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Abstract
Environmental data is frequently left or right censored. This is due to the fact that the

correct value for observed values that are below or above some threshold or detection point
are inaccurate so that it is only known for sure that the true value is below or above that
threshold. This is frequently important with water quality and air quality time series data.
Interval censoring occurs when the correct values of the data are known only for those values
falling above some lower threshold and below some upper threshold. Censoring threshold
values may change over time, so multiple censor points are also important in practice. Further
discussion and examples of censoring are discussed in the first chapter. A new dynamic normal
probability plot for censored data is described in this chapter.

For some environmental time series the effect of autocorrelation is negligible and we can
treat the data or often the logged data as a random sample from a normal population. This case
has been well studied for more than half a century and the work on this is briefly reviewed in
the second chapter. The second chapter also contains a new derivation and a new algorithm
based on the EM algorithm for obtaining the maximum likelihood estimates of the mean and
variance from censored normal samples. A new derivation is also given for the observed and
expected Fisher information matrix.

In chapter three the case of autocorrelated time series is discussed. We show the close
relationship between censoring and the missing value problem. A new quasi-EM algorithm
for missing value estimation in time series is described and it efficacy demonstrated. This
algorithm is extended to handle censoring in the general case of multiple censor points and
interval censoring. When there is no autocorrelation, this algorithm reduces to the algorithm
developed in Chapter 2. An application to water quality in the Niagara river is discussed.

Keywords: Time series analysis, censoring, environmetrics
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Chapter 1

Introduction and literature review

In this chapter a review is given on the underlying methods that are developed in the later chap-
ters. This thesis deals with what is known as Type 1 censoring. There is an extensive literature
on this subject with most of the research focused on the random sample case. The monograph
by Schneider [1986] focuses on censoring with normal random samples while the monograph
of Cohen [1991] discusses the more general case of random samples from normal and non-
normal distributions. Wolynetz [1979a,b, 1980, 1981] has implemented Fortran algorithms for
censored normal samples and censored regression. The recent monograph of Helsel [2011]
provides and extensive overview of recent research with a focus on computation and censored
environmental data. The seminal paper of Kaplan and Meier [1958] developed a nonparamet-
ric method for fitting survival distributions with incomplete observations. Subsequently, the
Kaplan-Meier curves have been widely used with times-to-event data. Very little has been
done with censored time series and with the problem of fitting time series models to censored
data. The paper by Park et al. [2007] is a notable exception. However as will be discussed
later the algorithms and methods given in this paper are incorrect and not very useful. Hopke
et al. [2001] discuss a data augmentation algorithm that is implemented to fit a non-stationary
multivariate time series model to a time series of average weekly airborne particulate concen-
trations of twenty four variables. The model is essentially equivalent to a vectorized version of
the ARIMA(0,1,1) model.

In Chapter 2, the EM algorithm is discussed for the simple case of estimation of the mean
and variance in the censored time series model consists of a mean plus Gaussian white noise.
This is equivalent to the well-known and much studied problem of censored samples from
a normal distribution [Cohen, 1991, Schneider, 1986, Wolynetz, 1979a] We present a new
derivation using the EM algorithm as well a new closed form expression for the information
matrix for the mean and variance parameters. It is shown that in the censored case these
parameters are not orthogonal. A new interactive normal probability plot for censored data is
discussed. Several applications are given.

Chapter 3 develops a new Quasi-EM algorithm for fitting ARMA, stationary ARFIMA
and other linear time series models to censored time series. It is shown that the missing value
problem in time series model fitting may be regarded as a special and extreme case of censoring
and it is demonstrated that our approximate Quasi-EM algorithm handles this case just as well
as the standard exact treatment. The method is illustrated with an application.

1



2 Chapter 1. Introduction and literature review

Censoring with environmental data and time series
Pollution and the monitoring of toxic substances in rivers, lakes and in the atmosphere may
gives rise to samples or to time series data that are censored due to the technology used to
measure the quantity of the toxic substance. Typically a sample of water or air is taken and then
laboratory analysis may be used to measure the amount or concentration of the toxic substance
present. The monograph of Helsel [2011] discusses statistical methods for the analysis of
censored environmental data and provides many interesting environmental datasets.

The type of censoring with environmental data is known as Type 1 censoring in contrast to
Type 2 censoring in which the censored observations result from stopping an experiment at a
preset time.

Consider the case Zi, i = 1, . . . , n are independent and identically distribution and the dis-
tribution function F(z) corresponds to the complete data. We do not observe Z1, . . . , Zn but
instead we observe a censored version, denoted by Yi, i = 1, . . . , n. In the case of left-censoring
Yi = max (Zi, ci) , i = 1, . . . , n where ci are the censor points or detection thresholds. With-
out loss of generality we can partition the sample (Z1,Z2, . . . ,Zn) into two parts (Y1, ...,Ym)
and (Z1, . . . , Zn−m) where Y1, . . . , Ym correspond to the non-censored or complete observations
and Z1, . . . , Zn−m correspond to the censored observations. The right-truncated distribution
of the censored values is shown in Figure 1.1 below. Due to censoring the actual values of
Z1, . . . , Zn−mare not observed and in their place only Yi = ci, i = m+ 1, . . . , n is observed. Right
censoring is defined by setting Yi = min (Zi, ci) , i = 1, . . . , n. An important special case is
single-censoring when c1 = . . . = cn = c. The single, left-censored normal distribution case is
shown in Figure 1.1.

Figure 1.1: Left-censoring and the corresponding right-truncated distribution.

Left-censored data or time series often arise in water or air quality applications since the in-
struments may not be able to measure below or above some specified threshold, c. In this case
the data may be left-censored, right-censored or if there are both upper and lower limits, inter-
val censored. In lifetime data in engineering and medical sciences, right censoring of survival
times is of interest [Lawless, 2003, §2.2] and we illustrate our new dynamic normal probability
plot for censored data with an application to engine lifetimes that are right-censored.

In practice the detection level may change so that there are two or more detection levels. In
the completely general left-censored case we assume that each observed value, Yi, i = 1, . . . , n
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is paired with a threshold value c−i , i = 1, . . . , n so if the underlying latent process is Zi, i =
1, . . . , n our observed process is Yi = max

(
Zi, c−i

)
, i = 1, . . . , n in the left-censored case. It

is assumed that c−i , i = 1, . . . , n are known. In the singly-censored case, c−i = c, i = 1, . . . , n.
Similarly in the right censored case, given c+i , we assume the unobserved latent value Zi and
we observe Yi = min

(
Zi, c+i

)
, i = 1, . . . , n. If the data is both left and right censored it is said to

be interval censored. It is assumed that the censoring process that determines ci, i = 1, . . . , n is
independent of the data generation process that generates the underlying latent process, Zi, i =
1, . . . , n. See Helsel [2011, §3.2] for more discussion and examples of the pitfalls and bias
created by insider or non-independent censoring. This is not an issue with most data collected
by reputable government agencies such as Environment Canada.

Simulated example
A random sample from an N(0, 1) distribution of size n = 60 was generated and all values less
than −0.5 were set to −0.5. A normal probability is a useful tool for preliminary data analysis
and is shown for this data in Figure 1.2. We see that there were 13 censored values, so the
censor rate is 13/60 ≈ 22%. Later we will introduce a new dynamic normal probability plot
that is useful for robust estimation and diagnostic checking.

Figure 1.2: Simple normal probability plot of some left censored simulated N(0,1) data with
censor point c = −0.5, i = 1, . . . , 60.

Air quality example
Park et al. [2007] fit an AR(2) model, ϕ(B) (zt − µ) = at, where ϕ(B) = 1− ϕ1B− ϕ2B2, B is the
backshift operator on t, µ is the series mean and at are the innovations which are assumed to be
independent and identically distributed with a normal distribution with mean zero and variance
σ2

a, to a time series of hourly cloud ceiling heights in units of 100 meters. The time series had
three missing values as well and were right censored and c = c+ = 12000feet. For fitting a log
transformation was used, so c = 4.79 log feet. The series was of length n = 716. The fitted
model was an AR(2) with ϕ̂1 = 0.689 ± 0.038, ϕ̂2 = 0.173 ± 0.038, µ̂ = 4.129 ± 0.236 and
σ̂a = 0.877. The observed censoring rate was 41.62%. This model was simulated and the time
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series plot is shown in Figure 1.3. The observed censoring rate in the fitted model was only
27.5%.

Figure 1.3: Time series plot of simulated censored AR(2) series for the model that was fit to
the cloud ceiling time series. The observed censor rate was 27.5% which was lower than the
41.62% rate in the observed historical time series.

Figure 1.4: Boxplot of the censor rate in 100 simulations of the AR(2) model fitted to the cloud
ceiling time series. The dotted horizontal line shows the observed censor rate in the observed
data.

EM algorithm

The EM algorithm works, that is under regularity conditions such as for sampling from the
exponential family of distributions, due to properties of convex functions including Jensen’s
inequality and the Kullback-Liebler discrepancy. We will now discuss these concepts and then
use them in the derivation of the EM algorithm.
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Convex functions
The function φ(x) is convex on an interval (a, b) provided that

φ (λx1 + (1 − λ)x2) ≤ λφ (x1) + (1 − λ)φ (x2) (1.1)

for x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1. It is strictly convex if equality only holds when λ = 0 or
λ = 1. Geometrically this means that the chord joining any two points lies above the function
as shown in Figure 1.5.

Figure 1.5: A strictly convex function.

When φ(x) is twice differentiable, it is strictly convex onD on (a, b) if and only if φ′′(x) > 0.
The slope of the tangent is always increasing. The diagram above shows a parabola that is
concave upwards. Other common examples of convex functions are exponential on (−∞,∞)
and the negative of the logarithm on (0,∞).

The region above a convex function is always a convex set, that is, the line segment con-
necting any two points in the region is in the region.

Jensen’s inequality

Consider a distribution with two mass points Pr{X = xi} = pi, i = 1, 2. Let φ(x) be a convex
function. By definition, Eφ(X) = φ (x1) p1 + φ (x2) p2 and φ(EX) = φ (p1x1 + p2x2), where E
denotes mathematica expectation.

Then Jensen’s inequality follows from the above two results and it states that,

φ (p1x1 + p2x2) ≤ φ (x1) p1 + φ (x2) p2 (1.2)

This proof can be extended to n points using mathematical induction and then it can be ex-
tended to the continuous case using continuity arguments. In general, for any random variable
X, if φ is any convex function for which Eφ(X) is defined then Jensen’s inequality states that,

φ(EX) ≤ Eφ(X) (1.3)

Illustrative example with the lognormal distribution.Illustrative example with the lognormal distribution.Illustrative example with the lognormal distribution. Let X have a lognormal distribution
with parameters µ and σ2. So Y = log X is normally distributed with mean µ and variance σ2.
Then it can be shown from Jensen’s inequality that E log X > µ. This follows since − log X is
a strictly convex function over the positive real line, E(− log(X)) > − log EX from eqn.(1.3) so
µ < log EX.
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This result can be verified using the moment generating function for the normal distribution
with parameters µ and σ2. Let Y be normally distributed with mean µ and variance σ2 then the
moment generating function for Y is given by MY(t) = E exp(tY) = exp

{
tµ + 1

2 t2σ2
}

hence

setting t = 1, E{exp(Y)} = E{X} = exp
{
µ + 1

2σ
2
}
> eµ, hence EX > eµ or equivalently

log EX > µ. More generally, if Y is a positive random variable, log EY ≤ E log Y and equality
holds only in the constant random variable case.

Kullback-Liebler discrepancy

Jensen’s inequality may be used to establish the non-negativity of the Kullback-Liebler dis-
crepancy. For any two probability density functions f (x) and g(x) defined on R, the Kullback-
Liebler discrepancy is defined by

K(g, f ) =
∫ ∞

−∞
log

f (x)
g(x)

f (x)dx = E f log
f (x)
g(x)

(1.4)

Proof

K(g, f ) =
∫

log
(

f (x)
g(x)

)
f (x)dx = −

∫
log

(
g(x)
f (x)

)
f (x)dx ≥ − log

∫ (
g(x)
f (x)

)
f (x)dx = 0

(1.5)
This establishes that K(g, f ) ≥ 0.

Incomplete data models

By incomplete data we mean data that is possibly missing or censored. Incomplete data models
are characterized by,

g(x|θ) =
∫

Z
f (x, z|θ)dz (1.6)

where x is the observed data and z is the latent data and g() and f () are the probability density
functions. As in [Robert and Casella, 2004] we use the notation g(x|θ) to mean the density
function of x given θ and similarly with others distribution functions.

Incomplete data problems also arise in other areas such as mixture models and stochastic
volatility model in financial time series [Robert and Casella, 2004]

Censored data likelihood

Observed Y1, . . . , Yn from IID with pdf f (y; θ). Assume y1, . . . , ym are fully observed and ym+1 =

. . . = yn = c are left-censored. The likelihood function is

L(θ|y) = F(c)n−m
m∏

i=1

f (yi; θ) . (1.7)
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Let z1, . . . , zn be latent process with zi = yi, i = 1, . . . ,m and zm+1, . . . , zn are the observed
uncensored values. Then the complete likelihood function if we know the latent process values
as well as the observed values may be written,

L(c)(θ|z) =
n∏

i=1

f (zi; θ) =
m∏

i=1

f (yi; θ)
n∏

i=m+1

f (zi; θ) (1.8)

Then eqn. (1.7) may be written,

L(θ|y) = E
{
L(c)(θ|Z)

}
=

∫
Z

L(c)(θ|z) f (z |y1 , . . . , ym; θ) dz. (1.9)

Note that eqn. (1.7) is of the same form as eqn. (1.9).

The EM Algorithm
In the following sections for extra precision we will use boldface to denote vectors. In later sec-
tions the distinction between vector and scalars is evident from context so the use of boldface
for vectors is curtailed.

Expectation equation

We suppose Xi, i = 1, . . . ,m are independent and identically distributed (IID)

θ̂θθ = argmax
θθθ

Πm
i=1g ( xi|θθθ) (1.10)

and we can write the log-likelihood,

log L(θθθ|xxx) = log g(xxx|θθθ) (1.11)

where xxx = (x1, . . . , xm). In practice, log L(θθθ|xxx) may be difficult or cumbersome to evaluate.
Suppose that if we augment the data with zzz = (zm+1, . . . , zn)′ where (X, Z) have PDF f (xxx, zzz|θθθ)

where f (xxx, zzz|θθθ) is easy to evaluate. The complete data likelihood,

log L(c)(θθθ|xxx, zzz) = log( f (xxx, zzz|θθθ)). (1.12)

The marginal PDF for zzz is given by

k(zzz|θθθ, xxx) =
f (xxx, zzz|θθθ)
g(xxx|θθθ) (1.13)

hence,

g(xxx|θθθ) = f (xxx, zzz|θθθ)
k(zzz|θθθ, xxx)

(1.14)

Taking logs,

log g(xxx|θθθ) = log f (xxx, zzz|θθθ) − log k(zzz|θθθ, xxx) (1.15)
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For any value of θθθ0 we can write,

Eθ0θ0θ0 log L(θθθ|xxx) = Eθ0θ0θ0 log L(c) (θθθ|xxx,ZZZ, θθθ0) − Eθ0 log k (Z|xZ|xZ|x, θθθ0) . (1.16)

where Eθ0 is expectation for ZZZ with respect to the distribution k (zzz |θ0 , xxx). Since the first term
does not depend on ZZZ,

log L(θθθ|xxx) = Eθ0 log L(c)(θ|xxx,ZZZ) − Eθθθ0 log k (ZZZ|xxx, θθθ0) . (1.17)

Assume, as usual, that we can interchange expectation with respect to ZZZ, and differentiation
with respect to θ0,

∂θθθ0Eθθθ0 log k (zzz|xxx, θθθ0) = Eθ0∂θ0 log k (z|xz|xz|x, θθθ0) = 0 (1.18)

where we have used the result that the expected value of the score function is zero [Casella and
Berger, 2002, eq. 7.3.8]. Eqn. (1.18) shows that ∂θθθ0Eθθθ0 log k (zzz|xxx, θθθ0) is independent of θθθ and so
we can concentrate of maximizing E log L(c)(θ|xxx,ZZZ)

Simple illustration

This example is provided just to show in an over-simplified setting how the concepts can be
apply. Suppose Xi, i = 1, . . . ,m and Zi, i = m + 1, . . . , n are IID normal with mean θ and unit
variance.

Dropping the constant terms involving 2π,

log L(θ|xxx) =
m∑

i=1

(
−1

2
(xi − θ)2

)

log L(c)(θ|xxx, zzz) =
m∑

i=1

(
−1

2
(xi − θ) 2

)
+

n∑
i=m+1

(
−1

2
(Zi − θ)2

)

log k(zzz|xxx, θ) =
n∑

i=m+1

(
−1

2
(Zi − θ)2

)
First note that,

Eθ0

{
(Z − θ)2

}
= E

{
Z2 − 2θZ + θ2

}
= θ2

0 + 1 − 2θθ0 + θ
2

= (θ0 − θ)2 + 1.

So we have,

Eθ0

 n∑
i=m+1

(−1
2

(Zi − θ)2)

 = −1
2

(n − m)
(
1 + (θ0 − θ)2

)
Hence,
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Eθ0 log L(c)(θ|xxx,ZZZ) =
m∑

i=1

(
−1

2
(xi − θ)2

)
− 1

2
(n − m)

(
1 + (θ0 − θ)2

)
and

Eθθθ0 log k(ZZZ|xxx, θθθ) = −1
2

(n − m)
(
1 + (θ0 − θ)2

)
.

So eqn. (1.17) is verified as correct.

