newman did not result in enhanced colonization long-term 

(compared to their wild-type counterparts), as bacterial loads decreased to match wild-

type levels after the transient increase (Fig. 2.7A). This data suggests that increased 

pathogenicity may not be beneficial for the bacteria long-term. Indeed, a higher number 

of bacteria in the nose may result in activation of agr via quorum sensing and production 

of cytotoxins, proteases and other exoproteins typically associated with dissemination 

and invasion, in opposition to colonization tactics (11). I propose that in the context of 

nasal colonization, maintenance of a lower bacterial burden may be beneficial for the 

organism’s long-term survival and continued colonization. The idea that high numbers of 

bacteria forming biofilms in the nose during colonization has been challenged by Krismer 

et al. who propose a dispersed mode of growth during nasal colonization (12). Their 
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model is in agreement with our studies and supported by clinical observations that nasal 

swabs and histological human nose sections contain relatively low amounts of S. aureus 

(101-104 CFU) (13, 14). Moreover, formation of biofilms may not persist in the nose due 

to physical forces (e.g. nose blowing). There is also growing evidence of differing 

immune states in persistent carriers vs. non-carriers, with intermediate carriers 

resembling non-carriers (15-18), which may explain why persistently-colonized 

individuals have higher densities of bacteria in their noses (14). During colonization, 

expression of SAgs may preclude a higher level of inflammation by regulating bacterial 

density and thus, peptidoglycan and other bacterial moieties that can induce further 

inflammation. Since SAgs are inflammatory molecules, SAg-mediated immune responses 

could maintain the density of bacteria in check. Thus, SAgs may act as ‘checkpoints’ of 

dissemination – by preventing the bacterial colony from growing too large and dispersing 

before a niche can be established. Future experiments that extend the length of 

colonization in our model may elaborate the overall fitness advantage of SAg-expressing 

vs. SAg-negative strains.  

In contrast to S. aureus, establishment of nasal colonization by Streptococcus pyogenes 

(group A Streptococcus; GAS) in a similar murine model is heavily dependent on SAg 

presence (19). During asymptomatic colonization with GAS, the location differs between 

the two SAg-expressing organisms: S. pyogenes primarily colonize murine nasal-

associated lymphoid tissue (NALT) or the upper nasal turbinates, while S. aureus does 

not (19-21). This may in part explain the different usage of SAgs by these two organisms, 

as T cell activation by SAgs appears to be a requirement for the establishment of acute 

colonization by GAS (19). Thus, the evolution of SAg function appears to be divergent 

between these organisms, likely dependent on their different survival tactics, and the 

establishment of a niche environment that is favourable for long-term survival and 

transmission. This may also contribute to the understanding of the differences seen 

between staphylococcal and streptococcal TSS where the latter is often associated with 

bacteremia (and thus higher mortality rates) compared to TSS caused by S. aureus (22).  

The idea of 'virulence attenuation' is an emerging concept, where pathogens produce 

factors that protect host cells instead of inducing cell death (23). By regulating their own 
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virulence, pathogenic organisms ‘play the long game’ so that the infection can be 

prolonged as long as the host is not killed, thereby depriving them of a niche. Often these 

host-protective factors attenuate cytotoxicity induced by another virulence factor and 

enhances pathogenicity; moreover, removal of the host-protective factor reduces 

pathogenicity (23). For example, Bartonellae inject BepE into host cells which prevents 

cytotoxicity induced by BepC; however, a bepE deletion mutant was unable to 

disseminate in vivo and thus reducing pathogenicity (24). S. aureus produce a cell-wall 

associated factor that downregulates SAg-induced T cell activation once a high density is 

reached, which has been proposed as a reason for the low prevalence of staphylococcal 

TSS and may be a host-protective factor that allows S. aureus to regulate SAg toxicity 

(25). Although SAgs are not host-protective factors, they appear to regulate virulence 

indirectly by controlling bacterial density. The WalKR regulatory system, which 

regulates cell wall dynamics, is expressed during nasal colonization (7, 10), further 

supporting the notion that controlling bacterial density is an important determinant of 

colonization. Thus, S. aureus may have evolved mechanisms and virulence factors that 

target and fine-tune the inflammatory response for long-term survival in humans.  