EM equation

To maximize log L(θθθ|xxx) we can work with the expected log-likelihood function,

Q (θθθ |θθθ0 , x) = Eθθθ0 log L(c) (θθθ|xxx, zzz, θθθ0) . (1.19)

The iterative algorithm starts with an initial estimate θ̂θθ0 and then obtains improved esti-
mates, θ̂θθ(1), θ̂θθ(2), . . .. The improved estimates are obtained using,

θ̂θθ( j+1) = argmax
θθθ

Q(θθθ|θ̂θθ( j), xxx). (1.20)

There are two basic steps in the algorithm.
Step 1. Expectation: compute the expected value,

Eθθθ( j) log L(c)(θθθ|xxx, zzz) = Q(θθθ|θθθ( j), xxx). (1.21)

Step 2. Maximization: use eqn. (1.20).

Fundamental theorem for the EM algorithm

The sequence θ̂θθ( j), j = 0, 1, 2, . . . defined by the EM algorithm satisfies

log L(θ̂θθ( j+1)|xxx) ≥ log L(θ̂θθ( j)|xxx) (1.22)

with equality holding if and only if

Q(θ̂( j+1)|θ̂θθ( j), x) = Q(θ̂( j)|θ̂θθ( j), x) (1.23)

Proof

Eqn. (1.17) may be written,

log L(θθθ|xxx) = Q(θ|θ̂θθ( j), xxx) − Eθθθ( j) log k(ZZZ|xxx, θθθ( j)). (1.24)

Hence we can write,

log L(θ̂θθ( j+1)|xxx) = Q(θ̂( j+1)|θ̂θθ( j), xxx) − Eθθθ( j) log k(Z|xZ|xZ|x,,,θθθ( j)))). (1.25)

and
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log L(θ̂θθ( j)|xxx) = Q(θ̂θθ( j)|θ̂θθ( j), xxx) − Eθθθ( j) log k(ZZZ|xxx, θθθ( j)). (1.26)

So we obtain,

log L(θ̂( j+1)|xxx)−log L(θ̂( j)|xxx) = Q(θ̂( j+1)|θ̂( j), xxx)−Q(θ̂( j)|θ̂( j), xxx)−Eθ( j) log k(Z|xZ|xZ|x,,,θ( j+1))))+++Eθ( j) log k(Z|xZ|xZ|x,,,θ( j)))).

Since by definition Q(θ̂θθ( j+1)|θ̂θθ( j), xxx) − Q(θ̂( j)|θ̂( j), xxx) ≥ 0 we see that eqn. (1.22) holds if we have

Eθθθ( j) log k(Z|xZ|xZ|x, θθθ( j+1)) ≤ Eθθθ( j) log k(ZZZ|xxx, θθθ( j)). (1.27)

Re-arranging the terms eqn. (1.27) is equivalent to,

Eθ( j) log
k(Z|xZ|xZ|x,,,θθθ( j+1))))
k(Z|xZ|xZ|x,,,θθθ( j))))

≥ 0. (1.28)

The inequality in eqn. (1.28) follows from the non-negative definiteness property of the
Kullback-Liebler information.

Discussion

In cases where the likelihood function is well behaved, such as for models assuming a member
of the exponential family of distributions, the likelihood function has a single unique maximum
and in these cases the EM algorithm is guaranteed to converge to the global MLE [McLachlan
and Krishnan, 2007, §3.4].

The Fundamental Theorem of EM only guarantees that the likelihood does not decrease.
Further conditions are needed to establish that it converges to a stationary point of the likeli-
hood equation ∂θ log L(θ|x) = 0 [Boyles, 1983, Wu, 1983].

This stationary point may be a minimum, maximum or saddlepoint. In some situations it is
necessary to experiment with different initial values. A simple example of a non-regular case
is provided by the Cauchy distribution since the likelihood function for the location param-
eter may be multimodal. The method of simulated annealing has been used in such difficult
situations to try to find the global MLE [Finch et al., 1989, Robert and Casella, 2004]. Other
methods such as genetic optimization or MCMC may also be useful in such cases.

Stochastic EM algorithm

It may be that the expected value Eθθθ( j) log L(c)(θθθ|xxx, zzz) = Q(θθθ|θθθ( j), xxx) is too difficult to compute
analytically but an approximation to it can be obtained by simulation. We need to generate zzz by
drawing repeatedly from the distribution k(zzz|x, θθθ( j)). The stochastic EM algorithm comprises
the following steps:

Step 1:Step 1:Step 1: Select M large enough. Set θθθ(0) to an initial parameter estimate and set j = 0.
Step 2:Step 2:Step 2:Generate a random sample zzz(i), i = 1, . . . , M and compute

Q̄(θθθ|θθθ( j), x) =
1
M

M∑
i=1

log L(c)(θθθ|xxx, zzz(i), θθθ0). (1.29)
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Step 3:Step 3:Step 3: Compute update estimate

θ̂θθ( j+1) = argmax
θθθ

Q̄(θθθ|θ̂θθ( j), xxx). (1.30)

As M → ∞, the estimates of θ̂θθ( j+1) will stochastically converge to the true MLE, θ̂θθ.
This algorithm often referred to as the Monte Carlo EM or MCEM algorithm.

Example comparing the EM and MCEM algorithms

When the complete sample PDF, f (xxx, zzz|θθθ), is a member of the exponential family, the evaluation
of eqn. (1.20) or eqn. (1.30) can be simplified [Robert and Casella, 2004, p. 191]. Following
Robert and Casella [2004] we consider estimation of the mean parameter θ in a normal distri-
bution with known variance equal to one subject to censoring. We will assume left censoring
with the censor point, c, determined by c = Φ−1(r), where r is a specified censor rate. We sup-
pose that y1, . . . , ym are fully observed and that there are n − m left-censored values reported.
Let ȳ be the sample mean of y1, . . . , ym and we may initial set θ̂(0) = (mȳ + (n − m)c)/ n and the
EM algorithm reduces to iterating the equation,

θ̂( j+1) = (m/n)ȳ + (n − m)/nEθ̂( j),c{Z}. (1.31)

where Eθ̂( j),c{Z} is the expected value of a right-truncated normal random variable with mean θ̂( j)

and truncation point c. If we use right censoring, then we take expectations for a left-truncated
normal variable. These iterations quickly converge to the true MLE, θ̂.

For the MCEM version, we simulate z(i)
m+1, . . . , z

(i)
n , i = 1, . . . , M from the right truncated

normal distribution on (−∞, c) and then compute the mean to obtain θ̂( j), as summarized in
eqn. (1.32) below,

θ̂( j) = z̄(i). (1.32)

Then we compute the updated estimate,

θ̂( j+1) = (m/n)ȳ + (n − m)/nθ̂( j). (1.33)

Figures 1.6 and 1.7 compare the EM and MCEM algorithms using M = 100 and M = 1
for the number of Monte-Carlo simulations. In these simulations the sample size was n = 50
with a 50% left-censoring rate. We used N = 25 EM iterations for both the regular EM and the
Monte-Carlo EM. The blue dots, which are connected by line segments, show the EM iterations
using eqn. (1.31) while the red dots show the MCEM iterations using eqn. (1.32)and(1.33) with
M = 100 simulations at each iteration. In Figure 1.6 the convergence is much slower in the
Monte-Carlo since it only converges stochastically as both M → ∞ and N → ∞. Observe
also that the convergence in the Monte-Carlo case is non-monotonic whereas the Fundamental
Theorem of EM guarantees monotonic convergence in the deterministic case.

Figure 1.7 repeats the simulation using the same data values as in Figure 1.6 for the ob-
served time series but using only M = 1. As can be seen the procedure does not converge and
is useless. McLeod and Mohammad [2013a] provide an interactive demonstration to explore
convergence of the MCEM algorithm other various scenarios.
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Figure 1.6: Convergence of EM and MCEM after 25 iterations with M = 100 for sample size
n = 50 with censor rate r = 0.5.

Figure 1.7: Comparing EM and MCEM after 25 iterations with M = 1 for sample size n = 50
with censor rate r = 0.5.
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Park et al. [2007] propose a stochastic EM algorithm for fitting ARMA models to censored
time series. However in their data augmentation, they use only M = 1. Hence the algorithm,
as described in their paper, can not be expected to give sensible results. Increasing M in this
algorithm would make the computations involved very laborious. At each iteration, the Gibbs
algorithm of Robert [1995] for simulating from a truncated multivariate distribution is used
and this Gibbs algorithm, like most MCMC methods, does not have any obvious stopping
rule. Instead in Chapter 3 we propose a computational efficient quasi-EM method. In the early
days of data augmentation some authors used only one simulation but informed researchers no
longer do to this.

Oakes theorem
For completeness a derivation following the method described by Oakes [1999] is provided
with some additional explanations. We drop the bold face notation used in the previous sections
for vectors since it is clear when a variable is scalar or vector from the context. Also following
Oakes [1999] we shall use the notation θ and θ′ to denote the values of the parameters in the EM
algorithm with θ being the current estimated parameter and θ′ the parameter to be optimized
over and matrix transpose will be denoted by a superscript T . Our derivation is essentially the
same as in Oakes [1999] but a few more details and explanations are given.

In Chapter 2, we use Oakes theorem to derive a new result for the observed and expected
information in random samples from a normal population.

Oakes [1999] provides an convenient algorithm for computing the information matrix for
the parameters when the EM algorithm is used. Other methods have been discussed but Oakes
[1999] provides a simple expression for the Hessian in terms of the objective function Q (θ′| θ)
used in the EM algorithm. We will use Oakes theorem to derive a new expression for the
observed and expected information matrix in censored normal samples in Chapter 2.

Oakes theorem states that the Hessian matrix is given by,

∂2L(θ, y)
∂2θ

=

{
∂2Q (θ′| θ)

∂θ′2
+
∂2Q (θ′| θ)
∂θ′∂θ

}
θ′=θ (1.34)

and so the information matrix is,

I(θ) = −
{
∂2Q (θ′| θ)

∂θ′2
+
∂2Q (θ′| θ)
∂θ′∂θ

}
θ′=θ (1.35)

Remark 1:Remark 1:Remark 1: The covariance matrix of the MLE estimate θ̂ is I−1(θ) which in practice is
estimated by I−1

(
θ̂
)
.

Remark 2:Remark 2:Remark 2: I(θ) is the observed information. For models in the exponential family, Efron
and Hinkley [1978] showed that the observed information matrix provides more accurate esti-
mates of the standard errors than the expected information matrix E{I(θ)}.

DerivationDerivationDerivation

L
(
θ′, y

)
= Q

(
θ′| θ) − EX|Y,θ log k

(
x|y; θ′

)
. (1.36)
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As in the usual regularity conditions for MLE we assume that the expectation and differen-
tiation can be interchanged, so that we can use the fact that the expected value of the score
function is zero,

EX|Y,θ
∂ log k(x|y, θ)

∂θ
= 0 (1.37)

For the MLE, the Hessian is equal to the negative of the product of the score function,

EX|Y,θ
∂2 log k(x|y, θ)

∂θ2 = −EX|Y,θ

(
∂ log k(x|y, θ)

∂θ

) (
∂ log k(x|y, θ)

∂θ

)T

(1.38)

Taking first derivatives in eqn. (1.36),

∂L (θ′, y)
∂θ′

=
∂Q (θ′| θ)

∂θ′
− EX|Y,θ

∂ log k(x|y, θ)
∂θ′

(1.39)

From eqn. (1.37), the last term vanishes when θ′ = θ and hence the score function for the
observed data,

∂L (θ′, y)
∂θ

=

(
∂Q (θ′| θ)

∂θ′

)
θ′=θ (1.40)

Differentiating in eqn. (1.39) with respect to θ′

∂2L (θ′, y)
∂θ′2

=
∂2Q (θ′| θ)
∂θ′ 2 − EX|Y,θ

∂2 log k(x|y, θ)
∂θ′ 2 (1.41)

Noting that,

∂2L (θ′, y)
∂θ′∂θ

= 0 (1.42)

Hence differentiating, in eqn. (1.39) with respect to θ

0 =
∂2Q (θ′| θ)
∂θ′∂θ

− EX|Y,θ

(
∂ log k(x|y, θ)

∂θ

) (
∂ log k(x|y, θ)

∂θ

)T

(1.43)

Adding eqns. (1.41) and (1.43) and then using (1.42), eqn. (1.35) is obtained.

Standard errors using the jackknife
In Chapter 2, the exact observed and expected Fisher information matrices are derived for
censored normal samples. By inverting these matrices, estimates of the covariance matrix
of the maximum likelihood estimates (MLE) may be obtained. However these estimates are
based on the standard asymptotic theory of MLE [Knight, 2000, §5.4] and so its applicability
in small samples may not hold or the resulting estimates of the standard errors may not be
robust against model mis-specification such as non-normality or non-constant variance. The
bootstrap and the Tukey jackknife provides a simpler approaches that have greater robustness
and small-sample validity [Davison and Hinkley, 1997]. In Chapter 2, we compare estimates
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of the standard errors obtained using the Fisher information matrix method with the more
computational intensive method using the jackknife.

Miller (1964) provides a review of the jackknife method and brief overview of its history.
The original idea was in a paper by Quenouille in 1949 who proposed a method for removing
the bias in the estimation of serial correlation and it was later extended by Tukey in 1956. Tukey
introduced the terminology jackknife to indicate that this was a method of wide applicability.
In modern practice, the bootstrap provides a similar computationally intensive method that is
more generally applicable to statistical inference problems. In Chapter 2 we use the jackknife
to compare our asymptotic standard deviations with the jackknife estimates while in Chapter 3
the bootstrap is used.

Let X = (X1, . . . , Xn) be a sample and let gn(X) be an estimator of θ. Tukey defined the ith
pseudo-value of gn(X) is defined to be

ui(X) = ngn(X) − (n − 1)gn−1
(
X[i]

)
(1.44)

where X[i] is X with the ith value removed. Then ui(X) is a bias corrected version of gn(X). using
the ith observation. The jackknife treats ui = ui(X), i = 1, . . . , n as n independent estimators of
θ. Let ū and s2

u denote the usual sample mean and variance of ui, i = 1, . . . , n, that is,

ū = n−1
n∑

i=1

ui (1.45)

and

s2
u =

1
n − 1

n∑
i=1

(ui − ū) 2. (1.46)

Then the bias-corrected estimate of θ is,

θ̂(J) = ū (1.47)

and the estimated standard error for both θ̂ and θ̂(J) is

est.sd
(
θ̂
)
= s2

u

/
n. (1.48)

The jackknife 95% confidence interval is

ū ± 1.96su/
√

n. (1.49)

Tukey suggested replacing 1.96 in eqn. (1.49) by the upper 2.5% point from a t-distribution
on n − 1 degrees of freedom and this may be useful when n is not large. In general using the
jackknife estimate for θ removes the order 1/n term in the expansion,

E {gn(X)} = θ + a1/ n + O
(
1
/
n2

)
, (1.50)
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Conditional multivariate normal distribution
Let Z be a vector of length n1 + n2 and let Z =

(
Z′1,Z

′
2

)
be a partitioned vector with Z1 and Z2

of lengths n1 and n2. Suppose that Z is multivariate normal with mean vector µ =
(
µ′1, µ

′
2

)
and

covariance matrix

Ω =

(
Ω1,1 Ω1,2

Ω2,1 Ω2,2

)
(1.51)

where Ω2,1 = Ω
′
1,2. Then the conditional distribution of Z2 given Z1 = z1 is normal with mean

µ2|1 = µ2 + Ω2,1Ω
−1
1,1 (z1 − µ1) (1.52)

and covariance matrix

Ω2|1 = Ω2,2 −Ω2,1Ω
−1
1,1Ω1,2 (1.53)

The conditional mean in eqn. (1.52) and conditional covariance matrix in (1.53) do not
require the normal assumption and hold under the assumption that the Z, Z1, and Z2 have the
covariance matrix given in eqn. (1.51).

The provides a direct method for solving the missing value problem in stationary time
series. As we shall see the missing value problem is a special case of the censoring problem
and this connection will be utilized.

Time series models
Let zt, t = 1, 2 . . . be a stationary and ergodic time series with mean µ and autocovariance
function γk = Cov (zt, zt−k). Given an observed series of length n, the covariance matrix of
(z1, . . . , zn)′ is given by

Γn =
(
γi− j

)
, (1.54)

where the (i, j)-entry in the n × n matrix is indicated. The general linear process (GLP) model
may be defined by,

zt = µ + at + ψ1at−1 + ψ2at−2 + . . . (1.55)

where at, t = 1, 2, . . . is a sequence of independent normal random variables with mean zero,
variance σ2

a and
∑

k ψ
2
k < ∞.

For many parametric linear time series, ψk, k = 0, 1, . . . are functions of a p-dimensional
parameter vector β ∈ Rp. An important example is the stationary and invertible ARMA(p, q)
model,

zt − µ = ϕ1 (zt−1 − µ) + ... + ϕp

(
zt−p − µ

)
+ at − θ1at−1 − . . . − θqat−q (1.56)

where at ∼ IID
(
0, σ2

a

)
. In operator notation, ϕ(B) (zt − µ) = θ(B)at,where ϕ(B) = 1−ϕ1B−. . .−

ϕpBp and θ(B) = 1−θ1B− . . .−θqBq where B is the backshift operator on t. This model can also
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be written, ϕ(B)zt = ζ + θ(B)at, where ζ is the intercept parameter is ζ = ϕ(1)µ. The stationary
and invertible requirement may be stated that all roots of the polynomial equation ϕ(B)θ(B) = 0
lie outside the unit circle where B in this equation is a complex variable. More generally we also
interest in the stationary and invertible autoregressive fractionally integrated moving average
ARFIMA(p, d, q) where the model equation may be written, ∇dϕ(B)zt = ζ + θ(B)at, where
|d| < 1/2 and ϕ(B) and θ(B) are defined as in the ARMA case.

Some important special case are when q = 0, we have the family of autoregressive models
denoted by AR(p). Similarly when p = 0, we have the moving average process that is denoted
by MA(q).