4.1.1 Limitations and future work 

In humans, the nasal cavities are sources of endogenous infections, likely due to 

hematogenous seeding (26). While our mouse model was able to show some 

dissemination to other organs, namely the liver and lungs, establishment of an extra-nasal 

infection did not occur. Thus conclusions regarding the role of SAgs in the regulation of 

dissemination from nasal colonization could not be made. Also, the inoculum of bacteria 

administered to the mice (1 × 108) is not clinically relevant, especially considering the 

comparative sizes of the mouse vs. human nose. Moreover, it is unlikely that a highly 

concentrated colony of bacteria is transmitted to the noses of humans during hand-to-nose 

passage. Thus, the initial colonization steps to establish a successful colony may be 

mechanistically different and have different roles for SAgs.  

Since bacteria are prepared and introduced to mice during their exponential phase of 

growth, the expression of virulence factors will be affected and may impact survival in 

vivo. Deposition of C3 on bacterial cells is decreased during stationary phase even in the 
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absence of capsule, reducing bacterial opsonization (27) and it has been shown that 

bacteria in early exponential growth phase were more susceptible to neutrophil 

bactericidal activity than cells in stationary phase (28). Future work on this model should 

expand the duration of the experiment, in order to evaluate if SAg-expressing strains are 

able to colonize longer than their SAg-deletion counterpart. Further analysis of immune 

cell infiltrates to the NALT and nasal passage may also help elucidate the mechanism of 

how SAg expression reduces bacterial densities. Lastly, histological analyses may reveal 

if bacteria have been internalized by keratinocytes or if they remain extracellular. There 

is an increasing amount of evidence emerging regarding the intracellular lifestyle of S. 

aureus, particularly during chronic infections, as reservoirs of infection (29).  

4.2 Chapter 3 summary and conclusions 
In contrast to a commensal lifestyle, I demonstrated in Chapter 3 that the expression of 

SEA during staphylococcal bacteremia increased bacterial counts and thus, survival in 

vivo (Fig. 3.2). Although there were lower bacterial counts in Newman-infected livers 

compared to Newman Δsea ones, there were a higher percentage of CD11b+Ly6G+ 

neutrophils in the former compared to the latter. This initially appeared counterintuive as 

neutrophils have been shown to be crucial for the clearance of staphylococcal infections 

(30, 31); however, S. aureus in turn has evolved multiple mechanisms to counteract 

neutrophil activity (32). Additionally, chemokines induced by SEA and S. aureus 

Newman infection have been shown to enhance survival of S. aureus within neutrophils 

(33). Thus it is likely that the liver-specific phenotype we observed was caused by SEA-

induced inflammation that resulted in increased migration of neutrophils (34).  

I also showed that the higher number of neutrophils in Newman-infected livers 

corresponded to the number of neutrophilic hepatic abscesses compared to Newman Δsea 

mice (Fig. 3.5B). Since these abscesses contained viable bacteria (Fig. 3.5C), S. aureus 

was able to utilize abscesses as specialized niches to survive in vivo and be protected 

from immune clearance. Thus, even though Newman Δsea was capable of forming 

abscesses, the presence of SEA was able to enhance this process via its inflammatory 

properties. Abscesses are a natural host response to infection, limiting the spread of 

pathogens and preventing further dissemination, and is a hallmark of S. aureus infection 
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(35). Many staphylococcal cell surface components have been identified as crucial for the 

formation and persistence of abscesses (36), supporting the notion that S. aureus modifies 

this host process in order to persist in vivo (37). Thus, by enhancing neutrophil 

recruitment and abscess formation, SAgs represent another virulence factor that S. aureus 

has evolved in order to subvert the immune system. 