Many software packages follow another convention were the moving average component
is written, θ(B) = 1+ θ1B+ . . .+ θqBq and so we must simply take the negative of the estimated
MA-coefficients.

Given data, z = (z1, . . . , zn)′, the log-likelihood for this model may be written,

logL
(
β, µ, σ2

a; z
)
= −0.5 log (det (Γn)) − 0.5(z − µ)′Γ−1

n (z − µ). (1.57)

In practice, in most cases, as discussed in McLeod et al. [2007, eqns 10-11], it is convenient to
work with the concentrated log-likelihood function,

logLc(β; z) = −0.5n log(S (β)/n) − 0.5gn (1.58)

where

S (β) =
n∑

t=1

(zt − ẑt)2

σ2
t

(1.59)

where ẑt and σ2
t are the conditional mean and variance of zt given z1, . . . , zt−1 and

gn =

n∑
t=1

log
(
σ2

t

)
. (1.60)

The innovation variance estimate is σ̂2
a = S

(
β̂
)/

n.
McLeod et al. [2007] discussed an R package ltsa (McLeod et al. [2012]) for the efficient

computation of the log-likelihood function in eqn. (1.58) for a wide class of linear time series.
Maximum likelihood estimates may be obtained by using a suitable non-linear optimizer such
as provided by the R function optim() or Mathematica’s FindMinimum[].

After fitting the model it is important to check the adequacy of the model assumptions.
The most important assumption for our models is that the innovation sequence at, t = 1, . . . , n
should be approximately normally distributed and statistical independent. Moderate departure
for normally are usually not important provided that the distribution is symmetric and the tails
are not too heavy. But lack of independence may result in incorrect inferences and sub-optimal
forecasts. A basic test for lack of independence is the Box-Ljung portmanteau test,

Qm = n(n + 2)
m∑

k=1

r̂2
k

/
(n − k) (1.61)
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where r̂k denotes the autocorrelation at lag k of the residuals, ât, t = 1, . . . , n assuming the data
series is of length n. Under the assumption of model adequacy, Qm ∼ χ2

m−p−q and large values
of Qm indicate model inadequacy. In R, a plot is constructed shown the p-value of Qm for
m = 1, 2, . . . , M, where M is a pre-selected maximum lag.

A water quality application
Dr. Abdel El-Shaarwai provided through Environment Canada some a special water quality
time series that is of great practical interest. The time series is from Station ON02HA0019
(Fort Erie) on the water quality of the Niagara River. There are more than 500 water quality
parameters or variables of interest in this river. The water quality in this river is monitored by
a joint U.S./Canada committee. One important toxic variable of great interest is a chemical
known as 12-Dichloro which when dissolved in water is measured in units of ng/L. We use a
portion of the recent data on this variable that was measured approximately every two weeks
over the period from March 1, 2001 to March 22, 2007. This period was chosen because it is
the most recent period over which we have a time series of approximately biweekly observa-
tions. The time series plot in Figure 1.8 plots the Julian day number defined so that Julian day
number 1 corresponds to the date of the first observation (March 1, 2001). The 123 blue points
correspond to full observations while the 21 red ones are left-censored. In total there are 144
values shown in the plot. The observed censoring rate is r = 21/144 = 14%. The red line at the
bottom indicates the detection level. After March 24, 2005 the detection level for 12 Dichloro
dropped from 0.214 to 0.0878. After this change there was only one censored value at Julian
day number 1807. Before the change in censoring there were 75 complete observations and 20
censored ones while from March 24, 2005 to the last observation on March 22, 2007 there were
48 complete observations and only one censored observation. It is evident from the time series
plot that the data distribution is positively skewed the autocorrelations are not large. Also note
change in detection level on March 24, 2005 and the apparent increase after the change. We
need to be careful though since it is possible this change could be simply due to autocorrelation
effect since there is no prior reason to suspect the change in detection level was related to the
apparent increase in toxic level of 12-Dichloro.

This time series is available in our R package cents.
One approach could involve treating these gaps as missing values but due to the weak auto-

correlation in the data this approach would not be expected to produce much improvement. So
as an approximating we regard the series as successive measurements spaced approximately
every two weeks with a few longer spacing. As a first approximation we ignore the censoring
and treat the censored values as actual observations. Figure 1.9 shows an estimate of the prob-
ability density function using Gaussian kernel with the bandwidth chosen by cross-validation.
The plot shows that the data has a skewed distribution similar to a log-normal or gamma.

The sample skewness g1 = 2.76, kurtosis g2 = 13.12 and shape of the distribution are in
better agreement with a log-normal distribution than a gamma distribution. The log-normal
and gamma distribution are both useful in fitting positive real valued data. The difference be-
tween these distributions was explored in the Wolfram Demonstration El-Shaarawi et al. [2013]
where it was shown that after fixing the shape parameter in both distributions by constraining
the means to be one and the coefficient of variation to be fixed, the skewness and kurtosis
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Figure 1.8: Time series plot of 12 Dichloro in Niagara River at Fort Erie.

Figure 1.9: The probability density function using Gaussian kernel of 12 Dichloro in Niagara
River at Fort Erie.
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coefficients are always larger in the log-normal distribution. We will proceed to analyze the
logarithms of the 12 Dichloro.

The boxplot shown below shows that log transformed data is more symmetric but there
is still some evidence of right skewness. The skewness and kurtosis coefficients have been
reduced to g1 = 0.69 and g2 = 3.80 in the logged series.

Figure 1.10: Log transformed 12 Dichloro

The autocorrelation plot reveals that the autocorrelations are quite small with, r1 = 0.315
and r2 = 0.220. The red-lines in the plot below indicate 95% benchmark limits estimated using
Bartlett’s large-lag formula [Box et al., 2008].

var (rk) =
(
1 + ρ2

1 + ρ
2
2

)/
n (1.62)

The autocorrelation plot, Figure 1.11, reveals that the autocorrelations are quite weak. This
plot suggests that AR(1) might not be the best model. Either an MA(2) or ARMA(1,1) would
likely produce a better fit.

Figure 1.11: Autocorrelation plot of Log transformed 12 Dichloro

Fitting an ARMA model may be useful for short-term prediction and detecting outliers
as well as for obtaining an estimate of the mean level. In order to obtain a valid confidence
interval it is necessary to take into account the autocorrelation. As a first step in fitting an
ARMA we ignore the censoring and treat censored values as fully observed. An approach such
as this is often called a naive approach [Helsel, 2011, Ch. 1]. Such naive approaches may lead
to incorrect and seriously biased inferences if the censor rate is moderate but with low censor
rates a naive approach may be sufficient for practical purposes. The Wolfram Demonstration
McLeod and Mohammad [2013b] illustrates the effect of censor rate on the estimation of the
mean in normal random samples. Since the detection point is low and the censor rate of about
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14% is not high, this approximation seems not unreasonable. The panel below shows the R
script used for fitting an AR(1) and ARMA(1,1) model. The diagnostic plots in the Figures
1.13 and 1.12,suggest the AR(1) is borderline adequate while the ARMA(1,1) is completely
satisfactory.

The display below shows the fitting the naive ARMA(1,1) model to the logarithms of the
12 Dichloro time series.

> require("cents")

> Zdf <- NiagaraToxic

> z <- log(Zdf$toxic)

> iz <- c("o", "L")[1+Zdf$cQ]

> #AR(1)

> ans <- arima(z, order=c(1,0,0))

> ans

Call:

arima(x = z, order = c(1, 0, 0))

Coefficients:

ar1 intercept

0.2889 -0.9468

s.e. 0.0798 0.0574

sigmaˆ2 estimated as 0.2408: log likelihood = -101.86, aic = 209.73

> #ARMA(1,1)

> ans <- arima(z, order=c(1,0,1))

> ans

Call:

arima(x = z, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.9152 -0.7380 -0.9043

s.e. 0.0903 0.1553 0.1251

sigmaˆ2 estimated as 0.2241: log likelihood = -96.83, aic = 201.66

In these diagnostic plots in Figures 1.13 and 1.12, the R function tsdiag() was used for the
diagnostic checks. This function produces a plot of the p-values of the Box-Ljung portmanteau
diagnostic check vs. lag k, where k = 1, 2. . . . , M, where M is pre-selected. If all p-values
are above the 5% limit, we say the fit is satisfactory whereas in there are many p-values less
than 5% the fit is clearly not satisfactory. In between these two extremes, we label the fit
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borderline. In interpreting this plot it must be borne in mind that the successive p-values are
not all statistically independent and are in fact very highly correlated.

Figure 1.12: Diagnostic plot fitted AR(1) produced by tsdiag().

Figure 1.13: Diagnostic plot fitted ARMA(1,1) produced by tsdiag().

For diagnostic checking CENARMA models, we recommend the Monte-Carlo test ap-
proach (Lin and McLeod, 2000; Mahdi and McLeod, 2000). A script for the Monte-Carlo
test is given in the documentation of the NiagaraToxic variable in the cenarma package. For
comparison, the Monte-Carlo diagnostic plots for the and ARMA(1,1) and AR(1) using the
Ljung-Box statistic are shown in Figures 1.14 and 1.15 and we conclude that they agree with
the asymptotic test results.

From the autocorrelation plot, an ARMA(1,1) was suggested and indeed it was found that
this model gave the best fit in terms of AIC as well as being adequate in terms of the port-
manteau diagnostic check. The estimated parameters where ϕ̂1 = 0.9152 ± 0.0903, θ̂1 =

0.7380 ± 0.1553, µ̂ = −0.9043 ± 0.1251, and σ̂2
a = 0.2299. Note that when fitting with

the R function arima(), their ARMA definition uses the negative of our definition, so we have
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Figure 1.14: Monte-Carlo Ljung-Box test diagnostic plots for fitted ARMA(1,1).

Figure 1.15: Monte-Carlo Ljung-Box test diagnostic plots for fitted AR(1).
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adjusted the answer to reflect this. A second point to note that the parameter µ refers to log
12 − Dichloro.

Various other models were examined and their performance is summarized in Table 1.1.

Model AIC Portmanteau Diagnostic

ARMA(1,1) 201.66 satisfactory
ARMA(2,0) 205.13 satisfactory
ARMA(0,3) 207.60 satisfactory
ARMA(0,2) 209.48 borderline
ARMA(1,0) 209.73 failed

Table 1.1: Models fit to log 12 Dichloro time series ignoring censoring.

It is interesting that the fitted ARMA(1,1) model implies that although the autocorrelations
are small, they decay quite slowly so the series has in a sense a longer memory than the other
models in the above table. This series is also well fit by a stationary ARFIMA(0,1,0) model
using the software Veenstra and McLeod [2014]. This longer memory is reflected in the the-
oretical autocorrelation and power spectral density plots for the fitted ARMA(1,1) in Figures
1.16 and 1.17.

Figure 1.16: Autocorrelation function of the fitted ARMA(1,1) process.

Figure 1.17: Spectral density function of the fitted ARMA(1,1) process.



Chapter 2

Censored normal random samples

Introduction

Before developing an EM algorithm for fitting censored linear time series model we first dis-
cuss the simpler case of estimating the parameters µ and σ2 in random samples from a normal
distribution with mean µ and variance σ2, that is, for random samples from the NID

(
µ, σ2

)
dis-

tribution. This algorithm is used to provide initial estimates of the mean in the EM algorithm
that is developed for the linear model case.

A new derivation of the EM algorithm for maximum likelihood estimation (MLE) for left
and right censored data with multiple censor points. The main new result in this Chapter is an
explicit formula is derived for the expected and observed Fisher information matrix and it is
shown that the expected information matrix gives new insight into the statistical behavior of
the MLE estimates.

Another new developments is the dynamic normal probability plot of robust estimation and
diagnostic checking for censored samples,

The Chapter concludes with an application to the well-known electronic locomotive en-
gines dataset as well as the toxic water quality on 12 Dichloro in the Niagara river discussed in
Chapter 1.

Censored sample distribution function and likelihood

Consider the more general left-censored case with latent process (Zi, ci) , i = 1, . . . , n where
Zi, i = 1, . . . , n are independent and identically distributing with probability density function
f (z; θ) and cumulative distribution function F(z; θ), where ci, i = 1, . . . , n are known constants
or if random they are assumed to be known and to be statistically independent of Zi, i = 1, . . . , n.
If censoring is not applicable we set ci = −∞ for those observations for which there is no censor
point. Hence, in general, the observed process consists of some fully observed values for which
Zi > ci and some censored values for which Zi ≤ ci.

Without loss of generality we may re-order the observations so the first m correspond to
fully observed values, Yi, i = 1, . . . ,m. Taking into account that number ways the m fully-
observed values can be selected the probability density function for the random sample may be
written,

25
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fL (y1, . . . , ym; θ) =
(

n
m

) m∏
i=1

f (yi; θ)
n∏

i=m+1

F (ci; θ) . (2.1)

The corresponding log-likelihood, after dropping the constant term, may be written,

log L(θ|y,m) =
m∑

i=1

log f (yi; θ) +
n∑

i=m+1

log F (ci; θ) . (2.2)

In the single-left-censored case with detection level c and parameters θ = (µ, σ),

fL (y1, . . . , ym, |µ, σ, c,m) =
(

n
m

)
F(c; µ, σ)n−m

m∏
i=1

f (yi; µ, σ) (2.3)

and the log-likelihood function may be written,

log L(µ, σ|y,m) = (n − m) log F(c; µ, σ) +
m∑

i=1

log f (yi; µ, σ) . (2.4)

Eqn. (2.2) is equivalent to the expression given by Cohen [1991, eqn. 1.5.3] and Lawless
[2003].

If censoring is ignored and we only consider the m fully observed values then Yi, i =
1, . . . ,m are distributed from a left truncated normal distribution with truncation points ci, i =
1, . . . ,m and similarly the unobserved latent random variables Zm+1, . . . , Zn are from a right
truncated normal distribution with truncation points cm+1, . . . , cn. In the latent probability
model involving X1, . . . , Xn with left-censoring at c, the number of complete observations, M,
is a random variable and m = E{M} = n(1−F(c; µ, σ)). The observed m plays the role of an an-
cillary statistic and this should be taken into account for statistical inferences on the parameters
µ and σ.

If the distribution is symmetric, as in the case of the normal distribution, f (yi; µ, σ) =
f (−yi;−µ, σ) and F(c; µ, σ) = 1 − F(−c;−µ, σ). Consequently we see that, from a computa-
tional viewpoint, the algorithms we develop for the left-censored Gaussian case may be used
with right-censoring simply be negating the data and then transforming the estimates back to
the original data domain, that is, by negating them again.

In the most general case we allow multiple left and right censor points so ci =
(
c−i , c+i

)
,

where c−i and c+i denote the left and right censor points respectively. Setting c+i = ∞means that
there is no censor point for the ith observation. In practice the most common situation is where
there is a single censor point. For left-censoring this means, ci = (c,∞), i = 1, . . . , n.

In principle it is straightforward to obtain the maximum likelihood estimates by numer-
ically optimizing the appropriate log likelihood function using a general purpose optimizer
such as FindMaximum[] in Mathematica or optim() in R. However we will show that the
EM algorithm provides a more computationally efficient approach that is easily implemented.
An advantage of the EM algorithm is that convergence is guaranteed as will discussed further
later. For estimation of the mean and variance in normal samples the EM algorithm is very fast,
so lengthy simulations such as for bootstrapping or jackknifing can be done typically in a sec-
ond or two. The algorithms discussed in this Chapter have been implemented in Mathematica
and R.
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Maximum likelihood estimation

Left-censored normal random samples
In the first instance we consider singly left-censored data with c = c−i , i = 1, . . . , n. Approx-
imate maximum likelihood methods, using tables and charts, for estimating µ and σ2 in the
case of the normal distribution were given by Gupta [1978]. The log-likelihood function can
be written,

L(θ|y) = (n − m) logΦ (cz) − (m/2) log
(
σ2

)
− (1/2)

m∑
i=1

(yi − µ) 2/σ2 (2.5)

where Φ is the standard normal CDF and cz = (c − µ)/σ. In computing environments such
as Mathematica and R, the likelihood function may be maximized numerically using a general
purpose built-in optimizer. The maximum likelihood equations are somewhat complex. Taking
the first derivatives,

∂L
∂µ
= (n − m)ϕ (cz) (−1/σ) /Φ (cz) +

m∑
i=1

(yi − µ) /σ2 (2.6)

∂L
∂σ2 = (n − m)ϕ (cz) (−1)(c − µ)

/
σ2 Φ(cz) + (m/2)

/
σ2 + (1/2)

m∑
i=1

(yi − µ) 2/σ4 (2.7)

Setting ∂L/∂µ = 0 we obtain the first MLE equation,

µ̂ + σ̂(1 − n/m)Ψ (cz) = ȳ, (2.8)

where Ψ(z) = ϕ(z)/Φ(z). Eqn. (2.8) indicates that the mean of the left-truncated observations,
ȳ, is approximately equal to the true population mean µ plus an upward adjustment that depends
on the truncation point. Next setting ∂L

/
∂σ2 = 0 and simplifying,

nµ (2ȳ − µ) + (n − m)σ(c − µ)Ψ((c − µ)/σ) + mσ2 = nȳ + mσ̂2
y (2.9)

where σ̂2
y = m−1 ∑

i (yi − ȳ) 2. Cohen (1950, 1991) and Schneider (1986) obtained the max-
imum likelihood estimations by solving these equations iteratively but this method does not
always converge since convergence depends on the initial starting values. Wolynetz (1979) pro-
vides an iterative algorithm for solving the likelihood equations ∂L/∂µ = 0 and ∂L

/
∂σ2 = 0

in the more general case with multiple left and right censor points. But since his algorithm
works directly with the likelihood equations, it is not equivalent to the EM algorithm but rather
a variation of the iterative algorithms discussed by Cohen (1950, 1991) and Schneider (1986).

The EM algorithm, discussed next, has the advantage over the iterative methods that it
always converges.

Derivation of the EM algorithm for left-censoring with normal distribution
We assume a random sample y1, . . . , yn has been observed from a left-censored normal distri-
bution with known single censor point c and with parameters µ and σ, that denote the mean
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and standard deviation in the underlying normal distribution without censoring. We will de-
note arbitrary values of the parameters by µ′ and σ′. Without loss of generality we assume that
y1, . . . , ym are not censored and that ym+1 = . . . = yn = c are left-censored. We introduce latent
random variables, Zm+1, . . . , Zn which represent the unknown values corresponding to the cen-
sored observations. Then Zm+1, . . . , Zn are a random sample of size n−m from a right-truncated
normal distribution defined on (−∞, c) and with parameters µ and σ. After dropping constant
terms, the complete likelihood can be written,

Lc(µ′, σ′|y, z) = σ−n
m∏

i=1

exp{−(yi − µ)2/(2σ2)}
n∏

i=m+1

exp{−(zi − µ)2/(2σ2)} (2.10)

The next step is to compute Q(µ′, σ′|µ, σ, y) = EZ{logLc(µ′, σ′|y)}. We obtain,

Q(µ′, σ′|µ, σ, y) = −n
2

log((σ′)2) − 1
2

m∑
i=1

(yi − µ′)2/(σ′)2 − 1
2

n∑
i=m+1

EZ{(Zi − µ′)2}/(σ′)2 (2.11)

Simplifying, we may re-write this as,

Q
(
µ′, σ′| µ, σ, y) = −n

2
log

((
σ′

)2
)
− (σ′)−2

2

 m∑
i=1

(
yi − µ′

) 2 + (n − m)EZ

{(
Z − µ′)2

} (2.12)

∂Q
∂µ′
= σ−2

 m∑
i=1

(
yi − µ′

)
+ (n − m)EZ(µ,σ,c)

{(
Z − µ′)} (2.13)

Setting ∂Q /∂µ′ = 0 and solving for µ̂,

0 = mȳ − mµ̂ + (n − m)Ez{Z} − (n − m)µ̂

0 = mȳ + (n − m)Ez{Z} − nµ̂. Hence,

µ̂ = (m/n)ȳ + (n − m)/nEz{Z}. (2.14)

Using Mathematica, we obtain the expectation in the right-truncated distribution,

EZ{Z|µ, σ, c} =
µerf

(
c − µ
√

2σ

)
−

√
2
π
σe−

(c−µ)2

2σ2 + µ

 /erfc
(
µ − c
√

2σ

)
(2.15)

where erf(z) is the error function defined for z ≥ 0 as erf(z) = 2√
π

∫ z

0
e−t2dt and erfc(z) =

1 − erf(z). In R, it is more convenient to work with the normal distribution so we use the
relationships erf(z) = 2Φ

(√
2z

)
− 1 and erfc(z) = 2

(
1 − Φ

(√
2z

))
where Φ(z) denotes the

cumulative distribution function of the standard normal distribution. An equivalent formula for
the mean of the truncated normal distribution was derived by Barr and Sherrill [1983]. Next
for σ,



29

∂Q
∂ (σ′)2 = −

n (σ′)−2

2
+

(σ′)−4

2

 m∑
i=1

(
yi − µ′

) 2 + (n − m)EEµ,σ,c

{(
Z − µ′)2

} . (2.16)

Setting ∂Q
/
∂ (σ′)2 = 0 and solving

σ̂2 = n−1

 m∑
i=1

(yi − µ̂) 2 + (n − m)Eµ,σ,c

{
(Z − µ̂)2

}  (2.17)

where, using Mathematica,

EZ
(
Z − µ′) 2 =−e−

(c−µ)2

2σ2

√
2
π
σ

(
c + µ − 2µ′

)
+

(
1 + erf

[
c − µ
√

2σ

]) (
µ2 + σ2 − 2µµ′ +

(
µ′

)2
) /erfc

[
−c + µ
√

2σ

]
(2.18)

Combining eqns. (2.14) and (2.17), the EM algorithm for computing the MLE can now
be written. We start with initial estimates µ̂(0) and

(
σ̂2

)(0)
that may, in general be obtained by

replacing the censored values with the corresponding censor point or perhaps some suitable
value or values.

Algorithm CM1.Algorithm CM1.Algorithm CM1. Singly left-censored samples.

Step 1: Initialization: j←− 0 and Maxiter←− 100

Step 2: µ̃z ←− Eµ̂( j),σ̂( j),c{Z}
Step 3: µ̂( j+1) ←− (m/n)ȳ + (n − m)/nµ̃z

Step 4: Compute σ̃2
z ←− Eµ̂( j),σ̂( j),c

{
(Z − µ)2

}
Step 5:

(
σ̂2

)( j+1)
←− n−1

{∑m
i=1 (yi − µ̂) 2 + (n − m)σ̃2

z

}
Step 6: Test for convergence of the estimates. If they have not converged, j ←− j + 1 and

repeat Steps 2-5 provided that j < MaxIter.

RemarksRemarksRemarks

1. The EM algorithm can be robustified by replacing the sample mean by some other robust
estimator of location. As well a robust estimate for the

∑m
i=1 (yi − µ̂) 2 could also be

introduced. Various state-of-the-art robust estimators for location and scale are available
in R Venables and Ripley [2002].

2. The MLE obtained using a general purpose optimization algorithm such as those that
are available in FindMaximum in Mathematica or optim() in R could also be used but
the disadvantage is that convergence may not be guaranteed and these general purpose
methods are often much slower.
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3. For any symmetric distributions, such as the normal distribution, the analysis of right-
censored data may be accomplished by negating the data and apply methods for left-
censored analysis. Thus Algorithm CM1 extends directly the to right censored case.

Simulation and other validation checks
As a check on the EM algorithm we compared its performance with direct optimization. For
this purpose 1000 simulations were done for a sample of size 50 left censored normal with
mean 100, standard deviation 15 and censor rate 25%. The EM algorithm required 2.2 seconds.
The simulations were repeated using the same random numbers for the direct MLE method
using FindMaximum and this required 21.3 seconds. So there is a ten-fold increase in time.
In both cases the algorithms converged on almost identical results for both the estimate of the
mean and variance. The boxplots below show the estimates for the means as well as for their
difference. It was interesting that the difference was statistically highly significant with a p-
value less than 10−10 on a two-sample paired t-test even though as is clear from the boxplot
of the differences there is no difference of any practical importance. The root-mean-squared
error, the average squared difference between the estimate, µ̂, and its true value of µ = 100 was
computed for each estimate and difference in relative efficiency in terms of the RMSE was less
than 10−7 which confirms that there is no practical difference. Similarly the estimates for σ
produced by the EM and direct methods were found to be almost identical.

Figure 2.1: Boxplots comparing the estimates of the mean obtained using the EM algorithm and
direct numerical optimization using Mathematica’s general purpose FindMaximum function.

A version of the EM algorithm for the estimation of Gaussian MLE in normal samples was
implemented in Fortran by Wolynetz (1979) and we verified with several examples that our
algorithm gave identical results.

Comparing maximum likelihood estimation with crude approximation

A crude estimate for the parameters µ and σ2 that is often used (Wolynetz, 1979) for an initial
estimate in an iterative MLE algorithm is obtained by setting, yi = c, i = m + 1, . . . , n and then
using the sample mean and variance of y1, . . . , yn.

Figure 2.2 compares the relative likelihoods of the parameter µ using the crude approxi-
mation and the maximum likelihood estimator shown in the dashed red and solid blue curves
respectively. The relative likelihood is the likelihood rescaled so its maximum value is 1.0.
The three vertical lines provide a visual comparisons of the estimators. The left-most line cor-
responds to the true parameter value, µ = 0, the next one the maximum likelihood estimate of
µ and the right one the crude approximate estimate. We see that approximate has a larger posi-
tive bias as might be expected. A Mathematica demonstration that allows one to interactively
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compare these estimators for varying sample sizes and censoring rates is available (McLeod
and Nagham, 2013).

Figure 2.2: The relative likelihood functions using the censored likelihood (solid blue) and the
approximation obtained by treating the censored values as observed. In this case the censor
rate was about 40 percent so the effect on the bias of the estimate is very strong. As the censor
rate decreases the bias will decrease.

Application of the Jackknife to censoring
In our censoring problem we set Y = (Y1, . . . ,Ym) and θ = (µ, σ). Let θ̂(Y, n) denote the MLE
based on a random sample of size n. Let Y[i] be the vector Y with the ith element removed.

Set

θ̂i =

 θ̂
(
Y[i], n − 1

)
if i = 1, . . . ,m;

θ̂(Y, n − 1) if i = m + 1, . . . , n.
(2.19)

Then the pseudo-values are,

ui = nθ̂(Y,m) − (n − 1)θ̂i, i = 1, . . . , n (2.20)

so the bias-corrected estimate of θ is the mean of the pseudo-values, θ̂J = ū = n−1 ∑
i ui or

equivalently,

θ̂J = nθ̂(Y,m) − (n − 1)θ̄, (2.21)

where

θ̄ =
1
n

n∑
i=1

θ̂i. (2.22)

The jackknife standard error estimate for θ̂J is

σ̂θJ =

 n∑
i=1

(ui − ū) 2

/ (n(n − 1))

 1/2. (2.23)
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The bootstrap provides another computational method for estimating the standard errors.
In the case of censored samples, we would need to draw random samples conditional on m,
the number of fully observed values and this is more awkward. The Jackknife method seems
more expedient and direct in this case and if properly implemented there is unlikely to be any
noticeable difference between the two methods for the purpose of estimating the standard errors
of the estimates.

Illustrative Simulations

The original jackknife algorithm had two purposes:

1. bias-corrected estimates

2. estimates of the standard errors of the parameter estimates.

Illustrative simulations were done to illustrate both of these aspects.

Bias-corrected estimates

We now investigate for the Gaussian case the bias corrected estimates for µ̂ and σ̂ pro-
duced by the Jackknife and compare these estimates with the original MLE. From the theory
of maximum likelihood estimation we know that asymptotically the MLE are consistent and
first order efficient and so this implies that asymptotically the root-mean-square error (RMSE)
for the MLE should perform well overall.

We focus on a sample size of n = 100 since this is reasonably large provided the censoring
is not too extreme. Samples were drawn from a normal distribution with mean 0 and variance
1. The detection point c varied between −2 and 0 corresponding to a censoring rate from about
2.2% to 50%. For each random sample we found the MLE using the EM algorithm and then
applied the Jackknife.

N = 105 simulations were done. The bias in the MLE and Jackknife estimators for µ and
σ is compared in Figure 2.3. The maximum standard deviation in the bias estimates was about
0.001. The bias was quite small for the MLE and negligible for the Jackknife estimate. As the
censoring level increases the bias in the MLE for µ increases while for σ it slightly decreases.
As might be expected when the censoring effect is negligible with c = −2, the bias in the MLE
is also negligible for µ̂ but not for σ̂. As expected using the jackknife reduces the bias but as
shown in Table 2.1 the Jackknifed estimates are not better in terms of overall RMSE accuracy.
This was not unexpected since it Jackknifed estimates are do not seem to be widely used in
practice.

Estimates of the standard errors of the parameter estimates

The accuracy of the Jackknife method for estimating the standard errors of the MLE µ̂ and
σ̂ was also examined. For this purpose we estimated the empirical variances by simulation,

s2
µ = N−1

N∑
i=1

(
µ̂(i)

MLE − µ
)

2, (2.24)

and

s2
σ = N−1

N∑
i=1

(
σ̂(i)

MLE − σ
)

2, (2.25)



33

Figure 2.3: The bias of the MLE and jackknife estimators for the mean and standard deviation
are compared.

c rmse(µ̂MLE) rmse(µ̂JK) rmse(σ̂MLE) rmse(σ̂JK)
-2.00 0.100 0.100 0.072 0.072
-1.75 0.100 0.100 0.074 0.074
-1.50 0.101 0.100 0.075 0.075
-1.25 0.101 0.101 0.077 0.077
-1.00 0.102 0.102 0.080 0.081
-0.75 0.104 0.104 0.086 0.086
-0.50 0.108 0.107 0.092 0.092
-0.25 0.114 0.114 0.100 0.100
0.00 0.125 0.124 0.112 0.113

Table 2.1: RMSE comparisons of Jackknife estimates with MLE.

where µ̂(i)
MLE and σ̂(i)

MLE for i = 1, . . . ,N denote the MLE estimates in the ith simulation. These
empirical estimates were compared to the average of the Jackknife estimators,

σ̄µ = N−1
N∑

i=1

σ̂(i)
µ , (2.26)

and

σ̄σ = N−1
N∑

i=1

σ̂(i)
σ . (2.27)

As shown in Table 2.2. the agreement is quite close confirming the usefulness of the jack-
knife method for estimating the standard errors of the parameter estimates.

Multiple-censored samples

We assume a random sample y1, . . . , yn has been observed with censoring process ci =
(
c−i , c

+
i

)
, i =

1, . . . , n. We assume that the underlying latent process Z1, . . . , Zn is normally distributed with
parameters µ and σ, that denote the mean and standard deviation. As remarked in Chapter 1,
if the ith observation is left-censored, the underlying latent variable conditional on this, will
have a right-truncated distribution and similarly with right-censoring, the corresponding condi-
tional distribution is left-truncated. Let EZ

{
Z

∣∣∣µ̂( j) , σ̂( j), c−i
}

and EZ

{
Z

∣∣∣µ̂( j) , σ̂( j), c+i
}

denote the
expectations in the corresponding right and left truncated distributions.
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c sµ σ̄µ sσ σ̄σ

-2.00 0.100 0.100 0.072 0.072
-1.75 0.100 0.100 0.073 0.073
-1.50 0.101 0.100 0.075 0.074
-1.25 0.101 0.101 0.077 0.077
-1.00 0.102 0.102 0.080 0.080
-0.75 0.104 0.104 0.085 0.085
-0.50 0.108 0.107 0.091 0.091
-0.25 0.114 0.114 0.100 0.100
0.00 0.125 0.125 0.112 0.111

Table 2.2: Comparing Jackknife estimates for the standard errors with empirical simulation
estimates.

The following algorithm covers the general case but Algorithm CM1 is faster and simpler
in the case of singly-censored data.

Algorithm CM.Algorithm CM.Algorithm CM. General algorithm for censored MLE estimation.

Step 1: Initialization:

ut ←−


yt if ytnot censored;
EZ

{
Z

∣∣∣µ̂( j) , σ̂( j), c+i
}

left truncated case;
EZ

{
Z

∣∣∣µ̂( j) , σ̂( j), c−i
}

right truncated case;
(2.28)

Step 2: Set µ̂( j+1) ←− ū

Step 3:

vt ←−


(yt − µ̂) 2 if ytnot censored;

EZ

{(
Z − µ̂( j)

)2
|µ̂( j), σ̂( j), c+i

}
left truncated case;

EZ

{(
Z − µ̂( j)

)2
|µ̂( j), σ̂( j), c−i

}
right truncated case;

(2.29)

Step 4:
(
σ̂2

)( j+1)
←− v̄

Step 5: Test for convergence of the estimates. If they have not converged, j ←− j + 1 and
repeat Steps 1 to 4.

This algorithm is used in our algorithm CENLTSA for fitting linear time series models to
censored time series.

Simulation experiment to compare single and double censoring
A brief simulation experiment was done to illustrate the performance of the CM algorithm and
to compare singly-censored samples with doubly-censored samples in very different censoring
regimes. The latent process, Zt, t = 1, . . . , 60 where Zt ∼ NID(100, 15) was used. In the single
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left-censoring case c = 115 was used which corresponds to a very high censoring rate. In the
double left-censoring case, c1 = 115, was used for half the data but c2 = 70 was used for the
other half. So there is much more information provided in the doubly censored regime that
we used. This is reflected in the improved accuracy of the estimates when the boxplots of the
estimates based on 103 simulations are compared shown in Figure 2.4. The doubly censored
regime provided more information resulting in improved accuracy of the estimates.

Figure 2.4: Boxplots of the estimates in singly and doubly censored sampling simulated exam-
ple.

Information matrix

Information matrix for censored normal samples
In general, under regularity conditions, the MLE estimates, suitably normalized, weakly con-
verge to a normal distribution with covariance matrix equal to the inverse of the information
matrix. Thus the information matrix is useful in estimating the approximate standard errors of
the MLE estimates.