Interestingly, Vojtov et al. showed that a TSST-1 knockout strain resulted in increased 

inflammation and larger abscesses in a subcutaneous model (38), in conflict with our 

observations. However, the same strains were also used in a previous cutaneous infection 

model that demonstrated decreased inflammation in the absence of TSST-1 (39), which is 

in agreement with our findings. Other reports show that the abrogation of SEC using 

isogenic knockout strains and an anti-SEC inhibitor decreased inflammation, lethality, 

bacterial counts, the number of vegetations formed, and vegetation size in a rabbit model 

of IE (40, 41). Furthermore, treatment with an anti-SEB monoclonal antibody (mAb) 

reduced inflammation, abscess size and bacterial counts in various mouse models of 

infection (42). Although these studies were conducted in different animal models, utilized 

different strains of S. aureus, and studied different SAgs, an overall trend that can be 

observed in many of these studies is the change in abscess or vegetation formation in the 

absence of SAg, lending support to our findings. Since we used a sublethal dose of S. 

aureus, we were able to further discern the effects of SEA which may have been masked 

in previous studies that used mortality as a parameter of bacterial fitness.  

Although high bacterial counts and abscesses were also detected in the kidneys, we did 

not see a difference between S. aureus Newman and Newman Δsea infection in bacterial 

loads. This may be due to the local downregulation of SAg-mediated T cell activation by 

cell-wall embedded molecules (25) or the low numbers of T cells in the kidneys (43) for a 

SAg-specific response in this organ. While we were able to detect an SEA-specific T cell 

response in the form of Vβ3+CD3+ lymphocytes from the lymph nodes (Fig. 3.1), no 

changes were observed in the percentage of CD3+ cells in the livers (Fig. 3.4B), nor did 

we detect changes in IL-2 in vivo. This is likely due to the short half-life of IL-2 in vivo, 

as well as sampling time (44, 45).  Typically, an expansion of the SAg-targeted Vβ subset 

is seen in humans (46), whereas in our mice we observed a SEA-specific decrease. 



136 

 

Whether this is due to deletion of activated T cells, anergy or internalization of the TCR 

has yet to be determined. Thus, within the context of infection I showed that the purpose 

of SAgs is to enhance fitness by creating in vivo niches to promote survival. By 

subverting the neutrophil response to infection, and evolving to survive within 

neutrophilic abscesses, S. aureus has coordinated the role of SAgs well with its other 

virulence factors. 

4.2.1 Limitations and future work 

In humans, staphylococcal bacteremia and sepsis typically presents with lung 

complications such as pneumonia (47), which our model was unable to mimic. Since we 

did not use clinical parameters to assess if the mice were truly septic, the disease severity 

is difficult to correlate to humans. Thus far, there is no concrete clinical data linking 

SAgs and abscess formation. However, there are hints that SAgs may play a clinically 

relevant role regarding abscesses. A recent case study presented a patient with lung and 

pharyngeal abscesses was attributed to a strain of S. aureus that produced copious 

amounts of SEG and SEI (48). Furthermore, S. aureus has been found to be the most 

common etiological agent of liver abscesses in children (49). As S. aureus is the most 

common cause of SSTIs, the role of SAgs and abscess formation and persistence should 

be expanded from earlier studies. Since abscess formation is influenced by so many 

staphylococcal factors, epidemiological studies may have trouble discerning a 

relationship. However, it is important to determine if the phenotype and mechanisms of 

pathogenicity in mice translate to humans who are much more sensitive to the effects of 

SAgs.  

4.3 Overall conclusions 

Comparison of the two lifestyles of S. aureus reveals seemingly conflicting roles for 

SAgs. On one hand, the expression of SAgs during nasal colonization decreases bacterial 

loads; however, SAgs enhanced bacterial survival during bacteremic infection. The 

answer to this paradox may be answered by analyzing the different survival tactics taken 

by S. aureus in these two different lifestyles. It has been shown that there are different 

expression patterns in the virulon between invasive infection and colonization; thus, it 
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was surprising that our model showed expression of SAg during both lifestyles. However, 

by coordinating SAg function with other staphylococcal virulence factors, S. aureus 

appeared to be successful at manipulating the inflammatory response so that it could 

persist in specialized in vivo niches: the nose during colonization, and abscesses during 

invasive infection. The anterior nares are a highly desirable niche for colonization and 

transmission between people; therefore, by attenuating virulence, propagation can 

continue. A low-level of colonization may be what allows for an asymptomatic state of 

colonization, which SAgs may be a contributing factor towards as suggested in Chapter 

2. Persistent nasal colonizers may have dysregulated immune responses that permit 

higher bacterial densities (15-18), and may explain why SAg-activation of the immune 

system does not cause bacterial clearance. In the body, neutrophils and macrophages are 

highly effective at bacterial clearance. Thus, the tactic of maintaining a low bacterial 

density does not increase overall bacterial fitness once the mucosa is breached since 

bacteria are introduced to a myriad of immune components that function to clear the 

infection. Thus, the formation of an immune-protected niche in vivo is important for 

continued survival. S. aureus has evolved many mechanisms to persist as staphylococcal 

abscess communities and SAgs enhance this process as shown in Chapter 3. Overall, it 

appears that S. aureus utilize SAgs in order to adapt to in vivo niches by manipulating the 

immune system to promote overall survival and persistence. The work presented in this 

thesis shows a novel purpose for SAgs and reconciles the seemingly counterintuitive 

inflammatory properties of these toxins, with a role for enhancing biological fitness.  

4.4 Future directions for SAg research 

The collective SAg research community has contributed enormously to an advanced 

understanding of SAg biology. Yet, there remain a number of important avenues for 

further study and consideration. Although SAgs are defined by Vβ-specificity, different 

human MHC II molecules are also clearly important for the response to SAgs (50-55). 

Mouse models (such as B6 and BALB/c) have been hampered by the fact that mouse 

MHC II do not respond in the same way, and are not as sensitive to SAgs, as human 

MHC (50). Alternative models include rabbits that respond more appropriately (56-58), 

as well as transgenic mouse strains that express human MHC class II molecules (50, 59). 



138 

 

Models of TSS also often utilize a liver-damaging reagent such as D-galactosamine in 

conjunction with high levels of SAg protein. Liver and gut pathology has recently been 

implicated in the course of TSS in a humanized transgenic HLA-DR3 mouse model 

without the use of D-galactosamine (60, 61) and thus, D-galactosamine may mask 

pathologies normally induced via TSS. Lastly, although many studies using purified 

recombinant SAgs have yielded many insights, SAg function is still rarely studied in the 

context of live infections using genetically defined bacterial knockout strains. More work 

using live infections with appropriate SAg-responsive models is needed to be able to 

coordinate SAg production with other virulence factors. 

Although a number of studies have evaluated the presence of S. aureus, and correlations 

of particular SAg genes with particular clinical syndromes, the presence of the gene does 

not equate to expression and function of the actual toxin. Indeed, the original discovery of 

TSST-1 as the causal agent of menstrual TSS was made due to the high level production 

of this toxin from menstrual TSS strains (62, 63). For many human diseases where SAgs 

may contribute to, or drive the pathology, there is likely not a single toxin responsible 

given that they can all activate numerous T cells. As we now know the Vβ skewing 

patterns of virtually all the known staphylococcal SAgs in humans (64-66), further 

systematic evaluations focused on SAg expression coupled with function in relation to 

particular clinical syndromes (46), are warranted. 

The large family of SAgs continue to grow, and the YPM and MAM SAgs seem to have 

developed their SAg-activity through convergent evolution as these toxins are not 

orthologous to the pyrogenic toxin SAgs, or to each other. Also, the animal model of KD 

utilizes an uncharacterized SAg from the cell wall preparation of Lactobacillus casei to 

induce the disease in mice (67). L. casei is found commonly in the intestinal tract, is 

widely used by the dairy industry, and is clearly not a pathogen. It is easy to speculate 

that uncharacterized SAgs could be produced by other microorganisms. 