For comparison with the censored case, we first give the result for random sampling from
a complete normal distribution. As discussed in Knight [2000, Example 5.14, p.258], it is
simpler to work with the information matrix for (µ, σ) rather than

(
µ, σ2

)
. In the normal IID

case with complete data for a random sample of size n from a normal population with mean µ
and variance σ the Fisher information matrix for µ and σ may be written,

I(µ, σ) =
(

nσ−2 0
0 2nσ−2

)
. (2.30)

We now obtain the observed and expected information matrix in the more general case with
left-censoring using the method of Oakes [1999]. From eqn. (1.35) we may write,

Ic(θ, y) = −
{
∂2Q (θ′| θ)

∂θ′2
+
∂2Q (θ′| θ)
∂θ′∂θ

}
θ′=θ. (2.31)

where θ = (µ, σ)′ and y = (y1, . . . , ym)′ is the vector of complete data and censor point, c.
Hence let,

Ic(µ, σ, y) =
(

i1,1 i1,2

i1,2 i2,2

)
, (2.32)
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i1,1 = −
(
∂2Q (µ′, σ′| µ, σ)

∂µ′2
+
∂2Q (µ′, σ′| µ, σ)

∂µ′∂µ

)
(µ′,σ′)=(µ,σ)

(2.33)

i1,2 = −
(
∂2Q (µ′, σ′| µ, σ)

∂µ′∂σ′
+
∂2Q (µ′, σ′| µ, σ)

∂µ′∂σ

)
(µ′,σ′)=(µ,σ)

(2.34)

i2,2 = −
(
∂2Q (µ′, σ′| µ, σ)

∂ (σ′)2 +
∂2Q (µ′, σ′| µ, σ)

∂σ′∂σ

)
(µ′,σ′)=(µ,σ)

(2.35)

The expected information is

Ic(µ, σ) =
(

E
{
i1,1

}
E

{
i1,2

}
E

{
i1,2

}
E

{
i2,2

} )
(2.36)

Derivation of i1,1

From eqn. (2.12) we can write,

∂Q
∂µ′
= σ−2′

 m∑
i=1

(
yi − µ′

)
+ (n − m)EZ(µ,σ,c)

{(
Z − µ′)} . (2.37)

So

∂Q
∂µ′2

= −nσ−2 (2.38)

and

∂2Q
∂µ′∂µ

= (n − m)σ−2∂µEZ(µ,σ,c){Z}. (2.39)

Using Mathematica,

∂µE{µ,σ}{Z} =
1

πσ erfc
(
µ−c√

2σ

)2 e−
(c−µ)2

σ2 (A1 +A2) , (2.40)

where

A1 =
√

2πe
(c−µ)2

2σ2

(
µ erf

(
c − µ
√

2σ

)
− c erfc

(
µ − c
√

2σ

)
+ µ

)
and

A2 = πσe
(c−µ)2

σ2

(
erf

(
c − µ
√

2σ

)
+ 1

)2

− 2σ.

Hence eqns. (2.38) and (2.39) we can write,

i1,1 = nσ−2 − (n − m)σ−2∂µEZ(µ,σ,c){Z}. (2.41)

where ∂µEz{Z} may be computed using eqn. (2.40). Notice that the information on µ is com-
prised of two components. One component, σ−2n, corresponds to the case of n complete ob-
servations and then this is adjusted by subtracting σ−2(n − m)∂µEz{Z} is due to the censored
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observations. The expected information, E
{
i1,1

}
, is obtained by replacing m by its expected

value, nm = n(1 − Φ(c; µ, σ)), in eqn. (2.41).
Figure 2.5 shows how the expected information on µ depends on c in the case of the standard

normal distribution. Due to left-censoring, it is not symmetric about c = 0.

Figure 2.5: The expected information for the mean in left-censored samples of size 100.

Derivation of i1,2

Next we obtain the off-diagonal elements for i1,2 in eqn. (2.34). Recall from (2.37) we
have,

∂Q
∂µ′
= σ−2′

 m∑
i=1

(
yi − µ′

)
+ (n − m)EZ(µ,σ,c)

{(
Z − µ′)} . (2.42)

Hence differentiating with respect to σ′,

∂Q
∂µ′∂σ′

= −2σ−3′
 m∑

i=1

(
yi − µ′

)
+ (n − m)

(
EZ(µ,σ,c){Z} − µ′

) . (2.43)

Next, differentiating eqn. (2.37) with respect to σ,

∂2Q
∂µ′∂σ

= σ−2′(n − m) ∂σEZ(µ,σ,c){Z}, (2.44)

where ∂σEZ{Z} may be determined using Mathematica,

∂σEz{Z} =

e−
(c−µ)2

σ2

(√
2πe

(c−µ)2

2σ2
(
(c − µ)2 + σ2

) (
erfc

(
c − µ
√

2σ

)
− 2

)
+ 2σ(µ − c)

)
/

πσ2erfc
(
µ − c
√

2σ

)2 .
(2.45)

From eqns. (2.43) and (2.44),

i1,2 = 2σ−3

 m∑
i=1

(yi − µ) + (n − m) (Ez{Z} − µ)

 − σ−2(n − m) ∂σEZ(µ,σ,c){Z} (2.46)
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It may be seen that E
{
i1,2

} → 0 as c → −∞. This follows from the fact the m → n as
c→ −∞ and E{µ − µ} = 0.

To obtain the expected information first we consider the term,

S =
M∑

i=1

(Yi − µ) (2.47)

where Yi are left-truncated random variables from the normal distribution (µ, σ) truncated on
(c,∞) and M is binomially distributed with parameters n and p = 1 − Φ(c). Then by the law
of total expectation we have, E{S } = EM

{
ES |M=m{S }

}
= EM( M

)
(EY{Y} − µ), where Y is the

left-truncated normal distribution with parameters (µ, σ, c). Then EM(M) = n(1 − Φ(c)) and
µy = EY{Y} may be obtained using Mathematica,

µy = µ +

√
2
π
σe−

(µ+1)2

2σ2 /

(
1 + erf

(
µ + 1
√

2σ

))
(2.48)

Then m is replaced by its expected value, nm = n(1 − Φ(c; µ, σ)). Hence,

E
{
i1,2

}
= 2σ−3

(
nm

(
µy − µ

)
+ (n − nm)

(
E{µ,σ}{Z} − µ

))
− σ−2 (n − nm) ∂σEZ(µ,σ,c){Z} (2.49)

Figure 2.6 illustrates how E
{
i1,2

}
depends on c in the standard normal case. As expected

as c decreases, i1,2 → 0. As c increases, E
{
i1,2

}
reaches a maximum value of about 56.1

when c ≈ 0.84 and afterwards it decreases to zero. When c < −2, the parameters are nearly
orthogonal as is the case when c > 4 but for −2 < c < 4 when may expect that the estimates
will be correlated.

Figure 2.6: The expected joint information the mean and standard deviation in left-censored
N(0,1) samples of size 100.

Derivation of i2,2

To obtain next term in the information matrix, i2,2, we need to evaluate ∂Q
/
∂ (σ′)2 and

∂Q /∂σ′ ∂σ.

Q
(
µ′, σ′| µ, σ, y) = −n log

(
σ′

) − 1
2σ′2

 m∑
i=1

(
yi − µ′

) 2 + (n − m)EZ

{(
Z − µ′)2

} (2.50)
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From above,

∂Q
∂σ′
= − n

σ′
+

(
σ′

)−3

 m∑
i=1

(
yi − µ′

) 2 + (n − m)EZ(µ,σ,c)

{(
Z − µ′)2

} (2.51)

Taking the second partial derivative with respect to σ′,

∂2Q
∂σ′∂σ′

=
n

(σ′)2 − 3
(
σ′

)−4

 m∑
i=1

(
yi − µ′

) 2 + (n − m)EZ(µ,σ,c)

{(
Z − µ′)2

} , (2.52)

Next, differentiating eqn. (2.51) with respect to σ,

∂2Q
∂σ′∂σ

= (n − m)
(
σ′

)−3 ∂σEZ(µ,σ,c)

{(
Z − µ′)2

}
. (2.53)

From eqns. (2.52) and (2.53) and evaluating at (µ′, σ′) = (µ, σ) ,

i2,2 = −n
/
σ2+3σ−4

 m∑
i=1

(yi − µ) 2 + (n − m)EZ(µ,σ,c)

{(
Z − µ′)2

}−(n−m)σ−3∂σEZ(µ,σ,c)

{
(Z − µ)2

}
.

(2.54)
Explicit formulas for EZ(µ,σ,c)

{
(Z − µ′)2

}
and ∂σEZ(µ,σ,c) {(Z − µ′)}2 may be obtained using

Mathematica symbolics,

EZ(µ,σ,c)

{(
Z − µ′)2

}
=

1

σ2Erfc
[−c+µ√

2σ

]2 (B1 + B2) , (2.55)

where

B1 =

e (c−µ)2

2σ2

√
2
π

(
1 + Erf

[
c − µ
√

2σ

]) (
σ2 +

(
µ − µ′)2

)
− 2σ (c + µ − 2µ′)

π


and

B2 = Erfc
[
−c + µ
√

2σ

]
2σ3

(
1 + Erf

[
c − µ
√

2σ

])
− e−

(c−µ)2

2σ2

√
2
π

(
c − µ′) (c2 + 2σ2 + µµ′ − c

(
µ + µ′

))
∂σEZ(µ,σ,c)

{(
Z − µ′)2

}
=

1

σ2Erfc
[−c+µ√

2σ

]2 (C1 + C2) , (2.56)

where

C1 = e−
(c−µ)2

σ2 (c − µ)

e (c−µ)2

2σ2

√
2
π

(
1 + Erf

[
c − µ
√

2σ

]) (
σ2 +

(
µ − µ′)2

)
− 2σ (c + µ − 2µ′)

π


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and

C2 = Erfc
[
−c + µ
√

2σ

]
2σ3

(
1 + Erf

[
c − µ
√

2σ

])
− e−

(c−µ)2

2σ2

√
2
π

(
c − µ′) (c2 + 2σ2 + µµ′ − c

(
µ + µ′

)) .
To obtain the expected information, E

{
i2,2

}
first we consider the term,

T =
M∑

i=1

(Yi − µ) 2 (2.57)

where Yi are left-truncated random variables from the normal distribution (µ, σ) truncated on
(c,∞) and M is binomially distributed with parameters n and p = 1 − Φ(c). Then by the
law of total expectation we have, E{T } = EM

{
ES |M=m{T }

}
= EM( M

)
EY(µ,σ,c)

{
(Y − µ)2

}
, where

EM(M) = n(1−Φ(c; µ, σ) and Φ(c; µ, σ) denotes the cumulative distribution of the normal dis-
tribution with mean µ and standard deviation σ evaluated at c and Y is the left-truncated normal
distribution with parameters (µ, σ, c). So the probability density function for Y is proportional
to the normal probability density function with mean µ and standard deviation on the interval
(c,∞) and zero outside this interval. The constant of proportionality is determined so that the
truncated probability density function integrates to one.

Using Mathematica,

EY(µ,σ,c)

{
(Y − µ)2

}
=

Erfc
[

c−µ√
2σ

] (
σ2 + (µ − µ′)2

)
+ e−

(c−µ)2

2σ2

√
2
π
σ (c + µ − 2µ′)

1 + Erf
[−c+µ√

2σ

] (2.58)

Hence,

E
{
i2,2

}
= −n

/
σ2+3σ−4

(
nmEY(µ,σ,c)

{
(Y − µ)2

}
+ (n − nm) Var(Z)

)
−(n − nm)σ−3∂σEZ(µ,σ,c)

{
(Z − µ)2

}
.

(2.59)
As a check on eqn. (2.59), N = 104 random samples of size 100 from the left-truncated

normal distribution with parameters µ = 0 and σ = 1 were used to estimate the average value
of i2,2 using eqn. (2.59) for eleven truncation points −2.5,−2, . . . , 2, 2.5.

Figure 2.7 plots E
{
i2,2

}
and the eleven empirical means. We see the agreement is good

confirming the correctness of eqn. (2.59).
As c increases there is less information as may be expected. The shape of the curve is a

little surprising since we would have anticipated a more steady rate of decrease but the curve
is almost flat when c ∈ (0.5, 1).

Test data example

As a check on the algorithm for the information matrix an example test data set was used
to compare the results given by our algorithm with those produced using the algorithms of



41

Figure 2.7: The expected information for the standard deviation in left-censored samples.

Wolynetz [1979a], Henningsen [2012], Henningsen and Toomet [2011]. Wolynetz [1979a]
derives the observed Fisher information matrix using the log-likelihood function of the data,
L(µ, σ|data, c) but the equivalence of the formula derived with our result is not easy to see
algebraically. Henningsen [2012] uses the Hessian of the log-likelihood function to obtain an
approximation to the observed information. For our test data we took,

y = (−2,−2,−2,−1,−1,−1, 0, 0, 0, 1, 1, 1, 2, 2, 2) (2.60)

with c = −1.5. Our algorithm produced the following estimate for the covariance matrix of
(µ̂, σ̂). This result agrees the algorithms of Wolynetz (1979) and Henningsen (2012).(

0.16834362 −0.01684593
−0.01684593 0.11021454

)
(2.61)

The maximum likelihood estimate for the parameters was µ̂ = −0.06662881 and σ̂ = 1.54378019.
Our R package cents McLeod and Mohammad [2012] contains implements the Fortran algo-
rithm given in Wolynetz (1979) gives an example using this test dataset.

Large sample properties of maximum likelihood estimator
The large-sample covariance matrix for the maximum likelihood estimates is

I(µ, σ)−1 = n−1
(
σµ,µ σµ,σ

σµ,σ σσ,σ

)
(2.62)

where σµ,µ and σσ,σ are the large-sample variances of µ̂ and σ̂ per observation and n is the
number of observations.

Taking n = 1 and σ = 1 in eqn (2.62), the large sample variance of the maximum likelihood
estimators for µ and σ2 in the case of complete normal samples is 1 and 0.5 respectively. In
left-censored samples this corresponds to the censor rate, r = 0. Figure 2.8 shows that for
the left-censored case, σ2

µ = σµ,µ and σ2
σ = σσ,σ, obtained from the inverse of the expected

information matrix as a function of r, the censor rate. When r > 0.7 both these variances
rapidly increase due to the fact the there is less and less information about the true mean and
variance in the censored sample.
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Figure 2.8: Asymptotic variances of censored MLE for mean and standard deviation.

Figure 2.9: Asymptotic correlation between MLE estimate for mean and standard deviation in
left-censored normal samples.

Figure 2.9 shows the correlation ρ = σµ,σ/
(
σµσσ

)
as a function of r. As r increases the

maximum likelihood estimates µ̂ and σ̂ become more and more negatively correlated.
In large censored samples the maximum likelihood estimators, µ̂ and σ̂, have sampling dis-

tribution that is bivariate normal with mean (µ, σ) and covariance matrix n−1I(µ, σ)−1, where
n is the sample size. The ellipsoids of concentration corresponding 95% and 50% probability
for censor rates, r = 0.1, 0.3, 0.5 and 0.7, are shown in Figure 2.10. As r increases the ellipse
becomes more elongated the area of region increases.

Comparing expected and empirical standard deviations
The large-sample variance matrix for the parameters is estimated by

I(µ, σ)−1 = n−1
(
σµ,µ σµ,σ

σµ,σ σσ,σ

)
(2.63)

where σµ,µ and σσ,σ are the large-sample variances of µ̂ and σ̂ per observation and n is the
number of observations. The empirical variances of the estimates µ̂ and σ̂ may be obtained by
simulation.

In the simulation, a random sample of size n = 100 was generated as normally and inde-
pendently distributed with mean zero and variance one and then the sample was left-censored
with censor point c j = Φ

−1
(
r j

)
, where Φ−1 denotes the inverse cumulative distribution function

for the standard normal and r j, j = 1, . . . , 7 is the censor rate where r j is the jth element of the
vector r = (0.01, 0.2, . . . , 0.7). For each j = 1, . . . , 7, N = 104 simulations were done and the
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Figure 2.10: Ellipsoids of concentration corresponding to 0.95 and 0.5 probability for four
censor rates. In each panel, the vertical axes corresponds to the standard deviation and the
horizontal axis to the mean.

empirical standard errors for the maximum likelihood estimates for µ and σ were obtained,

σ̂( j)
µ =

√√
N−1

N∑
i=1

µ̂2
i, j (2.64)

σ̂( j)
σ =

√√
N−1

N∑
i=1

(
σ̂i, j − 1

)
2 (2.65)

where µ̂i, j and σ̂i, j are the maximum likelihood estimates in the ith simulation with parameter
setting r j, j = 1, . . . , 7; i = 1, . . . ,N. The standard deviations for σ̂( j)

µ and σ̂( j)
σ are approximately

est.sd
(
σ̂( j)
µ

)
≈ σ̂( j)

µ /
√

2N (2.66)

and

est.sd
(
σ̂( j)
σ

)
≈ σ̂( j)

σ /
√

2N (2.67)

which were quite small due to choosing N fairly large. It is convenient to normalize these values
on a per observation basis by multiplying them by

√
n. Let σ̃( j)

µ =
√

nσ̂( j)
µ and σ̃( j)

σ =
√

nσ̂( j)
σ .

The theoretical expected values corresponding to σ̃( j)
µ and σ̃( j)

σ from eqn. (2.63) are σµ =√
σµ,µ and σσ =

√
σσ,σ and these compared in the Tables 2.3 and 2.4. Figure 2.11 shows the

theoretical expected values as the solid curve and points correspond to the empirical estimates.
We conclude that the expected information matrix provides an accurate approximation over

the range of censor rates from 0 to 70% and for sample sizes n ≥ 100.
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c σ̂µ(th) σ̂µ(em) sd(σ̂µ(em))
0.1 1.010 1.016 0.007
0.2 1.031 1.020 0.007
0.3 1.067 1.075 0.008
0.4 1.128 1.141 0.008
0.5 1.232 1.267 0.009
0.6 1.411 1.416 0.010
0.7 1.738 1.804 0.013

Table 2.3: Comparing the asymptotic approximation for the estimated standard error of the
censored MLE for mean with the estimate obtained empirically by simulation. The standard
deviation of the empirical estimate is shown in the last column.

c σ̂σ(th) σ̂σ(em) sd(σ̂σ(em))
0.1 0.765 0.753 0.005
0.2 0.830 0.825 0.006
0.3 0.905 0.900 0.006
0.4 0.997 1.007 0.007
0.5 1.114 1.133 0.008
0.6 1.271 1.282 0.009
0.7 1.499 1.527 0.011

Table 2.4: Comparing the asymptotic approximation for the estimated standard error of the
censored MLE for the standard deviation with the estimate obtained empirically by simulation.
The standard deviation of the empirical estimate is shown in the last column.

Figure 2.11: Comparing asymptotic standard error for MLE for mean and standard deviation
with empirical estimates based on simulation.
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Robust dynamic graphical estimation and diagnostic checking
We propose a new dynamic graphical method that provides robust estimates. This method is
explained in detail for the censored normal case.