Given the findings presented in this thesis, it is worth exploring the ways that SAgs 

benefit other organisms other than contributing to experimental or clinical shock, as this 

is likely not the biological purpose for these toxins. The redundancy of these toxins 
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should also be explored as there is evidence for preferential SAg expression. Determining 

the environmental cues that activate SAgs or ‘alternative’ toxins may help prevent 

enhanced morbidity associated with staphylococcal infections. Given the high prevalence 

of colonization in the population, complete eradication of S. aureus at this time is not 

feasible. However, vaccine efforts can concentrate on reducing morbidity and mortality 

of staphylococcal infections. Since there is no single virulence factor responsible for 

staphylococcal pathogenicity, vaccine candidates need to include multiple targets and 

may require activation of immune components other than the humoral response (68). As 

SAgs have been shown to help establish in vivo niches regardless of colonization or 

infection, they may be good candidates to include in cocktail vaccines to reduce bacterial 

fitness and ameliorate morbidity and mortality levels. As such, there is promising pre-

clinical data using SAgs in polyvalent vaccines against staphylococcal infections (69, 

70). As the only known virulence factor to purposefully activate the adaptive immune 

system, SAgs are evolutionarily unique. Since engagement of the immune system is so 

crucial for the success of S. aureus as both a commensal and pathogen, there is untapped 

potential in these toxins yet to be explored. 
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6 Appendices 

Appendix 1. Animal ethics approval 

 

 

 

 

 

 

From: eSiriusWebServer esiriusadmin@uwo.ca
Subject: eSirius Notification - Annual Protocol Renewal APPROVED by the AUS 2011-074::1

Date: June 10, 2013 at 9:13 AM
To: john.mccormick@schulich.uwo.ca
Cc: mmollard@uwo.ca, auspc@uwo.ca

2011-074::1:

AUP Number: 2011-074
AUP Title: Staphylococcal Infections
Yearly Renewal Date: 04/01/2013

The YEARLY RENEWAL to Animal Use Protocol (AUP) 2011-074 has been approved,
and will be approved for one year following the above review date.

1. This AUP number must be indicated when ordering animals for this project.
2. Animals for other projects may not be ordered under this AUP number.
3. Purchases of animals other than through this system must be cleared through the ACVS office.

Health certificates will be required.

REQUIREMENTS/COMMENTS
Please ensure that individual(s) performing procedures on live animals, as described in this
protocol, are familiar with the contents of this document.

The holder of this Animal Use Protocol is responsible to ensure that all associated safety
components (biosafety, radiation safety, general laboratory safety) comply with institutional
safety standards and have received all necessary approvals. Please consult directly with your
institutional safety officers.

Submitted by: Mollard, Maureen 
on behalf of the Animal Use Subcommittee
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Appendix 2. Kinetics of bacterial counts in the liver during S. aureus bacteremia. 

Bacterial burdens in the livers of DR4-B6 mice infected with 5 × 106 CFU S. aureus 

Newman (black squares) or Newman Δsea (red triangles) over time. Each point 

represents one mouse and the line represents the mean. 
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Appendix 3. Cytokines and chemokines detected from liver supernatants of 

Newman and Newman Δsea-infected mice. DR4-B6 mice were infected with 5 × 106 

CFU S. aureus Newman and samples taken 8 hours post-infection (pg/mL). Each column 

represents an individual mouse. 

 

Supplementary,Table,1,
,

Table S1.1 Cytokines and chemokines detected from liver supernatants of infected DR4-B6 mice 
8 hours post-infection (pg/mL). Each column represents an individual mouse.  
 

LIVER NWM-1 NWM-2 NWM-3 NWM 
Δsea-1 

NWM 
Δsea-2 

NWM 
Δsea-3 

Eotaxin 195.42 175.94 149.99 165.2 148.26 118.68 
GCSF 330.77 93.12 137.37 58.75 146.13 34.94 

GMCSF 233.29 144.01 85.02 150.39 68.78 58.9 
IFNy 113.86 81.05 90.24 51.97 59.98 44.89 
IL-1a 626.22 314.74 479.11 437.73 474.64 234.05 
IL-1b 95.64 73.99 103.6 75.3 76.6 52.3 
IL-2 68.7 59.37 48.38 54.91 64.45 51.29 
IL-3 43.78 15.03 15.92 25.43 23.96 17.05 
IL-4 9.9 6.06 5.99 5.99 3.48 2.91 
IL-5 5.93 3.4 3.61 3.23 3.44 2.48 
IL-6 100.66 75.58 80.13 46.75 54.3 41.47 
IL-7 85.82 33.34 18.2 53.72 35.69 19.08 
IL-9 5.03 6.12 25.67 30.33 39.7 36.35 

IL-10 140.71 80.55 59.7 75.71 70.92 54.02 
p40 90.46 90.18 69.22 62.43 49.43 51.33 
p70 170.03 110.01 86.72 121.88 98.72 84.64 

IL-13 209.34 45.08 10.62 87.96 2.04 0 
IL-15 301.09 142.13 128.15 119.2 186.21 108.86 
IL-17 29.11 15.98 14.03 19.94 10.27 9.46 
IP-10 3267.3 2399.6 2761.4 2079 2496.26 1563.8 
KC 403.13 677.11 660.32 201.26 469.35 401.46 
LIF 1.21 0.27 1.06 2.26 0 0 
LIX 0 0 0 0 0 0 

MCP-1 1157.86 1015.85 1077.51 818.48 783.79 509.5 
MCSF 73.25 34.68 39.14 40.94 59.52 40.74 
MIG 1594.78 1236.46 1489.09 1565.37 1701.95 826.3 

MIP-1a 130.99 87.44 81.12 82.49 82.95 51.18 
MIP-1b 265.04 151.8 101.87 167.5 35.94 45.12 
MIP-2 356.66 366.65 427.87 132.54 184.15 116.86 

RANTES 84.76 52.71 49.35 60.08 52.66 35.2 
TNF-a 35.63 25.68 27.5 23.21 16.55 16.89 
VEGF 7.06 3.5 2.84 5.26 5.31 1.94 
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Appendix 4. Cytokines and chemokines detected from sera of Newman and Newman 

Δsea-infected mice. DR4-B6 mice were infected with  5 × 106 CFU S. aureus Newman 

and samples taken 8 hours post-infection (pg/mL). Each column represents an individual 

mouse. 

 

 
 
 
Table S1.2 Cytokines and chemokines detected from sera of infected DR4-B6 mice 8 hours post-
infection (pg/mL). Each column represents an individual mouse. ND = not detectable 
 

SERUM NWM-1 NWM-2 NWM-3 NWM-4 NWM 
Δsea-1 

NWM 
Δsea-2 

NWM 
Δsea-3 

Eotaxin 1413.98 1067.95 1300.86 1169.51 1316.71 1855.2 1306.32 
GCSF 3270.89 2627.33 2510.03 1365.86 1653.55 6473.47 5019.4 

GMCSF 60.73 0 78.25 98.57 0 34.46 49.49 
IFNy 59.66 43.69 68.64 21.32 0 0 0 
IL-1a 96.99 64.89 34.29 0 44.14 75.65 44.14 
IL-1b 0.39 39.36 48.38 3.39 18.3 6.4 21.17 
IL-2 22.94 9.52 7.16 0 3.44 0.56 4.17 
IL-3 5.73 0 0 0 0 0 0 
IL-4 0.31 0 0 0.8 0.16 0 0 
IL-5 57.27 29.19 16.56 29.48 16.14 55.79 49.27 
IL-6 495.84 270.9 193.13 244.44 315.99 488.26 490.49 
IL-7 0 0 0 0 0.84 0 0 
IL-9  35.04 33.52 423.14 0 ND 113.4 

IL-10 5.33 25.95 0 1.28 38.41 17.56 43.59 
p40 0 0 44.71 38.58 6.4 0 34.25 
p70 53.88 79.12 83.27 83.27 28.9 13.65 21.08 