The dynamic normal probability plot provides an interactive graphical method for robust
estimation of the mean and standard deviation parameters, µ and σ, from a random sam-
ple of size n with possible censoring. We suppose that we have m fully observed values
Y1, . . . , Ym with corresponding censor points c1, . . . , cm and that the underlying latent vari-
ables are independent and identically distribution normal random variables, Z1, . . . ,Zn. Then
we set Yi = max (ci,Zi) , i = 1, . . . , n in the case of left-censoring where without loss of
generality we assume that Zi > ci, i = 1, . . . ,m and Zi ≤ ci, i = m + 1, . . . , n. In the
right-censoring case, Yi = min (ci,Zi) and the inequalities are simply reversed. In the left-
censoring case Y1, . . . , Ym are a random sample from a left-truncated normal distribution on
(ci,∞) , i = 1, . . . ,m. whereas in the right-censoring case, Y1, . . . , Ym are from a right-truncated
distribution on (−∞, ci) , i = 1, . . . ,m.

For the truncated normal we may assume Y1 ≤ Y2 ≤ . . . ≤ Ym and plot these data quan-
tiles against the corresponding normal quantiles for the truncated distribution, sayZ1, . . . ,Zm,
whereZi = Φ

−1 (pi; µ, σ, (ci,∞)) in the left-censored or right-truncated case orZi = Φ
−1 (pi; µ, σ, (−∞, ci))

in the right-censored or left-truncated case, where Φ−1 denotes the inverse normal distribution
function for the truncated distribution with the indicated parameters and pi = (i − 0.5)/m, i =
1, . . . ,m.

Mohammad and McLeod [2013] illustrate the use of the dynamic normal probability plot
with singly-censored samples from normal or scaled t4 distributions. Figure 2.12 illustrates
how this method works to provide more robust estimates of µ and σ in the case of the t4

distribution which has be scaled so that µ = 100 and σ = 15. In this case Gaussian MLE
yields, µ̂ = 101.89 and σ̂ = 33.85. Using the interactive controls we fit that bulk of the data lie
on a line determined by µ̃ = 97.4 and σ̃ = 14.05. In this case the MLE estimate of the mean is
slightly more accurate but the robust estimate of σ is much more accurate than the MLE.

Industrial life-testing

Data from an experiment on the life spans in thousands of miles for n = 96 electronic locomo-
tive engines are given in Cohen [1991, Example 2.7.3]. These data were right-censored with
c = 135 and m = 37 complete observations were obtained. A log to the base 10 transfor-
mation was used on the data. Cohen [1991] obtained parameter estimates and their standard
errors, µ̂ = 2.224 ± 0.0458 and σ̂ = 0.307 ± 0.0410. Using our MLE algorithm, we obtained
µ̂ = 2.222 and σ̂ = 0.309. The Jackknife estimates for the standard errors was σµ̂ = 0.046 and
σσ̂ = 0.044. The dynamic normal diagnostic plot is shown in Figure 2.13 does not suggest any
model inadequacy.

Water quality example

The dynamic normal probability plot of the logged data reveals suggests that there has been a
shift in the mean of the time series after the detection level was lowered. The ordering of first
and second in the plot corresponds to data at the lowest detection value and larger detection
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Figure 2.12: Dynamic normal plot.
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Figure 2.13: Locomotive data

value respectively, so in this case first refers to the data on and after March 24, 2005 while
second refers to the data before this time point.

There is no statistically significant autocorrelation with the two parts of the series. So the
two series may each be fit using the algorithm for the singly left-censored NID case.

A simple statistical model for the data is thus a level shift about white noise. For simplicity
we allow a shift in the variance as well so, zt = µt + at, where

µt = {
µ1 t ≤ 96
µ2 t > 96 and at is independent normally distributed with mean 0 and variance

σ2
t , where

σ2
t = {

σ2
1 t ≤ 96

σ2
2 t > 96
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Figure 2.14: Dynamic normal plot for toxic water quality time series

Figure 2.15: Autocorrelation functions.
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Equivalently we may regard the data as being random samples from two independent nor-
mal distributions. The script and output for fitting this model using the CM algorithm is given
in the display below.

> require("cents")

> z <- log(NiagaraToxic$toxic)

> iz <- c("o", "L")[1+NiagaraToxic$cQ]

> CM(z[1:96],iz[1:96])$est

mle se(mle)

mean -1.1499277 0.05773584

sd 0.5467298 0.04642786

> CM(z[-(1:96)],iz[-(1:96)])$est

mle se(mle)

mean -0.6819362 0.07623673

sd 0.5278323 0.05489638

The difference in the means is clearly highly significant but there does not appear to be any
difference in the variances.



Chapter 3

Censored time series analysis

Missing values and censoring
In this chapter we will assume that the latent time series, zt, t = 1, . . . , n, is generated by a GLP
as in Chapter 1. Usually this GLP will be an ARMA or stationary and invertible ARFIMA
model but it could include other time series models such as the fractional Gaussian noise model.
The observed series is determined by

yt = {
zt zt > c(l)

t and zt < c(u)
t

c(l)
t yt < c(l)

t

c(u)
t yt > c(u)

t

(3.1)

where ct =
(
c(l)

t , c
(u)
t

)
is the censoring process which may be stochastic or deterministic and

must be independent of zt and it is assumed to be known, as is the usual case in practice. Table
3.1 describes the type of censoring for the tth observation that are of interest.

c(l)
t is finite c(u)

t = ∞ left censoring
c(l)

t = −∞ c(u)
t is finite right censoring

c(l)
t is finite c(u)

t is finite interval censoring
c(l)

t = ∞ c(u)
t any value missing value

c(l)
t any value c(u)

t = −∞ missing value
c(l)

t = −∞ c(u)
t = ∞ no censoring

Table 3.1: Censoring process.

In many cases, as in the air quality data mentioned in Chapter 1, the data are singly-censored
which means that the censoring process is independent of t so the subscript t may be dropped.
As well interval censoring is less frequently encountered. The most common censoring with
actual water and air quality time series is left-censoring and not infrequently with only a single
censor point.

We see that the missing value problem is closely related to the censoring problem. Con-
sider the case of a single censor point for a left-censoring time series, denoted by c(l). As c(l)

50
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increases from −∞, fewer and fewer observations are censored and so more and more infor-
mation becomes available. So missing values represent the worst case in the larger censoring
problem.

Thus our censoring algorithms should also be able to solve the missing value problem
as well. Since the built-in R function arima() provides an exact MLE treatment using the
Kalman filter algorithm, we can compare the estimates our new quasi-EM algorithm with those
produced by the arima() function.

To illustrate the methods for dealing with missing values we consider a simple example
with the latent series, zt, that was generated using a particular starting value for the random
number generator and n = 50, ϕ = 0.5, µ = 100, σa = 5. The simulated latent series is shown
in the first panel in Figure 3.1. The observed series was generated by randomly deleting 25
data points, to obtain the y-series, shown in the second panel in Figure 3.1. The exact values
are listed below the graphs.

Figure 3.1: The simulated latent series and the observed series with 50% missing

For completeness the observed series, yt, is listed in the display below,

101,NA,NA,NA,NA,NA,101,97,101,NA,NA,95,NA,NA,106,97,NA,91,90,

95,97,93,NA,NA,NA,103,105,111,99,98,NA,NA,98,NA,NA,NA,99,NA,NA,..............(2)

115,NA,NA,107,109,NA,109,NA,107,NA,100

and the latent series, zt, is

101,100,107,104,103,99,101,97,101,100,92,95,100,104,106,97,84,91,90,

95,97,93,91,90,95,103,105,111,99,98,101,97,98,100,94,85,99,105,108,..........(3)

115,106,109,107,109,104,109,101,107,102,100
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This example data is also available in our R package cents. The display below shows the
AR(1) model that is fitted using the R function arima().

Interpolation and missing values

The problem of fitting time series models to data with missing values is different problem from
the interpolation problem. As pointed out by Shumway and Stoffer [2000], the Kalman filter
algorithm provides a methods for both model fitting as well as for interpolation.

To highlight the difference between the interpolation problem and model estimation prob-
lem we provide a brief overview of the interpolation problem in this section.

Consider a stationary latent time series zt, t = 1, . . . , n with mean µ and autocovariance
function γk = Cov (zt, zt−k) and suppose that t1, . . . , tm denote the indices for the observed series
and the complementary indices corresponding to the missing values are denoted by s1, . . . , sn−m,
Let y =

(
zt1 , . . . , ztm

)′ and u =
(
zs1 , . . . , zsn−m

)′ denote the vectors of latent series corresponding
to the observed and missing values. Then the covariance matrix of y, denoted by Γy, is obtained
by selecting the rows and columns corresponding to t1, . . . , tm from the n× n covariance matrix
of z1, . . . , zn, that is, Γn =

(
γi− j

)
n×n

. Similarly the cross-covariance matrix, cov(y, u) = Γy,u

may be obtained by selecting rows corresponding to t1, . . . , tm and columns s1, . . . , sn−m. Then
the optimal interpolation may be obtained from the result for the conditional expectation in a
multivariate normal distribution and is given by,

µ + Σ−1
y Γy,u(y − µ) (3.2)

where we have used the convention in R and Mathematica, that a vector minus a constant is
defined by subtracting the constant from each element of the vector.

In the AR(1) case, γk = σ
2
aϕ

k/
(
1 − ϕ2 ) and a simple result may be derived using Mathe-

matica symbolics,
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This result differs from the usual forward forecast for z6 given the past, ϕz5, or the forecast
for z6 given the future, ϕz7. In general if the tth observation is missing in an AR(1), the optimal
interpolated value for zt is given by ϕ (zt−1 + zt+1) /

(
1 + ϕ2

)
.

There is an extensive literature on the estimation of missing values or optimal interpolation
in stationary and non-stationary time series. The univariate case is discussed using the Kalman
filter by Kohn and Ansley [1986] and more generally for multivariate time series by Durbin
and Koopman [2012]. Non-Kalman approaches to the time series interpolation problem are
given by Nieto and Martinex [1996, 1991], Kasahara et al. [2009]. Their papers cite many
other previous works on this topic.

Likelihood with missing values
Let z1, . . . , zn denote n successive values from an ARMA(p, q) model with mean µ, innovation
variance σ2

a and coefficient parameters β =
(
ϕ1, . . . , ϕp, θ1, . . . , θq

)
. We assume that m of these

values, zt1 , . . . , ztm , are observed and n−m are missing and the mechanism by which the missing
values were generated is unrelated to the underlying latent time series, z1, . . . , zn. Let ti, i =
1, . . . ,m, where 1 ≤ m ≤ n, denote the time indices corresponding to the observed values so
the actual observed time series, yt, is

yt = {
zt t ∈ C
NA t < C , (3.3)

where NA indicates a missing value and C is the vector of indices for the complete observa-
tions, C = {t1, . . . , tm}. Let γk = Cov (zt, zt−k), k = 1, . . . , n be the autocovariance function for
the latent time series, so the covariance matrix for the fully observed series z1, . . . , zn can be
written Γn = σ

2
a

(
γi− j

)
, where the (i, j)-entry in the n×n matrix is indicated and where γ−k = γk.

We call r = (n − m)/n the missing value rate.
The covariance matrix for yt1 , . . . , ytmdenoted by Γm is obtained by selecting rows and

columns of Γn corresponding to t1, . . . , tm. Then the exact log-likelihood for the parameters(
µ, β, σ2

a

)
including the constant term may be written,

L
(
µ, β, σ2

a; y
)
= −m

2
log(2π) − m

2
logσ2

a −
1
2

log det(Γm) − 1
2σ2

a
(y − µ)′Γ−1

m (y − µ), (3.4)
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where (y − µ)′ =
(
yt1 − µ, . . . , ytm − µ

)′ and det(Γm) denotes the determinant of Γm.
For MLE purposes we work with the profile or concentrated log-likelihood that is obtained

by maximizing over σ2
a and dropping the constant term involving 2π. Then the profile log-

likelihood function can be written,

L(µ, β; y) = −1
2

log det(Γm) − m
2

log((y − µ)′Γ−1
m (y − µ)/m), (3.5)

and

σ̂2
a = (y − µ)′ Γ−1

m (y − µ)
/

m (3.6)

The direct approach to this problem is to form the exact likelihood function given in
eqn.(3.5) and optimize it numerically. The only possible disadvantage of this approach is com-
putational. The computational complexity as measured by the number of floating computations
is O

(
m3

)
per function evaluation whereas other approaches reduce this to O(m) or O

(
m2

)
. This

may be important when m is very large but it is much less of concern with modern computers.
For example, taking n = 3000, r = 0.5, and m = 1500, the evaluation of L in eqn. (3.5) for an
AR(1) model using simulated data takes less than 1 second using Mathematica on a Windows
PC with a 2009 i7 CPU. So in many cases the direct evaluation of eqn. (3.5) is a very feasible
approach. If programmed in an efficient computer language such as C, it would be a lot faster.

The Kalman filter provides the most widely used approach for fitting time series models
with missing values. It provides a computationally efficient approach to the evaluation of the
direct likelihood in eqns. (3.4) and (3.5) in the case of ARMA models. [Box et al., 2008,
§13.3] review the Kalman filter algorithm for missing values for ARIMA models and provide
a detailed overview for the AR(1) model. Jones [1980] provided the first treatment of fitting
ARMA models with missing data using the Kalman filter and we provide a general algorithm
for implementing the essential idea in Jones [1980] using general linear time series modelling
algorithms presented in McLeod et al. [2007]. Our approach is more general since it is not
obvious how the general linear process may be fit using the Kalman filter. Park et al. [1997]
extended the Kalman filter missing value approach to the class of stationary ARFIMA models,
so extensions are possible but further work with the Kalman filter methods is needed to explain
how to extend this other more general linear processes such as fractional Gaussian noise as well
as homogeneous non-stationary models. Another difficulty with the Kalman filter approach
mentioned by some researchers is accuracy. Penzer and Shea [1997, p. 920] pointed out
that many researchers have reported problems due to round-off error with the Kalman filter
approach. The Kalman filter for ARMA models has computational complexity O(n).

Ljung [1982] derived an efficient algorithm for the evaluation of the log-likelihood function
in eqns. 3.4 and 3.5 that generalizes the earlier ARMA algorithm of Ljung and Box [1979] that
was derived from the unconditional sum of squares function developed in celebrated time series
book Box et al. [2008].

Another approach to the efficient evaluation of the exact likelihood given in eqns. 3.4 and
(3.5) was obtained by Penzer and Shea [1997]. Their approach was derived by specializing the
modified Cholesky decomposition algorithm given by Ansley [1979]. Penzer and Shea [1997]
present computing timings that such their approach outperforms the Kalman filter method but
I don’t think this is reliable since the implementation details are complicated and such raw
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computer timings depend very much on the implementation details. Also with current comput-
ing capabilities, computational speed is often not of much practical importance in most actual
applications since n is usually less not very large. However larger n may occur with some
financial time series and Big Data is a current area of development so computationally efficient
methods may be needed in some cases.

New computationally efficient algorithm for fitting AR(1) in complete data
case

In this section no missing values are assumed so we work directly with the latent series zt, t =
1, . . . , n. This algorithm introduces notation and methods that will be used when we discussed
the censored case. This algorithm is important because as we will demonstrate later in Figure
3.4 the output from R’s arima() function is unreliable even in the AR(1) case. This makes
the arima() function problematic suitable for computationally intensive statistical inference
methods such as bootstrapping.

The new algorithm, called FullMLEAR1 is based on the exact MLE algorithm for the
AR(1) described in Ying Zhang et al. [2013] and implemented in R in the package mleur on
CRAN and our improvement is to provide an efficient computation of exact MLE for both
parameters ϕ and µ. The algorithm discussed in Ying Zhang et al. [2013] is exact in the case
of known mean. In practice, the series is simply corrected for the sample mean and the mean
corrected series is treated as a mean zero time series. Since the sample mean is asymptotically
efficient, this method works well in practice in many situations. However the built-in R function
arima() uses the exact MLE estimate for the sample mean, so it was decided for the purposes
of comparison to modify the algorithm of Ying Zhang et al. [2013] to provide exact MLE
estimates for (µ, ϕ).

From the result given in McLeod et al. [2007, eqn. 9] the concentrated log-likelihood
function for the latent series is,

L(µ, ϕ) = −n
2

log(S/n) − n
2

log
(
1 − ϕ2

)
(3.7)

where,

S = (z1 − µ)2
(
1 − ϕ2

)
+

n∑
t=2

(zt − µ − ϕ (zt−1 − µ)) 2 (3.8)

Also σ̂2
a = S/n. The new algorithm is derived by solving ∂µS = 0, where S is the sum-of-

squares function given in eqn. (3.8). Hence,

∂µ
(
(z1 − µ) 2

(
1 − ϕ2

)
+

∑n
t=2 (zt − µ − ϕ (zt−1 − µ)) 2

)
= −2 (z1 − µ)

(
1 − ϕ2

)
+

∑n
t=2 2 (zt − µ − ϕ (zt−1 − µ)) (−1 + ϕ)

= −2 (z1 − µ)
(
1 − ϕ2

)
− 2

∑n
t=2(1 − ϕ) (zt − ϕzt−1 − µ(1 − ϕ))

Next we set ∂µS = 0 and solve for µ.
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−2 (z1 − µ)
(
1 − ϕ2

)
− 2

n∑
t=2

(1 − ϕ) (zt − ϕzt−1 − µ(1 − ϕ)) = 0

⇔ (z1 − µ)
(
1 − ϕ2

)
+

n∑
t=2

(1 − ϕ) (zt − ϕzt−1 − µ(1 − ϕ)) = 0

⇔ (z1 − µ)
(
1 − ϕ2

)
+

n∑
t=2

(1 − ϕ) (zt − ϕzt−1) −
n∑

t=2

µ(1 − ϕ)2 = 0

⇔ (z1 − µ)
(
1 − ϕ2

)
− (n − 1)µ(1 − ϕ)2 + (1 − ϕ)

n∑
t=2

(zt − ϕzt−1) =0

⇔ z1

(
1 − ϕ2

)
− µ

(
1 − ϕ2

)
− (n − 1)µ(1 − ϕ)2 + (1 − ϕ)

n∑
t=2

(zt − ϕzt−1) =0

⇔ z1

(
1 − ϕ2

)
+ (1 − ϕ)

n∑
t=2

(zt − ϕzt−1) − µ
(
1 − ϕ2

)
− (n − 1)µ(1 − ϕ)2 =0

⇔ z1

(
1 − ϕ2

)
+ (1 − ϕ)

n∑
t=2

(zt − ϕzt−1) = µ
((

1 − ϕ2
)
+ (n − 1)(1 − ϕ)2

)
Hence,

µ̂ =
z1

(
1 − ϕ2

)
+ (1 − ϕ)(A − ϕB)

1 − ϕ2 + (n − 1)(1 − ϕ)2 (3.9)

where,

A =
n∑

t=2

zt, B =
n−1∑
t=1

zt−1

Iterative exact MLE algorithm. FullMLEAR1.Iterative exact MLE algorithm. FullMLEAR1.Iterative exact MLE algorithm. FullMLEAR1.
Step 1. Set µ̂0 = z̄, where z̄ = n−1 ∑

t zt and i = 0.
Step 2. Set ut = zt − µ̂i and use the exact MLE algorithm of Zhang, Yu and McLeod (2013)

to fit the AR(1) model to ut and obtain ϕ̂(i).
Step 3. Using eqn. (3.9) obtain, µ̂(i).
Step 4. Evaluate the log-likelihood function using eqn. (3.7).
Step 5. Stop if the log-likelihood function has converged. Otherwise, set i → i + 1 and

repeat Steps 2, 3, and 4.

R code snippet

The FullMLEAR1FullMLEAR1FullMLEAR1 algorithm is implemented in our R package cents in the function fitar1().
The code snippet below compares the output of our function with the built-in R function arima()
for the simulated latent time series. Our fitar1() function returns a vector with

(
µ̂, ϕ̂,L

(
µ̂, ϕ̂

)
).

The agreement with the parameter estimates is satisfactory. The values of the log-likelihood
differ because we use the profile log-likelihood.
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> fitar1(z)

[1] 100.1804805 0.6647272 -95.5147693

> arima(z, order=c(1,0,0))

Call:

arima(x = z, order = c(1, 0, 0))

Coefficients:

ar1 intercept

0.6648 100.1808

s.e. 0.1079 2.1219

sigmaˆ2 estimated as 26.9: log likelihood = -153.54, aic = 313.08

An EM algorithm for missing values in AR(1)
The idea with for the Kalman filtering algorithm is to replace any missing values with their
forward predictions and then evaluate the log-likelihood function. Previously Shumway and
Stoffer [2000] have elucidated the connection between the Kalman filter algorithm for missing
values and the EM algorithm. In this section, we present an alternative approach.

A new exact algorithm for computing direct log-likelihood given in eqn. (3.16) is devel-
oped. This algorithm is basically equivalent to the algorithm used in the Kalman filter approach
but the implementation details are completely different. Although the approach in this section
is just developed for the AR(1) model it could easily be extended to the more general ARMA
case.

Given the latent series z1, . . . , zn and define yt and C as in eqn. (3.3). The observed values,
yt, t = t1, . . . , tm and the missing values correspond to the subseries zs1 , . . . , zsn−m , where s1 <
s2 < . . . < sn−m are the indices corresponding to each of the missing values. For any t ≥ 1, set

Zt = (zt, zt−1, . . . , z1)′ (3.10)

and set
U = (

zs1 , . . . , zsn−m

)′ . (3.11)

We assume without loss of generality that t1 = 1 and tm = m. The model parameters are
λ =

(
µ, ϕ, σ2

a

)
. The joint density corresponding to the observed values, yt, t = t1, . . . , tm can be

written,

f (Zn; λ) = f
(
zt1; λ

)
f
(
zt2 |Zt2−1; λ

)
f
(
zt3 |Zt3−1; λ

)
. . . f

(
ztm |Ztm−1; λ

)
f (U; λ). (3.12)

Substituting, yti = zti , i = 1, . . . ,m and taking logarithms,

log f (Zn; λ) = log f (y1; λ) +
m∑

i=2

log f
(
yti |Zti−1; λ

)
+ log f (U; λ) (3.13)

We see that this is exactly the form required for the EM algorithm with objective function,
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Q
(
λ′| λ) = log f

(
y1; λ′

)
+

m∑
i=2

log f
(
yti |Eλ

{Zti−1
}
; λ′

)
, (3.14)

where Eλ is expectation with respect to λ. The EM algorithm iterations are specified by,

λ(i) = argmax
λ′

Q
(
λ′|λ(i−1)

)
(3.15)

Note that eqn. (3.14) holds for ARMA models as well if we make change the notation so
that λ includes all the parameters, so the algorithm may be implemented for this more general
case. In the AR(1) case we proceed by defining for t = 1,

[w1] = { yt, t ∈ C, t ≥ 2,
µ, t < C, t ≥ 2, (3.16)

and for t = 2, . . . , n,

[wt] = {
yt, t ∈ C,
µ + ϕ ([wt−1] − µ) , t < C. (3.17)

So if t, t−1, ∈ C, f (zt|Zt−1), where f (zt|Zt−1) is the normal PDF with mean µ+ϕ (zt−1 − µ)
and variance σ2

a. More generally for any t ∈ C, f ([wt] | [wt−1]) = f (zt|Zt−1), where f (zt| [wt−1])
is normally distributed with mean µ + ϕ ([wt−1] − µ) but the variance is more complicated. In
general, assume that t − 1, t − 2, . . . , t − k − 1 < C and t − k ∈ C. So the lag separation
between yt and the closest previous observation is k lags. Then [wt−1] as recursively defined
in eqn. (3.16) is equivalent to the forecast for yt from lead time yt−k and hence has variance
νk =

(
1 + ϕ2 + . . . + ϕ2(k−1)

)
σ2

a. The variances may be recursively computed along with [wt].

Set v1 = σ
2
a/

(
1 − ϕ2

)
and for t = 2, . . . , n set,

νt = {
σ2

a, t ∈ C,
1 + ϕ2νt−1, t < C. (3.18)

Letting φ
(
z; µ, σ2

)
denote the normal distribution with mean µ and variance parameter σ2,

the exact log-likelihood function for yt1 , . . . , ytm may be written,

L
(
µ, ϕ, σ2|yt1 , . . . , ytm

)
= φ

(
[w1] ; µ, ϕ, σ2

a/
(
1 − ϕ2

))
+

m∑
t=2

φ ([wt] ; µ + ϕ ([wt−1] − µ) , ϕ, vt)

(3.19)
As a check, a Mathematica package was implemented to compute the log-likelihood for an

AR(1) using eqn.(3.19) as well as with the direct log-likelihood function based on eqn.(3.16).
Both of these Mathematica functions gave results on the test data discussed in (2) identical to
that produced by the Kalman filter algorithm that is implemented in the R function arima() and
whose output is displayed below the data (2).

The approach in this section will now be modified and simplified. A convenient algorithm
for the more general censored case.
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Quasi-EM algorithm
If we are given the latent series, z1, . . . , zn then the joint probability density function can be
written,

f (z1, . . . , zn) = f (z1) f (z2|z1) f (z3|z2) . . . f (zn|zn−1) (3.20)

For t = 2, . . . , n, the conditional distribution f (zt|zt−1) is normal with mean µt = µ +
ϕ (zt−1 − µ) and variance σ2

a and for t = 1, z1 is normal with mean µ and variance σ2
a/

(
1 − ϕ2

)
.

Hence the concentrated log-likelihood may be computed. From the result given in McLeod
et al. [2007, eqn. 9],

L(µ, ϕ) = −n
2

log(S/n) − n
2

log
(
1 − ϕ2

)
(3.21)

where,

S = (z1 − µ)2
(
1 − ϕ2

)
+

n∑
t=2

(zt − µ − ϕ (zt−1 − µ)) 2 (3.22)

Also σ̂2
a = S/n.

To deal with the missing values, we set
[
yt
]

equal to its conditional expectation given the
observations up to and including time t, so for t = 2, . . . , n,

[
yt
]
= { yt, t ∈ C,

µ + ϕ
([

yt−1
] − µ) , yt < C, (3.23)

For t = 1, if y1 = NA then
[
y1

]
= µ otherwise y1 = z1.

In the EM approach, we set β′ = (µ′, ϕ′) and β = (µ, ϕ). Here the β′ are the parameters that
we maximize over and β are the parameters used in the expectation step.

Q (β′| β) = − n
2 log(S/n) − n

2 log
(
1 − (ϕ′)2

)
S =

(
[w1] − µ′)2

(
1 − (

ϕ′
)2
)
+

n∑
t=2

(
[wt] − µ′ − ϕ′

(
[wt−1] − µ′)) 2 (3.24)

[wt] = {
yt, t ∈ C, t ≥ 2,
µ + ϕ ([wt−1] − µ) , t < C, t ≥ 2 (3.25)

For t = 1, if [w1] = NA then [w1] = µ otherwise w1 = z1. Then the (quasi-MLE) QMLE
are obtained by the iterative process EM steps.

Innovation variance.Innovation variance.Innovation variance. From eqn. (3.4) an estimate of the innovation variance is given by,

σ̂2
a =

1
m

∑
t∈C

(
[wt] − µ′ − ϕ′

(
[wt−1] − µ′)) 2 (3.26)

An alternative approach would be to use the full likelihood for
(
µ, ϕ, σ2

a

)
as defined in eqn.

(3.20) to obtain the exact MLE for all three parameters.
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Quasi-EM algorithm for missing values in AR(1). QMLEAR1.Quasi-EM algorithm for missing values in AR(1). QMLEAR1.Quasi-EM algorithm for missing values in AR(1). QMLEAR1.
Step 0.Step 0.Step 0. Select initial estimate β.
Step 1.Step 1.Step 1. Expectation. Compute the expectations using eqn. (3.16).
Step 2.Step 2.Step 2. Maximization.

β̂ = argmax
β′

Q
(
β′| β) = −n

2
log(S/n) − n

2
log

(
1 − (

ϕ′
)2
)

(3.27)

Step 3.Step 3.Step 3. Stop if the estimates have converged otherwise replace β with β̂ return to Step 1.

The maximization step in eqn. (3.27) can be efficiently evaluated by using the algorithm
FullMLEAR1FullMLEAR1FullMLEAR1 algorithm. The QMLEAR1QMLEAR1QMLEAR1 algorithm is implemented in our cents R package

in the function fitcar1().
The Figure below compares the QMLEAR1 estimates for (µ, ϕ) using the data (2) with the

exact MLE computed by the direct method using eqn. (3.16). The magenta, red and black dots
represent the QMLEAR1, direct MLE, and true parameter values respectively. The contours
shown the 50%, 90% and 95% confidence regions computed using the likelihood ratio test
method with the likelihood defined in eqn. (3.16). We see that the difference between the
QMLEAR1 and exact MLE is negligible.

Figure 3.2: Comparison of algorithms for estimating MLE in the simulated example.

Simulation comparisons
Normal scenarios

Our normal scenarios cover missing value AR(1) model with parameters and missing values
rates 20% and 50%. In the next section we investigate more extreme cases involving 90%
missing values. Some simulations were done to compare our proposed algorithm fitcar1()with
the built-in R function arima().
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For series lengths n = 50, 100, 200, 500, parameters ϕ = −0.9,−0.6,−0.3, 0.0, 0.3, 0.6, 0.9,
µ = 0 and σa = 1, and missing values rates 20% and 50%, 1000 simulations were done for
each setting. The plots of the root-mean-square error (RMSE) shown below shown that in most
cases there is little difference between these two algorithm except that in some cases fitcar1()
is slightly more accurate.

Figure 3.3 compares the RMSE for the estimates of µ. It is interesting that when ϕ < 0, the
RMSE seems to increase slightly with n and the reverse is true when ϕ ≥ 0. This must be a
finite sample effect and due to the fact that the estimation of the parameter is greatly improved
when there is negative autocorrelation. A similar effect occurs in the principle of anti-thetic
sampling where a negative correlation is used to improve the estimation. The blue circles show
the arima() estimates and the red dots are the fitcar1() estimates.

Figure 3.3: Comparing RMSE for estimation of the mean.

Figure 3.4 compares the RMSE for the estimates of ϕ. In this case the accuracy increases
with n for all ϕ. When n = 50 and ϕ = 0.9, the plots show that the RMSE greatly increases and
the fitcar1() is noticeably more accurate.

Let ϕ̂i, i = 1, . . . , 1000 denote the estimate of ϕ in each of the 1000 simulations for a fixed
setting. We compare the biases, ϕ − ϕ̂i in Figure 3.5 for ϕ = 0.9, n = 50, and 20% and 50%
missing value rates. The biases greatly increases with the amount of missing data in the arima()
case and less so in the fitcar1() case. The R function fitcar1() estimates also have lower biases
than the arima() as we might expect from Figure 3.5. It is possible that the poor performance
in the arima() case could be due to optimization algorithm.

More extreme missing values

Although extreme missing values rates of over 80% don’t seem to arise in many applications,
it might be that the approximations used in the QMLEAR1QMLEAR1QMLEAR1 algorithm break down in this
situation. So the simulation was repeated comparing QMLEAR1QMLEAR1QMLEAR1 and arima() with missing
value rates 80% and 90%. The results shown in Figures 3.6 and 3.7 confirm that there is little
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Figure 3.4: Comparing RMSE for estimation of the ϕ.

Figure 3.5: Boxplots comparing the biases for the estimates for ϕ using arima() and fitar()with
20 and 50 percent missing values.
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difference between the algorithms in most cases and where there is a big difference such as in
the estimate of ϕ when ϕ = 0.9 and the series length is not long, the QMLEAR1QMLEAR1QMLEAR1 algorithm
produces a more accurate result.

Figure 3.6: Comparing RMSE for estimation of the µ with missing value rates 80% and 90%

Figure 3.7: Comparing RMSE for estimation of the ϕ with missing value rates 80% and 90%

Concluding remarks

The missing value problem in time series model estimation may be regarded as an extreme case
of censoring. As the censoring threshold in left-censoring is increased less and less information
is available for model estimation and in the extreme case where the threshold is very large miss-
ing values are generated that contain no information. The fact that the QMLEAR1QMLEAR1QMLEAR1 performs
just as well as the exact approach using arima() for the AR(1) suggests the idea behind this
algorithm will be useful in the more general censored case.
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Censored AR(1) time series analysis
The full CENAR(1) for an observed time series includes a censoring process defined in eqn.
(3.1) with the latent time series, zt, defined by an AR(1) model, zt = µ + ϕ (zt−1 − µ) + at where
at∼NID

(
0, σ2

a

)
. As noted above in eqns. (3.7) and (3.8), which we repeat here for convenience,

the concentrated log-likelihood for the latent series may be written,

L(µ, ϕ) = −n
2

log(S/n) − n
2

log
(
1 − ϕ2

)
(3.28)

where,

S = (z1 − µ)2
(
1 − ϕ2

)
+

n∑
t=2

(zt − µ − ϕ (zt−1 − µ)) 2 (3.29)

and σ̂2
a = S/n. To deal with censoring, we replace the censored values by their conditional ex-

pected values given the past data,Zt−1, whereZt is defined as in eqn. (3.10) and the censoring
process, ct, in Table 3.1 so

[wt] = {
yt, t ∈ C,
Et,c {yt} , yt < C, (3.30)

where Et,c {yt} is the conditional expectation given the past observations,Yt−1 = (yt−1, yt−2, . . . , y1)′

and the censoring ct. Assuming normality, Et,c {yt} is computed as the mean in a truncated nor-
mal distribution with truncation determined by ct and normal mean parameter, µt,

µt = µ + ϕ ([wt−1] − µ) (3.31)

and variance parameter, σ2
a. Treating the sequence [wt] , t = 1, . . . , n as an AR(1) we obtain

estimates for the parameters using the exact MLE algorithm, FullMLEAR1FullMLEAR1FullMLEAR1.
Initial estimates for µ, ϕ, and σ2

a may be obtained using the FullMLEAR1 algorithm on the
observed data yt, t = 1, . . . , n by ignoring the censoring, that is, by treating the censored values
as fully observed value.

MLECAR1MLECAR1MLECAR1:Algorithm for censoring values in AR(1).
Step 0.Step 0.Step 0. Select initial estimate β.
Step 1.Step 1.Step 1. Expectation. Compute [wt] , t = 1, . . . , n.
Step 2.Step 2.Step 2. Maximization. Fit using FullMLEAR1FullMLEAR1FullMLEAR1.
Step 3.Step 3.Step 3. Stop if the log-likelihood has converged.
This algorithm is implemented in our cents R package in the function fitcar1().

Comment on the exact likelihood function for CENAR(1)
Park et al. [2007] claim to derive the exact log-likelihood for the AR(1) in the singly censored
case but from our work in the missing value case, we realize that their result is wrong. Recall
that for the missing value problem in the AR(1) we found the likelihood function is not Marko-
vian in the sense that f (zt|Zt−1) , f (zt|zt−1) when zt−1 < C. Similarly, excluding the trivial
cases where the censor limit is at ±∞, it is obvious that when there is non-trivial censoring
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the resulting time series yt is not Markovian even when the underlying latent process zt is a
stationary AR(1) and is thus Markovian.