IL-13 155.34 83.04 215.99 102.08 83.04 215.99 136.24 
IL-15 0 0 0 0 0 0 6.4 
IL-17 0 0 0 0 0 0 1.79 
IP-10 979.71 1346.43 2032.9 1277.95 408.14 212.34 626.06 
KC 5460.82 4864.12 3346.85 4486.14 3188.64 7825.15 3553.02 
LIF 0 0 0 0 0 0 0 
LIX 9051.91 2767.26 4635.6 673.01 3979.11 2518.47 7071.74 

MCP-1 1816.63 3515.82 4216.75 2883.08 1336.44 2853.34 3527.23 
MCSF 2.72 4.22 4.74 1.76 5 4.74 3.46 
MIG 103.68 152.84 170.77 109.46 52.5 293.42 77.16 

MIP-1a 148.89 71.53 124.46 159.59 127.58 114.73 188.86 
MIP-1b 171.05 188.02 237.79 211.43 66.05 163.77 272.49 
MIP-2 0 50.19 56.23 0 32 80.25 74.28 

RANTES 48.17 45.13 86.01 10.28 32.02 51.13 39.88 
TNF-a 19.51 23.1 17.43 13.93 13.93 12.07 22.32 
VEGF 0.04 0.46 0.48 0.25 0.25 0.29 0.34 

 
,
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Appendix 5. Intracellular detection of IFN-γ in Newman-infected mice. 

Representative mouse of liver leukocyte populations examined for intracellular IFN-γ, 8 

hours post-infection with 5 × 106 CFU S. aureus Newman via tail-vein. Dot plots 

represent analysis of lymphocyte populations as this was shown to be IFN-γ positive, and 

not the myeloid population. Gating was based on FMO controls. Panels consisted of 

either anti-GR-1, anti-F4/80 and anti-CD11c or anti-CD11b, anti-NK1.1 and anti-CD3.  
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Appendix 6. SEB contributes to abscess formation during S. aureus COL 

bacteremia. Bacterial burdens 96 hours post-infection of DR4-B6 mice infected with 5 × 

106 CFU S. aureus COL or COL Δseb in A) livers, B) kidneys, C) lungs and D) hearts. E) 

Liver abscess scores from infected mice. (n=4 per group); data are representative of one 

experiment. ***denotes p < 0.001 as determined by unpaired student’s t-test 
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Appendix 7. MHC class II influences susceptilibity to S. aureus COL bacteremia. 

B6, DR4-B6, DR4-B6/DQ8 or B6-DQ8 mice were injected with 5 × 106 CFU S. aureus 

COL via tail-vein and bacterial loads were enumerated 96 hours post-infection in the A) 

liver, B) kidneys, C) lungs and D) heart. E) Weight loss was calculated as change in 

percentage from pre-infection weights and measured at 96 hours post-infection. 

Statistical significance are denoted by * p < 0.05 and *** p < 0.001 as determined by 

one-way ANOVA with Tukey’s post-test 
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Appendix 8. SEB enhances the arthritogenicity of citrullinated fibrinogen in DR4-

B6 mice. DR4-B6 mice were immunized (subdermal) with 100µg of citrullinated human 

fibrinogen (CithFib), 10µg of SEB or both with complete Freund’s adjuvant (CFA), and 

boosted at day 27 with incomplete Freund’s adjuvant (IFA). (SEB-treated n = 3, CithFib 

n=3, CithFib + SEB n = 4, No treatment n = 1).  Ankle measurements were taken for both 

feet up to 100 days post-vaccination. Data are represented as average ankle 

measurements per group 
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Appendix 9. SEB-treatment results in chronic decrease in Vβ8+CD3+ T cells. Flow 

cytometry analysis of splenocytes 100 days after the initial vaccination (SEB-treated n = 

3, CithFib n = 3, CithFib + SEB n = 4, No treatment n = 1).  Data are expressed as a ratio 

of Vβ8+CD3+ to Vβ3+CD3+ cells per mouse for each treatment group. Data shown as the 

mean ± SEM, significant differences (p < 0.005) as determined by one-way ANOVA 

with Tukey’s post-test are denoted with **. No treatment was not included in statistical 

analyses and is present for comparison only. 
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