As a simple check on the above remarks we simulated an AR(1), zt = ϕzt−1 + at, t =
1, . . . , n with ϕ = 0.9, at ∼ NID(0,1), and n = 105. Then we generated a censored series
yt = max (yt,−1). For this series we found that the empirical estimates of D

p̂1 = est Pr {zt ∈ C|zt−1 < C ) = 0.196247. (3.32)

Next we generated another independent replication and this time computed,

p̂2 = est Pr {zt ∈ C|zt−1 < C, zt−2 < C ) = 0.161406 (3.33)

Applying the standard test for equality of binomial proportions yielded a Z-score of −10.9
so the proportions are certainly different as we claimed. As a check, the tests were repeated
using ϕ = 0 and we found p1 = 0.8493, p2 = 0.8452, and Z = −0.52. So as expected, since the
censored time series yt is equivalent to the random sampling situation discussed in Chapter 2,
the proportions must be the same.

Of course the likelihood derived by Park et al. [2007] for the CENAR(1) may provide an
approximation but the likelihood itself is quite complicated and the generalization to higher
order AR models would be very complex.

Standard errors and inference on the estimates

The standard errors for the parameter estimates of µ and σ2
a may be obtained using bootstrap-

ping. Both the parametric and non-parametric block bootstrap can be used.
The Figure 3.8 compares the estimated standard error for µ, σ̂µ, using the block with block-

length 10 and parametric bootstrap in simulated CENAR(1) models with series length n =
200, mean zero, ϕ = −0.9,−0.6, . . . , 0.9, unit innovation variance and left censoring rates
r = 0.2, 0.5. For each setting, 2500 simulations were done. In each simulation B = 1000
bootstrap iterations were done. The blue dots show the average estimated standard deviation
for µ̂. The estimated standard deviations times two are less than the width of the plotting
symbol. These standard deviations are given in the Table 3.2

ϕ\r 0.2 0.5
-0.9 {0.067, 0.268 } {0.298, 0.293}
-0.6 {0.050, 0.077 } {0.171, 0.087}
-0.3 {0.057, 0.058 } {0.212, 0.063}
0.0 {0.076, 0.060 } {0.159, 0.060}
0.3 {0.108, 0.077 } {0.128, 0.071}
0.6 {0.176, 0.126 } {0.221, 0.109}
0.9 {0.314, 0.483 } {0.379, 0.403}

Table 3.2: The estimated standard errors for estimated µ. The first entry in each pair is for the
block bootstrap and the second for the parametric bootstrap

In an AR(1) with no censoring and n consecutive observations, the asymptotic variance
of the MLE µ̂ is given by σ2

µ(ϕ, n) = σ2
a/

(
n(1 − ϕ)2

)
. Since σ2

µ(ϕ, n) ignores the effect of
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censoring, we would expect σ2
µ(ϕ, n) < σ2

µ(ϕ, c, n) where σ2
µ(ϕ, c, n) is the variance of the MLE

for µ is the CENAR(1) model that is estimated in our simulations using the bootstraps.
Another bound for the of σ2

µ(ϕ, c, n) may be obtained using the expected information matrix
in the previous chapter to obtain σ2

µ(c, n) the variance of the mean in censored normal random
samples of size n and censor point c. Since this ignores the autocorrelation effect we would
expect σ2

µ(c, n) < σ2
µ(ϕ, c, n).

The red curves on the plot show the approximate estimates for σµ based on these two
asymptotic formulas.

Overall the parametric bootstrap may be preferred. When ϕ = 0.6, 0.9 and r = 0.5 both
methods indicate the estimate of σµ has a much larger value than may be expected by the crude
asymptotic effective sample size considerations. The block bootstrap appear less effective when
r = 0.5 than the parametric bootstrap. Perhaps for ϕ > 0 a larger block length needed.

Figure 3.8: Compares the estimated standard error for µ, σ̂µ, using the block with block-length
10 and parametric bootstrap in simulated CENAR(1) models with series length n = 200, mean
zero, ϕ = −0.9,−0.6, . . . , 0.9, unit innovation variance and left censoring rates r = 0.2, and
r = 0.5

Model diagnostic check

The residuals may be defined by ât =
[
yt
] − ϕ̂ [

yt−1
]
, t = 2, . . . , n. The model adequacy may be

assessed by using the Box-Pierce portmanteau diagnostic check,

Qm = n
m∑

k=1

r2
â(k), (3.34)

where

râ(k) =

 n∑
t=k+1

âtât−k

 /  n∑
t=1

â2
t

 . (3.35)
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The p-values for this diagnostic test may be computed using the Monte-Carlo test method
discussed by Lin (2007) and Mahdi (2011). This algorithm is summarized below.

Algorithm MCTest for CENAR(1) ModelAlgorithm MCTest for CENAR(1) ModelAlgorithm MCTest for CENAR(1) Model
Step 0. Select M typically M = 15 but small or larger values may be used depending on

whether or not higher order autocorrelations may be important if seasonality or periodicity
is anticipated. Then for m = 1, . . . , M, use the observed residuals from the fitted model to
compute Q(obs)

m for m = 1, . . . , M. Select the number of iterations, say K. Usually K = 250 is
adequate but K = 1000 may be preferable. Set the counter i←− 1.

Step 1. Simulate the fitted censored time series, y(i)
t and then fit this model to obtain the

residuals and the portmanteau statistics, Q(i)
m , m = 1, . . . , M,

Step 2. Increment the counter km if Q(i)
m > Q(obs)

m .
Step 3. Increment the counter i←− i + 1 and return to Step 1 and 2 if i ≤ K.
Step 4. Plot the p-values, pm = (km + 1)/ (K + 1), m = 1, . . . , M. Low p-values provide

evidence against the adequacy of the order 1 model and suggest that possibly a higher order
model is needed.

ExampleExampleExample
We illustrate with a simulated CENAR(1) model. The latent process is an AR(1) with mean

µ = 100 and innovation standard deviation σ = 15 and autocorrelation parameter ϕ = 0.8.
Then the CENAR(1) series is obtained by left-truncating so that about 50% of the data is
truncated, so the truncation point is at c = µ − 15Φ−1(r) = 100. A time series plot of a
realization of length n = 200 is shown in Figure 3.9. Using our CM algorithm we obtained
µ̂ = 101.05 and σ̂z = 23.74. Note that the theoretical variance of the latent time series is
15

/√ (
1 − 0.82

)
= 25. So both estimates are reasonably accurate. The CENAR(1) algorithm

produces MLE ϕ̂ = 0.7107 and σ̂a = 12.52.

Figure 3.9: Time series plot of simulated CENAR(1)



68 Chapter 3. Censored time series analysis

Censoring algorithms for linear time series
Recursive computation of the inverse covariance matrix

Theorem:Theorem:Theorem: Γ−1
k for k = 1, 2, . . . recursively setting, Γ−1

1 =
(
γ−1

0

)
and

Γ−1
k+1 =

(
Γ−1

k (Ik + eaa′) f
f ′ e

)
(3.36)

where a = Γ−1
k h, h = (γ1, . . . , γk)′, e =

(
γ0 − h′Γ−1

k h
)
−1, f = −eΓ−1

k h and Ik is the k × k identity
matrix.

Proof:
The recursion is derived from the well-known theorem on the inverse of a partitioned ma-

trix,(
A B
C D

)−1

=

 A−1 + A−1B
(
D −CA−1B

)−1
CA−1 −A−1B

(
D −CA−1B

)−1

−
(
D −CA−1B

)−1
CA−1

(
D −CA−1B

)−1

.
Censoring and/or missing values in linear time series

We suppose that the latent process generates time series data zt, t = 1, . . . , n and that we observe
the time series yt, t = 1, . . . , n where

yt =

{
zt if fully observed

NA if censored or missing (3.37)

A secondary bivariate sequence ct, t = 1, . . . , n indicates the status of each observation with
respect to censoring,

ct =

{ (
c−t ,NA

)
the observation is left censored with censor point c−t(

NA, c+t
)

the observation is right censored with censor point c+t
. (3.38)

The t-observation is missing if yt = NA and ct = (NA,NA).
The joint density function for the latent time series (z1, . . . , zn) may be expressed as the

product the univariate conditional density functions,

f (z1, . . . , zn) = f (z1) f (z2|z1) f (z3|z1, z2) . . . f (zn|z1, z2, . . . , zn−1) (3.39)

Using the formula for the conditional mean and variance in a multivariate normal distribu-
tion it can be shown that the distribution of zk conditional on Zk−1 = (z1 . . . , zk−1)′ is normal
with mean,

µk = µ + (γ0, . . . , γk−2)Γ−1
k−1 (Zk−1 − Mk−1) (3.40)

where Mk = (µ, . . . , µ)′ is the (k − 1) × 1 vector of unconditional means and the conditional
variance is

σ2
k = γ0 − (γ0, . . . , γk−2)Γ−1

k−1 (γ0, . . . , γk−2)′ . (3.41)
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For the Expectation Step in the EM algorithm, µk is used if the kth observation is missing.
For left-censoring with known censor point c, the expectation of a right truncated normal dis-
tribution with mean µk and variance σk is used. Using Mathematica, an expression for this
expectation is given by

µ−k =
µk

(
erf

(
c−µk√

2σk

)
+ 1

)
−

√
2
π
σke

− (c−µk)2

2σ2
k

erfc
(
µk−c√

2σk

) (3.42)

where erf and erfc denote the error and complementary error functions,

erf(z) =
2
√
π

∫ z

0
e−t2dt (3.43)

where z ≥ 0 and erfc(z) = 1 − erf(z). The error functions may also be expressed in terms of the
standard normal cumulative distribution function, Φ(z),

erf(z) = 2Φ
(√

2z
)
− 1 (3.44)

erfc(z) = 2Φ
(
−
√

2z
)

(3.45)

Equivalent formulae for the mean of the truncated normal distribution have been derived
by Barr and Sherrill [1983].

In the right-censoring case, the expectation is

µ+k =

e
− (c−µk)2

2σ2
k

µke
(c−µk)2

2σ2
k erfc

(
c−µk√

2σk

)
+

√
2
π
σk


erf

(
µk−c√

2σk

)
+ 1

(3.46)

Algorithm CENLTSA

Initialization.Initialization.Initialization. Start with initial estimate of β, β̂(0) = 0 and for µ we may set µ̂(0) equal to
the estimate of the mean in the case of censored normal samples. Set counter i ←− 0. Set
maximum number of iterations, M ←− 102.
Expectation.Expectation.Expectation. Increment counter, i ←− i + 1. Compute xt, t = 1, . . . , n where xt ←− yt if the t-
observation is fully observed. If censored xt ←− µ−t or xt ←− µ+ according as the censoring on
the left or right. If missing, xt ←− µt. These expectations are computed using the conditional
expectations where previous censored or missing values are replaced by their expectations, that
µk = µ + (γ0, . . . , γk−2)Γ−1

k−1(Xk − Mk), where Xk = (x1, . . . , xk−1)′ and Mk is the k-dimensional
mean vector, (µ, . . . , µ). The conditional variances are given by eqn. (3.41).
Maximization.Maximization.Maximization. Use a suitable time series algorithm to obtain the updated estimates β̂(i) and µ̂(i).
Convergence Test.Convergence Test.Convergence Test. If the estimates have converged, stop. Otherwise, return to Step 2.

In the maximization step , suitable algorithms in R include the built-in function arima() as
well many others provided in some of the R packages such as arfima() [Veenstra and McLeod,
2014], FitAR() [McLeod et al., 2013]. In Mathematica we can use built-in function Estimat-
edProcess[].
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EM algorithm with Durbin-Levinson algorithm

The computation of the expectation in Step 2 can be made more computationally efficient
by using the Durbin-Levinson algorithm for computing the expectation for the latent process
rather than recursively using eqn. (3.40) the Durbin-Levinson algorithm may be used as shown
in eqn. (3.40).

Set ϕ1,1 = γ1/γ0 and σ2
1 =

(
1 − ϕ2

1,1

)
γ0, where σ2

k denotes the variance of the k step linear
predictor. Then for k = 2, 3, ... we can iteratively obtain,

ϕk,k =
(
γk − ϕk−1,1γk−1 − ... − ϕk−1,k−1γ1

)
/σ2

k−1 (3.47)


ϕk,1
...

ϕk,k−1

 =

ϕk−1,1
...

ϕk−1,k−1

 − ϕk,k


ϕk−1,k−1

...
ϕk−1,1

 (3.48)

and

σ2
k = σ

2
k−1

(
1 − ϕ2

k,k

)
. (3.49)

Then the conditional expectations in Step 2 are given by

µk = µ + ϕk,1 (xk−1 − µ) + · · · + ϕk,k (x1 − µ) (3.50)

For AR(p) models, we may use eqn. (3.40) for k = 1, . . . , p and then for k > p

µk = µ + ϕ1 (xk−1 − µ) + · · · + ϕp (x1 − µ) (3.51)

Intervention analysis and regression

This algorithm can be extended to regression and intervention by replacing eqn. (3.53)

µk = µ − (γ0, . . . , γk−2) Γ−1
k−1 (Xk − Mk) (3.52)

with eqn (3.53)

µk = µ (λ, ξt) − (γ0, . . . , γk−2)Γ−1
k−1 (Xk − Mk) (3.53)

in Step 2, where λ is a vector of structural parameters and ξt are exogenous variables. For
example with a dynamic pulse intervention model, λ = (µ, ω, δ,T )

µ (λ, ξt) =
{

µ t < T
µ + ω

∑t−T
k=0 δ

k t ≥ T
(3.54)
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Toxic water quality time series
The panel below shows running an R script using our cents package to fit CENARMA(1,1) and
CENAR(1) models. Figures 3.10 and 3.11 show that Monte-Carlo tests using the Ljung-Box
statistic for the two models. All scripts are included in the documentation for the cenarma()
function. Each Monte-Carlo test used 1000 iterations and required less than 5 seconds. Ac-
cording to these portmanteau tests, the CENARMA(1,1) is adequate but not the CENAR(1).

> require("cents")

> Zdf <- NiagaraToxic

> z <- log(Zdf$toxic)

> iz <- c("o", "L")[1+Zdf$cQ]

> #

> #CENARMA(1,1)

> cenarma(z, iz, p=1, q=1)

Call:

arima(x = x, order = c(p, 0, q), include.mean = include.mean)

Coefficients:

ar1 ma1 intercept

0.9440 -0.7881 -0.9212

s.e. 0.0602 0.1157 0.1674

sigmaˆ2 estimated as 0.2757: log likelihood = -111.8, aic = 231.61

> #fit CENAR(1)

> cenarma(z, iz, p=1)

Call:

arima(x = x, order = c(p, 0, q), include.mean = include.mean)

Coefficients:

ar1 intercept

0.2837 -0.9896

s.e. 0.0799 0.0636

sigmaˆ2 estimated as 0.3006: log likelihood = -117.82, aic = 241.64

It should be noted that the standard errors for the estimates are should probably be a lit-
tle larger. This is because these standard errors are computed under the assumption that all
observations are fully observed. If there is censoring and/or missing values, the effect of this
assumption would be to underestimate the true standard deviations. Because only mild cen-
soring with a rate of about 14% was used, it seems reasonable that the standard errors of the
estimates will be reasonably accurate.

We can use parametric bootstrapping to provide another estimate of the standard errors.
With our general algorithm we rely on the R arima() function and this function may occasion-
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Figure 3.10: Monte-Carlo test for CENARMA(1,1).

Figure 3.11: Monte-Carlo test for CENARMA(1,0).



73

ally produce wild results as we have seen in Figure 3.4. We did 1000 parametric bootstrap
iterations and computed robust estimates of the standard deviations of the parameter estimates
used the median absolute deviation specifically the following method, as suggested in Venables
and Ripley [2002, §5.5] was used,

MAD <- function(z){

median(abs(z-median(z)))/0.6745

}

The table below compares our bootstrap estimates with those produced by cenarma().

estimate value sd.cenarma sd.bootstrap
ϕ̂1 0.9440 0.0602 0.0755
θ̂1 0.7881 0.1157 0.1118
µ̂ −0.9212 0.1674 0.1558

By comparison, assuming left-censored NID samples µ̂ = −0.9933 ± 0.0495. In the
ARMA(0,0) case the only parameter to estimate is the mean. The required conditional ex-
pectations use the expectation result for the appropriate truncated normal distribution with pa-
rameters and so the algorithm is equivalent to the general algorithm CM presented in Chapter
2. The two algorithms provide essentially the same estimates for the mean with the toxic water
quality dataset. The sample mean was z̄ = −0.94 corresponds to treating the censored values
as observed values at the detection point.

One final remark comparing the time series analysis with the analysis in Chapter 2, we
arrived at different models. In Chapter 2, we saw that if we assume that the level changed after
the detection limit was changed then the simplest model was a level shift and about independent
white noise. This model is no doubt simpler than the CENARMA(1,1) but further investigation
by those involved in the collection of this data is needed to choose between these models.



Chapter 4

Conclusions

The EM algorithm is discussed for the simple case of estimation of the mean and variance in
the censored time series model consists of a mean plus Gaussian white noise. This is equivalent
to the well-known and much studied problem of censored samples from a normal distribution
[Cohen, 1991, Schneider, 1986, Wolynetz, 1979a]. We present a new derivation using the EM
algorithm as well a new closed form expression for the information matrix for the mean and
variance parameters. It is shown that in the censored case these parameters are not orthogonal.
A new interactive normal probability plot for censored data is discussed. Several applications
are given.

In addition, we develops a new Quasi-EM algorithm for fitting ARMA, stationary ARFIMA
and other linear time series models to censored time series. It is shown that the missing value
problem in time series model fitting may be regarded as a special and extreme case of censoring
and it is demonstrated that our approximate Quasi-EM algorithm handles this case just as well
as the standard exact treatment. The method is illustrated with an application.

In future research, we plan to develop specialized two-sample tests and confidence intervals
for censored random samples and to extend the methods to the family of exponential distribu-
tions, multivariate and spatial time series. I am currently preparing paper with my supervisor
Dr. McLeod to deal with the problems of how large a sample size is needed to determine a
confidence interval of a certain width given preliminary estimates of the parameters? How
large a sample size is needed to achieve some specified power of a statistical test?
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